
Université de Montréal

Automates à contraintes semilinéaires

Automata with a semilinear constraint

par Michaël Cadilhac

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences en vue de l’obtention du
grade de Philosophiæ Doctor (Ph.D.) en informatique

Novembre 2012

© Michaël Cadilhac, 2012

Résumé

Cette thèse présente une étude dans divers domaines de l’informatique théorique de
modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous
intéressons aux questions de décidabilité, d’expressivité et de clôture, tout en ouvrant
l’étude à la complexité, la logique, l’algèbre et aux applications. Cette étude est présen-
tée au travers de quatre articles de recherche.

Le premier article, Affine Parikh Automata, poursuit l’étude de Klaedtke and Rueß
des automates de Parikh et en définit des généralisations et restrictions. L’automate de
Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul
est équivalent à l’automate contraint que nous définissons comme un automate qui
n’accepte un mot que si le nombre de fois que chaque transition est empruntée répond
à une contrainte arithmétique. Ce modèle est naturellement étendu à l’automate de
Parikh affine qui effectue une opération affine sur un ensemble de registres lors du
franchissement d’une transition. Nous étudions aussi l’automate de Parikh sur lettres:
un automate qui n’accepte un mot que si le nombre de fois que chaque lettre y apparaît
répond à une contrainte arithmétique.

Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des
automates de Parikh. Un langage est borné s’il existe des mots 𝑤1, 𝑤2, … , 𝑤𝑘 tels
que chaque mot du langage peut s’écrire 𝑤1 ⋯ 𝑤1𝑤2 ⋯ 𝑤2 ⋯ 𝑤𝑘 ⋯ 𝑤𝑘. Ces langages
sont importants dans des domaines applicatifs et présentent usuellement de bonnes
propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le
déterminisme n’influence pas l’expressivité des automates de Parikh.

Le troisième article, Unambiguous Constrained Automata, introduit les automates
contraints non ambigus, c’est-à-dire pour lesquels il n’existe qu’un chemin acceptant
par mot reconnu par l’automate. Nous montrons qu’il s’agit d’un modèle combinant

Résumé

une meilleure expressivité et de meilleures propriétés de clôture que l’automate con-
traint déterministe. Le problème de déterminer si le langage d’un automate contraint
non ambigu est régulier est montré décidable.

Le quatrième article, Algebra andComplexityMeet Contrained Automata, présente
une étude des représentations algébriques qu’admettent les automates contraints et
les automates de Parikh affines. Nous déduisons de ces caractérisations des résul-
tats d’expressivité et de complexité. Nous montrons aussi que certaines hypothèses
classiques en complexité computationelle sont reliées à des résultats de séparation et
de non clôture dans les automates de Parikh affines.

La thèse est conclue par une ouverture à un possible approfondissement, au travers
d’un certain nombre de problèmes ouverts.

Mots-clés : automates, automates de Parikh, ensembles semilinéaires, fonctions
affines, decidabilité, langages bornés, langages réguliers, monoïdes typés, séries ra-
tionnelles, model-checking.

ii

Abstract

This thesis presents a study from the theoretical computer science perspective of com-
puting models combining finite automata and arithmetic constraints. We focus on de-
cidability questions, expressiveness, and closure properties, while opening the study
to complexity, logic, algebra, and applications. This thesis is presented through four
research articles.

The first article, Affine Parikh Automata, continues the study of Klaedtke and Rueß
on Parikh automata and defines generalizations and restrictions of this model. The
Parikh automaton is one of the starting points of this thesis. We show that this model
of computation is equivalent to the constrained automaton that we define as an automa-
ton which accepts a word only if the number of times each transition is taken satisfies
a given arithmetic constraint. This model is naturally extended to affine Parikh au-
tomata, in which an affine transformation is applied to a set of registers on taking a
transition. We also study the Parikh automaton on letters, that is, an automaton which
accepts a word only if the number of times each letter appears in the word verifies an
arithmetic constraint.

The second article, Bounded Parikh Automata, focuses on the bounded languages
of Parikh automata. A language is bounded if there are words 𝑤1, 𝑤2, … , 𝑤𝑘 such that
every word in the language can be written as 𝑤1 ⋯ 𝑤1𝑤2 ⋯ 𝑤2 ⋯ 𝑤𝑘 ⋯ 𝑤𝑘. These
languages are important in applications and usually display good theoretical proper-
ties. We show that, over the bounded languages, determinism does not influence the
expressiveness of Parikh automata.

The third article, Unambiguous Constrained Automata, introduces the concept of
unambiguity in constrained automata. An automaton is unambiguous if there is only
one accepting path per word of its language. We show that the unambiguous con-

Abstract

strained automaton is an appealing model of computation which combines a better
expressiveness and better closure properties than the deterministic constrained automa-
ton. We show that it is decidable whether the language of an unambiguous constrained
automaton is regular.

The fourth article, Algebra and Complexity Meet Constrained Automata, presents a
study of algebraic representations of constrained automata and affine Parikh automata.
We deduce expressiveness and complexity results from these characterizations. We
also study how classical computational complexity hypotheses help in showing sepa-
rations and nonclosure properties in affine Parikh automata.

The thesis is concluded by a presentation of possible future avenues of research,
through several open problems.

Keywords: automata, Parikh automata, semilinear sets, affine functions, decid-
ability, bounded languages, regular languages, typed monoids, rational series, model-
checking.

iv

Contents

Résumé i

Abstract iii

List of Acronyms vii

Acknowledgments xi

Introduction xiii
1 Models . xiii
2 The behavior of a model . xvi
3 Contribution of this thesis . xviii

0 Definitions and Notations 1
1 Vectors, functions, definable and semilinear sets 1
2 Languages . 7
3 Models of computation . 11

I Affine Parikh Automata 19

Presentation 21
1 Parikh automata . 26
2 Affine Parikh automata . 36
3 Parikh automata on letters . 56
4 Conclusion . 58

Discussion 61

Contents

II Bounded Parikh Automata 65

Presentation 67
1 Preliminaries . 71
2 Parikh automata and constrained automata 72
3 Bounded Parikh automata . 73
4 Bounded Parikh automata are determinizable 76
5 Discussion and further work . 85

Discussion 87

III Unambiguous Constrained Automata 89

Presentation 91
1 Preliminaries . 94
2 Closure properties and expressiveness of UnCA 95
3 UnCA and RBCM . 104
4 Decision problems for UnCA . 104
5 A deterministic form of UnCA . 111
6 Conclusion . 116

Discussion 117

IV Algebra and Complexity Meet Constrained Automata 121

Presentation 123
1 Preliminaries . 129
2 Two normal forms on CA and APA 129
3 Finitely typed monoids characterizations 133
4 Formal power series characterization 143
5 Conditional separations of APA and DetAPA 145
6 Conclusion . 151

Discussion 153

Conclusion 155

Bibliography 161

Index 169

vi

List of Acronyms

AFL Abstract Family of Languages.

APA Affine Parikh Automaton.

BC Boolean Closure.

BSL Bounded Semilinear Languages.

CA Constrained Automaton.

CFL Context-Free Languages.

CQDD Constrained Queue-content Decision Diagram.

CSL Context-Sensitive Languages.

DetAPA Deterministic Affine Parikh Automaton.

DetCA Deterministic Constrained Automaton.

DetLPA Deterministic Letter Parikh Automaton.

DetPA Deterministic Parikh Automaton.

FM-(Det)APA Finite-Monoid (Deterministic) Affine Parikh Automaton.

FO First-Order logic.

LPA Letter Parikh Automaton.

List of Acronyms

M-APA Moving Affine Parikh Automaton.

MSO Monadic Second-Order logic.

PA Parikh Automaton.

RBCM Reversal-Bounded multi-Counter Machine.

SLRE Semilinear Regular Expression.

UnAPA Unambiguous Affine Parikh Automaton.

UnCA Unambiguous Constrained Automaton.

viii

To my father,
who thought I’d be a damn good engineer.

aussitôt demain vidé de ses astres
tu rassembles tes affaires
pour les enfouir en secret dans la vase

n’ébruite pas la chose
tu ne saurais répondre
de la disparition des heures

— Olivier Labonté
in Lointain écho de la petite histoire

Acknowledgments

My foremost thanks go to Pierre McKenzie who gave me the opportunity to work
with him. Doing so, he certainly took a chance and I am very grateful of his risk
taking. Working with him was enriching not only in a scientific way, but also humanly
speaking.

I am also deeply indebted to Alain Finkel, without whose constant legitimate and
strong insistence on the finest details, this thesis would never have reached this degree
of precision, formality, and clarity.

I want to thank Andreas Krebs, coauthor of Paper IV, for his irrational willingness
to work with me, despite our differences in brain speed — he is the fast one of course.
His work methods and sum of knowledge are an inspiration.

I am grateful to David A. Mix Barrington for agreeing to review this thesis. It is
in his honor that the formatting of the main text is of bounded-width (5 inches, which
is sufficient).

My first encounter with automata theory is still a vivid memory and the causes of
this vividness certainly contributed to my working in this field. Hence I am grateful
to my first teachers on the theory, Akim Demaille and Jacques Sakarovitch.

The laboratoire d’informatique théorique et quantique at the Université de Mon-
tréal abounds with brilliant and kind people, some of them only pass by, others are
there to stay. I thank them all for the nice atmosphere to which they all contribute.
In particular, the following people were kind enough to work with me at some point:
Laurent Beaudou, Michael Blondin, Yara Elias, Marc Kaplan, Philippe Lamontagne,
Adrien Lemaître, David Pouliot, Samuel Ranellucci, Benno Salwey, Sébastien Tave-
nas, and Dave Touchette.

I moreover acknowledge the help of the following people who proofread parts of

Acknowledgments

this document (I still keep full ownership of the remaining typos): Paul Khuong, Math-
ieu Lemoine, and Nicolas Widynski.

Finally, I want to thank all my friends for their continuing support in more ways
than one. Financial support through Pierre McKenzie’s Natural Sciences and Engi-
neering Research Council of Canada Discovery Grant is also gratefully acknowledged.

This PhD was a great experience, and I am pretty confident in saying that if I had
to do it all over again, I would buy a better chair.

A note on formatting

The formatting style of a thesis is often a touchy subject in the academics. I acknowl-
edge the fact that the Université de Montréal does not restrict as much as some other
universities the writing style and presentation. Also, I thank the editorial board of the
Leibniz International Proceedings in Informatics for taking the bold and rare move of
having a very appealing LATEX style for their publications. I blatantly mimicked parts
of the style they use.

xii

Introduction

Scientists and engineers alike have tried for decades to automate the tasks humans do.
Neuropsychologists on the one hand tried to model the human brain, so that a formal
device could learn to think (and hence compute) like a person. On the other hand, in
a complementary way, logicians and the first computer scientists worked on building
machines that would compute specificmental tasks (additions, proving theorems, find-
ing a shortest path). In this introduction, we present how to formalize the notion of
implementation of a task, and how, given an implementation, one can verify that it fits
a specification.

This introduction is partly inspired by the historic surveys of Greibach [Gre81] and
Perrin [Per95, Per03].

1 Models

The common root of the works on automation is the notion of finite control structure,
which gave rise to the formalization of the concept of algorithm. A finite control
structure is a finite set of states together with a finite set of rules describing how the
device goes from one state to another. Indeed, when mimicking human computation,
the foremost requirement is that the “recipe” for that computation be finite: one could
imagine having an infinite supply of a particular ingredient (say, salt and pepper), but
not having to follow an infinitely long recipe. This distinction between the control
structure (the recipe) and the resources available (the ingredients) is at the core of the
hierarchies that abound in the study of computer science.

At one end of the spectrum, we find the finite control structure without any ad-
ditional resource: the finite automaton. This applies to the simplest tasks of mech-
anization, and we illustrate this with an example. Suppose we want to automate the

Introduction

ingrate task of waiting at a door to let only the people with the password in. We want
to design a device which receives an input consisting of a finite sequence of letters, ac-
cepts if the input matches a prescribed password, and rejects otherwise. With the three
letter alphabet Σ = {𝑎, 𝑏, 𝑐} and the password 𝑎𝑎𝑐, this is described by the following
diagram:

........ 𝑎. 𝑎. 𝑐.

𝑏, 𝑐

.

𝑏, 𝑐

.

𝑎, 𝑏

.

𝑎, 𝑏, 𝑐

.

𝑎, 𝑏, 𝑐

In this diagram, states are represented by circles and rules (or transitions) by edges.
Each time a piece of input (a letter) is given to the automaton, it goes to the state
prescribed by the current state and the input. Now the automaton accepts starting from
the initial state (that is, finishes in the double-circled state starting from the one with
an arrow) if the input is 𝑎𝑎𝑐, and nothing more. This device has the major drawback
that it has to be restarted each time someone makes a mistake; for instance, the word
𝑎𝑎𝑎𝑐, which ends with the password, is rejected. We may avoid this drawback using a
slightly more complicated version of the previous automaton:

.......

𝑏

.
𝑎

. 𝑎. 𝑐.

𝑏, 𝑐

.
𝑏, 𝑐

.

𝑎

.

𝑏, 𝑐

.

𝑎

This is such that each time the input ends with 𝑎𝑎𝑐, the automaton is in the accepting
(double-circled) state.

We see that these machines, albeit simple in appearance, already offer a certain
challenge in implementing certain tasks. At the other end of the spectrum is the Turing
machine, this is a finite control structure (as always) with an unbounded memory. The
machine is presented with the input at the beginning of the memory tape, and can, in
addition to the abilities of the finite automaton, move the read head on the tape and
write on it. It may look dubious, at first, that such a simple device is “at the other end
of the spectrum.” This is known as the Church-Turing thesis: any mechanical process
can be simulated using a Turing machine. Although this is not a formal statement (and

xiv

1. Models

it cannot be one), it has been supported by the last seventy years of research: no device
which works by a discrete sequence of “small steps” has been found to exceed the
power of the Turingmachine. Now, it should not come as a surprise that finite automata
are way less expressive than Turing machines; but what is the formal statement for such
a property?

In the usual vocabulary, an alphabet Σ is a finite set of input symbols called letters.
Naturally, a finite sequence of letters is a word, and we write Σ∗ for the set of all words.
Now a set of words (finite or not), that is, a subset of Σ∗, is a language. When studying
the expressive power of a computing device, we are usually interested in the languages
it decides, i.e., what are the languages for which there is a device that accepts if the
input is in the language and rejects otherwise. This may look like a restriction on two
accounts. As a first restriction, we do not consider functions, although most processes
call for finding a solution. There are numerous ways to address this problem; say we
want to compute a function from Σ∗ to the integers, then we can consider languages 𝐿
whose words are of the form (𝑤, 𝑖) for 𝑤 ∈ Σ∗ and 𝑖 an integer. Here (𝑤, 𝑖) is short for
the word consisting of 𝑤 followed by the binary representation of 𝑖. Thence we can see
𝐿 as mapping 𝑤 ∈ Σ∗ to an integer 𝑛 whose 𝑖-th bit is 1 if (𝑤, 𝑖) ∈ 𝐿 and 0 otherwise.
As a second restriction, we are studying processes that eventually reach a stop — as
opposed, for instance, to a critical system that should run indefinitely. In this case, the
words under study should be infinite sequences of input letters. This fruitful field of
computer science, which focuses on so-called 𝜔-languages, i.e., languages of infinite
words, is in fact a different branch that we do not consider here.

Using these terms, we say that the language of the first automaton depicted above
is {𝑎𝑎𝑐}, while the language of the second is that of words ending with 𝑎𝑎𝑐. Also, we
may give a formal statement for the property that finite automata are less expressive
than Turing machines: there are languages which are decided by Turing machines but
by no finite automaton. Since we have asserted that the Turing machine is the most
powerful machine, it may come as a surprise that there are languages which are not
decided by any Turing machine. This is essentially the results of the works of Gödel,
Turing, and Church in the 1930s on the Entscheidungsproblem: there is no mechanical
way to determine, given a mathematical statement about the integers, whether it is true,
thus the language of such true statements is not decided by a Turing machine.

Between finite automata and Turing machines lie two important hierarchies. The
first hierarchy, devised on the impulse of the linguists, is due to Chomsky [Cho56].
It consists of 4 levels: the recursively enumerable languages are those recognized by
Turing machines; the context-sensitive languages are those recognized by a Turing ma-
chine using a memory size linear in the length of its input; the context-free languages

xv

Introduction

are those recognized by finite automata equipped with a stack; finally, the bottom of
the hierarchy is formed by the regular languages, those recognized by finite automata.
The second hierarchy is that of computational complexity, and is far more diverse. It
consists in restraining a Turing machine to work with an amount of time and/or mem-
ory size which depends, in a given fashion, on the length of its input.

In both hierarchies, one critical property that is examined is the contribution of
nondeterminism. We first present an example. The password example at the beginning
of this section could have been more succinctly solved using the following automaton:

....... 𝑎. 𝑎. 𝑐.

𝑎, 𝑏, 𝑐

Clearly, for any word ending in 𝑎𝑎𝑐, there is a path in this automaton going from the
initial state and ending in the accepting state. However, the word 𝑎𝑎𝑐 is also read by a
path which does not end in the accepting state. Nondeterminism is the property that a
word is accepted if at least one path leads to acceptance. It is usually more succinct to
present a regular language using a nondeterministic automaton, but checking manually
that a word is accepted becomes more complicated. In the realm of finite automata,
nondeterminism does not add expressive power, that is, the languages recognized by
nondeterministic automata are those recognized by deterministic automata. It is com-
pelling to study determinism in particular because a central problem of complexity the-
ory is whether nondeterminism adds power to Turing machines restrained to work in a
time polynomial in the length of their input (known as the P vs. NP problem [Coo71]).

2 The behavior of a model

As the building blocks of the specification of a task are put together, it becomes in-
creasingly difficult to be convinced that their implementation is correct. Suppose for
instance that our password checker is part of a vast application, buried deep and in-
terleaved with different functions of the bigger software. This software is still a finite
control structure (represented by its source code) with given resources. Now we want
to check that the software behaves correctly: specifying a behavior and implementing
it are two distinct tasks, and we may be confident that the specification of the behav-
ior is correct. Thus what we want to do is run the software and check that each of its
actions comply with the specification; an impossible task in the usual case. However,
when checking critical parts of the system, as a password checker, we are not interested

xvi

2. The behavior of a model

in the behavior of the whole software, but only that properties of the following form
are satisfied:

• The password is accepted only if it is correct,
• The correct password is always accepted.
Checking properties of a system, rather than compliance with regards to a com-

prehensive specification, is the concern of model-checking [BBF+01, BK08]. Model-
checking is a two-phase process. First, a model of the software has to be constructed;
this is usually done using a finite automaton 𝐴 with added synchronizing features.
Second, the property 𝜙 to be verified has to be written in a formal language, usually a
temporal logic, which are apt to specify assertions such as “If in the future we are in
the state where no correct character of the password has been entered, then the next
state will not be the password accepting state.” Then model-checking offers, accord-
ing to the choice of modeling framework and logic, ways to check that the automaton
𝐴 verifies the property 𝜙. In particular, if 𝜙 is specified using another automaton 𝐵,
then checking that 𝐴 verifies 𝜙 is equivalent to checking whether the language of 𝐴
has an empty intersection with the complement of the language of 𝐵. This has to be
an efficient procedure for model-checking to be tractable.

When presented with a (deterministic) automaton, computing an automaton which
recognizes the complement language is simply a matter of turning the accepting states
into nonaccepting states and vice versa. Given two automata, we can compute an
automaton recognizing the intersection of the two languages quite easily: it is the au-
tomaton which moves in the two automata at the same time, that is, it has states of the
form (𝑝, 𝑞) where 𝑝 is a state of the first automaton and 𝑞 a state of the second. Next,
checking that an automaton has an empty language amounts to checking if there is a
path between the initial state and an accepting state. All of the operations being quite
efficient, we can state that model-checking where both the model and the property are
specified as automata can be done efficiently.

Now say we want to express the model with a more powerful device than the finite
automaton, allowing access to a stack to be used as a temporary storage mechanism.
One definite advantage of doing this is that extra power usually comes with a gain
in the ease of modeling. Then, before asking whether we can model-check efficiently
using this more powerful device, a fundamental question is whether we can model-
check using it at all; that is, is there an algorithm (a Turing machine) which, given
an automaton 𝐴 with a stack and an automaton 𝐵, decides whether the language of
𝐴 has an empty intersection with the complement of the language of 𝐵. In fact, it is
known that such an intersection is again expressible as the language of an automaton
with a stack, hence the fundamental question amounts to whether we can determine if

xvii

Introduction

an automaton with a stack has an empty language.
Parikh [Par66] gave a positive answer to this question for automata with stacks

using the notion of commutative image of a word. The name stems from the fact that
a word is seen as an element of a noncommutative structure: the words 𝑎𝑏 and 𝑏𝑎 are
different. The commutative image of a word is the information that a word contains
when we consider that the letters commute; this is the number of times each letter
appears in the word. Thus define 𝖯𝗄𝗁(𝑤), for a word 𝑤 ∈ Σ∗, to be the vector of size
|Σ| where the 𝑖-th component indicates the number of times the 𝑖-th letter of Σ appears
in 𝑤. The notation 𝖯𝗄𝗁(𝑤) comes from the fact that the commutative image of a word is
nowadays called theParikh image of 𝑤. Now Parikh’s theorem gives a characterization
of the set of Parikh images of languages of automata with a stack which is as follows.
We say that a set 𝐸 of vectors of dimension 𝑑 is linear if 𝐸 = {𝐯0 + 𝑘1𝐯𝟏 + ⋯ +
𝑘𝑛𝐯𝐧 | 𝑘𝑖 ∈ ℕ}, with 𝐯𝑖 vectors of dimension 𝑑. It is semilinear if it is a finite union
of linear sets. Parikh’s theorem states that if 𝐿 is the language of an automaton with a
stack, the set 𝖯𝗄𝗁(𝐿) of Parikh images of the words in 𝐿 is effectively semilinear. The
term “effectively” refers to the fact that we can find an explicit expression for 𝖯𝗄𝗁(𝐿).
Now 𝐿 is empty iff 𝖯𝗄𝗁(𝐿) is empty, and checkingwhether a (semi)linear set is empty is
easy, thus one may check whether the language of an automaton with a stack is empty.
Hence model-checking where the model is specified using an automaton with a stack
and the property is specified using an automaton is doable — although efficiency here
is a greater problem.

More generally, when a computing device is presented, it is of great interest to
study three main properties: its expressiveness (what are the languages it can decide?),
its closure properties (e.g., if two languages are decided by the device, is it also true
for their intersection?), and decidability properties (e.g., can we decide whether the
language of the device is empty? or expressible using a simpler model?). In particu-
lar, depending on the efficiency of the operations and on the fitness of the device to
represent real-world implementations, one can then consider relying on it for model-
checking.

3 Contribution of this thesis

We continue the study of Parikh automata, introduced by Klaedtke and Rueß [KR03]
in the context of model-checking. Let us first give the definition of an equivalent,
arguably simpler model. A constrained automaton is a pair (𝐴, 𝐶) where 𝐴 is a finite
automaton and 𝐶 is a semilinear set. Its language is the set of inputs accepted by
paths 𝜋 in 𝐴 for which 𝖯𝗄𝗁(𝜋) ∈ 𝐶 — here, we see the transition set as an alphabet

xviii

3. Contribution of this thesis

and the set of accepted paths as a language. Such a device is especially interesting
when there is a need to specify a simple arithmetic constraint on the number of times a
transition is taken; it is indeed an essential characterization of semilinear sets that they
are the sets describable by a mathematical statement about the integers which only uses
addition. We saw earlier that without this latter restriction, there is no Turing machine
which decides the truth of a mathematical statement; with the restriction of using only
addition, such a Turing machine exists, although its running time makes it usable only
on small or simple formulas. We give an example of a constrained automaton. The
following (nondeterministic) constrained automaton accepts the words which are a
sequence of 𝑛 letters 1, then a ♯ followed by a word ending in 𝑎𝑎𝑐 but no longer than
𝑛. The automaton 𝐴 is given by:

........

1

. ♯. 𝑎. 𝑎. 𝑐.

𝑎, 𝑏, 𝑐

The set 𝐶 is then specified so as to constrain the transition labeled 1 to occur more
often than all the other transitions put together. Specifically, if 𝑥1 is the number of
occurrences of the transition labeled 1 and 𝑥2, 𝑥3, … , 𝑥8 are the numbers of occur-
rences of the seven other transitions respectively, then 𝐶 is specified by the inequality
𝑥1 ≥ 𝑥2 + 𝑥3 + ⋯ + 𝑥8, which describes a semilinear set of 8-tuples of integers.

One of the central definitions contributed by this thesis, and the main focus of the
first paper to follow, is the affine Parikh automaton. An affine Parikh automaton is an
automaton which uses a vector of integers as an additional resource. Upon taking a
transition, the automaton applies an affine transformation to this vector. At the end of
the computation, the input is accepted if the automaton accepts it and the vector be-
longs to a prescribed semilinear set. As an example, the following (nondeterministic)
affine Parikh automaton of dimension 2 recognizes the language of words of lengths
which are positive powers of two over the single letter 𝑎. The automaton and the affine
transformations are given by:

......
𝑎, 𝑥

𝑦 ← 1
1

.

𝑎, 𝑥
𝑦 ← 2𝑥

𝑦+1

.
𝑎, 𝑥

𝑦 ← 𝑥
𝑦+1

.

𝑎, 𝑥
𝑦 ← 𝑥

𝑦+1

The constraint set then asserts that 𝑥 = 𝑦. As for a word 𝑤, 𝑥 can be any power of 2 less
than 2|𝑤|−1 and 𝑦 = |𝑤|, the language of this affine Parikh automaton is as claimed.

xix

Introduction

This thesis consists of an introductory technical chapter (Chapter 0) followed by
four papers, each introduced and discussed in separate sections.

Chapter 0. This chapter contains the technical preliminaries common to all the pa-
pers. It also mentions facts from the literature which are not needed in this thesis but
offer a broader picture.

Paper I: Affine Parikh Automata. We present new results on the expressive power of
Parikh automata (which are proved equivalent to constrained automata) and introduce
and study the affine Parikh automaton.

Paper II: Bounded Parikh Automata. We show, using in particular affine Parikh au-
tomata, that nondeterminism does not add expressiveness to Parikh automata over the
bounded languages, i.e., the languages for which there exist words 𝑤1, 𝑤2, … , 𝑤𝑘 such
that any word of the language can be written as 𝑤1 ⋯ 𝑤1𝑤2 ⋯ 𝑤2 ⋯ 𝑤𝑘 ⋯ 𝑤𝑘.

Paper III: Unambiguous Constrained Automata. We study the constrained automata
for which the underlying automaton is unambiguous, that is, has at most one accepting
path per label. We show that this is an appealing model and that we can decide given
an unambiguous constrained automaton whether its language is regular.

Paper IV: Algebra and Complexity Meet Constrained Automata. We give algebraic
characterizations of constrained automata and affine Parikh automata, from which we
derive expressiveness and complexity results. We use complexity assumptions to show
that determinism impacts the expressive power of affine Parikh automata.

A note on the papers

The first three papers are the journal versions of conference papers that appeared in
refereed conference proceedings. All three are invited submissions to the journal spe-
cial issue of the related conference; Papers I and II are in print, while Paper III is still
in preparation. Paper IV is in preparation and is not yet submitted to any venue.

The published work is integrally reproduced here. However, we merged the com-
mon preliminaries of the papers into Chapter 0; technical definitions which are local
to only one paper are included in the specific paper. The margin notes included in the

xx

3. Contribution of this thesis

papers are added to clarify or reflect on particular points, and only appear in the thesis.
We also homogenized the notation throughout the papers.

xxi

CHAPTER 0
Definitions and Notations

Il n’y a que les mots qui comptent,
le reste n’est que bavardage

— Eugène Ionesco

In an effort to homogenize notation throughout the forthcoming articles and avoid
repetition, we give in this section the essential notions of the present works. We also
present the articles which form the basis of this research, and some related topics in
order to put this thesis in its context.

The actual content of this section is larger than the union of the similar sections of
the articles; we included more basic definitions that may help the reader not versed in
language theory. It is however expected that basics of language theory — languages,
regular languages, closure properties, automata — are known, and the goal of the
presentation made here is essentially to fix notations.

Most readers may safely skim through this chapter, but should pay attention to the
notions of semilinear sets, Parikh automata, and constrained automata. The sections
are generally exempt from references, these being condensed in multiple “Bibliograph-
ical notes and comments.” Those notes also contain relatedmaterial which extends that
of the main text but will not be needed in the articles.

1 Vectors, functions, definable and semilinear sets

We write ℤ for the integers, ℕ for the nonnegative integers, and ℚ for the rational
numbers; we follow these notations by a superscript + for the strictly positive subsets
(ℤ+ = ℕ+, ℚ+). We use 𝕂 to denote any of ℤ, ℕ, or ℚ. When a dimension 𝑑 is
implicit, we write 𝐞𝑖 ∈ {0, 1}𝑑 for the vector having a 1 in position 𝑖 and 0 elsewhere,

Chapter 0. Definitions and Notations

and 0𝑑 or 𝟎 for the all-zero vector of dimension 𝑑. We usually see vectors as column
vectors, but take liberties for the notation and explicitly indicate when the distinction
is important.

..The semigroup
𝑈1 = ({0, 1}, ×) is a monoid

with 1 as neutral element.

.
Example 1 A semigroup is a set 𝐴 equipped with an associative binary operation ⋄∶ 𝐴 → 𝐴,

usually written in infix notation. It is amonoid if there exists a (unique) neutral element
𝑒 ∈ 𝐴, that is, for all 𝑥 ∈ 𝐴, 𝑒 ⋄ 𝑥 = 𝑥 ⋄ 𝑒 = 𝑥. For a set of elements 𝐺, we write 𝐺+

for the semigroup generated by 𝐺 and 𝐺∗ for the monoid generated by 𝐺. If 𝐺 consists
of a single element 𝑥, then 𝐺∗ can be written 𝑥∗. We see the sets 𝕂𝑑 as the additive
monoids (𝕂𝑑 , +), where:

(𝑎1, 𝑎2, … , 𝑎𝑑) + (𝑏1, 𝑏2 … , 𝑏𝑑) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … , 𝑎𝑑 + 𝑏𝑑) .

..The only morphisms from ℤ
to 𝑈1 are the constant

functions.

.
Example 2 A (monoid) morphism from a monoid (𝑀, ⋄) to a monoid (𝑁, ⋆) is a function

ℎ∶ 𝑀 → 𝑁 such that ℎ(𝑚 ⋄ 𝑚) = ℎ(𝑚) ⋆ ℎ(𝑚) for all 𝑚, 𝑚 ∈ 𝑀 and ℎ(𝑒𝑀) = 𝑒𝑁 ,
with 𝑒𝑀 , 𝑒𝑁 the respective neutral elements of 𝑀 and 𝑁 . The morphism is erasing if
ℎ maps a nonneutral element of 𝑀 to 𝑒𝑁 .

Vectors in 𝑀𝑑 are noted in boldface, 𝐯 ∈ 𝑀𝑑 , and their elements written in slanted
roman with a subscript, 𝐯 = (𝑣1, 𝑣2, … , 𝑣𝑑). We often use, without mention, the
isomorphism between 𝑀𝑑 × 𝑀𝑑 and 𝑀𝑑+𝑑 . When an ordered set of symbols Σ =
{𝑎1, 𝑎2, … , 𝑎𝑑} is implicit, we refer to the components of 𝐯 ∈ 𝑀𝑑 by 𝑣𝑎1 , 𝑣𝑎2 , … , 𝑣𝑎𝑑 ,
and 𝑣𝑎 is understood as 𝑣𝑎𝑖 where 𝑎𝑖 = 𝑎.

For a map 𝑓 ∶ 𝐴 → 𝐵 and 𝐸 ⊆ 𝐴, we let 𝑓(𝐸) = {𝑓(𝑒) | 𝑒 ∈ 𝐸} and 𝑓 −1(𝐸) =
{𝑥 | 𝑓(𝑥) ∈ 𝐸}. In addition, if 𝑔 ∶ 𝐵 → 𝐶 then 𝑔 ∘ 𝑓 is the function which maps 𝑥 ∈ 𝐴
to 𝑔(𝑓(𝑥)) ∈ 𝐶 .

A function 𝑓 ∶ 𝕂𝑑 → 𝕂𝑑 is an affine function of dimension 𝑑 if there exist a matrix
𝑀 ∈ 𝕂𝑑×𝑑 and 𝐯 ∈ 𝕂𝑑 such that for any 𝐱 ∈ 𝕂𝑑 , 𝑓(𝐱) = 𝑀.𝐱 + 𝐯. We note such a
function (𝑀, 𝐯) and abusively write 𝑓 = (𝑀, 𝐯). We let ℱ 𝕂

𝑑 , or ℱ𝑑 when 𝕂 is clear,
be the monoid of such functions under the operation ⋄ defined by (𝑓 ⋄ 𝑔)(𝐱) = 𝑔(𝑓(𝐱)),
where the identity element is the identity function, i.e., (𝐼𝑑, 𝟎) with 𝐼𝑑 the identity
matrix of dimension 𝑑. Let 𝑈 be a monoid morphism from Σ∗ to ℱ 𝕂

𝑑 . For 𝑤 ∈ Σ∗, we
write𝑈𝑤 for𝑈(𝑤), so that the application of𝑈(𝑤) to a vector 𝐯 is written𝑈𝑤(𝐯), and𝑈𝜀
is the identity function. We defineℳ(𝑈) as themultiplicativematrixmonoid generated
by the matrices used to define 𝑈 , i.e., ℳ(𝑈) = {𝑀 | (∃𝑎 ∈ Σ)(∃𝐯)[𝑈𝑎 = (𝑀, 𝐯)]}∗.

We now focus on the important notion of definable set, of which semilinear set is a
particularly important special case. A subset 𝐸 ⊆ 𝕂𝑑 is 𝕂-definable if it is expressible
as a first-order formula which uses the function symbols +, 𝜆𝑐 with 𝑐 ∈ 𝕂 correspond-
ing to the scalar multiplication by 𝑐, the order <, and constants. More precisely, a

2

1. Vectors, functions, definable and semilinear sets

subset 𝐸 of 𝕂𝑑 is 𝕂-definable iff there is such a formula 𝜙 with 𝑑 free variables, with
𝐱 ∈ 𝐸 ⇔ 𝕂 ⊧ 𝜙(𝐱).

We will usually consider 𝕂 = ℕ. In this case, the logic together with the interpre-
tation of the relations and symbols in ℕ is the Presburger arithmetic, and definable sets
coincide with the semilinear sets: A set 𝐸 ⊆ ℕ𝑑 is linear if 𝐸 = {𝐛} + 𝑃 ∗ for some
𝐛 ∈ ℕ𝑑 and 𝑃 ⊆ ℕ𝑑 a finite set, it is semilinear if it is a finite union of linear sets. We
will always favor the term “semilinear set” over “ℕ-definable set” in this document.
One essential property of these sets, and a way to show they are decidable, is that they
are exactly the sets expressible by a quantifier-free first-order formula with the same
symbols as before, and added congruence relations (≡𝑝 for 𝑝 ∈ ℕ+, interpreted as
𝑥 ≡𝑝 𝑦 iff 𝑝 divides 𝑥 − 𝑦).

..

Let
𝜙(𝑥, 𝑦, 𝑧) ≡ (∃𝑎) 𝑥 + 𝜆2(𝑎) = 𝑦 ∧ (∀𝑏) [𝑎 < 𝑏 → 𝑧 < 𝑏] .

The subset 𝐸 of ℕ3 defined by 𝜙 is the set of triples (𝑥, 𝑦, 𝑧) such that 𝑥 ≤ 𝑦, 𝑥 and
𝑦 have the same parity, and 𝑧 is no greater than half the difference between 𝑥 and 𝑦.
It can be written as the quantifier free expression:

(𝑥, 𝑦, 𝑧) ∈ 𝐸 ⇔ 𝑥 ≡2 𝑦 ∧ 𝜆2(𝑧) + 𝑥 ≤ 𝑦 .

This is also the linear set:

𝐸 =
⎛
⎜
⎜
⎜
⎝

0
0
0

⎞
⎟
⎟
⎟
⎠

+
⎧⎪
⎨
⎪⎩

⎛
⎜
⎜
⎜
⎝

1
1
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

0
2
1

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

0
2
0

⎞
⎟
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

∗

.

The sets {𝑥2 | 𝑥 ∈ ℕ} and {2𝑥 | 𝑥 ∈ ℕ} are not semilinear. Indeed, if a set
of dimension 1 is semilinear, it contains an arithmetic progression, which is not the
case of those sets. For more complex sets, one can use logical games or logical
considerations to show that a set is not semilinear. As a simple example, the set

{(𝑥, 𝑦) | 𝑦 < 𝑥 ∧ (𝑥 ≡2 0 → 𝑦 is a power of 2)} ,.

Example 3 — The many forms of semilinearity

3

Chapter 0. Definitions and Notations

..

is not semilinear. Indeed, if it were, it would be described by a formula 𝜙(𝑥, 𝑦), and
the formula 𝜓(𝑦) ≡ 𝜙(𝜆2(𝑦), 𝑦) would describe the set of powers of two.

..

We mentioned that the logic with symbols +, <, and ≡𝑝, 𝑝 ∈ ℕ+, admits quantifier
elimination. We sketch this classical proof, which is done using a bottom-up induc-
tion on formulas. Careful syntactic work shows that any formula (∃𝑥)[𝛽1 ∧𝛽2 ∧⋯∧
𝛽𝑘], where each 𝛽𝑖 is an atomic formula or the negation of one, can be written as:

(∃𝑥)
⎡⎢⎢⎣𝑗<ℓ

𝑟𝑗 − 𝑠𝑗 < 𝑥 ∧
𝑖<𝑘

𝑥 < 𝑡𝑖 − 𝑢𝑖 ∧
𝑖<𝑛

𝑥 ≡𝑚𝑖 𝑣𝑖 − 𝑤𝑖
⎤⎥⎥⎦

,

where 𝑟𝑖, 𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖, and 𝑤𝑖 are terms not containing 𝑥, and the formulas with a sub-
traction sign are abbreviations for the formulas without it, obtained by transposing
terms.

Next, if there are no congruences (𝑛 = 0), then the formula can be written as
the quantifier-free formula:

𝑖<𝑘 𝑗<ℓ
(𝑟𝑗 − 𝑠𝑗) + 1 < 𝑡𝑖 − 𝑢𝑖 ∧

𝑖<𝑘
0 < 𝑡𝑖 − 𝑢𝑖 .

Otherwise, let 𝑀 be the least common multiple of the 𝑚𝑖’s, so that 𝑎 + 𝑀 ≡𝑚𝑖 𝑎.
Clearly, as 𝑎 increases, the pattern of residues of 𝑎 modulo 𝑚0, 𝑚1, … , 𝑚𝑛−1 has
period 𝑀 . Hence it is enough to search for a solution to the congruences within 𝑀
consecutive integers, starting from the lower bounds 𝑟𝑗 − 𝑠𝑗 . The formula is thus
equivalent to:

𝑗<ℓ 1≤𝑐≤𝑀 𝑖<ℓ
𝑟𝑖 − 𝑠𝑖 < (𝑟𝑗 − 𝑠𝑗) + 𝑐

∧
𝑖<𝑘

𝑟𝑗 − 𝑠𝑗 + 𝑐 < (𝑡𝑖 − 𝑢𝑖)

∧
𝑖<𝑛

𝑟𝑗 − 𝑠𝑗 + 𝑐 ≡𝑚𝑖 𝑣𝑖 − 𝑤𝑖 .

.

Example 4 — Quantifier removal in Presburger arithmetic

When 𝕂 = ℚ, definable sets coincide with the semialgebraic set (of degree 1): a

4

1. Vectors, functions, definable and semilinear sets

set 𝐸 ⊆ ℚ𝑑 is ℚ-definable iff it is a finite union of sets of the form:

{𝐱 | 𝑓1(𝐱) = 𝑓2(𝐱) = ⋯ = 𝑓𝑝(𝐱) = 0 ∧
𝑔1(𝐱) > 0 ∧ 𝑔2(𝐱) > 0 ∧ ⋯ ∧ 𝑔𝑞(𝐱) > 0} , (1)

where 𝑓1, 𝑓2, … , 𝑓𝑝, 𝑔1, 𝑔2, … , 𝑔𝑞 ∶ ℚ𝑑 → ℚ are polynomials of degree 1 over ℚ;
this shows in particular that over ℚ the formulas previously described admit quantifier
elimination — this time, without requiring the addition of new relations.

In the context of a computational problem, we say that a 𝕂-definable set is effec-
tively definable (or effectively semilinear, effectively semialgebraic) if its description
as a formula, or any equivalent form, can be computed from the input to the problem.

Bibliographical notes and comments

Any introductory book on algebra (e.g., [Jac09]) carries the basic definitions ofmonoid
and morphism that we give here. As our focus is on language theory, the reader will
probably find a better suited introduction in [Gin68].

The decidability of the arithmetic with only + is due to Presburger [Pre27], hence
the name “Presburger arithmetic.” The sketch given here is adapted from the proof
in [End72]. Another line of attack is the technique of Büchi [Büc60] (see, e.g., [Str94,
Ex. III.5]): any formula 𝜙 with 𝑑 free variables can be encoded into a finite automaton
over the alphabet {0, 1}𝑑 whose language is a binary encoding of the vectors true of
𝜙 — the converse is false, but we can decide, given an automaton, whether it encodes
such a formula [Ler05]. Lastly, a body of research exists on Presburger functions, i.e.,
functions with semilinear graphs (see [FL08] for a review). The set of these functions
is the closure under composition of projection functions, sum and positive subtraction,
successor, conditional (𝑥, 𝑦 ↦ 𝑥 if 𝑦 ≠ 0, and 0 otherwise), and division [IL81]; as a
formula 𝜙(𝐱) can be seen as a Presburger function (with range {0, 1}) and the trans-
lation from formulas to the function composition tree is effective, this gives another
proof of the decidability of Presburger arithmetic.

Semilinear sets as finite unions of linear sets, on the other hand, were introduced
by Parikh [Par66] in his seminal work on the commutative image of context-free lan-
guages (see next section). These were investigated by Ginsburg and Spanier [GS66c]
who showed their equivalence with ℕ-definable sets.

The semilinear sets are also called “rational subsets of ℕ𝑑 ,” this term being of-
ten found in the literature on rational power series. The reason is that the class of
semilinear sets is the smallest class containing the finite sets and closed under union,

5

Chapter 0. Definitions and Notations

complement, and starring (i.e., taking 𝑃 ∗), also known as the rational operators. See
for instance [ES69].

Semialgebraic sets are finite unions of sets of the form of Equation (1) with the 𝑓𝑖’s
and 𝑔𝑖’s being polynomials; the degree of a semialgrebraic set is the maximum degree
of these polynomials. When this degree is 1, the polynomials are linear functions, and
the sets defined are then called semilinear — we will however reserve this term for ℕ-
definable sets. Semialgebraic sets arise in the study of o-minimal structures, which are
generalizations of 𝕂-definable sets over more exotic choices of 𝕂 and of predicates,
with the added constraint that the only sets of dimension 1 definable are the finite
unions of intervals and points. We hinted that the formulas used for ℚ-definable sets
admit quantifier elimination; this is in fact true for any ordered 𝐹 -linear space, with 𝐹
an ordered field. A related important result is the Tarski–Seidenberg theorem, which
states that the formulas admit quantifier elimination even if multiplication is allowed
— in this case, the sets defined are all the semialgebraic sets. See [vdD98] for a modern
account of these results.

6

2. Languages

2 Languages

Let Σ be an alphabet, i.e., a finite set of symbols called letters. The free monoid gen-
erated by Σ under the operation of concatenation is written Σ∗ and has 𝜀, the empty
word, as neutral element — hence Σ+ = Σ∗ ⧵ {𝜀}. The elements of Σ∗ are the words,
while subsets of Σ∗ are the languages. It is usually assumed that |Σ| ≥ 2, and the case
Σ = {𝑎} is treated separately. The number of letters composing a word is called its
length. For 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ, |𝑤|𝑎 is the number of occurrences of 𝑎 in 𝑤. It is easily
seen that the length operation or the letter count operations are morphisms from Σ∗ to
(ℕ, +). For two words 𝑢, 𝑣 ∈ Σ∗, we write their concatenation as either 𝑢𝑣 or 𝑢 ⋅ 𝑣; the
word 𝑢𝑢 is written 𝑢2, and more generally 𝑢𝑛 = 𝑢𝑢𝑛−1. For a word 𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑛,
where 𝑤𝑖 ∈ Σ, we let 𝑤R be the reversal of 𝑤, that is:

𝑤R = (𝑤1𝑤2 ⋯ 𝑤𝑛)R = 𝑤𝑛 ⋯ 𝑤2𝑤1 .

We naturally extend the operations of concatenation, powering, and reversal to lan-
guages, letting 𝐿 ⋅ 𝐿 = 𝐿𝐿 = {𝑢𝑣 | 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 }, 𝐿1 = 𝐿, 𝐿𝑛 = 𝐿𝐿𝑛−1, and
𝐿R = {𝑤R | 𝑤 ∈ 𝐿}. For two languages 𝐿, 𝐿 , we define the left quotient of 𝐿 by 𝐿
as:

..
For any nonempty
𝐿, 𝐿 ⊆ Σ∗, 𝐿−1Σ∗ = Σ∗;
𝐿−1{𝜀} = {𝜀} iff 𝜀 ∈ 𝐿;
𝜀 ∈ 𝐿−1𝐿 iff 𝐿 ∩ 𝐿 is
nonempty.

.

Example 5

𝐿−1𝐿 = {𝑣 | ∃𝑢 ∈ 𝐿, 𝑢𝑣 ∈ 𝐿 } ,

and similarly, the right quotient of 𝐿 by 𝐿 as:

𝐿 𝐿−1 = {𝑢 | ∃𝑣 ∈ 𝐿, 𝑢𝑣 ∈ 𝐿 } .

A morphism from Σ∗ to some other monoid need only be defined on the letters.
A morphism between languages is a monoid morphism ℎ from Σ∗ to Τ∗ with Σ and Τ
two alphabets; it is said to be length-preserving if ℎ(𝑎) ∈ Τ for all 𝑎 ∈ Σ.

..

The language {ℓ𝑏𝑤 | ℓ ∈
{𝑎, 𝑏} ∧ 𝑤 ∈ {𝑎, 𝑏}∗} has
four Nerode equivalence
classes, [𝜀]N, [𝑎]N = [𝑏]N,
[ℓ𝑏]N, [ℓ𝑎]N. The operation
mapping ([𝑢]N, [𝑣]N) to
[𝑢𝑣]N is not well-defined.

.

Example 6For a language 𝐿 ⊆ Σ∗, define the Nerode equivalence relation ≡N
𝐿, or ≡N when 𝐿

is clear, on Σ∗ by 𝑢 ≡N
𝐿 𝑣 iff for all 𝑤 ∈ Σ∗, 𝑢𝑤 ∈ 𝐿 ↔ 𝑣𝑤 ∈ 𝐿. Intuitively, if 𝑢 ≡N

𝐿 𝑣,
then if 𝑢 appears as a prefix of a word, we may change this prefix to 𝑣 without changing
the membership of the word in the language. We write [𝑢]N𝐿 for the equivalence class
of 𝑢 under ≡N

𝐿, or [𝑢]N when 𝐿 is clear from the context.
TheParikh image (or commutative image) of a word is the vector of its letter counts.

More precisely, for 𝑤 ∈ Σ∗, with Σ = {𝑎1, 𝑎2, … , 𝑎𝑛}, we define:

𝖯𝗄𝗁(𝑤) = (|𝑤|𝑎1 , |𝑤|𝑎2 , … , |𝑤|𝑎𝑛) .

Equivalently, 𝖯𝗄𝗁(⋅) is a morphism from Σ∗ to ℕ𝑛 defined by 𝖯𝗄𝗁(𝑎𝑖) = 𝐞𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
A language 𝐿 is said to be semilinear if 𝖯𝗄𝗁(𝐿) is semilinear. The commutative closure

7

Chapter 0. Definitions and Notations

of a language 𝐿 is 𝑐(𝐿) = 𝖯𝗄𝗁−1(𝖯𝗄𝗁(𝐿)), that is, the set of words whose Parikh image
is the Parikh image of a word in 𝐿.

A language 𝐿 ⊆ Σ∗ is bounded if there exist words 𝑤1, 𝑤2, … , 𝑤𝑛 ∈ Σ+ such that:

𝐿 ⊆ 𝑤∗
1𝑤∗

2 ⋯ 𝑤∗
𝑛 .

The tuple (𝑤1, 𝑤2, … , 𝑤𝑛) is called a socle1 of 𝐿. The concatenation, union, or inter-
section of two bounded languages is bounded, as is any subset of a bounded language.
The canonical example of a nonbounded language is Σ∗ (whenever |Σ| ≥ 2, which is
our usual assumption). This implies that the complement of a bounded language is
never bounded, as Σ∗ = 𝐿 ∪ 𝐿 for any 𝐿. The iteration set of a bounded language 𝐿
w.r.t. a socle (𝑤1, 𝑤2, … , 𝑤𝑛) is the set:

𝖨𝗍𝖾𝗋𝑤1,𝑤2,…,𝑤𝑛 (𝐿) = {(𝑖1, 𝑖2, … , 𝑖𝑛) ∈ ℕ𝑛 | 𝑤𝑖1
1 𝑤𝑖2

2 … 𝑤𝑖𝑛
𝑛 ∈ 𝐿} .

Note that if a word 𝑢 ∈ 𝐿 can be written as 𝑤𝑖1
1 𝑤𝑖2

2 ⋯ 𝑤𝑖𝑛
𝑛 and 𝑤𝑗1

1 𝑤𝑗2
2 ⋯ 𝑤𝑗𝑛

𝑛 , then both
𝐢 and 𝐣 belong to 𝖨𝗍𝖾𝗋𝐰(𝐿).

..

The following are bounded
languages: 𝑎∗𝑏∗, a regular

language, {𝑎𝑛𝑏𝑛}, a
nonregular context-free
language, {𝑎𝑛𝑏𝑛𝑐𝑛}, a

noncontext-free
context-sensitive language,

{𝑎𝑛 | 𝑛 is the code of an
halting Turing machine}, a

nonrecursive recursively
enumerable language.

.

Example 7 Bounded languages generally exhibit better decidability
proprieties within a given language class (e.g., given two context-free languages, one of
them bounded, it is decidable whether one is included in the other), while still offering
a useful expressiveness. We write BOUNDED for the class of bounded languages
and BSL for the class of bounded languages 𝐿 for which there is a socle 𝐰 such that
𝖨𝗍𝖾𝗋𝐰(𝐿) is semilinear.

..

The Parikh image of a word is a fundamental concept for this work. Its name stems
from Parikh’s theorem, which asserts that any context-free language is semilinear.
Parikh’s theorem implies, in particular, that over a unary alphabet, context-free lan-
guages are the same as regular languages — proofs of this fact appeared before
Parikh’s theorem, however.

Let us now consider a few languages and their Parikh image. Set Σ = {𝑎, 𝑏}.
For {𝑤𝑤R | 𝑤 ∈ Σ∗}, we have that each letter appears twice, once in 𝑤 and

once in 𝑤R. Thus its Parikh image is (2ℕ)2. For {𝑎𝑎, 𝑏𝑏}∗, the same holds. More
generally, it is easy to show that any semilinear set is the Parikh image of a regular
language. Moreover, the fact that regular languages all have a semilinear Parikh
image is not hard to show (it is in particular easier than Parikh’s theorem), as we
sketch here. Let 𝐿 be a regular language, we rewrite 𝐿, using a bottom-up induction,.

Example 8 — Parikh images

1The term socle was introduced in Paper II.

8

2. Languages

..

as ⋃𝑛
𝑖=1 𝑤𝑖𝑊 ∗

𝑖 with 𝑤𝑖 words and 𝑊𝑖 finite sets of words, while keeping its Parikh
image. No work is needed if 𝐿 is a finite language or if 𝐿 = 𝐿1 + 𝐿2, by induction.
Now if 𝐿 = 𝐿1𝐿2, with 𝐿1 = ⋃𝑚

𝑖=1 𝑢𝑖𝑈 ∗
𝑖 and 𝐿2 = ⋃𝑛

𝑗=1 𝑣𝑗𝑉 ∗
𝑗 , then rewrite 𝐿 as

⋃𝑚
𝑖=1 ⋃𝑛

𝑗=1 𝑢𝑖𝑣𝑖(𝑈𝑖 ∪ 𝑉𝑖)∗, which has the same Parikh image as 𝐿. If 𝐿 = (𝐿)∗,
with 𝐿 = ⋃𝑛

𝑖=1 𝑤𝑖𝑊 ∗
𝑖 , then rewrite 𝐿 as

𝐼⊆{1,2,…,𝑛} 𝑖∈𝐼
𝑤𝑖

𝑖∈𝐼
(𝑊𝑖 ∪ {𝑤𝑖})

∗

,

which has the same Parikh image as 𝐿 (if 𝐼 = ∅ then the expression values to {𝜀}).
Now the Parikh image of a language 𝑤𝑊 ∗ is simply 𝖯𝗄𝗁(𝑤) + {𝖯𝗄𝗁(𝑢) | 𝑢 ∈ 𝑊}∗,
a linear set, and thus 𝐿 has a semilinear Parikh image.

Parikh’s theorem is thus equivalent to: for any context-free language 𝐿 there is
a regular language 𝐿 such that 𝖯𝗄𝗁(𝐿) = 𝖯𝗄𝗁(𝐿).

Let us consider the nonbounded regular language 𝑅 = {𝑎 ⋅ 𝑢 | 𝑢 ∈ {𝑎, 𝑏}∗ ∧
|𝑢| is even}∗ (mind the ending star). Then if 𝑤 ∈ 𝑅 has only one 𝑎, |𝑤|𝑏 should
be even. If it has more than one 𝑎, then no restriction is put on the number of 𝑏’s.
Hence:

𝖯𝗄𝗁(𝑅) = 0
0

∪ 1
0

+ 0
2

∗

∪ 2
0

+ 1
0

, 0
1

∗

.

Note that this is also the Parikh image of the language:

{𝜀} ∪ {𝑎}+ ⋅ {𝑏𝑎, 𝑏𝑏}∗ ,

which is a bounded regular language within 𝑅.
Finally, note that {𝑎𝑛𝑏𝑛} is nonregular context-free and {𝑎𝑛𝑏𝑛𝑐𝑛} is noncontext-

free, thus bounded regular languages form a strict subset of bounded context-free
languages, themselves a strict subset of BSL.

Bibliographical notes and comments

The study of languages and words independently of a model of computation is usu-
ally focused on combinatorics, in a field known as combinatorics on words (a clas-
sic textbook is that of the Lothaire group [Lot97]). We will not go deep into this
field, but will make good use of it in Paper II. The presentation adopted here is some-
what specific to our needs. Basic language theory is covered in classic textbooks such

9

Chapter 0. Definitions and Notations

as [HU79, Sip97], which go through finite automata and the Chomsky hierarchy. As
mentioned previously, the Parikh map, or commutative map, has been considered by
Parikh [Par66] to show that the Parikh image of a context-free language is effectively
semilinear (see also [Gin66] for a proof). As it is checkable whether a semilinear set
is empty or finite — this is particularly easy when presented with the finite union of
linear sets {𝐛} + 𝑃 ∗, each of them given by 𝐛 and 𝑃 — this implies that one can check
whether a context-free language is empty or finite.

Bounded languages were heavily studied in the 1960s by Ginsburg and Spanier
(see [Gin66, Chap. 5] for a self-contained presentation of the results of this period).
In particular, they characterized the iteration sets of bounded regular and context-free
languages. We will use one such characterization in Paper III: call unary a semilinear
set 𝐶 that can be written as ⋃𝑛

𝑖=1({𝐛𝑖}+𝑃 ∗
𝑖) where the vectors of the 𝑃𝑖’s have only one

nonzero component, then a bounded language is regular iff one of its iteration sets is
unary. A result of Restivo [Res75] characterizes the regular bounded languages with a
combinatorics on words flavor: a regular language is bounded iff for any 𝑝, the number
of words of the language with no factor repeated 𝑝 times is finite. A class 𝒞 having the
property that any language 𝐿 ∈ 𝒞 has a subset which is a bounded language in 𝒞 with
the same Parikh image as 𝐿 is said to be Parikh-bounded. The regular and context-free
languages have this property ([Lat78] and [BL81], respectively); for a recent account
in the case of context-free languages, see [GMM10].

10

3. Models of computation

3 Models of computation

We consider in this work several different models of computations, some of them being
an integral part of the contribution of this thesis. In this section we present these mod-
els: first the usual finite automaton, then the different constrained versions of automata
under study, and finally the reversal-bounded counter machine.

3.1 Regular languages and automata

The class of regular languages, REG, is the smallest class of languages containing the
finite languages and closed under union, concatenation, and starring (i.e., taking 𝐿∗

from 𝐿). It is closed under a wealth of other operations, e.g., complement, intersection,
morphism, reversal, and quotient. The class of regular languages is precisely the class
of languages having a finite number of Nerode equivalence classes.

Regular languages are also those recognized by finite automata. A finite automa-
ton, more simply, an automaton, is a quintuple 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where 𝑄 is a finite
set of states, Σ is an alphabet, 𝛿 ⊆ 𝑄 × Σ × 𝑄 is a set of transitions, 𝑞0 ∈ 𝑄 is the initial
state, and 𝐹 ⊆ 𝑄 is a set of final states. For a transition 𝑡 = (𝑞, 𝑎, 𝑞) ∈ 𝛿, we write
𝑡 = 𝑞 .. 𝑎. 𝑞 and define 𝖥𝗋𝗈𝗆(𝑡) = 𝑞 and 𝖳𝗈(𝑡) = 𝑞 . We define 𝜇𝐴 ∶ 𝛿∗ → Σ∗ as the
length-preserving morphism given by 𝜇𝐴(𝑡) = 𝑎, with, in particular, 𝜇𝐴(𝜀) = 𝜀, and
write 𝜇 when 𝐴 is clear from the context. A path 𝜋 on 𝐴 is a word 𝜋 = 𝑡1𝑡2 ⋯ 𝑡𝑛 ∈ 𝛿∗

such that 𝖳𝗈(𝑡𝑖) = 𝖥𝗋𝗈𝗆(𝑡𝑖+1) for 1 ≤ 𝑖 < 𝑛; we extend 𝖥𝗋𝗈𝗆 and 𝖳𝗈 to paths, letting
𝖥𝗋𝗈𝗆(𝜋) = 𝖥𝗋𝗈𝗆(𝑡1) and 𝖳𝗈(𝜋) = 𝖳𝗈(𝑡𝑛). We say that 𝜇(𝜋) is the label of 𝜋. A path
𝜋 is initial if 𝖥𝗋𝗈𝗆(𝜋) = 𝑞0, final if 𝖳𝗈(𝜋) ∈ 𝐹 , and accepting if it is both initial and
final; we write 𝖱𝗎𝗇(𝐴) for the language over 𝛿 of accepting paths (or runs) on 𝐴. We
write 𝐿(𝐴) for the language of 𝐴, i.e., the labels of the accepting paths. The automaton
𝐴 is deterministic if (𝑝 .. 𝑎. 𝑞 ∈ 𝛿 ∧ 𝑝 .. 𝑎. 𝑞 ∈ 𝛿) implies 𝑞 = 𝑞 .

An 𝜀-automaton is an automaton 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) as above, except with 𝛿 ⊆
𝑄 × (Σ ∪ {𝜀}) × 𝑄 so that in particular 𝜇𝐴 becomes an erasing morphism.

An (𝜀-)automaton 𝐴 is said to be unambiguous if each word in 𝐿(𝐴) is the label of
only one path in 𝖱𝗎𝗇(𝐴).

3.2 Parikh automata

The main focus of this thesis is models of computation in which a semilinear constraint
is applied to the acceptance of a path in an automaton. In this section and the next, we
present the models and notions at play.

11

Chapter 0. Definitions and Notations

A Parikh Automaton (PA) of dimension 𝑑 over Σ is a pair (𝐴, 𝐶) where 𝐶 ⊆ ℕ𝑑

is a semilinear set and 𝐴 is an automaton over an alphabet Σ × 𝐷 where 𝐷 is a finite
subset of ℕ𝑑 . Let Ψ∶ (Σ × 𝐷)∗ → Σ∗ and Φ∶ (Σ × 𝐷)∗ → ℕ𝑑 be the morphisms
defined by:

Ψ((𝑎, 𝐱)) = 𝑎 ,
Φ((𝑎, 𝐱)) = 𝐱 .

Recall that ℕ𝑑 is seen as the monoid (ℕ𝑑 , +), and thus Φ((𝑎, 𝐱)(𝑏, 𝐲)) = 𝐱 + 𝐲, with
the addition being done component-wise. The morphism Ψ is called the projection on
Σ and Φ the extended Parikh image. Now the language of the PA is defined as:

𝐿(𝐴, 𝐶) = {Ψ(𝜔) | 𝜔 ∈ 𝐿(𝐴) ∧ Φ(𝜔) ∈ 𝐶} .

..

The DetPA of dimension 3
given by

......

(𝑏, 𝐞2)

.

(𝑐, 𝐞3)

. (𝑎, 𝐞1).

(𝑏, 𝐞2)

.

(𝑐, 𝐞3)

and the set {(𝑛, 𝑛, 𝑛) | 𝑛 ∈ ℕ}
recognizes {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 1}.

.

Example 9 The PA is said to be deterministic (DetPA) if for every state 𝑞 of 𝐴 and every 𝑎 ∈ Σ,
there exists at most one pair (𝑞 , 𝐯) with 𝑞 a state and 𝐯 ∈ 𝐷, such that (𝑞, (𝑎, 𝐯), 𝑞)
is a transition of 𝐴. The class of languages recognized by PA (resp. DetPA) is written
ℒPA (resp. ℒDetPA).

..

Example 9 shows that PA are able to countmore than context-free grammars. Here,
we give a PA of dimension 3 for the nonpalindromes, NoPAL = {𝑢 ⋅ 𝑣R | 𝑢, 𝑣 ∈
{𝑎, 𝑏}∗ ∧ |𝑢| = |𝑣| ∧ 𝑢 ≠ 𝑣}. The PA is given by the automaton 𝐴:

..1.. 2. 3.

(𝑎, 𝐞1)

.

(𝑏, 𝐞1)

.

(𝑎, 𝟎)

.

(𝑏, 𝐞2)

.

(𝑎, 𝟎)

.

(𝑏, 𝟎)

.

(𝑎, 𝟎)

.

(𝑏, 𝐞2)

.

(𝑎, 𝐞3)

.

(𝑏, 𝐞3)

Here, 𝐞𝑖 can be seen as incrementing the 𝑖-th register while 𝟎 is a no-op. The
automaton counts 𝑖 letters in the first register, chooses nondeterministically to go
to the second state, then the third, and counts 𝑗 letters from the suffix in the third
register. The second register is 1 iff the letter read while going from state 1 to state
2 is different from the one read while going from state 2 to state 3. Thus, a word is
in NoPAL iff such guesses lead to 𝑖 = 𝑗 and the second register is equal to 1, as this
means that the word is of the form 𝑥ℓ1𝑦ℓ2𝑧 where 𝑥, 𝑦, 𝑧 ∈ {𝑎, 𝑏}∗, ℓ1, ℓ2 ∈ {𝑎, 𝑏},.

Example 10 — Complement of palindromes

12

3. Models of computation

..

and |𝑥| = |𝑧| and ℓ1 ≠ ℓ2. Thus, letting:

𝐶 = {(𝑖, 1, 𝑖) ∈ ℕ3 | 𝑖 ∈ ℕ} ,

we have that 𝐿(𝐴, 𝐶) ∩ ({𝑎, 𝑏}2)∗ = NoPAL. Note that 𝐶 is indeed semilinear. Of
course, there are PA of lesser dimension for this language, though they may have
more states; we chose to present this PA as it exhibits more specific features of the
model.

Parikh Automata were introduced byKlaedtke and Rueß [KR03], and subsequently
studied in Karianto’s diploma thesis [Kar04], in which he gave more details on the
proofs of [KR03] and considered some variants. The rest of this section is devoted to
the basic results of these works.

▶ Proposition 1. Let Σ be an alphabet and 𝐷 ⊆ ℕ𝑑 . If 𝐿 ⊆ (Σ × 𝐷)∗ is a semilinear
language, then Ψ(𝐿) ⊆ Σ∗ is a semilinear language.

Of course, the converse is false. However, this implies that ℒPA is a class of semi-
linear languages; and this is effective if the automaton and the constraint set are given.

A combinatorial argument is used in showing:

▶ Proposition 2. The language of palindromes is not in ℒPA.

Themain idea of the proof is that addition over (ℕ𝑑 , +) being commutative, there is
only a polynomial number of different vectors that can be obtained by adding 𝑛 vectors
from a finite set 𝐷 ⊆ ℕ𝑑 . The language of palindromes would require an exponential
number of these to distinguish between all words. See [KR03, Lemma 26] for the
details. A similar argument is used in showing Lemma 11 in Paper I.

The following proposition lists the closure properties of ℒPA and ℒDetPA known
prior to the work of this thesis.

▶ Proposition 3. The class ℒPA is closed under union, intersection, concatenation,
morphisms, and inverse morphisms. It is not closed under complement.

The class ℒDetPA is closed under union, intersection, complement, and inverse
morphisms. It is not closed under morphism.

Similarly with decidability properties:

▶ Proposition 4. Emptiness is decidable for ℒPA. Universality is decidable for
ℒDetPA but not for ℒPA.

13

Chapter 0. Definitions and Notations

3.3 Constrained languages, constrained automata

The models of this section are one of the original contributions of this thesis. We
present them here so that redundancy is reduced among the different articles.

Given a language 𝐿 ⊆ Σ∗ and a set 𝐶 ⊆ ℕ|Σ|, the language 𝐿 constrained to 𝐶 ,
written 𝐿↾𝐶 , is defined as:

𝐿↾𝐶 = 𝐿 ∩ 𝖯𝗄𝗁−1(𝐶) ,

or, in other words, 𝐿↾𝐶 is the set of words in 𝐿 with a Parikh image in 𝐶 .

..

