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Abstract 

Atrial fibrillation is the most common clinical arrhythmia currently affecting 2.3 million patients 

in North America. To study its mechanisms and potential therapies, animal models of atrial 

fibrillation have been developed. Epicardial high-density electrical mapping is a well-established 

experimental instrument to monitor in vivo the activity of the atria in response to pacing, 

remodeling, arrhythmias and modulation of the autonomic nervous system. In regions that are 

not accessible by epicardial mapping, noncontact endocardial mapping performed through a 

balloon catheter may provide a more comprehensive description of atrial activity.  

 

In this study, a dog experiment was designed and analyzed in which electroanatomical 

reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 

virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial 

catheter recordings were simultaneously performed. The recording system was also simulated in 

a computer model of the canine right atrium. 

 

For simulations and experiments (after atrio-ventricular node suppression), activation maps were 

computed during sinus rhythm. Repolarization was assessed by measuring the area under the 

atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-

endocardial correlation coefficient of 0.8 (experiment) and 0.96 (simulation) between activation 

times, and a correlation coefficient of 0.57 (experiment) and 0.92 (simulation) between ATa 

values.  

 

Noncontact mapping appears to be a valuable experimental device to retrieve information outside 

the regions covered by epicardial recording plaques.  

 

Keywords: Cantact epicardial mapping, Noncontact endocardial mapping, Atrial fibrillation, 

Balloon catheter, Cardiac computer model  
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Résumé 

La fibrillation auriculaire, l'arythmie la plus fréquente en clinique, affecte 2.3 millions de patients 

en Amérique du Nord. Pour en étudier les mécanismes et les thérapies potentielles, des modèles 

animaux de fibrillation auriculaire ont été développés. La cartographie électrique épicardique à 

haute densité est une technique expérimentale bien établie pour suivre in vivo l'activité des 

oreillettes en réponse à une stimulation électrique, à du remodelage, à des arythmies ou à une 

modulation du système nerveux autonome. Dans les régions qui ne sont pas accessibles par 

cartographie épicardique, la cartographie endocardique sans contact réalisée à l'aide d'un cathéter 

en forme de ballon pourrait apporter une description plus complète de l'activité auriculaire. 

 

Dans cette étude, une expérience chez le chien a été conçue et analysée. Une reconstruction 

électro-anatomique, une cartographie épicardique (103 électrodes), une cartographie 

endocardique sans contact (2048 électrodes virtuelles calculées à partir un cathéter en forme de 

ballon avec 64 canaux) et des enregistrements endocardiques avec contact direct ont été réalisés 

simultanément. Les systèmes d'enregistrement ont été également simulés dans un modèle 

mathématique d'une oreillette droite de chien. 

 

Dans les simulations et les expériences (après la suppression du nœud atrio-ventriculaire), des 

cartes d'activation ont été calculées pendant le rythme sinusal. La repolarisation a été évaluée en 

mesurant l'aire sous l'onde T auriculaire (ATa) qui est un marqueur de gradient de repolarisation. 

Les résultats montrent un coefficient de corrélation épicardique-endocardique de 0.8 

(expérience) and 0.96 (simulation) entre les cartes d'activation, et un coefficient de corrélation de 

0.57 (expérience) and 0.92 (simulation) entre les valeurs de ATa. 

 

La cartographie endocardique sans contact apparait comme un instrument expérimental utile 

pour extraire de l'information en dehors des régions couvertes par les plaques d'enregistrement 

épicardique. 

 

Mots clés: Cantact cartographie épicardique, Noncontact cartographie endocavitaire, La 

fibrillation auriculaire, Cathéter à ballonnet, Modèle informatique cardiaque 
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Introduction 

During atrial arrhythmias, electrical activity in two upper chambers of heart (atria) is chaotic and 

causes fibrillating (i.e., quivering) instead of achieving coordinated contraction. Repetitive 

episodes of arrhythmias may cause further pathological changes1. The autonomic nervous 

system, such as vagal and mediastinal nerves, can modulate electrophysiological and dynamical 

properties of heart2. The automatic nervous system also plays a significant role as a potential 

trigger of atrial fibrillation, especially in early stage of diseases. Therefore, knowledge about 

anatomy, function and electrical/mechanical activity of the heart is required for a better 

understanding the sources of heart dysfunction. 