We show that the set 𝑆 of constrained regular languages are incomparable with the
set CFL of context-free languages. Firstly,

𝑎∗𝑏∗𝑐∗↾{(𝑖,𝑖,𝑖) | 𝑖∈ℕ}= {𝑎𝑖𝑏𝑖𝑐𝑖 | 𝑖 ∈ ℕ} ,

a noncontext-free language, so that 𝑆 ⊈ CFL. Secondly, suppose to the contrary
that there is a regular language 𝐿 and a set 𝐶 such that 𝐿↾𝐶 = PAL, the language of
palindromes defined as {𝑤#𝑤R | 𝑤 ∈ {𝑎, 𝑏}∗}. We may suppose that all the words
of 𝐿 have an even number of 𝑎’s and 𝑏’s, as this does not change 𝐿↾𝐶 or the fact
that 𝐿 is regular. As 𝐿 ⊋ PAL, there is a word 𝑤 ∈ 𝐿 which is not a palindrome.
However, 𝖯𝗄𝗁(𝑤) ∈ 𝐶 as 𝖯𝗄𝗁(𝑤) = 𝖯𝗄𝗁(𝑎

|𝑤|𝑎
2 𝑏|𝑤|𝑏 𝑎

|𝑤|𝑎
2) and the latter word is a

palindrome. Thus 𝑤 ∈ 𝐿↾𝐶 = PAL, a contradiction. Hence PAL ∈ CFL ⧵ 𝑆
.

Example 11 — Constrained regular languages

..

Let Σ = {𝑎1, 𝑎2, … , 𝑎𝑛}, 𝐿 ⊆ Σ∗ be a regular language, and 𝐶 ⊆ ℕ𝑛 be a semilinear
set. Consider an automaton 𝐴 for 𝐿 with each label 𝑎𝑖 changed to (𝑎𝑖, 𝐞𝑖). Then
(𝐴, 𝐶) can be seen as a PA, the language of which is 𝐿↾𝐶 .

.

Example 12 — Parikh automata and constrained languages

A Constrained Automaton (CA) is a pair (𝐴, 𝐶) where 𝐴 is an 𝜀-automaton with 𝑑
transitions and 𝐶 ⊆ ℕ𝑑 is a semilinear set. Its language is

𝐿(𝐴, 𝐶) = 𝜇𝐴(𝖱𝗎𝗇(𝐴)↾𝐶) .

14

3. Models of computation

The CA is said to be deterministic (DetCA) if 𝐴 is deterministic and unambiguous
(UnCA) if 𝐴 is unambiguous. The class of languages recognized by CA (resp. DetCA,
UnCA) is written ℒCA (resp. ℒDetCA, ℒUnCA). We will see that ℒCA is closed under
morphisms, this implies that any morphic image of a semilinearly constrained regular
language is in ℒCA, and conversely.

It is easy to see, and a full proof is found in Paper I (Theorem 6), that PA (resp.
DetPA) and CA (resp. DetCA) recognize the same languages; we usually prefer work-
ing with CA as the simplicity of its definition helps in devising shorter proofs.

..

We give a proof that ℒCA is closed under intersection based on the characteri-
zation by morphisms. Let Σ = {𝑎1, 𝑎2, … , 𝑎𝑛}. Let 𝐿, 𝐿 ⊆ Σ∗ be languages
of ℒCA. There exist length-preserving morphisms ℎ, ℎ ∶ Σ∗ → Σ∗, regular lan-
guages 𝑅, 𝑅 ⊆ Σ∗, and semilinear sets 𝐶, 𝐶 ⊆ ℕ𝑛 such that 𝐿 = ℎ(𝑅↾𝐶) and
𝐿 = ℎ (𝑅 ↾𝐶). Let Σ̈ = { ̈𝑎1, ̈𝑎2, … , ̈𝑎𝑛} be a new set of symbols, and let ℎ̈ , �̈�
be the versions of ℎ and 𝑅 for Σ̈ instead of Σ. Extend 𝐶 (resp. 𝐶) to vectors of
dimension |Σ ∪ Σ̈| by disregarding the last (resp. first) 𝑛 components — Σ ∪ Σ̈ is
ordered with Σ first then Σ̈. Finally, extend ℎ to work on Σ ∪ Σ̈ by mapping the
letters of Σ̈ to the empty word. Now the language:

𝐸 ={𝑢1 ̈𝑣1𝑢2 ̈𝑣2 ⋯ 𝑢𝑘 ̈𝑣𝑘 |
𝑢 = 𝑢1𝑢2 ⋯ 𝑢𝑘 ∈ 𝑅 ∧ ̈𝑣 = ̈𝑣1 ̈𝑣2 ⋯ ̈𝑣𝑘 ∈ �̈� ∧ ℎ(𝑢) = ℎ̈ (̈𝑣)}

is regular, and 𝐿 ∩ 𝐿 = ℎ(𝐸↾𝐶∩𝐶), thus 𝐿 ∩ 𝐿 ∈ ℒCA.
.

Example 13 — Closure of ℒCA under intersection

A 𝕂-affine Parikh automaton (𝕂-APA) of dimension 𝑑 is a triple (𝐴, 𝑈, 𝐶) where
𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), 𝑈 is a morphism from 𝛿∗ to ℱ 𝕂

𝑑 , and 𝐶 ⊆ 𝕂𝑑 is a 𝕂-definable
set. Recall that 𝑈 need only be defined on 𝛿, and that, in particular, 𝑈(𝜀) is the identity
function, recall also that we write 𝑈𝜋 for 𝑈(𝜋). The language of the APA is:

𝐿(𝐴, 𝑈, 𝐶) = 𝜇𝐴({𝜋 ∈ 𝖱𝗎𝗇(𝐴) | 𝑈𝜋(𝟎) ∈ 𝐶}) .

The 𝕂-APA is deterministic (𝕂-DetAPA) or unambiguous (𝕂-UnAPA) if 𝐴 is. We
write ℒ𝕂-APA (resp. ℒ𝕂-DetAPA, ℒ𝕂-UnAPA) for the class of languages recognized by
𝕂-APA (resp. 𝕂-DetAPA, 𝕂-UnAPA).

15

Chapter 0. Definitions and Notations

3.4 Reversal-bounded counter machines

A one-way, 𝑘-counter machine 𝑀 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where 𝑄 is a finite set of
states, Σ is an alphabet, 𝛿 ⊆ 𝑄 × (Σ ∪ {�}) × {0, 1}𝑘 × 𝑄 × {S,R} × {−1, 0, +1}𝑘 is
the transition function, 𝑞0 ∈ 𝑄 is the initial state and 𝐹 ⊆ 𝑄 is the set of final states.
Moreover, we assume that � /∈ Σ. The machine is deterministic if for any (𝑝, ℓ, 𝐱),
there exists at most one (𝑞, ℎ, 𝐯) such that (𝑝, ℓ, 𝐱, 𝑞, ℎ, 𝐯) ∈ 𝛿.

On input 𝑤, the machine starts with a read-only tape containing 𝑤�, and its head
on the first character of 𝑤. Let 𝑐𝑖 denote the value of the 𝑖-th counter, then a transition
(𝑝, ℓ, 𝐱, 𝑞, ℎ, 𝐯) ∈ 𝛿 is taken if the machine is in state 𝑝, reading character ℓ, and 𝑐𝑖 = 0
if 𝑥𝑖 = 0 and 𝑐𝑖 > 0 if 𝑥𝑖 = 1, for all 𝑖. The machine then enters state 𝑞, its head is
moved to the right iff ℎ = R, and 𝑣𝑖 is added to 𝑐𝑖, for all 𝑖. If the head falls off the tape,
or if a counter turns negative, the machine rejects. A word is accepted if an execution
leads to a final state.

..Let 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ}. For
any 𝑘, 𝐿𝑘 is the language of

an RBCM, but 𝐿∗ is not.
.

Example 14 The machine is reversal-bounded (RBCM) if there exists an integer 𝑟 such that any
accepting run changes between increments and decrements of the counters a (bounded)
number of times less than 𝑟. We write DetRBCM for deterministic RBCM. We write
ℒRBCM (resp. ℒDetRBCM) for the class of languages recognized by RBCM (resp. De-
tRBCM).

..

We give a deterministic RBCM for the language

𝐿 = {𝑎𝑛𝑤𝑎𝑛 | 𝑤 ∈ {𝑏, 𝑐}∗ ∧ 𝑤𝑛+1 = 𝑏} .

The RBCMwill count the number of 𝑎’s in a counter 𝑐1, then, while reading 𝑤, will
decrease 𝑐1 while incrementing a second counter 𝑐2. When 𝑐1 reaches 0, the letter
under the input head should be a 𝑏. Lastly, the machine checks that the number of
𝑎’s at the end of the input is equal to the number in 𝑐2.

We label a transition between states 𝑝 and 𝑞 with (ℓ, 𝐬, 𝐷, 𝐦) to mean that a
transition (𝑝, ℓ, 𝐬, 𝑞, 𝐷, 𝐦) exists in the machine. We use ∗ for a wild-card and use
sets instead of ℓ with the obvious meaning. The RBCM is then:.

Example 15 — A DetRBCM for a language not in ℒDetPA

16

3. Models of computation

..

..1.. 2. 3. 4.

5

.

(𝑎, ∗,R, 1
0)

.
({𝑏, 𝑐}, ∗, S, 0

0)
.

({𝑏, 𝑐}, 1
∗ ,R, −1

1)

.
(𝑏, 0

∗ ,R, 0
0)

.

({𝑏, 𝑐}, ∗,R, 0
0)

.
(𝑎, ∗, S, 0

0)
.

(𝑎, 0
1 ,R, 0

−1)

.

(�, 0
0 ,S, 0

0)

A CA can be built for 𝐿, but we can prove, using the tools of Paper I, that no
DetCA exists for it. Intuitively, this is because CA use a two-way process: they first
follow a path in the automaton, then check that its Parikh image is in the constraint
set, thus the automaton of DetCA would have to deterministically find the position
in 𝑤 referred to by the number of 𝑎’s, and this is an arithmetic task which is not
available to finite automata.

RBCM are relevant in the study of our models as:

▶ Proposition 5 ([KR03]). ℒRBCM = ℒPA.

Bibliographical notes and comments

Finite automata are one of the building blocks of language theory and theoretical
computer science in general. Any introductory book on theoretical computer science
should contain the general properties of automata — including closures, equivalences
with other models, and more.

Algebra plays an important role in modern automata theory. Firstly, the weighted
automata compute a weight associated with the input word; the usual finite automaton
fits in this model, as the weight is a Boolean value indicating whether the word is in
the language. They are strongly linked to rational power series. A comprehensive
book on the subject is [Sak03]. Secondly, for a language 𝐿 ⊆ Σ∗, the equivalence
classes of the coarsest congruence on Σ∗ saturating 𝐿 form a monoid structure called
the syntactic monoid of 𝐿. It is easily shown that this monoid is finite iff 𝐿 is regular.
A study of the classes of languages resulting from constraining the monoids with a
given property has been initiated in the 1960s (see, e.g., [Gin68, Eil76]). This helped
in unveiling the fascinating triple play between circuit complexity, logic, and algebra,
which is presented in, e.g., Straubing [Str94].

17

Chapter 0. Definitions and Notations

Parikh automata were introduced by Klaedtke and Rueß [KR03] with both model-
checking and logic decidability in mind. (It should be noted that the term “con-
strained language” is used by Klaedtke and Rueß with a different meaning than the
one in the present work.) They showed that some natural logic on finite words but
infinite universe is equivalent to PA, thus proving some decidability results on the
checkability of the formulas in this logic. In his diploma thesis, Karianto [Kar04]
expanded on the proofs of Klaedtke and Rueß and considered Parikh automata with
pushdown stack [Kar05]. He also worked on extending PA to more general constraint
sets [KKT06].

Constrained languages and constrained automata, in the form presented here, were
introduced in Paper I. Prior uses of a similar model can be found in [BH99] under
the name constraint-queue decision diagram. We investigate the exact relationship
between these models in Paper II.

Reversal-bounded counter machines emerged from the 1960s systematic study of
automata augmented with counters. These machines express at least the regular lan-
guages and Minsky [Min61] showed that two counters were enough to simulate Tur-
ing machines. Bounding the number of reversals thus came as a good compromise, as
Ibarra [Iba78] showed. There is still active research concerning these machines and
their variants, e.g., [ISD+02, IS11].

18

...

Paper I

Affine Parikh Automata
MICHAËL CADILHAC1, ALAIN FINKEL2, AND PIERRE MCKENZIE1

Appearing in RAIRO - Theoretical Informatics and Applications,
doi:10.1051/ita/2012013

Extended version of On the expressiveness of Parikh automata and related models.
In: Freund, R., Holzer, M., Mereghetti, C., Otto, F., Palano, B. (eds.) Proceedings of

the 3rd Workshop on Non-Classical Models of Automata and Applications
(NCMA’11). books@ocg.at, vol. 282, pp. 103–119

1: DIRO, Université de Montréal. The third author is supported by the Natural Sciences and Engineering
Research Council of Canada.
2: LSV, ENSCachan, CNRS, France. Ce travail a bénéficié d’une aide de l’AgenceNationale de la Recherche
portant la référence “REACHARD-ANR-11-BS02-001”.

Presentation

The starting point of this paper is a deepened study of Parikh Automata (PA), mainly
through the use of Constrained Automata (CA). CA were suggested by Finkel as a
model worth studying, as a follow-up to his work on related automaton models (see,
e.g., [FIS03]). The idea of an automaton constraining the Parikh image of its paths
was found in the work of Bouajjani and Habermehl [BH99], where they focused on
flat automata (see Paper II for a study of those). After some initial results — closure
properties, decidability properties, etc. — we realized that most of this preliminary
work had been done within an equivalent model, that of Parikh Automata, introduced
by Klaedtke and Rueß [KR03]. The results that did not appear previously form essen-
tially Section 1 of this paper.

Further, following ideas of Finkel and Leroux [FL02], we investigated a general-
ization of those automata where a transition applies an affine transformation on a tuple
of registers. This led to the definition of Affine Parikh Automata (APA). Our inter-
est stemmed from a restriction of the APA — to be investigated in Papers II and III:
finite-monoid APA. The study of the general APA model constitutes Section 2 of this
paper.

Finally, we studied not only a generalization, but also a restriction of the models.
Section 3 of this paper deals with Letter Parikh Automata; that is, PA for which if (𝑎, 𝐱)
and (𝑎, 𝐲) are transition labels, then 𝐱 = 𝐲.

Personal contribution. Apart from the initial idea of the study, I proposed the ideas
and results of this paper in their entirety. A great effort has been made by Finkel and
McKenzie to enforce that I write proofs with precision and completeness; in particular,
McKenzie offered to write the lengthy proofs of Lemma 28 and Lemma 29 to indicate
the level of clarity that is required in a scientific publication. The need for exhaustive

Paper I – Affine Parikh Automata

proofs was also prompted by the fact that some earlier lightly-proved results turned out
to be false. The structure of the paper and its final shape came as a concerted work
of the three authors, with the specific emphases dictated by Finkel and McKenzie’s
experience.

22

Affine Parikh Automata

Abstract

The Parikh finite word automaton (PA)was introduced and studied in 2003 byKlaedtke
and Rueß. Natural variants of the PA arise from viewing a PA equivalently as an au-
tomaton that keeps a count of its transitions and semilinearly constrains their numbers.
Here we adopt this view and define the affine PA, that extends the PA by having each
transition induce an affine transformation on the PA registers, and thePA on letters, that
restricts the PA by forcing any two transitions on the same letter to affect the registers
equally. Then we report on the expressiveness, closure, and decidability properties of
such PA variants. We note that deterministic PA are strictly weaker than deterministic
reversal-bounded counter machines.

Introduction

Klaedtke and Rueß [KR03] introduced the Parikh automaton as a pair (𝐴, 𝐶) where
𝐶 is a semilinear subset of ℕ𝑑 and 𝐴 is a finite automaton over (Σ × 𝐷) for Σ a finite
alphabet and 𝐷 a finite subset of ℕ𝑑 . The word 𝑤1 ⋯ 𝑤𝑛 ∈ Σ∗ is accepted by (𝐴, 𝐶)
if 𝐴 accepts some word (𝑤1, 𝐯1) ⋯ (𝑤𝑛, 𝐯𝑛) such that ∑ 𝐯𝑖 ∈ 𝐶 . Motivated by verifi-
cation issues, Klaedtke and Rueß developed the PA as a tool to probe (weak) monadic
second-order logic with successor in which the cardinality |𝑋| of each second-order
variable 𝑋 is available. They proved their logic undecidable but showed decidability
of an existential fragment that was successfully applied to verify the specification of
actual hardware circuits.

Klaedtke and Rueß also studied decidability properties of the PA and properties
of the language classes defined by PA [KR03, KR02]. Karianto [Kar04] took up
this study further, elaborating on Klaedtke and Rueß’s proofs and considering push-

Paper I – Affine Parikh Automata

down automata and constraint sets beyond semilinear. As for tree languages, Klaedtke
and Rueß [KR02] introduced Parikh Tree Automata as top-down tree automata with
one global semilinear constraint; at the same time, the related notion of Presburger
Tree Automata, which combines bottom-up tree automata and semilinear precondi-
tions about the number of children in a given state, was independently introduced by
Dal Zilio and Lugiez [DZL03] and Seidl, Schwentick, and Muscholl [SSM03].

Our interest in the PA comes both from its role in the area of verification and
from the intricate three-way connection known to exist between automata, descriptive
complexity and Boolean circuit complexity (see [Str94, TT07]). Indeed several circuit-
based complexity classes within the class LogCFL (of languages reducible to a context-
free language) can be described in a natural way using first-order logic. In such a
logic description, the (generalized) quantifiers reflect the properties of the automaton-
based model defining the language while the (numerical) predicates reflect the level of
uniformity allowed to the circuit families accepting the language. Since semilinearity
arises in the study of LogCFL (see [MTV10]) and since the circuit depth complexity
of regular languages is a major open question in complexity theory, the PA is a very
appealing computation model with which to experiment in view of possible future
applications to complexity theory.

In this paper we introduce three models closely related to the PA and we carry the
study of PA themselves somewhat further. This is our first contribution. Informally,
each model involves a finite automaton 𝐴 and a constraint set 𝐶 ⊆ 𝕂𝑑 where 𝕂 is either
ℕ or ℚ:

• Constrained automata (CA) with 𝑑 transitions are defined to accept a word 𝑤 ∈
Σ∗ iff 𝐶 contains the 𝑑-tuple that records, for some accepting run of 𝐴 on 𝑤 and
for each transition 𝑡, the number of occurrences of 𝑡 along that accepting run;
we will see that the CA merely provides an alternate view of the PA in that the
two models define the same language classes.

• Affine Parikh automata (APA) generalize PA by allowing each transition to per-
form an affine transformation on the 𝑑-tuple of PA registers; an APA accepts a
word 𝑤 iff some accepting run of 𝐴 on 𝑤 maps the all-zero 𝑑-tuple to a 𝑑-tuple
in 𝐶 .

• Parikh automata on letters (LPA) restrict PA by imposing the condition that any
transition on (𝑎, 𝐮) ∈ (Σ × 𝐷) and any transition on (𝑏, 𝐯) ∈ (Σ × 𝐷) must satisfy
𝐮 = 𝐯 when 𝑎 = 𝑏.

Our second contribution is the analysis of the closure and decidability properties of
thesemodels and their deterministic variants DetPA andDetAPA.We depict the known
properties of PA [KR02, KR03, Kar04] together with our new results in Figure 1, where

24

Introduction

...

. ..∪ ..∩⋅ ..ℎ ..ℎ𝜀/ ..ℎ−1 ..𝑐 ..∗ ..∅ ..Σ∗ ..fin. ..⊆ ..reg.

..LPA ..N ..Y ..N ..N ..N ..N ..Y ..Y ..N ..D ..D ..D ..D ..?

..DetPA ..Y ..Y ..Y ..N ..N ..N ..Y ..Y ..N ..D ..D ..D ..D ..?

..PA ..Y ..Y ..N ..Y ..Y ..Y ..Y ..Y ..N ..D ..U ..D ..U ..U

..DetAPA ..Y ..Y ..Y ..? ..N ..? ..Y ..? ..? ..U ..U ..U ..U ..U

..APA ..Y ..Y ..? ..Y ..N ..Y ..Y ..? ..? ..U ..U ..U ..U ..U

.

Prop. 24

.

Cor. 30

.

Prop. 35

.

Prop. 18

.

Cor. 31

.

Prop. 17

Figure 1: Closure in the effective sense (Y) or nonclosure (N) of language classes defined by
PA variants, under set operations, concatenation, morphisms, nonerasing morphisms, inverse
morphisms, commutation, and iteration; decidability (D) or undecidability (U) of emptiness,
universality, finiteness, inclusion, and regularity; boldface denotes results known prior to this
paper.

..

..Context-Sensitive Languages

..CFL

..APA

..PA = RBCM

..DetRBCM

..DetPA

..LPA

..REG

.

PAL

.

×
.

COPY

.

×
.

ΣANBN

. ×.
NSUM

.
×

. (𝑎𝑛𝑏𝑛)2.

×

.
(𝑎𝑛𝑏𝑛𝑐𝑛)2

.

×

.

𝑎𝑛𝑏𝑛

.

×

.

𝑎𝑛𝑏𝑛𝑐𝑛

.

×

Figure 2: Relationships between language classes, sorted vertically by inclusion except for the
class CFL of context-free languages delimited by the bell curve; RBCM stands for reversal-
bounded counter machine; PAL is the language of pointed palindromes, COPY that of words
𝑤#𝑤, ΣANBN that of words 𝑤𝑎𝑛𝑏𝑛, and NSUM is discussed in Proposition 15.

DetLPA is not mentioned because DetLPA and LPA define the same languages.
Our third contribution is the comparison of the language classes that arise. We

show that the language {𝑎, 𝑏}∗ ⋅ {𝑎𝑛#𝑎𝑛 | 𝑛 ∈ ℕ} belongs to ℒPA ⧵ ℒDetPA where these
two classes were only proved different in [KR03]. We show that APA and DetAPA
over ℚ can be simulated by APA and DetAPA over ℕ and vice versa. Refining [KR03]
slightly, we compare our models with the reversal-bounded counter machines (RBCM)
defined by Ibarra [Iba78]. Figure 2 summarizes these and further results.

25

Paper I – Affine Parikh Automata

This paper is organized as follows. Section 1 defines the PA, introduces the equiv-
alent CA, justifies the PA line and DetPA line entries from Figure 1 and compares the
PA with Ibarra’s RBCM. Sections 2 and 3 investigate the APA and the LPA respec-
tively, completing the proofs of all remaining entries in Figures 1 and 2. Section 4
concludes with a short discussion.

1 Parikh automata

We propose an alternative view of the PA which will prove very useful. We note that
a PA can be viewed equivalently as an automaton that applies a semilinear constraint
on the counts of the individual transitions occurring along its accepting runs.

▶ Theorem 6.PA, CA: see pp. 11, 14 CA and PA define the same classes of languages. The same holds in
the deterministic case.

Proof. Let (𝐴, 𝐶) be a PA (resp. DetPA) of dimension 𝑑, and let 𝛿 = {𝑡1, … , 𝑡𝑛}
be the transitions of 𝐴. We suppose moreover that 𝐴 is deterministic — this does
not imply the determinism of the PA. Consider the automaton 𝐴 which is a copy
of 𝐴 except that the vector part of the transitions is dropped, and note that if (𝐴, 𝐶)
is a DetPA then 𝐴 is deterministic. Suppose that the mapping induced between the
transitions of 𝐴 and 𝐴 , i.e., 𝑝 .. (𝑎, 𝐯). 𝑞 to 𝑝 .. 𝑎. 𝑞, is a bijection. The contribution
of a transition 𝑡𝑖 = 𝑝 .. (𝑎, 𝐯𝑖). 𝑞 to the extended Parikh image of the label of a run in
which it appears is 𝐯𝑖; thus, knowing howmany times 𝑡𝑖 is taken in a path is enough to
retrieve the value of the extended Parikh image of the label of a path. More precisely,
for a path 𝜋 in 𝐴 and the equivalent path 𝜋 in 𝐴 , if we let 𝖯𝗄𝗁(𝜋) = (𝑥1, … , 𝑥𝑛)
then the extended Parikh image of 𝜇(𝜋), Φ(𝜇(𝜋)), is ∑𝑛

𝑖=1 𝑥𝑖 × Φ(𝜇(𝑡𝑖)). Thus, we
define 𝐶 ⊆ ℕ𝑛 by 𝐶 = {(𝑥1, … , 𝑥𝑛) | ∑𝑛

𝑖=1 𝑥𝑖 × Φ(𝜇(𝑡𝑖)) ∈ 𝐶}, and the PA (𝐴, 𝐶)
has the same language as the CA (𝐴 , 𝐶), and determinism is preserved.

Now note that the aforementioned bijection exists if no two distinct transitions
𝑡𝑖, 𝑡𝑗 are such that 𝑡𝑖 = 𝑝 .. (𝑎, 𝐯𝑖). 𝑞 and 𝑡𝑗 = 𝑝 .. (𝑎, 𝐯𝑗). 𝑞. So suppose that such
𝑡𝑖 and 𝑡𝑗 exist, we show how to remove them; iterating this process will lead to
a PA with no such pair of transitions. First, we increment the dimension of the
PA by adding a 0 component to all the vectors appearing as labels, i.e., each label
(ℓ, 𝐯) is replaced by (ℓ, (𝐯, 0)). Next, we remove 𝑡𝑖 and 𝑡𝑗 and add the transition
𝑡 = 𝑝 .. (𝑎, 𝐞𝑑+1). 𝑞 where 𝐞𝑑+1 ∈ {0, 1}𝑑+1 has a one only in position 𝑑 + 1. Now
note that when 𝑡 is taken in the new automaton, either 𝑡𝑖 or 𝑡𝑗 could have been taken
in the old one. Thus define the semilinear set 𝐷 to split the number of times 𝑡 is taken

26

1. Parikh automata

—which is stored in the 𝑑+1-th component— between 𝑡𝑖 and 𝑡𝑗 ; for 𝐱 ∈ ℕ𝑑 , 𝑐 ∈ ℕ:

(𝐱, 𝑐) ∈ 𝐷 ⇔ (∃𝑐𝑖, 𝑐𝑗 ∈ ℕ) 𝑐 = 𝑐𝑖 + 𝑐𝑗 ∧ 𝐱 + 𝑐𝑖.𝐯𝑖 + 𝑐𝑗 .𝐯𝑗 ∈ 𝐶 .

This preserves the language of the PA and does not affect determinism.

For the reverse direction, let (𝐴, 𝐶) be a CA (resp. DetCA). Define 𝐴 as the
automaton 𝐴 in which each transition 𝑡 = 𝑝 .. 𝑎. 𝑞 is replaced by the transition
𝑝 .. (𝑎, 𝖯𝗄𝗁(𝑡)). 𝑞. Now let 𝜋 be a path in 𝐴 and 𝜋 be the corresponding path in
𝐴 , the construction is such that Φ(𝜇(𝜋)) = 𝖯𝗄𝗁(𝜋), thus (𝐴 , 𝐶) is a PA with the
same language as (𝐴, 𝐶), and the determinism of 𝐴 is preserved.

1.1 On the expressiveness of Parikh automata

The constrained automaton characterization of PA helps deriving pumping-style nec-
essary conditions for membership in ℒPA and in ℒDetPA:

▶ Lemma 7. Let 𝐿 ∈ ℒPA. There exist 𝑝, ℓ ∈ ℕ+ such that any 𝑤 ∈ 𝐿 with |𝑤| ≥ ℓ
can be written as 𝑤 = 𝑢𝑣𝑥𝑣𝑧 where:
(1) 0 < |𝑣| ≤ 𝑝, |𝑥| > 𝑝, and |𝑢𝑣𝑥𝑣| ≤ ℓ;
(2) 𝑢𝑣2𝑥𝑧 ∈ 𝐿 and 𝑢𝑥𝑣2𝑧 ∈ 𝐿.

Proof. Let (𝐴, 𝐶) be a CA of language 𝐿. Let 𝑝 be the number of states in 𝐴 and
𝑚 be the number of elementary cycles (i.e., cycles in which no state except the start
state occurs twice) in the underlying multigraph of 𝐴. Finally, let ℓ = 𝑝 × (2𝑚 + 1).
Now, let 𝑤 ∈ 𝐿 such that |𝑤| ≥ ℓ and 𝜋 ∈ 𝖱𝗎𝗇(𝐴)↾𝐶 such that 𝜇(𝜋) = 𝑤. Write 𝜋
as 𝜋1 ⋯ 𝜋2𝑚+1𝜋 where |𝜋𝑖| = 𝑝. By the pigeonhole principle, each 𝜋𝑖 contains an
elementary cycle, and thus, there exist 1 ≤ 𝑖, 𝑗 ≤ 2𝑚 + 1 with 𝑖 + 1 < 𝑗 such that
𝜋𝑖 and 𝜋𝑗 share the same elementary cycle 𝜂 labeled with a word 𝑣. Thus 𝜋 can be
written as 𝜌1𝜂𝜌2𝜂𝜌3, such that, with 𝑢 = 𝜇(𝜌1), 𝑥 = 𝜇(𝜌2), and 𝑧 = 𝜇(𝜌3), we have
condition (1). Moreover, 𝜌1𝜂2𝜌2𝜌3 and 𝜌1𝜌2𝜂2𝜌3 are two accepting paths the Parikh
images of which are in 𝐶 , thus their labels, 𝑢𝑣2𝑥𝑧 and 𝑢𝑥𝑣2𝑧 respectively, are in 𝐿,
showing condition (2).

A similar argument leads to a stronger property for the languages of ℒDetPA:

▶ Lemma 8. Let 𝐿 ∈ ℒDetPA. There exist 𝑝, ℓ ∈ ℕ+ such that any 𝑤 over the
alphabet of 𝐿 with |𝑤| ≥ ℓ can be written as 𝑤 = 𝑢𝑣𝑥𝑣𝑧 where:
(1) 0 < |𝑣| ≤ 𝑝, |𝑥| > 𝑝, and |𝑢𝑣𝑥𝑣| ≤ ℓ;

27

Paper I – Affine Parikh Automata

(2) 𝑢𝑣2𝑥, 𝑢𝑣𝑥𝑣, and 𝑢𝑥𝑣2 are equivalent under the Nerode relation of 𝐿.

Proof. Let (𝐴, 𝐶) be a DetCA of language 𝐿 ⊆ Σ∗. We may suppose that 𝐴 is
complete, as 𝖱𝗎𝗇(𝐴) is essentially unchanged when adding a sink state to 𝐴. Let 𝑝
be the number of states in 𝐴 and 𝑚 be the number of elementary cycles (i.e., cycles
in which no state except the start state occurs twice) in the underlying multigraph
of 𝐴. Finally, let ℓ = 𝑝 × (2𝑚 + 1). Now, let 𝑤 ∈ Σ≥ℓ and let 𝜋 be the path
traced by 𝑤 in 𝐴, which exists as 𝐴 is complete. Write 𝜋 as 𝜋1 ⋯ 𝜋2𝑚+1𝜋 where
|𝜋𝑖| = 𝑝. By the pigeonhole principle, each 𝜋𝑖 contains an elementary cycle, and
thus, there exist 1 ≤ 𝑖, 𝑗 ≤ 2𝑚 + 1 with 𝑖 + 1 < 𝑗 such that 𝜋𝑖 and 𝜋𝑗 share the same
elementary cycle 𝜂 labeled with a word 𝑣. Thus 𝜋 can be written as 𝜌1𝜂𝜌2𝜂𝜌3, such
that, with 𝑢 = 𝜇(𝜌1), 𝑥 = 𝜇(𝜌2), and 𝑧 = 𝜇(𝜌3), we have condition (1). Moreover,
𝑢𝑣2𝑥, 𝑢𝑣𝑥𝑣, and 𝑢𝑥𝑣2 trace the paths 𝜌1𝜂2𝜌2, 𝜌1𝜂𝜌2𝜂, and 𝜌1𝜌2𝜂2, respectively, in 𝐴.
Those paths all go from the initial state to the same state 𝑞 and have the same Parikh
image. Thus let 𝜋 be a path in 𝐴 from 𝑞 with some label 𝑦, then 𝑢𝑣2𝑥𝑦 ∈ 𝐿(𝐴, 𝐶)
iff 𝜋 ends in a final state and 𝖯𝗄𝗁(𝜌1𝜂2𝜌2𝜋) ∈ 𝐶 . But since 𝖯𝗄𝗁(𝜌1𝜂2𝜌2𝜋) =
𝖯𝗄𝗁(𝜌1𝜂𝜌2𝜂𝜋) = 𝖯𝗄𝗁(𝜌1𝜌2𝜂2𝜋), this is the case iff 𝑢𝑣𝑥𝑣𝑦 ∈ 𝐿 and iff 𝑢𝑥𝑣2𝑦 ∈ 𝐿,
showing condition (2).

We apply Lemma 7 to the language COPY, defined as {𝑤#𝑤 | 𝑤 ∈ {𝑎, 𝑏}∗}, as
follows:

▶ Proposition 9. COPY /∈ ℒPA.

Proof. Suppose COPY ∈ ℒPA. Let ℓ, 𝑝 be given by Lemma 7, and consider 𝑤 =
(𝑎𝑝𝑏)ℓ#(𝑎𝑝𝑏)ℓ ∈ COPY. Lemma 7 states that 𝑤 = 𝑢𝑣𝑥𝑣𝑧 where 𝑢𝑣𝑥𝑣 lays in the
first half of 𝑤, and 𝑠 = 𝑢𝑣2𝑥𝑧 ∈ COPY. Note that 𝑥 contains at least one 𝑏. Suppose
𝑣 = 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑝, then there is a sequence of 𝑎’s in the first half of 𝑠 unmatched
in the second half. Likewise, if 𝑣 contains a 𝑏, then 𝑠 has a sequence of 𝑎’s between
two 𝑏’s unmatched in the second half. Thus 𝑠 /∈ COPY, a contradiction. Hence
COPY /∈ ℒPA.

As Klaedtke and Rueß show using closure properties, DetPA are strictly weaker
than PA. The thinner grain of Lemma 8 suggests explicit languages that witness the
separation of ℒDetPA from ℒPA. Indeed, let EQUAL ⊆ {𝑎, 𝑏, #}∗ be the language
{𝑎, 𝑏}∗ ⋅ {𝑎𝑛#𝑎𝑛 | 𝑛 ∈ ℕ}, we have:

▶ Proposition 10. EQUAL ∈ ℒPA ⧵ ℒDetPA.

28

1. Parikh automata

Proof. We omit the proof that EQUAL ∈ ℒPA. Now, suppose EQUAL ∈ ℒDetPA,
and let ℓ, 𝑝 be given by Lemma 8. Consider 𝑤 = (𝑎𝑝𝑏)ℓ. Lemma 8 then asserts that a
prefix of 𝑤 can be written as 𝑤1 = 𝑢𝑣𝑥𝑣, and that 𝑤2 = 𝑢𝑣2𝑥 verifies 𝑤1 ≡N 𝑤2. As
|𝑥| > 𝑝, 𝑥 contains a 𝑏. Let 𝑘 be the number of 𝑎’s at the end of 𝑤1. Suppose 𝑣 = 𝑎𝑖

for 1 ≤ 𝑖 ≤ 𝑝, then 𝑤2 ends with 𝑘 − 𝑖 < 𝑘 letters 𝑎. Thus 𝑤1#𝑎𝑘 ∈ EQUAL and
𝑤2#𝑎𝑘 /∈ EQUAL, a contradiction. Suppose then that 𝑣 = 𝑎𝑖𝑏𝑎𝑘, with 0 ≤ 𝑖+𝑘 < 𝑝.
Then 𝑤2 ends with 𝑝 − 𝑖 > 𝑘 letters 𝑎, and similarly, 𝑤1 ≢N 𝑤2, a contradiction.
Thus EQUAL /∈ ℒDetPA.

See Chap. 0, Prop. 2, p. 13For comparison, we mention another line of attack for the study of ℒDetPA, derived
from an argument used by Klaedtke and Rueß to show that PAL = {𝑤#𝑤R | 𝑤 ∈
{𝑎, 𝑏}+}, where 𝑤R is the reversal of 𝑤, is not in ℒPA.

▶ Lemma 11. [𝑤]N: equiv. class under
Nerode relation ≡N, see p. 7

Let 𝐿 ∈ ℒDetPA. There exists 𝑐 > 0 such that |{[𝑤]N𝐿 | 𝑤 ∈ Σ𝑛}| ∈
𝑂(𝑛𝑐).

Proof. Let (𝐴, 𝐶) be a DetCA of language 𝐿 ⊆ Σ∗ where we suppose 𝐴 complete,
as this leaves 𝖱𝗎𝗇(𝐴) essentially unchanged. For 𝑤 ∈ Σ∗, write 𝜋(𝑤) for the unique
path in 𝐴 labeled 𝑤 and starting with the initial state. Let ∼ be the equivalence
relation on Σ∗ defined by 𝑢 ∼ 𝑣 iff 𝖯𝗄𝗁(𝜋(𝑢)) = 𝖯𝗄𝗁(𝜋(𝑣)) ∧ 𝖳𝗈(𝜋(𝑢)) = 𝖳𝗈(𝜋(𝑣)).
Then this relation refines ≡N

𝐿: let 𝑢, 𝑣 ∈ Σ∗ such that 𝑢 ∼ 𝑣, and let 𝑤 ∈ Σ∗ such
that 𝑢𝑤 ∈ 𝐿, then 𝜋(𝑢𝑤) ∈ 𝖱𝗎𝗇(𝐴)↾𝐶 , thus the same holds for 𝜋(𝑣𝑤), implying
that 𝑣𝑤 ∈ 𝐿. Moreover, the number of equivalence classes of ∼ for a given word
length is polynomial in the word length (e.g., [Maz10, p. 41]).

▶ Proposition 12. Let 𝐿 = {𝑤 ∈ {𝑎, 𝑏}∗ | 𝑤|𝑤|𝑎 = 𝑏}, where 𝑤𝑖 is the 𝑖-th letter
of 𝑤. Then 𝐿 ∈ ℒPA ⧵ ℒDetPA.

Proof. We omit the proof that 𝐿 ∈ ℒPA; the main point is simply to guess the
position of the 𝑏 referenced by |𝑤|𝑎. On the other hand, let 𝑛 > 0 and 𝑢, 𝑣 ∈ {𝑎, 𝑏}𝑛

such that |𝑢|𝑎 = |𝑣|𝑎 = 𝑛
2 and there exists 𝑝 ∈ { 𝑛

2 , … , 𝑛} with 𝑢𝑝 ≠ 𝑣𝑝. Let 𝑤 =
𝑎𝑝− 𝑛

2 , then (𝑢𝑤)|𝑢𝑤|𝑎 = (𝑢𝑤)|𝑢|𝑎+|𝑤|𝑎 = (𝑢𝑤)𝑝 = 𝑢𝑝, and similarly, (𝑣𝑤)|𝑣𝑤|𝑎 = 𝑣𝑝.
This implies 𝑢𝑤 /∈ 𝐿 ↔ 𝑣𝑤 ∈ 𝐿, thus 𝑢 ≢N 𝑣. Then for 0 ≤ 𝑖 ≤ 𝑛

2 , define 𝐸𝑖 =
{𝑎 𝑛

2 −𝑖𝑏𝑖𝑧 | 𝑧 ∈ {𝑎, 𝑏} 𝑛
2 ∧ |𝑧|𝑎 = 𝑖}. For any 𝑢, 𝑣 ∈ ⋃ 𝐸𝑖 with 𝑢 ≠ 𝑣, the previous

discussion shows that 𝑢 ≢N 𝑣. Thus |{[𝑤]N𝐿 | 𝑤 ∈ {𝑎, 𝑏}𝑛}| ≥ | ⋃
𝑛
2
𝑖=0 𝐸𝑖| =

∑
𝑛
2
𝑖=0 |𝐸𝑖| = ∑

𝑛
2
𝑖=0 (

𝑛
2
𝑖) = 2 𝑛

2 /∈ 𝑂(𝑛𝑂(1)). Lemma 11 then implies that 𝐿 /∈ ℒDetPA.

29

Paper I – Affine Parikh Automata

Finally, let us recall that a language 𝐿 ⊆ Σ∗ is said to be bounded if there exist
𝑛 > 0 and 𝑤1, … , 𝑤𝑛 ∈ Σ+ such that 𝐿 ⊆ 𝑤∗

1 ⋯ 𝑤∗
𝑛.See also Ex. 8, p. 8 For a given class of languages,

we say that it isParikh-bounded if for any𝐿 in the class there exists a bounded language
𝐿 in the class with 𝐿 ⊆ 𝐿 and 𝖯𝗄𝗁(𝐿) = 𝖯𝗄𝗁(𝐿). This property is known to hold
for regular [Lat78] and context-free languages [BL81] (the latter recently reworked
in [GMM10]).

▶ Proposition 13. ℒPA is Parikh-bounded.

Proof. Let (𝐴, 𝐶) be a constrained automaton, where 𝛿 is the transition set of 𝐴.
Note that 𝖱𝗎𝗇(𝐴) is regular, thus, as mentioned, we can find a bounded regular
language 𝑅 ⊆ 𝖱𝗎𝗇(𝐴) such that 𝖯𝗄𝗁(𝑅) = 𝖯𝗄𝗁(𝖱𝗎𝗇(𝐴)). In particular, 𝖯𝗄𝗁(𝑅↾𝐶) =
𝖯𝗄𝗁(𝖱𝗎𝗇(𝐴)↾𝐶). Closure under morphism of ℒPA and of bounded languages implies
that 𝐿 = 𝜇(𝑅↾𝐶) is a bounded language of ℒPA included in 𝐿(𝐴, 𝐶). Moreover,
𝖯𝗄𝗁(𝐿(𝐴, 𝐶)) = 𝖯𝗄𝗁(𝜇(𝑅↾𝐶)), and thus, equals 𝖯𝗄𝗁(𝐿).

1.2 Parikh automata and reversal-bounded counter machines

RBCM: see Chap. 0, Sec. 3.4,
p. 16

Klaedtke and Rueß noticed in [KR02] that Parikh automata recognize the same
languages as reversal-bounded counter machines, a model introduced and studied in
the seventies by Ibarra [Iba78].

In [KR02, Section A.3], it is shown that PA have the same expressive power as
(nondeterministic) RBCM. Although Fact 30 of [KR02], on which the authors rely to
prove that ℒRBCM ⊆ ℒPA, is technically false as stated,2 the small gap there can be
fixed so that:

▶ Proposition 14 ([KR02]). ℒPA = ℒRBCM.

Proof. We sketch ℒRBCM ⊆ ℒPA for completeness and reprove ℒPA ⊆ ℒRBCM to
extract a more precise structure on the constructed RBCM — this will prove useful
when comparing the notion of determinism in both models.

(ℒRBCM ⊆ ℒPA.) First, it is known [Iba78] that any RBCM language can be
expressed as an RBCM which makes at most one change between increment and
2Fact 30 of [KR02] states the following. Consider a RBCM 𝑀 which, for any counter, changes between

increment and decrement only once. Let 𝑀 be 𝑀 in which negative counter values are allowed and the
zero-tests are ignored. Then a word is claimed to be accepted by 𝑀 iff the run of 𝑀 on the same word
reaches a final state with all its counters nonnegative. A counter-example is the following. Take 𝐴 to be
the minimal automaton for 𝑎∗𝑏, and add a counter for the number of 𝑎’s that blocks the transition labeled 𝑏
unless the counter is nonzero. This machine recognizes 𝑎+𝑏. Then by removing this test, the machine now
accepts 𝑏.

30

1. Parikh automata

decrement on each of its counters. Then a counter can be seen as being in one of three
different states: (1) never incremented, (2) incremented but never decremented, (3)
decremented. When a counter is in state (1), we may simulate the behavior of the
RBCMwith the counter set to zero. Similarly, when a counter is in state (2), we may
simulate the behavior of the RBCM with this counter set to a nonzero value. Lastly,
when in state (3), we may guess at some point that the counter reached zero, and act
for the rest of the execution as if the counter is actually zero (thus not making any
modification to this counter). Now, when in states (1) and (2), the behavior of the
RBCM w.r.t. the counter can be simulated using a finite automaton; in state (3), the
guess can be taken with a finite automaton, but we must check that the guess was
taken at the right moment. Thus we use a PA to count the number of increments
and decrements, and we check at the end of the computation that the latter is no
greater than the former, and that these are equal iff the counter has been guessed
to be zero at some point. Finally, the transitions between the different states can be
made knowing only the transitions of the RBCM. This gives the required PA for the
RBCM.

(ℒPA ⊆ ℒRBCM.) Let (𝐴, 𝐶) be a CA, where 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) and let 𝛿 =
{𝑡1, … , 𝑡𝑘}. We define a RBCM of the same language in two steps. (1). First, let
𝑀 be the 𝑘-counter machine (𝑄∪{𝑞𝑓 }, Σ, 𝜁, 𝑞0, 𝑞𝑓), where 𝑞𝑓 /∈ 𝑄 and 𝜁 is defined
by:

𝜁 =
𝐱 ∈ {0, 1}𝑘

1 ≤ 𝑖 ≤ 𝑘

{(𝖥𝗋𝗈𝗆(𝑡𝑖), 𝜇(𝑡𝑖), 𝐱, 𝖳𝗈(𝑡𝑖),R, 𝐞𝑖)} ∪

𝐱 ∈ {0, 1}𝑘

𝑞 ∈ 𝐹

{(𝑞, �, 𝐱, 𝑞𝑓 , S, 𝟎)} .

This machine does not make any test, and accepts (in 𝑞𝑓) precisely the words ac-
cepted by 𝐴. Moreover, the state of the counters in 𝑞𝑓 is the Parikh image of the
path taken (in 𝐴) to recognize the input word. (2). We then refine 𝑀 to check that
the counter values belong to 𝐶 . We note that we can do that as a direct consequence
of the proof of [IS99, Theorem 3.5], but this proof relied on nontrivial algebraic
properties of systems 𝑀𝐲 = 𝐛, where 𝑀 is a matrix, 𝐲 are unknowns, and 𝐛 is
a vector; we present here a proof based on a logical characterization of semilinear
sets. Recall that 𝐶 can be expressed as a quantifier-free first-order formula which
uses the function symbol +, the congruence relations ≡𝑖, for 𝑖 ≥ 2, and the order
relation < (see, e.g., [End72]). So let 𝐶 be given as such formula 𝜙𝐶 with 𝑘 free

31

Paper I – Affine Parikh Automata

variables. Let 𝜙𝐶 be put in disjunctive normal form. The machine 𝑀 then tries
each and every clause of 𝜙𝐶 for acceptance. First, note that a term can be computed
deterministically with a number of counters and reversals which depends only on
its size. For instance, computing 𝑐𝑖 + 𝑐𝑗 requires two new counters 𝑥, 𝑦: 𝑐𝑖 is decre-
mented until it reaches 0, while 𝑥 and 𝑦 are incremented, so that their value is 𝑐𝑖,
now 𝑦 is decremented until it reaches 0 while 𝑐𝑖 is incremented back to its original
value, finally the same process is applied with 𝑐𝑗 , and as a result 𝑥 is now 𝑐𝑖 + 𝑐𝑗 .
Second, note that any atomic formula (𝑡1 < 𝑡2 or 𝑡1 ≡𝑖 𝑡2) can be checked by a De-
tRBCM: for 𝑡1 < 𝑡2, compute 𝑥1 = 𝑡1 and 𝑥2 = 𝑡2, then decrement 𝑥1 and 𝑥2 until
one of them reaches 0, if the first one is 𝑥1, then the atomic formula is true, and false
otherwise; for 𝑡1 ≡𝑖 𝑡2, a simple automaton-based construction depending on 𝑖 can
decide if the atomic formula is true. Thus, a DetRBCM can decide, for each clause,
if all of its atomic formulas (or negation) are true, and in this case, accept the word.
This process does not use the read-only head, and uses a number of counters and a
number of reversals that depend only on the length of 𝜙𝐶 .

Further, we study how the notion of determinism compares in the two models. Let
NSUM = {𝑎𝑛♠𝑏𝑚1 #𝑏𝑚2# ⋯ #𝑏𝑚𝑘 ♣𝑐𝑚1+⋯+𝑚𝑛 | 𝑘 ≥ 𝑛 ≥ 0 ∧ 𝑚𝑖 ∈ ℕ}: the number
of 𝑎’s is the number of 𝑚𝑖’s to sum to get the number of 𝑐’s. Note that NSUM is not
context-free. Then:

▶ Proposition 15.
..In Paper III, Prop. 67, a

similar result is proved with a
simpler language.

.

Note ℒDetPA ⊊ ℒDetRBCM and NSUM ∈ ℒDetRBCM ⧵ ℒDetPA.

Proof. The inclusion ℒDetPA ⊆ ℒDetRBCM follows from the proof of Proposition 14,
as the resulting RBCM is deterministic if the given CA is.

We now show that NSUM ∈ ℒDetRBCM⧵ℒDetPA. We omit the fact that NSUM ∈
ℒDetRBCM. Now suppose (𝐴, 𝐶) is a DetPA such that 𝐿(𝐴, 𝐶) = NSUM, with
𝐴 = (𝑄, Σ × 𝐷, 𝛿, 𝑞0, 𝐹). As (𝐴, 𝐶) is a DetPA, 𝐴 is deterministic — it is indeed
already deterministic with respect to the first component of the labels. We may
suppose that the projection on Σ of 𝐿(𝐴) is a subset of 𝑎∗♠(𝑏∗#)∗𝑏∗♣𝑐∗, so that there
exist 𝑘 ≥ 0, 𝑞1, … , 𝑞𝑘 ∈ 𝑄, and 𝑗 ∈ {0, … , 𝑘} such that 𝑞𝑖 .. (𝑎, 𝐯𝑖). 𝑞𝑖+1 ∈ 𝛿, for
0 ≤ 𝑖 < 𝑘 and some 𝐯𝑖’s, and 𝑞𝑘 .. (𝑎, 𝐯𝑘). 𝑞𝑗 ∈ 𝛿. Moreover, wemay suppose that no
other transition points to one of the 𝑞𝑖’s, and that all transitions 𝑡 = 𝑞𝑖 .. (ℓ, 𝐯). 𝑞 ∈ 𝛿
such that 𝑞 /∈ {𝑞0, … , 𝑞𝑘} are with ℓ = ♠; let 𝑇 be the set of all such transitions 𝑡.
Graphically, 𝐴 looks like:

32

1. Parikh automata

..𝑞0.......

𝑎∗

.........

(𝑏∗#)∗𝑏∗♣𝑐∗

.

𝑡

.
(♠, 𝐯)

.

(♠, ⋅)

We define |𝑇| DetPA such that the union of their languages forms the language
SUMN = {♠𝑤♡𝑎𝑛 | 𝑎𝑛♠𝑤 ∈ NSUM}, the strings of NSUM with 𝑎𝑛 pushed at the
end. For 𝑡 ∈ 𝑇 , define 𝐴𝑡 as the automaton similar to 𝐴 but which starts with the
transition 𝑡 and delays the first part of the computation until the end; graphically:

..𝑞0......

𝑎∗

.........

(𝑏∗#)∗𝑏∗♣𝑐∗

.

𝑞0

..

𝑡

.
(♠, 𝐯)

.

(♡, 𝟎)

Formally, 𝐴𝑡 = (𝑄 ∪ {𝑞0}, Σ × 𝐷, 𝛿𝑡, 𝑞0, {𝖥𝗋𝗈𝗆(𝑡)}) where 𝑞0 is a fresh (i.e., new)
state and:

𝛿𝑡 = (𝛿 ⧵ 𝑇) ∪ {𝑞0
.. 𝜇(𝑡). 𝖳𝗈(𝑡)} ∪ {𝑞𝑓 .. (♡, 𝟎). 𝑞0 | 𝑞𝑓 ∈ 𝐹} .

Now for 𝜔 ∈ 𝐿(𝐴), let 𝑡 be the transition labeled ♠ taken when 𝐴 reads 𝜔, and let
𝜔 = 𝜔1𝜇(𝑡)𝜔2. Then 𝜇(𝑡)𝜔2(♡, 𝟎)𝜔1 ∈ 𝐿(𝐴𝑡), and this word has the same extended
Parikh image as 𝜔. Thus we have that ⋃𝑡∈𝑇 𝐿(𝐴𝑡, 𝐶) = SUMN, and if NSUM ∈
ℒDetPA, then SUMN ∈ ℒDetPA, as ℒDetPA is closed under union (see Figure 1). We
now show that SUMN /∈ ℒDetPA, thus leading to a contradiction showing the result.
Suppose SUMN ∈ ℒDetPA and let ℓ, 𝑝 be given by Lemma 8 for SUMN. Consider
𝑤 = ♠(𝑏𝑝#)ℓ. Lemma 8 then asserts that a prefix of 𝑤 can be written as 𝑤1 = 𝑢𝑣𝑥𝑣,
and that 𝑤2 = 𝑢𝑣2𝑥 verifies 𝑤1 ≡N 𝑤2. As |𝑥| > 𝑝 and 𝑣 is nonempty, 𝑥 contains a
#; moreover, 𝑣 does not contain ♠. Let 𝑠 = |𝑤1|# = |𝑤2|# and let 𝑛𝑖 be the number
of 𝑏’s before the position of the 𝑠-th # in 𝑤𝑖, 𝑖 = 1, 2. Suppose 𝑣 ∈ 𝑏+, then 𝑛1 < 𝑛2,
thus 𝑤1♣𝑐𝑛1 ♡𝑎𝑠 ∈ SUMN and 𝑤2♣𝑐𝑛1 ♡𝑎𝑠 /∈ SUMN, a contradiction. Suppose then

33

Paper I – Affine Parikh Automata

that 𝑣 = 𝑏𝑖#𝑏𝑗 , with 0 ≤ 𝑖 + 𝑗 < 𝑝. Similarly, as 𝑖 + 𝑗 < 𝑝, 𝑛2 < 𝑛1, and again,
𝑤1 ≢N 𝑤2, a contradiction. Thus SUMN /∈ ℒDetPA.

The parallel drawn between (Det)PA and (Det)RBCM allows transferring some
RBCM and DetRBCM results to PA and DetPA. An example is a consequence of the
following lemma proved in 2011 by Chiniforooshan et al. [CDI+11] for the purpose of
showing incomparability results between different models of reversal-bounded counter
machines:

▶ Lemma 16 ([CDI+11]). Let a DetRBCM express𝐿 ⊆ Σ∗. Then there exists𝑤 ∈ Σ∗

such that 𝐿 ∩ 𝑤Σ∗ is a nontrivial regular language.

Using this lemma, variants of the language EQUAL from Proposition 10 can be
shown outside ℒDetPA. For instance, for Σ = {𝑎, 𝑏}, ΣANBN = Σ∗ ⋅ {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ+}
is such that any 𝑤 ∈ Σ∗ makes ΣANBN ∩ 𝑤Σ∗ nonregular. Although Lemma 16 thus
gives languages in ℒPA ⧵ ℒDetPA, Lemma 16 seemingly does not apply to EQUAL
itself since EQUAL ∩ #{𝑎, 𝑏, #}∗ = {#} is regular.

1.3 On decidability and closure properties of Parikh automata

In this section we justify the PA and DetPA line entries on Figure 1. The known
decidability results depicted there (in boldface) are from [KR03] and [Iba78], and
Karianto [Kar04] provided detailed proofs.

▶ Proposition 17. (1) Finiteness is decidable for PA; (2) Inclusion is decidable for
DetPA and undecidable for PA; (3) Regularity is undecidable for PA.

Proof. (1-2). These decidability properties follow directly from the same prop-
erties for RBCM and DetRBCM [ISD+02], the effective equivalence between PA
and RBCM (Proposition 14), and the effective inclusion of ℒDetPA in ℒDetRBCM
(Proposition 15).

(3). This follows from a theorem of [Gre68], which states the following. Let 𝒞
be a class of languages effectively closed under union and under concatenation with
regular languages and for which 𝐿 = Σ∗ is undecidable. Let 𝑃 be a predicate on
languages true of every regular language, false of some languages, preserved by in-
verse rational transduction, union with {𝜀} and intersection with regular languages.
Then 𝑃 is undecidable in 𝒞 . Obviously, ℒPA satisfies the hypothesis for 𝒞 . More-

34

1. Parikh automata

over, “being regular in ℒPA” is a predicate satisfying the hypothesis for 𝑃 . Thus,
regularity is undecidable for PA.

We now turn to closure properties:

▶ Proposition 18. (1) ℒDetPA is not closed under concatenation; (2) ℒDetPA is not
closed under nonerasing morphisms; (3) Both ℒPA and ℒDetPA are closed under com-
mutative closure; (4) Neither ℒPA nor ℒDetPA is closed under starring.

Proof. (1). The language EQUAL separating ℒDetPA from ℒPA is the concatena-
tion of a regular language and a language of ℒDetPA, implying the nonclosure under
concatenation.

(2). We note that any language of ℒPA is the image by a nonerasing morphism
of a language in ℒDetPA. Indeed, say (𝐴, 𝐶) is a CA and let 𝐵 be the deterministic
automaton of language 𝖱𝗎𝗇(𝐴) defined as a copy of 𝐴 in which the transition 𝑡 is
relabeled 𝑡 (i.e., 𝑝 .. 𝑎. 𝑞 becomes 𝑝 .. (𝑝, 𝑎, 𝑞). 𝑞). Then (𝐵, 𝐶) is a DetCA such that
𝐿(𝐴, 𝐶) = 𝜇𝐴(𝐿(𝐵, 𝐶)). This implies the nonclosure of ℒDetPA under nonerasing
morphisms.

(3). Let Σ = {𝑎1, … , 𝑎𝑛}, 𝐿 ⊆ Σ∗ a semilinear language, and 𝐶 = 𝖯𝗄𝗁(𝐿).
Define 𝐴 to be an automaton with one state, initial and final, with 𝑛 loops, the 𝑖-th
labeled (𝑎𝑖, 𝐞𝑖) ∈ Σ × {𝐞𝑖}1≤𝑖≤𝑛. Then 𝑐(𝐿) = 𝐿(𝐴, 𝐶). This implies that both ℒPA
and ℒDetPA are closed under commutative closure, as both are classes of semilinear
languages [KR03].

(4). We show that the starring of 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} is not in ℒPA. Suppose
𝐿∗ ∈ ℒPA, and let 𝑤 = (𝑎𝑝𝑏𝑝)ℓ, where ℓ, 𝑝 are given by Lemma 7. The same
lemma asserts that 𝑤 = 𝑢𝑣𝑥𝑣𝑧, such that, in particular, 𝑢𝑣2𝑥𝑧 and 𝑢𝑥𝑣2𝑧 are in 𝐿∗.
Now suppose 𝑣 = 𝑎𝑖 for some 𝑖 ≤ 𝑝. Then 𝑢𝑣2𝑥 contains 𝑎𝑝+𝑖𝑏𝑝 with no more 𝑏’s on
the right. Thus 𝑢𝑣2𝑥𝑧 /∈ 𝐿∗. The case for 𝑣 = 𝑏𝑖 is similar. Now suppose 𝑣 = 𝑎𝑖𝑏𝑗

with 𝑖, 𝑗 > 0. Then 𝑢𝑣2𝑥 contains ⋯ 𝑎𝑝𝑏𝑗𝑎𝑖𝑏𝑝 ⋯, but 𝑖 < 𝑝, thus 𝑢𝑣2𝑥𝑧 /∈ 𝐿∗. The
case 𝑣 = 𝑏𝑖𝑎𝑗 is similar. Thus 𝐿∗ /∈ ℒPA.

Remark. Baker and Book [BB74] already note, in different terms, that if ℒPA were
closed under starring, it would be an intersection closed full AFL containing the lan-
guage {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0}, and so would be equal to the class of Turing-recognizable
languages. Thus ℒPA is not closed under starring.

35

Paper I – Affine Parikh Automata

2 Affine Parikh automata

A PA of dimension 𝑑 can be viewed as an automaton in which each transition updates
a vector 𝐱 of ℕ𝑑 using a function 𝐱 ← 𝐱 + 𝐯 where 𝐯 depends only on the transition.
At the end of an accepting computation, the word is accepted if 𝐱 belongs to some
semilinear set. We propose to generalize the updating function to an affine function.
We show that defining the model over ℕ is as general as defining it over ℚ. We study
the expressiveness of this model and show it is strictly more powerful than PA. We
then study its (non)closure properties and related decidability problems, leading to the
observation that the model lacks some desirable properties — e.g., properties usually
needed for any real-world application.

Remark.𝕂-APA: see p. 15 It is easily seen that ℕ-APA (resp. ℕ-DetAPA) are a generalization of CA
(resp. DetCA). Indeed, let (𝐴, 𝐶) be a CA and define, for 𝑡 ∈ 𝛿, 𝑈𝑡 = (𝐼𝑑, 𝖯𝗄𝗁(𝑡))
where 𝐼𝑑 is the identity matrix of dimension |𝛿| × |𝛿|. Then 𝐿(𝐴, 𝐶) = 𝐿(𝐴, 𝑈, 𝐶).
We will later see that this containment is strict.

We present a normal form for APA that is similar to a normal form given for PA
by Karianto [Kar04]:

▶ Lemma 19. Every 𝕂-APA (𝐴, 𝑈, 𝐶) of dimension 𝑑 has the same language as a
𝕂-APA (𝐴 , 𝑈 , 𝐶) of dimension 𝑑 + 1 with the three following properties:
(i) The initial state of 𝐴 has no incoming transition;
(ii) The automaton 𝐴 is complete;
(iii) Every state of 𝐴 is final.
The same holds for 𝕂-DetAPA.

Proof. Let (𝐴, 𝑈, 𝐶) be a 𝕂-APA of dimension 𝑑, that is, 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹),
𝑈 ∶ 𝛿∗ → ℱ 𝕂

𝑑 , and 𝐶 ⊆ 𝕂𝑑 . We ensure incrementally the three properties; that
is, we assume for each property that the previous ones hold.

Ensuring (i). We define (𝐴 , 𝑈 , 𝐶) as follows: 𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹), where
𝑄 = 𝑄 ∪ {𝑞fresh}, with 𝑞fresh a fresh state; Σ = Σ; 𝛿 = 𝛿 ∪ 𝛿fresh with 𝛿fresh =
{𝑞fresh .. 𝑎. 𝑞 | 𝑞0 .. 𝑎. 𝑞 ∈ 𝛿}; 𝑞0 = 𝑞fresh; if 𝑞0 ∈ 𝐹 , then 𝐹 = 𝐹 ∪ {𝑞fresh} and
otherwise 𝐹 = 𝐹 . Note that 𝐴 is deterministic if 𝐴 is, and that 𝐿(𝐴) = 𝐿(𝐴).
We define 𝑈 ∶ 𝛿 → ℱ 𝕂

𝑑 as follows. For 𝑞fresh .. 𝑎. 𝑞 ∈ 𝛿fresh, 𝑈𝑞fresh .. 𝑎. 𝑞 = 𝑈𝑞0 .. 𝑎. 𝑞
and for 𝑡 ∈ 𝛿, we have 𝑈𝑡 = 𝑈𝑡. Finally, we let 𝐶 = 𝐶 . Then 𝐿(𝐴, 𝑈, 𝐶) =
𝐿(𝐴 , 𝑈 , 𝐶) and (𝐴 , 𝑈 , 𝐶) verifies (i).

Ensuring (ii). Now suppose (𝐴, 𝑈, 𝐶) verifies (i). Let 𝐴 be the automaton 𝐴 in
which an additional nonfinal sink state 𝑞sink is added — that is, if a state 𝑞 ∈ 𝑄 has

36

2. Affine Parikh automata

no outgoing transition labeled 𝑎 ∈ Σ, the transition 𝑞 .. 𝑎. 𝑞sink is added to 𝐴 , and
𝑞sink has |Σ| self-loops, labeled by each letter of Σ. The new transitions of 𝐴 are
associated with some function (for instance, the identity or the zero function); the
constraint set 𝐶 is left unchanged. This leaves both the language and the determin-
ism the APA unchanged, and 𝐴 now verifies (i) and (ii).

Ensuring (iii). Now suppose (𝐴, 𝑈, 𝐶) verifies (i) and (ii). We define 𝐴 as
(𝑄, Σ, 𝛿, 𝑞0, 𝑄), i.e., the automaton 𝐴 with all states final. Let us define the 𝕂-APA
(𝐴 , 𝑈 , 𝐶) of dimension 𝑑+1 where we fix 𝑈 ∶ 𝛿 → ℱ 𝕂

𝑑+1 such that the last com-
ponent of the affine functions serves as a flag: it is set to 1 if the last state reached is
in 𝐹 , and 2 otherwise — this component takes the value 0 only for the empty path.
Formally, for 𝑡 ∈ 𝛿, 𝐱 ∈ 𝕂𝑑 , and 𝑓 ∈ 𝕂:

𝑈𝑡 (𝐱, 𝑓) =
⎛
⎜
⎜
⎝
𝑈𝑡(𝐱),

⎧⎪
⎨
⎪⎩

1 if 𝖳𝗈(𝑡) ∈ 𝐹,
2 otherwise.

⎞
⎟
⎟
⎠

.

Let us remark that the ability of APA to use constant functions (and not only trans-
lations, as in PA) allows to simplify the construction given by Karianto [Kar04].
Finally, if 𝜀 ∈ 𝐿(𝐴, 𝑈, 𝐶), we let 𝐶 = 𝐶 × {1} ∪ {0𝑑+1}, and otherwise, we
let 𝐶 = 𝐶 × {1}. We argue that 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴 , 𝑈 , 𝐶). For the empty
word, the construction is such that 𝜀 ∈ 𝐿(𝐴, 𝑈, 𝐶) → 𝜀 ∈ 𝐿(𝐴 , 𝑈 , 𝐶). Now
if 𝜀 /∈ 𝐿(𝐴, 𝑈, 𝐶) then 𝑈𝜀 (𝟎) = 𝟎 /∈ 𝐶 , thus 𝜀 /∈ 𝐿(𝐴 , 𝑈 , 𝐶). Now let 𝑤 be a
nonempty word in 𝐿(𝐴, 𝑈, 𝐶) and let 𝜋 be an accepting path in 𝐴 such that 𝜇(𝜋) = 𝑤
and 𝑈𝜋(𝟎) ∈ 𝐶 . Then 𝜋 is also an accepting path in 𝐴 , and as 𝖳𝗈(𝜋) ∈ 𝐹 , we have
that 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), 1), and as 𝑈𝜋(𝟎) ∈ 𝐶 , we have that 𝑈𝜋(𝟎) ∈ 𝐶 × {1}.
Hence 𝜇(𝜋) = 𝑤 is in 𝐿(𝐴 , 𝑈 , 𝐶). Conversely, suppose 𝑤 is a nonempty word
in 𝐿(𝐴 , 𝑈 , 𝐶) and let 𝜋 be an accepting path in 𝐴 such that 𝜇(𝜋) = 𝑤 and
𝑈𝜋(𝟎) ∈ 𝐶 . Then 𝜋 is a path in 𝐴, and as 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), 1), we have that
𝖳𝗈(𝜋) ∈ 𝐹 and 𝑈𝜋(𝟎) ∈ 𝐶 , thus 𝜇(𝜋) = 𝑤 is in 𝐿(𝐴, 𝑈, 𝐶).

Wemay verify that (𝐴 , 𝑈 , 𝐶) satisfies the three properties and that the language
𝐿(𝐴 , 𝑈 , 𝐶) is equal to the language 𝐿(𝐴, 𝑈, 𝐶). Moreover, 𝐴 is deterministic if
𝐴 is.

2.1 Affine Parikh automata on ℚ and ℕ

In this section, we show that the expressive power of affine Parikh automata is inde-
pendent from the choice of 𝕂. We first show that the constraint set can have a similar

37

Paper I – Affine Parikh Automata

form in the two cases. We call basic formula a quantifier-free formula which uses the
function symbols + for addition and 𝜆𝑛, 𝑛 ∈ ℕ, for scalar multiplication, together with
the relation symbol < and constants from ℕ — equality is expressible, as 𝑡1 = 𝑡2 is
equivalent to ¬(𝑡1 < 𝑡2) ∧ ¬(𝑡2 < 𝑡1). Of course, the scalar multiplication 𝜆𝑛(𝑡) can be
replaced by 𝑡 + ⋯ + 𝑡 where 𝑡 appears 𝑛 times, but its inclusion simplifies the proofs
slightly. We remark, for future reference, the following property of basic formulas.
For 𝐯 a vector of natural numbers and 𝜙 a basic formula, the fact that 𝜙 is true of 𝐯 is
independent of the underlying model, whether it is ℚ or ℕ. In symbols, ℚ ⊧ 𝜙(𝐯) iff
ℕ ⊧ 𝜙(𝐯).

The following lemma shows in particular that the constraint set of ℚ-APA can be
expressed as a basic formula:

▶ Lemma 20. Every ℚ-definable set can be expressed as a basic formula.

Proof.
Quantif. elim. of ℚ-definable

sets, see p. 4

Recall that a ℚ-definable set can be expressed with a quantifier-free for-
mula 𝜙. Thus, we need only get rid of the 𝑐’s not in ℕ appearing either as 𝜆𝑐 or as
a constant in 𝜙. First, note that we can suppose that if 𝜆𝑐(𝑡) appears in 𝜙, with 𝑡 a
term, then 𝑡 is some variable: we simply apply the distributivity of 𝜆𝑐 (i.e., replace
𝜆𝑐(𝑡1 +𝑡2) by 𝜆𝑐(𝑡1)+𝜆𝑐(𝑡2) and 𝜆𝑐(𝜆𝑐 (𝑡)) by 𝜆𝑐×𝑐 (𝑡)), then replace 𝜆𝑐(𝑐) with 𝑐 a
constant by the constant 𝑐 × 𝑐 , neither of those operations changing the set defined.
Second, we take care of the negative 𝑐’s. For any atomic formula 𝑡1 < 𝑡2 appearing
in 𝜙, if the constant 𝑐 < 0 appears in 𝑡1, we remove it from 𝑡1 and add −𝑐 to 𝑡2; if
𝑐 < 0 appears as 𝜆𝑐(𝑥) in 𝑡1, with 𝑥 a variable, we remove it from 𝑡1 and add 𝜆−𝑐(𝑥)
to 𝑡2 (the same goes with 𝑡1 and 𝑡2 switched). Third and last, we take care of the
denominators: let 𝑁 be the product of all the denominators appearing in the reduced
fractions of the 𝑐’s appearing in 𝜙. Then any atomic formula 𝑡1 > 𝑡2 is replaced with
the atomic formula 𝑡1 > 𝑡2 where any 𝑐 (appearing either as a constant or as 𝜆𝑐) is
replaced by 𝑁 × 𝑐: the fact that 𝑐 ≥ 0 implies that (𝑁 × 𝑐) ∈ ℕ. Moreover, for any
assignment, the value of 𝑡1 (resp. 𝑡2) is 𝑁 times the value of 𝑡1 (resp. 𝑡2), hence, the
value of 𝑡1 is greater than the value of 𝑡2 iff the same holds for 𝑡1 and 𝑡2.

Over ℕ, the automaton is needed to incorporate some of the constraint set:

▶ Lemma 21. Every ℕ-APA (𝐴, 𝑈, 𝐶) has the same language as a ℕ-APA (𝐴, 𝑈 , 𝐶)
where 𝐶 can be expressed as a basic formula. The same holds for ℕ-DetAPA.

Proof.
Quantif. elim. of ℕ-definable

sets, see p. 3

Recall that a semilinear set can be expressed as a basic formula with the
additional relations ≡𝑝, expressing congruence (e.g., [End72]). Thus we need only

38

2. Affine Parikh automata

get rid of these relations. To do so, we equip the affine functions to compute their
own value modulo 𝑝.

Let (𝐴, 𝑈, 𝐶) be an ℕ-APA (resp. ℕ-DetAPA) of dimension 𝑑. We suppose the
initial state of 𝐴 has no incoming transition (Lemma 19), and let 𝜙(𝑥1, … , 𝑥𝑑) be
the formula for 𝐶 of the form previously mentioned (i.e., a basic formula with the
additional relations ≡𝑝). Suppose 𝜙 is not a basic formula, then there is a 𝑝 such that
≡𝑝 appears in 𝜙. We define (𝐴, 𝑈 , 𝐶) of the same language as (𝐴, 𝑈, 𝐶) with 𝐶
expressed by 𝜙 in which the ≡𝑝 relation, for this specific 𝑝, is replaced by some basic
formulas. Applying this process repeatedly gives an ℕ-APA (resp. ℕ-DetAPA) of
the same language with its constraint set expressible as a basic formula.

Our goal is to modify 𝑈 so that for each 𝐯 ∈ {0, … , 𝑝−1}𝑑 , there is an additional
variable 𝑚𝐯 available to 𝜙 which is set to 1 iff the value of 𝑥𝑖 modulo 𝑝 is 𝑣𝑖, for
all 1 ≤ 𝑖 ≤ 𝑑 (thus only one of the 𝑚𝐯’s can be set to 1). With this information
available, all the atomic formulas of the form 𝑡1 ≡𝑝 𝑡2, for this specific 𝑝, can be
rewritten without ≡𝑝 using a basic formula:

𝑡1 ≡𝑝 𝑡2 ;
𝐯 ∈ {0, … , 𝑝 − 1}𝑑

𝑡1(𝐯) ≡𝑝 𝑡2(𝐯)

(𝑚𝐯 = 1) .

Let 𝑡 be a transition of 𝐴; we give 𝑈𝑡 ∈ ℱ ℕ
𝑑+𝑝𝑑 . In order to do this, we define

an additional 0-1-matrix 𝑀𝑡 of dimension 𝑝𝑑 × 𝑝𝑑 , which we index by vectors in
{0, … , 𝑝−1}𝑑 in some natural way (in particular, 0𝑑 is the index of the first row). We
let 𝑀𝑡[𝐮, 𝐯] = 1 iff 𝐮 = 𝑈𝑡(𝐯) mod 𝑝, where the modulo is taken component-wise.

We are now ready to define 𝑈𝑡 (𝐱, 𝐦), for 𝐱 ∈ ℕ𝑑 and 𝐦 ∈ ℕ𝑝𝑑 . If 𝑡 is an outgoing
transition of the initial state of 𝐴, then:

𝑈𝑡 (𝐱, 𝐦) = (𝑈𝑡(𝐱), 𝑀𝑡.(1, 𝟎)) ,

where (1, 𝟎) is the column vector (1, 0, … , 0) ∈ ℕ𝑝𝑑 . Otherwise, we let:

𝑈𝑡 (𝐱, 𝐦) = (𝑈𝑡(𝐱), 𝑀𝑡.𝐦) .

Note that in both definitions, 𝑈𝑡 is indeed an affine function. Now with 𝐦1 (resp.
𝐦2) the vector in {0, 1}𝑝𝑑 having a 1 only in position 𝐱 mod 𝑝 (resp. 𝑈𝑡(𝐱) mod 𝑝),
we have 𝑈𝑡 (𝐱, 𝐦1) = (𝑈𝑡(𝐱), 𝐦2). Moreover, the initial value of 𝐱 being 0𝑑 , those
hypotheses are established at the first transition taken. Thus for a nonempty path

39

Paper I – Affine Parikh Automata

𝜋, and with 𝐦 the vector in {0, 1}𝑝𝑑 having a 1 only in position 𝑈𝜋(0𝑑) mod 𝑝, we
have: 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), 𝐦).

As previously discussed, 𝜙 can now be rewritten as 𝜙 without the use of ≡𝑝:
𝜙 has access to the usual variables 𝑥1, … , 𝑥𝑑 and to variables 𝑚𝐯 for 𝐯 ∈ {0, … , 𝑝−
1}𝑑 . We take care of the empty word by letting 𝜙 consider 𝑚𝟎 to be 1 if no other
𝑚𝐯 variable is set. Thus, with 𝐶 the set defined by 𝜙 , we have that 𝐿(𝐴, 𝑈, 𝐶) =
𝐿(𝐴, 𝑈 , 𝐶) and 𝜙 has one less 𝑝 appearing as ≡𝑝 than 𝜙.

Before proving the main result of this section, we show that affine functions, in
their full generality, are not needed within 𝕂-APA or 𝕂-DetAPA:

▶ Lemma 22. The language of any 𝕂-APA is also the language of a 𝕂-APA in which
every affine function is either constant or linear — for both 𝕂 = ℚ and 𝕂 = ℕ.
Moreover, the first transition of a run is always associated with a constant function.
The same holds for 𝕂-DetAPA.

Proof. Let (𝐴, 𝑈, 𝐶) be a 𝕂-APA (resp. 𝕂-DetAPA) of dimension 𝑑 and suppose,
thanks to Lemma 19, that the initial state of 𝐴 has no incoming transition. We define
a 𝕂-APA (resp. 𝕂-DetAPA) (𝐴 , 𝑈 , 𝐶) where the outgoing transitions of the initial
state of 𝐴 initialize the registers with the values of all the constant parts given by
𝑈 . Specifically, we define the morphism 𝑈 ∶ 𝛿 → ℱ 𝕂

𝑑+𝑑𝑛 as follows. Identify
the transition set of 𝐴 with {𝑡1, … , 𝑡𝑛}, write 𝑈𝑡𝑖 = (𝑀𝑖, 𝐯𝑖), for 𝑖 ∈ {1, … , 𝑛},
and define ̂𝑣 = (𝐯1, … , 𝐯𝑛) ∈ 𝕂𝑑𝑛. Then for 𝑡 an outgoing transition of the initial
state, 𝑈𝑡 is the constant function with value (𝑈𝑡(0𝑑), ̂𝑣); for the other 𝑡𝑖’s, we set
𝑈𝑡𝑖

(𝐱, 𝐲1, … , 𝐲𝑛) = (𝑀𝑖.𝐱+𝐲𝑖, 𝐲1, … , 𝐲𝑛), and in this case, 𝑈𝑡𝑖 is the linear function
(𝑀𝑖 , 𝟎) where here and in the following 𝟎 is of dimension 𝑑 + 𝑑𝑛 and:

40

2. Affine Parikh automata

𝑀𝑖 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

..

..𝑀𝑖 ..0𝑑 ..⋯ ..0𝑑 ..𝐼𝑑𝑑 ..0𝑑 ..⋯ ..0𝑑

..0𝑑

..⋮

..⋮

..⋮

..⋮

..⋮

..0𝑑

.
𝐼𝑑𝑑𝑛
.

(𝑖 + 1)-th block of width 𝑑

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with 0𝑘 (resp. 𝐼𝑑𝑘) the zero (resp. identity) matrix of dimension 𝑘 × 𝑘. Finally, we
let 𝐶 = 𝐶 × 𝕂𝑑𝑛.

We now show that 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴, 𝑈 , 𝐶). First, 𝜀 ∈ 𝐿(𝐴, 𝑈, 𝐶) iff 𝜀 ∈
𝐿(𝐴) and 𝑈𝜀(𝟎) = 𝟎 ∈ 𝐶 , the latter being equivalent to 𝑈𝜀 (𝟎) = 𝟎 ∈ 𝐶 , thus
𝜀 ∈ 𝐿(𝐴, 𝑈, 𝐶) iff 𝜀 ∈ 𝐿(𝐴, 𝑈 , 𝐶). Now let 𝜋 be a path in 𝐴 starting from the
initial state. Suppose |𝜋| = 1 then 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), ̂𝑣). For |𝜋| > 1, let 𝜋 = 𝜌𝑡,
then:

𝑈𝜋(𝟎) = 𝑈𝑡 (𝑈𝜌(𝟎)) =
by induction

𝑈𝑡 (𝑈𝜌(0𝑑), ̂𝑣) = (𝑈𝜋(0𝑑), ̂𝑣) .

Thus let 𝑤 be a nonempty word in 𝐿(𝐴, 𝑈, 𝐶) and let 𝜋 be an accepting path in
𝐴 labeled 𝑤 and such that 𝑈𝜋(𝟎) ∈ 𝐶 . Then 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), …) which is in
𝐶 × 𝕂𝑑𝑛 = 𝐶 , thus 𝑤 ∈ 𝐿(𝐴, 𝑈 , 𝐶). Conversely, let 𝑤 be a nonempty word in
𝐿(𝐴, 𝑈 , 𝐶) and let 𝜋 be an accepting path in 𝐴 labeled 𝑤 such that 𝑈𝜋(𝟎) ∈ 𝐶 .
We have that 𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), …) is in 𝐶 = 𝐶 × 𝕂𝑑𝑛, thus 𝑈𝜋(0𝑑) ∈ 𝐶 and
𝑤 ∈ 𝐿(𝐴, 𝑈, 𝐶).

We are now ready to show that the choice of 𝕂 in APA does not influence the class
of languages defined:

▶ Theorem 23. ℒℚ-DetAPA = ℒℕ-DetAPA and ℒℚ-APA = ℒℕ-APA. Moreover, these
correspondences are effective and do not change the underlying automaton.

Proof. (ℒℚ-APA ⊆ ℒℕ-APA and ℒℚ-DetAPA ⊆ ℒℕ-DetAPA.) Let (𝐴, 𝑈, 𝐶) be a
ℚ-APA (resp. ℚ-DetAPA) of dimension 𝑑, with 𝛿 the set of transitions of 𝐴. The
underlying automaton 𝐴 will remain the same throughout the proof.

41

Paper I – Affine Parikh Automata

We suppose that the empty word is not in 𝐿(𝐴) it is a simple task to add it back at
the very end of this construction if needed. Thanks to Lemma 22, we assume that
all the functions given by 𝑈 are either linear or constant. Lemma 20 then asserts
that 𝐶 is expressible as a basic formula 𝜙. We first ensure that no constant appears
in 𝜙 by replacing each of them by a variable (e.g., if 𝜆3(𝑥) + 8 is a term in 𝜙,
we replace it by 𝜆3(𝑥) + 𝑦 where 𝑦 is a new variable). Let 𝜙 be this modified
formula and, for 𝑐1 < 𝑐2 < … < 𝑐𝑝 ∈ 𝕂 he increasing sequence of the 𝑝 constants
that appear in 𝜙, let 𝑦1, 𝑦2, … , 𝑦𝑝 be the associated sequence of new variables. We
now update 𝑈 so that it gives the value 𝑐𝑖 to 𝑦𝑖, for all 𝑖. Let 𝐜 = (𝑐1, 𝑐2, … , 𝑐𝑝)
and define 𝑈 from 𝑈 as follows. For 𝑡 such that 𝑈𝑡 is constant, set 𝑈𝑡 (𝐱1, 𝐱2) =
(𝑈𝑡(0𝑑), 𝐜), which is still a constant function; and for 𝑡 such that 𝑈𝑡 is linear, set
𝑈𝑡 (𝐱1, 𝐱2) = (𝑈𝑡(𝐱1), 𝐱2), which is also still linear. We let 𝐶 be the set described
by 𝜙 ; it verifies {𝐱 | (𝐱, 𝐜) ∈ 𝐶 } = 𝐶 . As the first transition of any run in 𝐴
is associated, by 𝑈 , with a constant function, any nonempty run 𝜋 in 𝐴 verifies
𝑈𝜋(𝟎) = (𝑈𝜋(0𝑑), 𝐜). Thus the variables 𝑦1, … , 𝑦𝑝 of 𝜙 are indeed set to 𝑐1, … , 𝑐𝑝,
implying that 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴, 𝑈 , 𝐶). From now on we denote 𝑑 + 𝑝 by 𝑛.

We now change 𝑈 so that the constants and matrices appearing in the 𝑈𝑡 ’s are
all integer-valued. Let 𝑁 be the product of all the denominators appearing in the
reduced fractions of the entries of the matrices and vectors given by 𝑈 . By defining
𝑈𝑡 = 𝑁 × 𝑈𝑡 , we thus ensure that all the values appearing in the definition of 𝑈𝑡
are integers, hence 𝑈 is a function from 𝛿∗ to ℱ ℤ

𝑛 . Moreover, as all the functions
are either linear or constant, this implies that for any path 𝜋, there is a 𝑘 ≤ |𝜋| such
that 𝑈𝜋 = 𝑁𝑘 × 𝑈𝜋 . But as all the atomic formulas of 𝜙 are of the form 𝑡1 < 𝑡2
where no constant appears and all the 𝜆𝑐 have 𝑐 > 0, we have that 𝜙 (𝐯) is true iff
𝜙 (𝐾 × 𝐯) is true. Thus 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴, 𝑈 , 𝐶).

Finally, we change 𝑈 and 𝐶 so that they are ℕ-valued. We define 𝑈 as 𝑈
where the positive and negative computations are made in different components.
Consider 𝑈𝑡 as 𝑛 affine functions from ℚ𝑛 to ℚ: 𝑈𝑡 (𝐱) = (𝑓1(𝐱), … , 𝑓𝑛(𝐱)). Then
let 1 ≤ 𝑖 ≤ 𝑛, and write 𝑓𝑖(𝐱) = 𝑐 + ∑𝑛

𝑗=1 𝑣𝑗 × 𝑥𝑗 .

Let us write 𝐽 + = {1 ≤ 𝑗 ≤ 𝑛 ∣ 𝑣𝑗 ≥ 0} and 𝐽 − = {1 ≤ 𝑗 ≤ 𝑛 ∣ 𝑣𝑗 < 0}. Now,
we define 𝑓 +

𝑖 and 𝑓 −
𝑖 by:

𝑓 +
𝑖 (𝐱+, 𝐱−) = max(𝑐, 0) +

𝑗∈𝐽 +
|𝑣𝑗| × 𝑥+

𝑗 , and,

𝑓 −
𝑖 (𝐱+, 𝐱−) = | min(𝑐, 0)| +

𝑗∈𝐽 −
|𝑣𝑗| × 𝑥−

𝑗 .

42

2. Affine Parikh automata

Now define 𝑈𝑡 ∶ ℕ2𝑛 → ℕ2𝑛 as:

𝑈𝑡 (𝐱+, 𝐱−) = (𝑓 +
1 , 𝑓 −

1 , … , 𝑓 +
𝑛 , 𝑓 −

𝑛)(𝐱+, 𝐱−) ,

where 𝐱+, 𝐱− ∈ ℕ𝑛. The main property of this construction is that for a path 𝜋, we
have:

𝑈𝜋 (𝟎) = (𝑎+
1 , 𝑎−

1 , … , 𝑎+
𝑛 , 𝑎−

𝑛) ⇒ 𝑈𝜋 (𝟎) = (𝑎+
1 − 𝑎−

1 , … , 𝑎+
𝑛 − 𝑎−

𝑛) .

Thus define 𝐶 as:

𝐶 = {(𝑎+
1 , 𝑎−

1 , … , 𝑎+
𝑛 , 𝑎−

𝑛) | (𝑎+
1 − 𝑎−

1 , … , 𝑎+
𝑛 − 𝑎−

𝑛) ∈ 𝐶 } .

Now 𝐶 is a ℚ-definable set because 𝐶 is ℚ-definable, thus 𝐶 is expressible
as a basic formula. But basic formulas on natural numbers take their truth values
regardless of whether 𝕂 = ℕ or 𝕂 = ℚ, thus 𝐶 ∩ ℕ2𝑛 is ℕ-definable. Finally,
(𝐴, 𝑈 , 𝐶 ∩ℕ2𝑛) is an ℕ-APA (resp. ℕ-DetAPA) of the same language as (𝐴, 𝑈, 𝐶).

(ℒℕ-APA ⊆ ℒℚ-APA and ℒℕ-DetAPA ⊆ ℒℚ-DetAPA.) This is a consequence of
Lemma 21. Let (𝐴, 𝑈, 𝐶) be an ℕ-APA (resp. ℕ-DetAPA). Now, by Lemma 21, let
(𝐴, 𝑈 , 𝐶) be an ℕ-APA (resp. ℕ-DetAPA) with the same language and with 𝐶
expressible as a basic formula. The fact that basic formulas take their truth value
on natural numbers regardless of the underlying model implies that there exists a
ℚ-definable set 𝐶 such that 𝐶 ∩ ℕ𝑑 = 𝐶 — this is the set described by the
basic formula for 𝐶 interpreted in ℚ — and thus (𝐴, 𝑈 , 𝐶) is a ℚ-APA (resp.
ℚ-DetAPA) of the same language as (𝐴, 𝑈, 𝐶).

The previous result allows us to write ℒDetAPA for ℒℚ-DetAPA = ℒℕ-DetAPA and
ℒAPA for ℒℚ-APA = ℒℕ-APA.

2.2 Closure properties of ℒAPA and ℒDetAPA

The pointed concatenation of 𝐿 and 𝐿 is any language of the form 𝐿 ⋅ {#} ⋅ 𝐿 where
does not appear in a word of 𝐿. The arguments used by Klaedtke and Rueß [KR02]
apply equally well to 𝕂-APA and 𝕂-DetAPA, showing:

▶ Proposition 24. (1) ℒAPA is closed under union, intersection, concatenation, non-
erasing morphisms, and inverse morphisms; (2) ℒDetAPA is closed under union, inter-
section, inverse morphisms, complement, and pointed concatenation.

43

Paper I – Affine Parikh Automata

Proof. (Union and intersection.) Let (𝐴 , 𝑈 , 𝐶) and (𝐴 , 𝑈 , 𝐶) be two𝕂-APA
(resp. 𝕂-DetAPA) of dimension 𝑑 and 𝑑 , respectively, and suppose that 𝐴 and
𝐴 are complete and with every state final (Lemma 19). We suppose moreover,
w.l.o.g., that the alphabets of the automata are the same. Let 𝐿 = 𝐿(𝐴 , 𝑈 , 𝐶) and
𝐿 = 𝐿(𝐴 , 𝑈 , 𝐶). We construct two 𝕂-APA (resp. 𝕂-DetAPA) (𝐴, 𝑈, 𝐶∪) and
(𝐴, 𝑈, 𝐶∩) such that their languages are the union and intersection, respectively, of
𝐿 and 𝐿 . Let 𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝑄) and 𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0 , 𝑄), and define
the Cartesian product of 𝐴 and 𝐴 by 𝐴 = (𝑄 × 𝑄 , Σ , 𝛿, (𝑞0, 𝑞0), 𝑄 × 𝑄) with:

𝛿 = {(𝑝 , 𝑝) .. 𝑎. (𝑞 , 𝑞) | 𝑝 .. 𝑎. 𝑞 ∈ 𝛿 ∧ 𝑝 .. 𝑎. 𝑞 ∈ 𝛿 } .

This automaton is deterministic if both 𝐴 and 𝐴 are. Define ℎ (resp. ℎ), to be
the morphism from 𝛿∗ to (𝛿)∗ (resp. to (𝛿)∗) such that:

ℎ ((𝑝 , 𝑝) .. 𝑎. (𝑞 , 𝑞)) = 𝑝 .. 𝑎. 𝑞
(resp. ℎ ((𝑝 , 𝑝) .. 𝑎. (𝑞 , 𝑞)) = 𝑝 .. 𝑎. 𝑞)

The fact that 𝐴 and 𝐴 are complete implies that for any run 𝜋 in 𝐴 and 𝜋 in
𝐴 with the same label, there is a run 𝜋 in 𝐴 such that ℎ (𝜋) = 𝜋 and ℎ (𝜋) = 𝜋 .
Then we let 𝑈 ∶ 𝛿∗ → ℱ 𝕂

𝑑 +𝑑 compute the values of 𝑈 in the first 𝑑 components
and the values of 𝑈 in the last 𝑑 components, that is, for 𝐱 ∈ 𝕂𝑑 , 𝐱 ∈ 𝕂𝑑 ,
and 𝑡 ∈ 𝛿:

𝑈𝑡(𝐱 , 𝐱) = (𝑈ℎ (𝑡)(𝐱), 𝑈ℎ (𝑡)(𝐱)) .

Finally, we let 𝐶∪ = 𝐶 × 𝕂𝑑 ∪ 𝕂𝑑 × 𝐶 and 𝐶∩ = 𝐶 × 𝐶 . We argue that
𝐿(𝐴, 𝑈, 𝐶∪) = 𝐿 ∪ 𝐿 and 𝐿(𝐴, 𝑈, 𝐶∩) = 𝐿 ∩ 𝐿 .

Let 𝜋 be a run in 𝐴. Then ℎ (𝜋) is a run in 𝐴 , ℎ (𝜋) is a run in 𝐴 , and both
have the same label as 𝜋. Moreover, 𝑈𝜋(𝟎) = (𝑈ℎ (𝜋)(0

𝑑), 𝑈ℎ (𝜋)(0
𝑑)). Thus if

𝑈𝜋(𝟎) ∈ 𝐶∪ then 𝜇𝐴(𝜋) ∈ 𝐿(𝐴, 𝑈, 𝐶∪), and 𝑈ℎ (𝜋)(0
𝑑) ∈ 𝐶 or 𝑈ℎ (𝜋)(0

𝑑) ∈ 𝐶 ,
thus 𝜇𝐴(𝜋) ∈ 𝐿 ∪ 𝐿 . Likewise, if 𝑈𝜋(𝟎) ∈ 𝐶∩ then 𝜇𝐴(𝜋) ∈ 𝐿(𝐴, 𝑈, 𝐶∩), and
both 𝑈ℎ (𝜋)(0

𝑑) ∈ 𝐶 and 𝑈ℎ (𝜋)(0
𝑑) ∈ 𝐶 thus 𝜇𝐴(𝜋) ∈ 𝐿 ∩ 𝐿 .

For the converse, let 𝑤 ∈ 𝐿 and let 𝜋 be a run in 𝐴 such that 𝜇𝐴 (𝜋) = 𝑤 and
𝑈𝜋 (𝟎) ∈ 𝐶 . Then there is a run 𝜋 in 𝐴 such that ℎ (𝜋) = 𝜋 . Moreover, 𝑈𝜋(𝟎) =
(𝑈ℎ (𝜋)(𝟎), 𝑈ℎ (𝜋)(𝟎)) which is in 𝐶 × 𝕂𝑑 , thus in 𝐶∪, and thus 𝑤 ∈ 𝐿(𝐴, 𝑈, 𝐶∪).
Likewise, if 𝑤 ∈ 𝐿 , then 𝑤 ∈ 𝐿(𝐴, 𝑈, 𝐶∪). Now let 𝑤 ∈ 𝐿 ∩ 𝐿 , and let 𝜋
(resp. 𝜋) be a run in 𝐴 (resp. 𝐴) such that 𝜇𝐴 (𝜋) = 𝑤 and 𝑈𝜋 (0𝑑) ∈ 𝐶 (resp.
𝜇𝐴 (𝜋) = 𝑤 and 𝑈𝜋 (0𝑑) ∈ 𝐶). There exists a path 𝜋 in 𝐴 such that ℎ (𝜋) = 𝜋
and ℎ (𝜋) = 𝜋 , and it is such that 𝑈𝜋(𝟎) = (𝑈ℎ (𝜋)(𝟎), 𝑈ℎ (𝜋)(𝟎)) which is in
𝐶 × 𝐶 , that is, 𝐶∩, thus 𝑤 ∈ 𝐿(𝐴, 𝑈, 𝐶∩).

44

2. Affine Parikh automata

(Inverse morphisms.) We first tackle the 𝕂-DetAPA case, which is based on the
classical construction on finite automata and followed by the addition of the affine
functions. Let (𝐴, 𝑈, 𝐶) be a𝕂-DetAPAover the alphabetΣ, and letℎ∶ Σ ∗ → Σ∗ be
amorphism; wewill give a𝕂-DetAPA (𝐴 , 𝑈 , 𝐶) for the languageℎ−1(𝐿(𝐴, 𝑈, 𝐶)).
We first construct 𝐴 such that its language is ℎ−1(𝐿(𝐴)). Let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹),
and write 𝖯𝖺𝗍𝗁(𝑞, 𝑢, 𝑞) for the only path in 𝐴 from 𝑞 to 𝑞 labeled 𝑢 if it exists, ⊥
otherwise. Further, we let 𝖯𝖺𝗍𝗁(𝑞, 𝜀, 𝑞) = 𝜀, i.e., we consider that the empty path is
going and ending in any given state. Then 𝐴 = (𝑄, Σ , 𝛿 , 𝑞0, 𝐹) where:

𝛿 = {𝑞 .. 𝑎. 𝑞 ∈ 𝑄 × Σ × 𝑄 | 𝖯𝖺𝗍𝗁(𝑞, ℎ(𝑎), 𝑞) ≠ ⊥} .

The automaton 𝐴 is such that 𝐿(𝐴) = ℎ−1(𝐿(𝐴)) and is deterministic. In particu-
lar, if ℎ(𝑎) = 𝜀, then a loop labeled 𝑎 appears on each state.

When a word 𝑤 is read in 𝐴 from some state 𝑞 to a state 𝑞 , the equivalent action
in 𝐴 is to take the path 𝖯𝖺𝗍𝗁(𝑞, ℎ(𝑤), 𝑞); thus we let 𝑈𝑞 .. 𝑎. 𝑞 = 𝑈𝖯𝖺𝗍𝗁(𝑞,ℎ(𝑎),𝑞), and
in particular, if a transition is labeled with a letter 𝑎 such that ℎ(𝑎) = 𝜀, then the
associated function is the identity. Then for 𝜋 a path in 𝐴 and 𝜋 its counterpart
in 𝐴 (i.e., 𝜋 = 𝖯𝖺𝗍𝗁(𝖥𝗋𝗈𝗆(𝜋), ℎ(𝜇(𝜋)), 𝖳𝗈(𝜋))), we have that 𝑈𝜋 = 𝑈𝜋 . Now let
𝑤 ∈ 𝐿(𝐴), 𝜋 be the accepting path with label 𝑤 in 𝐴 , and 𝜋 be the accepting path
with label ℎ(𝑤) in 𝐴. Then 𝑈𝜋 (𝟎) = 𝑈𝜋(𝟎). Thus we have that ℎ(𝑤) ∈ 𝐿(𝐴, 𝑈, 𝐶)
iff ℎ(𝑤) ∈ 𝐿(𝐴) and the path 𝜋 for ℎ(𝑤) in 𝐴 is such that 𝑈𝜋(𝟎) ∈ 𝐶 , which is the
case iff 𝑤 ∈ 𝐿(𝐴) and the path 𝜋 for 𝑤 in 𝐴 is such that 𝑈𝜋 (𝟎) ∈ 𝐶 , that is iff
𝑤 ∈ 𝐿(𝐴 , 𝑈 , 𝐶), concluding this case.

We now focus on the nondeterministic case. Let (𝐴, 𝑈, 𝐶) be a 𝕂-APA over the
alphabet Σ and let ℎ∶ Σ ∗ → Σ∗ be a morphism. Here, for some states 𝑞, 𝑞 of 𝐴,
we may have several paths from 𝑞 to 𝑞 with the same label — say we have 𝑘 paths.
To circumvent this problem, we use at least 𝑘 copies of the 𝐴 of the deterministic
case: we go from the 𝑖-th copy of 𝑞 to the 𝑗-th of 𝑞 applying the affine functions
corresponding to the 𝑗-th of the 𝑘 paths.

Formally, let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Define 𝖯𝖺𝗍𝗁𝗌(𝑞, 𝑢, 𝑞) as the set of paths in 𝐴
from 𝑞 to 𝑞 labeled 𝑢, and impose an order on this set (say, lexicographical or-
der). Again, we consider the empty path as going and ending in any given state,
thus we let 𝖯𝖺𝗍𝗁𝗌(𝑞, 𝜀, 𝑞) = {𝜀}. Let 𝑀 be the maximum number of elements
in 𝖯𝖺𝗍𝗁𝗌(𝑞, ℎ(𝑎), 𝑞) for 𝑞, 𝑞 ∈ 𝑄, and 𝑎 ∈ Σ . We define an 𝐴 similar to the
deterministic case, but duplicated 𝑀 times to obtain the 𝕂-APA (𝐴 , 𝑈 , 𝐶) for
ℎ−1(𝐿(𝐴, 𝑈, 𝐶)). For 1 ≤ 𝑖 ≤ 𝑀 and for a state 𝑞 in 𝐴 , we write 𝑞𝑖 for a fresh
copy of 𝑞 indexed by 𝑖 (when 𝑞 = 𝑞0 we write (𝑞0)𝑖 as 𝑞0,𝑖); we use this notation to

45

Paper I – Affine Parikh Automata

define an automaton 𝐴 that includes 𝑀 copies of the deterministic case one. Let
𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0,1, 𝐹) where:

• 𝑄 = {𝑞𝑖 | 𝑞 ∈ 𝑄 ∧ 1 ≤ 𝑖 ≤ 𝑀},

• 𝛿 = {𝑞𝑖 .. 𝑎. 𝑞𝑗 ∈ 𝑄 × Σ × 𝑄 | 1 ≤ 𝑖, 𝑗 ≤ |𝖯𝖺𝗍𝗁𝗌(𝑞, ℎ(𝑎), 𝑞)|},

• 𝐹 = {𝑞𝑖 | 𝑞 ∈ 𝐹 ∧ 1 ≤ 𝑖 ≤ 𝑀}.

Again we have that 𝐿(𝐴) = ℎ−1(𝐿(𝐴)). Finally, define 𝑈 by:

𝑈𝑞𝑖 .. 𝑎. 𝑞𝑗
= 𝑈𝜋 where 𝜋 is the 𝑗-th path in 𝖯𝖺𝗍𝗁𝗌(𝑞, ℎ(𝑎), 𝑞) .

The deterministic case corresponds to 𝑀 = 1, and in this case, the constructed
𝕂-APA is the same as in the previous construction. Now suppose 𝖯𝖺𝗍𝗁𝗌(𝑞, ℎ(𝑎), 𝑞)
has more than two elements for some 𝑞, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ . In particular, the
two transitions 𝑞1 .. 𝑎. 𝑞1 and 𝑞1 .. 𝑎. 𝑞2 are in 𝐴 ; the affine functions associated are
such that taking the first (resp. second) transition applies the same function as going
through the first (resp. second) path of 𝖯𝖺𝗍𝗁𝗌(𝑞, ℎ(𝑎), 𝑞) in 𝐴 . Thus, once again,
the possible values computed by the affine functions while reading some ℎ(𝑤) in 𝐴
are the same as those computed while reading 𝑤 in 𝐴 . By the same token as in the
deterministic case, 𝐿(𝐴 , 𝑈 , 𝐶) = ℎ−1(𝐿(𝐴, 𝑈, 𝐶)).

(Concatenation.) Let (𝐴 , 𝑈 , 𝐶) and (𝐴 , 𝑈 , 𝐶) be two 𝕂-APA of dimen-
sion 𝑑 and 𝑑 , respectively, and let 𝐿 = 𝐿(𝐴 , 𝑈 , 𝐶) and 𝐿 = 𝐿(𝐴 , 𝑈 , 𝐶).
We construct a 𝕂-DetAPA (𝐴, 𝑈, 𝐶) of dimension 𝑑 + 𝑑 for 𝐿 = 𝐿 ⋅ 𝐿 . Here,
𝐴 is the merging of 𝐴 and 𝐴 , where for all transitions in 𝐴 from the initial state
to some state 𝑞, a transition from each final state of 𝐴 to 𝑞 with the same label is
added. We then compute 𝑈 and 𝑈 in parallel.

Formally, let 𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹) and 𝐴 = (𝑄 , Σ , 𝛿 , 𝑞0 , 𝐹), and sup-
pose 𝑄 ∩ 𝑄 = ∅. We assume that 𝜀 /∈ 𝐿(𝐴); otherwise, if 𝜀 ∈ 𝐿 , then
𝐿 = 𝐿 ⋅ (𝐿 ⧵ {𝜀}) ∪ 𝐿 , and the closure under union allows us to conclude. Define
𝐴 as the deterministic automaton (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where:

• 𝑄 = 𝑄 ∪ 𝑄 , Σ = Σ ∪ Σ ,

• 𝛿 = 𝛿 ∪ 𝛿 ∪ {𝑝 .. 𝑎. 𝑞 | 𝑝 ∈ 𝐹 ∧ 𝑞0
.. 𝑎. 𝑞 ∈ 𝛿 },

• 𝑞0 = 𝑞0 and 𝐹 = 𝐹 .

The language of 𝐴 is thus 𝐿(𝐴) ⋅ 𝐿(𝐴). We define 𝑈 ∶ 𝛿∗ → 𝕂𝑑 +𝑑 so that
the 𝑑 first components are used for the computations of 𝐴 , and the 𝑑 last for the
computations of 𝐴 , i.e., for 𝐱 ∈ 𝕂𝑑 and 𝐲 ∈ 𝕂𝑑 , we let 𝑈𝑡(𝐱, 𝐲) be (𝑈𝑡 (𝐱), 𝐲) if

46

2. Affine Parikh automata

𝑡 ∈ 𝛿 , (𝐱, 𝑈𝑡 (𝐲)) if 𝑡 ∈ 𝛿 , and (𝑈𝑞0 .. 𝑎. 𝑞(𝐱), 𝐲) if 𝑡 = 𝑝 .. 𝑎. 𝑞 /∈ 𝛿 ∪ 𝛿 . Finally,
we let 𝐶 to be the 𝕂-definable set 𝐶 × 𝐶 .

Let 𝜋 ∈ 𝖱𝗎𝗇(𝐴), then 𝜋 can be written as 𝜋 (𝑝 .. 𝑎. 𝑞)𝜋 where 𝜋 ∈ 𝖱𝗎𝗇(𝐴) and
(𝑞0

.. 𝑎. 𝑞)𝜋 ∈ 𝖱𝗎𝗇(𝐴). Conversely, for two paths 𝜋 ∈ 𝖱𝗎𝗇(𝐴), (𝑞0
.. 𝑎. 𝑞)𝜋 ∈

𝖱𝗎𝗇(𝐴), the path 𝜋 (𝖳𝗈(𝜋) .. 𝑎. 𝑞)𝜋 is a run in 𝐴. Moreover, in both cases, it
holds that:

𝑈𝜋(𝟎) = (𝑈𝜋 (0𝑑), 𝑈𝜋 (0𝑑)) .

Thus 𝐿 = 𝐿(𝐴, 𝑈, 𝐶).
(Nonerasing morphisms.) Let (𝐴, 𝑈, 𝐶) be a 𝕂-APA over the alphabet Σ and

ℎ∶ Σ∗ → Σ ∗ be a nonerasing morphism, that is, for all 𝑎 ∈ Σ, ℎ(𝑎) ≠ 𝜀. We
construct a 𝕂-APA for ℎ(𝐿(𝐴, 𝑈, 𝐶)) where the main task is the following. For a
letter 𝑎 ∈ Σ and 𝑤 = 𝑤1 ⋯ 𝑤𝑛 = ℎ(𝑎), a transition 𝑡 = 𝑞 .. 𝑎. 𝑞 of 𝐴 is replaced by
𝑛 transitions 𝑞 .. 𝑤1. 𝑞𝑡,1, …, 𝑞𝑡,𝑛−1 .. 𝑤𝑛. 𝑞 where the 𝑞𝑡,𝑖’s are fresh states named
after the transition 𝑡. Tomake the proof concise, we rely on the closure under inverse
morphism of 𝕂-APA, previously shown. We give a 𝕂-APA (𝐴 , 𝑈 , 𝐶) for the image
of ℎ(𝐿(𝐴, 𝑈, 𝐶)) under the morphism 𝑔 which maps 𝑎 ∈ Σ to 𝑎#, for # /∈ Σ ; we
then have that ℎ(𝐿(𝐴, 𝑈, 𝐶)) = 𝑔−1(𝐿(𝐴 , 𝑈 , 𝐶)), concluding the proof.

Formally, let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) and for 𝑡 ∈ 𝛿, write 𝑞⊥
𝑡,𝑖 and 𝑞⊤

𝑡,𝑖 to denote some
fresh states. Let # be a symbol not in Σ . Then 𝐴 = (𝑄 , Σ ∪ {#}, 𝛿 , 𝑞0, 𝐹) where:

• 𝑄 = 𝑄 ∪ {𝑞⊥
𝑡,𝑖, 𝑞⊤

𝑡,𝑖 | 𝑡 ∈ 𝛿 ∧ 1 ≤ 𝑖 ≤ |ℎ(𝜇(𝑡))|},
• 𝛿 = {𝑞 .. 𝑤1. 𝑞⊥

𝑡,1, 𝑞⊥
𝑡,𝑖 .. #. 𝑞⊤

𝑡,𝑖, 𝑞⊤
𝑡,𝑖 .. 𝑤𝑖+1. 𝑞⊥

𝑡,𝑖+1, 𝑞⊥
𝑡,𝑛 .. #. 𝑞 |

𝑞 .. 𝑎. 𝑞 ∈ 𝛿 ∧ 𝑤1 ⋯ 𝑤𝑛 = ℎ(𝑎) ∧ 1 ≤ 𝑖 < 𝑛}.

We now adjust 𝑈 so that the computations of the two 𝕂-APA are the same. We let
𝑈𝑡 be the identity function for any 𝑡 with 𝖥𝗋𝗈𝗆(𝑡) /∈ 𝑄, and for 𝑡 = 𝑞 .. 𝑎. 𝑞⊥

𝑡,1, we
let 𝑈𝑡 = 𝑈𝑡. We argue that this 𝕂-APA recognizes ℎ(𝐿(𝐴, 𝑈, 𝐶)) with a # in every
even position. First, 𝐿(𝐴) is ℎ(𝐿(𝐴)) in which a # is inserted in every even position.
Next, let 𝑤1# ⋯ #𝑤𝑛# ∈ 𝐿(𝐴) with 𝑤𝑖 ∈ Σ , and let 𝜋 be a run with this label in
𝐴 such that 𝑈𝜋 (𝟎) ∈ 𝐶 . Let 𝜋 be the corresponding path in 𝐴 defined by replacing
each transition of the form 𝑞 .. 𝑎. 𝑞⊥

𝑡,1 by 𝑡 and removing the other transitions. Then
𝜋 is an accepting path, its label is in ℎ−1(𝑤1 ⋯ 𝑤𝑛), and 𝑈𝜋(𝟎) = 𝑈𝜋 (𝟎), thus
𝑤1 ⋯ 𝑤𝑛 ∈ ℎ(𝐿(𝐴, 𝑈, 𝐶)). Conversely, if 𝑤 ∈ 𝐿(𝐴, 𝑈, 𝐶), then let 𝜋 be a run with
label 𝑤 in 𝐴 such that 𝑈𝜋(𝟎) ∈ 𝐶 . Then the path 𝜋 in 𝐴 whose only states of the
form 𝑞⊤

𝑡,1 are 𝑞⊤
𝜋1,1, … , 𝑞⊤

𝜋|𝜋|,1 in that order is accepting and such that 𝑈𝜋 (𝟎) = 𝑈𝜋(𝟎)
which is in 𝐶 . Thus its label, which is ℎ(𝑤) with # inserted in every even position,
is in 𝐿(𝐴 , 𝑈 , 𝐶).

47

Paper I – Affine Parikh Automata

(Complement.) Let (𝐴, 𝑈, 𝐶) be a 𝕂-DetAPA. Clearly, a word does not belong
to 𝐿(𝐴, 𝑈, 𝐶) iff it is not in 𝐿(𝐴) or, while being in 𝐿(𝐴), the path 𝜋 corresponding
to the word is such that 𝑈𝜋(𝟎) /∈ 𝐶 . Thus the complement of 𝐿(𝐴, 𝑈, 𝐶) is 𝐿(𝐴) ∪
𝐿(𝐴, 𝑈, 𝐶), which is in ℒ𝕂-DetAPA, semilinear sets being closed under complement.

(Pointed concatenation.) This is similar to the closure under concatenation for
the nondeterministic case. Let (𝐴 , 𝑈 , 𝐶) and (𝐴 , 𝑈 , 𝐶) be two 𝕂-DetAPA
and # a symbol not in the alphabet of 𝐴 . The main difference with the closure
under concatenation of 𝕂-APA is that the automaton 𝐴 is constructed by adding
#-labeled transitions from the final states of 𝐴 to the initial state of 𝐴 . As # is a
symbol which is not in the alphabet of 𝐴 , this preserves the determinism.

Remark. These closures are effective in the sense that for every operation (e.g., inter-
section of 𝕂-APA), there is an algorithm which computes it (e.g., given two 𝕂-APA
computes a 𝕂-APA whose language is the intersection of the languages of the two).
Also, we give the closure of ℒDetAPA under pointed concatenation because we were
not able to give a construction for the usual concatenation — we even conjecture that
ℒDetAPA is not closed under the usual concatenation.

We now give a large class of languages belonging to ℒAPA in two steps. First,
we show that the language PAL of pointed palindromes, i.e., PAL = {𝑤#𝑤R | 𝑤 ∈
{𝑎, 𝑏}∗}, is recognized by a deterministic APA:

▶ Proposition 25. PAL ∈ ℒDetAPA.

Proof. We sketch an ℕ-DetAPA (𝐴, 𝑈, 𝐶) for PAL over {0, 1}∗ rather than {𝑎, 𝑏}.
The automaton 𝐴 accepts words of the form 𝑢#𝑣, with 𝑢, 𝑣 ∈ {0, 1}∗. The affine
functions compute the value of 𝑢 (resp. 𝑣) seen as a binary number with the most
(resp. least) significant bit first. Checking that those values are equal and that |𝑢| =
|𝑣| is then the same as checking that 𝑢 = 𝑣R.

Formally, 𝐴 = ({𝑞0, 𝑞1}, {0, 1, #}, 𝛿, 𝑞0, {𝑞1}) where 𝛿 is defined, together with
the affine functions of 𝑈 , by:

𝑡1 = 𝑞0 .. 0. 𝑞0 performs (𝑥, 𝑝, 𝑦, ℓ) ↦ (2𝑥, 0, 0, ℓ + 1),
𝑡2 = 𝑞0 .. 1. 𝑞0 performs (𝑥, 𝑝, 𝑦, ℓ) ↦ (2𝑥 + 1, 0, 0, ℓ + 1),
𝑡3 = 𝑞0 .. #. 𝑞1 performs (𝑥, 𝑝, 𝑦, ℓ) ↦ (𝑥, 1, 0, ℓ),
𝑡4 = 𝑞1 .. 0. 𝑞1 performs (𝑥, 𝑝, 𝑦, ℓ) ↦ (𝑥, 2𝑝, 𝑦, ℓ − 1),
𝑡5 = 𝑞1 .. 1. 𝑞1 performs (𝑥, 𝑝, 𝑦, ℓ) ↦ (𝑥, 2𝑝, 𝑦 + 𝑝, ℓ − 1).

48

2. Affine Parikh automata

Now when reading a word 𝑢 ∈ {0, 1}∗ from 𝑞0, with 𝑥, 𝑝, 𝑦, and ℓ starting at 0, the
final value is (𝑥, 0, 0, |𝑢|) where 𝑥 is the value of 𝑢 seen as a binary number with the
most significant bit first. Reading 𝑢 from 𝑞1 with starting value (𝑥, 1, 0, ℓ) leads to
the value (𝑥, 2|𝑢|, 𝑦, ℓ − |𝑢|) with 𝑦 the value of 𝑢 seen as a binary number with the
least significant bit first. Thus, letting 𝐶 to be the semilinear set {(𝑛, 𝑛 , 𝑛, 0) | 𝑛, 𝑛 ∈
ℕ} means that we check, on reading 𝑢#𝑣, that |𝑢| = |𝑣| and, in this case, that 𝑢 = 𝑣R,
hence 𝐿(𝐴, 𝑈, 𝐶) = PAL.

Now recall that a semi-AFL is a family of languages closed under nonerasing mor-
phisms, inverse morphisms, intersection with a regular language, and union. Define
ℳ∩(𝐿) as the smallest semi-AFL containing 𝐿 and closed under intersection. The
closure properties of ℳ∩(PAL) are implied by those of ℒAPA (Proposition 24), hence:

▶ Proposition 26. ℳ∩(PAL) ⊆ ℒAPA.

We do not know whether ℳ∩(PAL) ⊆ ℒDetAPA essentially since we do not know
whether ℒDetAPA is closed under nonerasing morphisms, though we conjecture it is
not.

The class ℳ∩(PAL) contains a wide range of languages. First, the closure of PAL
under nonerasing morphisms, inverse morphisms, and intersection with regular sets is
the class of linear languages (e.g., [Bra81]3). In turn, adding closure under intersection
permits to express the languages of nondeterministic multipushdown automata where
in every computation, each pushdown store makes a bounded number of reversals (that
is, going from pushing to popping) [BNP74]; in particular, if there is only one such
pushdown store, this corresponds to the ultralinear languages [GS66b]. Further, as
ℳ∩(COPY) ⊆ ℳ∩(PAL) (e.g., [Bra81]) this implies that COPY ∈ ℒAPA.

Next, we note that APA express only context-sensitive languages (CSL):

▶ Proposition 27. ℒAPA ⊆ CSL.

Proof. Let (𝐴, 𝑈, 𝐶) be an ℕ-APA of dimension 𝑑, we show that 𝐿(𝐴, 𝑈, 𝐶) ∈
NSPACE[𝑛] (which is equal to CSL [Kur64]). Let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), and 𝑤 =
𝑤1 ⋯ 𝑤𝑛 ∈ Σ∗. First, initialize 𝐯 ← 𝟎 and 𝑞 ← 𝑞0. Iterate through the letters 𝑤𝑖
of 𝑤: on the 𝑖-th letter, choose nondeterministically a transition 𝑡 = 𝑞 .. 𝑤𝑖. 𝑞 ∈ 𝛿.
Update 𝐯 by setting 𝐯 ← 𝑈𝑡(𝐯) and 𝑞 with 𝑞 ← 𝑞 . Upon reaching the last letter of
𝑤, accept 𝑤 iff 𝑞 ∈ 𝐹 and 𝐯 ∈ 𝐶 .
3Brandenburg [Bra81] defines PAL as {𝑤𝑤R | 𝑤 ∈ {𝑎, 𝑏}∗}, where 𝑤 is the image of 𝑤 by the mor-

phism 𝑎 ↦ 𝑎 and 𝑏 ↦ 𝑏, for 𝑎, 𝑏 two fresh symbols. We note that the results of [Bra81] carry over with our
definition of PAL.

49

Paper I – Affine Parikh Automata

We now bound the value of 𝐯. Let 𝑐 be the greatest value appearing in any of the
matrices or vectors in 𝑈𝑡, for any 𝑡. For a given 𝐯, let max 𝐯 be max{𝑣1, … , 𝑣𝑑}.
Then for any 𝑡, (𝑈𝑡(𝐯))𝑖 ≤ 𝑑 × (𝑐 × max 𝐯) + 𝑐. Let 𝜋 be a path, we then have that
(𝑈𝜋(𝟎))𝑖 ≤ (𝑐(𝑑 + 1))𝑛−1𝑐, thus the size of 𝐯 at the end of the algorithm is in 𝑂(𝑛).
Now note that, as𝐶 is semilinear, the language of the binary encoding of its elements
is regular [WB95], and thus, checking 𝐯 ∈ 𝐶 can be done in, say, logarithmic space.
Hence the given algorithm is indeed in NSPACE[𝑛].

We now show that ℒDetAPA is not closed under morphisms and we deduce new
undecidability results. We rely on the following technical lemma that illustrates the
subtle way in which a DetAPA can “perform the conjunction of an unbounded num-
ber of conditions by maintaining a nonzero flag.” Let SPACING be the language
{(𝑎𝑚#𝑎𝑚#)𝑛 | 𝑚, 𝑛 ≥ 0}; note, for instance, that 𝑎#𝑎#𝑎#𝑎# is in SPACING while
𝑎#𝑎#𝑎𝑎#𝑎𝑎# is not.

50

2. Affine Parikh automata

▶ Lemma 28. SPACING ∈ ℒDetAPA.

Proof. Let Σ = {𝑎, #}, 𝐿0 = {𝑎𝑚#𝑎𝑚# | 𝑚 ≥ 0}∗ and 𝐿1 = 𝐿0 ⋅ 𝑎∗#𝑎∗. Then:

SPACING = {𝜀} ∪ [𝐿0 ∩ 𝑎∗# ⋅ 𝐿0 ⋅ 𝑎∗#]
= {𝜀} ∪ [𝐿0 ∩ 𝑎∗# ⋅ (𝐿1 ∩ Σ∗#)].

We will show that 𝐿0, 𝐿1 ∈ ℒDetAPA. This implies the result as follows. Since
ℒDetAPA is closed under intersection (Figure 1), 𝐿1 ∩ Σ∗# ∈ ℒDetAPA. By closure
of ℒDetAPA under pointed concatenation (Proposition 24), 𝑎∗# ⋅ (𝐿1 ∩ Σ∗#) ∈
ℒDetAPA. Applying closure properties again yields SPACING ∈ ℒDetAPA. (Note
that 𝐿1 is needed to express SPACING because 𝐿0 ∈ ℒDetAPA is not known to
imply 𝐿0 ⋅ 𝑎∗# ∈ ℒDetAPA.)

We first construct a ℚ-DetAPA 𝐷0 on two registers 𝑥 and 𝑦 for 𝐿0. As its under-
lying automaton, 𝐷0 will have a two-state automaton 𝐴 with initial and final state 𝑞0.
The 4 transitions of 𝐴, and 4 affine functions ℚ2 → ℚ2 assigned to these transitions,
are:

𝑡1 = 𝑞0 .. 𝑎. 𝑞0 performs 𝑥
𝑦 ↦ 𝑥+1

2𝑦 ,

𝑡2 = 𝑞0 .. #. 𝑞1 performs 𝑥
𝑦 ↦ 𝑥

𝑦 ,

𝑡3 = 𝑞1 .. 𝑎. 𝑞1 performs 𝑥
𝑦 ↦ 𝑥−1

2𝑦 ,

𝑡4 = 𝑞1 .. #. 𝑞0 performs 𝑥
𝑦 ↦ 0

𝑥+𝑦 .

As usual, 𝑥
𝑦 is 0

0 initially. The constraint set 𝐶0 for 𝐷0 will be { 0
0 } which is

ℚ-definable. (Only integers will ever appear in the counters; we use ℚ rather than
ℕ only to have access to negative integers.) Surprisingly, this works.

We must argue that 𝐿(𝐷0) = 𝐿0. We will write (𝑞, 𝑖
𝑗) for the configuration of

𝐷0 in which the state of 𝐴 is 𝑞 ∈ {𝑞0, 𝑞1} and 𝑖 and 𝑗 are the contents of registers
𝑥 and 𝑦. For 𝑤 ∈ Σ∗, we will write (𝑞, 𝑖

𝑗)𝑤 for the configuration reached when 𝐴

starts in configuration (𝑞, 𝑖
𝑗) and reads 𝑤. We need to prove two facts:

(i) ∀𝑤 ∈ 𝐿0, (𝑞0, 0
0)𝑤 = (𝑞0, 0

0);
(ii) ∀𝑤 ∈ (𝑎∗#𝑎∗#)∗𝑎∗, if (𝑞0, 0

0)𝑤 = (𝑞0, 0
0) then 𝑤 ∈ 𝐿0.

Fact (i) proves 𝐿0 ⊆ 𝐿(𝐷0) because 𝑞0 is final in 𝐴 and 0
0 ∈ 𝐶0. Fact (ii) proves

𝐿(𝐷0) ⊆ 𝐿0 because 𝐿(𝐴) is seen to be (𝑎∗#𝑎∗#)∗𝑎∗; hence fact (ii) states that any
word that is in 𝐿(𝐴) and that further sets 𝑥

𝑦 to 0
0 belongs to 𝐿0.

51

Paper I – Affine Parikh Automata

To prove fact (i), let𝑤 = 𝑎𝑚1#𝑎𝑚1 #𝑎𝑚2 #𝑎𝑚2# ⋯ 𝑎𝑚𝑘#𝑎𝑚𝑘 # for 𝑘 ≥ 0. Any𝑤 ∈ 𝐿0
has this form, and an induction on 𝑘 shows that (𝑞0, 0

0)𝑤 = (𝑞0, 0
0).

To prove fact (ii), we make the following claim, crucial to the operation of 𝐷0:
Claim. For any 𝑢, 𝑣 ∈ Σ∗, if (𝑞0, 0

0)𝑢 sets 𝑦 ≠ 0 then (𝑞0, 0
0)𝑢𝑣 also sets 𝑦 ≠ 0.

We first show that this implies fact (ii). Let 𝑤 ∈ (𝑎∗#𝑎∗#)∗𝑎𝑖 satisfy (𝑞0, 0
0)𝑤 =

(𝑞0, 0
0). We show 𝑤 ∈ 𝐿0. Identify 𝑤 with the word 𝑎𝑚1#𝑎𝑚2 # ⋯ 𝑎𝑚2𝑘−1 #𝑎𝑚2𝑘#𝑎𝑖

for some 𝑘 ≥ 0. By the Claim, every prefix of 𝑤 sets 𝑦 = 0. Because reading every
second # returns 𝐴 to 𝑞0 and resets 𝑥 to 0, we necessarily have

(𝑞0, 0
0) = (𝑞0, 0

0)𝑎𝑚1 #𝑎𝑚2 #

= (𝑞0, 0
0)𝑎𝑚1 #𝑎𝑚2 #𝑎𝑚3 #𝑎𝑚4 #

= (𝑞0, 0
0)𝑎𝑚3 #𝑎𝑚4 #

⋮
= (𝑞0, 0

0)𝑎𝑚2𝑘−1 #𝑎𝑚2𝑘 #,

and

(𝑞0, 0
0)𝑤 = (𝑞0, 0

0)𝑎𝑖 = (𝑞0, 𝑖
0).

By inspection of 𝐴, (𝑞0, 0
0) = (𝑞0, 0

0)𝑎𝑚#𝑎𝑚 # implies 𝑚 = 𝑚 . Hence 𝑚1 =
𝑚2, 𝑚3 = 𝑚4, … , 𝑚2𝑘−1 = 𝑚2𝑘. Moreover, (𝑞0, 0

0)𝑤 = (𝑞0, 0
0) by assumption.

Hence 𝑖 = 0 and 𝑤 = 𝑎𝑚1 #𝑎𝑚1 # ⋯ 𝑎𝑚2𝑘−1 #𝑎𝑚2𝑘−1 # ∈ 𝐿0, concluding fact (ii).

We now prove the Claim. Let 𝑢 ∈ Σ∗ be such that (𝑞0, 0
0)𝑢 sets 𝑦 ≠ 0. We need

to show that for all 𝑣 ∈ Σ∗, (𝑞0, 0
0)𝑢𝑣 also sets 𝑦 ≠ 0. Let 𝑢 = 𝑢1𝑢2 where 𝑢1 is the

shortest prefix of 𝑢 that sets 𝑦 ≠ 0. By inspection of 𝐴, 𝑢1 = 𝑢 𝑎𝑖#𝑎𝑗# for some 𝑢 ∈
(𝑎∗#𝑎∗#)∗ such that (𝑞0, 0

0)𝑢1 = (𝑞0, 0
0)𝑎𝑖#𝑎𝑗 # = (𝑞0, 0

𝑖−𝑗) and 𝑖 ≠ 𝑗. We will

prove by induction on the length of 𝑤 that for any 𝑤 ∈ Σ∗, (𝑞0, 0
𝑖−𝑗)𝑤 = (𝑞, 𝑥𝑤𝑦𝑤

)
for some 𝑞 ∈ {𝑞0, 𝑞1} and some 𝑥𝑤, 𝑦𝑤 ∈ ℚ such that |𝑦𝑤| ≥ max{1, 2|𝑥𝑤|}. This
will complete the proof of the Claim since we can pick 𝑤 = 𝑢2𝑣, and conclude that
(𝑞0, 0

0)𝑢𝑣 = (𝑞0, 0
𝑖−𝑗)𝑢2𝑤 = (𝑞, 𝑥𝑢2𝑣

𝑦𝑢2𝑣
) with |𝑦𝑢2𝑣| ≥ max{1, 2|𝑥𝑢2𝑣|} > 0.

For the basis of the induction, let 𝑤 = 𝜀. Then (𝑞0, 0
𝑖−𝑗)𝑤 = (𝑞0, 0

𝑖−𝑗). Now
|𝑖 − 𝑗| ≥ 1 = max{1, 2 × |0|}. For the inductive step, let 𝑤 ∈ Σ𝑛 for some 𝑛 > 0.
Then 𝑤 = 𝑣𝑎 or 𝑤 = 𝑣# and by induction, (𝑞0, 0

𝑖−𝑗)𝑣 = (𝑞, 𝑥𝑣𝑦𝑣
) with |𝑦𝑣| ≥

max{1, 2|𝑥𝑣|}.
Case 1: 𝑤 = 𝑣𝑎. Then (𝑞, 0

𝑖−𝑗)𝑣𝑎 = (𝑞, 𝑥𝑣±1
2𝑦𝑣

). If 𝑥𝑣 = 0, then |𝑦𝑣𝑎| = |2𝑦𝑣| ≥
2 max{1, 2|𝑥𝑣|} = 2 = max{1, 2 × | ± 1|} = max{1, 2|𝑥𝑣𝑎|}. If 𝑥𝑣 ≠ 0, then

52

2. Affine Parikh automata

|𝑦𝑣𝑎| = |2𝑦𝑣| ≥ 2 max{1, 2|𝑥𝑣|} = 2(|𝑥𝑣| + |𝑥𝑣|) ≥ 2(|𝑥𝑣| + 1) ≥ max{1, 2|𝑥𝑣 ±
1|} = max{1, 2|𝑥𝑣𝑎|}.

Case 2: 𝑤 = 𝑣#. If 𝑡2 is the transition that consumed the last #, then 𝑥𝑣 = 𝑥𝑣# and
𝑦𝑣 = 𝑦𝑣# so the induction hypothesis immediately yields |𝑦𝑤| ≥ max{1, 2|𝑥𝑤|}. So
let 𝑡4 be the transition that consumed the last #. Then (𝑞, 0

𝑖−𝑗)𝑣# = (𝑞, 0
𝑥𝑣+𝑦𝑣

).
Now |𝑦𝑣𝑎| = |𝑥𝑣 + 𝑦𝑣| ≥ |𝑦𝑣| − |𝑥𝑣| ≥ max{1, 2|𝑥𝑣|} − |𝑥𝑣| ≥ max{1, |𝑥𝑣|} ≥ 1 =
max{1, 2 × |0|} = max{1, 2 × |𝑥𝑣#|}. This concludes the proof of the Claim and the
proof that 𝐿(𝐷0) = 𝐿0.

We have yet to construct a ℚ-DetAPA 𝐷1 for 𝐿1. The automaton underlying 𝐷1
will be 𝐴, as above, except that the final state will be 𝑞1 rather than 𝑞0. The affine
functions associated with the transitions remain the same. The constraint set 𝐶1 will
be { 𝑟

0 ∶ 𝑟 ∈ ℚ} and it is ℚ-definable. We need to prove the following facts:
(iii) ∀𝑤 ∈ 𝐿1, (𝑞0, 0

0)𝑤 = (𝑞1, 𝑖
0) for some 𝑖 ∈ ℚ;

(iv) ∀𝑤 ∈ (𝑎∗#𝑎∗#)∗𝑎∗#𝑎∗, if (𝑞0, 0
0)𝑤 = (𝑞1, 𝑖

0) then 𝑤 ∈ 𝐿1.

Fact (iii) follows from fact (i) since any 𝑤 ∈ 𝐿1 is of the form 𝑤 = 𝑢𝑎𝑖#𝑎𝑗 with
𝑢 ∈ 𝐿0, so that (𝑞0, 0

0)𝑤 = (𝑞0, 0
0)𝑎𝑖#𝑎𝑗 = (𝑞1, 𝑖−𝑗

0). To prove fact (iv), let
𝑤 ∈ (𝑎∗#𝑎∗#)∗𝑎∗#𝑎∗ satisfy (𝑞0, 0

0)𝑤 = (𝑞1, 𝑥𝑤
0). By the Claim above, every

prefix of 𝑤 sets 𝑦 = 0. By inspection of 𝐴, some suffix 𝑎𝑖#𝑎𝑗 of 𝑤 must have sent 𝐴
to state 𝑞1, that is, 𝑤 = 𝑢𝑎𝑖#𝑎𝑗 with (𝑞0, 0

0)𝑢 = (𝑞0, 0
0) and 𝑥𝑤 = 𝑖 − 𝑗. But then,

𝑢 ∈ 𝐿0 by fact (ii) and thus 𝑤 ∈ 𝐿1. This concludes the proof that 𝐿(𝐷1) = 𝐿1 and
proves the lemma.

▶ Lemma 29. Given a Turing machine 𝑀 , we can construct a morphism ℎ and a
𝐷𝑒𝑡𝐴𝑃𝐴 𝐷 such that 𝐿(𝑀) = ℎ(𝐿(𝐷)).