Our aim is to compare two cardiac mapping systems, namely contact epicardial mapping and 

noncontact endocardial mapping, in dog experiments and computer simulations in terms of their 

ability to describe and characterize atrial depolarization and repolarization. Cardiac mapping 

systems provide valuable tools for diagnosis and treatment of cardiac arrhythmias. In addition, 

many fundamental insights about atrial fibrillation can be derived from animal models. 

Computer models have been developed based on bioelectrical and mathematical formulation of 

cardiac impulse propagation to assist in interpretation of cardiac electrical activity using forward 

and inverse problem. 

In this chapter, we will first look at heart anatomy and electrophysiology. Secondly, an 

introduction about cardiac mapping systems will be presented. Furthermore, we will review 

computer models of the heart and their applications to the interpretation of bioelectric signals. 

Finally, basic mathematical definitions for computation and interpretation of cardiac electrical 

activity called forward and inverse problems will be discussed.  
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1.1 Cardiac mechanical activity 

Heart is a muscular organ consisting of two right and left chambers, each side consisting of an 

atrium and a ventricle shown in figure 1.1. Atria and the ventricles are connected through 

atrioventricular (AV) valves, which allow blood to circulate within the heart. 

 

Figure 1.1-  Heart anatomy include right and left atria and ventricles (Reproduced from 
www.webmd.com/heart/chambers-of-the-heart3). 

 

Inner and outer layers of the heart are composed of cardiac muscle cells called endocardium and 

myocardium, respectively. The cardiac-muscle cells of the myocardium are settled in layers and 

make contact with adjacent cardiac-muscle cells through gap junctions, and they completely 

cover the cardiac chambers4.  

The function of heart is to pump oxygen-rich blood to the other organs in the body. In order to 

pump blood, the heart needs to complete a cardiac cycle (heartbeat) which consists of cardiac 

muscle contraction and relaxation. The conducting system of the atria initiates a heartbeat. The 

human heart beats approximately 80,000 to 100,000 a day and pumps almost 2,000 gallons of 

blood, which means the heart of  a person living 70 to 90 years, beats approximately two to three 



17 
 

billion times and pumps 50 to 65 million gallons of blood4. A heartbeat consists of systolic and 

diastolic phases (figure 1.2)5: 

Diastole: The atria start to become filled with oxygen-poor blood, while ventricles are relax and 

not contracting. At the end of this stage, atria pumps blood through the AV valves (mitral or 

tricuspid valve) into the ventricles. 

Systole: In this stage, ventricles contract which allows the blood to be pumped to the other 

organs. 

 

Figure 1.2- Overview of blood circulation through the heart chambers (Reproduced from Widmaier et 
al.4). 

 

1.2 Superior and inferior vena cava  

The Superior Vena Cava (SVC) and the Inferior Vena Cava (IVC) are two large veins connected 

to right atrium shown in figure 1.3. These veins are responsible for bringing deoxygenated blood 
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to the heart. The superior vena cava carries blood from the upper part of body and the inferior 

vena cava carries blood from the lower part of body to right atrium. 

The mapping systems we are going to use can label SVC and IVC on a reconstructed geometry 

representing the right atrium. These two anatomical elements will serve as reference landmarks 

to help identify locations within the right atrium. .  

 

Figure 1.3- Heart anatomy; Heart veins, valves, and vessels; Superior vena cava and inferior vena cava 
(Reproduced from nyp.org/health/cardiac-anatomy.html6). 