Proof. We adapt [BB74, Theorem 1]. With no loss of generality, we assume that
𝑀 is a one-tape Turing machine that accepts by halting and makes an odd number
of moves on any accepting computation. Let 𝐿1 (resp. 𝐿2) be the set of strings

ID0#ID2# ⋯ #ID2𝑘$(ID2𝑘+1)R# ⋯ #(ID3)R#(ID1)R# (2)

such that ID𝑖, 0 ≤ 𝑖 ≤ 2𝑘 + 1, are instantaneous descriptions of 𝑀 padded with the
blank symbol 𝑏 to a common length ℓ, ID0 = [𝑤1𝑞0

]𝑤2 ⋯ 𝑤𝑛𝑏ℓ−𝑛 codes the initial
configuration of 𝑀 ([𝑤1𝑞0

] is considered as a single letter, and, 𝑤1 = 𝑏 when the word
𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑛 ∈ Σ∗ input to 𝑀 is 𝜀), ID2𝑘+1 codes an accepting configuration
and for 0 ≤ 𝑖 ≤ 𝑘, ID2𝑖+1 (resp. for 0 < 𝑖 ≤ 𝑘, ID2𝑖) codes the configuration which

53

Paper I – Affine Parikh Automata

would be reached in one step from configuration ID2𝑖 (resp. ID2𝑖−1). Each ID𝑖 other
than ID0 is coded using an alphabet Γ disjoint from Σ ∪ {[𝜎

𝑞0
] | 𝜎 ∈ Σ} ∪ {[𝑏

𝑞0
]}. It

should be clear that 𝑤 ∈ 𝐿(𝑀) iff 𝑤 ∈ ℎ(𝐿1 ∩𝐿2) where for every 𝜎 ∈ Σ and every
𝛾 ∈ Γ,

ℎ([𝜎
𝑞0

]) = ℎ(𝜎) = 𝜎 and ℎ([𝑏
𝑞0

]) = ℎ(𝑏) = ℎ(#) = ℎ($) = ℎ(𝛾) = 𝜀 .

To complete the proof, we claim that 𝐿1 ∩ 𝐿2 ∈ ℒDetAPA in the effective sense.
Since ℒDetAPA is closed under intersection in that sense (Figure 1), it suffices to
show that 𝐿1 ∈ ℒDetAPA and 𝐿2 ∈ ℒDetAPA. We first show how to construct
a 𝐷𝑒𝑡𝐴𝑃𝐴 recognizing 𝐿1. We will construct an ℕ-DetAPA 𝐷1 able to handle
only the words of the form (2) in which the distance between any two consecutive
symbols # or $ is |ID0|. Handling only those words will be sufficient because the
language 𝐿1 can then be expressed as 𝐿1 = 𝑔−1(SPACING) ∩ 𝐿(𝐷1) where 𝑔 is the
morphism mapping both # and $ to # and mapping every other symbol to the letter
𝑎. Since Lemma 28 shows SPACING ∈ ℒDetAPA and since ℒDetAPA is closed under
intersection and inverse morphisms in the effective sense (Figure 1), a DetAPA for
𝐿1 can be constructed from 𝐷1.

So we now describe 𝐷1. Let 𝑚 be the size of the alphabet Γ. We argue as if
ID0 in (2) were coded over the same alphabet Γ used to code ID𝑖 for 0 < 𝑖 ≤
2𝑘+1, since a finite automaton can easily adjust for this. Our strategy will extend the
strategy used to construct an ℕ-DetAPA for pointed palindromes (Proposition 25)
as follows. As 𝐷1 reads the prefix ID0#ID2# ⋯ #ID2𝑘 of (2), 𝐷1 will internally
translate that prefix into ID1ID3 ⋯ ID2𝑘+1 and will treat the latter as the prefix 𝑢 of
a pointed palindrome 𝑢$𝑢R. As 𝐷1 processes 𝑢, 𝐷1 builds in a register the natural
number having 𝑢 as its 𝑚-ary representation with the most significant bit first (as in
Proposition 25, where 𝑚 was 2). Then 𝐷1 encounters $ and begins to do the matchup
with the suffix (ID2𝑘+1)R# ⋯ #(ID3)R#(ID1)R# of (2). 𝐷1 does this matchup by
internally translating this suffix into:

(ID2𝑘+1)R ⋯ (ID3)R(ID1)R = (ID1ID3 ⋯ ID2𝑘+1)R = 𝑢R .

As 𝐷1 processes this suffix, 𝐷1 computes in a register the natural number having
the suffix as its 𝑚-ary representation, with the least significant bit first this time
(again as in Proposition 25, now with 𝑚 rather than 2). We set 𝐷1 to accept iff
reading (2) indeed leads to 𝑢$𝑢R with ID2𝑘+1 final. Two subtleties are worth men-
tioning concerning processing the prefix. First, when processing ID2𝑖, 𝐷1 always
reads one symbol ahead of position 𝑝 to determine the proper symbol at position 𝑝

54

2. Affine Parikh automata

in ID2𝑖+1, to account for the input head of 𝑀 possibly moving left from position
𝑝 + 1 to position 𝑝. Second, 𝐷1 rejects immediately if ID0 is not a legal coding of
an initial configuration of 𝑀 or if another ID𝑖 in the prefix contains two input head
symbols. This completes the operational description of 𝐷1. The formal definition
(𝐴1, 𝑈1, 𝐶1) of 𝐷1 thus needs to implement these operations. The ℕ-definable set
𝐶1 is the set 𝐶 ⊆ ℕ4 given in the proof of Proposition 25 but adapted to handle 𝑚-ary
representation rather than binary. The affine functions assigned to the transitions of
𝐴1 are the identity function together with the five (adapted) functions assigned to the
transitions 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 from the proof of Proposition 25: transitions performing
the bookkeeping operations of 𝐴1 (such as when 𝐴1 processes the symbol #) will
be assigned the identity function, and transitions that discover the next PAL symbol
are assigned the affine transformation prescribed by Proposition 25 on reading that
symbol (with the understanding that reading $ here corresponds to reading # there).

The strategy to construct an ℕ-DetAPA 𝐷2 recognizing 𝐿2 is of course similar.
But now, since ID2 (for example) does not uniquely determine ID1, the prefix of (2)
is handled by 𝐷2 as the suffix of (2) was handled by 𝐷1. Specifically, 𝐷2 internally
translates the prefix ID0#ID2# ⋯ #ID2𝑘 into 𝑢 = ID2ID4 ⋯ ID2𝑘 and stores the 𝑚-
ary number 𝑢 in a register, with the most significant bit first. Then 𝐷2 encounters
$, discards (ID2𝑘+1)R and translates the remainder (ID2𝑘−1)R# ⋯ #(ID3)R#(ID1)R#
of the suffix into (ID2𝑘)R ⋯ (ID4)R(ID2)R = (ID2ID4 ⋯ ID2𝑘)R = 𝑢R. As did 𝐷1
when reading the prefix, 𝐷2 needs to look ahead by one symbol while processing
the suffix. The matchup with 𝑢R is otherwise done by 𝐷2 just as the matchup was
done by 𝐷1. This completes the description of 𝐷2 and proves the lemma.

▶ Corollary 30. Neither ℒAPA nor ℒDetAPA is closed under morphisms.

Proof. Given a Turing machine 𝑀 , we can construct a morphism ℎ and a DetAPA
(and a fortiori an APA) 𝐷 such that 𝐿(𝑀) = ℎ(𝐿(𝐷)). If either ℒAPA or ℒDetAPA
were closed under morphisms, then the language ℎ(𝐿(𝐷)) would be the language
of an APA. But the language of any APA is context-sensitive (Proposition 27), thus
decidable, so we could decide 𝐿(𝑀).

▶ Corollary 31. The problems of emptiness, universality, inclusion, finiteness, and
regularity are undecidable for 𝐷𝑒𝑡𝐴𝑃𝐴.

55

Paper I – Affine Parikh Automata

Proof. (Emptiness, universality, and inclusion.) Given a Turing machine 𝑀 with
𝐿(𝑀) ⊆ Σ∗, let ℎ be the morphism and 𝐷 the DetAPA provided by Lemma 29.
For any 𝑥 ∈ Σ∗, 𝑥 ∈ 𝐿(𝑀) iff 𝑥 = ℎ(𝑦) for some 𝑦 ∈ 𝐿(𝐷) iff 𝐿(𝐷) ∩ ℎ−1(𝑥) is
nonempty. Now {𝑥} ∈ ℒDetAPA and ℒDetAPA is closed (in the effective sense) under
inverse morphisms and intersection (Figure 1). Hence we can construct a 𝐷𝑒𝑡𝐴𝑃𝐴
for 𝐿(𝐷) ∩ ℎ−1(𝑥) and deciding its emptiness would decide 𝑥 ∈ 𝐿(𝑀). Moreover,
𝕂-DetAPA being closed under complement (in the effective sense), the emptiness
problem reduces to the universality problem. Finally, the undecidability of empti-
ness implies that we cannot decide if the language of a 𝕂-DetAPA is included in the
empty set.

(Finiteness and regularity [pointed out by Andreas Krebs]) Let 𝐿 ⊆ Σ∗ be a
language of ℒDetAPA, and let # /∈ Σ. Then 𝐿 ⋅ {#𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} is in ℒDetAPA
and effectively constructible from the given 𝐷𝑒𝑡𝐴𝑃𝐴, as a pointed concatenation
(Proposition 24). Its language is finite iff it is regular iff 𝐿 is empty.

Remark. None of these results allow us to conclude that ℒDetAPA and ℒAPA are dif-
ferent, though we conjecture they are. One argument supporting this conjecture is the
fact that DetAPA do not need their automaton: we can

..

See Prop. 38, p. 62 in
Discussion for a proof; see
also Paper IV, Cor. 103 for

the separation of the classes
under the hypothesis that

P ≠ NP

.

Note encode the transition function
of an automaton within the affine functions, showing that any language of ℒDetAPA can
be expressed using a two-state DetAPA.

3 Parikh automata on letters

The PA on letters requires that the “weight” of a transition depends only on the input
letter from Σ triggering the transition. In a way similar to the CA characterization of
PA, we characterize PA on letters solely in terms of automata over Σ and semilinear
sets. We further give expressiveness and closure properties of the classes of languages
that arise.

▶ Definition 1 (Parikh automaton on letters). A Parikh automaton on letters (LPA)
is a PA (𝐴, 𝐶) where whenever (𝑎, 𝐯1) and (𝑎, 𝐯2) are labels of some transitions in 𝐴,
then 𝐯1 = 𝐯2. We write ℒLPA (resp. ℒDetLPA) for the class of languages recognized
by LPA (resp. LPA which are DetPA).

First, we prove that ℒLPA and ℒDetLPA coincide:

▶ Theorem 32. ℒLPA = ℒDetLPA.

56

3. Parikh automata on letters

Proof. Let (𝐴, 𝐶) be a LPA.Without loss of generality, we can consider 𝐴 = (𝑄, Σ×
𝐷, 𝛿, 𝑞0, 𝐹) to be deterministic (this does not imply that the PA is deterministic).
Now let 𝑡, 𝑡 ∈ 𝛿 with 𝑡 = 𝑝 .. (𝑎, 𝐯1). 𝑞 and 𝑡 = 𝑝 .. (𝑎, 𝐯2). 𝑞 . The fact that (𝐴, 𝐶)
is a LPA implies that 𝐯1 = 𝐯2, and 𝐴 being deterministic, this implies that 𝑞 = 𝑞 ,
and in turn that 𝑡 = 𝑡 . Thus (𝐴, 𝐶) is a DetPA.

For 𝐿 ⊆ Σ∗ and 𝐶 ⊆ ℕ|Σ|, recall that 𝐿↾𝐶 = {𝑤 ∈ 𝐿 | 𝖯𝗄𝗁(𝑤) ∈ 𝐶}. Then:

▶ Proposition 33. Let 𝐿 ⊆ Σ∗ be a language. The following are equivalent:
(i) 𝐿 ∈ ℒLPA;
(ii) There exist a regular language 𝑅 ⊆ Σ∗ and a semilinear set 𝐶 ⊆ ℕ|Σ| such that

𝑅↾𝐶 = 𝐿.

Proof. (i) → (ii) Let (𝐴, 𝐶) be a LPA which is a DetPA over {𝑎1, … , 𝑎𝑛}. For
1 ≤ 𝑖 ≤ 𝑛, let 𝐯𝑖 be the only vector appearing as the label (𝑎𝑖, 𝐯𝑖) of a transition in
𝐴. Define 𝐶 ⊆ ℕ𝑛 by (𝑥1, … , 𝑥𝑛) ∈ 𝐶 ⇔ ∑𝑖 𝑥𝑖 × 𝐯𝑖 ∈ 𝐶 . Then let 𝑤 ∈ Σ∗ and 𝜔
be the word which can be read from the initial state of 𝐴 with Ψ(𝜔) = 𝑤. We have
that ∑𝑖 𝖯𝗄𝗁(𝑤)𝑖 × 𝐯𝑖 = Φ(𝜔), and thus 𝑤 ∈ 𝐿(𝐴, 𝐶) iff 𝑤 ∈ Ψ(𝐿(𝐴))↾𝐶 .

(ii) → (i) Let 𝑅 ⊆ {𝑎1, … , 𝑎𝑛}∗ be a regular language and 𝐶 ⊆ ℕ𝑛 be a semi-
linear set. Let 𝐴 be an automaton for 𝑅, and change each transition label 𝑎𝑖 in 𝐴
by (𝑎𝑖, 𝐞𝑖). Now for 𝜔 ∈ 𝐿(𝐴), Φ(𝜔) = 𝖯𝗄𝗁(Ψ(𝜔)) and thus (𝐴, 𝐶) is a LPA with
language 𝑅↾𝐶 .

The following property will be our central tool for showing nonclosure results:

▶ Lemma 34. Let 𝐿 ∈ ℒLPA. For any regular language 𝐸:

𝐿 ∩ 𝐸 is not regular ⇒ (∃𝑤 ∈ 𝐸)[𝑐(𝑤) ∩ 𝐿 = ∅] .

Proof. Let 𝑅 ⊆ Σ∗ be a regular language and 𝐶 ⊆ ℕ|Σ| be a semilinear set. Define
𝐿 = 𝑅↾𝐶 . Let 𝐸 be a regular language such that 𝐿∩𝐸 is not regular. As 𝐿 ⊆ 𝑅, we
have (𝐿 ∩ 𝐸) ⊆ (𝑅 ∩ 𝐸). The left hand side being non regular, those two sets differ.
Thus, let 𝑤 ∈ (𝑅 ∩ 𝐸) such that 𝑤 /∈ 𝐿 ∩ 𝐸, we have 𝑤 /∈ 𝐿. Hence, 𝑤 ∈ (𝑅 ⧵ 𝐿),
which implies that 𝖯𝗄𝗁(𝑤) /∈ 𝐶 , and in turn, 𝑐(𝑤) ∩ 𝐿 = ∅.

▶ Proposition 35. (1) ℒLPA is not closed under union, complement, concatenation,
nonerasing morphisms, and starring; (2) ℒLPA is closed under intersection, commu-
tative closure, and inverse morphisms.

57

Paper I – Affine Parikh Automata

Proof. (1) Let 𝐿 = {𝑎𝑚𝑏𝑛 | 𝑚, 𝑛 ∈ ℕ ∧ 𝑚 ≠ 𝑛} be a language of LPA. (Union.)
Suppose 𝐿 = 𝐿 ∪ 𝑎∗𝑏∗ ∈ ℒLPA. Let 𝐸 be the regular language (𝑎+𝑏+). By the
pumping lemma, 𝐿 ∩ 𝐸 is not regular, thus Lemma 34 states there exists 𝑤 ∈ 𝐸
such that 𝑐(𝑤) ∩ 𝐿 = ∅. But 𝑢 = 𝑏|𝑤|𝑏𝑎|𝑤|𝑎 ∈ 𝑐(𝑤) and 𝑢 ∈ 𝐿 , a contradiction,
thus 𝐿 /∈ ℒLPA. (Complement.) We note that 𝐿 is the complement in {𝑎, 𝑏}∗

of {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ}, which is the language of an LPA. (Concatenation.) Suppose
𝐿2 ∈ ℒLPA. Again, as 𝐿2 ∩ 𝐸2 is not regular, Lemma 34 asserts that there exists
𝑤 ∈ 𝐸2 such that 𝑐(𝑤) ∩ 𝐿2 = ∅. But 𝑎|𝑤|𝑎𝑏0𝑎0𝑏|𝑤|𝑏 ∈ 𝑐(𝑤) ∩ 𝐿2, a contradiction,
thus 𝐿2 /∈ ℒLPA. (Nonerasing morphism.) We note that 𝐿2 is the image of the LPA
language {𝑎𝑚

1 𝑏𝑛
1𝑎𝑟

2𝑏𝑠
2 | 𝑚 ≠ 𝑛∧𝑟 ≠ 𝑠} by the nonerasingmorphismℎ(𝑎𝑖) = 𝑎, ℎ(𝑏𝑖) =

𝑏, 𝑖 ∈ {1, 2}. Also, by the very definition of constrained automata (Definition 12),
each language of ℒPA is the image by a nonerasing morphism of a language of
ℒLPA, but the two classes are different. (Starring.) The proof of the nonclosure
under starring of ℒPA (Proposition 18) shows that the starring of {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} is
not in ℒPA, thus not in ℒLPA.

(2) Let 𝑅, 𝑅 ⊆ Σ∗ be two regular languages and let 𝐶, 𝐶 ⊆ ℕ|Σ| be two
semilinear sets. (Intersection.) Note that (𝑅 ↾𝐶) ∩ (𝑅 ↾𝐶) = (𝑅 ∩ 𝑅) ↾𝐶∩𝐶 ,
the latter being a language of ℒLPA. (Commutative closure.) Likewise, note that
𝑐(𝑅↾𝐶) = Σ∗ ↾𝐶∩𝖯𝗄𝗁(𝑅), which is in ℒLPA since 𝖯𝗄𝗁(𝑅) is effectively semilinear by
Parikh’s theorem. (Inverse morphism.) Let ℎ∶ {𝑎1, … , 𝑎𝑛}∗ → Σ∗ be a morphism,
and let 𝐶ℎ = {𝐱 ∈ ℕ𝑛 | ∑𝑖 𝑥𝑖 × 𝖯𝗄𝗁(ℎ(𝑎𝑖)) ∈ 𝐶}. Then we claim that ℎ−1(𝑅↾𝐶) =
(ℎ−1(𝑅))↾𝐶ℎ , which concludes the proof as ℎ−1(𝑅) is regular and 𝐶ℎ is semilinear.
Indeed, let 𝑤 ∈ ℎ−1(𝑅 ↾𝐶), then 𝑤 ∈ ℎ−1(𝑅) and 𝖯𝗄𝗁(ℎ(𝑤)) ∈ 𝐶 , the latter
implying that ∑𝑖 |𝑤|𝑎𝑖 × 𝖯𝗄𝗁(ℎ(𝑎𝑖)) ∈ 𝐶 , and thus, 𝖯𝗄𝗁(𝑤) ∈ 𝐶ℎ; in particular, if
a letter 𝑎 is such that ℎ(𝑎) = 𝜀, it is discarded when looking at the Parikh image of
ℎ(𝑤). Conversely, if 𝑤 ∈ ℎ−1(𝑅)↾𝐶ℎ then ℎ(𝑤) ∈ 𝑅 and 𝖯𝗄𝗁(ℎ(𝑤)) = ∑𝑖 |𝑤|𝑎𝑖 ×
𝖯𝗄𝗁(ℎ(𝑎𝑖)) ∈ 𝐶 , thus ℎ(𝑤) ∈ 𝑅↾𝐶 , implying that 𝑤 ∈ ℎ−1(𝑅↾𝐶).

4 Conclusion

Figures 1 and 2 in our introductory section summarize the current state of knowledge
concerning the PA and its variants studied here.

An intriguing question is whether there are context-free or context-sensitive lan-
guages outside ℒAPA. How difficult is that question? How about ℒDetAPA? We have

58

4. Conclusion

been unable to locate the latter class meaningfully. In particular, can ℒDetAPA be sep-
arated from ℒAPA?

Several questions thus remain open concerning the poorly understood (and possibly
overly powerful) APA model. But surely we expect testing a LPA or a DetPA for
regularity to be decidable. How can regularity be tested for these models? One avenue
for future research towards this goal might be characterizing ℒDetPA along the lines of
algebraic automata theory.

Acknowledgments

The first author thanks L. Beaudou, M. Kaplan, and A. Lemaître for stimulating discus-
sions and comments on early versions of this paper. We further thank the anonymous
referees for their critical comments and especially for pointing out a flawed claimmade
in an earlier version of this work concerning DetAPA.

59

Discussion

In this paper, we proposed several models of computation and argued for their rele-
vance. Among these, we started by giving a fresh view of the PA model using CA,
which provide a clean and simple mathematical framework for the proofs appearing
in this paper and the forthcoming ones. We note however that it is useful to have the
two formalisms at hand, as in the proof of Proposition 15. We investigated the main
open questions about PA using CA, and this is a study we continued throughout the
different papers of this thesis.

Themain original contribution of this article is the study of two novel models: LPA
and APA. While LPA suffer from poor expressiveness and closure properties, APA
appear to be an interesting model which, in addition to offering good properties, seem
to require new techniques and approaches in order to solve the related open problems.
One of the major problems left open in this article is the separation of DetAPA and
APA, which we investigate in Paper IV.

We note that the closure under quotient has not been attacked in this paper. It is
shown in [KR03] that ℒPA is closed under quotient. The class ℒDetPA is shown to
enjoy the same in Paper III, p. 101. The classes of affine Parikh automata are shown
to lack closure under quotient in Paper IV, Corollary 100. For completeness, we show
that the class ℒLPA is not closed under quotient:

▶ Proposition 36. ℒLPA is not closed under quotient.

Proof. Recall the language 𝐿 ∈ ℒLPA of the proof of Proposition 35, that is: 𝐿 =
{𝑎𝑚𝑏𝑛 | 𝑚, 𝑛 ∈ ℕ ∧ 𝑚 ≠ 𝑛}. It is shown therein that 𝐿 = 𝐿 ∪ 𝑎∗𝑏∗ /∈ ℒLPA.
However, the languages 𝐿1 = 𝑥 ⋅ 𝐿 ∪ 𝑦 ⋅ 𝑎∗𝑏∗ and 𝐿2 = 𝐿 ⋅ 𝑥 ∪ 𝑎∗𝑏∗ ⋅ 𝑦, where 𝑥, 𝑦

Paper I – Affine Parikh Automata

are two new symbols, are in ℒLPA. But 𝐿 = {𝑥, 𝑦}−1𝐿1 = 𝐿2{𝑥, 𝑦}−1, which is
not in ℒLPA.

Similarly, closure under reversal was not thoroughly studied. The DetAPA case is
covered in Paper IV, Corollary 96, while the APA case is tackled in the Discussion of
Paper IV, Proposition 107. We present the closure of the other models at hand:

▶ Proposition 37. ℒDetPA is not closed under reversal. ℒLPA and ℒPA are closed
under reversal.

Proof. (DetPA) We showed in Proposition 10 that EQUAL is not in ℒDetPA. How-
ever, the language {𝑎𝑛#𝑎𝑛 | 𝑛 ∈ ℕ}⋅{𝑎, 𝑏}∗ which is the reversal of EQUAL is easily
seen to be in ℒDetPA.

(LPA) Given a regular language 𝑅 and a semilinear set 𝐶 , we have that the
language (𝑅↾𝐶)R is 𝑅R↾𝐶 , and 𝑅R is a regular language, concluding the proof.

(PA) Let (𝐴, 𝐶) be a PA. Suppose that 𝐴 has only one final state 𝑞f. Let 𝐵 be
the automaton 𝐴 where every transition is reversed (i.e., 𝑞 .. (𝑎, 𝐯). 𝑞 is a transition
of 𝐴 iff 𝑞 .. (𝑎, 𝐯). 𝑞 is a transition of 𝐵), the initial state of 𝐵 is 𝑞f and the only
accepting state of 𝐵 is the initial state of 𝐴. Let 𝜋 be an accepting path in 𝐴 and 𝜋
the accepting path in 𝐵 obtained from 𝜋R by reversing each transition. Then clearly
Ψ(𝜋) = (Ψ(𝜋))R and Φ(𝜋) = Φ(𝜋). As 𝖱𝗎𝗇(𝐵) is the set of paths obtained from
𝖱𝗎𝗇(𝐴) in this fashion, 𝐿(𝐴, 𝐶) = 𝐿(𝐵, 𝐶)R. Now if 𝐴 has 𝑓 > 1 final state, 𝐿(𝐴, 𝐶)
can be seen as ⋃𝑓

𝑖=1 𝐿(𝐴𝑖, 𝐶) where 𝐴𝑖 in the automaton 𝐴 where the 𝑖-th final state
of 𝐴 is the only one to be set final. We can then rely on the 𝑓 = 1 case.

Also, we provide a proof of the remark made on page 56.

▶ Proposition 38. Let Σ be an alphabet. There exists a two-state automaton 𝐴Σ such
that for any 𝕂-DetAPA over Σ, there exists a 𝕂-DetAPA accepting the same language
whose underlying automaton is 𝐴Σ.

Proof. Let (𝐴, 𝑈, 𝐶) be a 𝕂-DetAPA of dimension 𝑑 with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹),
𝑄 = {1, … , 𝑘}, and Σ = {𝑎1, … , 𝑎𝑚}. Let 𝑁 = 𝑘(𝑑 + 1), we show that there exist
𝑓𝑎1 , … , 𝑓𝑎𝑚 ∈ ℱ 𝕂

𝑁 , a 𝕂-definable set 𝐺 ⊆ 𝕂𝑁 , and 𝐬 ∈ 𝕂𝑁 such that:

𝑤 = ℓ1 ⋯ ℓ|𝑤| ∈ 𝐿(𝐴, 𝑈, 𝐶) ⇔ 𝑓ℓ|𝑤| ∘ ⋯ ∘ 𝑓ℓ1 (𝐬) ∈ 𝐺 . (3)

Our goal is to represent the state in which the 𝕂-DetAPA is with a vector of size
𝑁 . This vector is composed of 𝑘 smaller vectors of size (𝑑+1). On taking a path 𝜋 in

62

Discussion

𝐴, let 𝑞 = 𝖳𝗈(𝜋) and 𝐯 = (𝑈(𝜋))(0𝑑); then 𝑞 and 𝐯 describe the current configuration
of the 𝕂-DetAPA. Thus we define, for any 𝑞 ∈ 𝑄 and 𝐯 ∈ 𝕂𝑑 :

𝖵𝖾𝖼(𝑞, 𝐯) = (0𝑑+1 ⋯ 0𝑑+1 1 𝐯
𝑞-th subvector

0𝑑+1 ⋯ 0𝑑+1) .

Now, for 𝑡 ∈ 𝛿, let 𝑀𝑡 and 𝐛𝑡 be such that 𝑈(𝑡) = (𝑀𝑡, 𝐛𝑡). For the purpose
of describing the matrix 𝑈𝑎 below, when 𝑡 /∈ 𝛿 we let 𝑀𝑡 stand for the all-zero
matrix of dimension 𝑑 × 𝑑 and 𝐛𝑡 be the all-zero vector of dimension 𝑑. Let 𝜒 be
the characteristic function of 𝛿. For 𝑎 ∈ Σ, define:

𝑈𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜒((1, 𝑎, 1)) 0 ⋯ 0 ⋯ 𝜒((𝑘, 𝑎, 1)) 0 ⋯ 0

𝐛(1,𝑎,1) 𝑀(1,𝑎,1) ⋯ 𝐛(𝑘,𝑎,1) 𝑀(𝑘,𝑎,1)

⋮ ⋮ ⋱ ⋮ ⋮
𝜒((1, 𝑎, 𝑘)) 0 ⋯ 0 ⋯ 𝜒((𝑘, 𝑎, 𝑘)) 0 ⋯ 0

𝐛(1,𝑎,𝑘) 𝑀(1,𝑎,𝑘) ⋯ 𝐛(𝑘,𝑎,𝑘) 𝑀(𝑘,𝑎,𝑘)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For 𝑝 .. 𝑎. 𝑞 ∈ 𝛿 and 𝐯 ∈ 𝕂𝑑 , we have that 𝑈𝑎.𝖵𝖾𝖼(𝑝, 𝐯) = 𝖵𝖾𝖼(𝑞, 𝑀𝑝 .. 𝑎. 𝑞 .𝐯 +
𝐛𝑝 .. 𝑎. 𝑞). In other words, 𝑈𝑎 computes the transition function and, according to the
current state, applies the right affine function. More generally, for a path 𝜋 in 𝐴
starting at 𝑞0 and labeled by 𝑤 = ℓ1 ⋯ ℓ|𝑤|, we have 𝑈ℓ|𝑤| ⋯ 𝑈ℓ1 .𝖵𝖾𝖼(𝑞0, 0𝑑) =
𝖵𝖾𝖼(𝖳𝗈(𝜋), (𝑈(𝜋))(0𝑑)), where 0𝑑 is the all-zero vector of dimension 𝑑. We then let
𝐺 be the 𝕂-definable set which contains 𝖵𝖾𝖼(𝑞, 𝐯) iff 𝑞 is final and 𝐯 ∈ 𝐶: 𝐺 =
⋃𝑖∈𝐹 ⋃𝐯∈𝐶 𝖵𝖾𝖼(𝑖, 𝐯).

Now let 𝑓𝑎𝑖 ∈ ℱ 𝕂
𝑁 be defined as (𝑈𝑎𝑖 , 0𝑁) and let 𝐬 = 𝖵𝖾𝖼(𝑞0, 0𝑑). Then we

have precisely Equation (3). Now let 𝐴 = (𝑄 , Σ, 𝛿 , 𝑞0, 𝐹) with 𝑄 = 𝐹 =
{𝑟, 𝑝}, 𝛿 = {𝑟, 𝑝} × Σ × {𝑝}, and, 𝑞0 = 𝑟. Define 𝑈 ∶ 𝛿 ∗ → ℱ 𝕂

𝑁 by:

𝑈𝑞 .. 𝑎𝑖. 𝑞 (𝐱) =
⎧⎪
⎨
⎪⎩

𝑈𝑎𝑖 (𝖵𝖾𝖼(𝑞0, 0𝑑)) if 𝑞 = 𝑟 ∧ 𝑞 = 𝑝,

𝑈𝑎𝑖 .𝐱 otherwise, i.e., if 𝑞 = 𝑞 = 𝑝.

Finally, a special case should be added for the empty word: we let 𝐶 = 𝐺 if
𝜀 /∈ 𝐿(𝐴, 𝑈, 𝐶) and 𝐶 = 𝐺 ∪ {0𝑁 } otherwise. We have that (𝐴 , 𝑈 , 𝐶) is a

63

Paper I – Affine Parikh Automata

𝕂-DetAPAwhere 𝐴 has only two states, and it is of the same language as (𝐴, 𝑈, 𝐶).
Finally, note that we need two states, and not one, because 𝕂-APA use 𝟎 as the
starting value for their registers but 𝐬 is needed here.

64

...

Paper II

Bounded Parikh Automata
MICHAËL CADILHAC1, ALAIN FINKEL2, AND PIERRE MCKENZIE1

Will appear in International Journal of Foundations of Computer Science
Extended version of Bounded Parikh Automata. In: Ambrož, P., Holub, Š.,

Masáková, Z. (eds.) Proceedings 8th International Conference Words 2011 (WORDS
2011). Electronic Proceedings in Theoretical Computer Science, vol. 63, pp. 93–102

1: DIRO, Université de Montréal. The third author is supported by the Natural Sciences and Engineering
Research Council of Canada.
2: LSV, ENSCachan, CNRS, France. Ce travail a bénéficié d’une aide de l’AgenceNationale de la Recherche
portant la référence “REACHARD-ANR-11-BS02-001”.

Presentation

Bounded lang., BSL: see p. 8Given that a language is BSL, it is easy to construct a CA (or a PA) for it. Moreover,
it is not hard to show that any bounded language recognized by a CA is a language in
BSL, hence the bounded languages of ℒCA are those in BSL. The question thus arises:
what are the bounded languages of ℒDetCA? Does nondeterminism help in the context
of bounded languages? In this paper, we answer this latter question in the negative.

ℳ(𝑈): see p. 2The present results arose partly from the study of the finite-monoid APA, that is,
APA (𝐴, 𝑈, 𝐶) where ℳ(𝑈) is finite. An essential intermediate result of this pa-
per, in Section 4.1, states that a class provably larger than DetCA (see Paper III)
which includes BSL can be expressed using finite-monoid DetAPA. In Section 4.2,
we then show that the bounded languages of finite-monoid DetAPA can be expressed
as DetCA’s.

Previous results in this vein are related to (one-way) DetRBCM, a model provably
stronger than DetCA (see Paper I, Section 3.4). First, Ibarra and Su in 1999 [IS99,
Theorem 3.5] showed that the bounded languages of RBCM (i.e., those of CA) are
recognizable by DetRBCMwhen the words of the socle are of length one. Second, the
fact that two-way DetRBCM are equivalent to RBCM over bounded languages can be
found in [DIB+00, Theorem 3] without proof and in [LK05] with an extremely terse
proof. In 2011, while the conference version of this paper was in print, Ibarra and
Seki [IS11] announced at the Automata and Formal Languages Conference a simi-
lar result, i.e., that one-way DetRBCM and RBCM recognize the same bounded lan-
guages. Their proof relies on techniques of combinatorics on words, while our proof
is automata-driven.

Personal contribution. I proposed the results of this paper, together with their proofs.
Finkel and McKenzie helped in factorizing and refining the proofs. McKenzie isolated

Paper II – Bounded Parikh Automata

the key concept of constraint-determinism, which became a prominent feature of the
structure of the paper. The final shape of the paper came as a joint work of the authors.

68

Bounded Parikh Automata

Abstract

The Parikh finite word automaton model (PA) was introduced and studied by Klaedtke
and Rueß. Here, we present some expressiveness properties of a restriction of the
deterministic affine PA recently introduced, and use them as a tool to show that the
bounded languages recognized by PA are the same as those recognized by deterministic
PA.Moreover, this class of languages is shown equal to the class of bounded languages
with a semilinear iteration set.

Introduction

Motivation. Adding features to finite automata in order to capture situations beyond
regularity has been fruitful tomany areas of research. Such features includemaking the
state sets infinite, adding power to the logical characterizations, having the automata
operate on infinite domains rather than finite alphabets, adding stack-like mechanisms,
etc. (See, e.g., [Fis65, Boj09, KF94, AM09].) Model-checking and complexity theory
below NC2 are areas that have benefited from an approach of this type (e.g., [KS89,
Str94]). In such areas, determinism plays a key role and is usually synonymous with
a clear understanding of the situation at hand, yet often comes at the expense of other
properties, such as expressiveness. Thus, cases where determinism can be achieved
without sacrificing other properties are of particular interest.

Context. Klaedtke and Rueß introduced the Parikh automaton (PA) as an extension
of the finite automaton [KR03]. A PA is a pair (𝐴, 𝐶) where 𝐶 is a semilinear subset of
ℕ𝑑 and 𝐴 is a finite automaton over (Σ×𝐷) for Σ a finite alphabet and 𝐷 a finite subset
of ℕ𝑑 . The PA accepts the word 𝑤1 ⋯ 𝑤𝑛 ∈ Σ∗ if 𝐴 accepts a word (𝑤1, 𝐯1) ⋯ (𝑤𝑛, 𝐯𝑛)

Paper II – Bounded Parikh Automata

such that ∑ 𝐯𝑖 ∈ 𝐶 . Klaedtke and Rueß used the PA to characterize an extension of
(existential) monadic second-order logic in which the cardinality of sets expressed by
second-order variables is available. To use PA as symbolic representations for model-
checking, the closure under the Boolean operations is needed; unfortunately, PA are
not closed under complement. Moreover, although they allow for great expressiveness,
they are not determinizable.

Bounded languages and semilinearity. Bounded languages were defined by Gins-
burg and Spanier in 1964 [GS64] and intensively studied in the sixties. Recently, they
played a role in the theory of acceleration in regular model-checking [FIS03, BH99].
A language 𝐿 ⊆ Σ∗ is bounded if there exist words 𝑤1, 𝑤2, … , 𝑤𝑛 ∈ Σ∗ such that
𝐿 ⊆ 𝑤∗

1𝑤∗
2 ⋯ 𝑤∗

𝑛. Bounded context-free languages received much attention thanks
to their better decidability properties than those of context-free languages [Gin66]
(e.g., inclusion between two context-free languages is decidable if one of them is
bounded, while it is undecidable in the general case). Moreover, given a context-free
language it is possible to decide whether it is bounded [GS64]. Connecting semilin-
earity and boundedness, the class BSL of bounded languages 𝐿 ⊆ 𝑤∗

1 ⋯ 𝑤∗
𝑛, for which

{(𝑖1, … , 𝑖𝑛) | 𝑤𝑖1
1 ⋯ 𝑤𝑖𝑛

𝑛 ∈ 𝐿} is a semilinear set, was also investigated (e.g., [GS64,
Gin66, CMMP10, DV08]). The class BSL was also very recently characterized4 by
means of one-way deterministic reversal-bounded multi-counter machines [IS11].

Our contribution. We study PA whose languages are bounded. Our main result is
that bounded PA languages are also accepted by deterministic PA, and that bounded
PA languages characterize BSL. We obtain as a consequence that BSL is captured
by another model studied in the literature, the 1-CQDD [BH99]. We thus provide
characterizations of BSL involving a one-way model (the deterministic PA) that is
mildly (but provably) weaker than the one-way deterministic reversal-bounded multi-
counter machine used in [IS11]. As a tool of independent interest, our argument uses
two related models introduced in Paper I: the constrained automaton (CA), which is
equivalent to the PA, and the affine Parikh automaton (APA), which we subject to the
restriction that the matrix semigroup generated by the set of all defining APA matrices
is finite (see Definition 5).

This paper is organized as follows. Section 2 defines the PA, the equivalent CA,
and 1-CQDD. Section 3 shows that the class of bounded languages recognized by PA is

4The proceedings of the WORDS 2011 conference, in which we lay claim to possibly providing the
first characterization of BSL in terms of one-way deterministic automata, was already in print when this
characterization was announced by the authors of [IS11] at the Automata and Formal Languages Conference
held in Debrecen, Hungary, August 17–22, 2011.

70

1. Preliminaries

BSL. Section 4 presents the main result of this work, namely that nondeterministic and
deterministic PA recognize the same bounded languages. Section 5 concludes with a
short discussion.

1 Preliminaries

Regular bounded languages and branches. Regular bounded Bounded languages: see p. 6languages can be char-
acterized by a subclass of regular expressions. Let Σ be an alphabet. A semilinear5

regular expression (SLRE) [FIS03] is a finite set of branches on alphabet Σ, defined
as expressions of the form 𝑦1𝑥∗

1𝑦2𝑥∗
2 ⋯ 𝑦𝑛𝑥∗

𝑛𝑦𝑛+1, where 𝑥𝑖 ∈ Σ+ and 𝑦𝑖 ∈ Σ∗. The
language of an SLRE is the union of the languages of each of its branches. A regular
language is bounded iff it is expressible as a SLRE [FIS03].

Flat and restricted flat automata. For an 𝜀-automaton 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), several
notions of flatness have been defined in the literature and we wish to specify our usage
of the word here. A cycle in 𝐴 is a path 𝜋 ∈ 𝛿+ such that 𝖥𝗋𝗈𝗆(𝜋) = 𝖳𝗈(𝜋). An
elementary cycle in 𝐴 is a cycle 𝜋 in which the only repeated state is the initial (and
final) state 𝖥𝗋𝗈𝗆(𝜋). Our notion of flatness is the following: the automaton 𝐴 is flat
if no two elementary cycles in 𝐴 share a state. This definition is equivalent to those
in [BFLS05, DFGvD10].

Note that if 𝐴 is flat, then 𝐴 induces a natural directed acyclic graph 𝐷𝐴 on the
vertex set {[𝑞] ∶ 𝑞 ∈ 𝑄}, where [𝑞] is the set {𝑞} together with all the states reachable
from 𝑞 along an elementary cycle: there is an arc between [𝑞] and [𝑞], with [𝑞] ≠
[𝑞], iff there are 𝑝 ∈ [𝑞] and 𝑝 ∈ [𝑞] such that there is a transition between 𝑝
and 𝑝 in 𝐴. We introduce a (proper) subclass of flat automata: an 𝜀-automaton 𝐴 =
(𝑄, Σ, 𝛿, 𝑞0, {𝑞𝑓 }) is rflat (for restricted flat) if 𝐴 is flat and 𝐷𝐴 is a straight line from
[𝑞0] to [𝑞𝑓].

The following properties are easy to see:
(i) No nested cycles occur in a flat automaton;
(ii) If 𝐴 is flat then 𝖱𝗎𝗇(𝐴) is a regular bounded language on 𝛿 (hence SLRE);
(iii) Any regular bounded language on 𝛿 (hence SLRE) is 𝖱𝗎𝗇(𝐴) for some flat 𝐴;
(iv) If 𝐴 is rflat then 𝖱𝗎𝗇(𝐴) is expressible as a branch on 𝛿;
(v) Any language of a branch on 𝛿 is 𝖱𝗎𝗇(𝐴) for some rflat 𝐴;
(vi) 𝐴 is rflat iff it is restricted simple in the sense of [BH99].

5The usage of semilinear here is not directly related to its usage in semilinear set.

71

Paper II – Bounded Parikh Automata

Rational transduction. Let Σ and Τ be two alphabets. Let 𝐴 be an automaton over the
alphabet (Σ∪{𝜀})×(Τ∪{𝜀}), where the concatenation is defined by (𝑢1, 𝑣1).(𝑢2, 𝑣2) =
(𝑢1𝑢2, 𝑣1𝑣2). Then 𝐴 defines the rational transduction 𝜏𝐴 from languages 𝐿 on Σ to
languages on Τ given by 𝜏𝐴(𝐿) = {𝑣 ∈ Τ∗ | (∃𝑢 ∈ 𝐿)[(𝑢, 𝑣) ∈ 𝐿(𝐴)]}. Closure under
rational transduction for a class 𝒞 is the property that for any language 𝐿 ∈ 𝒞 and
any automaton 𝐴, 𝜏𝐴(𝐿) ∈ 𝒞 . We say that 𝜏𝐴 is a deterministic rational transduction
if 𝐴 is deterministic with respect to the first component of its labels, i.e., if 𝑝 .. (𝑎, 𝑏). 𝑞
and 𝑝 .. (𝑎, 𝑏). 𝑞 are transitions of 𝐴, then 𝑏 = 𝑏 and 𝑞 = 𝑞 .

2 Parikh automata and constrained automata

▶ Definition 2 (Flat constrained and Parikh automata).PA, CA: see pp. 11, 14 A CA (resp. PA) (𝐴, 𝐶) is
said to be rflat if 𝐴 is rflat.

▶ Theorem 39. (i) PA and CA define the same class of languages (see Paper I);
(ii) DetPA and DetCA define the same class of languages (see Paper I);
(iii) 𝜀-CA and CA (and thus PA) define the same class of languages;
(iv) Rflat DetPA and rflat DetCA define the same class of languages.

Proof. Parts (i) and (ii) are proved in Paper I. Part (iii) follows from (i) and the
closure of the class of PA languages under erasing morphisms [KR03]. To prove
part (iv), we argue that the proof of (i) and (ii) appearing in Paper I applies verbatim.

In one direction, let (𝐴, 𝐶) be a DetPAwhere 𝐴 is rflat. Define 𝐵 as the automaton
𝐴 in which the vector-part of the labels is dropped: a transition 𝑝 .. (𝑎, 𝐯). 𝑞 in 𝐴
appears as 𝑝 .. 𝑎. 𝑞 in 𝐵 and write ℎ∶ 𝛿𝐴 → 𝛿𝐵 this correspondence. Note that ℎ
is a 1-1 correspondence between the transitions of 𝐴 and 𝐵 thanks to the rflatness
of 𝐴: indeed, for two transitions 𝑡1, 𝑡2 in 𝐴 to get merged by ℎ, they should be of
the form 𝑡1 = 𝑝 .. (𝑎, 𝐯1). 𝑞 and 𝑡2 = 𝑝 .. (𝑎, 𝐯2). 𝑞. Suppose that 𝑡1 ≠ 𝑡2, hence
𝐯1 ≠ 𝐯2, and this would render 𝐴 non rflat; we deduce that ℎ is injective and it is
surjective by construction, hence ℎ is a bijection. This 1-1 correspondence shows in
particular that 𝐵 is rflat, as 𝐺𝐴 and 𝐺𝐵 are the same. Moreover (𝐴, 𝐶) is a DetPA,
thus it describes a deterministic automaton with respect to the first component of the
labels of 𝐴, hence 𝐵 is deterministic. With {𝑡1, … , 𝑡𝑛} the set of transitions of 𝐵,
define 𝐷 as the following semilinear set:

(𝑥1, … , 𝑥𝑛) ∈ 𝐷 ⇔
𝑛

𝑖=1
𝑥𝑖 × Φ(𝜇𝐴(ℎ−1(𝑡𝑖))) ∈ 𝐶.

72

3. Bounded Parikh automata

Then (𝐵, 𝐷) is a rflat DetCA with language 𝐿(𝐴, 𝐶).

In the other direction, let (𝐴, 𝐶) be a DetCA where 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) is rflat.
Write 𝛿 = {𝑡1, … , 𝑡𝑛}. Define 𝐵 as the automaton with state set 𝑄 and with a
transition 𝑞 .. (𝑎, 𝖯𝗄𝗁(𝑡𝑖)). 𝑞 for each transition 𝑡𝑖 = 𝑞 .. 𝑎. 𝑞 of 𝐴. Then 𝐵 is rflat,
as it has the same graph as 𝐴, and (𝐵, 𝐶) is a DetPA, as 𝐵 is deterministic with
respect to the first component of its labels. Finally, the language of 𝐵 is:

𝐿(𝐵) = {𝜔 | (∃𝜋 ∈ 𝖱𝗎𝗇(𝐴))[Ψ(𝜔) = 𝜇𝐴(𝜋) ∧ Φ(𝜔) = 𝖯𝗄𝗁(𝜋)]},

hence 𝐿(𝐵, 𝐶) = 𝐿(𝐴, 𝐶).

We note that a related model has been defined and used in the context of model-
checking:

▶ Definition 3 ([BH99]). A 1-CQDD (for constrained queue-content decision dia-
gram) is a finite set of rflat DetCA. Its language is the union of the languages of each
DetCA. We write ℒ1-CQDD for the class of languages recognized by 1-CQDD.

3 Bounded Parikh automata

Let ℒBoundedPA be the set ℒPA ∩ BOUNDED of bounded PA languages, and similarly
let ℒBoundedDetPA be ℒDetPA ∩ BOUNDED.

Theorem 41 below characterizes ℒBoundedPA as the class BSL of bounded semi-
linear languages.6 In one direction of the proof, given 𝐿 ∈ BSL, an 𝜀-CA for 𝐿 is
constructed. We describe this simple construction here:

Construction 40 (Canonical 𝜀-CA for 𝑤1, … , 𝑤𝑛 subject to 𝐶 ⊆ ℕ𝑛). Let
𝑤1, … , 𝑤𝑛 ∈ Σ+ be given words and 𝐶 ⊆ ℕ𝑛 be a semilinear set. We describe a PA
for the language {𝑤𝑖1

1 𝑤𝑖2
2 ⋯ 𝑤𝑖𝑛

𝑛 | (𝑖1, … , 𝑖𝑛) ∈ 𝐶}. Informally, the automaton 𝐴 will
consist of 𝑛 elementary cycles labeled 𝑤1, … , 𝑤𝑛 which do not share any state, and
traversed at their origins by a single 𝜀-labeled path from 𝑘1 leading to a unique final
state 𝑘𝑛. Then the semilinear constraint 𝐸 will be defined to monitor (#𝑡1, … , #𝑡𝑛) in
accordance with 𝐶 , where 𝑡𝑖 is the first transition of the cycle for 𝑤𝑖 and #𝑡𝑖 is the
number of occurrences of 𝑡𝑖 in a run of 𝐴. Graphically:

6This result can be deduced from the recent result of Ibarra and Seki [IS11]. However, we need its
forthcoming proof to provide some corollaries.

73

Paper II – Bounded Parikh Automata

..𝑘1...

𝑤1

.

𝑡1

. 𝑘2..

𝑤2

.

𝑡2

. 𝑘𝑛..

𝑤𝑛

.

𝑡𝑛

.

(#

.

#

.

#

.

,

.

,

.

… ,

.

) ∈ 𝐶

. 𝜀. 𝜀

Formally, let 𝑘𝑗 = ∑1≤𝑖<𝑗 |𝑤𝑖|, 1 ≤ 𝑗 ≤ 𝑛 + 1, with, in particular, 𝑘1 = 0, and set
𝑄 = {0, 1, … , 𝑘𝑛+1 − 1}. Then 𝐴 is the 𝜀-automaton (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where 𝑞0 = 𝑘1,
𝐹 = {𝑘𝑛} and for any 1 ≤ 𝑖 < 𝑛, there is a transition 𝑘𝑖 .. 𝜀. 𝑘𝑖+1 and for any 1 ≤
𝑖 ≤ 𝑛 an elementary cycle 𝑡𝑖𝜌𝑖 labeled 𝑤𝑖 through the states 𝑘𝑖, 𝑘𝑖 + 1, … , 𝑘𝑖+1 − 1, 𝑘𝑖,
where 𝑡𝑖 is a transition and 𝜌𝑖 a path. Then 𝐸 ⊆ ℕ|𝛿| is the semilinear set defined by
(#𝑡1, … , #𝑡2, … , … , #𝑡𝑛, …) ∈ 𝐸 iff (#𝑡1, #𝑡2, … , #𝑡𝑛) ∈ 𝐶 .

▶ Theorem 41. ℒBoundedPA = BSL.

Proof. (ℒBoundedPA ⊆ BSL.) Let 𝐿 ⊆ Σ∗ be a bounded language of ℒPA, and
𝑤1, … , 𝑤𝑛 be a socle of 𝐿. Define 𝐸 = 𝖨𝗍𝖾𝗋(𝑤1,…,𝑤𝑛)(𝐿). Let Τ = {𝑎1, … , 𝑎𝑛} be
a fresh alphabet (Τ ∩ Σ = ∅), and let ℎ∶ Τ∗ → Σ∗ be the morphism defined by
ℎ(𝑎𝑖) = 𝑤𝑖. Then the language 𝐿 = ℎ−1(𝐿) ∩ (𝑎∗

1 ⋯ 𝑎∗
𝑛) is in ℒPA by closure of

ℒPA under inverse morphism and intersection [KR03]. But 𝖯𝗄𝗁(𝐿) = 𝐸, and as
any language of ℒPA has a semilinear Parikh image [KR03], 𝐸 is semilinear. Thus
the iteration set 𝐸 of the bounded language 𝐿 with respect to its socle 𝑤1, … , 𝑤𝑛 is
semilinear, and this is the meaning of 𝐿 belonging to BSL.

(BSL ⊆ ℒBoundedPA.) Let 𝐿 ∈ BSL. Of course 𝐿 ∈ BOUNDED. Let 𝑤1, … , 𝑤𝑛
be a socle of 𝐿 such that 𝐶 = 𝖨𝗍𝖾𝗋(𝑤1,…,𝑤𝑛)(𝐿) is semilinear. We leave out the simple
proof that 𝐿 equals the language of the “canonical 𝜀-CA for 𝑤1, … , 𝑤𝑛 subject to 𝐶”
of Construction 40. Since 𝜀-CA and PA capture the same languages by Theorem 39,
𝐿 ∈ ℒPA.

Theorem 41 and the known closure properties of BOUNDED and ℒPA imply:

▶ Corollary 42. BSL is closed under union, intersection, concatenation, and mor-
phism.

74

3. Bounded Parikh automata

Proof. Let 𝐿1, 𝐿2 ∈ BSL. By Theorem 41, both languages are in ℒPA. Moreover,
both ℒPA and BOUNDED are closed under union, intersection, concatenation, and
morphisms (see, respectively, [KR03] and [Gin66]). This implies that 𝐿1 ∪ 𝐿2,
𝐿1 ∩ 𝐿2, 𝐿1𝐿2, and ℎ(𝐿1) are all bounded languages in ℒPA, and by Theorem 41,
are all in BSL.

We note, in the same vein, that although BSL is not closed under inverse morphism
(e.g., with ℎ the all-erasing morphism on {𝑎, 𝑏}∗, we have ℎ−1({𝜀}) = {𝑎, 𝑏}∗, which
is not bounded) we have:

▶ Corollary 43. BSL is closed under inverse morphisms followed by the intersection
with a language in BSL.

Proof. Let 𝐿1, 𝐿2 ∈ BSL. By Theorem 41, both languages are in ℒPA. Moreover,
ℒPA is closed under intersection and inverse morphism [KR03], and the intersection
of any language with a bounded language is a bounded language [Gin66]. This
implies that ℎ−1(𝐿1) ∩ 𝐿2 is a bounded language in ℒPA, and by Theorem 41, in
BSL.

Moreover, Theorem 41 helps in showing that if the iteration set of a bounded lan-
guage w.r.t. one of its socles is semilinear, then for every socle of the language, the
iteration set of the language w.r.t. that socle is semilinear:

▶ Corollary 44. BSL is the set of bounded languages which have all of their iteration
sets semilinear.

Proof. If a bounded language has all of its iteration sets semilinear, then it is in BSL.
For the reverse inclusion, note that the first half of the proof of Theorem 41 shows
that for any socle of a language in ℒBoundedPA, the iteration set of the language w.r.t.
this socle is semilinear. As ℒBoundedPA = BSL, all the iteration sets of a language
in BSL are semilinear.

Finally, note that the iteration sets of a BSL language are semilinear sets with a
special form, which depends on a socle: they contain all the possible ways to iterate
the words of the socle to obtain a word in the language. Thus defining a bounded
language “using” a semilinear set does not directly show that it is in BSL; e.g., 𝐶 =
{(𝑥, 𝑦) | 𝑥 is even∧ 𝑦 ∈ ℕ} is a semilinear set defining the language 𝑎∗ using the socle
𝑎, 𝑎, and yet 𝖨𝗍𝖾𝗋(𝑎,𝑎)(𝑎∗) ≠ 𝐶 , so 𝐶 is not a semilinear iteration set of 𝑎∗, and we may

75

Paper II – Bounded Parikh Automata

not directly conclude that 𝑎∗ ∈ BSL. However, Theorem 41 provides an easy proof
that if a bounded language is defined “using” a semilinear set, then its iteration sets
w.r.t. any other prescribed socle are computable semilinear sets:

▶ Corollary 45. Let 𝑤1, … , 𝑤𝑛 ∈ Σ∗ and 𝐶 ⊆ ℕ𝑛 be a semilinear set. Then 𝐿 =
{𝑤𝑖1

1 ⋯ 𝑤𝑖𝑛
𝑛 | (𝑖1, … , 𝑖𝑛) ∈ 𝐶} is in BSL. Also, for any given socle 𝑤1, … , 𝑤𝑚 of 𝐿,

the iteration set of 𝐿 w.r.t. 𝑤1, … , 𝑤𝑚 is a semilinear set that we can compute.

Proof. First, Construction 40 for 𝑤1, … , 𝑤𝑛 subject to 𝐶 provides an 𝜀-CA for 𝐿.
This does not directly show that 𝐿 ∈ BSL, since 𝐶 is not, in the general case, an
iteration set (i.e., 𝖨𝗍𝖾𝗋(𝐿) for some socle). However, this shows that 𝐿 is a bounded
language of ℒPA, and thus, by Theorem 41, it is a language of BSL.

For the second part, we follow the first half of the proof of Theorem 41 and check
that all the operations are computable. So we construct the morphism ℎ which maps
𝑎𝑖 to 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑚. The closure properties of PA being effective [KR03], we
can construct a PA for 𝐿 = ℎ−1(𝐿) ∩ (𝑎∗

1 ⋯ 𝑎∗
𝑚). Finally, the Parikh image of 𝐿

is a semilinear set that we can compute [KR03], concluding the proof, as this set is
the iteration set of 𝐿 w.r.t. 𝑤1, … , 𝑤𝑚.

To the best of our knowledge, Corollary 45 provides the first effective method to
obtain the iteration set, w.r.t. a prescribed socle, of a bounded semilinear language
described using a semilinear set.

4 Bounded Parikh automata are determinizable

Parikh automata cannot be made deterministic in general. Indeed, Klaedtke and Rueß,
in [KR03], have shown that ℒDetPA is closed under complement while ℒPA is not, so
that ℒDetPA ⊊ ℒPA, and Paper I further exhibits languages witnessing the separation.
In this section, we show that PA can be determinized when their language is bounded.
The purpose of this section is to show:

▶ Theorem 46. Every 𝐿 ∈ ℒBoundedPA is the union of the languages of rflat DetCA.

This implies:

▶ Corollary 47. BSL = ℒBoundedPA = ℒBoundedDetPA = ℒ1-CQDD.

76

4. Bounded Parikh automata are determinizable

Proof. The first equality is Theorem 41. For the second, we have ℒBoundedDetPA ⊆
ℒBoundedPA; for the converse, if 𝐿 ∈ ℒBoundedPA then it is the union of the lan-
guages of rflat DetCA by Theorem 46, and as ℒDetPA is closed under union, 𝐿 ∈
ℒBoundedDetPA. For the third, we note that rflat DetCA, and thus 1-CQDD, rec-
ognize only bounded languages, thus ℒ1-CQDD ⊆ ℒBoundedPA; for the converse,
Theorem 46 already states that ℒBoundedPA ⊆ ℒ1-CQDD.

We show Theorem 46 in two steps. First, in Section 4.1, we note that the canonical
𝜀-CA of Construction 40 has a crucial property that we call “constraint-determinism,”
i.e., the fact that the nondeterminism of the automaton is not used in the constraint
set (formal definitions follow). We show that CA with this property are naturally
expressed with a model of one-way deterministic automaton which allows for some
counter manipulation: a restricted version of the deterministic affine PA introduced in
Paper I. Second, in Section 4.2, we show that any bounded language accepted by such
a device is a finite union of languages of rflat DetCA. We then conclude the proof of
Theorem 46 in Section 4.3.

4.1 From constraint-deterministic CA to deterministic affine PA

We first formally define the property of constraint-determinism:

▶ Definition 4 (Constraint-determinism). A CA (𝐴, 𝐶) is said to be constraint-
deterministic if no two paths 𝜋1 and 𝜋2 in 𝖱𝗎𝗇(𝐴) for which 𝜇𝐴(𝜋1) = 𝜇𝐴(𝜋2) can
be distinguished by 𝐶 . Formally:

(∀𝜋1, 𝜋2 ∈ 𝖱𝗎𝗇(𝐴)) 𝜇𝐴(𝜋1) = 𝜇𝐴(𝜋2) ⇒ 𝖯𝗄𝗁(𝜋1) ∈ 𝐶 ↔ 𝖯𝗄𝗁(𝜋2) ∈ 𝐶 .

Given a constraint-deterministic CA (𝐴, 𝐶), we will consider the deterministic ver-
sion of 𝐴 and follow, within it, the paths traced in 𝐴. To this purpose, we will need
a model which allows for some simple counter manipulations; we propose the affine
Parikh automaton, that we APA: see p. 15; all the APA

here are ℕ-APA

introduced and studied in Paper I, as the right model for this
task, as it allows for the needed expressiveness while providing a nice mathematical
framework for the proofs.

▶ Definition 5 (Finite-monoid affine Parikh automaton). An affine Parikh automa-
ton (𝐴, 𝑈, 𝐶) is said to be finite-monoid if ℳ(𝑈) is finite; this is not the general case.

One may see APA as automata equipped with 𝑑 counters 𝑐1, … , 𝑐𝑑 , and each tran-
sition computing some action 𝑐𝑖 ← 𝑘𝑖 + ∑𝑗 𝑎𝑖,𝑗 × 𝑐𝑗 on the 𝑑 counters. One interesting

77

Paper II – Bounded Parikh Automata

class of finite-monoid APA, and the one we will focus on, is when no sum of counter
is allowed, i.e., when all 𝑎𝑖,𝑗 are either 0 or 1, and if 𝑎𝑖,𝑗 is 1, then for all 𝑗 ≠ 𝑗, 𝑎𝑖,𝑗
is 0.

▶ Lemma 48. Any 𝜀-CA (𝐴, 𝐶) having the constraint-determinism property has the
same language as a finite-monoid DetAPA (𝐴 , 𝑈, 𝐸) such that 𝐿(𝐴) = 𝐿(𝐴).

Proof. We outline the idea before giving the details. Let (𝐴, 𝐶) be the 𝜀-CA. We
first apply the standard subset construction and obtain a deterministic automaton 𝐴
equivalent to 𝐴. Consider a state 𝑞 of 𝐴. Suppose that after reading some word
𝑤 leading 𝐴 into state 𝑞 we had, for each 𝑞 ∈ 𝑞, the Parikh image 𝐜𝑤,𝑞 (counting
transitions in 𝐴, i.e., recording the occurrences of each transition in 𝐴) of some
initial 𝑤-labeled path leading 𝐴 into state 𝑞. Suppose that 𝑞 .. 𝑎. 𝑟 is a transition
in 𝐴. How can we compute, for each 𝑟 ∈ 𝑟, the Parikh image 𝐜𝑤𝑎,𝑟 of some initial
𝑤𝑎-labeled path leading 𝐴 into 𝑟? It suffices to pick any 𝑞 ∈ 𝑞 for which some
𝑎-labeled path leads 𝐴 from 𝑞 to 𝑟 (possibly using the 𝜀-transitions in 𝐴) and to add
to 𝐜𝑤,𝑞 the contribution of this 𝑎-labeled path. A DetAPA transition on 𝑎 is well-
suited to mimic this computation, since an affine transformation can first “flip” the
current Parikh 𝑞-count tuple “over” to the Parikh 𝑟-count tuple and then add to it
the 𝑞-to-𝑟 contribution. Hence a DetAPA (𝐴, ⋅, ⋅) upon reading a word 𝑤 leading to
its state 𝑞 is able to keep track, for each 𝑞 ∈ 𝑞, of the Parikh image of some initial
𝑤-labeled path leading 𝐴 into 𝑞. We need constraint-determinism only to reach the
final conclusion: if a word 𝑤 leads 𝐴 into a final state 𝑞, then some 𝑞 ∈ 𝑞 is final
in 𝐴, and because of constraint-determinism, imposing membership in 𝐶 for the
Parikh image of the particular initial 𝑤-labeled path leading 𝐴 to 𝑞 kept track of by
the DetAPA is as good as imposing membership in 𝐶 for the Parikh image of any
other initial 𝑤-labeled path leading 𝐴 to 𝑞.

We now give the details. Say 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), and let us identify 𝑄 with
{1, … , |𝑄|}. For 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ define 𝑝 𝑎; 𝑞 to be a shortest path from 𝑝 to
𝑞 labeled by 𝑎 — lexicographically smallest among shortest paths, for definiteness,
as its length can be greater than one because of 𝜀-transitions, — or ⊥ if none exists.
Let 𝐴 = (2𝑄, Σ, 𝛿, 𝑞0, 𝐹) be the deterministic version of 𝐴 defined by 𝑞0 = {𝑞0},
𝐹 = {𝑞 | 𝑞 ∩ 𝐹 ≠ ∅}, and:

𝛿 = {𝑝 .. 𝑎. 𝑞 | 𝑞 ∈ 𝑞 ↔ (∃𝑝 ∈ 𝑝)[𝑝 𝑎; 𝑞 ≠ ⊥]}.

We have that 𝐿(𝐴) = 𝐿(𝐴). Note that, by construction, for any path 𝜋 in 𝐴 from 𝑞0
to 𝑞, there exists a path 𝜋 in 𝐴 from 𝑞0 to a state 𝑞 such that 𝑞 ∈ 𝑞 and 𝜇𝐴(𝜋) = 𝜇𝐴(𝜋).

78

4. Bounded Parikh automata are determinizable

We now attach an affine function to each transition of 𝐴, where the functions are
of dimension (|𝑄|.|𝛿| + 1). We first define 𝑉 ∶ 𝛿∗ → ℱ|𝑄|.|𝛿|, and will later add the
extra component. We write 𝑉𝜋 for 𝑉(𝜋). The intuition is as follows. Consider a path
𝜋 on 𝐴 from the initial state to a state 𝑞 — the empty path is considered to be from
𝑞0 to 𝑞0. We view 𝑉𝜋(𝟎) as a list of counters (𝐜1, … , 𝐜|𝑄|) where 𝐜𝑞 ∈ ℕ|𝛿|. We will
ensure that for any 𝑞 ∈ 𝑞, 𝐜𝑞 is the Parikh image of a path 𝜋 in𝐴 from 𝑞0 to 𝑞 such that
𝜇𝐴(𝜋) = 𝜇𝐴(𝜋). If two such paths 𝜋1 and 𝜋2 exist, we may choose one arbitrarily,
as they are equivalent in the following sense: if 𝜌 is such that 𝜋1𝜌 ∈ 𝖱𝗎𝗇(𝐴) and
𝖯𝗄𝗁(𝜋1𝜌) ∈ 𝐶 , then the same holds for 𝜋2.

For 𝑝 ⊆ 𝑄, 𝑞 ∈ 𝑄, and 𝑎 ∈ Σ, let 𝑃(𝑝, 𝑞, 𝑎) be the smallest 𝑝 ∈ 𝑝 such that
𝑝 𝑎; 𝑞 ≠ ⊥ (we will consider only cases where at least one such 𝑝 exists). Let
𝑡 = 𝑝 .. 𝑎. 𝑞 be a transition of 𝐴. We define 𝑉𝑡 such that for 𝑞 ∈ 𝐪 and 𝑝 = 𝑃(𝐩, 𝑞, 𝑎),
the application of 𝑉𝑡 sets 𝐜𝑞 to 𝐜𝑝 + 𝖯𝗄𝗁(𝑝 𝑎; 𝑞). Formally:

𝑉𝑡 =
𝑞∈𝑞

𝑀 𝑃(𝑝, 𝑞, 𝑎), 𝑞 ,
𝑞∈𝑞

𝑁 𝑞, 𝖯𝗄𝗁(𝑃(𝑝, 𝑞, 𝑎) 𝑎; 𝑞)

where 𝑀(𝑝, 𝑞) is the matrix which transfers the 𝑝-th counter to the 𝑞-th, and zeroes
the others, and 𝑁(𝑞, 𝐝) is the shift of 𝐝 ∈ ℕ|𝛿| to the 𝑞-th counter. More precisely,
𝑀(𝑝, 𝑞)𝑖,𝑗 = 1 iff there exists 1 ≤ 𝑒 ≤ |𝛿| such that 𝑖 = (𝑞 − 1).|𝛿| + 𝑒 and 𝑗 =
(𝑝−1).|𝛿|+𝑒; likewise, 𝑁(𝑞, 𝐝) = (0(𝑞−1).|𝛿|)⋅𝐝⋅(0(|𝑄|−𝑞).|𝛿|). Thematrices appearing
in 𝑉 are 0-1 matrices with at most one nonzero entry per row; composing such
matrices preserves this property, thus ℳ(𝑉) is finite.

Fact 49. Let 𝜋 be a path on 𝐴 from 𝑞0 to some state 𝑞. Let (𝐜1, … , 𝐜|𝑄|) = 𝑉𝜋(𝟎),
where 𝐜𝑞 ∈ ℕ|𝛿|. Then for all 𝑞 ∈ 𝑞, 𝐜𝑞 is the Parikh image of a path in 𝐴 from 𝑞0
to 𝑞 labeled by 𝜇(𝜋).

We show Fact 49 by induction. If |𝜋| = 0, then 𝖳𝗈(𝜋) = {𝑞0} and 𝐜𝑞0 is by
definition all-zero. Thus 𝐜𝑞0 is the Parikh image of the empty path from and to 𝑞0
in 𝐴. Let 𝜋 be such that |𝜋| > 0, and consider a state 𝑞 ∈ 𝖳𝗈(𝜋). Write 𝜋 = 𝜌 ⋅ 𝑡,
with 𝑡 ∈ 𝛿, and let 𝑝 = 𝑃(𝖳𝗈(𝜌), 𝑞, 𝜇(𝑡)) and 𝜁 = 𝑝 𝜇(𝑡); 𝑞. The induction hypothesis
asserts that the 𝑝-th counter of 𝑉𝜌(𝟎) is the Parikh image of a path 𝜌 on 𝐴 from 𝑞0 to
𝑝 labeled by 𝜇(𝜌). Thus, the 𝑞-th counter of 𝑉𝜋(𝟎) is 𝖯𝗄𝗁(𝜌) + 𝖯𝗄𝗁(𝜁), which is the
Parikh image of 𝜌𝜁 , a path from 𝑞0 to 𝑞 labeled by 𝜇(𝜋). This concludes the proof
of Fact 49.

We now define 𝑈 ∶ 𝛿∗ → ℱ|𝑄|.|𝛿|+1. We add a component to the functions of 𝑉 ,
such that for 𝜋 ∈ 𝖱𝗎𝗇(𝐴), the last component of 𝑈𝜋(𝟎) is 0 if 𝖳𝗈(𝜋) ∩ 𝐹 = ∅ and

79

Paper II – Bounded Parikh Automata

min(𝖳𝗈(𝜋) ∩ 𝐹) otherwise. For 𝑡 = 𝑝 .. 𝑎. 𝑞 ∈ 𝛿, let:

𝑈𝑡 ∶ (𝐱, 𝑠) ↦
⎛
⎜
⎜
⎝
𝑉𝑡(𝐱),

⎧⎪
⎨
⎪⎩

𝑞 if 𝑞 is the smallest s.t. 𝑞 ∈ 𝑞 ∩ 𝐹 ,
0 if no such 𝑞 exists.

⎞
⎟
⎟
⎠

Now define 𝐸 ⊆ ℕ|𝑄|.|𝛿|+1 to be such that (𝐯1, … , 𝐯|𝑄|, 𝑞) ∈ 𝐸 iff 𝐯𝑞 ∈ 𝐶; 𝐸 is
semilinear. We adjoin 𝟎 to 𝐸 iff 𝟎 ∈ 𝐶 , in order to deal with the empty word. Now,
by Fact 49, a word 𝑤 is accepted by the DetAPA (𝐴, 𝑈, 𝐸) iff there exists a path
in 𝐴 from 𝑞0 to 𝑞 ∈ 𝐹 , labeled by 𝑤, and whose Parikh image belongs to 𝐶 , i.e.,
𝑤 ∈ 𝐿(𝐴, 𝐶).

Finally, recall that 𝐿(𝐴) = 𝐿(𝐴) and note that ℳ(𝑈) is finite as ℳ(𝑉) is: the
extra component of 𝑈 only adds a column and a row of 0’s to the matrices.

We note, for completeness, that constraint-deterministic CA, and thus finite-monoid
DetAPA, strictly generalize DetPA. Indeed, the language:

{𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ+}

is not expressible by a DetPA (see Paper I, Lemma 16), but is expressible as the
constraint-deterministic CA (𝐴, 𝐶) where 𝐴 is:

..𝑞0.. 𝑞1. 𝑞2. 𝑞3. 𝑞4. 𝜀.

𝜀

.

𝑎, 𝑏

. 𝑏. 𝑎.

𝑎

. 𝑏.

𝑏

and 𝐶 constrains the two loops on 𝑞3 and 𝑞4 to occur the same number of times. As any
word in {𝑎, 𝑏}∗ has at most one accepting path in 𝐴, this PA is constraint-deterministic.

4.2 From finite-monoid DetAPA of bounded language to DetPA

Let us first recall the following classical result:

▶ Lemma 50 (e.g., [Gin66, Lemmata 5.5.1 and 5.5.4]). Let 𝑢, 𝑣 ∈ Σ∗. Then (𝑢+𝑣)∗

is bounded iff there exists 𝑧 ∈ Σ∗ such that 𝑢, 𝑣 ∈ 𝑧∗.

..

Consider the automaton:

.....
𝑎

.
𝑎

.

𝑎

Its language is bounded
while 𝖱𝗎𝗇(𝐴) is not.

.

Example 16 We will need the following technical lemma. Bounded languages being closed un-
der morphism, for all automata 𝐴 if 𝖱𝗎𝗇(𝐴) is bounded then so is 𝐿(𝐴). The converse
is true when 𝐴 is deterministic (and false otherwise):

80

4. Bounded Parikh automata are determinizable

▶ Lemma 51. Let 𝐴 be a deterministic automaton for a bounded language, then
𝖱𝗎𝗇(𝐴) is bounded. Moreover, 𝖱𝗎𝗇(𝐴) is expressible as a SLRE whose branches are
of the form 𝜌1𝜋∗

1 ⋯ 𝜌𝑛𝜋∗
𝑛 𝜌𝑛+1 where 𝜌𝑖 ≠ 𝜀 for all 1 < 𝑖 ≤ 𝑛 and the first transition of

𝜋𝑖 differs from that of 𝜌𝑖+1 for every 𝑖 (including 𝑖 = 𝑛 if 𝜌𝑛+1 ≠ 𝜀).

Proof. Recall that bounded languages are closed under deterministic rational trans-
duction (see, e.g., [Gin66, Lemma 5.5.3]). Let a deterministic automaton 𝐴 =
(𝑄, Σ, 𝛿, 𝑞0, 𝐹) accept a bounded language and define the automaton 𝐴 as a copy of
𝐴 over the alphabet Σ × 𝛿 where a transition 𝑡 is relabeled (𝜇(𝑡), 𝑡). Then 𝜏𝐴 , the
deterministic rational transduction defined by 𝐴 , is such that 𝖱𝗎𝗇(𝐴) = 𝜏𝐴 (𝐿(𝐴)),
and thus 𝖱𝗎𝗇(𝐴) is bounded.

It will be useful to note the claim that if 𝑋𝜋∗
1 𝜋∗

2 𝑌 ⊆ 𝖱𝗎𝗇(𝐴) for some nonempty
paths 𝜋1, 𝜋2 and some bounded languages𝑋 and 𝑌 , then for some path 𝜋, 𝑋𝜋∗

1 𝜋∗
2 𝑌 ⊆

𝑋𝜋∗𝑌 ⊆ 𝖱𝗎𝗇(𝐴). To see this, note that if 𝑋𝜋∗
1 𝜋∗

2 𝑌 ⊆ 𝖱𝗎𝗇(𝐴) then 𝑋(𝜋1 + 𝜋2)∗𝑌 ⊆
𝖱𝗎𝗇(𝐴) because 𝜋1 and 𝜋2 are loops on a same state. Now 𝑋(𝜋1 +𝜋2)∗𝑌 is bounded
because 𝖱𝗎𝗇(𝐴) is bounded, hence (𝜋1 + 𝜋2)∗ is bounded. So pick 𝜋 such that
𝜋1, 𝜋2 ∈ 𝜋∗ (by Lemma 50). Then 𝑋(𝜋1 + 𝜋2)∗𝑌 ⊆ 𝑋𝜋∗𝑌 . But 𝜋 is a loop in 𝐴
because 𝜋1 = 𝜋𝑗 for some 𝑗 > 0 is a loop so that 𝖥𝗋𝗈𝗆(𝜋) = 𝖳𝗈(𝜋) in 𝐴. Hence
𝑋𝜋∗𝑌 ⊆ 𝖱𝗎𝗇(𝐴). Thus 𝑋𝜋∗

1 𝜋∗
2 𝑌 ⊆ 𝑋(𝜋1 + 𝜋2)∗𝑌 ⊆ 𝑋𝜋∗𝑌 ⊆ 𝖱𝗎𝗇(𝐴).

Let 𝐸 be a SLRE for 𝖱𝗎𝗇(𝐴), and consider one branch 𝑃 = 𝜌1𝜋∗
1 ⋯ 𝜌𝑛𝜋∗

𝑛 𝜌𝑛+1 of
𝐸. We assume 𝑛 to be minimal among the set of all 𝑛 such that 𝜌1𝜋∗

1 ⋯ 𝜌𝑛𝜋∗
𝑛 𝜌𝑛+1 ⊆

𝜌1𝜋 ∗
1 ⋯ 𝜌𝑛 𝜋 ∗

𝑛 𝜌𝑛 +1 ⊆ 𝖱𝗎𝗇(𝐴) for some paths 𝜌1, 𝜋1, … , 𝜌𝑛 , 𝜋𝑛 , 𝜌𝑛 +1.

First we do the following for 𝑖 = 𝑛, 𝑛 − 1, … , 1 in that order. If 𝜋𝑖 = 𝜁𝜋 and
𝜌𝑖+1 = 𝜁𝜌 for somemaximal nonempty path 𝜁 and for some paths 𝜋 and 𝜌, we rewrite
𝜌𝑖𝜋∗

𝑖 𝜌𝑖+1 as 𝜌𝑖 𝜋 ∗
𝑖 𝜌𝑖+1 by letting 𝜌𝑖 = (𝜌𝑖𝜁), 𝜋𝑖 = (𝜋𝜁) and 𝜌𝑖+1 = 𝜌. This leaves the

language of 𝑃 unchanged and ensures at the 𝑖th stage that the first transition of 𝜋𝑗
(if any) differs from that of 𝜌𝑗+1 (if any) for 𝑖 ≤ 𝑗 ≤ 𝑛. Note that 𝑛 has not changed.

Let 𝜌1𝜋 ∗
1 ⋯ 𝜌𝑛𝜋 ∗

𝑛 𝜌𝑛+1 be the expression for 𝑃 resulting from the above process.
By the minimality of 𝑛, 𝜋𝑖 ≠ 𝜀 for 1 ≤ 𝑖 ≤ 𝑛. And for the same reason, 𝜌𝑖 ≠ 𝜀
for 1 < 𝑖 ≤ 𝑛, since 𝜌𝑖 = 𝜀 implies 𝑋𝜋 ∗

𝑖−1𝜋 ∗
𝑖 𝑌 ⊆ 𝑋𝑧∗𝑌 ⊆ 𝖱𝗎𝗇(𝐴) for some 𝑧 by

the claim above, where 𝑋 = 𝜌1 ⋯ 𝜋 ∗
𝑖−2𝜌𝑖−1 and 𝑌 = 𝜌𝑖+1𝜋 ∗

𝑖+1 ⋯ 𝜌𝑛+1 are bounded
languages.

We are now ready to show the result of this section:

81

Paper II – Bounded Parikh Automata

▶ Lemma 52. Let (𝐴, 𝑈, 𝐶) be a finite-monoid DetAPA such that 𝐿(𝐴) is bounded.
Then there exist a finite number of rflat DetCA having 𝐿(𝐴, 𝑈, 𝐶) as the union of their
languages.

Proof. Let 𝐴 = (𝑄𝐴, Σ, 𝛿, 𝑞0, 𝐹𝐴) be a deterministic automaton whose language is
bounded, let 𝑈 ∶ 𝛿∗ → ℱ𝑑 for some 𝑑 > 0 be a morphism such that ℳ(𝑈) is finite,
and let 𝐶 ⊆ ℕ𝑑 be a semilinear set.

By the finiteness of ℳ(𝑈), every 𝑀 ∈ ℳ(𝑈) has a minimum 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a
strictly positive minimum 𝑝𝑒𝑟𝑖𝑜𝑑 such that 𝑀 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑+period = 𝑀 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Let

0 < 𝑠 = max{𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑀) ∶ 𝑀 ∈ ℳ(𝑈)} + 1 and
0 < 𝑝 = lcm{𝑝𝑒𝑟𝑖𝑜𝑑(𝑀) ∶ 𝑀 ∈ ℳ(𝑈)} .

Then every 𝑀 ∈ ℳ(𝑈) verifies 𝑀 𝑗+𝑝 = 𝑀 𝑗 for every 𝑗 ≥ 𝑠.
Our main task will be to show the following:

Fact 53. For 𝑛 ≥ 0, 𝜌1, 𝜋1, … , 𝜌𝑛, 𝜋𝑛, 𝜌𝑛+1 ∈ 𝛿∗ satisfying the hypothesis of
Lemma 51 and 𝑠 ≤ 𝑗1, … , 𝑗𝑛 < 𝑠 + 𝑝, there is an automaton 𝐷 such that (𝐴, 𝐶)
is a rflat DetPA with:
1. The initial state of 𝐷 has no incoming transition and at most one outgoing

transition, which is labeled by the first transition of 𝜌1 if 𝜌1 ≠ 𝜀,
2. Ψ(𝐿(𝐷)) is 𝜌1𝜋𝑗1

1 (𝜋𝑝
1)∗𝜌2𝜋𝑗2

2 (𝜋𝑝
2)∗ ⋯ 𝜌𝑛𝜋𝑗𝑛

𝑛 (𝜋𝑝
𝑛)∗𝜌𝑛+1,

3. ∀𝜔 ∈ 𝐿(𝐷), Φ(𝜔) = 𝑈Ψ(𝜔)(𝟎).

Wefirst show howFact 53 implies the result. Consider the set𝖱𝗎𝗇(𝐴) of accepting
paths in 𝐴; it is, by Lemma 51, a bounded language. Let 𝑃 be the language defined
a branch 𝜌1𝜋∗

1 ⋯ 𝜌𝑛𝜋∗
𝑛 𝜌𝑛+1 of the SLRE for 𝖱𝗎𝗇(𝐴) given by Lemma 51. For 0 ≤

𝑗1, … , 𝑗𝑛 < 𝑠 + 𝑝, define:

𝑃(𝑗1,…,𝑗𝑛) = 𝜌1𝜋𝑗1
1 (𝜋𝑝

1)∗ ⋯ 𝜌𝑛𝜋𝑗𝑛
𝑛 (𝜋𝑝

𝑛)∗𝜌𝑛+1.

Then 𝑃 can be (redundantly) described as:

𝑃 =
0≤𝑗1,…,𝑗𝑛<𝑠+𝑝

𝑃(𝑗1,…,𝑗𝑛).

Now, for some 0 ≤ 𝑗1, … , 𝑗𝑛 < 𝑠 + 𝑝, we argue that {𝜋 ∈ 𝑃(𝑗1,…,𝑗𝑛) | 𝑈𝜋(𝟎) ∈ 𝐶}
is the union of the languages of some rflat DetPA. If each 𝑗𝑖 is greater than 𝑠, then
this is the statement of Fact 53. Otherwise, if:

𝑃(𝑗1,…,𝑗𝑛) = 𝜌1 ⋯
𝛼

𝜌𝑖𝜋
𝑗𝑖
𝑖 (𝜋𝑝

𝑖)∗𝜌𝑖+1 ⋯ 𝜌𝑛+1
𝛽

,

82

4. Bounded Parikh automata are determinizable

with 𝑗𝑖 < 𝑠, it can be expressed as 𝛼𝜌𝑖𝜋
𝑗𝑖+𝑚𝑝
𝑖 (𝜋𝑝

𝑖)∗𝜌𝑖+1𝛽 together with

𝑚−1

ℓ=0
𝛼𝜌𝑖𝜋

𝑗𝑖+ℓ𝑝
𝑖 𝜌𝑖+1𝛽 , (4)

where 𝑚 = min{ℓ ∶ 𝑗𝑖 + ℓ𝑝 ≥ 𝑠}. Now 𝛼𝜌𝑖𝜋
𝑗𝑖+ℓ𝑝
𝑖 𝜌𝑖+1𝛽 can be rewritten as

𝛼𝜌𝑖 𝛽, with the first transition of 𝜋𝑖−1 still different from the first transition of 𝜌𝑖 =
𝜌𝑖𝜋

𝑗𝑖+ℓ𝑝
𝑖 𝜌𝑖+1. Instances of 𝑗𝑖 < 𝑠 occurring in 𝛼𝜌𝑖−1𝛽 for 𝑖 ≠ 𝑖 can be rewritten as

well. When all occurrences of 𝑗𝑖 < 𝑠 have been processed in this way, each resulting
language is the language of a rflat DetPA by Fact 53.

Now {𝜋 ∈ 𝑃 | 𝑈𝜋(𝟎) ∈ 𝐶} is thus the union of the languages of rflat DetPA
(𝐷, 𝐶). Now define 𝐷 as the automaton 𝐷 where a label (𝑡, 𝐮) in 𝐷 appears as
(𝜇𝐴(𝑡), 𝐮) in 𝐷 , we argue that (𝐷 , 𝐶) is still a rflat DetPA: for any two transi-
tions 𝑞 .. (𝑎, 𝐮). 𝑞 and 𝑞 .. (𝑎, 𝐯). 𝑞 in 𝐷 , there are two transitions 𝑞 .. (𝑡, 𝐮). 𝑞 and
𝑞 .. (𝑡 , 𝐯). 𝑞 with 𝜇𝐴(𝑡) = 𝜇𝐴(𝑡) in 𝐷. Since 𝑡 and 𝑡 may appear after the same pre-
fix in Ψ(𝐿(𝐷)) (as any state of a rflat automaton is both accessible and co-accessible)
and as Ψ(𝐿(𝐷)) is a set of paths, this implies that 𝖥𝗋𝗈𝗆(𝑡) = 𝖥𝗋𝗈𝗆(𝑡). In turn, as
𝐴 is deterministic, this implies that 𝑡 = 𝑡 , and thus, as (𝐷, 𝐶) is a DetPA, that
𝐮 = 𝐯 and 𝑞 = 𝑞 , i.e., the two transitions we considered in 𝐷 are the same, hence
(𝐷 , 𝐶) is a DetPA. Moreover, since 𝐷 is rflat and 𝐷 has the same graph as 𝐷, 𝐷
is rflat. Finally, 𝐿(𝐷 , 𝐶) = 𝜇(𝐿(𝐷, 𝐶)), and thus {𝜇(𝜋) | 𝜋 ∈ 𝑃 ∧ 𝑈𝜋(𝟎) ∈ 𝐶} is
the union of rflat DetPA languages. Going through all the branches thus leads to a
finite set of rflat DetPA languages, with 𝐿(𝐴, 𝑈, 𝐶) as their union.

We now prove Fact 53 by induction on 𝑛, the number of 𝜋𝑖’s. For succinctness,
we construct automata where the labels are pairs (𝜋, 𝐯) where 𝜋 = 𝑡1𝑡2 ⋯ 𝑡𝑘 is a
nonempty word over 𝛿; this is to be understood as a string of transitions with fresh
states in between, with the first transition labeled (𝑡1, 𝐯) and the other ones (𝑡𝑖, 𝟎),
𝑖 ≥ 2.

Suppose 𝑛 = 0, then we are only given 𝜌1. If 𝜌1 = 𝜀, then 𝐷 is a single initial
and final state. Otherwise, 𝐷 is an automaton with states {𝑞0, 𝑞𝑓 }, 𝑞0 initial and 𝑞𝑓
final, with a single transition, between 𝑞0 and 𝑞𝑓 , labeled (𝜌1, 𝑈𝜌1(𝟎)). This verifies
the conclusions of Fact 53.

Suppose 𝑛 > 0. We introduce a few notations: for a path 𝜋 = 𝑡1𝑡2 ⋯ 𝑡𝑘 ∈ 𝛿∗,
we write 𝑀𝜋 for 𝑀𝑡𝑘 … 𝑀𝑡2 𝑀𝑡1 and Δ𝜋 for 𝑈𝜋(𝟎). Note that 𝑈𝜋 = (𝑀𝜋 , Δ𝜋).
Let 𝜋 ∈ 𝜌1𝜋𝑗1

1 (𝜋𝑝
1)∗𝜌2𝜋𝑗2

2 (𝜋𝑝
2)∗ ⋯ 𝜌𝑛𝜋𝑗𝑛

𝑛 (𝜋𝑝
𝑛)∗𝜌𝑛+1, and write 𝜋 = 𝜌1𝜋𝑗1

1 𝜋𝑝𝑘
1 𝛾 with

𝑘 maximal. Define 𝑀 = 𝑀𝜌2𝜋𝑗2
2 …𝜌𝑛𝜋𝑗𝑛

𝑛 𝜌𝑛+1
, and note that 𝑀𝛾 = 𝑀 , by the finite-

83

Paper II – Bounded Parikh Automata

monoid property. Then:

Δ𝜋 = 𝑈𝛾 (𝑈𝜋𝑗1
1

(𝑈𝜋𝑝𝑘
1

(𝑈𝜌1(𝟎))))

= 𝑀(𝑀𝜋𝑗1
1

.𝑈𝜋𝑝𝑘
1

(Δ𝜌1) + Δ𝜋𝑗1
1

) + Δ𝛾 (as 𝑀𝛾 = 𝑀)

= 𝑀.Δ𝜋𝑗1
1

+ 𝑀.𝑀𝜋𝑗1
1

(𝑀𝜋𝑝
1
.𝑈𝜋𝑝(𝑘−1)

1
(Δ𝜌1) + Δ𝜋𝑝

1
) + Δ𝛾

= 𝑀.Δ𝜋𝑗1
1

+ 𝑀.𝑀𝜋𝑗1
1

(𝑈𝜋𝑝(𝑘−1)
1

(Δ𝜌1) + Δ𝜋𝑝
1
) + Δ𝛾 (as 𝑀𝜋𝑗1

1
.𝑀𝜋𝑝

1
= 𝑀𝜋𝑗1

1
)

⋮ (repeating the two previous lines)
= 𝑀.Δ𝜋𝑗1

1
+ 𝑀.𝑀𝜋𝑗1

1
(Δ𝜌1 + 𝑘.Δ𝜋𝑝

1
) + Δ𝛾

= 𝑀.Δ𝜋𝑗1
1

+ 𝑀.𝑀𝜋𝑗1
1

.Δ𝜌1

𝐾

+𝑘. 𝑀.𝑀𝜋𝑗1
1

.Δ𝜋𝑝
1

𝐾

+Δ𝛾 . .

Note that the values of 𝐾 and 𝐾 are independent of 𝛾 and 𝑘. Now construct 𝐷 as
the automatonwith states {𝑞0, 𝑞𝑓 }, a transition between 𝑞0 and 𝑞𝑓 labeled (𝜌1𝜋𝑗1

1 , 𝐾),
and a transition from and to 𝑞𝑓 labeled (𝜋𝑝

1 , 𝐾). Let 𝐷 be the automaton given
by the induction hypothesis on the parameters 𝜌2, 𝜋2, … , 𝜌𝑛, 𝜋𝑛, 𝜌𝑛+1, 𝑗2, … , 𝑗𝑛. We
construct 𝐷 by merging 𝐷 and 𝐷 : we set 𝑞0 initial and identify 𝑞𝑓 with the initial
state of 𝐷 . Note that (𝐷, 𝐶) is indeed a flat DetPA: by induction hypothesis there
is no cycle on the initial state of 𝐷 and 𝐷 is rflat, thus 𝐷 is rflat; moreover, since
𝐷 either has an empty language (if 𝜌2 = 𝜀, and thus 𝑛 = 1) or starts with the first
transition of 𝜌2, which differs from that of 𝜋1, (𝐷, 𝐶) is a DetPA.

We argue that 𝐷 fulfills the conclusions of Fact 53. Point (1) is clear. Point (2) is
verified thanks to the induction hypothesis: the projection of the language of 𝐷 is
indeed 𝜌1𝜋𝑗1

1 (𝜋𝑝
1)∗, and that of 𝐷 is 𝜌2 ⋯ 𝜌𝑛+1. Finally, for (3): let 𝜔 ∈ 𝐿(𝐷), and

write 𝜔 = 𝜔1𝜔𝑘
2𝜔3 with Ψ(𝜔1) = 𝜌1𝜋𝑗1

1 , Ψ(𝜔2) = 𝜋𝑝
1 , and 𝑘 maximal. Note that 𝜔3

is read over 𝐷 . Then:

Φ(𝜔) = Φ(𝜔1) + 𝑘.Φ(𝜔2) + Φ(𝜔3) = 𝐾 + 𝑘.𝐾 + Φ(𝜔3)
= 𝐾 + 𝑘.𝐾 + 𝑈Ψ(𝜔3)(𝟎) (by induction hypothesis)
= 𝐾 + 𝑘.𝐾 + ΔΨ(𝜔3) = ΔΨ(𝜔) = 𝑈Ψ(𝜔)(𝟎) .

This concludes the proof of Fact 53.

..
In Paper IV, Cor. 98, we

show a stronger result: there
are unary languages in

ℒDetAPA ⧵ ℒPA

.

Note We note that there exist bounded languages with nonsemilinear Parikh image in
ℒDetAPA (e.g., {𝑎𝑛𝑏2𝑛}), thus there exist bounded languages in ℒDetAPA ⧵ ℒPA.

84

5. Discussion and further work

4.3 Proof of Theorem 46 and effectiveness

Proof of Theorem 46. Let 𝑌 ∈ ℒBoundedPA. By Theorem 41, 𝑌 ∈ BSL, so let
𝑤1, … , 𝑤𝑛 be a socle of 𝑌 with 𝐶 = 𝖨𝗍𝖾𝗋(𝑤1,…,𝑤𝑛)(𝐿) semilinear. Let (𝐴, 𝐸) be the
canonical 𝜀-CA for 𝑤1, … , 𝑤𝑛 subject to 𝐶 obtained by applying Construction 40.
By construction, 𝐿(𝐴) is bounded. Moreover, (𝐴, 𝐸) is constraint-deterministic: if
two accepting paths 𝜋1 and 𝜋2 in 𝐴 have the same label 𝑤, then 𝜋1 and 𝜋2 describe
two ways to iterate the words in the socle of 𝑌 to get 𝑤. As the semilinear set 𝐶
describes all ways to iterate these words to get a specific label, 𝖯𝗄𝗁(𝜋1) ∈ 𝐸 iff
𝖯𝗄𝗁(𝜋2) ∈ 𝐸.

Now applying Lemma 48 to the 𝜀-CA (𝐴, 𝐸) yields a finite-monoid DetAPA for
𝑌 whose underlying automaton has the bounded language 𝐿(𝐴). In turn, Lemma 52
yields a finite number of rflat DetCA having 𝑌 as the union of their languages.

We note that all the constructions are effective, in the sense that given words
𝑤1, … , 𝑤𝑛 and a semilinear set 𝐶 ⊆ ℕ𝑛, we can construct a DetCA for the language
{𝑤𝑖1

1 ⋯ 𝑤𝑖𝑛
𝑛 | (𝑖1, … , 𝑖𝑛) ∈ 𝐶}. We leave open whether there is an effective procedure

to determinize a PA when the promise is made that its language is bounded.

5 Discussion and further work

We showed that PA andDetPA recognize the same class of bounded languages, namely
BSL. To this end, we used related models (e.g., APA) and provided expressiveness
results of independent interest (e.g., related to constraint-determinism and the finite-
monoid property). Moreover, we noted that the union of rflat DetCA is a concept
that has already been defined, in the context of model-checking, as 1-CQDD [BH99],
showing that 1-CQDD capture exactly BSL. The closure properties observed in Corol-
laries 42 and 43 also apply to 1-CQDD, thus providing alternative proofs to those ap-
pearing in [BH99]. In particular, given ℒ1-CQDD = BSL, the proof of the closure
of 1-CQDD under concatenation is a consequence of the simple proofs of closure of
ℒPA and BOUNDED under concatenation, thus avoiding the long and technical proof
of [BH99].

A related model, reversal-bounded multi-counter machines (RBCM) [Iba78], RBCM: see Chap. 0, Sec. 3.4,
p. 16

has
been shown to have the same expressive power as PA [KR03]. It is known that one-
way deterministic RBCM are strictly more powerful than DetPA (see Paper I), thus our
result carries over to RBCM, showing that RBCM and one-way deterministic RBCM
recognize the same class of bounded languages, namely BSL. This provides an alter-

85

Paper II – Bounded Parikh Automata

native proof of the same fact appearing in a recent paper of Ibarra and Seki [IS11], and
yields as a by-product a characterization of BSL using a model provably weaker than
one-way deterministic RBCM.

Further work includes an in-depth study of the finite-monoid property of APA. In
particular, we suspect that finite-monoid APA are no more expressive than PA, and
that finite-monoid DetAPA are no more expressive than constraint-deterministic CA.
One further avenue of research is to investigate the related decision problems, e.g.,
is it decidable whether the language of a PA is bounded? or whether it is that of a
constraint-deterministic CA?

Acknowledgments

The first author thanks Laurent Beaudou, Marc Kaplan, and Adrien Lemaître for stim-
ulating discussions and comments on early versions of this paper. We further thank the
anonymous referees for their critical comments and especially for pointing out a flawed
claim made in an earlier version of this work, namely that finite-monoid DetAPA are
equivalent to DetPA.

86

Discussion

The first goal of this research was to study in which cases the statement “finite-monoid
DetAPA are equivalent to DetCA” is true. The finite nature of the affine transfor-
mations indeed indicates that they can be simulated using the operations available
to the DetCA; in particular, a DetAPA for which all the matrices used to define the
affine functions are the identity is a DetCA. The limit of this parallel is drawn with the
example on page 80: there is a finite-monoid DetAPA expressing a language not in
ℒDetPA. However, we identified a possible candidate for an equivalent CA formalism
of finite-monoid DetAPA: constraint-deterministic CA. In Paper III, we show that this
equivalence holds.

Our interest in bounded languages is also related to their use in model-checking
and we hope further development will be done in this field. This was the motivation
behind the introduction of CQDD by Bouajjani and Habermehl [BH99], and more
investigation has to be made to evaluate the impact of the main result of our paper in
this context. In particular, it is interesting to consider the following open question:
given a CA, can we decide whether its language is bounded, and if so, can we find
a socle for it? If we can do so, then we can determinize the CA, and thus use, for
instance, the closure properties of DetCA to allow for more property-testing.

Finally, we had the intuition that bounded languages would help in solving the
regularity problem for DetCA, and the study of ℒBoundedPA thus was the natural thing
to carry. As it turns out, bounded languages were indeed of a great help for showing
the decidability of regularity (see Paper III, Section 4) and constraint-deterministic
CA were of interest in this work, but the main result of the present paper, namely,
BSL = ℒBoundedPA = ℒBoundedDetPA, was not needed.

...

Paper III

Unambiguous Constrained
Automata

MICHAËL CADILHAC1, ALAIN FINKEL2, AND PIERRE MCKENZIE1

Extended version of Unambiguous Constrained Automata. In: Yen, H., Ibarra, O.
(eds.) Proceedings of the 16th International Conference on Developments in

Language Theory (DLT 2012). Lecture Notes in Computer Science, vol. 7410, pp.
239–250

1: DIRO, Université de Montréal. The third author is supported by the Natural Sciences and Engineering
Research Council of Canada.
2: LSV, ENSCachan, CNRS, France. Ce travail a bénéficié d’une aide de l’AgenceNationale de la Recherche
portant la référence “REACHARD-ANR-11-BS02-001”.

Presentation

When introducing a model of computation, we are interested in getting a balance be-
tween expressiveness and good closure and decidability properties. DetCA, while of-
fering a good expressiveness, cannot express languages specified by a semilinear con-
straint on the end of the word; for instance, the language {𝑎, 𝑏}∗{𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} is not
in ℒDetCA (see Paper I). A natural compromise between determinism and nondeter-
minism, on which Colcombet [Col12] has recently made a survey, is unambiguity. An
automaton is said to be unambiguous if there is at most one accepting path per word; in
turn, a CA is said to be unambiguous if the underlying automaton is. In his survey, Col-
combet argues for the usefulness of unambiguity in multiple contexts (performance,
expressiveness, decidability, …), and proposes several open questions. The goal of
the study of the present paper is to see how unambiguity affects CA. In particular, Pa-
per II introduced the concept of constraint-deterministic CA, and it is shown here that
it is equivalent to the concept of unambiguous CA, thus continuing the investigation
of finite-monoid APA.

One of the main open problems we left at the end of Paper I is whether regularity
is decidable for DetCA. In the present paper, we solve this problem for the provably
larger class of unambiguous CA.

Personal contribution. I proposed the results, proofs, and ideas of this paper. Col-
combet’s survey [Col12] was pointed to us by Andreas Krebs, and we used the termi-
nology of this article in the present work. Andreas Krebs also helped in simplifying the
proof of Lemma 73 and gave useful comments on the general structure of the paper.
McKenzie helped in refining the proofs, in particular that of Theorem 75. The final
form of this paper is a concerted work of the authors.

Unambiguous Constrained
Automata

Abstract

The class of languages captured by Constrained Automata (CA) that are unambiguous
is shown to possess more closure properties than the provably weaker class captured by
deterministic CA. Problems decidable for deterministic CA are nonetheless shown to
remain decidable for unambiguous CA, and testing for regularity is added to this set of
decidable problems. Unambiguous CA are then shown incomparable with determin-
istic reversal-bounded machines in terms of expressivity, and a deterministic model
equivalent to unambiguous CA is identified.

Introduction

A recent trend in automata theory is to study flavors of nondeterminism, which are
introduced to provide a scale of expressiveness in different models (see [Col12] for
a survey). The usual goal is to strike a balance between the expressiveness of non-
deterministic models and the undecidability properties that often come with nonde-
terminism. A natural restriction to nondeterminism is unambiguity, i.e., the property
that despite the underlying nondeterminism, there be at most one way to accept an
input word. Within the context of finite automata, unambiguity and nondeterminism
are equally expressive, but many open problems concerning the state complexity of
unambiguity remain. Within more general contexts, the first question is often whether
unambiguity offers more expressiveness than determinism; if so, then the examination
of the closure and decidability properties of the new class often reveals that it inherits
good properties. Another line of attack is to find a deterministic model equivalent to

Paper III – Unambiguous Constrained Automata

an unambiguous model, so as to understand how unambiguity affects a given model.
In [KR03], Klaedtke and Rueß studied Constrained Automata (CA),7 a model

whose expressive power lies between regular languages and context-sensitive lan-
guages (see Paper I). Klaedtke and Rueß successfully used the CA in the model-
checking of hardware circuits, suggesting that CA is a model of interest for real-life
applications. The deterministic variant (DetCA) of the CA enjoys more closure prop-
erties (e.g., complement) and decidability properties (e.g., universality) than the CA,
but is unable to express languages as simple as {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} (see Paper I).
Buoyed by Colcombet’s recent systematic examination of unambiguity [Col12], here
we initiate the study of unambiguous CA (UnCA).

We show that UnCA enjoy more closure properties than DetCA, while being more
expressive. The class of languages UnCA defines is indeed closed under Boolean oper-
ations, inverse morphisms, commutative closure, reversal, and right and left quotient.
We show that the problems known to be decidable for DetCA (emptiness, universal-
ity, finiteness, inclusion) remain decidable for UnCA. As the main technical result
of this paper, we show that regularity is decidable for UnCA; by contrast, regularity
is known to be undecidable for CA (see Paper I), while its status was unknown for
DetCA. Finally, although DetCA are less powerful than UnCA, we present a natural
deterministic model equivalent to UnCA; as a result of independent interest, we show
that the nondeterministic variant of this model has the same expressive power as CA.

Section 1 in this paper contains preliminaries. Section 2 investigates the closure
and expressiveness properties of UnCA. Section 3 compares UnCA and DetRBCM.
Section 4 proceeds with the decidability properties of UnCA, showing, as our main
result, that regularity is decidable. Section 5 shows that there is a natural equivalent
deterministic model to UnCA. Section 6 concludes with a brief discussion.

1 Preliminaries

Let 𝑠 ≥ 0 and 𝑝 ≥ 1, we define the congruence ≡𝑠,𝑝, by 𝑥 ≡𝑠,𝑝 𝑦 iff (𝑥 = 𝑦 <
𝑠) ∨ (𝑥, 𝑦 ≥ 𝑠 ∧ 𝑥 = 𝑦 (mod 𝑝)), for 𝑥, 𝑦 ∈ ℕ; we write [𝑥]𝑠,𝑝 for the equivalence
class of 𝑥 under ≡𝑠,𝑝. We extend ≡𝑠,𝑝 component-wise to vectors 𝐱, 𝐲 ∈ ℕ𝑑 by letting
𝐱 ≡𝑠,𝑝 𝐲 iff 𝑥𝑖 ≡𝑠,𝑝 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑑; similarly, [𝐱]𝑠,𝑝 is the equivalence class of 𝐱
under this relation.

Remark. It is decidable whether a given CA is deterministic or unambiguous.

7In [KR03], the model under study is called Parikh automata. CA are but an effectively equivalent
model with an arguably simpler definition.

94

2. Closure properties and expressiveness of UnCA

2 Closure properties and expressiveness of UnCA

In this section, we show closure and nonclosure properties, and we give languages
witnessing the strict inclusion chain ℒDetCA ⊊ ℒUnCA ⊊ ℒCA. CA, DetCA, UnCA: see p. 14We start with a tool
that will prove useful when combining UnCA:

▶ Lemma 54. For any UnCA (𝐴, 𝐶), there is an UnCA (𝐴 , 𝐶) where 𝐴 has no
𝜀-transition, 𝐿(𝐴) = 𝐿(𝐴), and 𝐿(𝐴, 𝐶) = 𝐿(𝐴 , 𝐶).

Proof. Let (𝐴, 𝐶) be an UnCA with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). We first note that for
𝑝, 𝑞 ∈ 𝑄, and ℓ ∈ Σ ∪ {𝜀}, we may suppose there is at most one way to reach 𝑞
from 𝑝 reading ℓ. Indeed, suppose there are two paths 𝜋1, 𝜋2 from 𝑝 to 𝑞 labeled
ℓ, and suppose there is a path 𝜌1 from 𝑞0 to 𝑝 (otherwise, we may remove 𝑝) and
a path 𝜌2 from 𝑞 to a final state (otherwise, we may remove 𝑞). Then 𝜌1𝜋1𝜌2 and
𝜌1𝜋2𝜌2 are two accepting paths with the same label, contradicting the unambiguity
of 𝐴. In particular, this implies that there is no cycle of 𝜀-transitions, since if 𝜋 is
such a cycle, one may go from and to 𝖥𝗋𝗈𝗆(𝜋) reading 𝜀 using two paths: 𝜋 and the
empty path.

In the same vein, we note that we may suppose that for a state 𝑞, if there is a path
of 𝜀-transitions from 𝑞 to a final state 𝑞 , then it is unique and there is no such path
between 𝑞 and a different final state.

Now we “backward-close” the 𝜀-automaton 𝐴. For 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, define
𝑃(𝑝, 𝑎, 𝑞) to be the only path from 𝑝 to 𝑞 labeled 𝑎which ends in a transition labeled 𝑎;
if none exists, set 𝑃(𝑝, 𝑎, 𝑞) to ⊥. Likewise, define 𝐸(𝑝) to be the unique path labeled
𝜀 from 𝑝 to a final state of 𝐴, if it exists, and ⊥ otherwise. Note that 𝐸(𝑝) = 𝜀 if
𝑝 ∈ 𝐹 . Define 𝐴 = (𝑄, Σ, 𝛿 , 𝑞0, 𝐹) where:

𝛿 = {𝑝 .. 𝑎. 𝑞 | 𝑎 ∈ Σ ∧ 𝑃(𝑝, 𝑎, 𝑞) ≠ ⊥} ,
𝐹 = {𝑝 | 𝐸(𝑝) ≠ ⊥} .

Clearly, this automaton has the same language as 𝐴. Further, we argue that it is
unambiguous. Let ℎ∶ 𝛿 ∗ → 𝛿∗ be the morphism defined by ℎ(𝑝 .. 𝑎. 𝑞) = 𝑃(𝑝, 𝑎, 𝑞).
We show that ℎ is a bijection from 𝖱𝗎𝗇(𝐴) to:

𝖱𝗎𝗇(𝐴)−𝜀 = 𝖱𝗎𝗇(𝐴)({𝑡 ∈ 𝛿 | 𝜇(𝑡) = 𝜀}∗)−1 ,

that is, the initial paths in 𝐴 ending in a state from which we can reach a final state
by following 𝜀-transitions. First note that for a path 𝜋 ∈ 𝛿 ∗, ℎ(𝜋) is a path with
the same label, origin, and destination as 𝜋 . This implies that if 𝜋 ∈ 𝖱𝗎𝗇(𝐴),

95

Paper III – Unambiguous Constrained Automata

then ℎ(𝜋) is an initial path in 𝐴 ending in a state 𝑞 such that either 𝑞 ∈ 𝐹 or there
is a path of 𝜀-transitions from 𝑞 to a final state; in both cases, ℎ(𝜋) ∈ 𝖱𝗎𝗇(𝐴)−𝜀.

(ℎ is onto.) Let 𝜋 ∈ 𝖱𝗎𝗇(𝐴)−𝜀, and write 𝜋 = 𝜋1𝜋2 ⋯ 𝜋𝑛 such that each 𝜋𝑖 is a
path having only one non 𝜀 transition, and it is the last transition of 𝜋𝑖. We have
that 𝑃(𝖥𝗋𝗈𝗆(𝜋𝑖), 𝜇(𝜋𝑖), 𝖳𝗈(𝜋𝑖)) = 𝜋𝑖, so for all 𝑖, let 𝑡𝑖 = 𝖥𝗋𝗈𝗆(𝜋𝑖) .. 𝜇(𝜋𝑖). 𝖳𝗈(𝜋𝑖),
and note that 𝑡𝑖 ∈ 𝛿 and ℎ(𝑡𝑖) = 𝜋𝑖. Thus 𝜋 = 𝑡1𝑡2 ⋯ 𝑡𝑛 is an initial path in 𝐴
such that ℎ(𝜋) = 𝜋. Now 𝜋 (and thus 𝜋) ends in a state 𝑞 such that there is a
(possibly empty) 𝜀-labeled path from 𝑞 to a state in 𝐹 , i.e., 𝖳𝗈(𝜋) ∈ 𝐹 , and thus
𝜋 ∈ 𝖱𝗎𝗇(𝐴).

(ℎ is one-to-one.) If 𝜋1 and 𝜋2 are two paths of 𝖱𝗎𝗇(𝐴) with the different labels,
then ℎ(𝜋1) and ℎ(𝜋2) are different, as they also are paths with different labels. We
show that it is not possible for two different paths in 𝖱𝗎𝗇(𝐴) to have the same label.
Suppose, for a contradiction, that 𝜋1, 𝜋2 ∈ 𝖱𝗎𝗇(𝐴) are such paths; note that they
have the same (nonzero) length as 𝐴 has no 𝜀-transition. Let 𝜌1 = 𝐸(𝖳𝗈(𝜋1)) and
𝜌2 = 𝐸(𝖳𝗈(𝜋2)). We have that ℎ(𝜋1)𝜌1 and ℎ(𝜋2)𝜌2 are accepting paths in 𝐴 with
the same label. Let 𝜋1 = 𝜋𝑡1𝜋1 and 𝜋2 = 𝜋𝑡2𝜋2 with 𝑡1 ≠ 𝑡2 and 𝜋, 𝜋1, 𝜋2 ∈ 𝛿 ∗;
this split exists as |𝜋1| = |𝜋2|. Now ℎ(𝑡1) and ℎ(𝑡2) have only one transition not
labeled 𝜀, which appears at the end, and as 𝖳𝗈(𝑡1) ≠ 𝖳𝗈(𝑡2), those last transitions
end in different states, and are thus different. Hence ℎ(𝑡1) and ℎ(𝑡2) are different and
neither is the prefix of the other. This implies that ℎ(𝜋1)𝜌1 = ℎ(𝜋)ℎ(𝑡1)ℎ(𝜋1)𝜌1 and
ℎ(𝜋2)𝜌2 = ℎ(𝜋)ℎ(𝑡2)ℎ(𝜋2)𝜌2 differ, and are two different accepting paths in 𝐴 with
the same label, contradicting the unambiguity of 𝐴. This concludes the proof that
ℎ is one-to-one.

Now note that there is a one-to-one correspondence that preserves labels between
𝖱𝗎𝗇(𝐴) and 𝖱𝗎𝗇(𝐴)−𝜀 that consists in removing the trailing 𝜀-transitions. As ℎ also
preserves labels, this implies that 𝐴 is unambiguous and 𝐿(𝐴) = 𝐿(𝐴). Moreover,
with 𝜋 ∈ 𝖱𝗎𝗇(𝐴), the only path 𝜋 ∈ 𝖱𝗎𝗇(𝐴) with the same label is given by
𝜋 = ℎ(𝜋)𝐸(𝖳𝗈(𝜋)). We thus define the constraint set 𝐶 so that 𝖯𝗄𝗁(𝜋) ∈ 𝐶 iff
𝖯𝗄𝗁(𝜋) ∈ 𝐶 . For this, we need to know, given the Parikh image of a run in 𝐴 , in
which state 𝑞 the run ends, so that we can add 𝖯𝗄𝗁(𝐸(𝑞)) to retrieve the Parikh image
of the similar path in 𝐴:

Fact 55. Let 𝐴 be an automaton. For each final state 𝑞 of 𝐴, the set of Parikh
images of paths in 𝖱𝗎𝗇(𝐴) ending in 𝑞 is effectively semilinear. Moreover, those sets
are disjoint.

96

2. Closure properties and expressiveness of UnCA

Proof sketch. First, we note that 𝖯𝗄𝗁(𝖱𝗎𝗇(𝐴)) is effectively semilinear. This is a
simple consequence of Parikh’s theorem, which states that the Parikh image of any
context-free language is effectively semilinear [Par66]. Given 𝐴, the language
𝖱𝗎𝗇(𝐴) is effectively regular, thus Parikh’s theorem asserts that 𝖯𝗄𝗁(𝖱𝗎𝗇(𝐴)) =
𝖯𝗄𝗁(𝐿(𝐴)) is effectively semilinear.

Next, the Parikh image of a path describes a flow, and thus an initial path 𝜋 on
𝐴 ends in a state 𝑞 different from the initial state iff the sum of the |𝜋|𝑡 for the 𝑡’s
with 𝖳𝗈(𝑡) = 𝑞 is one more than the same sum for 𝖥𝗋𝗈𝗆(𝑡) = 𝑞. It ends in the
initial state iff the previous sums are equal for all states. Thus the final state of an
initial path depends only on its Parikh image.

Now, order 𝛿 = {𝑡1, 𝑡2, … , 𝑡𝑘}. Next, for 𝑞 ∈ 𝐹 , let 𝑅𝑞 be the semilinear set
of Parikh images of initial paths in 𝐴 ending in 𝑞. Note that Fact 55 implies that
for 𝜋 ∈ 𝖱𝗎𝗇(𝐴), 𝖯𝗄𝗁(𝜋) ∈ 𝑅𝑞 iff 𝖳𝗈(𝜋) = 𝑞. Then define 𝐶 ⊆ ℕ𝑘 by letting
𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑘) ∈ 𝐶 iff:

𝑞∈𝐹

⎡⎢⎢⎣
(𝐱 ∈ 𝑅𝑞) →

⎛
⎜
⎜
⎝

𝑘

𝑖=1
𝑥𝑖 × 𝖯𝗄𝗁(ℎ(𝑡𝑖)) + 𝖯𝗄𝗁(𝐸(𝑞))

⎞
⎟
⎟
⎠

∈ 𝐶
⎤⎥⎥⎦

.

Concluding the proof of Lemma 54, a word 𝑤 ∈ 𝐿(𝐴 , 𝐶) iff 𝑤 ∈ 𝐿(𝐴) and the
Parikh image of the only path labeled 𝑤 in 𝖱𝗎𝗇(𝐴) is in 𝐶 , that is iff 𝑤 ∈ 𝐿(𝐴) and
the Parikh image of the only path labeled𝑤 in𝖱𝗎𝗇(𝐴) is in𝐶 , that is iff𝑤 ∈ 𝐿(𝐴, 𝐶).

▶ Proposition 56. ℒUnCA is closed under union.

Proof. We start with a simple fact about UnCA:

Fact 57. For (𝐴, 𝐶) an UnCA over Σ, there is an UnCA (𝐴 , 𝐶) with the same
language with 𝐿(𝐴) = Σ∗.

Proof. Let (𝐴, 𝐶) be an UnCA with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) and let 𝐴 be a determin-
istic automaton for 𝐿(𝐴), with 𝐴 = (𝑄 , Σ, 𝛿 , 𝑞0, 𝐹). We suppose, without loss
of generality, that 𝑄 ∩ 𝑄 = ∅. Now let 𝑞 /∈ 𝑄 ∪ 𝑄 , 𝑡1 = 𝑞 .. 𝜀. 𝑞0, 𝑡2 = 𝑞 .. 𝜀. 𝑞0,
and define 𝐴 as:

𝐴 = (𝑄 ∪ 𝑄 ∪ {𝑞}, Σ, 𝛿 ∪ 𝛿 ∪ {𝑡1, 𝑡2}, 𝑞, 𝐹 ∪ 𝐹) .

97

Paper III – Unambiguous Constrained Automata

Clearly 𝐿(𝐴) = Σ∗. We show that 𝐴 is unambiguous. Suppose 𝑤 ∈ 𝐿(𝐴),
then there is a path 𝑡 ⋅ 𝜋 in 𝖱𝗎𝗇(𝐴) with label 𝑤, and with 𝑡 ∈ {𝑡1, 𝑡2}. If 𝑡 = 𝑡1,
then 𝜋 ∈ 𝖱𝗎𝗇(𝐴), and thus no other path in 𝖱𝗎𝗇(𝐴) starts with 𝑡1 and has label
𝜇(𝑡 ⋅ 𝜋), by the unambiguity of 𝐴. Likewise, if 𝑡 = 𝑡2, then 𝜋 ∈ 𝖱𝗎𝗇(𝐴), and thus
no other path in 𝖱𝗎𝗇(𝐴) starts with 𝑡2 and has label 𝜇(𝑡 ⋅ 𝜋), by the determinism
of 𝐴 . Further, if 𝑡 ⋅ 𝜋 and 𝑡 ⋅ 𝜋 are two paths of 𝖱𝗎𝗇(𝐴) with the same label
with 𝑡 ≠ 𝑡 , then 𝜇(𝜋) = 𝜇(𝜋) is a word in both 𝐿(𝐴) and 𝐿(𝐴), a contradiction.
Thus 𝐴 is unambiguous.

Finally, we define 𝐷 to check whether 𝑡1 or 𝑡2 has been taken, and in the former
case check if the rest of the path has its Parikh image in 𝐶 , while in the latter case
reject. In symbols, with the transitions of 𝐴 ordered so that 𝑡1, 𝑡2 come first then
the transitions of 𝐴 then those of 𝐴 :

(𝑥1, 𝑥2, 𝑦1, 𝑦2, … , 𝑦|𝛿|, …) ∈ 𝐷 ⇔ 𝑥1 = 1 ∧ (𝑦1, 𝑦2, … , 𝑦|𝛿|) ∈ 𝐶 .

Thus the Parikh image of a path in 𝖱𝗎𝗇(𝐴) is accepted by 𝐷 iff the path started
with 𝑡1 and the rest of the path is an accepting path in 𝐴 whose Parikh image is
in 𝐶; i.e., 𝐿(𝐴 , 𝐷) = 𝐿(𝐴, 𝐶).

Let (𝐴, 𝐶) and (𝐵, 𝐷) be two UnCA over the same alphabet Σ, and suppose,
by Fact 57 followed by Lemma 54, that 𝐿(𝐴) = 𝐿(𝐵) = Σ∗ and that neither
𝐴 nor 𝐵 has a transition labeled 𝜀. Write 𝐴 = (𝑄𝐴, Σ, 𝛿𝐴, 𝑞0,𝐴, 𝐹𝐴) and 𝐵 =
(𝑄𝐵 , Σ, 𝛿𝐵 , 𝑞0,𝐵 , 𝐹𝐵), then define 𝐴 × 𝐵 as the automaton:

𝐴 × 𝐵 = (𝑄𝐴 × 𝑄𝐵 , Σ, 𝛿𝐴×𝐵 , (𝑞0,𝐴, 𝑞0,𝐵), 𝐹𝐴 × 𝐹𝐵) ,
where 𝛿𝐴×𝐵 = {(𝑝, 𝑞) .. 𝑎. (𝑝 , 𝑞) | 𝑝 .. 𝑎. 𝑝 ∈ 𝛿𝐴 ∧ 𝑞 .. 𝑎. 𝑞 ∈ 𝛿𝐵} .

Now this standard construction is such that a path is accepting in 𝐴 × 𝐵 iff the paths
it traces in 𝐴 and 𝐵 are both accepting. More precisely, define the two morphisms
𝑝𝐴 ∶ 𝛿∗

𝐴×𝐵 → 𝛿∗
𝐴 and 𝑝𝐵 ∶ 𝛿∗

𝐴×𝐵 → 𝛿∗
𝐵 by 𝑝𝐴((𝑝, 𝑞) .. 𝑎. (𝑝 , 𝑞)) = 𝑝 .. 𝑎. 𝑝 and

𝑝𝐵((𝑝, 𝑞) .. 𝑎. (𝑝 , 𝑞)) = 𝑞 .. 𝑎. 𝑞 . Then the accepting paths 𝜋 of 𝐴 × 𝐵 are the paths
such that 𝑝𝐴(𝜋) ∈ 𝖱𝗎𝗇(𝐴), 𝑝𝐵(𝜋) ∈ 𝖱𝗎𝗇(𝐵), and both paths have the same label. As
for any word 𝑤 ∈ Σ∗ there is exactly one accepting path labeled 𝑤 in both 𝖱𝗎𝗇(𝐴)
and 𝖱𝗎𝗇(𝐵), there is exactly one accepting path labeled 𝑤 in 𝖱𝗎𝗇(𝐴 × 𝐵), hence
𝐴 × 𝐵 is unambiguous.

Now from the Parikh image of a path on 𝐴×𝐵, we may retrieve the Parikh images
of the paths it traces in 𝐴 and 𝐵, then force that either the former is in 𝐶 or the latter

98

2. Closure properties and expressiveness of UnCA

is in 𝐷. Thus define 𝐸 as the semilinear set which contains 𝐳 ∈ ℕ|𝛿𝐴×𝐵 | iff there
exist 𝐱 ∈ ℕ|𝛿𝐴| and 𝐲 ∈ ℕ|𝛿𝐵 | such that:

𝑡∈𝛿𝐴

𝑥𝑡 =
𝑡 ∈ 𝛿𝐴×𝐵
𝑝𝐴(𝑡) = 𝑡

𝑧𝑡 ∧
𝑡∈𝛿𝐵

𝑦𝑡 =
𝑡 ∈ 𝛿𝐴×𝐵
𝑝𝐵(𝑡) = 𝑡

𝑧𝑡 ∧ (𝐱 ∈ 𝐶 ∨ 𝐲 ∈ 𝐷) .

Then a word is in 𝐿(𝐴 × 𝐵, 𝐸) iff the (one and only) path it traces in 𝐴 has its Parikh
image in 𝐶 , or similarly for 𝐵 and 𝐷. In other words, 𝐿(𝐴 × 𝐵, 𝐸) = 𝐿(𝐴, 𝐶) ∪
𝐿(𝐵, 𝐷).

▶ Proposition 58. ℒUnCA is closed under complement and intersection.

Proof. Let (𝐴, 𝐶) be an UnCA. A word 𝑤 is not in 𝐿(𝐴, 𝐶) iff either 𝑤 /∈ 𝐿(𝐴) or
𝑤 ∈ 𝐿(𝐴) but the Parikh image of the only path for 𝑤 in 𝐴 is rejected by 𝐶 . Thus:

𝐿(𝐴, 𝐶) = 𝐿(𝐴) ∪ 𝐿(𝐴, 𝐶) .

Now 𝐿(𝐴) is regular, thus 𝐿(𝐴) ∈ ℒUnCA. Moreover, (𝐴, 𝐶) is an UnCA. Thus
𝐿(𝐴, 𝐶) is the union of the languages of two UnCA, and by Proposition 56, it is
in ℒUnCA. Closure under intersection follows from the closure under union and
complement.

For completeness, we add the two following closures:

▶ Proposition 59. ℒUnCA is closed under inverse morphisms and commutative clo-
sure.

Proof. (Inverse morphisms) Let (𝐴, 𝐶) be an UnCA over Σ and ℎ∶ Τ∗ → Σ∗ be
a language morphism. Write 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) and 𝑃(𝑞, 𝑢, 𝑞) the only path in 𝐴
from 𝑞 to 𝑞 labeled 𝑢 if it exists, and ⊥ otherwise. We set 𝖯𝖺𝗍𝗁(𝑞, 𝜀, 𝑞) = 𝜀 for any
𝑞. Define 𝐵 = (𝑄, Τ, 𝛿 , 𝑞0, 𝐹) by:

𝛿 = {𝑞 .. 𝑎. 𝑞 ∈ 𝑄 × Τ × 𝑄 | 𝑃(𝑞, ℎ(𝑎), 𝑞) ≠ ⊥} .

Now 𝐵 is unambiguous as 𝐴 is. Define 𝐶 ⊆ ℕ|𝛿 | by:

𝐱 ∈ 𝐶 ⇔
𝑡=𝑞 .. 𝑎. 𝑞 ∈𝛿

𝑥𝑡 × 𝖯𝗄𝗁(𝑃(𝑞, ℎ(𝑎), 𝑞)) ∈ 𝐶 .

It is clear that 𝐿(𝐵, 𝐶) = ℎ−1(𝐿(𝐴, 𝐶)), concluding the proof.

99

Paper III – Unambiguous Constrained Automata

(Commutative closure) It is shown in Paper I, Proposition 18, that the commu-
tative closure of a language in ℒCA is in ℒDetCA, and thus in ℒUnCA.

Note that ℒDetCA is not closed under reversal, as {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 1} is not in
ℒDetCA while its reversal is (see Paper I). Thus it is a curiosity, especially for a class
described by a deterministic model (see the forthcoming Theorem 84), that we have:

▶ Proposition 60. ℒUnCA is closed under reversal.

Proof. Let (𝐴, 𝐶) be an UnCA. Let 𝐵 be the 𝜀-automaton 𝐴 in which a fresh state 𝑞f
is set to be the only final state, and with a transition from each former final state to 𝑞f
labeled 𝜀. Clearly, 𝐵 is unambiguous. Adjust 𝐶 into 𝐶 so that the added transitions
in 𝐵 do not affect the acceptance of a word, i.e., 𝐿(𝐵, 𝐶) = 𝐿(𝐴, 𝐶). Then define
𝐷 as the 𝜀-automaton 𝐵 in which every transition is reversed, i.e., 𝑞 .. 𝑎. 𝑞 is a
transition of 𝐵 iff 𝑞 .. 𝑎. 𝑞 is a transition of 𝐷; the order on the transition set of 𝐷
is the same as that of 𝐵. Additionally, set 𝑞f as the initial state and the former initial
state of 𝐵 as the only final state. Then 𝐷 is unambiguous: clearly, 𝖱𝗎𝗇(𝐵) is the
set of paths which are the reversal of paths in 𝖱𝗎𝗇(𝐷) and where each transition is
reversed, thus the accepting paths in 𝐷 labeled 𝑤 are the reversal of the accepting
paths in 𝐵 labeled 𝑤R. As 𝐵 is unambiguous, only one such path may exist, thus 𝐷
is unambiguous. Hence 𝐿(𝐷, 𝐶) = (𝐿(𝐵, 𝐶))R = (𝐿(𝐴, 𝐶))R.

We also note that the prefixes belonging to a CA language can be removed from
the language of an UnCA:

▶ Proposition 61. Let 𝐿1 ∈ ℒCA and 𝐿2 ∈ ℒUnCA. Then 𝐿−1
1 𝐿2 ∈ ℒUnCA.

Proof. Let (𝐴, 𝐶) be a CA, (𝐵, 𝐷) an UnCA, with 𝐴 = (𝑄𝐴, Σ, 𝛿𝐴, 𝑞0,𝐴, 𝐹𝐴) and
𝐵 = (𝑄𝐵 , Σ, 𝛿𝐵 , 𝑞0,𝐵 , 𝐹𝐵). We suppose, thanks to Lemma 54, that no transition of
𝐵 is labeled by 𝜀, and that each state of 𝐵 is reachable from 𝑞0,𝐵 and can reach a
final state. For 𝑞 ∈ 𝑄𝐵 , define 𝐵. 𝑞 (resp. 𝐵𝑞.) to be the 𝜀-automaton 𝐵 where the
initial state (resp. the only final state) is 𝑞, and note that 𝐵. 𝑞 is unambiguous, as any
path from 𝑞 to a final state can be prefixed with a path from 𝑞0,𝐵 to 𝑞 to make an
accepting path in 𝐵. We first show:

Fact 62. For any 𝑞𝐵 ∈ 𝑄𝐵 , the set 𝐸𝑞𝐵 = {(𝖯𝗄𝗁(𝜋), 𝖯𝗄𝗁(𝜌)) | 𝜋 ∈ 𝖱𝗎𝗇(𝐴) ∧ 𝜌 ∈
𝖱𝗎𝗇(𝐵𝑞𝐵 .) ∧ 𝜇𝐴(𝜋) = 𝜇𝐵(𝜌)} is effectively semilinear.

100

2. Closure properties and expressiveness of UnCA

Proof. Define the morphisms 𝑝𝐴 ∶ (𝛿𝐴 × 𝛿𝐵)∗ → 𝛿∗
𝐴 and 𝑝𝐵 ∶ (𝛿𝐴 × 𝛿𝐵)∗ → 𝛿∗

𝐵
by 𝑝𝐴((𝑡𝐴, 𝑡𝐵)) = 𝑡𝐴 and 𝑝𝐵((𝑡𝐴, 𝑡𝐵)) = 𝑡𝐵 . Next, let ⊥ be a symbol not in Σ,
and define the morphism ℎ∶ (𝛿𝐴 × 𝛿𝐵)∗ → (Σ ∪ {⊥})∗ by ℎ((𝑡𝐴, 𝑡𝐵)) = 𝜇𝐴(𝑡𝐴)
if 𝜇𝐴(𝑡𝐴) = 𝜇𝐵(𝑡𝐵) and ℎ((𝑡𝐴, 𝑡𝐵)) = ⊥ otherwise. Now let 𝑅 be the regular
language of the juxtapositions of accepting paths in 𝐴 and 𝐵𝑞𝐵 . :

𝑅 = {𝜋 ∈ (𝛿𝐴 × 𝛿𝐵)∗ | 𝑝𝐴(𝜋) ∈ 𝖱𝗎𝗇(𝐴) ∧ 𝑝𝐵(𝜋) ∈ 𝖱𝗎𝗇(𝐵𝑞𝐵 .)} .

Now let 𝐿 = ℎ−1(𝐿(𝐴) ∩ 𝐿(𝐵𝑞𝐵 .)) ∩ 𝑅, thus 𝐿 is the set of words 𝜋 over
(𝛿𝐴 × 𝛿𝐵) such that 𝑝𝐴(𝜋) ∈ 𝖱𝗎𝗇(𝐴), 𝑝𝐵(𝜋) ∈ 𝖱𝗎𝗇(𝐵𝑞𝐵 .), and those two paths
have the same label. Set an order on (𝛿𝐴 × 𝛿𝐵), and note that 𝖯𝗄𝗁(𝐿) is effectively
semilinear by Parikh’s theorem [Par66]. Then (𝐱, 𝐲) ∈ 𝐸𝑞𝑏 iff:

(∃𝐳 ∈ 𝖯𝗄𝗁(𝐿))
⎡
⎢
⎢⎣𝑡∈𝛿𝐴

⎛
⎜
⎜
⎝
𝑥𝑡 =

𝑡 ∈𝛿𝐵

𝑧(𝑡,𝑡)
⎞
⎟
⎟
⎠

∧
𝑡 ∈𝛿𝐵

⎛
⎜
⎜
⎝
𝑦𝑡 =

𝑡∈𝛿𝐴

𝑧(𝑡,𝑡)
⎞
⎟
⎟
⎠

⎤
⎥
⎥⎦

.

A word 𝑤 is in (𝐿(𝐴, 𝐶))−1𝐿(𝐵, 𝐷) iff there is a state 𝑞𝐵 ∈ 𝑄𝐵 and a word
𝑢 ∈ 𝐿(𝐴, 𝐶) such that 𝑢 ∈ 𝐿(𝐵𝑞𝐵 .), 𝑤 ∈ 𝐿(𝐵. 𝑞𝐵), and the Parikh image of one
(in fact, the only) path for 𝑢 in 𝐵𝑞𝐵 . concatenated with the path for 𝑤 in 𝐵. 𝑞𝐵 is in
𝐷. This is the case iff there is a state 𝑞𝐵 ∈ 𝑄𝐵 and a pair (𝐱, 𝐲) ∈ 𝐸𝑞𝐵 such that
𝐱 ∈ 𝐶 and the Parikh image 𝐳 of the only path in 𝐵. 𝑞𝐵 labeled 𝑤 plus 𝐲 is in 𝐷. In
symbols, a word 𝑤 is in (𝐿(𝐴, 𝐶))−1𝐿(𝐵, 𝐷) iff it is in:

𝑞𝐵∈𝑄𝐵

𝐿(𝐵. 𝑞𝐵 , {𝐳 | (∃(𝐱, 𝐲) ∈ 𝐸𝑞𝐵)[𝐱 ∈ 𝐶 ∧ 𝐲 + 𝐳 ∈ 𝐷]}) .

As ℒUnCA is closed under union (Proposition 56), this implies the result.

Remark. In the previous proof, if (𝐵, 𝐷) is a DetCA, then we obtain at the end a set
of DetCA, the union of the languages of which is (𝐿(𝐴, 𝐶))−1𝐿(𝐵, 𝐶). As ℒDetCA is
closed under union, this shows that ℒDetCA is also closed under left quotient. More-
over, if (𝐵, 𝐷) is an UnCA, then 𝐵𝑞. is unambiguous: if two accepting paths therein
have the same label, then there are two ways to get from 𝑞0,𝐵 to 𝑞 reading the same
word, and since a final state can be reached from 𝑞, the unambiguity of 𝐵 implies
that they are the same paths. Likewise, if (𝐵, 𝐷) is a DetCA, then 𝐵𝑞. is determinis-
tic. Thus a similar proof as the above shows that both ℒUnCA and ℒDetCA are closed
under right quotient — in the case of DetCA, this settles those questions left open

101

Paper III – Unambiguous Constrained Automata

in [KR02]. An alternative proof of the closure under right quotient of ℒUnCA is to note
that 𝐿1(𝐿2)−1 = ((𝐿R

2)−1𝐿R
1)R. Thus the closure of ℒUnCA under reversal (Proposi-

tion 60) and under left quotient (Proposition 61) implies that ℒUnCA is indeed closed
under right quotient.