 

1.3 Cardiac electrical activity 

As previously described, the main function of the heart, initiated by the atrial contraction 

followed by the ventricles, is to pump the oxygen-rich blood to body. Cardiac muscle is a smooth 

muscle whose contraction is triggered by the depolarization of the plasma membrane of the 

cardiac muscle cells. Membrane depolarization initiates a sudden increase of electrical activity, 

known as action potential. This initiation starts in a group of cells located in the sinoatrial (SA) 
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node in right atrium near the entrance of superior vena cava and propagates into and throughout 

the atria and then the ventricles as shown in figure 1.44. 

The cardiac impulse travels from the SA node through the internodal pathways to the 

atrioventricular node (AV node). The action potential or impulse is delayed slightly at this point 

to allow complete emptying of atria before ventricles contract; continues through the AV bundle 

and down the left and right bundle branches of the Purkinje fibers. The Purkinje fibers conduct 

the impulse to all parts of ventricles, causing contraction. 

 

Figure 1.4- Heart electrical activity pathway; the blue color is correspond to the area that is excited by the 
depolarization waves (Reproduced from Widmaier et al.4). 

 

1.3.1 Cardiac action potential 

Typical cardiac action potentials (atrial and ventricular) are shown below in the figure 1.5. 
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Figure 1.5- (A) Heart electrical activity path and associated action potentials have been shown by blue 
color. Electrocardiogram (ECG) is equal to sum of action potentials propagate in conduction path (B) 
Sinoatrial action potential on the left side and ventricular action potential on the right side (Reproduced 
from bentollenaar.com/_MM_Book/Ch.19.htm7). 

 

 

 

 

Pacemaker potential 

No pacemaker potential
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The numbers on the action potential graphs (figure 1.5) indicate different phases: 

Phase 0: Voltage-gated sodium channels open and increase the concentration of Na+ inside the 

cell; at the same time, the permeability to potassium decreases. Therefore, the membrane 

potentials start to be positive which is termed as depolarization phase of the action potential. 

Phase 1: The voltage-gated sodium channels quickly close to prevent rising sodium 

permeability; membrane potential decrease to 0 mV. As well, outward movement of the 

potassium starts in this phase by the opening of slow delayed potassium channels. 

Phase 2: Calcium permeability increases which causes membrane to remain depolarized at 0 

mV. As a result, the gradient of the calcium ions into the cell will be more than the gradient of 

the potassium ions out of the cell; known as a plateau phase. 

Phase 3: The calcium channels are closed while the potassium channels are still open, 

consequently, the membrane permeability to calcium decreases and potential falls down to the 

rest potential. This process is known as a repolarisation phase. 

The action potential of the cardiac cell, either atrial or ventricular cell, is similar except that the 

plateau phase of atrial cells is shorter than the ventricular cells. The resting potential of SA cells 

is not steady (upward potential drift). 

Pacemaker potential is defined as threshold above which action potentials is triggered. The 

potential in the SA node cells spontaneously crosses the threshold to provide self-excitation or 

automaticity. Some cells located in the conducting system exhibit automatic activity like SA 

node cells; they are termed ectopic pacemakers.  
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The AV node - defined as an anatomical feature for electrical connection between right atrium 

and right ventricule - can be affected by some diseases and pharmacological substances. In our 

project, we disassociated the ventricular activity from atrial activity by using a drug. 

Consequently, the AV node could not transfer the impulse from atrial to ventricular which 

allowed us to isolate the atrial electrical activity. 

The electrocardiogram (ECG) is obtained by the summation of the all action potentials present in 

the heart as shown in the figure 1.5 A. ECG is used to follow electrical events within the heart. 

Generally, physicians divide a normal ECG into three parts: 

1) P wave: Atrial depolarization or atrial contraction. Usually, atrial repolarization cannot 

be seen in the ECG signal. It is hidden by the ventricular depolarization phase or QRS 

complex. It also has relatively small amplitude. 