We introduce an expressiveness lemma inspired by Lemma I.7:

▶ Lemma 63. Let 𝐿 ⊆ Σ∗ be in ℒCA. There exist 𝑝, ℓ ≥ 1 such that for any
𝑣0, 𝑣1, … , 𝑣ℓ ∈ Σ∗ and 𝑢1, 𝑢2, … , 𝑢ℓ ∈ Σ≥𝑝 such that 𝑣0𝑢1𝑣1 ⋯ 𝑢ℓ𝑣ℓ ∈ 𝐿, there
exist 1 ≤ 𝑖 < 𝑗 ≤ ℓ and a nonempty 𝑤 ∈ Σ∗ with |𝑤| ≤ 𝑝 such that:
(1). 𝑢𝑖 = 𝑢𝑖,1 ⋅ 𝑤 ⋅ 𝑢𝑖,2 and 𝑢𝑗 = 𝑢𝑗,1 ⋅ 𝑤 ⋅ 𝑢𝑗,2,
(2). 𝑣0𝑢1𝑣1 ⋯ (𝑢𝑖,1 ⋅ 𝑢𝑖,2)𝑣𝑖 ⋯ (𝑢𝑗,1 ⋅ 𝑤2 ⋅ 𝑢𝑗,2)𝑣𝑗 ⋯ 𝑢ℓ𝑣ℓ ∈ 𝐿,
(3). 𝑣0𝑢1𝑣1 ⋯ (𝑢𝑖,1 ⋅ 𝑤2 ⋅ 𝑢𝑖,2)𝑣𝑖 ⋯ (𝑢𝑗,1 ⋅ 𝑢𝑗,2)𝑣𝑗 ⋯ 𝑢ℓ𝑣ℓ ∈ 𝐿.

Proof. Let 𝐿 ⊆ Σ∗ be in ℒCA. There is a CA (𝐴, 𝐶) such that 𝐿 = 𝐿(𝐴, 𝐶). Fix 𝑝
to be the number of states in 𝐴 and ℓ to be the number of elementary cycles (i.e.,
cycles in which no state except the first occurs twice) in 𝐴. Let 𝑣0, 𝑢1, 𝑣1, … , 𝑢ℓ, 𝑣ℓ
as in the statement of the lemma. Then there is a path 𝜋 in 𝖱𝗎𝗇(𝐴) such that 𝜇(𝜋) =
𝑣0𝑢1𝑣1 ⋯ 𝑢ℓ𝑣ℓ and 𝖯𝗄𝗁(𝜋) ∈ 𝐶 . Write this path 𝜋 = 𝜌0𝜋1𝜌1 ⋯ 𝜋ℓ𝜌ℓ with, for all
𝑖, 𝜇(𝜌𝑖) = 𝑣𝑖 and 𝜇(𝜋𝑖) = 𝑢𝑖. Then, by the pigeonhole principle, there exist 𝑖 < 𝑗
such that 𝜋𝑖 and 𝜋𝑗 share the same elementary cycle, i.e., there is a nonempty cycle
𝛾 of size less than 𝑝 such that 𝜋𝑖 = 𝜋𝑖,1 ⋅ 𝛾 ⋅ 𝜋𝑖,2 and 𝜋𝑗 = 𝜋𝑗,1 ⋅ 𝛾 ⋅ 𝜋𝑗,2. This
implies that the two paths 𝜌0𝜋1𝜌1 ⋯ (𝜋𝑖,1 ⋅ 𝜋𝑖,2)𝜌𝑖 ⋯ (𝜋𝑗,1 ⋅ 𝛾2 ⋅ 𝜋𝑗,2)𝜌𝑗 ⋯ 𝜋ℓ𝜌ℓ and
𝜌0𝜋1𝜌1 ⋯ (𝜋𝑖,1 ⋅ 𝛾2 ⋅ 𝜋𝑖,2)𝜌𝑖 ⋯ (𝜋𝑗,1 ⋅ 𝜋𝑗,2)𝜌𝑗 ⋯ 𝜋ℓ𝜌ℓ are accepting paths of 𝐴 with a
Parikh image in 𝐶 . Thus their labels are in 𝐿, and that is the statement of the lemma.

The expressiveness lemma I.7 is akin to the case where all the 𝑣𝑖’s are of size
greater than 𝑝. Define:

𝑃1 = {𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑘 ∈ {⊏, ⊐}∗ | (∀𝑖)[|𝑤1𝑤2 ⋯ 𝑤𝑖|⊏ ≥ |𝑤1𝑤2 ⋯ 𝑤𝑖|⊐]} ,

as the prefixes of the semi-Dyck language with one set of parentheses. Then:

▶ Proposition 64. 𝑃1 /∈ ℒCA and 𝑃1 ∈ ℒCA ⧵ ℒUnCA.

Proof. (𝑃1 /∈ ℒCA.) We use Lemma 63. Suppose 𝑃1 ∈ ℒCA, and let 𝑝, ℓ be as in
Lemma 63. Define 𝑣0 = 𝜀 and for all 1 ≤ 𝑖 ≤ ℓ, 𝑢𝑖 = ⊏𝑝, 𝑣𝑖 = ⊐𝑝. Lemma 63 then
asserts that there is 1 ≤ 𝑘 ≤ 𝑝 such that 𝑢1𝑣1 ⋯ ⊏𝑝−𝑘⊐𝑝 ⋯ ⊏𝑝+𝑘⊐𝑝 ⋯ 𝑢ℓ𝑣ℓ ∈ 𝑃1, a
contradiction.

102

2. Closure properties and expressiveness of UnCA

(𝑃1 ∈ ℒCA.) We give a CA (𝐴, 𝐶) recognizing 𝑃1. The 𝜀-automaton guesses
a position, and the constraint set checks that, up to this position, the number of ⊏’s
read is less than the number of ⊐’s. The 𝜀-automaton 𝐴 is described by:

.....

⊏

.

⊐

. 𝜀.

⊏

.

⊐

The constraint set𝐶 checks that the loop labeled⊏ on the initial state occurs less than
the loop labeled ⊐ on the initial state. We leave the simple proof that 𝐿(𝐴, 𝐶) = 𝑃1.

(𝑃1 /∈ ℒUnCA.) This is a direct consequence of the closure under complement
of ℒUnCA (Proposition 56). Suppose 𝑃1 ∈ ℒUnCA, then 𝑃1 ∈ ℒUnCA, but ℒUnCA ⊆
ℒCA as an UnCA is a CA, thus 𝑃1 ∈ ℒCA, a contradiction.

▶ Theorem 65. ℒDetCA ⊊ ℒUnCA ⊊ ℒCA.

Proof. (ℒDetCA ⊊ ℒUnCA.) The inclusion follows from the fact that a deter-
ministic automaton is unambiguous, thus a DetCA is an UnCA. The strictness of
the inclusion is shown in Paper I: the language {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 1} is in
ℒUnCA ⧵ ℒDetCA. Additionally, we already hinted that ℒDetCA is not closed un-
der reversal while ℒUnCA is (Proposition 60), implying that the two classes differ.

(ℒUnCA ⊊ ℒCA.) We already noted that the inclusion is immediate, as anUnCA
is a CA. Its strictness comes from Proposition 64, or alternatively, from the fact that
ℒCA is not closed under complement while ℒUnCA is.

▶ Proposition 66. ℒUnCA is neither closed under concatenation with a regular lan-
guage, nor under length-preserving morphisms, nor under starring.

Proof. (Concatenation.) Let Σ = {⊏, ⊐}. The language 𝐿< = {𝑤 ∈ Σ∗ ∣ |𝑤|⊏ <
|𝑤|⊐} is in ℒDetCA and such that 𝑃1 = 𝐿<⋅Σ∗ /∈ ℒUnCA. Thus if ℒUnCA were closed
under concatenation, then 𝑃1 would be in ℒUnCA, contradicting Proposition 64.

(Length-preserving morphisms and starring.) Let Τ = {⊏, ⊐}, then 𝐿< ⋅ Τ∗ ∈
ℒUnCA. The length-preserving morphism ℎ∶ (Σ ∪ Τ)∗ → Σ∗ defined by ℎ(⊏) =
ℎ(⊏) = ⊏, ℎ(⊐) = ℎ(⊐) = ⊐ is such that ℎ(𝐿< ⋅ Τ∗) = 𝐿< ⋅ Σ∗ /∈ ℒUnCA. For

103

Paper III – Unambiguous Constrained Automata

starring, it is shown in Proposition I.18 that with 𝐿 = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} ∈ ℒDetCA,
𝐿∗ /∈ ℒCA ⊋ ℒUnCA.

3 UnCA and RBCM

RBCM: see Section 0.3.4, p. 16 It is known that one-way reversal-bounded counter machines (RBCM) [Iba78] are as
powerful as CA [KR03], while deterministic such machines (DetRBCM) are more
powerful than DetCA (see Paper I). In this section, we carry this study further by
showing that the expressive power of DetRBCM is incomparable with that of UnCA.

▶ Proposition 67. ℒDetRBCM and ℒUnCA are incomparable.

Proof. (ℒDetRBCM ⊈ ℒUnCA.) A DetRBCM can deterministically use extra infor-
mation provided in the input word to check for a certain property later in the input;
this is illustrated by:

𝐿 = {𝑎𝑛𝑤 | 𝑤 ∈ {⊏, ⊐}∗ ∧ |𝑤1𝑤2 ⋯ 𝑤𝑛|⊏ < |𝑤1𝑤2 ⋯ 𝑤𝑛|⊐} ∈ ℒDetRBCM .

Indeed, the DetRBCM starts by counting the number of 𝑎’s, then decrements this
counter while reading 𝑤 and counting the number of ⊏’s and ⊐’s. When the number
of 𝑎’s reaches zero, the machine checks whether the number of ⊏’s read so far is
strictly less than the number of ⊐’s read, and rejects iff it is not the case.

Suppose 𝐿 ∈ ℒUnCA. Proposition 61 then asserts that ({𝑎}∗)−1𝐿 ∩ {⊏, ⊐}∗ is in
ℒUnCA. But this latter language is 𝑃1 /∈ ℒUnCA (Proposition 64), a contradiction.

(ℒUnCA ⊈ ℒDetRBCM.) The language {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} is in ℒUnCA but
not in ℒDetRBCM (see Paper I).

4 Decision problems for UnCA

We recall the following decidability results, that hold equally well for UnCA:

▶ Proposition 68 ([KR03], Paper I). Given a CA, it is decidable whether its lan-
guage is empty, and whether its language is finite.

With the closure properties of ℒUnCA of Proposition 58, this implies:

104

4. Decision problems for UnCA

▶ Proposition 69. Given an UnCA, it is decidable whether its language is Σ∗. Given
two UnCA, it is decidable whether the language of the first is included in the language
of the second.

The rest of this section is devoted to the main technical result of our paper, namely
that it is decidable whether the language of an UnCA is regular. Our technique is in
two steps: we first show that it is decidable Bounded languages: see p. 6whether a bounded CA language (given
additionally a socle of the language) is regular (Lemma 72) then reduce the decision
in the general case to the decision with bounded CA languages.

▶ Definition 6 ([GS66a]). A set 𝐶 is unary if it is equal to a finite union of linear
sets, each period of each linear set having at most one nonzero coordinate.

▶ Lemma 70 ([GS66a, Theorem 1.3]). Let 𝐿 ⊆ 𝑤∗
1𝑤∗

2 ⋯ 𝑤∗
𝑛. The language 𝐿 is

regular iff 𝖨𝗍𝖾𝗋(𝑤1,𝑤2,…,𝑤𝑛)(𝐿) is unary.

▶ Lemma 71 ([GS66a, Section 3]). Given a semilinear set 𝐶 , it is decidable whether
𝐶 is unary.

▶ Lemma 72. Given a CA (𝐴, 𝐶) and words 𝑤1, 𝑤2, … , 𝑤𝑛 such that 𝐿(𝐴, 𝐶) is a
bounded language and (𝑤1, 𝑤2, … , 𝑤𝑛) is one of its socles, it is decidable whether
𝐿(𝐴, 𝐶) is regular.

Proof. Let (𝐴, 𝐶) be a CA with 𝐿(𝐴, 𝐶) ⊆ 𝑤∗
1𝑤∗

2 ⋯ 𝑤∗
𝑛. Let Τ be the set of fresh

symbols {𝑎1, 𝑎2, … , 𝑎𝑛} and define the morphism ℎ∶ Τ∗ → Σ∗ by ℎ(𝑎𝑖) = 𝑤𝑖 for
all 𝑖. Now let (𝐴 , 𝐶) be the CA with language ℎ−1(𝐿(𝐴, 𝐶)) ∩ 𝑎∗

1𝑎∗
2 ⋯ 𝑎∗

𝑛 obtained
by the (effective) closures of CA. Then for 𝐢 ∈ ℕ𝑛, 𝑎𝑖1

1 𝑎𝑖2
2 ⋯ 𝑎𝑖𝑛

𝑛 ∈ 𝐿(𝐴 , 𝐶) iff
𝑤𝑖1

1 𝑤𝑖2
2 ⋯ 𝑤𝑖𝑛

𝑛 ∈ 𝐿(𝐴, 𝐶). Hence:

𝖯𝗄𝗁(𝐿(𝐴 , 𝐶)) = 𝖨𝗍𝖾𝗋(𝑤1,𝑤2,…,𝑤𝑛)(𝐿(𝐴, 𝐶)) .

Now 𝖯𝗄𝗁(𝐿(𝐴 , 𝐶)) is a semilinear set that can be (effectively) obtained [Kar04,
Theorem 3.21], and we may thus check whether it is unary using Lemma 71. This
amounts to deciding, by Lemma 70, whether 𝐿(𝐴, 𝐶) is regular.

▶ Lemma 73. Let 𝐶 be unary. Then there exist 𝑠 ≥ 0 and 𝑝 ≥ 1 such that for any
𝑠 ≥ 0, 𝑝 ≥ 1, 𝐶 is the (finite) union of sets of the form [𝐱]𝑠+𝑠 ,𝑝𝑝 .

105

Paper III – Unambiguous Constrained Automata

Proof. Let 𝐶 = ⋃1≤𝑖≤ℓ(𝐚𝑖 + 𝐛𝑖,1 × ℕ + 𝐛𝑖,2 × ℕ + ⋯ + 𝐛𝑖,𝑘𝑖 × ℕ) ⊆ ℕ𝑑 , where each
𝑘𝑖 ≥ 0 and only one entry in any 𝐛𝑖,𝑚 is nonzero.

Let 𝑠 − 1 ∈ ℕ be the maximum entry of any 𝐚𝑖, 𝑝 be the least common multiple
of all the entries of all the 𝐛𝑖,𝑚, and 𝑠 ≥ 0, 𝑝 ≥ 1. For 𝐱 ∈ ℕ𝑑 , let 𝐱− be the only
element in [𝐱]𝑠+𝑠 ,𝑝𝑝 ∩{0, 1, … , 𝑠+𝑠 +𝑝𝑝 −1}𝑑 . We show that 𝐱 ∈ 𝐶 iff 𝐱− ∈ 𝐶 .

Let 𝐱 ∈ 𝐶 . For 1 ≤ 𝑚 ≤ 𝑑, if 𝑥𝑚 ≥ 𝑠 + 𝑠 + 𝑝𝑝 , then subtracting 𝑝𝑝 from
𝑥𝑚 yields another tuple in 𝐶 . As 𝐱− is obtained by this repeated process it is in 𝐶 .
Conversely, suppose 𝐱− ∈ 𝐶 . For 1 ≤ 𝑚 ≤ 𝑑, if 𝑥−

𝑚 ≥ 𝑠 + 𝑠 , then adding 𝑝𝑝 to
𝑥𝑚 yields another tuple in 𝐶 . As 𝑥𝑚 ≡𝑠+𝑠 ,𝑝𝑝 𝑥−

𝑚, 𝐱 is obtained by this repeated
process, thus 𝐱 ∈ 𝐶 .

Hence:

𝐶 =
𝐱∈𝐶∩{0,1,…,𝑠+𝑠 ,𝑝𝑝 }𝑑

[𝐱]𝑠+𝑠 ,𝑝𝑝 .

Remark. The converse of the previous lemma is true, but will not be needed in what
follows.

We continue with a lemma that allows us to focus on languages of paths:

▶ Lemma 74. The language of an UnCA (𝐴, 𝐶) is regular iff 𝖱𝗎𝗇(𝐴)↾𝐶 is regular.

Proof. First, suppose 𝖱𝗎𝗇(𝐴) ↾𝐶 is regular, for a CA (𝐴, 𝐶). As by definition
𝐿(𝐴, 𝐶) = 𝜇(𝖱𝗎𝗇(𝐴) ↾𝐶) and regular languages are closed under morphisms, we
have that 𝐿(𝐴, 𝐶) is regular. This part does not rely on unambiguity.

Second, consider an UnCA (𝐴, 𝐶). We remark that if an accepting path of 𝐴 is
labeled by a word in 𝐿(𝐴, 𝐶), then it is in 𝖱𝗎𝗇(𝐴)↾𝐶 (the converse is true of any
CA). Indeed, since a path labeled by a word 𝑤 in 𝐿(𝐴, 𝐶) is, by unambiguity, the
only path labeled 𝑤 in 𝖱𝗎𝗇(𝐴), it has its Parikh image in 𝐶 . In other words:

𝖱𝗎𝗇(𝐴)↾𝐶 = 𝜇−1(𝐿(𝐴, 𝐶)) ∩ 𝖱𝗎𝗇(𝐴) .

Now, as the class of regular languages is closed under inverse morphisms and inter-
section, if 𝐿(𝐴, 𝐶) is regular then 𝖱𝗎𝗇(𝐴)↾𝐶 is regular.

Remark. The inclusion 𝖱𝗎𝗇(𝐴)↾𝐶 ⊇ 𝜇−1(𝐿(𝐴, 𝐶)) ∩ 𝖱𝗎𝗇(𝐴) is crucial to the proof of
Lemma 74 and to the decidability of regularity for UnCA. Indeed, both this inclusion

106

4. Decision problems for UnCA

and Lemma 74 fail for CA — in fact, regularity is undecidable for CA (see Paper I).
For example, let 𝐴 be the automaton:

..𝑟.. 𝑠.

𝑎

. 𝑎.

𝑎

Next, define 𝐶 to constrain the two loops on 𝑟 and 𝑠 to occur the same number of
times. Then 𝐿(𝐴, 𝐶) = {𝑎2𝑛+1 | 𝑛 ∈ ℕ}, a regular language. But with 𝑡1, 𝑡2, 𝑡3 the
three transitions of 𝐴, from left to right, 𝖱𝗎𝗇(𝐴)↾𝐶 = {𝑡𝑛

1𝑡2𝑡𝑛
3 | 𝑛 ∈ ℕ}, a nonregular

language.

As 𝖱𝗎𝗇(𝐴) is effectively obtainable from 𝐴, we need only focus on the decidability
of the regularity of 𝖱𝗎𝗇(𝐴)↾𝐶 . We already noted in different expressiveness lemmata
for CA and DetCA (e.g., Lemma 63) that “moving a cycle” within a run affects neither
its being an accepting path, nor its Parikh image. Repeatedly moving the cycles to
the leftmost position in the run at which they can occur will be a key ingredient in the
following proof. This operation, in particular, will allow to convert the language of
runs in an 𝜀-automaton to a set of bounded languages, with the property that a path
is accepting iff the repeated moving of cycles leads to a path in one of the bounded
languages. We will then see that this moving can be done by a simple process which an
automaton can somewhat simulate. With the addition of restrictions (the ↾ operation),
we will see that the restriction of the language of runs is regular iff the restriction of
each of those bounded languages is regular. We then rely on Lemma 72 to decide
regularity.

▶ Theorem 75. It is decidable whether the language of an UnCA is regular.

Proof. Let (𝐴, 𝐶) be a UnCA with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Lemma 74 implies that we
need only show the decidability of the regularity of 𝑅 = 𝖱𝗎𝗇(𝐴)↾𝐶 .

We first formalize the discussion made before this theorem. In the following,
we use Latin letters 𝑏, 𝑢, 𝑣, 𝑤 to denote paths, and more generally words over 𝛿, as
we no longer consider words over Σ. We use the term cycle for nonempty paths
starting and ending in the same state and with no other state appearing twice, i.e.,
an elementary cycle in the underlying multigraph. Fix an ordering on the cycles of
𝐴: {𝑏1, 𝑏2, … , 𝑏ℓ} ⊆ 𝛿∗. Let 𝑆 be the set of initial paths in 𝐴, including the empty
path. For 𝑤 ∈ 𝑆, define 𝖲𝗍𝖺𝗍𝖾𝗌(𝑤) as the set of states visited by 𝑤. We see the
empty path as from and to 𝑞0, so that 𝖲𝗍𝖺𝗍𝖾𝗌(𝜀) = {𝑞0} and 𝖥𝗋𝗈𝗆(𝜀) = 𝖳𝗈(𝜀) = 𝑞0.

107

Paper III – Unambiguous Constrained Automata

Define 𝛼 ∶ 𝑆 → (𝑆 × ℕℓ) by 𝛼(𝜀) = (𝜀, 𝟎) and, for 𝑢 ⋅ 𝑡 ∈ 𝑆 where 𝑡 ∈ 𝛿 and
𝛼(𝑢) = (𝑣, 𝐱):

𝛼(𝑢 ⋅ 𝑡) =
⎧⎪
⎨
⎪⎩

(𝑣 , 𝐱 + 𝐞𝑖) if 𝑣 ⋅ 𝑡 = 𝑣 𝑏𝑖 ∧ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑏𝑖) ⊆ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣) ,
(𝑣 ⋅ 𝑡, 𝐱) otherwise .

Note that 𝛼 is well-defined and that, for any 𝑢 ∈ 𝑆, 𝛼(𝑢) = (𝑤, 𝐱) is such that 𝑤 is
indeed in 𝑆.

In words, applying 𝛼 removes most of the cycles in a path, and counts them.
Hence, if we see 𝛼(𝑢) = (𝑤, 𝐱) as the path 𝑤 in which 𝑏𝑖 is placed 𝑥𝑖 times on the
first occurrence of 𝖥𝗋𝗈𝗆(𝑏𝑖) in 𝑤, we may interpret the action of 𝛼 as “moving to
the left” each cycle read, while “removing their nesting.” Additionally, this path is
in 𝑅 iff 𝑢 is in 𝑅.

In order to make the preceding intuition formal, we define the different bounded
languages that represent 𝖱𝗎𝗇(𝐴) when the cycles are moved to the leftmost position
where they fit. First, for 𝑞 ∈ 𝑄, fix a compatible ordering on the cycles with 𝑞 as
their origin: {𝑏(𝑞,1), 𝑏(𝑞,2), … , 𝑏(𝑞,ℓ𝑞)}, i.e., if 𝑏𝑖 = 𝑏(𝑞,𝑖), 𝑏𝑗 = 𝑏(𝑞,𝑗), and 𝑖 < 𝑗 then
𝑖 < 𝑗 . We write, as usual, 𝐛𝑞 for (𝑏(𝑞,1), 𝑏(𝑞,2), … , 𝑏(𝑞,ℓ𝑞)). Define, for 𝑞 ∈ 𝑄,
the regular language 𝐵𝑞 = 𝑏∗

(𝑞,1)𝑏
∗
(𝑞,2) ⋯ 𝑏∗

(𝑞,ℓ𝑞). Now for 𝑤 ∈ 𝑆, let (𝑞0, 𝑞1, … , 𝑞𝑛)
be an ordering of 𝖲𝗍𝖺𝗍𝖾𝗌(𝑤) such that if 𝑞𝑖 is first met before 𝑞𝑗 in 𝑤, then 𝑖 <
𝑗 — that is, the 𝑞𝑖’s are ordered in their order of first appearance in 𝑤. Further,
let 1 = 𝑖0, 𝑖1, … , 𝑖𝑛 be the positions in 𝑤 of the first appearance of 𝑞0, 𝑞1, … , 𝑞𝑛,
respectively. Then we define the bounded regular language 𝐸𝑤 ⊆ 𝑆:

𝐸𝑤 = 𝐵𝑞0 ⋅ 𝑤[𝑖0,𝑖1−1] ⋅ 𝐵𝑞1 ⋅ 𝑤[𝑖1,𝑖2−1] ⋯ 𝐵𝑞𝑛 ⋅ 𝑤[𝑖𝑛,|𝑤|] ,

where 𝑤 = 𝑤1𝑤2 ⋯ 𝑤|𝑤| and 𝑤[𝑎,𝑏] = 𝑤𝑎𝑤𝑎+1 ⋯ 𝑤𝑏. In particular, 𝐸𝜀 = 𝐵𝑞0 . Let
𝐶𝑤 be the iteration set 𝖨𝗍𝖾𝗋(𝐛𝑞0 ,𝑤[𝑖0,𝑖1−1],…,𝐛𝑞𝑛 ,𝑤[𝑖𝑛,|𝑤|])(𝐸𝑤 ∩ 𝑅) and define 𝐼𝑤 using
𝐶𝑤 and focusing on the cycles, i.e., for 𝐱 ∈ ℕℓ, 𝐱 ∈ 𝐼𝑤 iff:

(𝐱𝑞0 , 1, 𝐱𝑞1 , 1, … , 𝐱𝑞𝑛 , 1) ∈ 𝐶𝑤 ∧ (∀𝑞 ∈ 𝑄 ⧵ {𝑞0, 𝑞1, … , 𝑞𝑛})[𝐱𝑞 = 𝟎] ,

where 𝐱𝑞 ∈ ℕℓ𝑞 , and 𝑥(𝑞,𝑖) is understood as the variable 𝑥𝑗 for which 𝑏𝑗 = 𝑏(𝑞,𝑖).
Note that if 𝐼𝑤 ≠ ∅, then 𝑤 ∈ 𝖱𝗎𝗇(𝐴). We are now ready to clarify the informal
discussion made before the theorem:

Fact 76. For all 𝑢 ∈ 𝑆, 𝑢 ∈ 𝑅 iff 𝛼(𝑢) ∈ {(𝑤, 𝐱) | 𝐱 ∈ 𝐼𝑤}.

108

4. Decision problems for UnCA

Proof. Let 𝑢 ∈ 𝑆 and write 𝛼(𝑢) = (𝑤, 𝐱). By induction on |𝑢|, we show that
(i). 𝖯𝗄𝗁(𝑢) = 𝖯𝗄𝗁(𝑤) + ∑𝑖 𝑥𝑖 × 𝖯𝗄𝗁(𝑏𝑖); (ii). 𝖳𝗈(𝑤) = 𝖳𝗈(𝑢); (iii). if 𝑥𝑖 ≠ 0 then
𝖥𝗋𝗈𝗆(𝑏𝑖) ∈ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑤). If |𝑢| = 0, this is clear. So let 𝑢 ⋅ 𝑡 ∈ 𝑆 such that 𝑡 ∈ 𝛿, and
write 𝛼(𝑢 ⋅ 𝑡) = (𝑤, 𝐱). Let 𝛼(𝑢) = (𝑣, 𝐲) which, by induction hypothesis, verifies
(i–iii).

Case 1: suppose 𝑣 ⋅ 𝑡 can be written 𝑣 𝑏𝑗 for some 𝑣 ∈ 𝑆, 1 ≤ 𝑗 ≤ ℓ, and
with 𝖲𝗍𝖺𝗍𝖾𝗌(𝑏𝑗) ⊆ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣). Then 𝑤 = 𝑣 and 𝐱 = 𝐲 + 𝐞𝑗 . Then (i) is verified, as
𝖯𝗄𝗁(𝑢⋅𝑡) = 𝖯𝗄𝗁(𝑢)+𝖯𝗄𝗁(𝑡) = 𝖯𝗄𝗁(𝑣)+∑𝑖 𝑦𝑖 ×𝖯𝗄𝗁(𝑏𝑖)+𝖯𝗄𝗁(𝑡) = 𝖯𝗄𝗁(𝑣)+∑𝑖 𝑥𝑖 ×
𝖯𝗄𝗁(𝑏𝑖). Also, (ii) is verified since 𝖳𝗈(𝑡) = 𝖳𝗈(𝑏𝑗) = 𝖳𝗈(𝑣), as 𝑣 𝑏𝑗 is a path and
𝑏𝑗 a cycle. Finally, (iii) is also verified since 𝖲𝗍𝖺𝗍𝖾𝗌(𝑏𝑗) ⊆ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣) implies
that 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣) = 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣 𝑏𝑗) = 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣 ⋅ 𝑡), which, by induction hypothesis, is
𝖲𝗍𝖺𝗍𝖾𝗌(𝑢 ⋅ 𝑡).

Case 2: suppose otherwise. Then 𝑤 = 𝑣 ⋅ 𝑡 and 𝐱 = 𝐲, and (i–iii) are satisfied
by induction hypothesis.

This concludes the proof by induction. Now define 𝑢 ∈ 𝑆 as follows. Start
with 𝑢 ← 𝑤. For each 𝑖 = 1, 2, … , ℓ, in that order, if 𝑥𝑖 ≠ 0, then add 𝑏𝑥𝑖

𝑖 at
the position in 𝑢 where 𝖥𝗋𝗈𝗆(𝑏𝑖) is first met — (iii) asserts that it is met at least
once. Then (ii) implies that 𝖳𝗈(𝑢) = 𝖳𝗈(𝑢). Moreover, (i) implies that 𝖯𝗄𝗁(𝑢) =
𝖯𝗄𝗁(𝑢). Thus 𝑢 ∈ 𝑅 iff 𝑢 ∈ 𝑅. Now note that thanks to the compatibility of the
different orderings of the cycles, 𝑢 ∈ 𝐸𝑤. Thus 𝑢 ∈ 𝑅 iff 𝑢 ∈ 𝐸𝑤 ∩ 𝑅, that is,
iff 𝐱 ∈ 𝐼𝑤.

If 𝑅 is regular, then any 𝐸𝑤 ∩ 𝑅 is regular. We will show, using the previous fact
as a decision procedure for 𝑅, that if all the 𝐸𝑤 ∩ 𝑅 are regular, then 𝑅 is regular.
The function 𝛼 gives a hint of an automaton for 𝑅; however, the “accepting set” of
Fact 76 clearly establishes that the state set is infinite. To circumvent this problem,
we show that we can consider only finite objects with the two following facts, the
second being a consequence of Lemma 70.

Fact 77. There is a computable finite set 𝑆fin such that any word 𝑤 appearing as
𝛼(𝑢) = (𝑤, ⋅) is in 𝑆fin.

Proof. We show that, for 𝑢 ∈ 𝑆, 𝛼(𝑢) = (𝑤, ⋅) is such that a cycle 𝑏𝑖 cannot appear
twice in 𝑤. This is shown by induction on |𝑢|. If |𝑢| = 0, then this is clearly true.
So let 𝑢 ⋅ 𝑡 ∈ 𝑆, with 𝑡 ∈ 𝛿. Let 𝛼(𝑢) = (𝑣, ⋅), where, by induction hypothesis, no
cycle is repeated in 𝑣. With 𝛼(𝑢 ⋅ 𝑡) = (𝑤, ⋅), note that 𝑤 is a prefix of 𝑣 ⋅ 𝑡. If 𝑣 ⋅ 𝑡
does not contain the same cycle twice, then we are done. So suppose 𝑣⋅ 𝑡 contains

109

Paper III – Unambiguous Constrained Automata

the same cycle 𝑏 twice. Then 𝑏 should appear at the end of 𝑣 ⋅ 𝑡, for otherwise,
the repeated 𝑏 cycles appear in 𝑣. Thus 𝑣 ⋅ 𝑡 = 𝑣 𝑏𝑣 𝑏 for some path 𝑣 , 𝑣 . In
this case, 𝖲𝗍𝖺𝗍𝖾𝗌(𝑏) ⊆ 𝖲𝗍𝖺𝗍𝖾𝗌(𝑣 𝑏𝑣), and thus 𝛼(𝑢 ⋅ 𝑡) = (𝑣 𝑏𝑣 , ⋅), and as 𝑣 𝑏𝑣
is a prefix of 𝑣, no cycle appears twice in it.

Now let 𝑤 ∈ 𝑆 of length greater than (ℓ + 1) × |𝑄|. Then each of the first
ℓ + 1 blocks of |𝑄| transitions of 𝑤 contain a cycle. Hence by the pigeonhole
principle, a cycle gets repeated in 𝑤. This implies, by the previous discussion,
that no 𝑢 ∈ 𝑆 is such that 𝛼(𝑢) = (𝑤, ⋅).

Fact 78. Suppose that for all 𝑤 ∈ 𝑆fin, 𝐸𝑤 ∩𝑅 is regular. There exist 𝑠 ≥ 0, 𝑝 ≥ 1
such that for any 𝐱 ∈ ℕℓ, 𝐱 ∈ 𝐼𝑤 iff [𝐱]𝑠,𝑝 ⊆ 𝐼𝑤.

Proof. Suppose that for all 𝑤 ∈ 𝑆fin, 𝐸𝑤 ∩ 𝑅 is regular. We show that each 𝐼𝑤,
𝑤 ∈ 𝑆fin, is the union of some [𝐱]𝑠,𝑝, implying the Fact. For any 𝑤 ∈ 𝑆fin, 𝐼𝑤
is a unary set by Lemma 70. By Lemma 73, there exist integers 𝑠𝑤 and 𝑝𝑤 such
that 𝐼𝑤 is a finite union of sets of the form [𝐱]𝑠𝑤,𝑝𝑤 . Now let 𝑠 = ∑𝑤∈𝑆fin 𝑠𝑤 and
𝑝 = ∏𝑤∈𝑆fin 𝑝𝑤. The same Lemma 73 then asserts that each 𝐼𝑤, 𝑤 ∈ 𝑆fin, can
be written as a finite union of sets of the form [𝐱]𝑠,𝑝.

Suppose that for all 𝑤 ∈ 𝑆fin, 𝐸𝑤 ∩ 𝑅 is regular, and let 𝑠, 𝑝 be given by Fact 78.
We define a deterministic automaton 𝐵 for 𝑅 by:

𝐵 = (𝑆fin × (ℕ|𝛿|/≡𝑠,𝑝), 𝛿, Δ, (𝜀, [𝟎]𝑠,𝑝), 𝑇) ,
Δ = {(𝑢, [𝐱]𝑠,𝑝) .. 𝑡. (𝑢 , [𝐱 + 𝐞]𝑠,𝑝) | 𝑢 ⋅ 𝑡 ∈ 𝑆 ∧ 𝛼(𝑢 ⋅ 𝑡) = (𝑢 , 𝐞)} ,
𝑇 = {(𝑤, [𝐱]𝑠,𝑝) | [𝐱]𝑠,𝑝 ⊆ 𝐼𝑤} .

The set Δ is well-defined as 𝐱 ≡𝑠,𝑝 𝐱 implies 𝐱 + 𝐞 ≡𝑠,𝑝 𝐱 + 𝐞. Also, for any word
𝑢 ∈ 𝑆 (and only for them) there is a path from the initial state labeled 𝑢.

Fact 79. Suppose that for all𝑤 ∈ 𝑆fin, 𝐸𝑤∩𝑅 is regular. Let 𝑢 ∈ 𝑆, 𝛼(𝑢) = (𝑤, 𝐱),
and Π be the initial path on 𝐵 labeled 𝑢. Then 𝖳𝗈(Π) = (𝑤, [𝐱]𝑠,𝑝).

Proof. This stems from the following property: if 𝑢 ⋅ 𝑡 ∈ 𝑆 with 𝑡 ∈ 𝛿, and if we
write 𝛼(𝑢) = (𝑣, 𝐱) and 𝛼(𝑣 ⋅ 𝑡) = (𝑣 , 𝐞), then 𝛼(𝑢 ⋅ 𝑡) = (𝑣 , 𝐱 + 𝐞).

We show the fact by induction on |𝑢|. If |𝑢| = 0 then this is clear. So let 𝑢⋅𝑡 ∈ 𝑆
with 𝑡 ∈ 𝛿. Let Π be the unique initial path on 𝐵 labeled 𝑢. With 𝛼(𝑢) = (𝑣, 𝐱),
we have, by induction hypothesis, that 𝖳𝗈(Π) = (𝑣, [𝐱]𝑠,𝑝). Write 𝛼(𝑣⋅𝑡) = (𝑣 , 𝐞),

110

5. A deterministic form of UnCA

then the ending state of the unique initial path on 𝐵 labeled 𝑢 ⋅ 𝑡 is (𝑣 , [𝐱 + 𝐞]𝑠,𝑝),
and as 𝛼(𝑢 ⋅ 𝑡) = (𝑣 , 𝐱 + 𝐞), this concludes the proof.

Let 𝑢 ∈ 𝑆 and 𝛼(𝑢) = (𝑤, 𝐱). Then 𝑢 ∈ 𝐿(𝐵) iff, by the Fact 79, (𝑤, [𝐱]𝑠,𝑝) ∈ 𝑇 ,
that is, iff [𝐱]𝑠,𝑝 ⊆ 𝐼𝑤. By Fact 78, this is the case iff 𝐱 ∈ 𝐼𝑤. By Fact 76, this is the
case iff 𝑢 ∈ 𝑅 ∩ 𝑆, i.e., iff 𝑢 ∈ 𝑅. Thus 𝐿(𝐵) = 𝑅 and 𝑅 is regular.

We now conclude the proof of Theorem 75. As 𝑅 is regular iff all the 𝐸𝑤 ∩ 𝑅 are
regular, for 𝑤 ∈ 𝑆fin, it is sufficient to check whether the latter part is true. Now,
for 𝑤 ∈ 𝑆fin, we can construct a CA for 𝐸𝑤 ∩ 𝑅 and we know a socle of 𝐸𝑤 ∩ 𝑅
(as we know a socle for 𝐸𝑤); hence Lemma 72 allows to check whether 𝐸𝑤 ∩ 𝑅 is
regular.

A DetCA is an UnCA; moreover, DetCA are effectively equivalent [KR03] to de-
terministic extended automata over (ℤ𝑘, +, 𝟎) (defined in [MS01]). Thus:

▶ Corollary 80. Given a DetCA or an extended automaton over (ℤ𝑘, +, 𝟎), it is de-
cidable whether its language is regular.

5 A deterministic form of UnCA

We present a deterministic model equivalent to UnCA. This model is a restriction of
the affine Parikh automaton and can be seen as a simple register automaton. As a
result of independent interest, we show that CA are equivalent to the nondeterministic
variant of this model, and that a seemingly more powerful model (so-called finite-
monoid affine Parikh automata of Paper II) is in fact equivalent to CA (resp. UnCA)
in its nondeterministic (resp. deterministic) form.

▶ Definition 7 (APA variants). An APA (𝐴, 𝑈, 𝐶) is said to be: APA: see p. 15; all the APA
here are ℕ-APA• Finite-monoid (FM-APA, FM-DetAPA) if ℳ(𝑈) is finite;

• Moving (M-APA, M-DetAPA) if for all transition 𝑡 of 𝐴, 𝑈𝑡 = (𝑀, 𝐯) is such that
𝑀 is a 0-1-matrix with exactly one 1 per row.

We will only consider finite-monoid and moving (Det)APA in the present work. We
write ℒFM-APA, ℒFM-DetAPA, ℒM-APA, and ℒM-DetAPA for the classes of languages
recognized by FM-APA, FM-DetAPA, M-APA, and M-DetAPA respectively.

Remark. An M-(Det)APA of dimension 𝑑 can be seen as a finite-state (deterministic)
register automaton with 𝑑 registers 𝑟1, 𝑟2, … , 𝑟𝑑 : each transition performs actions of

111

Paper III – Unambiguous Constrained Automata

the type 𝑟𝑖 ← 𝑟𝑗𝑖 + 𝑘𝑖, with 𝑘𝑖 ∈ ℕ, 1 ≤ 𝑗𝑖 ≤ 𝑑, for 1 ≤ 𝑖 ≤ 𝑑, and the device accepts
iff the underlying automaton accepts and the values of the registers at the end of the
computation belong to a prescribed semilinear set.

We first tackle the nondeterministic case, then focus on the deterministic one.

▶ Theorem 81. ℒCA = ℒM-APA = ℒFM-APA.

Proof. (ℒCA ⊆ ℒM-APA.) Given a CA (𝐴, 𝐶) where 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) and 𝛿 =
{𝑡1, 𝑡2, … , 𝑡𝑛}, we define an M-APA (𝐴, 𝑈, 𝐶) by setting, for all 𝑡𝑖 ∈ 𝛿, 𝑈𝑡𝑖 (𝐱) =
𝐱 + 𝖯𝗄𝗁(𝑡𝑖). For a path 𝜋 ∈ 𝛿∗, we have that 𝑈𝜋(𝟎) = 𝖯𝗄𝗁(𝜋). This implies that
𝐿(𝐴, 𝑈, 𝐶) = 𝜇({𝜋 ∈ 𝖱𝗎𝗇(𝐴) | 𝖯𝗄𝗁(𝜋) ∈ 𝐶}) = 𝐿(𝐴, 𝐶), and moreover, that
𝑈𝑡 = (𝑀, 𝐯) is such that 𝑀 is the identity matrix, thus (𝐴, 𝑈, 𝐶) is an M-APA.

(ℒM-APA ⊆ ℒFM-APA.) Composing 0-1-matrices with exactly one 1 per row re-
sults in the same type of matrices. Thus the multiplicative monoid ℳ(𝑈) of an
M-APA (𝐴, 𝑈, 𝐶) is finite, i.e., (𝐴, 𝑈, 𝐶) is an FM-APA.

(ℒFM-APA ⊆ ℒCA.) Let (𝐴, 𝑈, 𝐶) be an FM-APA with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). For
𝑡 ∈ 𝛿, wewrite𝑈𝑡 = (𝑀𝑡, 𝐯𝑡), and for 𝑡1𝑡2 ⋯ 𝑡𝑛 ∈ 𝛿+, we let𝑀𝑡1𝑡2⋯𝑡𝑛 = 𝑀𝑡𝑛 ⋯ 𝑀𝑡2 ⋅
𝑀𝑡1 . As it is consistent to do, we set 𝑀𝜀 = 𝐼𝑑, the identity matrix.

We show that 𝐿(𝐴, 𝑈, 𝐶) can be expressed as the union of the languages of a
finite number of CA, and that those CA are unambiguous if 𝐴 is deterministic. We
work in 3 steps. (1.) We start by devising a finite set of automata and show that
they recognize the runs 𝜋 on 𝐴 while “knowing” 𝑀𝜋 (Fact 82). (2.) We show that
this extra knowledge allows for the extraction of 𝑈𝜋(𝟎) when 𝜋 is read (Fact 83).
Accordingly, we design a semilinear set to constrain this extracted value by 𝐶 . (3.)
We conclude that replacing the labels 𝑡 of those CA by 𝜇𝐴(𝑡) gives a finite set of CA
recognizing 𝐿(𝐴, 𝑈, 𝐶). (We could have made this replacement directly within the
construction of Step 1 but felt that the proof is best presented taking this extra step.)

Step 1: Automata for the Paths of 𝐴. The simplest way to construct an automaton
for 𝖱𝗎𝗇(𝐴) is by replacing the label of each transition 𝑡 of 𝐴 by 𝑡 itself, i.e., we obtain
the automaton (𝑄, 𝛿, Δ, 𝑞0, 𝐹) where 𝑡 = 𝑞 .. 𝑎. 𝑞 ∈ 𝛿 ⇔ 𝑞 .. 𝑡. 𝑞 ∈ Δ. This is the
first idea of the present construction. The second idea is that we want, when in a
state 𝑞, all the possible 𝑀𝜋’s for 𝜋 accepted from 𝑞 to be the same. We will see in
Step 2 that this allows for the extraction of the values of 𝑈 .

Write ℳ = ℳ(𝑈). We define, for 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ:

𝐵. (𝑞,𝑀) = (𝑄 × ℳ, 𝛿, Δ, (𝑞, 𝑀), 𝐹 × {𝑀𝜀}) ,

112

5. A deterministic form of UnCA

where:

Δ = {(𝑞, 𝑀) .. 𝑡. (𝑞 , 𝑀) ∣ 𝑡 = 𝑞 .. 𝜇(𝑡). 𝑞 ∈ 𝛿 ∧ 𝑀 .𝑀𝑡 = 𝑀} .

It is important to note that even if 𝐴 is deterministic, 𝐵. (𝑞,𝑀) may not be determin-
istic. Indeed, let 𝑍 be the all-zeromatrix, and suppose that, for some 𝑡 ∈ 𝛿, 𝑀𝑡 = 𝑍.
Then any matrix 𝑀 verifies 𝑀 .𝑀𝑡 = 𝑍, thus from the state (𝖥𝗋𝗈𝗆(𝑡), 𝑍) there
is a transition labeled 𝑡 to any state (𝖳𝗈(𝑡), 𝑀) for 𝑀 ∈ ℳ. We now show that
these automata indeed recognize the paths 𝜋 in 𝐴, while “knowing” 𝑀𝜋 . In order to
produce a simple statement, write 𝐴. 𝑞 for 𝐴 where the initial state is set to 𝑞, then:

Fact 82. For any 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ, 𝐿(𝐵. (𝑞,𝑀)) = {𝜋 ∈ 𝖱𝗎𝗇(𝐴. 𝑞) ∣ 𝑀𝜋 = 𝑀}.
In particular, 𝖱𝗎𝗇(𝐴) = ⋃𝑀∈ℳ 𝐿(𝐵. (𝑞0,𝑀)).

Proof. By induction on |𝜋|, 𝜋 ∈ 𝛿∗. Let 𝐿(𝑞,𝑀) = {𝜋 ∈ 𝖱𝗎𝗇(𝐴. 𝑞) ∣ 𝑀𝜋 = 𝑀}.
Let 𝜋 = 𝜀. If 𝜋 ∈ 𝐿(𝐵. (𝑞,𝑀)), then (𝑞, 𝑀) is final in 𝐵. (𝑞,𝑀), i.e., 𝑞 ∈ 𝐹

and 𝑀 = 𝑀𝜀. The former implies that 𝜀 ∈ 𝖱𝗎𝗇(𝐴. 𝑞), and the latter that 𝑀𝜋 =
𝑀 , concluding the base case in that direction. Conversely, if 𝜋 ∈ 𝐿(𝑞,𝑀), then
𝑞 ∈ 𝐹 and 𝑀 = 𝑀𝜋 = 𝑀𝜀, showing that (𝑞, 𝑀) is final in 𝐵. (𝑞,𝑀), hence
𝜋 ∈ 𝐿(𝐵. (𝑞,𝑀)).

Let 𝜋 ∈ 𝛿∗ such that |𝜋| > 0 and write 𝜋 = 𝑡𝜌 with 𝑡 ∈ 𝛿 and 𝜌 ∈ 𝛿∗. Suppose
𝜋 ∈ 𝐿(𝐵. (𝑞,𝑀)), so that there is a transition (𝑞, 𝑀) .. 𝑡. (𝑞 , 𝑀) in Δ with 𝜌 in
𝐿(𝐵. (𝑞 ,𝑀)). By induction hypothesis, 𝑀 = 𝑀𝜌 and 𝜌 is either the empty
path, in which case 𝑞 ∈ 𝐹 , or 𝜌 is a path from 𝑞 to a state in 𝐹 . Moreover, by
construction 𝑀 = 𝑀 .𝑀𝑡, 𝑞 = 𝖥𝗋𝗈𝗆(𝑡), and 𝑞 = 𝖳𝗈(𝑡). Thus 𝑀 = 𝑀𝜌.𝑀𝑡 =
𝑀𝜋 and 𝜋 is a path from 𝑞 to a state in 𝐹 , i.e., 𝜋 ∈ 𝖱𝗎𝗇(𝐴. 𝑞). This concludes
this direction. Conversely, suppose 𝜋 ∈ 𝐿(𝑞,𝑀). Then 𝑡 is a transition from 𝑞,
and, as 𝑀 = 𝑀𝜋 = 𝑀𝜌.𝑀𝑡, the transition (𝑞, 𝑀) .. 𝑡. (𝖳𝗈(𝑡), 𝑀𝜌) is in Δ. As
𝜌 ∈ 𝖱𝗎𝗇(𝐴. 𝖳𝗈(𝑡)), by induction hypothesis 𝜌 ∈ 𝐿(𝐵. (𝖳𝗈(𝑡),𝑀𝜌)), and this implies
that 𝜋 ∈ 𝐿(𝐵. (𝑞,𝑀)).

Step 2: Retrieving 𝑈𝜋(𝟎). In this step, we argue that our previous construction
helps in retrieving the value of 𝑈𝜋(𝟎) when 𝜋 is read over some 𝐵. (𝑞,𝑀). The main
ingredient is the following simple property:

for 𝑡 ∈ 𝛿 and 𝜌 ∈ 𝛿∗, 𝑈𝑡𝜌(𝟎) = 𝑀𝜌.𝐯𝑡 + 𝑈𝜌(𝟎) . (5)

113

Paper III – Unambiguous Constrained Automata

We now show a property on paths over 𝐵. (𝑞,𝑀). To avoid confusion, elements of
Δ∗ will be written in capital letters (e.g., Π, Ρ — read “capital rho” — for paths
and 𝑇 for transitions). First, identify Δ with {𝑇1, 𝑇2, … , 𝑇𝑛}, and each 𝑇𝑖 with
(𝑞𝑖, 𝑀𝑖) .. 𝑡𝑖. (𝑞𝑖 , 𝑀𝑖); next, write 𝜇𝐵 for the 𝜇 function of one of the 𝐵. (𝑞,𝑀)’s —
this morphism does not depend on the choice of (𝑞, 𝑀). Then:

Fact 83. For any 𝑞 ∈ 𝑄, 𝑀 ∈ ℳ, and Π ∈ 𝖱𝗎𝗇(𝐵. (𝑞,𝑀)):

𝑈𝜇𝐵(Π)(𝟎) =
𝑛

𝑖=1
|Π|𝑇𝑖 × (𝑀𝑖 .𝐯𝑡𝑖) .

Proof. By induction on |Π|. Let 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ.
Let Π = 𝜀. Then 𝑈𝜇𝐵(Π)(𝟎) = 𝟎, and, likewise, the sum of the right-hand side

is zero.
Let Π ∈ 𝖱𝗎𝗇(𝐵. (𝑞,𝑀)) such that |Π| > 0 and write Π = 𝑇𝑗Ρ with 𝑇𝑗 ∈ Δ and

Ρ ∈ Δ∗. Write 𝜌 = 𝜇𝐵(Ρ). Then (5) asserts that:

𝑈𝜇𝐵(Π)(𝟎) = 𝑈𝑡𝑗 𝜌(𝟎) = 𝑀𝜌.𝐯𝑡𝑗 + 𝑈𝜌(𝟎) .

Now Ρ is an accepting path of 𝐵. (𝑞𝑗 ,𝑀𝑗), implying that 𝜌 ∈ 𝐿(𝐵. (𝑞𝑗 ,𝑀𝑗)). Fact 82
then says that 𝑀𝜌 is 𝑀𝑗 , hence:

𝑈𝜇𝐵(Π)(𝟎) = 𝑀𝑗 .𝐯𝑡𝑗 +
𝑛

𝑖=1
|Ρ|𝑇𝑖 × (𝑀𝑖 .𝐯𝑡𝑖) (by induction hypothesis)

=
𝑛

𝑖=1
|Π|𝑇𝑖 × (𝑀𝑖 .𝐯𝑡𝑖) .

Now define 𝐶 ⊆ ℕ𝑛 by (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐶 ⇔ ∑𝑛
𝑖=1 𝑥𝑖 × (𝑀𝑖 .𝐯𝑡𝑖) ∈ 𝐶 .

Fact 82 and Fact 83 imply that, for 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ:

𝐿(𝐵. (𝑞,𝑀), 𝐶) = {𝜋 ∈ 𝖱𝗎𝗇(𝐴. 𝑞) ∣ 𝑀𝜋 = 𝑀 ∧ 𝑈𝜋(𝟎) ∈ 𝐶} . (6)

Step 3: from Paths to their Labels. For 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ, define 𝐷. (𝑞,𝑀) to be
the automaton 𝐵. (𝑞,𝑀) where a transition labeled 𝑡 in 𝐵. (𝑞,𝑀) is relabeled 𝜇𝐴(𝑡) in
𝐷. (𝑞,𝑀). Equation (6) then implies:

𝐿(𝐷. (𝑞,𝑀), 𝐶) = {𝜇(𝜋) ∈ 𝖱𝗎𝗇(𝐴. 𝑞) ∣ 𝑀𝜋 = 𝑀 ∧ 𝑈𝜋(𝟎) ∈ 𝐶} .

114

5. A deterministic form of UnCA

Since 𝖱𝗎𝗇(𝐴) = ⋃𝑀∈ℳ 𝐵. (𝑞0,𝑀), we have:

𝐿(𝐴, 𝑈, 𝐶) =
𝑀∈ℳ

𝐿(𝐷. (𝑞0,𝑀), 𝐶) .

As ℳ is finite by hypothesis, 𝐿(𝐴, 𝑈, 𝐶) is the finite union of CA languages. The
closure of ℒCA under union [KR03] implies that 𝐿(𝐴, 𝑈, 𝐶) ∈ ℒCA.

▶ Theorem 84. ℒUnCA = ℒM-DetAPA = ℒFM-DetAPA.

Proof. (ℒUnCA ⊆ ℒM-DetAPA.) It is shown in Paper II, Lemma 48 that ℒUnCA ⊆
ℒFM-DetAPA.8 Therein, the remark is made that the matrices used to construct an
FM-DetAPA from a UnCA are 0-1-matrices with at most one 1 per row. It is easily
seen that we can use 0-1-matrices with exactly one 1 per row. Indeed, let (𝐴, 𝑈, 𝐶)
be an FM-DetAPA of dimension 𝑑, with 𝛿 the transition set of 𝐴, and for all 𝑡 ∈ 𝛿,
𝑈𝑡 = (𝑀, 𝐯) is such that 𝑀 is a 0-1-matrix with at most one 1 per row. Then define
(𝐴, 𝑈 , 𝐶) as an M-DetAPA of dimension 𝑑 + 1 with the same language as follows.
Let 𝑡 ∈ 𝛿 and 𝑈𝑡 = (𝑀, 𝐯), and let 𝐫𝑖 ∈ ℕ𝑑 , 1 ≤ 𝑖 ≤ 𝑑, be the 𝑖-th row of 𝑀 . Define
𝑀 ∈ ℕ(𝑑+1)×(𝑑+1) where the 𝑖-th row of 𝑀 , 1 ≤ 𝑖 ≤ 𝑑, is (𝐫𝑖, 0) if 𝐫𝑖 has a 1 and
𝐞𝑑+1 otherwise; and the 𝑑 + 1-th row of 𝑀 is 𝐞𝑑+1. We then let 𝑈𝑡 = (𝑀 , (𝐯, 0)).
Thus for a path 𝜋 in 𝐴, 𝑈𝜋(0𝑑+1) = (𝑈𝜋(0𝑑), 0). We accordingly set 𝐶 = 𝐶 × {0},
and thus 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴, 𝑈 , 𝐶), and (𝐴, 𝑈 , 𝐶) is an M-DetAPA.

(ℒM-DetAPA ⊆ ℒFM-DetAPA.) As in the proof of Theorem 81, an M-DetAPA is an
FM-DetAPA.

(ℒFM-DetAPA ⊆ ℒUnCA.) We add an extra step to the proof of the inclusion
ℒFM-APA ⊆ ℒCA of Theorem 81. Using the same notations, we show that if 𝐴
is deterministic, then the CA constructed are unambiguous. ℒUnCA being closed
under union (Proposition 56) this proves the inclusion.

Step 4: from APA Determinism to CA Unambiguity. Suppose that 𝐴 is determin-
istic. We argue that for any 𝑞 ∈ 𝑄 and 𝑀 ∈ ℳ, 𝐷. (𝑞,𝑀) is unambiguous. We show
by induction on the size of 𝑤 ∈ 𝐿(𝐷. (𝑞,𝑀)) that there is only one accepting path
labeled 𝑤 in 𝐷. (𝑞,𝑀). If 𝑤 = 𝜀, then 𝜀 is the only path labeled 𝑤 (recall that 𝐷. (𝑞,𝑀)

has no 𝜀-transition). If |𝑤| > 0, then write 𝑤 = 𝑎𝑣 where 𝑎 ∈ Σ and 𝑣 ∈ Σ∗. As
𝐴. 𝑞 is deterministic, there is only one 𝑡 labeling a transition leaving (𝑞, 𝑀) in 𝐵. (𝑞,𝑀)

8In Paper II, so-called constraint-deterministic CA are used instead of UnCA; it is easily seen that UnCA
are a special case of constraint-deterministic CA.

115

Paper III – Unambiguous Constrained Automata

with 𝜇𝐴(𝑡) = 𝑎. Thus the transitions labeled 𝑎 leaving (𝑞, 𝑀) in 𝐷. (𝑞,𝑀) are of the
form (𝑞, 𝑀𝜌.𝑀𝑡) .. 𝑎. (𝑞 , 𝑀𝜌) where 𝑀𝜌.𝑀𝑡 = 𝑀 and 𝑞 = 𝖳𝗈(𝑡). Now there is
only one path 𝜋 in 𝐴. 𝑞 recognizing 𝑣, implying that there is only one 𝑀 such that
𝑣 ∈ 𝐿(𝐷. (𝑞 ,𝑀)), in fact 𝑀 = 𝑀𝜋 . Hence only the transition (𝑞, 𝑀) .. 𝑎. (𝑞 , 𝑀)
can be taken to recognize 𝑤. The induction hypothesis then asserts that only one
accepting path from (𝑞 , 𝑀) is labeled 𝑣, thus only one accepting path from (𝑞, 𝑀)
is labeled 𝑤.

Remark. Theorems 81 and 84 are effective, in the sense that one can go from onemodel
to another following an algorithm. This implies in particular, from Theorem 75 that
regularity is decidable for FM-DetAPA; we note that it is not decidable for DetAPA
(see Paper I), which describes a class of languages strictly larger than that of UnCA
though expected to be incomparable with that of CA.

6 Conclusion

We showed that ℒUnCA is a class of languages that is closed under the Boolean op-
erations, inverse morphisms, commutative closure, reversal, and right and left quo-
tient, and that provably fails to be closed under concatenation with a regular language,
length-preserving morphisms, and starring. Further, the following problems are de-
cidable for ℒUnCA: emptiness, universality, finiteness, inclusion, and regularity. De-
ciding regularity for UnCA and DetCA is our main result.

We propose three future research avenues. First, the properties of UnCA indicate
its suitability for model-checking, and we could envisage real-world applications of
verification using UnCA. Second, we translated unambiguous CA to a natural model
of deterministic register automata; the close inspection of this translation can lead to
further advances in our understanding of unambiguity, in particular in the open prob-
lems dealing with unambiguous finite automata [Col12]. Third, we note that the clo-
sure properties of ℒUnCA imply that this class can be described by a natural algebraic
object (see [BKR11]). This will certainly help in linking UnCA to a first-order logic
framework, and thus to some Boolean circuit classes. Hence we hope that UnCA can
shed a new light on the classes of circuit complexity.

Acknowledgement

We thank Andreas Krebs for stimulating discussions and comments concerning this
work and the anonymous referees for their careful reading. The first author thanks
Benno Salwey and Dave Touchette for comments on early versions of this paper.

116

Discussion

The present paper gives a thorough study of the closure, decidability, and expressive-
ness properties of: constraint-deterministic CA (of Paper II), unambiguous CA, finite-
monoid DetAPA, and moving DetAPA, while showing that all these models express
the same languages.

The main technical result of this paper, the decidability of regularity, uses a tech-
nique to reduce the problem in the general case to the problemwith bounded languages,
which is usually easier to work with. This result was the starting point of this paper.
While formalizing this result in the context of DetCA, it occurred to us that the only
property needed for it to work was that of Lemma 74, i.e., that 𝐿(𝐴, 𝐶) is regular iff
𝖱𝗎𝗇(𝐴) ↾𝐶 is regular. Unambiguous CA then appeared to us as the model with the
largest expressive power verifying this property.

We note that we relied on the Dyck languages to prove separation of UnCA and
CA. It would feel more natural to separate those classes using expressiveness lemmata,
instead of closure properties. In particular, the language {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛} ⋅ {𝑎, 𝑏}∗

appears to be outside of ℒUnCA, and it would separate more accurately, or rather, more
intuitively, the two classes.

This paper did not rely on the definition of Parikh automata; however, we can
devise a definition for unambiguous Parikh automata. A Parikh automaton (𝐴, 𝐶) over
Σ is unambiguous if 𝐴 is unambiguous and for any word 𝑤 ∈ Σ∗, there is at most one
𝜔 ∈ 𝐿(𝐴) with Φ(𝜔) = 𝑤. It is easily seen that such unambiguous PA are equivalent
to UnCA, using arguments similar to Paper I, Theorem 6.

An interesting further model to study, as suggested by Andreas Krebs, is that of
a nondeterministic CA for which the Parikh image of at most one accepting path
per word belongs to the constraint set. Let us use call one-success (OneCA) those

Paper III – Unambiguous Constrained Automata

constrained automata, and write ℒOneCA for the class of languages they recognized.
Clearly, ℒUnCA ⊆ ℒOneCA. Now, this inclusion is strict, as the language:

𝐿 = {𝑎𝑛𝑤 | 𝑤 ∈ {⊏, ⊐}∗ ∧ |𝑤1𝑤2 ⋯ 𝑤𝑛|⊏ < |𝑤1𝑤2 ⋯ 𝑤𝑛|⊐} ,

of Proposition 67 is expressible by a OneCA, and is not expressible by UnCA. This
latter fact is proved in Proposition 67, while expressivity by OneCA is shown by the
following construction. Let 𝐴 be described by:

..1.. 2. 3.

𝑎

. 𝜀.

⊏

.

⊐

. 𝜀.

⊏

.

⊏

and define the set 𝐶 ⊆ ℕ7 to constrain the number of 𝑎’s read on state 1 to be the
number of ⊏’s and ⊐’s read on state 2; it should moreover check that the number of
⊏’s read on 2 is strictly smaller than the number of ⊐’s read there.

Now, it is clear that 𝐿(𝐴, 𝐶) = 𝐿. Also, this is a OneCA: the first nondeterministic
choice on 𝜀 can only be taken at the end of the 𝑎’s, and the only way to read the input
word that is accepted by 𝐶 is when the number of characters read on 2 is exactly the
number of 𝑎’s. Thus ℒUnCA ⊊ ℒOneCA.

On the other hand, we conjecture that ℒOneCA ⊊ ℒCA. Languages in ℒCA not
belonging to ℒOneCA would be languages with possibly multiple witnesses of mem-
bership (i.e., accepting splitting) for words; for instance, 𝑃1, where the word 𝑤 = ⊐⊐
has two witnesses of membership: the first position, and the second one, both positions
𝑖 verifying |𝑤1 ⋯ 𝑤𝑖|⊏ < |𝑤1 ⋯ 𝑤𝑖|⊐. The language {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} ⋅ {𝑎, 𝑏}∗

is another example.
Further, we note that this model does not verify Lemma 74. Of course, for any

OneCA (𝐴, 𝐶), if 𝖱𝗎𝗇(𝐴)↾𝐶 is regular, then 𝐿(𝐴, 𝐶) is regular — this is true of any
CA. Now the Remark appearing on p. 106 presents a CA (𝐴, 𝐶) with the property
that 𝐿(𝐴, 𝐶) is regular while 𝖱𝗎𝗇(𝐴)↾𝐶 is not: this CA is in fact a OneCA. However,
the proof that regularity is undecidable of CA (Proposition I.17) seems not to apply
for OneCA: it would require ℒOneCA to be closed under inverse rational transduction,
which is equivalent to being closed under morphisms, inverse morphisms, and inter-
sections with regular languages, and this would imply that ℒOneCA = ℒCA.

This leaves interesting questions for further study.

118

Discussion

Another natural model in the vein of unambiguity is the unambiguous APA (Un-
APA), i.e., APA (𝐴, 𝑈, 𝐶) where 𝐴 is unambiguous. We note that most closure proofs
of the present paper work equally well for UnAPA, showing:

▶ Proposition 85. The class of languages recognized by UnAPA is closed under the
Boolean operations and inverse morphisms.

The case of reversal is tackled in Paper IV, Corollary 96, and further study of this
model is done in Paper IV.

119

...

Paper IV

Algebra and Complexity Meet
Constrained Automata

MICHAËL CADILHAC1, ANDREAS KREBS2, AND PIERRE MCKENZIE1

In preparation

1: DIRO, Université de Montréal. The third author is supported by the Natural Sciences and Engineering
Research Council of Canada.
2: Wilhelm-Schickard-Institut, Universität Tübingen.

Presentation

When tackling decidability questions within a model of automata, one possible en-
deavor is to characterize the model using algebraic tools. In language theory, we
say that a language 𝐿 ⊆ Σ∗ is recognized by a monoid 𝑀 if there is a morphism
ℎ∶ Σ∗ → 𝑀 such that 𝐿 = ℎ−1(𝑆) for some 𝑆 ⊆ 𝑀 . In the 1960s, it had long been
known that the regular languages correspond to the languages recognized by finite
monoids, but the notion of recognizability only gained widespread acceptance after
the appearance of Schützenberger’s theorem (see [MP71, p. 99] for an historical ac-
count). Indeed, Schützenberger’s theorem, which states that the star-free languages
are those recognized by aperiodic monoids, provided the first example of an open de-
cidability question solved with algebraic tools — in this case, whether it is possible to
decide if a regular language is star-free.

Following this trend, our first goal with the present paper is to characterize classes
of languages recognized by CA and APA in an algebraic framework. However, the
classical theory is of no use when considering nonregular languages. For instance, the
smallest monoid recognizing {𝑤 | |𝑤|𝑎 = |𝑤|𝑏} is isomorphic to (ℤ, +) and already
this monoid recognizes undecidable languages. Instead, we turn to typed monoids,
an algebraic structure introduced by Krebs, Lange, and Reifferscheid [KLR07] pre-
cisely to get around this problem. It was our hope that this would help in showing
the decidability of regularity for DetCA, which we solved using different techniques
in Paper III.

Our second goal is to tackle the question of the separation of DetAPA and APA.
We take two paths to provide answers to this question. First, we consider separation
over the unary languages. Indeed, as the nonregular language {𝑎2𝑛 | 𝑛 ∈ ℕ} is in
ℒPA, showing that the only unary languages that DetAPA recognize are regular would

Paper IV – Algebra and Complexity Meet Constrained Automata

imply the above separation. In fact, this property of DetAPA does not hold: using a
characterization of DetAPA by means of rational power series, we show that there are
nonregular unary languages in ℒDetAPA. Second, we rely on the simulation of Turing
machines by APA of Paper I to show that, given natural computational complexity
assumptions, DetAPA and APA define distinct classes of languages. Along this latter
path, we show some new unconditional closure properties.

We use the typed variants of the wreath and block products in our characterizations.
For the sake of completeness, we now give the definitions of the unilateral and bilateral
semidirect products of monoids; these are central to the wreath and block product.
See [TT07] for a survey of the links between algebra and language theory pertaining
to our study, including the following definitions.

Let 𝑀 and 𝑁 be finite monoids. To distinguish the operation of 𝑀 and 𝑁 , we
denote the operation of 𝑀 as + and its identity element as 0 (although this operation is
not necessarily commutative) and the operation of 𝑁 implicitly and its identity element
as 1. A left action of 𝑁 on 𝑀 is a function mapping pairs (𝑛, 𝑚) ∈ 𝑁 × 𝑀 to 𝑛𝑚 ∈ 𝑀
and satisfying 𝑛(𝑚1 + 𝑚2) = 𝑛𝑚1 + 𝑛𝑚2, 𝑛1(𝑛2𝑚) = (𝑛1𝑛2)𝑚, 𝑛0 = 0 and 1𝑚 = 𝑚.
Right actions are defined symmetrically. If we have both a right and a left action of
𝑁 on 𝑀 that further satisfy 𝑛1(𝑚𝑛2) = (𝑛1𝑚)𝑛2, we define the bilateral semidirect
product 𝑀 ∗∗ 𝑁 as the monoid with elements in 𝑀 × 𝑁 and multiplication defined
as (𝑚1, 𝑛1)(𝑚2, 𝑛2) = (𝑚1𝑛2 + 𝑛1𝑚2, 𝑛1𝑛2). This operation is associative and (0, 1) acts
as an identity for it:

(𝑚1, 𝑛1)((𝑚2, 𝑛2)(𝑚3, 𝑛3)) = (𝑚1, 𝑛1)(𝑚2𝑛3 + 𝑛2𝑚3, 𝑛2𝑛3)
= (𝑚1𝑛2𝑛3 + 𝑛1𝑚2𝑛3 + 𝑛1𝑛2𝑚3, 𝑛1𝑛2𝑛3)
= (𝑚1𝑛2 + 𝑛1𝑚2, 𝑛1𝑛2)(𝑚3, 𝑛3)
= ((𝑚1, 𝑛1)(𝑚2, 𝑛2))(𝑚3, 𝑛3) ,

(0, 1)(𝑚, 𝑛) = (0𝑛 + 1𝑚, 1𝑛) = (𝑚, 𝑛) ,
(𝑚, 𝑛)(0, 1) = (𝑚1 + 𝑛0, 𝑛1) = (𝑚, 𝑛) .

Given only a left action, the unilateral semidirect product 𝑀∗𝑁 is the bilateral semidi-
rect product 𝑀 ∗∗ 𝑁 where the right action on 𝑀 is trivial (𝑚𝑛 = 𝑚).

Now, the fundamental property of the iterated multiplication is the following. Let
(𝑚1, 𝑛1), (𝑚2, 𝑛2), … , (𝑚𝑘, 𝑛𝑘) ∈ 𝑆 ∗∗ 𝑇 . Then:

𝑘

𝑖=1
(𝑚𝑖, 𝑛𝑖) =

⎛
⎜
⎜
⎝

𝑘

𝑖=1
(𝑛1 ⋯ 𝑛𝑖−1) ⋅ 𝑚𝑖 ⋅ (𝑛𝑖+1 ⋯ 𝑛𝑘), 𝑛1𝑛2 ⋯ 𝑛𝑘

⎞
⎟
⎟
⎠

.

124

Presentation

This is clear for 𝑘 = 1, taking (𝑛1 ⋯ 𝑛𝑘−1) to be 1. Now associativity allows us to
bracket the well-defined ∏𝑘

𝑖=1(𝑚𝑖, 𝑛𝑖) in the most favorable way, which in this case is to
write it as ∏𝑘−1

𝑖=1 (𝑚𝑖, 𝑛𝑖) (𝑚𝑘, 𝑛𝑘); then the induction step is direct from the definition.

Personal contribution. Most of the results on the typed monoid characterizations and
the conditional separations were worked out by Krebs and me during a stay at Tübin-
gen. Krebs remarked the link between DetAPA and weighted automata that appears in
a simplified form here. I formalized and wrote the proofs, with the help of McKenzie.
The paper is still in preparation.

125

Algebra and Complexity Meet
Constrained Automata

Abstract

We propose several algebraic characterizations of models related to the constrained
automaton, from which we derive expressiveness and complexity results. We also in-
vestigate how computational complexity assumptions help in solving the open problem
of separating deterministic and nondeterministic affine Parikh automata.

Introduction

The works of Büchi [Büc60] and Schützenberger [Sch65] unveiled the first of many
fascinating correspondences between formal language theory (and its models), alge-
bra, logic, and circuit complexity. The pursuit of such correspondences has led to
even more remarkable results, including separation and decidability properties (see,
e.g., [Str94]). In particular, it appears that an algebraic characterization of a model of
computation extracts the very essence of its abilities and limitations, which are then
described as a set of (pseudo)identities.

Constrained automata [KR03] were introduced in the context of model-checking
by Klaedtke and Rueß9 as a model whose expressive power lies between regular and
context-sensitive languages. AConstrained Automaton (CA) is given by an automaton
𝐴 and a semilinear set 𝐶; its language is the set of labels of the accepting paths 𝜋 of
𝐴 such that the Parikh image of 𝜋 is in 𝐶 . This model has been extended (Paper I)
to Affine Parikh Automata (APA). An APA is given by an automaton 𝐴, a function 𝑈

9In [KR03], the model under study is called Parikh automata. Constrained automata are but an effec-
tively equivalent model with an arguably simpler definition.

Paper IV – Algebra and Complexity Meet Constrained Automata

labeling the transitions of 𝐴 by affine functions, and a semilinear set 𝐶; its language is
the set of labels of the accepting paths 𝜋 of 𝐴 for which the successive composition of
the affine functions given by 𝑈 maps the all-zero vector to a vector in 𝐶 . In this paper,
we present an algebraic view on CA and APA, and place these models in their natural
complexity context.

However, in order to give an algebraic characterization of a class of nonregular lan-
guages, a careful extension to the classical algebraic theory of regular languages has
to be made. Indeed, in the classical framework, the syntactic monoid of the language
of words having more 𝑎’s than 𝑏’s is ℤ, but any unary language — even undecidable
ones — can be recognized by ℤ with a suitable accepting set. A solution to this prob-
lem, typed monoids, has been introduced by Krebs, Lange and Reifferscheid [KLR07].
These are (possibly infinite) monoids paired with a finite Boolean algebra of subsets
of the monoid called types; a language is recognized by a typed monoid if it is the in-
verse morphic image of a type. Using this framework, they characterized some circuit
complexity classes, and unveiled an algebra–circuits–logic equivalence. The intuition
given by the algebraic characterizations helped in showing separation results in some
logics [BKR11]. In our present work, we show that the framework of typed monoids is
also able to naturally characterize classes of languages coming from automata theory.
This has two main benefits. On the one hand, this provides logical and circuit char-
acterizations of some of our classes of automata, and on the other hand, this makes
available the tools of algebra to show additional results.

Themain results of this paper are threefold. First, we characterize deterministic and
unambiguous CA and APA using the theory of typed monoids, and deterministic APA
using rational power series. Second, we show that unambiguous CA correspond to a
natural logic, and deduce circuit complexity upper bounds for the class of languages
they recognize. Third, we investigate possible ways to separate deterministic APA and
APA by showing some closure properties of these models, some of them depending
on computational complexity assumptions.

Section 1 in this paper contains preliminaries. Section 3 investigates the typed
monoid characterizations and provides, as applications, a logical characterization of
unambiguous CA, and a closure property of deterministic and unambiguous APA.
Section 4 describes deterministic APA using power series and show a separation be-
tween deterministic APA and CA over unary languages. Section 5 gives conditional
separations of APA and deterministic APA, and shows some additional (non)closure
properties of deterministic APA and APA.

128

1. Preliminaries

1 Preliminaries

We write ℤ−
0 for the set of nonpositive integers. For a monoid 𝑀 , we write 𝑒𝑀 for the

identity element of 𝑀 . We let ℳℤ(𝑘), for 𝑘 ≥ 1, be the monoid of square matrices of
dimension 𝑘×𝑘 with values in ℤ and with the operation being the inverted matrix mul-
tiplication. That is, a morphism ℎ∶ {𝑎, 𝑏}∗ → ℳℤ(𝑘) is such that ℎ(𝑎𝑏) = ℎ(𝑏).ℎ(𝑎)
with . the usual matrix multiplication. We write Ψ𝑖 for the projection on the 𝑖-th com-
ponent.

Wreath and block products. Let 𝑆, 𝑇 be two monoids. The wreath product of 𝑆 and
𝑇 , written 𝑆 ≀ 𝑇 , is defined as the unilateral semidirect product of 𝑆𝑇 and 𝑇 , where
the left action of Uni/bi-lateral semidirect

product: see p. 124

𝑇 on 𝑆𝑇 is given by (𝑡 ⋅ 𝑓)(𝑡) = 𝑓(𝑡 𝑡), for 𝑓 ∶ 𝑇 → 𝑆 and 𝑡, 𝑡 ∈ 𝑇 .
The block product of 𝑆 and 𝑇 , written 𝑆□𝑇 , is defined as the bilateral semidirect
product of 𝑆𝑇×𝑇 and 𝑇 , where the right (resp. left) action of 𝑇 on 𝑆𝑇×𝑇 is given by
(𝑓 ⋅ 𝑡)(𝑡1, 𝑡2) = 𝑓(𝑡1, 𝑡𝑡2) (resp. (𝑡 ⋅ 𝑓)(𝑡1, 𝑡2) = 𝑓(𝑡1𝑡, 𝑡2)), for 𝑓 ∶ 𝑇 × 𝑇 → 𝑆 and
𝑡, 𝑡1, 𝑡2 ∈ 𝑇 .

Transition monoid. Let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be a complete deterministic automaton.
For 𝑎 ∈ Σ, define 𝑓𝑎 ∶ 𝑄 → 𝑄 by 𝑓𝑎(𝑞) = 𝑞 iff 𝑞 .. 𝑎. 𝑞 ∈ 𝛿. The transition monoid
𝑀 of 𝐴 is the closure under composition of the set {𝑓𝑎 | 𝑎 ∈ Σ}. The monoid 𝑀 acts
on 𝑄 naturally by 𝑞𝑚 = 𝑚(𝑞), 𝑚 ∈ 𝑀 , 𝑞 ∈ 𝑄. Write 𝜂 ∶ Σ∗ → 𝑀 for the canonical
surjective morphism associated, that is, the morphism defined by 𝜂(𝑎) = 𝑓𝑎, 𝑎 ∈ Σ.
Then 𝑞𝜂(𝑤) is the state reached by reading 𝑤 ∈ Σ∗ from the state 𝑞 ∈ 𝑄.

2 Two normal forms on CA and APA

We present several technical lemmata on CA and APA, that will help us in devising
concise proofs for the algebraic characterizations that follow. CA, APA: see pp. 14, 15; all

the APA here are ℕ-APARecall (e.g., [End72]) that for any semilinear set 𝐶 ⊆ ℤ𝑑 , there is a Boolean com-
bination of expressions of the form: ∑1≤𝑖≤𝑑 𝛼𝑖𝑥𝑖 > 𝑐 and ∑1≤𝑖≤𝑑 𝛼𝑖𝑥𝑖 ≡𝑝 𝑐, with
𝛼𝑖, 𝑐 ∈ ℤ and 𝑝 > 1, which is true iff (𝑥1, 𝑥2, … , 𝑥𝑑) ∈ 𝐶 . Note that the 𝛼𝑖 may be
zero. We define two notions which refine this point of view:

▶ Definition 8. We say that a semilinear set 𝐶 is modulo-free if it can be expressed
as a Boolean combination of expressions of the form ∑𝑖 𝛼𝑖𝑥𝑖 > 𝑐, for 𝛼𝑖 ∈ ℤ. We
say that 𝐶 is basic if it can further be expressed as a positive Boolean combination of
expressions of the form ∑𝑖 𝛼𝑖𝑥𝑖 > 0.

129

Paper IV – Algebra and Complexity Meet Constrained Automata

▶ Lemma 86. If 𝐶 ⊆ ℤ𝑑 is modulo-free, then for all 1 ≤ 𝑑 < 𝑑 there is a basic set
𝐵 ⊆ ℤ𝑑 such that for all 𝐱 ∈ ℤ𝑑 and 1 ≤ 𝑖 ≤ 𝑑 − 𝑑 :

(𝐱, 𝐞𝑖) ∈ 𝐵 ⇔ (𝐱, 𝐞𝑖) ∈ 𝐶 .

Proof. Let 𝐶 be expressed as a Boolean combination of expressions of the form
∑𝑖 𝛼𝑖𝑥𝑖 > 𝑐. Let the negations be pushed to the lowest level of the Boolean combi-
nation, now:

¬
𝑡

𝛼𝑡𝑥𝑡 > 𝑐 ∼
𝑖

𝛼𝑖𝑥𝑖 < 𝑐 + 1 ∼
𝑖

(−𝛼𝑖)𝑥𝑖 > −(𝑐 + 1) ,

thus we may suppose that 𝐶 is a positive Boolean combination. Now replace each
expression ∑𝑖 𝛼𝑖𝑥𝑖 > 𝑐 by ∑𝑖 𝛼𝑖 𝑥𝑖 > 𝑐 where 𝛼𝑖 = 𝛼𝑖 if 𝑖 ≤ 𝑑 and 𝛼𝑖 = 𝛼𝑖 − 𝑐
otherwise. Thus let 𝐱 ∈ ℤ𝑑 × {𝐞𝑖 | 1 ≤ 𝑖 ≤ 𝑑 − 𝑑 }. It holds that ∑𝑖 𝛼𝑖𝑥𝑖 > 𝑐
iff ∑𝑖 𝛼𝑖 𝑥𝑖 > 0, thus the set resulting from the replacement is a basic set with the
property of the statement of the lemma.

The first normal form concerns DetCA and UnCA:

▶ Lemma 87. Every DetCA (resp. UnCA) has the same language 𝐿 ⊆ Σ+ as another
DetCA (resp. UnCA) (𝐴, 𝐶) with 𝐿(𝐴) = Σ∗ and 𝐶 a basic set.

Proof. Let (𝐴, 𝐶) be a CA. Let 𝐶 be expressed as a Boolean combination of expres-
sions that use the relation symbols <, ≡𝑝, function symbol +, and constants from ℕ.
We first remove the ≡𝑝 relation symbols. Consider an expression in the definition of
𝐶 of the form ∑𝑡 𝛼𝑡 × 𝑥𝑡 ≡𝑝 𝑐, for 𝛼𝑡 ∈ ℤ, where the sum ranges over all transitions.
Then define 𝐴 to be 𝑝 copies 𝐴0, 𝐴1, …, 𝐴𝑝−1 of 𝐴, the initial state being that of
𝐴0, and the final states being the final states of all the 𝐴𝑖’s. On taking a transition
𝑡 of 𝐴 in the copy 𝐴𝑖, the automaton 𝐴 jumps to the copy 𝐴𝑖+𝛼𝑡 (mod 𝑝). Thus 𝐴
ends its computation in the copy 𝐴𝑐 iff the numbers 𝑥𝑡 of times each transition 𝑡 of
𝐴 has been taken in any copy are such that ∑𝑡 𝛼𝑡 × 𝑥𝑡 ≡𝑝 𝑐. Now, given 𝖯𝗄𝗁(𝜋)
for a path 𝜋, a basic set can check in which state 𝜋 ended (this is the only state en-
tered more often than exited, see, e.g., Paper III, Fact 55), thus the expression under
consideration can be replaced by an expression checking whether the path ended in
𝐴𝑐 . The other expressions are simply adjusted to be oblivious to the copies. By
induction, we may suppose that 𝐶 is thus defined without the relations ≡𝑝, i.e., that
𝐶 is modulo-free.

Thus let (𝐴, 𝐶) be a CA with 𝐶 modulo-free. We rely on Lemma 86 to turn 𝐶
into a basic set. Write 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), then define 𝐴 = (𝑄 ∪ {𝑠}, Σ, 𝛿 , 𝑠, 𝐹)

130

2. Two normal forms on CA and APA

where 𝑠 /∈ 𝑄, 𝛿 = 𝛿 ∪ 𝑇 with 𝑇 = {𝑠 .. 𝑎. 𝑞 | 𝑞0 .. 𝑎. 𝑞 ∈ 𝛿}. Order 𝛿 so that
the transitions of 𝑇 appear last. Now define 𝐶 as being 𝐶 where each expression
∑𝑡∈𝛿 𝛼𝑡𝑥𝑡 > 𝑐 is replaced by ∑𝑡∈𝛿 𝛼𝑡𝑥𝑡 > 0 where 𝛼𝑡 for 𝑡 = 𝑠 .. 𝑎. 𝑞 ∈ 𝑇 is 𝛼𝑞0 .. 𝑎. 𝑞 .
Clearly 𝐿(𝐴, 𝐶) = 𝐿(𝐴 , 𝐶). Now exactly one of the transitions in 𝑇 will be taken
in a nonempty run in 𝐴 , thus 𝐿(𝐴 , 𝐶) = 𝐿(𝐴, 𝐶 ∩ {𝐞𝑖 | 1 ≤ 𝑖 ≤ |𝑇|}), and by
Lemma 86, there is a basic set 𝐵 such that 𝐿(𝐴 , 𝐶) = 𝐿(𝐴 , 𝐵).

Note that all the operations made on the automaton part of the CA do not change
whether it is deterministic or unambiguous. We now make sure that the language of
the underlying automaton is Σ∗.

Let (𝐴, 𝐶) be a DetCA with 𝐶 basic. Following Karianto [Kar04], we can set
all the states of 𝐴 to be final if we tweak 𝐶 to check that the ending state of the
path is final in 𝐴. This is equivalent to checking which state was entered more
often than exited, which is expressed, for a state 𝑞 different from the initial state
as ∑𝑡∈𝑞− 𝑥𝑡 − ∑𝑡∈𝑞+ 𝑥𝑡 > 0, where 𝑞− (resp. 𝑞+) is the set of transitions going to
(resp. leaving) the state 𝑞. Thus the set 𝐾 of Parikh images of accepting paths in 𝐴
is basic, and we can replace 𝐶 by 𝐶 ∩ 𝐾 , a basic set.

For the UnCA case, this is shown in Paper III, Fact 57. Note that the modification
made to 𝐶 (which is essentially to replace it with 𝐶 × ℤ+) preserves the fact that the
constraint set is basic.

We also note the following simple fact:

▶ Lemma 88. For (𝐴, 𝐶1 ∩ 𝐶2) a DetCA or an UnCA it holds that:

𝐿(𝐴, 𝐶1 ∩ 𝐶2) = 𝐿(𝐴, 𝐶1) ∩ 𝐿(𝐴, 𝐶2) .

The same holds for ∪.

Proof. For ∪, this is true of DetCA, UnCA, and CA. For ∩, the inclusion from left
to right holds for the three models; the converse inclusion only holds for DetCA
and UnCA.

..

Let 𝐴 be the
nondeterministic automaton:

...... 𝑎.

𝑎

and 𝐶1 = 1
0 , 𝐶2 = 0

1 , then
𝐿(𝐴, 𝐶𝑖) = {𝑎}, 𝑖 = 1, 2, and
𝐿(𝐴, 𝐶1 ∩ 𝐶2) = ∅.

.

Example 17Let 𝑤 ∈ 𝐿(𝐴, 𝐶1) ∩ 𝐿(𝐴, 𝐶2) for 𝐴 a deterministic or unambiguous
automaton. Then there is only one accepting path 𝜋 in 𝐴 with label 𝑤, and thus
𝖯𝗄𝗁(𝜋) ∈ 𝐶1 ∩ 𝐶2, and in turn 𝑤 ∈ 𝐿(𝐴, 𝐶1 ∩ 𝐶2).

We show more in the context of APA to allow the forthcoming proofs of charac-
terization to translate smoothly from CA to APA. In the following, we consider that a
matrix 𝑀 ∈ ℳℤ(𝑘) is in a set 𝐶 ⊆ ℤ𝑘2 if the vector consisting of the columns of 𝑀
is in 𝐶 .

131

Paper IV – Algebra and Complexity Meet Constrained Automata

▶ Lemma 89. Let 𝐿 ⊆ Σ+ be in ℒDetAPA. There is a morphism ℎ∶ Σ∗ → ℳℤ(𝑘),
for some 𝑘, and a set 𝒵 ⊆ ℤ𝑘2

expressible as a Boolean combination of expressions
𝑥𝑖 > 0, such that 𝐿 = ℎ−1(𝒵).

Similarly, let 𝐿 ⊆ Σ+ be in ℒAPA (resp. in ℒUnAPA). There is an automaton (resp.
unambiguous automaton) 𝐴 with transition set 𝛿, a morphism ℎ∶ 𝛿∗ → ℳℤ(𝑘), for
some 𝑘, and a set 𝒵 ⊆ ℤ𝑘2

expressible as a Boolean combination of expressions
𝑥𝑖 > 0, such that 𝐿 = 𝜇𝐴(ℎ−1(𝒵) ∩ 𝖱𝗎𝗇(𝐴)).

Proof. Using Paper I, Lemma 21, then Paper I, Proposition 38, we obtain that for
any 𝐿 ⊆ Σ+ in ℒDetAPA, there is a morphism 𝑔 ∶ Σ∗ → ℳℤ(𝑛), for some 𝑛, a vector
𝐬 ∈ ℤ𝑘, and a modulo-free set 𝐶 such that:

𝐿 = {𝑤 | 𝑔(𝑤).𝐬 ∈ 𝐶} .

Similarly, using Paper I, Lemma 22, then Paper I, Lemma 21, we obtain that for
any 𝐿 ⊆ Σ+ in ℒAPA (resp. ℒUnAPA), there is an automaton (resp. unambiguous
automaton) 𝐴 with transition set 𝛿, a morphism 𝑔 ∶ 𝛿∗ → ℳℤ(𝑛), for some 𝑛, a
vector 𝐬 ∈ ℤ𝑘, and a modulo-free set 𝐶 such that:

𝐿 = 𝜇𝐴({𝜋 ∈ 𝖱𝗎𝗇(𝐴) | 𝑔(𝜋).𝐬 ∈ 𝐶}) .

The rest of this proof will focus on reaching the statement of the lemma for De-
tAPA; the proof is identical for UnAPA and APA, as 𝐴 is left unchanged.

We first show that we can turn 𝐶 into a basic set using Lemma 86. Extend 𝑔 to a
morphism 𝑔 ∶ Σ∗ → ℳℤ(𝑛 + 1) defined by:

𝑔 (𝑎) =
⎛
⎜
⎜
⎜
⎝

0
..𝑔(𝑎) ⋮

0 ⋯ 1

⎞
⎟
⎟
⎟
⎠

,

and let 𝐬 be the vector (𝐬, 1). Then for any nonempty path 𝜋 in 𝐴, 𝑔 (𝜋).𝐬 =
(𝑔(𝜋).𝐬, 1). Moreover, by Lemma 86, there is a basic set 𝐵 such that 𝐵 ∩ ℤ𝑛 × {1} =
𝐶 × {1}. Thus 𝑔(𝜋).𝐬 ∈ 𝐶 iff 𝑔 (𝜋).𝐬 ∈ 𝐵.

Thus we suppose that 𝐶 is a basic set. We show that we can turn 𝐶 into a set of
dimension 𝑛 expressible as a Boolean combination of expressions 𝑥𝑖 > 0. Suppose
∑𝑖 𝛼𝑖𝑥𝑖 > 0 appears in the expression defining 𝐶 . We extend 𝑔 so that this sum
is computed by the matrices. For 𝑎 ∈ Σ, write the lines of 𝑔(𝑎) as 𝐿1, 𝐿2, … , 𝐿𝑛.
Then define 𝑔 ∶ Σ∗ → ℳℤ(𝑛 + 1) as the morphism mapping 𝑎 ∈ Σ to the matrix
consisting of lines (𝐿1, 0), (𝐿2, 0), … , (𝐿𝑛, 0), (∑𝑖≤𝑛 𝛼𝑖𝐿𝑖, 0). This is such that, for

132

3. Finitely typed monoids characterizations

𝑤 ∈ Σ∗, the last component of 𝑔(𝑤).(𝐬, 0) is indeed the sum under consideration.
Thus the formula ∑𝑖 𝛼𝑖𝑥𝑖 > 0 can be replaced by 𝑥𝑛+1 > 0. Proceeding inductively
results in a set 𝐶 ⊆ ℤ𝑛 expressible as a Boolean combination of expressions of the
form 𝑥𝑖 > 0.

Thus we suppose that 𝐶 is expressible as a Boolean combination of expressions
𝑥𝑖 > 0. We show that the product 𝑔(𝑤).𝐬 can be computed within the matrices. For
𝑎 ∈ Σ, write the lines of 𝑔(𝑎) as 𝐿1, 𝐿2, … , 𝐿𝑛, and define ℎ∶ Σ∗ → ℳℤ(𝑛 + 1) as
the morphismmapping 𝑎 ∈ Σ to the matrix consisting of lines (𝐿1, 𝐿1.𝐬), (𝐿2, 𝐿2.𝐬),
…, (𝐿𝑛, 𝐿𝑛.𝐬), 𝟎. Then for 𝑤 ∈ Σ+, we have that ℎ(𝑤).𝐞𝑛+1 = (𝑔(𝑤).𝐬, 0). Thus let
𝒵 ⊆ ℤ(𝑛+1)×(𝑛+1) be defined as 𝒵 = ℤ𝑛×(𝑛+1) × 𝐶 × ℤ. Then 𝑔(𝑤).𝐬 ∈ 𝐶 iff
ℎ(𝑤) ∈ 𝒵 , proving the lemma.

3 Finitely typed monoids characterizations

In this section we characterize DetCA, UnCA, DetAPA, and UnAPA using the theory
of (finitely) typed monoids [KLR07].

▶ Definition 9 (Typed monoid [KLR07]). A typed monoid is a pair (𝑆, 𝔖) where
𝑆 is a finitely generated monoid and 𝔖 is a finite Boolean algebra of subsets of 𝑆
whose elements are called types. We write (𝑆, {𝒮1, 𝒮2, … , 𝒮𝑛}) for the typed monoid
(𝑆, 𝔖) where 𝔖 is generated by the 𝒮𝑖’s. If 𝑛 = 1, we simply write (𝑆, 𝒮1). For two
typed monoids (𝑀, 𝔐), (𝑁, 𝔑), their Cartesian product (𝑆, 𝔖) = (𝑀, 𝔐) × (𝑁, 𝔑) is
defined by 𝑆 = 𝑀 × 𝑁 , and 𝔖 is the Boolean algebra generated by {ℳ × 𝒩 | ℳ ∈
𝔐 ∧ 𝒩 ∈ 𝔑}.

We view a finite monoid 𝑀 as the typed monoid (𝑀, 2𝑀), and write 𝐌 for the
class of typed finite monoids.

▶ Definition 10 (Language recognition [KLR07]). A typed monoid (𝑆, 𝔖) recog-
nizes a language 𝐿 ⊆ Σ∗ if there is a morphism ℎ∶ Σ∗ → 𝑆 and a type 𝒮 ∈ 𝔖 such
that 𝐿 = ℎ−1(𝒮). We write 𝐻−1((𝑆, 𝔖)) for the class of languages, over any alphabet,
recognized by (𝑆, 𝔖).

The usual wreath product (resp. block product) of 𝑀 and 𝑁 , i.e., the unilateral
(resp. bilateral) semidirect product of 𝑀𝑁 (resp. 𝑀𝑁×𝑁) and 𝑁 , results, in the infi-
nite monoid case, in monoids with uncountably many elements, failing to fall within
the definition of typed monoid. Thus these products are restricted to type-respecting

133

Paper IV – Algebra and Complexity Meet Constrained Automata

functions, that is, functions that only depend on the type of their arguments (multiplied
by some constants):

▶ Definition 11 (Type-respecting [KLR07]). Let (𝑀, 𝔐) be a typed monoid and 𝑆
any set. A function 𝑓 ∶ 𝑀 × 𝑀 → 𝑆 is type-respecting if it has a finite image and for
each 𝑠 ∈ 𝑆, the set {(𝑚1, 𝑚2) | 𝑓(𝑚1, 𝑚2) = 𝑠} can be described by a finite Boolean
combination of conditions of the form 𝑚1.𝑐1 ∈ ℳ1, 𝑐2.𝑚2 ∈ ℳ2, 𝑚1.𝑐3.𝑚2 ∈ ℳ3,
where 𝑐1, 𝑐2, 𝑐3 ∈ 𝑀 are constants and ℳ1, ℳ2, ℳ3 ∈ 𝔐 are types. A function
𝑓 ∶ 𝑀 → 𝑆 is type-respecting if there is a type-respecting function 𝑓 ∶ 𝑀 × 𝑀 → 𝑆
such that for all 𝑚 ∈ 𝑀 , 𝑓(𝑚) = 𝑓 (𝑚, 𝑒𝑀).

Remark. We will seldom use the previous technical definition. In most of our cases,
the typed monoid (𝑀, 𝔐) will be finite (that is, 𝑀 is a finite monoid and 𝔐 is the
powerset of 𝑀); in this case, any function in 𝑆𝑀×𝑀 (or 𝑆𝑀) is type respecting, as
its value on (𝑚1, 𝑚2) depends only on whether 𝑚1 and 𝑚2 belong to types of the form
{𝑚}, for 𝑚 ∈ 𝑀 .

▶ Definition 12 (Block product [BKM07]). Let (𝑀, 𝔐), (𝑁, 𝔑) be typed monoids,
and let 𝑉2 be the set of all type-respecting functions from 𝑁 × 𝑁 to 𝑀 . The (finitely
typed) block product (𝑆, 𝔖) of (𝑀, 𝔐) and (𝑁, 𝔑), written (𝑀, 𝔐)□(𝑁, 𝔑), is such
that 𝑆 is the bilateral semidirect product 𝑉2 ∗∗𝑁 with the actions of the untyped block
product, and 𝔖 = {𝒮ℳ | ℳ ∈ 𝔐} where:

𝒮ℳ = {(𝑓, 𝑛) ∈ 𝑆 | 𝑓(𝑒𝑁 , 𝑒𝑁) ∈ ℳ} .

The primary focus of the theory of typed monoids was the algebraic characteriza-
tion of classes of circuit complexity, which are naturally closed under reversal. We
need a finer notion of product to characterize classes which are not closed under re-
versal, thus we naturally derive the following definition from the definitions of typed
block product and untyped wreath product:

▶ Definition 13 (Wreath product). Let (𝑀, 𝔐), (𝑁, 𝔑) be typed monoids, and let
𝑉1 be the set of all type-respecting functions from 𝑁 to 𝑀 . The (finitely typed) wreath
product (𝑆, 𝔖) of (𝑀, 𝔐) and (𝑁, 𝔑), written (𝑀, 𝔐) ≀ (𝑁, 𝔑), is such that 𝑆 is the
unilateral semidirect product 𝑉1 ∗ 𝑁 with the action of the untyped wreath product,
and 𝔖 = {𝒮ℳ | ℳ ∈ 𝔐} where:

𝒮ℳ = {(𝑓, 𝑛) ∈ 𝑆 | 𝑓(𝑒𝑁) ∈ ℳ} .

Remark. The definitions of the typed block and wreath products are only slight mod-
ifications of those in the classical untyped case (see, e.g., [Str94]). In particular, the

134

3. Finitely typed monoids characterizations

fundamental property of the multiplication in both cases still holds: for typed monoids
(𝑀, 𝔐), (𝑁, 𝔑), and (𝑓𝑖, 𝑛𝑖) ∈ (𝑀, 𝔐) ≀ (𝑁, 𝔑), 𝑖 = 1, … , 𝑘:

𝑘

𝑖=1
(𝑓𝑖, 𝑛𝑖) =

⎛
⎜
⎜
⎝

𝑘

𝑖=1
(𝑛1 ⋯ 𝑛𝑖−1) ⋅ 𝑓𝑖, 𝑛1𝑛2 ⋯ 𝑛𝑘

⎞
⎟
⎟
⎠

,

where the sum of two functions is their pointwise product over 𝑀 . Similarly, if the
(𝑓𝑖, 𝑛𝑖)’s are in (𝑀, 𝔐)□(𝑁, 𝔑):

𝑘

𝑖=1
(𝑓𝑖, 𝑛𝑖) =

⎛
⎜
⎜
⎝

𝑘

𝑖=1
(𝑛1 ⋯ 𝑛𝑖−1) ⋅ 𝑓𝑖 ⋅ (𝑛𝑖+1 ⋯ 𝑛𝑘), 𝑛1𝑛2 ⋯ 𝑛𝑘

⎞
⎟
⎟
⎠

.

Also, we define the wreath product (resp. block product) of two sets of typed monoids
to be the set of typed monoids which are the wreath product (resp. block product) of a
typed monoid in the first set with a typed monoid in the second set.

Remark. Wewill frequently focus on languages which do not contain the empty word.
This is a technical simplification which introduces no loss of generality, as all our typed
monoid classes recognize {𝜀} and are closed under union.

Let 𝐙+ be the set of typed monoids {(ℤ, ℤ+)𝑘 | 𝑘 ≥ 1}.

▶ Theorem 90. The class of languages recognized by 𝐙+ ≀ 𝐌 is ℒDetCA. In symbols,
𝐻−1(𝐙+ ≀ 𝐌) = ℒDetCA.

Proof. (ℒDetCA ⊆ 𝐻−1(𝐙+ ≀ 𝐌)) We first show that 𝐻−1(𝐙+ ≀ 𝐌) is closed under
union and intersection. Let 𝐿1, 𝐿2 ∈ 𝐻−1(𝐙+ ≀ 𝐌) be two languages over Σ, that
is, for 𝑖 = 1, 2, there exist a finite monoid 𝑀𝑖, an integer 𝑘𝑖, a morphism ℎ𝑖 ∶ Σ∗ →
ℤ𝑘𝑖 ≀ 𝑀𝑖, and a type 𝒯𝑖 of (ℤ, ℤ+)𝑘𝑖 such that 𝐿𝑖 = ℎ−1

𝑖 (𝒯𝑖).

Consider the typed monoid (ℤ, ℤ+)𝑘1+𝑘2 ≀(𝑀1 ×𝑀2) ∈ 𝐙+ ≀𝐌. This monoid rec-
ognizes both the intersection and union of 𝐿1 and 𝐿2 as follows. Define ℎ∶ Σ∗ →
ℤ𝑘1+𝑘2 ≀ (𝑀1 × 𝑀2) by ℎ(𝑎) = (𝑓𝑎, (Ψ2(ℎ1(𝑎)), Ψ2(ℎ2(𝑎)))) where 𝑎 ∈ Σ and
𝑓𝑎((𝑚1, 𝑚2)) = ([Ψ1(ℎ1(𝑎))](𝑚1), [Ψ1(ℎ2(𝑎))](𝑚2)) ∈ ℤ𝑘1+𝑘2 . This function is
type-respecting. Now let ⊘ ∈ {∪, ∩}. We define 𝒯⊘ = (𝒯1 × ℤ𝑘2) ⊘ (ℤ𝑘1 × 𝒯2),
and thus ℎ−1(𝒯⊘) = 𝐿1 ⊘ 𝐿2.

Now let (𝐴, 𝐶) be a DetCA with 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), and suppose (by Lemma 87)
that𝐹 = 𝑄 and that the constraint set is expressed by a positive Boolean combination
of clauses of the form ∑𝑡∈𝛿 𝛼𝑡𝑥𝑡 > 0. Closure of 𝐻−1(𝐙+ ≀ 𝐌) under ∪ and ∩
together with Lemma 88 imply that it is enough to argue the case in which 𝐶 is
defined by a single such clause.

135

Paper IV – Algebra and Complexity Meet Constrained Automata

Let 𝑀 be the transition monoid of 𝐴, 𝜂 ∶ Σ∗ → 𝑀 the canonical morphism
associated, and for 𝑚 ∈ 𝑀 , write 𝑞𝑚 for the action of 𝑚 on 𝑞 (i.e., 𝑞𝜂(𝑤) is the state
reached reading 𝑤 from the state 𝑞 in 𝐴). We now define ℎ∶ Σ∗ → ℤ≀𝑀 as follows.
Let 𝜏 ∶ 𝑀 × Σ → 𝛿 be defined by 𝜏(𝑚, 𝑎) = 𝑞𝑚

0
.. 𝑎. 𝑞𝑚𝜂(𝑎)

0 . Then:

ℎ(𝑎) = (𝑓𝑎, 𝜂(𝑎)), where 𝑓𝑎(𝑚) = 𝛼𝜏(𝑚,𝑎) .

Now for 𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑛 ∈ Σ∗ and 𝜋 = 𝜋1𝜋2 ⋯ 𝜋𝑛 the unique accepting path in 𝐴
from 𝑞0 labeled 𝑤, we have:

ℎ(𝑤) = (𝑓𝑤1 + 𝜂(𝑤1) ⋅ 𝑓𝑤2 + ⋯ + 𝜂(𝑤1𝑤2 ⋯ 𝑤𝑛−1) ⋅ 𝑓𝑤𝑛 , 𝜂(𝑤))

[Ψ1(ℎ(𝑤))](𝜂(𝜀)) = 𝛼𝜏(𝜂(𝜀),𝑤1) +
𝑛

𝑖=2
𝛼𝜏(𝜂(𝑤1⋯𝑤𝑖−1),𝑤𝑖) ,

note that 𝑞𝜂(𝑤1⋯𝑤𝑖−1)
0 is 𝖥𝗋𝗈𝗆(𝜋𝑖−1) and thus 𝜏(𝜂(𝑤1 ⋯ 𝑤𝑖−1), 𝑤𝑖) = 𝜋𝑖, hence:

[Ψ1(ℎ(𝑤))](𝜂(𝜀)) =
𝑛

𝑖=1
𝛼𝜋𝑖 =

𝑡∈𝛿
|𝜋|𝑡 × 𝛼𝑡 .

Thus, 𝖯𝗄𝗁(𝜋) ∈ 𝐶 iff [Ψ1(ℎ(𝑤))](𝜂(𝜀)) > 0. Hence with the type 𝒯 = {(𝑓, 𝑚) ∈
(ℤ, ℤ+) ≀ 𝑀 | 𝑓(𝜂(𝜀)) > 0}, which is indeed a type of (ℤ, ℤ+) ≀ 𝑀 , we have that
ℎ−1(𝒯) = 𝐿(𝐴, 𝐶).

(𝐻−1(𝐙+ ≀ 𝐌) ⊆ ℒDetCA) Let 𝐿 ⊆ Σ∗ be recognized by (ℤ, ℤ+)𝑘 ≀ 𝑀 using a
type 𝒯 and a morphism ℎ∶ Σ∗ → (ℤ𝑘)𝑀 × 𝑀 , and write for convenience ℎ𝑖(𝑤) =
Ψ𝑖(ℎ(𝑤)), 𝑖 = 1, 2. Let 𝐴 be the automaton (𝑀, Σ, 𝛿, 𝑒𝑀 , 𝑀), where:

𝛿 = {𝑚 .. 𝑎. 𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑎 ∈ Σ ∧ 𝑚 = 𝑚.ℎ2(𝑎)} .

Now as ℒDetCA is closed under union and intersection, we may suppose that the
type 𝒯 is of the following form:

𝒯 =
𝑘

𝑖=1
{(𝑓, 𝑚) | 𝑓(𝑒𝑀) ∈ 𝒯𝑖} ,

where each 𝒯𝑖 ∈ {∅, ℤ−
0 , ℤ+, ℤ}. Define 𝑇 = 𝒯1 ×𝒯2 ×⋯×𝒯𝑘, and the semilinear

set 𝐶 consisting of elements:

(𝑥𝑡1 , 𝑥𝑡2 , … , 𝑥𝑡|𝛿|) s.t.
𝑡∈𝛿

𝑥𝑡 × [ℎ1(𝜇(𝑡))](𝖥𝗋𝗈𝗆(𝑡)) ∈ 𝑇 .

We claim that the language of the DetCA (𝐴, 𝐶) is 𝐿. Let 𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑛 ∈ Σ∗.
There is an (accepting) path in 𝐴 labeled 𝑤 going through the states 𝑒𝑀 = ℎ2(𝜀),

136

3. Finitely typed monoids characterizations

ℎ2(𝑤1), ℎ2(𝑤1𝑤2), …, ℎ2(𝑤1𝑤2 ⋯ 𝑤𝑛). Thus the sum computed by the semilinear
set is ℎ1(𝑤1) + ℎ2(𝑤1) ⋅ ℎ1(𝑤2) + ⋯ + ℎ2(𝑤1𝑤2 ⋯ 𝑤𝑛) ⋅ ℎ1(𝑤𝑛), taken at the point
𝑒𝑀 . This is precisely [ℎ1(𝑤)](𝑒𝑀), and thus checking whether it belongs to 𝑇 is
equivalent to checking whether ℎ(𝑤) ∈ 𝒯 . Hence 𝐿 = 𝐿(𝐴, 𝐶).

Now ℒDetCA is a variety of languages, in the sense of ∗-varieties of [Eil76], i.e.,
it is closed under the Boolean operations, inverse morphisms, and quotient by a word.
The Eilenberg-type theorem of typed monoids [BKR11, Thm. 2] states that varieties of
languages and varieties of typed monoids (see [BKR11, Sec. 6]) are in one-to-one cor-
respondence. This implies that the closure of 𝐙+ ≀ 𝐌 under direct product, typed sub-
monoid (see [BKR11, Def. 3]), and inverse image by a typed morphism (see [BKR11,
Def. 2]) is the variety of typed monoids corresponding to ℒDetCA. We may naturally
ask whether this class is closed under wreath product, and we show this is not the case.
Let 𝑈1 = ({0, 1}, ×), then:

▶ Theorem 91. There is a language 𝐿 /∈ ℒCA recognized by 𝑈1 ≀ (ℤ, ℤ+) and by
(ℤ, ℤ+) ≀ (ℤ, ℤ+).

Proof. We treat the case (ℤ, ℤ+) ≀ (ℤ, ℤ+), this is similar for 𝑈1 ≀ (ℤ, ℤ+). We
consider the language:

𝑃1 = {𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑘 ∈ {⊏, ⊐}∗ | (∀𝑖)[|𝑤1𝑤2 ⋯ 𝑤𝑖|⊏ ≥ |𝑤1𝑤2 ⋯ 𝑤𝑖|⊐]} ,

which is not in ℒCA (Paper III, Prop. 64). Define ℎ∶ {⊏, ⊐}∗ → ℤ ≀ ℤ by:

ℎ(⊏) = (𝑓, −1)
ℎ(⊐) = (𝑓, 1)

𝑓(𝑛) =
⎧⎪
⎨
⎪⎩

0 if 𝑛 ≤ 0 ,
1 otherwise.

Note that 𝑓 is indeed type-respecting, as its value depends only on whether its argu-
ment is in the type ℤ+ of the typed monoid (ℤ, ℤ+). Now ℎ(𝑤) = (𝑓, |𝑤|⊐ − |𝑤|⊏)
and 𝑓(0) is zero or less iff for all 𝑖 it holds that |𝑤1𝑤2 ⋯ 𝑤𝑖|⊏ ≥ |𝑤1𝑤2 ⋯ 𝑤𝑖|⊐.
Thus:

𝑃1 = ℎ−1({(𝑓, 𝑛) | 𝑓(0) ∈ ℤ−
0 }) ,

and hence 𝑃1 ∈ 𝐻−1((ℤ, ℤ+) ≀ (ℤ, ℤ+)).

137

Paper IV – Algebra and Complexity Meet Constrained Automata

▶ Theorem 92. The class of languages recognized by 𝐙+□𝐌 is ℒUnCA. In symbols,
𝐻−1(𝐙+□𝐌) = ℒUnCA.

Proof. (ℒUnCA ⊆ 𝐻−1(𝐙+□𝐌)) We first note that 𝐻−1(𝐙+□𝐌) is closed under
union and intersection; this is the same proof as in Theorem 90 except that 𝑓𝑎 is now
defined as:

𝑓𝑎((𝑚1, 𝑚2), (𝑚1, 𝑚2)) = ([Ψ1(ℎ1(𝑎))](𝑚1, 𝑚1), [Ψ1(ℎ2(𝑎))](𝑚2, 𝑚2)) .

Next consider anUnCA (𝐴, 𝐶)with𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), and suppose (Lemma 87)
that 𝐿(𝐴) = Σ∗ and that the constraint set is expressed by a positive Boolean com-
bination of clauses of the form ∑𝑡∈𝛿 𝛼𝑡𝑥𝑡 > 0. Closure of 𝐻−1(𝐙+□𝐌) under ∪
and ∩ together with Lemma 88 imply that it is enough to argue the case in which 𝐶
is defined by a single such clause.

Let 𝑀 be the transition monoid of the deterministic version of 𝐴, obtained using
the powerset construction. Let 𝐴 be defined as 𝐴 with all transitions inverted (i.e.,
𝑝 .. 𝑎. 𝑞 is in 𝐴 iff 𝑞 .. 𝑎. 𝑝 is in 𝐴). Let 𝑀 be the transition monoid of the determin-
istic version of 𝐴 , using again the powerset construction, and let 𝑀c be the monoid
defined on the same elements as 𝑀 but with the operation reversed (i.e., 𝑚1 ∘𝑀 𝑚2
in 𝑀 is 𝑚2 ∘𝑀c 𝑚1 in 𝑀c; this is still a monoid as ∘𝑀c is still associative). We will
show that 𝐿(𝐴, 𝐶) is recognized by (𝑆, 𝔖) = (ℤ, ℤ+)□(𝑀 × 𝑀c).

Write 𝜂 and 𝜂c for the canonical morphisms associated with 𝑀 and 𝑀c; for 𝑚 ∈
𝑀 and 𝑅 ⊆ 𝑄, write 𝑅𝑚 for the action of 𝑚 on 𝑅, and likewise for 𝑀c. We first note
that for 𝑤 ∈ Σ∗, {𝑞0}𝜂(𝑤) is the set of states of 𝐴 that can be reached in 𝐴 reading
𝑤 from 𝑞0, and, likewise, that 𝐹 𝜂c(𝑤) is the set of states in 𝐴 from which reading 𝑤
leads to a final state.

Now for 𝑚1 ∈ 𝑀 , 𝑎 ∈ Σ, and 𝑚2 ∈ 𝑀c, let 𝜏(𝑚1, 𝑎, 𝑚2) be the unique transition
in𝐴 from a state in {𝑞0}𝑚1 to a state in𝐹 𝑚2 labeled 𝑎. We show that 𝜏 is well-defined.
Let 𝑤1, 𝑤2 such that 𝜂(𝑤1) = 𝑚1 and 𝜂c(𝑤2) = 𝑚2; this means that there are 𝑤1-
labeled paths in 𝐴 from 𝑞0 to any state in {𝑞0}𝑚1 , and, likewise, 𝑤2-labeled paths in
𝐴 from any state in𝐹 𝑚2 to a final state. (Existence): as𝑤1𝑎𝑤2 is inΣ∗ = 𝐿(𝐴), there
is a transition in 𝐴 from a state in {𝑞0}𝑚1 to a state in 𝐹 𝑚2 labeled 𝑎. (Uniqueness):
if two transitions 𝑝 .. 𝑎. 𝑝 and 𝑞 .. 𝑎. 𝑞 are such that 𝑝, 𝑞 ∈ {𝑞0}𝑚1 and 𝑝 , 𝑞 ∈ 𝐹 𝑚2 ,
this means that there are multiple accepting paths in 𝐴 labeled 𝑤1𝑎𝑤2, contradicting
the unambiguity of 𝐴.

138

3. Finitely typed monoids characterizations

We now define ℎ∶ Σ∗ → 𝑆 by:

ℎ(𝑎) = (𝑓𝑎, (𝜂(𝑎), 𝜂c(𝑎))), where
𝑓𝑎((𝑚1, 𝑚2), (𝑚1, 𝑚2)) = 𝛼𝜏(𝑚1,𝑎,𝑚2) .

Now let 𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑖 ∈ Σ∗ and 𝜋 be the unique path in 𝐴 from 𝑞0 to a final
state labeled 𝑤. Then:

𝜋 = 𝜋1𝜋2 ⋯ 𝜋𝑛 where
𝜋𝑖 = 𝜏(𝜂(𝑤1𝑤2 ⋯ 𝑤𝑖−1), 𝑤𝑖, 𝜂c(𝑤𝑖+1𝑤𝑖+2 ⋯ 𝑤𝑛)) ,

and thus:
[Ψ1(ℎ(𝑤))]((𝜂(𝜀), 𝜂c(𝜀))) =

𝑡∈𝛿
|𝜋|𝑡 × 𝛼𝑡 .

Thus 𝖯𝗄𝗁(𝜋) ∈ 𝐶 iff [Ψ1(ℎ(𝑤))]((𝜂(𝜀), 𝜂c(𝜀))) > 0. Hence with the type 𝒮 =
{(𝑓, 𝑚) ∈ 𝑆 | 𝑓((𝜂(𝜀), 𝜂c(𝜀))) ∈ ℤ+}, which is indeed a type in 𝔖 as ℤ+ is a
type of (ℤ, ℤ+), we have that ℎ−1(𝒮) = 𝐿(𝐴, 𝐶).

(𝐻−1(𝐙+□𝐌) ⊆ ℒUnCA) Let 𝐿 ⊆ Σ∗ be recognized by (ℤ, ℤ+)𝑘□𝑀 using a
type 𝒯 and a morphism ℎ = (ℎ1, ℎ2) with ℎ1 ∶ Σ∗ → ℤ𝑀×𝑀 and ℎ2 ∶ Σ∗ → 𝑀 .
Let 𝐴(𝑠1, 𝑠2) be the automaton (𝑀 × 𝑀, Σ, 𝛿, (𝑠1, 𝑠2), 𝑀 × {𝑒𝑀 }) where:

𝛿 ={(𝑚1, 𝑚2) .. 𝑎. (𝑚1, 𝑚2) |
𝑚1 = 𝑚1.ℎ2(𝑎) ∧ ℎ2(𝑎).𝑚2 = 𝑚2 ∈ 𝑀 ∧ 𝑎 ∈ Σ} .

Note that 𝑤 ∈ 𝐿(𝐴(𝑠1, 𝑠2)) implies ℎ2(𝑤) = 𝑠2. We argue that 𝐴(𝑠1, 𝑠2) is unam-
biguous for any 𝑠1, 𝑠2 ∈ 𝑀 . It is clear that if 𝑤 = 𝜀, every 𝐴(𝑠1, 𝑠2) has at most one
accepting path labeled 𝑤. Now let 𝑤 = 𝑎 ⋅ 𝑣 for 𝑣 ∈ Σ∗. Suppose 𝑤 ∈ 𝐿(𝐴(𝑠1, 𝑠2)).
This implies that ℎ2(𝑤) = 𝑠2. The states that can be reached from (𝑠1, ℎ2(𝑤)) read-
ing 𝑎 are all of the form (𝑠1.ℎ2(𝑎), 𝑚), 𝑚 ∈ 𝑀 . Now 𝑣 should be accepted by the
automaton 𝐴 where the initial state is set to one of these states; thus there is only
one state fitting, (𝑠1.ℎ2(𝑎), ℎ2(𝑣)). By induction hypothesis, there is only one path
in 𝐴(𝑠1.ℎ2(𝑎), ℎ2(𝑣)) recognizing 𝑣, thus there is only one path in 𝐴(𝑠1, ℎ2(𝑤)) rec-
ognizing 𝑤. This shows that for any 𝑠1, 𝑠2, 𝐴(𝑠1, 𝑠2) is unambiguous.

Now, with 𝑒 = (𝑒𝑀 , 𝑒𝑀), and as ℒUnCA is closed under union and intersection,
we may suppose that the type 𝒯 is of the following form:

𝒯 =
𝑘

𝑖=1
{(𝑓, 𝑚) | 𝑓(𝑒, 𝑒) ∈ 𝒯𝑖} ,

139

Paper IV – Algebra and Complexity Meet Constrained Automata

where each 𝒯𝑖 ∈ {∅, ℤ−
0 , ℤ+, ℤ}. Define 𝑇 = 𝒯1 ×𝒯2 ×⋯×𝒯𝑘, and the semilinear

set 𝐶 consisting of elements:

(𝑥𝑡1 , 𝑥𝑡2 , … , 𝑥𝑡|𝛿|) s.t.
𝑡∈𝛿

𝑥𝑡 × [ℎ1(𝜇(𝑡))](Ψ1(𝖥𝗋𝗈𝗆(𝑡)), Ψ2(𝖳𝗈(𝑡))) ∈ 𝑇 .

We show that ⋃𝑚∈𝑀 𝐿(𝐴(𝑒𝑀 , 𝑚), 𝐶) is 𝐿. Let 𝑤 = 𝑤1𝑤2 ⋯ 𝑤𝑛 ∈ Σ∗. There
is a unique accepting path in 𝐴(𝑒𝑀 , ℎ2(𝑤)) (and in no other 𝐴(𝑒𝑀 , 𝑚)) labeled
𝑤, and it is going successively through the states (ℎ2(𝜀), ℎ2(𝑤)) = (𝑒𝑀 , ℎ2(𝑤)),
(ℎ2(𝑤1), ℎ2(𝑤2 ⋯ 𝑤𝑛)), …, (ℎ2(𝑤), 𝑒𝑀) = (ℎ2(𝑤), ℎ2(𝜀)). For this path, the sum
computed by the semilinear set is:

𝑛

𝑖=1
ℎ2(𝑤1 ⋯ 𝑤𝑖−1) ⋅ ℎ1(𝑤𝑖) ⋅ ℎ2(𝑤𝑖+1 ⋯ 𝑤𝑛) ,

at the point (𝑒𝑀 , 𝑒𝑀). This is precisely [ℎ1(𝑤)](𝑒𝑀 , 𝑒𝑀), and checking whether it is
in 𝑇 amounts to checking whether ℎ(𝑤) ∈ 𝒯 , hence 𝐿 = ⋃𝑚∈𝑀 𝐿(𝐴(𝑒𝑀 , 𝑚), 𝐶).

We derive an interesting property of the logical characterization and circuit com-
plexity of UnCA. Let MSO[<] be the monadic second-order logic with < as the unique
numerical predicate, and FO+G[<] be the first-order logic with group quantifiers and
< as the unique numerical predicate. Both logics express exactly the regular languages
(these are respectively the classical results of Büchi [Büc60] and Barrington, Immer-
man, Straubing [BIS90]). Now define the extended majority quantifierMaj, introduced
in [BKM07], as: 𝑤 ⊧ Maj 𝑥 ⟨𝜙𝑖⟩𝑖=1,…,𝑚 iff ∑|𝑤|

𝑥=1 |{𝑖 | 𝑤 ⊧ 𝜙𝑖(𝑥)}| − |{𝑖 | 𝑤 ⊭
𝜙𝑖(𝑥)}| > 0. Then:

▶ Corollary 93. A language is in ℒUnCA iff it can be expressed as a Boolean combi-
nation of formulas of the form:

Maj 𝑥 ⟨𝜙𝑖⟩𝑖=1,…,𝑚

where each𝜙𝑖 is anMSO[<] formula or an FO+G[<] formula. Hence, ℒUnCA ⊊ NC1.

Proof. We first show that the languages recognized by (ℤ, ℤ+) are those expressible
as a formula of the form (or negation of) Maj 𝑥 ⟨𝑄𝐴𝑖 𝑥⟩𝑖=1,…,𝑚 where 𝐴𝑖 ⊆ Σ, and
𝑄𝐴𝑖 𝑥 is short for ⋁𝑎∈𝐴𝑖

𝑄𝑎𝑥.

Let 𝐿 ∈ 𝐻−1((ℤ, ℤ+)), i.e., let ℎ∶ Σ∗ → ℤ be a morphism and suppose 𝐿 =
ℎ−1(ℤ+) (if 𝐿 = ℎ−1(ℤ−

0), then the negation of the formula we obtain here will

140

3. Finitely typed monoids characterizations

describe 𝐿). We suppose moreover, w.l.o.g., that each ℎ(𝑎), 𝑎 ∈ Σ, is even. Now let
𝑚 be max{|ℎ(𝑎)| | 𝑎 ∈ Σ} and define, for 1 ≤ 𝑖 ≤ 𝑚:

𝐴𝑖 = {𝑎 ∈ Σ | 𝑚 + ℎ(𝑎) ≥ 2 × 𝑖} .

Now let 𝑤 ∈ Σ∗ be a word and 1 ≤ 𝑥 ≤ |𝑤|. Then it holds that:

ℎ(𝑤𝑥) = |{𝑖 | 𝑤𝑥 ∈ 𝐴𝑖}|
(𝑚+ℎ(𝑎))/2

− |{𝑖 | 𝑤𝑥 /∈ 𝐴𝑖}|
𝑚−(𝑚+ℎ(𝑎))/2

.

Thus for 𝑤 ∈ Σ∗, ℎ(𝑤) > 0 iff 𝑤 ⊧ Maj 𝑥 ⟨𝑄𝐴𝑖 𝑥⟩𝑖=1,…,𝑚, thus the language
expressed by this latter formula is ℎ−1(ℤ+) = 𝐿.

Conversely, consider a formula Maj 𝑥 ⟨𝑄𝐴𝑖 𝑥⟩𝑖=1,…,𝑚. Then let ℎ∶ Σ∗ → ℤ be
the morphism defined by ℎ(𝑎) = |{𝑖 | 𝑎 ∈ 𝐴𝑖}| − |{𝑖 | 𝑎 /∈ 𝐴𝑖}|, for 𝑎 ∈ Σ. We have
that for 𝑤 ∈ Σ∗, ℎ(𝑤) > 0 iff the formula under consideration holds true, implying
that the language recognized by the formula is ℎ−1(ℤ+).

It follows that the languages recognized by 𝐙+ are the Boolean combinations of
languages expressible as such formulas. Now the languages (with one free vari-
able) recognized by finite monoids are those recognized by MSO[<] or FO+G[<]
formulas. Thus the block product principle [Kre08, Theorem 3.40] implies that
the languages of ℒUnCA = 𝐻−1(𝐙+□𝐌) are those expressible as Boolean com-
binations of formulas of the form of the statement of the lemma. As for circuits,
the regular languages (with one free variable, in the sense of 𝒱 -structures [Str94,
p. 14]) are recognized by NC1 circuits, and a formula or negation of a formula of the
form Maj 𝑥 ⟨𝑄𝐴𝑖 𝑥⟩𝑖=1,…,𝑚 can be expressed by a threshold circuit. Now [Kre08,
Lemma 4.29] implies that ℒUnCA ⊆ NC1. Strictness is implied by Theorem 91, as
the Dyck languages are in NC1.

Remark. The characterization of ℒUnCA by means of block products allows for an
alternative algebra-based proof that ℒUnCA is closed under reversal (the proof of Pa-
per III, Proposition 60, is automata-based). Let 𝐿 ∈ ℒUnCA, there is a finite monoid
𝑀 , an integer 𝑘, a type 𝒯 of (ℤ, ℤ+)𝑘□𝑀 , and a morphism ℎ∶ Σ∗ → ℤ𝑘□𝑀 such
that 𝐿 = ℎ−1(𝒯). Define 𝑀c as 𝑀 where the operation is reversed, and ℎc ∶ Σ∗ →
ℤ𝑘□𝑀c by:

ℎc(𝑎) = (𝑓 c
𝑎 , Ψ2(ℎ(𝑎))) where

𝑓 c
𝑎 (𝑚1, 𝑚2) = [Ψ1(ℎ(𝑎))](𝑚2, 𝑚1) .

141

Paper IV – Algebra and Complexity Meet Constrained Automata

Then 𝐿R = (ℎc)−1(𝒯) and, as 𝑀c is also a finite monoid, 𝐿R ∈ 𝐻−1(𝐙+□𝐌) =
ℒUnCA.

Write ℨ+(𝑘) for the type set of (ℤ, ℤ+)𝑘, that is, the sets expressible as a Boolean
combination of expressions of the form 𝑥𝑖 > 0. Let 𝐙𝐌𝐚𝐭+ be the set of typedmonoids
{(ℳℤ(𝑘), ℨ+(𝑘 × 𝑘)) | 𝑘 ≥ 1}, then:

▶ Theorem 94. The class of languages recognized by 𝐙𝐌𝐚𝐭+ is ℒDetAPA. In sym-
bols, 𝐻−1(𝐙𝐌𝐚𝐭+) = ℒDetAPA.

Proof. (ℒDetAPA ⊆ 𝐻−1(𝐙𝐌𝐚𝐭+)) This is a direct consequence of Lemma 89.

(𝐻−1(𝐙𝐌𝐚𝐭+) ⊆ ℒDetAPA) Given 𝑘 ≥ 1, a type 𝒵 of (ℤ, ℤ+)𝑘×𝑘, and a mor-
phism ℎ∶ Σ∗ → ℳℤ(𝑘), we build a two-state DetAPA of dimension 𝑘2 for ℎ−1(𝒵).
First, let ℎ ∶ Σ∗ → ℳℤ(𝑘2) be such that ℎ (𝑎) is the Kronecker product of the
identity matrix of dimension 𝑘 and ℎ(𝑎). Define 𝐞 = (𝐞1, 𝐞2, … , 𝐞𝑘) where each 𝐞𝑖
is of dimension 𝑘. Then for any word 𝑤, ℎ(𝑤) ∈ 𝒵 iff ℎ (𝑤).𝐞 ∈ 𝒵 . Now let
𝐴 = ({𝑟, 𝑠}, Σ, 𝛿, 𝑟, {𝑠}), with 𝛿 = {𝑟, 𝑠} × Σ × {𝑠}. Then let 𝑈 ∶ 𝛿∗ → ℱ𝑘2 for
𝑞 ∈ {𝑟, 𝑠}, 𝑎 ∈ Σ, and 𝐱 ∈ ℤ𝑘2 be defined by:

𝑈𝑞 .. 𝑎. 𝑠(𝐱) =
⎧⎪
⎨
⎪⎩

ℎ (𝑎).𝐞 if 𝑞 = 𝑟,
ℎ (𝑎).𝐱 otherwise.

This implies that for 𝑤 ∈ Σ+ and 𝜋 its unique accepting path in 𝐴, it holds that
𝑈𝜋(𝟎) = ℎ (𝑤).𝐞. Thus 𝐿(𝐴, 𝑈, 𝒵) = ℎ−1(𝒵).

▶ Theorem 95. The class of languages recognized by 𝐙𝐌𝐚𝐭+□𝐌 is ℒUnAPA. In
symbols, 𝐻−1(𝐙𝐌𝐚𝐭+□𝐌) = ℒUnAPA.

Proof. ℒUnAPA ⊆ 𝐻−1(𝐙𝐌𝐚𝐭+□𝐌) is the same as ℒUnCA ⊆ 𝐻−1(𝐙+□𝐌) in
Theorem 92, thanks to Lemma 89.

𝐻−1(𝐙𝐌𝐚𝐭+□𝐌) ⊆ ℒUnAPA is the same as 𝐻−1(𝐙+□𝐌) ⊆ ℒUnCA in Theo-
rem 92 for the automaton part, and the same as Theorem 94 for the constraint set
and affine function parts.

In both cases, those characterizations make the following new closure properties
easy to show:

▶ Corollary 96. Both ℒDetAPA and ℒUnAPA are closed under reversal.

142

4. Formal power series characterization

Proof. For a matrix 𝑀 , write 𝑀T for the transpose of 𝑀 . We extend this notation
to types in ℨ+(𝑘) naturally. Let 𝐿 ∈ 𝐻−1(𝐙𝐌𝐚𝐭+), there are ℎ∶ Σ∗ → ℳℤ(𝑘) and
𝒵 ∈ ℨ+(𝑘×𝑘) such that𝐿 = ℎ−1(𝒵). Defineℎ ∶ Σ∗ → ℳℤ(𝑘) byℎ (𝑎) = (ℎ(𝑎))T.
Then for a word 𝑤, ℎ(𝑤) = (ℎ (𝑤R))T, and thus ℎ (𝑤) ∈ 𝒵T iff ℎ(𝑤R) ∈ 𝒵 . Hence
𝐿R = (ℎ)−1(𝒵T) ∈ 𝐻−1(𝐙𝐌𝐚𝐭+).

In the UnAPA case, we apply the same argument as the remark on page 141,
with the transposes as in the previous case. Let 𝐿 ∈ 𝐻−1(𝐙𝐌𝐚𝐭+□𝐌), there is
a finite monoid 𝑀 , a type 𝒯 of (ℳℤ(𝑘), ℨ+(𝑘))□𝑀 , and a morphism ℎ∶ Σ∗ →
ℳℤ(𝑘)□𝑀 such that𝐿 = ℎ−1(𝒯). Now𝒯 is of the form {(𝑓, 𝑚) | 𝑓(𝑒𝑀 , 𝑒𝑀) ∈ 𝒵}
for some 𝒵 ∈ ℨ+(𝑘). Define 𝒯 T as the type {(𝑓, 𝑚) | 𝑓(𝑒𝑀 , 𝑒𝑀) ∈ 𝒵T}. Now
define 𝑀c as 𝑀 where the operation is reversed, and ℎc ∶ Σ∗ → ℳℤ(𝑘)□𝑀c by:

ℎc(𝑎) = (𝑓 c
𝑎 , Ψ2(ℎ(𝑎))) where

𝑓 c
𝑎 (𝑚1, 𝑚2) = ([Ψ1(ℎ(𝑎))](𝑚2, 𝑚1))T .

Then 𝐿R = (ℎc)−1(𝒯 T) ∈ 𝐻−1(𝐙𝐌𝐚𝐭+□𝐌).

4 Formal power series characterization

In this section, we show that the languages of DetAPA are those expressible as a
Boolean combination of positive supports of ℤ-valued rational series. This helps us
derive a separation over the unary languages between ℒCA and ℒDetAPA — the sepa-
ration was known (Paper I, Proposition 25), but not over unary languages.

We start with the definition of series and of linear representation:

▶ Definition 14 (e.g., [BR10]). We call functions from Σ∗ into ℤ (ℤ)-series. For
such a series 𝑟, it is customary to write (𝑟, 𝑤) for 𝑟(𝑤). We write 𝗌𝗎𝗉𝗉+(𝑟) for the set
{𝑤 | (𝑟, 𝑤) > 0}.

A linear representation of dimension 𝑘 ≥ 1 is a triple (𝐬, ℎ, 𝐠) such that 𝐬 ∈ ℤ𝑘 is a
row vector, 𝐠 ∈ ℤ𝑘 is a column vector, and ℎ∶ Σ∗ → (ℤ𝑘×𝑘, .) is a monoid morphism,
where . is the usual matrix multiplication. It defines the series 𝑟 = ||(𝐬, ℎ, 𝐠)|| with
(𝑟, 𝑤) = 𝐬.ℎ(𝑤).𝐠.

A series is said to be rational if it is defined by a linear representation. We write
ℤrat⟨⟨Σ∗⟩⟩ for the set of rational series.

For a class 𝒞 of languages, write 𝖡𝖢(𝒞) for the Boolean closure of 𝒞 . Then:

▶ Theorem 97. ℒDetAPA = 𝖡𝖢(𝗌𝗎𝗉𝗉+(ℤrat⟨⟨Σ∗⟩⟩)).

143

Paper IV – Algebra and Complexity Meet Constrained Automata

Proof. (ℒDetAPA ⊆ 𝖡𝖢(𝗌𝗎𝗉𝗉+(ℤrat⟨⟨Σ∗⟩⟩))) First note that there is a rational series
𝑟 such that 𝗌𝗎𝗉𝗉+(𝑟) = {𝜀}. Let 𝐿 be in ℒDetAPA; we may thus suppose that 𝜀 /∈ 𝐿.
By the same token as in the proof of Theorem 94, there is a morphism ℎ∶ Σ∗ →
ℳℤ(𝑘), for some 𝑘, a vector 𝐯 ∈ {0, 1}𝑘, and a type 𝒵 of (ℤ, ℤ+)𝑘 such that:

𝐿 = {𝑤 | ℎ(𝑤).𝐯 ∈ 𝒵} .

Further, similar to Lemma 88, 𝐿(𝐴, 𝑈, 𝐶1 ⊘ 𝐶2) = 𝐿(𝐴, 𝑈, 𝐶1) ⊘ 𝐿(𝐴, 𝑈, 𝐶2), for
⊘ ∈ {∪, ∩} and anyDetAPA (𝐴, 𝑈, 𝐶1⊘𝐶2). Moreover, 𝐿(𝐴, 𝑈, 𝐶) = 𝐿(𝐴, 𝑈, 𝐶)∩
𝐿(𝐴). We may thus suppose that 𝒵 is reduced to ℤ𝑖−1 × ℤ+ × ℤ𝑘−𝑖 for some 𝑖.

Now let ℎ be the morphism from Σ∗ to (ℤ𝑘×𝑘, .), with . the usualmatrix multipli-
cation, where ℎ (𝑎) = (ℎ(𝑎))T, with 𝑎 ∈ Σ and 𝑀T the transpose of 𝑀 . Note that
ℎ(𝑎1𝑎2) = ℎ(𝑎2).ℎ(𝑎1) = ((ℎ(𝑎1))T.(ℎ(𝑎2))T)T, which is (ℎ (𝑎1𝑎2))T; more gen-
erally, ℎ(𝑤) = (ℎ (𝑤))T. Thus we have that 𝐯T.ℎ (𝑤) = (ℎ(𝑤).𝐯)T. Hence with
𝐬 = 𝐯T and 𝐠 the column vector 𝐞𝑖, 𝐬.ℎ (𝑤).𝐠 > 0 iff ℎ(𝑤).𝐯 ∈ 𝒵 .

Now the triple (𝐬, ℎ , 𝐠) is a linear representation of a rational series which asso-
ciates 𝑤 to 𝐬.ℎ (𝑤).𝐠, and this concludes the proof.

(𝖡𝖢(𝗌𝗎𝗉𝗉+(ℤrat⟨⟨Σ∗⟩⟩)) ⊆ ℒDetAPA) As ℒDetAPA is closed under union, com-
plement, and intersection, we need only show that 𝗌𝗎𝗉𝗉+(ℤrat⟨⟨Σ∗⟩⟩) ⊆ ℒDetAPA.

Let (𝐬, ℎ, 𝐠) be a linear representation of dimension 𝑘 of a rational series 𝑟 over
the alphabet Σ. Define ℎ ∶ Σ∗ → ℳℤ(𝑘) by letting ℎ (𝑎) = (ℎ(𝑎))T, for 𝑎 ∈ Σ.
Then for 𝑤 ∈ Σ∗, ℎ(𝑤) = (ℎ (𝑤))T. Now the rest of the proof is similar to that of
Theorem 94: define 𝐴 = ({𝑟, 𝑡}, Σ, 𝛿, 𝑟, {𝑟, 𝑡}), with 𝛿 = {𝑟, 𝑡} × Σ × {𝑡}. Then let
𝑈 ∶ 𝛿∗ → ℱ𝑘 for 𝑞 ∈ {𝑟, 𝑡}, 𝑎 ∈ Σ, and 𝐱 ∈ ℤ𝑘, be defined by:

𝑈𝑞 .. 𝑎. 𝑡(𝐱) =
⎧⎪
⎨
⎪⎩

ℎ (𝑎).𝐬 if 𝑞 = 𝑟,
ℎ (𝑎).𝐱 otherwise.

This implies that for 𝑤 ∈ Σ∗ and 𝜋 its unique accepting path in 𝐴, it holds that
𝑈𝜋(𝟎) = 𝐬.ℎ(𝑤). Thus letting 𝐶 = {𝐱 | 𝐱.𝐠 > 0}, with 𝐱 a row vector and 𝐠 a
column vector, we have that 𝐿(𝐴, 𝑈, 𝐶) = 𝗌𝗎𝗉𝗉+(𝑟).

▶ Corollary 98. There is an unary language in ℒDetAPA which is not in ℒCA.

Proof. For Σ = {𝑎}, and a series 𝑟 over Σ, write 𝑐𝑛 = (𝑟, 𝑎𝑛). Recall that 𝑟 is rational
iff the sequence of 𝑐𝑛’s satisfies a linear recurrence relation [BR10]. Now let 𝑟 be

144

5. Conditional separations of APA and DetAPA

specified by the linear recurrence relation and initial values:

𝑐𝑛 = 2 × 𝑐𝑛−1 − 5 × 𝑐𝑛−2, 𝑐0 = 0, 𝑐1 = 1 .

Then 𝑐𝑛 = 1
4 𝑖((1 − 2𝑖)𝑛 − (1 + 2𝑖)𝑛) = 1

2 5𝑛/2 sin(𝑛 tan−1(2)). Write 𝑥 = tan−1(2),
and note that 𝑥/𝜋 is not a rational number: this is a consequence of Niven’s theo-
rem [Niv56, Cor. 3.12], asserting that if 𝑥/𝜋 is rational, then the only rational values
of tan(𝑥) are 0 and ±1. Now the sign of 𝑐𝑛 only depends on the sign of sin(𝑛𝑥). Sup-
pose 𝗌𝗎𝗉𝗉+(𝑟) is in ℒCA. As any language in ℒCA is semilinear [KR03] (implying
that all the unary languages of ℒCA are regular), there is a set 𝐸 = {𝑘1 + 𝑡.𝑘2 | 𝑡 ∈
ℕ}, with 𝑘1 ∈ ℕ, 𝑘2 ∈ ℕ+, such that for any 𝑒 ∈ 𝐸, 𝑐𝑒 > 0. Now this means that
sin(𝑘1𝑥 + 𝑡 × 𝑘2𝑥) should be positive for any 𝑡 ∈ ℕ. Let 𝑧 ∈ ℕ, then note that for
any real 𝑣:

sin(𝑘1𝑥 + 𝑣 − 𝑘1𝑥 + 2𝜋𝑧
𝑘2𝑥 × 𝑘2𝑥) = sin(𝑣) .

Thus, for any 𝑧 ∈ ℕ, any integer 𝑡 in the range:

−𝜋 − 𝑘1𝑥 + 2𝜋𝑧
𝑘2𝑥 , −𝑘1𝑥 + 2𝜋𝑧

𝑘2𝑥 ,

is such that sin(𝑘1𝑥 + 𝑡 × 𝑘2𝑥) < 0. We reach a contradiction by showing that one
such range contains an integer. Indeed, write 𝐴 = 2𝜋

𝑘2𝑥 , 𝐵 = −𝜋−𝑘1𝑥
𝑘2𝑥 , and 𝐶 = 𝜋

𝑘2𝑥 ;
we are searching for a 𝑧 ∈ ℕ such that there is an integer in [𝑧.𝐴 + 𝐵, 𝑧.𝐴 + 𝐵 + 𝐶].
Now, as 𝐴 is irrational, for any real interval [𝑎, 𝑏] ⊆ [0, 1] there is an integer 𝑧
such that the fractional part of 𝑧.𝐴 is in [𝑎, 𝑏] (see, e.g., [Niv63, Th. 3.2]). Thus
we can find a 𝑧 such that there is an integer 𝑡 with the property that 𝑧.𝐴 + 𝐵 ∈
[𝑡 − 𝐶/2 − 𝐶/4, 𝑡 − 𝐶/2 + 𝐶/4]. This implies that 𝑧.𝐴 + 𝐵 < 𝑡 < 𝑧.𝐴 + 𝐵 + 𝐶 , proving
the claim.

5 Conditional separations of APA and DetAPA

We first note the following fact:

▶ Lemma 99. There is a polynomial 𝑝 such that if 𝐿 ⊆ Σ∗ is decided by a nonde-
terministic Turing machine in time-constructible time 𝑡(𝑛), then there is an alphabet Τ
and a language 𝑅 ⊆ ⋃𝑛(Σ𝑛 ⋅ {♯} ⋅ Τ𝑝(𝑡(𝑛))) in ℒDetAPA, with Σ ∩ Τ = ∅ and ♯ /∈ Σ ∪ Τ,
such that: 𝑅({♯}Τ∗)−1 = 𝐿.

145

Paper IV – Algebra and Complexity Meet Constrained Automata

Proof. Let 𝐿 ⊆ Σ∗ be a language decided by a nondeterministic Turing machine
𝑀 in time-constructible time 𝑡(𝑛). Suppose, w.l.o.g. as 𝑡(𝑛) is time-constructible,
that 𝑀 accepts or rejects any word 𝑤 in exactly 𝑡(|𝑤|) steps. Let 𝑅 be the language
{𝑤♯𝜌 | 𝑤 ∈ 𝐿∧𝜌 is an accepting run for 𝑤}, where 𝜌 is written using the encoding
of Paper I, Lemma 29: 𝜌 is a sequence of instantaneous descriptions of the machine
𝑀 , separated by a specific symbol ♮, and padded so that each description has the
same length (say, again, 𝑡(|𝑤|)). We may suppose that the alphabet Τ for the runs
has an empty intersection with Σ, and that ♯ is in none of the alphabets. Write 𝜏(𝑤)
for the initial instantaneous description of the Turing machine 𝑀 with input 𝑤.

Now note that 𝐼 = {𝑤♯𝜏(𝑤)♮ | 𝑤 ∈ Σ∗} ⋅ Τ∗ is in ℒDetAPA (similar to Paper I,
Proposition 25), that the language of the accepting runs 𝑅 ⊆ Τ∗ of 𝑀 is in ℒDetAPA
(Paper I, Lemma 29), that 𝑅 = Σ∗ ⋅ {♯} ⋅ 𝑅 is in ℒDetAPA, and that ℒDetAPA is
closed under intersection (Paper I, Proposition 24). This implies that 𝑅 = 𝐼 ∩ 𝑅 ∈
ℒDetAPA.

We note that this implies the following unconditional nonclosure properties:

▶ Corollary 100. None of ℒAPA, ℒUnAPA, and ℒDetAPA is closed under quotient.

Proof. Recall thatℒAPA ⊆ NP. Let𝐿 be a language complete for NEXP. Lemma 99
asserts that there is an 𝑅 ∈ ℒDetAPA such that there is a regular language 𝑆 with
𝑅𝑆−1 = 𝐿. As 𝐿 /∈ NP, 𝐿 /∈ ℒAPA, implying the nonclosure by 𝑆 ∈ ℒDetAPA.

▶ Corollary 101. There are NP-complete languages in ℒAPA.

Proof. Let 𝐿 be an NP-complete language decided by a nondeterministic Turing
machine in polynomial time 𝑡(𝑛). With the notations of Lemma 99 applied to 𝐿, let
ℎ∶ (Σ ∪ Τ ∪ {♯})∗ → (Σ ∪ {♯})∗ be the nonerasing morphism mapping all the letters
of Τ to ♯, and leaving the other letters unchanged. Then:

ℎ(𝑅) = {𝑤♯𝑡(|𝑤|)2+1 | 𝑤 ∈ 𝐿} .

Now ℎ(𝑅) ∈ ℒAPA, as ℒAPA is closed under nonerasing morphisms, and ℎ(𝑅) is
clearly NP-complete.

Corollary 101 and the fact that ℒAPA ⊆ NP imply:

▶ Corollary 102. If co-NP ≠ NP then ℒAPA is not closed under complement.

146

5. Conditional separations of APA and DetAPA

As ℒDetAPA is closed under complement, if co-NP ≠ NP then ℒDetAPA ≠ ℒAPA.
In fact, it is also a direct consequence of ℒDetAPA ⊆ P and of Corollary 101 that:

▶ Corollary 103. If P ≠ NP then ℒDetAPA ≠ ℒAPA.

This implies, as any language of ℒAPA is the image by a length-preserving mor-
phism of a language in ℒDetAPA, that if P ≠ NP then ℒDetAPA is not closed under
length-preserving morphism.

▶ Proposition 104. If NEXP ≠ EXP then ℒDetAPA is not closed under commutative
closure.

Proof. Let 𝐸 ∈ {0, 1}∗ be in NEXP. Define un(𝑤), 𝑤 ∈ {0, 1}∗, to be the unary
encoding of the binary number 1𝑤 over the alphabet Σ = {𝜈}. Let 𝐿 = un(𝐸), it
is decided by a nondeterministic Turing machine in polynomial time 𝑡(𝑛). Consider
the language 𝑅 ∈ ℒDetAPA given by Lemma 99 applied to 𝐿; we proceed with the
notations of Lemma 99. Write Τ = {𝑎1, 𝑎2, … , 𝑎𝑘}, and define ℎ∶ Τ∗ → {𝑥, 𝑦}∗

by ℎ(𝑎𝑖) = 𝑥𝑖𝑦𝑘𝑥𝑘−𝑖. Now each word ℎ(𝑎𝑖) is unique (among the other ℎ(𝑎𝑗)) and
has exactly 𝑘 letters 𝑥 and 𝑦. Extend ℎ over (Σ ∪ Τ ∪ {♯})∗ by leaving the other
letters unchanged. Then ℎ(𝑅) ∈ ℒDetAPA, as it suffices to replace each transition
labeled 𝑎 ∈ Τ of the DetAPA for 𝑅 by a sequence of 𝑘 transitions labeled ℎ(𝑎), and
this preserves determinism. Now:

𝑐(ℎ(𝑅)) ∩ 𝜈∗ ⋅ {♯} ⋅ {𝑥}∗ ⋅ {𝑦}∗ = {𝑤♯𝑥𝑘×𝑝(𝑡(|𝑤|))𝑦𝑘×𝑝(𝑡(|𝑤|)) | 𝑤 ∈ 𝐿} .

Let 𝑋 be the above language, then if ℒDetAPA is closed under commutative closure,
𝑋 ∈ ℒDetAPA, thus 𝑋 ∈ P, and as 𝑝 and 𝑡 are polynomials, 𝐿 ∈ P, implying that
𝐸 ∈ EXP, hence NEXP = EXP.

Thus if NEXP ≠ EXP, ℒDetAPA and ℒAPA differ as:

▶ Proposition 105. ℒAPA is closed under commutative closure.

Proof. Let (𝐴, 𝑈, 𝐶) be an APA of dimension 𝑑 over the alphabet Σ = {𝑎, 𝑏}. Write
𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Let 𝐴 be two copies of 𝐴, the second one having its transition
labels inverted (i.e., a transition is labeled 𝑎 iff it was labeled 𝑏 in 𝐴). The initial
state of 𝐴 is that of 𝐴, and the final states that of 𝐴 and its copy. For a state 𝑞 ∈ 𝐴,
we write 𝑞c for the equivalent state in the second copy. We add to 𝐴 the following
transitions:

𝑇 = {𝑝 .. 𝑏. 𝑞c, 𝑝c .. 𝑎. 𝑞 | 𝑝 .. 𝑎. 𝑞 ∈ 𝛿} .

147

Paper IV – Algebra and Complexity Meet Constrained Automata

Write 𝐴 = (𝑄 , Σ, 𝛿 , 𝑞0, 𝐹). First, we define 𝜏 ∶ 𝛿 → 𝛿 by:

𝜏(𝑡) =
⎧⎪
⎪
⎨
⎪
⎪⎩

𝑝 .. ℓ. 𝑞 if 𝑡 = 𝑝 .. ℓ. 𝑞 or 𝑡 = 𝑝c .. ℓ. 𝑞, 𝑝, 𝑞 ∈ 𝑄 ,
𝑝 .. 𝑎. 𝑞 if 𝑡 = 𝑝 .. 𝑏. 𝑞c or 𝑡 = 𝑝c .. 𝑏. 𝑞c, 𝑝, 𝑞 ∈ 𝑄 ,
𝑝 .. 𝑏. 𝑞 if 𝑡 = 𝑝 .. 𝑎. 𝑞c or 𝑡 = 𝑝c .. 𝑎. 𝑞c, 𝑝, 𝑞 ∈ 𝑄 ,

that is, 𝜏(𝑡) is the noninverted transition 𝑡, in𝐴. We nowdefine𝑈 ∶ (𝛿)∗ → ℱ(𝑑+1)
by:

𝑈𝑡 (𝐱, 𝑛) =
⎧⎪
⎪
⎨
⎪
⎪⎩

(𝑈𝜏(𝑡)(𝐱), 𝑛) if 𝜇(𝑡) = 𝜇(𝜏(𝑡)),
(𝑈𝜏(𝑡)(𝐱), 𝑛 − 1) if 𝜇(𝑡) = 𝑎 ∧ 𝜇(𝜏(𝑡)) = 𝑏,
(𝑈𝜏(𝑡)(𝐱), 𝑛 + 1) if 𝜇(𝑡) = 𝑏 ∧ 𝜇(𝜏(𝑡)) = 𝑎.

The extra component stores the number of times an 𝑎 has been taken instead of a 𝑏
minus the number of times a 𝑏 has been taken instead of an 𝑎. If these two numbers
are equal, then the numbers of 𝑎’s and 𝑏’s in the word read correspond to the numbers
of 𝑎’s and 𝑏’s that would have been read without the transition labels inverted; this
is the crucial point we show in what follows.

We will show that (1) for any path 𝜋 in 𝐴 from 𝑞0 to a state 𝑞 ∈ 𝑄 and any word
𝑤 ∈ {𝑎, 𝑏}∗, there is a 𝑤-labeled path 𝜋 in 𝐴 from 𝑞0 to either 𝑞 or 𝑞c such that
𝑈𝜋 (𝟎) = (𝑈𝜋(𝟎), |𝜇(𝜋)|𝑎 − |𝑤|𝑎); conversely, we will show that (2) for any path 𝜋
in 𝐴 from 𝑞0 to a state 𝑞 or 𝑞c, for 𝑞 ∈ 𝑄, 𝜋 = 𝜏(𝜋) is a path in 𝐴 from 𝑞0 to 𝑞 such
that 𝑈𝜋 (𝟎) = (𝑈𝜋(𝟎), |𝜇(𝜋)|𝑎 − |𝜇(𝜋)|𝑎).

We first show how (1) and (2) imply the proposition. Define 𝐶 = 𝐶 × {0}, then
we claim that 𝐿(𝐴 , 𝑈 , 𝐶) = 𝑐(𝐿(𝐴, 𝑈, 𝐶)). Indeed, let 𝜋 ∈ 𝖱𝗎𝗇(𝐴) such that
𝑈𝜋(𝟎) ∈ 𝐶 , and let 𝑤 ∈ 𝑐(𝜇(𝜋)). Then, by (1) there is an 𝑤-labeled accepting path
𝜋 in 𝐴 such that 𝑈𝜋 (𝟎) = (𝑈𝜋(𝟎), 0), which is in 𝐶 , and thus 𝑤 ∈ 𝐿(𝐴 , 𝑈 , 𝐶).
Conversely, let 𝜋 ∈ 𝖱𝗎𝗇(𝐴) such that 𝑈𝜋 (𝟎) ∈ 𝐶 . Then, by (2) 𝜋 = 𝜏(𝜋) is
in 𝖱𝗎𝗇(𝐴), |𝜇(𝜋)|𝑎 = |𝜇(𝜋)|𝑎, implying that the two words have the same Parikh
image, and 𝑈𝜋(𝟎) ∈ 𝐶 . Hence 𝜇(𝜋) ∈ 𝐿(𝐴, 𝑈, 𝐶), which implies that 𝜇(𝜋) ∈
𝑐(𝐿(𝐴, 𝑈, 𝐶)).

We now show (1) by induction. This is clear if 𝜋 is the empty path, from 𝑞0 to
𝑞0. Now let 𝜋 = 𝜌𝑡 and 𝑤 = 𝑢ℓ, and set 𝑞 = 𝖳𝗈(𝜌). Now suppose, by the induction
hypothesis, that there is a 𝑢-labeled path 𝜌 in 𝐴 from 𝑞0 to either 𝑞 or 𝑞c such that
𝑈𝜌 (𝟎) = (𝑈𝜌(𝟎), |𝜇(𝜌)|𝑎 −|𝑢|𝑎). If 𝜇(𝑡) = ℓ, then define 𝜋 = 𝜌 (𝖳𝗈(𝜌) .. ℓ. 𝖳𝗈(𝑡)),
otherwise define 𝜋 = 𝜌 (𝖳𝗈(𝜌) .. ℓ. (𝖳𝗈(𝑡))c). It is now straightforward to check
that 𝜋 fulfills the conditions of (1).

148

5. Conditional separations of APA and DetAPA

We show (2) by induction. Again, this is clear if 𝜋 = 𝜀. Let 𝜋 = 𝜌 𝑡 , and
let the ending state of 𝜌 be 𝑞 or 𝑞c, for 𝑞 ∈ 𝑄. By the induction hypothesis, 𝜌 =
𝜏(𝜌) is a path in 𝐴 from 𝑞0 to 𝑞 such that 𝑈𝜌 (𝟎) = (𝑈𝜌(𝟎), |𝜇(𝜌)|𝑎 − |𝜇(𝜌)|𝑎).
Now 𝜋 = 𝜌𝜏(𝑡) = 𝜏(𝜋) is such that 𝑈𝜋 (𝟎) = (𝑈𝜋(𝟎), |𝜇(𝜌)|𝑎 − |𝜇(𝜌)|𝑎 + 𝑘)
where 𝑘 = 0 if 𝜇(𝑡) = 𝜇(𝜏(𝜋)), 𝑘 = 1 if 𝜇(𝑡) = 𝑏 and 𝜇(𝜏(𝜋)) = 𝑎 (thus if
|𝜇(𝜋)|𝑎−|𝜇(𝜋)|𝑎 = |𝜇(𝜌)|𝑎−|𝜇(𝜌)|𝑎+1), and 𝑘 = −1 if 𝜇(𝑡) = 𝑎 and 𝜇(𝜏(𝜋)) = 𝑏
(thus if |𝜇(𝜋)|𝑎 − |𝜇(𝜋)|𝑎 = |𝜇(𝜌)|𝑎 − |𝜇(𝜌)|𝑎 − 1). In all cases we indeed have
that 𝑈𝜋 (𝟎) = (𝑈𝜋(𝟎), |𝜇(𝜋)|𝑎 − |𝜇(𝜋)|𝑎). It is also clear that 𝜋 fulfills the other
conditions of (2).

We indicate the two modifications that should be made for an alphabet size 𝑛 > 2.
First, instead of 2 copies of 𝐴, there should be 𝑛! copies, each for a permutation of
the alphabet. Second, the functions 𝑈𝑡 should have 𝑛 registers, where the 𝑖-th is
incremented if 𝜇(𝑡) is the 𝑖-th letter and decremented if 𝜇(𝜏(𝑡)) is the 𝑖-th letter. All
those counters should reach 0 for acceptance.

We add the following closure property of ℒAPA, which we conjecture does not
hold for ℒDetAPA:

▶ Proposition 106. ℒAPA is closed under starring.

Proof. We first present the idea of the proof. Let (𝐴, 𝑈, 𝐶) be an APA of dimension
𝑑, and suppose, to simplify this sketch, that 𝐶 is linear, i.e., 𝐶 = {𝐯0 + 𝑎1𝐯1 + ⋯ +
𝑎𝑘𝐯𝑘 | 𝐚 ∈ ℕ𝑘}. Let 𝐶(𝐚) for 𝐚 ∈ ℕ𝑘 be the value 𝐯0 + 𝑎1𝐯1 + ⋯ + 𝑎𝑘𝐯𝑘. The
construction of the proof is then as follows. The automaton 𝐴 guesses during a run
𝜋 a value 𝐚 ∈ {0, 1, … , 𝑐|𝜋| − 1}𝑘, for 𝑐 a big enough constant. Then, at the end
of its computation, and before it is reset, the value 𝐳 = 𝑈𝜋(𝟎) − 𝐶(𝐚) is added to an
additional register 𝐯 (of dimension 𝑑). Now if 𝑈𝜋(𝟎) is in 𝐶 , there is an 𝐚 such that
𝐳 = 𝟎; conversely, if 𝐳 = 𝟎, then 𝑈𝜋(𝟎) is in 𝐶 . Thus if the right guesses are taken
and 𝜇(𝜋) ∈ 𝐿(𝐴, 𝑈, 𝐶), 𝟎 will be added to 𝐯, and conversely, no sequence of guesses
exist that would make 𝟎 to be added to 𝐯 if 𝜇(𝜋) /∈ 𝐿(𝐴, 𝑈, 𝐶). Now we rely on the
technique presented in Paper I, Lemma 28 to make the conjunction of an unbounded
number of conditions by maintaining a nonzero flag: each time a transition is taken,
the value of 𝐯 is multiplied by 𝑐; this ensures that if at any reset a nonzero value 𝐳 is
added to 𝐯, this latter vector will stay nonzero for the rest of the computation. Thus
a word in (𝐿(𝐴))∗ is in (𝐿(𝐴, 𝑈, 𝐶))∗ iff 𝐯 is all-zero at the end of the computation.

We now present formal arguments. Let (𝐴, 𝑈, 𝐶) be an APA of dimension 𝑑 with
𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Write 𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋯ ∪ 𝐶𝑛 where all the 𝐶𝑖’s are linear.

149

Paper IV – Algebra and Complexity Meet Constrained Automata

Let 𝐶𝑖 = {𝐯0 + 𝑎1𝐯1 + ⋯ + 𝑎ℓ𝐯ℓ | 𝐚 ∈ ℕℓ}, with 𝐯𝑗 ∈ ℕ𝑑 , and define 𝑘 as the
maximum of the ℓ’s for all 𝐶𝑖. We write 𝐶𝑖(𝐚) for 𝐯0 + 𝑎1𝐯1 + ⋯ + 𝑎ℓ𝐯ℓ, with
𝐚 ∈ ℕ𝑘. Note that if 𝐯 ∈ 𝐶𝑖 then there is a vector 𝐚 ∈ {0, 1, … , max 𝐯}𝑘 such that
𝐯 = 𝐶𝑖(𝐚). We let 𝑐 be a constant such that for any path 𝜋 of 𝐴, any component of
𝑈𝜋(𝟎) is strictly less than 𝑐|𝜋| (see, e.g., Paper I, Proposition 27). In particular, this
implies that 𝑈𝜋(𝟎) ∈ 𝐶𝑖 iff there is 𝐚 ∈ {0, … , 𝑐|𝜋| − 1}𝑘 such that 𝑈𝜋(𝟎) = 𝐶𝑖(𝐚).

Define 𝐴 = (𝑄, Σ, 𝛿 , 𝑞0, 𝐹) as the starring of 𝐴, i.e.:

𝛿 = 𝛿 ∪ {𝑞 .. 𝑎. 𝑝 | 𝑎 ∈ Σ ∧ 𝑞 ∈ 𝐹 ∧ 𝑞0 .. 𝑎. 𝑝 ∈ 𝛿} .

We may suppose that all the added transitions did not appear in 𝛿 originally (this
could require that we duplicate the automaton and jump from one copy to the other);
we call these transitions the resetting transitions. Next, define 𝐴 as 𝑛 copies of 𝐴 ,
and let each resetting transition choose nondeterministically one of the 𝑛 copies to
continue the computation; we call these copies the linear copies and let the first one
be initial (i.e., the initial state of 𝐴 is that of the first linear copy). Now define 𝐴g to
be 𝑐𝑘 copies of 𝐴 , which we refer to using vectors in {0, 1, … , 𝑐 − 1}𝑘. Each time
a transition is taken, it chooses nondeterministically to continue the computation in
one of the copies; we call these copies the period copies and again let the first one
(corresponding to the all-zero vector) be initial. Write the elements of the transition
set 𝛿g of 𝐴g as 𝑡𝑖,𝐱, for 𝑡 ∈ 𝛿 , 1 ≤ 𝑖 ≤ 𝑛, 𝐱 ∈ {0, 1, … , 𝑐 − 1}𝑘, if it goes in the
𝐱-th period copy of the 𝑖-th linear copy. Now define 𝑈g ∶ (𝛿g)∗ → ℱ(2𝑑 + 𝑘), with
𝐮, 𝐯 ∈ ℤ𝑑 and 𝐚 ∈ ℤ𝑘 by letting 𝑈g

𝑡𝑖,𝐱
(𝐮, 𝐯, 𝐚) be:

⎧⎪
⎨
⎪⎩

(𝑈𝑡(𝐮), 𝑐 × 𝐯, 𝑐 × 𝐚 + 𝐱) if 𝑡 is not resetting,
(𝑈𝑞0 .. 𝑎. 𝑝(𝟎), 𝑐 × 𝐯 + 𝐮 − 𝐶𝑖(𝐚), 𝐱) if 𝑡 = 𝑞 .. 𝑎. 𝑝 is resetting.

Let 𝜋g be a path in 𝐴g starting from the initial state to a final state not going through
any reset. Then 𝑈g

𝜋g(𝟎, 𝐱, 𝟎) = (𝐮, 𝐯, 𝐚) is such that 𝐮 = 𝑈𝜋(𝟎), with 𝜋 the equivalent
path in 𝐴, 𝐯 = 𝑐|𝜋g| × 𝐱, and 𝐚 is a vector of numbers in {0, 1, … , 𝑐|𝜋g|−1}. In fact,
for any path 𝜋 in 𝐴, there is an equivalent path in 𝐴g for any value of 𝐚. Thus, we
view the work of 𝐴g and 𝑈g as taking a path 𝜋 in 𝐴 while guessing a vector 𝐚 and
multiplying 𝐱 by 𝑐|𝜋|. Nowwhen a resetting transition is taken, 𝐮 and 𝐚 are reset, and
𝑈𝜋(𝟎) − 𝐶1(𝐚) is added to 𝐱. This value is 0 if 𝑈𝜋(𝟎) ∈ 𝐶1 and the right guess of the
values 𝐚 has been made, i.e., 𝑈𝜋(𝟎) = 𝐶1(𝐚); as previously mentioned, if 𝑈𝜋(𝟎) ∈
𝐶1, these values exist. As in Paper I, Lemma 28 the component 𝐱 is such that if any
nonzero value is added to it, it will stay nonzero throughout the computation. This
behavior is similar if the path starts in the 𝑖-th linear copy, but with 𝐶𝑖 instead of 𝐶1.

150

6. Conclusion

Now augment 𝑈g so that an additional component indicates the number 1 ≤ 𝑖 ≤ 𝑛
of the linear copy in which the computation ended: 𝑈𝑡𝑖,𝐱

(⋅, 𝑗) = (𝑈g
𝑡𝑖,𝐱

(⋅), 𝑖). Then
define:

𝐶g = {(𝐮, 𝐯, 𝐚, 𝑖) | 𝐯 = 0 ∧ 𝐶𝑖(𝐚) = 𝐮} .

This is such that 𝐿(𝐴g, 𝑈 , 𝐶g) = 𝐿(𝐴, 𝑈, 𝐶1) ⋅ (𝐿(𝐴, 𝑈, 𝐶))∗. Now with 𝐴g
𝑖 the

automaton 𝐴g but with the 𝑖-th linear copy initial, this leads to:

{𝜀} ∪
1≤𝑖≤𝑛

𝐿(𝐴g
𝑖 , 𝑈 , 𝐶g) = (𝐿(𝐴, 𝑈, 𝐶))∗ .

6 Conclusion

We showed that the classes of languages defined by deterministic and unambiguous CA
and APA are recognized by natural algebraic objects in the context of typed monoids.
We showed that deterministic APA are strongly linked to ℤ-valued rational series. We
investigated closure properties of APA and deterministic APA in the light of compu-
tational complexity assumptions, and showed, under these assumptions, separation of
the classes of languages they define.

We propose several avenues of research. First, the algebraic characterizations we
give may lead to a finer understanding of the circuit complexity of the classes of lan-
guages we studied. We hope that further study will help shed further light on small
circuit complexity classes. Second, we show only conditional separation results of
DetAPA and APA. The characterization of DetAPA using rational series could be the
starting point of an unconditional separation, in particular over unary languages. In-
deed, we do not believe that the language {𝑎2𝑛 | 𝑛 ∈ ℕ}, a language of ℒAPA, is in
ℒDetAPA; or, equivalently (similarly to Corollary 98), we do not believe that there is
a sequence defined by a linear recurrence relation which is positive only on powers of
two.

151

Discussion

This paper in preparation answers primarily the question: what are the algebraic struc-
tures corresponding to the classes of languages we have defined and studied over the
previous papers. However, two obviousmissing classes are ℒCA and ℒAPA. These two
classes are not closed or expected to be closed under complement, thus they do not fit in
the framework of typedmonoids. One possible solution for this characterization would
be to relax the requirement of having a Boolean algebra of types in typed monoids, that
is, going in the direction of the pointed-monoids of Sakarovitch (e.g., [Sak76]). How-
ever, this seems to introduce technical difficulties and a better framework appears to be
that of a typed variant of ordered monoids. An ordered monoid is a monoid equipped
with a partial order ⪯, and it recognizes a language 𝐿 if 𝐿 is the inverse morphic
image of an upper subset of the monoid (that is, a set 𝑆 such that 𝑥 ∈ 𝑆 and 𝑥 ⪯ 𝑦 im-
plies 𝑦 ∈ 𝑆). In this context, it has been suggested by Krebs that the Schützenberger
product (see, e.g., [Sim93]), which is a natural algebraic interpretation of language
product, could be used to characterize ℒCA. We note that Pin [Pin03] recently pro-
posed a definition of the Schützenberger product for ordered monoids. Also, we saw
that ℒDetCA is a variety of languages, and [BKR11, Thm. 2] states an Eilenberg-like
theorem, associating natural sets of typed monoids with varieties of languages. Note
that ℒCA is a positive variety of languages, that is, it is closed under union, inter-
section, inverse morphisms, and quotient by a word. As an Eilenberg-like theorem
exists associating positive varieties of regular languages with natural classes of finite
ordered monoids (see [Pin11] for a survey), it would be interesting to investigate such
a correspondence between positive varieties of languages and typed ordered monoids.

Another problem left open in this work is whether ℒCA ⊆ NC1. We hope that the
final version of this paper will include a more precise result in this direction.

Paper IV – Algebra and Complexity Meet Constrained Automata

We also note that we did not derive from those results an additional characterization
for ℒDetCA. We may however be able to show a typed equivalent of the wreath product
principle of Straubing [Str79] (see [Pin03] for a modern account). This principle states
that a language 𝐿 ⊆ Σ∗ is recognizable by 𝑀 ≀ 𝑁 iff it is a finite union of languages
of the form 𝑈 ∩ 𝜎−1(𝑉), for 𝑈 ⊆ Σ∗ a language recognized by 𝑁 , 𝑉 ⊆ Τ∗ a language
recognized by 𝑀 , and 𝜎 ∶ Σ∗ → Τ∗ a rational transduction.

The other main problem left open is whether ℒAPA = ℒDetAPA, in particular over
unary languages. We note that the characterization of ℒDetAPA by means of rational
series appears to be be a good venue to show this separation; indeed, it seems unlikely
that, for instance, a sequence specified by a linear recurrence relation can be positive
only at positions which are powers of two. We note that this question seems related
to the theorem of Skolem, Mahler, and Lech, as presented in [BR10, Th. 6.4.1]. This
theorem states that for any rational series 𝑟 over a unary alphabet, {𝑎𝑛 | (𝑟, 𝑎𝑛) = 0}
is regular. However, we expect a characterization of the unary languages of ℒDetAPA
to rely on a study of the sign of trigonometric polynomials (in the sense of [Cor89])
rather than 𝑝-adic analysis, as in the proof of this theorem.

The algebraic framework has several advantages, one of them being conciseness.
It is interesting to compare, for instance, the proof of Corollary 96 of the closure of
ℒUnAPA under reversal with the following proof of closure of ℒAPA. This relies on
Lemma 89, which already simplifies the presentation of APA, hence the gain provided
by algebra as compared to the following is the abstraction from the automaton.

▶ Proposition 107. The class ℒAPA is closed under reversal.

Proof. Let 𝐿 ∈ ℒAPA. Lemma 89 asserts that there is an automaton 𝐴 with tran-
sition set 𝛿, a morphism ℎ∶ 𝛿∗ → ℳℤ(𝑘), for some 𝑘, and a type 𝒵 of (ℤ, ℤ+)𝑘2 ,
such that 𝐿 = 𝜇𝐴(ℎ−1(𝒵) ∩ 𝖱𝗎𝗇(𝐴)).

Suppose that 𝐴 has only one final state 𝑞f. Let 𝐵 be the automaton 𝐴 where every
transition is reversed (i.e., 𝑞 .. 𝑎. 𝑞 is a transition of 𝐴 iff 𝑞 .. 𝑎. 𝑞 is a transition of
𝐵), the initial state of 𝐵 is 𝑞f and the only accepting state of 𝐵 is the initial state of
𝐴.

Define 𝑔 to be the morphism from the transitions of 𝐵 to ℳℤ(𝑘) defined as
𝑔(𝑞 .. 𝑎. 𝑞) = (ℎ(𝑞 .. 𝑎. 𝑞))T. Let 𝜋 be an accepting path in 𝐴 and 𝜋 the ac-
cepting path in 𝐵 obtained from 𝜋R by reversing each transition. Then clearly
𝜇𝐴(𝜋) = (𝜇𝐴(𝜋))R and ℎ(𝜋) = 𝑔(𝜋)T. As 𝖱𝗎𝗇(𝐵) is the set of paths obtained
from 𝖱𝗎𝗇(𝐴) in this fashion:

(𝜇𝐴(ℎ−1(𝒵) ∩ 𝖱𝗎𝗇(𝐴)))R = 𝜇𝐵(𝑔−1(𝒵T) ∩ 𝖱𝗎𝗇(𝐵)) .

154

Discussion

Now such a language is that of an APA — this is shown similarly as the inclusion
𝐻−1(𝐙𝐌𝐚𝐭+) ⊆ ℒDetAPA in Theorem 95.

If 𝐴 has 𝑓 > 1 final state, then we can decompose 𝐿 into a finite union of 𝑓
languages for which 𝐴 has only one state, and use the 𝑓 = 1 case above. Closure
under union then completes the proof.

155

Conclusion

This thesis focused on several aspects of models of computation combining finite au-
tomata and semilinear constraints. It was presented through four research papers. The
main results are:

• We investigated in greater details the expressive power of Parikh automata. To
this aim, we introduced the constrained automaton which helped in gaining in-
tuition and writing short proofs. Different pumping-style lemmata allowed us
to give languages witnessing separations among flavors of Parikh automata. We
showed that determinism does not affect the expressive power of Parikh au-
tomata over bounded languages.

• We further studied the closure and decidability properties of Parikh automata,
completing the picture started by Klaedtke and Rueß. These properties are sum-
marized in Figure 3. Showing the decidability of regularity for deterministic
Parikh automata proved to be challenging.

• We studied the unambiguous constrained automaton, resulting in a model with a
better compromise between closure and decidability properties, on the one hand,
and expressiveness, on the other hand, than deterministic or nondeterministic
constrained automata.

• We introduced the affine Parikh automaton over ℚ and ℕ. We studied its expres-
siveness, decidability, and closure properties (see Figure 3). We investigated
natural restrictions of this model, in particular to make the emptiness problem
decidable. We showed in this vein that deterministic affine Parikh automata with
a condition expressing the finiteness of its behavior is equivalent to unambigu-
ous constrained automata.

Conclusion

• We used computational complexity assumptions to complete our pictures of the
world of Parikh automata (Figures 3 and 4).

• We proposed algebraic equivalents to the classes of languages defined by de-
terministic and unambiguous contrained automata and affine Parikh automata.
We deduced circuit complexity upper bounds and logical characterizations for
unambiguous constrained automata.

Figures 3 and 4 summarize expressiveness, decidability, closure results, and the
hierarchy of the classes of languages we studied. Open questions appear in these fig-
ures.

..

. ..∪ ..∩⋅ ..ℎ ..ℎ𝜀/ ..ℎ−1 ..𝑐 ..∗ ..𝐿−1 ..R ..∅ ..Σ∗ ..fin. ..⊆ ..reg.

..LPA ..N ..Y ..N ..N ..N ..N ..Y ..Y ..N ..N ..Y ..D ..D ..D ..D ..D

..DetCA ..Y ..Y ..Y ..N ..N ..N ..Y ..Y ..N ..Y ..N ..D ..D ..D ..D ..D

..UnCA ..Y ..Y ..Y ..N ..N ..N ..Y ..Y ..N ..Y ..Y ..D ..D ..D ..D ..D

..CA ..Y ..Y ..N ..Y ..Y ..Y ..Y ..Y ..N ..Y ..Y ..D ..U ..D ..U ..U

..DetAPA ..Y ..Y ..Y ..? ..N ..N2 ..Y ..N3 ..? ..N ..Y ..U ..U ..U ..U ..U

..UnAPA ..Y ..Y ..Y ..? ..N ..? ..Y ..? ..? ..N ..Y ..U ..U ..U ..U ..U

..APA ..Y ..Y ..N1 ..Y ..N ..Y ..Y ..Y ..Y ..N ..Y ..U ..U ..U ..U ..U

.

Prop. 56

.

Prop. 35

.

Prop. 58

.

Prop. 66

.

Prop. 18

.

Prop. 59

.

Prop. 36

.

Prop. 61

.

Prop. 37

.

Prop. 60

.

Prop. 17

.

Thm. 75

.
Prop. 69

.

Cor. 30

.

Cor. 102

.

Prop. 24

.

Prop. 85

.

Cor. 103

.

Prop. 104

.

Prop. 105

.

Prop. 106

.

Cor. 100

.

Prop. 107

.

Cor. 96

.

Cor. 31

Figure 3: Closure in the effective sense (Y) or nonclosure (N) of language classes defined by
PA variants, under set operations, concatenation, morphisms, nonerasing morphisms, inverse
morphisms, commutation, iteration, quotient, and reversal; decidability (D) or undecidability
(U) of emptiness, universality, finiteness, inclusion, and regularity; boldface denotes results
known prior to this paper. 1: if CoNP ≠ NP (see Cor. 102). 2: if P ≠ NP (see Cor. 103). 3: if
EXP ≠ NEXP (see Prop. 104).

We propose several avenues of research:

• Is model-checking tractable using deterministic or unambiguous constrained au-
tomata? Or using moving deterministic affine Parikh automata, which are equiv-
alent to unambiguous constrained automata? We observed that deterministic

158

Conclusion

..CSL ∩ NP.

APA

.

UnAPA = 𝐻−1(𝐙𝐌𝐚𝐭+□𝐌)

.

DetAPA = 𝐻−1(𝐙𝐌𝐚𝐭+)

.

NC1

.

PA = CA = RBCM

.

UnCA = M-DetAPA = 𝐻−1(𝐙+□𝐌)

.

Compl. of Dyck

.

DetRBCM

.

DetPA = DetCA = 𝐻−1(𝐙+ ≀ 𝐌) = 𝖡𝖢(𝗌𝗎𝗉𝗉+(ℤrat⟨⟨Σ∗⟩⟩))

.

LPA = DetLPA

.

REG

.

{𝑎𝑛𝑏𝑛}

.

{𝑎𝑛𝑏𝑛𝑎𝑚𝑏𝑚}

.

{𝑎𝑛𝑤 ∣ 𝑤 ∈ {⊏, ⊐}∗ ∧ |𝑤[1,𝑛]|⊏ < |𝑤[1,𝑛]|⊐}

.

{𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛}

.

{𝑤𝑤 ∣ 𝑤 ∈ Σ∗}

.

{𝑤#𝑤 ∣ 𝑤 ∈ Σ∗}

.

{𝑎, 𝑏}∗ ⋅ {𝑎𝑛#𝑎𝑛}

Figure 4: Relationships between language classes. When two classes are linked, the lower one
is included in the upper one. The inclusion is strict and witnessed by the given language if the
line is solid; it is not known to be strict otherwise.

constrained automata over bounded languages were already used in this con-
text by Bouajjani and Habermehl [BH99]; can our characterization of the class
of bounded languages recognized by deterministic constrained automata as the
bounded semilinear languages (Paper II) motivate further use of this computing
model?

• Are one-success constrained automata different from constrained automata?

• Can we prove an unconditional separation between the classes of languages rec-
ognized by deterministic, unambiguous, and nondeterministic affine Parikh au-
tomata? Is this question so tightly linked to computational complexity that show-

159

Conclusion

ing the separation would solve a major open problem?

• Using a notion of typed ordered monoids, can the classes of languages recog-
nized by constrained automata and affine Parikh automata be characterized al-
gebraically?

• Can the algebraic characterizations provide us with fine upper bounds on the
circuit complexity of the classes of languages we study? Can they help us in
showing that the Dyck languages are not recognized by affine Parikh automata?
Or that {𝑎, 𝑏}∗ ⋅ {𝑎𝑛𝑏𝑛} ⋅ {𝑎, 𝑏}∗ is not in ℒUnCA?

160

Bibliography

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56:16:1–
16:43, 2009.

[BB74] Brenda S. Baker and Ronald V. Book. Reversal-bounded multipushdown machines.
Journal of Computer and System Sciences, 8(3):315–332, 1974.

[BBF+01] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure
Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software Verifica-
tion: Model-Checking Techniques and Tools. Springer, 2001.

[BFLS05] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Philippe Schnoebelen. Flat accelera-
tion in symbolic model checking. InAutomated Technology for Verification and Analysis,
volume 3707 of Lecture Notes in Computer Science, pages 474–488. Springer, 2005.

[BH99] Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theoretical Computer Science, 221(1–
2):211–250, 1999.

[BIS90] David A.Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. J. Comput. Syst. Sci, 41(3):274–306, 1990.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

[BKM07] Christoph Behle, Andreas Krebs, and Mark Mercer. Linear circuits, two-variable logic
and weakly blocked monoids. In Mathematical Foundations of Computer Science, vol-
ume 4708 of Lecture Notes in Computer Science, pages 147–158. Springer-Verlag, 2007.

Bibliography

[BKR11] Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Typed monoids - an
Eilenberg-like theorem for non regular languages. In Algebraic Informatics, volume
6742 of Lecture Notes in Computer Science, pages 97–114. Springer, 2011.

[BL81] Meera Blattner andMichel Latteux. Parikh-bounded languages. InAutomata, Languages
and Programming, volume 115 of Lecture Notes in Computer Science, pages 316–323.
Springer Berlin / Heidelberg, 1981.

[BNP74] Ronald Book, Maurice Nivat, and Michael Paterson. Reversal-bounded acceptors and
intersections of linear languages. SIAM Journal on Computing, 3(4):283, 1974.

[Boj09] Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. In Theoretical Aspects
of Computer Science, volume 3 of Leibniz International Proceedings in Informatics,
pages 159–170. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009.

[BR10] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Applica-
tions. Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2010.

[Bra81] Franz-Josef Brandenburg. Analogies of PAL and COPY. In Fundamentals of Computa-
tion Theory, volume 117 of Lecture Notes in Computer Science, pages 61–70. Springer
Berlin / Heidelberg, 1981.

[Büc60] J. Richard Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[CDI+11] Ehsan Chiniforooshan, Mark Daley, Oscar H. Ibarra, Lila Kari, and Shinnosuke Seki.
One-reversal counter machines and multihead automata: Revisited. In Current Trends in
Theory and Practice of Computer Science, volume 6543 of Lecture Notes in Computer
Science, pages 166–177. Springer, 2011.

[Cho56] Noam Chomsky. Three models for the description of language. IRE Trans. Info. Theory,
1:113–124, 1956.

[CMMP10] Christian Choffrut, Andreas Malcher, Carlo Mereghetti, and Beatrice Palano. On the
expressive power of FO[+]. In Adrian-Horia Dediu, Henning Fernau, and CarlosMartín-
Vide, editors, Language and Automata Theory and Applications, volume 6031 of Lecture
Notes in Computer Science, pages 190–201. Springer Berlin / Heidelberg, 2010.

[Col12] Thomas Colcombet. Forms of determinism for automata (invited talk). In Theoretical
Aspects of Computer Science, volume 14 of Leibniz International Proceedings in Infor-
matics, pages 1–23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

162

Bibliography

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Theory of Com-
puting, pages 151–158. ACM, 1971.

[Cor89] Constantin Corduneanu. Almost Periodic Functions. Chelsea Publishing Series. Chelsea
Publishing Company, 1989.

[DFGvD10] Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van Drimmelen. Model-
checking (CTL*) over flat Presburger counter systems. Journal of Applied Non-Classical
Logics, 20(4):313–344, 2010.

[DIB+00] Zhe Dang, Oscar H. Ibarra, Tevfik Bultan, Richard A. Kemmerer, and Jianwen Su. Bi-
nary reachability analysis of discrete pushdown timed automata. In Computer Aided
Verification, volume 1855 of Lecture Notes in Computer Science, pages 69–84. Springer,
2000.

[DV08] Flavio D’Alessandro and Stefano Varricchio. On the growth of context-free languages.
J. Autom. Lang. Comb., 13:95–104, 2008.

[DZL03] Silvano Dal-Zilio and Denis Lugiez. XML schema, tree logic and sheaves automata.
In Rewriting Techniques and Applications, volume 2706 of Lecture Notes in Computer
Science, pages 246–263. Springer, 2003.

[Eil76] Samuel Eilenberg. Automata, Languages, and Machines, Volume B. Pure and Applied
Mathematics. Academic Press, 1976.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[ES69] Samuel Eilenberg and Marcel-Paul Schützenberger. Rational sets in commutative
monoids. Journal of Algebra, 13:173–191, 1969.

[Fis65] Patrick C. Fischer. Multi-tape and infinite-state automata—a survey. Commun. ACM,
8(12):799–805, 1965.

[FIS03] Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-abstracted transition
systems: application to FIFO automata. Information and Computation, 181(1):1–31,
2003.

[FL02] Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations: applica-
tions to broadcast protocols. In Proc. 22nd Conf. Found. of Software Technology and
Theor. Comp. Sci. (FST&TCS’2002), Kanpur, pages 145–156. Springer, 2002.

[FL08] Alain Finkel and Jérôme Leroux. Presburger functions are piecewise linear. Research
Report LSV-08-08, Laboratoire Spécification et Vérification, ENSCachan, France, 2008.

163

Bibliography

[Gin66] Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, Inc., New York, NY, USA, 1966.

[Gin68] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, New York, 1968.

[GMM10] Pierre Ganty, Rupak Majumdar, and Benjamin Monmege. Bounded underapproxima-
tions. In Computer Aided Verification, pages 600–614, 2010.

[Gre68] Sheila A. Greibach. A note on undecidable properties of formal languages. Math Systems
Theory, 2(1):1–6, 1968.

[Gre81] Sheila A. Greibach. Formal languages: Origins and directions. Annals of the History of
Computing, 3(1):14–41, 1981.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded ALGOL-like languages. Transac-
tions of the American Mathematical Society, 113(2):333–368, 1964.

[GS66a] Seymour Ginsburg and Edwin H. Spanier. Bounded regular sets. Proceedings of the
American Mathematical Society, 17(5):1043–1049, 1966.

[GS66b] Seymour Ginsburg and Edwin H. Spanier. Finite-turn pushdown automata. SIAM Jour-
nal on Control and Optimization, 4(3):429, 1966.

[GS66c] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and lan-
guages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 1979.

[Iba78] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems.
J. ACM, 25(1):116–133, 1978.

[IL81] Oscar H. Ibarra and Brian S. Leininger. Characterizations of Presburger functions. SIAM
Journal on Computing, 10(1):22–39, 1981.

[IS99] Oscar H. Ibarra and Jianwen Su. A technique for proving decidability of containment
and equivalence of linear constraint queries. J. Comput. Syst. Sci., 59(1):1–28, 1999.

[IS11] Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilinear lan-
guages by one-way and two-way deterministic machines. In Automata and Formal Lan-
guages, pages 211–224. Institute of Mathematics and Computer Science of Nyíregyháza
College, 2011.

164

Bibliography

[ISD+02] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, and Richard A. Kemmerer.
Counter machines and verification problems. Theor. Comput. Sci., 289(1):165–189,
2002.

[Jac09] Nathan Jacobson. Basic algebra. Dover Publications, Mineola, N.Y, 2009.

[Kar04] Wong Karianto. Parikh automata with pushdown stack. Diploma thesis, RWTHAachen,
2004.

[Kar05] Wong Karianto. Adding monotonic counters to automata and transition graphs. In De-
velopments in Language Theory, volume 3572 of Lecture Notes in Computer Science,
pages 308–319. Springer, 2005.

[KF94] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

[KKT06] Wong Karianto, Aloys Krieg, andWolfgang Thomas. On intersection problems for poly-
nomially generated sets. In Automata, Languages and Programming, volume 4052 of
Lecture Notes in Computer Science, pages 516–527. Springer, 2006.

[KLR07] Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Characterizing TC0 in
terms of infinite groups. Theory of Computing Systems, 40(4):303–325, 2007.

[KR02] Felix Klaedtke and Harald Rueß. Parikh automata and monadic second-order logics with
linear cardinality constraints. Tech. rep. 177, Universität Freiburg, 2002.

[KR03] Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In
International Colloquium on Automata, Languages and Programming, volume 2719 of
Lecture Notes in Computer Science, pages 681–696. Springer-Verlag, 2003.

[Kre08] Andreas Krebs. Typed semigroups, majority logic, and threshold circuits. PhD thesis,
Eberhard Karls University of Tübingen, 2008.

[KS89] Nils Klarlund and Fred B. Schneider. Verifying safety properties using non-deterministic
infinite-state automata. Technical report, Cornell University, Ithaca, NY, USA, 1989.

[Kur64] Sige-Yuki Kuroda. Classes of languages and linear bounded automata. Information and
Control, 7(2):207–223, 1964.

[Lat78] Michel Latteux. Mots infinis et langages commutatifs. R.A.I.R.O. Informatique
Théorique, 12(3):185–192, 1978.

165

Bibliography

[Ler05] Jérôme Leroux. A polynomial time Presburger criterion and synthesis for number deci-
sion diagrams. In Logic in Computer Science, pages 147–156. IEEE Computer Society,
2005.

[LK05] L. P Lisovik and D. AKoval’. Language recognition by two-way deterministic pushdown
automata. Cybernetics and Systems Analysis, 40:939–942, 2005.

[Lot97] M. Lothaire. Combinatorics on Words. Cambridge University Press, second edition,
1997.

[Maz10] David R. Mazur. Combinatorics: A Guided Tour. Mathematical Association of Mathe-
matics, 2010.

[Min61] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Annals of Mathematics, 74(3):pp. 437–455, 1961.

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press,
Cambridge, Mass., 1971.

[MS01] Victor Mitrana and Ralf Stiebe. Extended finite automata over groups. Discrete Appl.
Math., 108(3):287–300, 2001.

[MTV10] Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity for
boolean circuits. SIAM J. Comput., 39(7):3186–3206, 2010.

[Niv56] Ivan Niven. Irrational Numbers. Carus Mathematical Monographs. Mathematical As-
sociation of America, 1956.

[Niv63] Ivan Niven. Diophantine Approximations. Dover Publications, 1963.

[Par66] Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

[Per95] Dominique Perrin. Les débuts de la théorie des automates. Technique et science infor-
matiques, 14(4):409–433, 1995.

[Per03] Dominique Perrin. Automi e linguaggi formali. In Sandro Petruccioli, editor, Storia
della Scienza, volume IX, pages 197–205. Istituto della Enciclopedia Italiana, 2003.

[Pin03] Jean-Éric Pin. Algebraic tools for the concatenation product. Theoretical Computer
Science, 292:317–342, 2003.

[Pin11] Jean-Éric Pin. Theme and variations on the concatenation product. In Algebraic In-
formatics, volume 6742 of Lecture Notes in Computer Science, pages 44–64. Springer,
2011.

166

Bibliography

[Pre27] Mojzesz Presburger. Über de vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchen, die addition als einzige operation hervortritt. In Comptes
Rendus du Premier Congrès des Mathématiciens des Pays Slaves, pages 92–101, War-
saw, 1927.

[Res75] Antonio Restivo. A characterization of bounded regular sets. In Automata Theory and
Formal Languages, volume 33 of Lecture Notes in Computer Science, pages 239–244.
Springer, 1975.

[Sak76] Jacques Sakarovitch. An algebraic framework for the study of the syntactic monoids
application to the group languages. In Mathematical Foundations of Computer Science,
volume 45 of Lecture Notes in Computer Science, pages 510–516. Springer, 1976.

[Sak03] Jacques Sakarovitch. Élements de théorie des automates. Vuibert, 2003.

[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, 1965.

[Sim93] Imre Simon. The product of rational languages. In Automata, Languages and Pro-
gramming, volume 700 of Lecture Notes in Computer Science, pages 430–444. Springer-
Verlag, 1993.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Co.,
Boston, Massachusetts, 1997.

[SSM03] Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Numerical document queries.
In Principles of Database Systems, pages 155–166, San Diego, CA, USA, 2003. ACM
Press.

[Str79] Howard Straubing. Families of recognizable sets corresponding to certain varieties of
finite monoids. J. Pure Appl. Algebra, 15(3):305–318, 1979.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston, 1994.

[TT07] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular languages.
Logical Methods in Computer Science, 3(1), 2007.

[vdD98] Lou van den Dries. Tame Topology and O-minimal Structures. Cambridge Univ. Press,
1998.

167

Bibliography

[WB95] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints. In Static Analysis, volume 983 of Lecture Notes in Computer
Science, pages 21–32. Springer Berlin / Heidelberg, 1995.

168

Index

Bold page numbers indicate the definition of the term or its main reference.

𝟎, 2
𝐞𝑖, 2
𝑒𝑀 , 129
𝜀, 7
– automaton, see automaton, 𝜀
≡𝑠,𝑝, 94, 105
≡N

𝐿, see Nerode relation
𝐻−1(⋅), 133
ℳℤ(𝑘), 129
ℳ(𝑈), 2, 67, 77, 79, 82, 112
𝜇𝐴, 11
ℕ, 1
ℕ+, 1
𝑝 .. 𝑎. 𝑞, 11
Ψ𝑖, 129
ℚ, 1
ℚ+, 1
[⋅]𝑠,𝑝, 94, 105
[⋅]N𝐿, see Nerode relation
ℤ, 1
ℤ−

0 , 129
ℤ+, 1

action, 129
affine Parikh automaton, 15, 36, 77, 111
finite-monoid –, 67, 77, 111
independence from 𝕂, 41
moving –, 111

AFL, 35, 49
alphabet, 7
automaton, 11

𝜀 –, 11, 95
– flat, 71
– rflat, 71
constrained –, see constrained automaton
deterministic –, 11
Parikh –, see Parikh automaton

basic formula, 38
basic set, 129, 130–132
𝖡𝖢(⋅), 143
block product, 129, 137, 142
– principle, 141
typed –, 134

BOUNDED, 8
bounded language, 8, 105

Index

– of paths, 80
BSL, 8, 70

CA, see constrained automaton
closure properties
– of APA, 25, 43, 55, 146, 147, 149
– of BSL, 74
– of CA, 13, 25, 35, 62
– of DetAPA, 25, 43, 55, 142, 146, 147
– of DetCA, 25, 35, 62, 101
– of DetPA, see of DetCA
– of LPA, 57, 61, 62
– of PA, see of CA
– of UnAPA, 119, 142, 146
– of UnCA, 97, 99–101, 103, 141
commutative closure, 7, 35, 94, 99, 116
commutative image, see Parikh image
constrained automaton, 14
constraint-deterministic –, 77
deterministic –, 15
equivalence with PA, 26, 72
one-success –, 117
rflat –, 72, 76
unambiguous –, 15

constrained language, 14
constrained queue-content decision diag., see

CQDD
context-sensitive languages, 49
copies (language of –), see COPY
COPY, 28, 49
CQDD, 73, 76
CSL, see context-sensitive languages

decidability properties
– of APA, 25
– of CA, 13, 25, 34
– of DetAPA, 25, 55

– of DetCA, 25, 111
– of DetPA, see of DetCA
– of PA, see of CA
– of UnCA, 104, 107
definable set, 2
DetCA, see constrained automaton, determin-

istic
DetPA, 12
Dyck language, 102, 137

effectively definable set, 5
empty word, 7, 37, 40, 42, 63, 80, 135
extended automata over groups, 111
extended Parikh image, 12

first-order logic, 2, 3, 24, 31, 116, 140
𝖥𝗋𝗈𝗆, 11

group quantifier, 140

iteration set, 8, 75, 76, 85

𝕂-definable set, see definable set

ℒ1-CQDD, 73
ℒAPA, 43
ℒBoundedDetPA, 73
ℒBoundedPA, 73
ℒCA, 15
ℒDetAPA, 43
ℒDetCA, 15
ℒDetPA, 12
ℒDetRBCM, 16
ℒFM-APA, 111
ℒFM-DetAPA, 111
ℒ𝕂-APA, 15
ℒ𝕂-DetAPA, 15
ℒ𝕂-UnAPA, 15
ℒLPA, 56

170

Index

ℒM-APA, 111
ℒM-DetAPA, 111
ℒPA, 12
ℒRBCM, 16
ℒUnCA, 15
label, 11
language, 7
bounded –, see bounded language
constrained –, see constrained language
regular –, see regular languages

letters, 7
linear recurrence relation, 144, 154
linear representation, 143
linear set, 3

𝐌, 133, 135, 137, 142
modulo-free set, 129, 130, 132
monadic second-order logic, 23, 70, 140
monoid, 2, 12, 77, 112, 123, 129, 133, 143
– free, 7
– morphism, see morphism
monoids, 141
morphism, 2, 7, 13, 15, 35, 43, 50, 55, 72, 75,

94, 99, 106, 116
– erasing, 147
erasing –, 2, 43, 47, 57, 146
language –, 7
length-preserving –, 7, 103, 116

Nerode relation, 7, 29

PAL, 14, 29, 48
palindromes (language of –), see PAL
Parikh automata
– on letters, 56
Parikh automaton, 12
bounded –, 74
equivalence with CA, 26, 72

rflat –, 72
Parikh image, 7
extended –, see extended Parikh image

Parikh-bounded, 10, 30
Parikh’s theorem, 8, 58, 97, 101
path, 11
accepting –, 11
final –, 11
initial –, 11
regularity of the language of –s, 106

Presburger arithmetic, 3, 4, 5
projection, 12
pumping lemma, 27–29, 35, 102

quantifier-free formula, 3–6, 31, 38, 129
quotient, 7, 11, 61, 94, 100, 101, 116, 145, 146

RBCM, 16, 34
– and UnCA, 104
equivalence with CA, 17, 30

recognize (language), 133
regular languages, 11, 106
reversal, 7, 11, 29, 62, 94, 100, 102, 103, 116,

134, 141, 142, 154
𝖱𝗎𝗇, 11
runs, 11

semialgebraic set, 4
semidirect product, 134
bilateral –, 124
unilateral –, 124

semigroup, 2
semilinear
– language, 7, 13, 35
– regular expression, 71
– set, see semilinear set
semilinear set, 3, 8, 14, 31, 38, 69, 70, 74–76,

85, 105, 129

171

Index

effectively –, 5, 58, 76
Parikh images of paths are –, 96, 100
unary, see unary set

series, 143
rational –, 143

SLRE, see semilinear, regular expression
socle, 8, 75
𝗌𝗎𝗉𝗉+(⋅), 143
syntactic monoid, 17

𝖳𝗈, 11
transition monoid, 129, 136, 138
Turing machine, 53, 145
typed monoid, 133
type-respecting function, 134, 135, 137
types, 133

𝑈1, 137
unambiguous automata, 11
unary language, 128, 144
unary set, 10, 105
UnCA, see constrained automaton, unambigu-

ous

word, 7
– length, 7
– reversal, 7
wreath product, 129, 135
– principle, 154
typed –, 134

𝐙+, 135, 137
𝐙𝐌𝐚𝐭+, 142

172

	Résumé
	Abstract
	List of Acronyms
	Acknowledgments
	Introduction
	1 Models
	2 The behavior of a model
	3 Contribution of this thesis

	0 Definitions and Notations
	1 Vectors, functions, definable and semilinear sets
	2 Languages
	3 Models of computation

	I Affine Parikh Automata
	Presentation
	1 Parikh automata
	2 Affine Parikh automata
	3 Parikh automata on letters
	4 Conclusion

	
	Discussion

	II Bounded Parikh Automata
	Presentation
	1 Preliminaries
	2 Parikh automata and constrained automata
	3 Bounded Parikh automata
	4 Bounded Parikh automata are determinizable
	5 Discussion and further work

	
	Discussion

	III Unambiguous Constrained Automata
	Presentation
	1 Preliminaries
	2 Closure properties and expressiveness of UnCA
	3 UnCA and RBCM
	4 Decision problems for UnCA
	5 A deterministic form of UnCA
	6 Conclusion

	
	Discussion

	IV Algebra and Complexity Meet Constrained Automata
	Presentation
	1 Preliminaries
	2 Two normal forms on CA and APA
	3 Finitely typed monoids characterizations
	4 Formal power series characterization
	5 Conditional separations of APA and DetAPA
	6 Conclusion

	
	Discussion
	Conclusion
	Bibliography
	Index