2) QRS complex: Usually happens after 0.15s and corresponds to ventricular depolarization 

or contraction. It has more deflections as compared to P wave due to the path taken by the 

impulse to propagate through the ventricles; lead to different depolarization waves.  

3) T wave: Ventricular repolarization. 

As already mentioned, atrial repolarization is usually masked by ventricular depolarization. 

Hence, we will analyze atrial electrogram waveforms outside of ventricular activity after AV 

node suppression to have access to atrial repolarization waves. 

While the ECG can provide global information about cardiac electrical activity, it does not give 

detailed electrophysiological information about individual cardiac cells.  
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1.3.2 Heart rate 

The conducting system of the heart can be affected by hormones and nerves. Neuronal elements 

like sympathetic and parasympathetic postganglionic fibers in the SA node can change heart rate 

to a much higher (over 100 beats per minute) or lower value (below 50 beats per minute) than 

normal condition4. Generally, parasympathetic activities are stronger than sympathetic activities 

in a healthy heart. Heart rate is increased by sympathetic nerves activation whereas; 

parasympathetic nerves have an opposite effect (figure 1.6). 

 

Figure 1.6- Sympathetic and parasympathetic effects on the SA node action potential (Reproduced from 
Widmaier et al.4). 

 

As shown in the figure 1.6, the slope of the pacemaker potential increases during sympathetic 

nerve stimulation which cause the SA-node cells reach their threshold more rapidly. Hence, it 

will increase heart rate. Conversely, the slope of the pacemaker potential decreases by 

stimulation of parasympathetic nerves, cells reach to their threshold more slowly, and heart rate 

decreases. 
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A summary of central nervous system, branches, and their effects are described in the figure 1.7, 

as well as, the sympathetic/parasympathetic nerves with their connection to the heart are shown 

in the figure1.8. 

 

                                           Figure 1.7- Central nervous system block diagram 
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Figure 1.8- Autonomic nerves system; (A) Parasymphetic nerve (B) Sympathetic nerve from spinal cord 
to the heart. 

 

The neurotransmitters released by the sympathetic and parasympathetic nerves can change the 

pacemaker potential. The parasympathetic neurotransmitters, like norepinephrine, increase the 

sodium current into the cell by opening the voltage-gated sodium channels to initiate 

depolarization phase. On the other hand, sympathetic neurotransmitters, such as acetylcholine, 

close them to prevent early depolarization phase4. 
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The rate of spread of excitation (conduction velocity) through the conduction system increases 

by sympathetic stimulation and decreases by parasympathetic stimulation. 

Table 1.2 Summary of the autonomic nerves system effects on the heart 

 

1.4 Arrhythmia 

An arrhythmia is a well-known heart disease, observed as an irregularity in heart rhythm 

including beating too fast or too slow. Several physiological and anatomical factors, such as 

problems with the electrical conduction system of the heart, some substances or drugs, and 

abnormal heartbeats may trigger cardiac arrhythmias. Mechanisms of cardiac arrhythmias 

include: 

1) Generation of abnormal or extra excitation waves 

2) Slow conduction or conduction block 

3) Traveling along abnormal pathways or circuits through the heart, called reentry. 

In addition, electrophysiological and neurological substrate of the heart - such as alteration of the 

cellular membrane kinetics, anatomical abnormalities, and perturbations of the neurovegetative 

balance - can initiate heart arrhythmias8.   

It has also been recognized since 1914 that atrial arrhythmias can be induced by stimulation of 

autonomic nervous system9-13. 
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Reentry is one of the important mechanisms which can maintain important arrhythmias like atrial 

fibrillation, atrial flutter, atrioventricular (AV) nodal reentry, etc.14.  In atrial fibrillation and 

flutter, reentrant circuits are located in the atrial myocardium. Circuits can also be found in the 

SA node or in the AV node (SA or AV node reentry). Finally, ventricular tachycardia is 

maintained by a circuit located in the ventricles. 

1.4.1 Atrial fibrillation 

Atrial fibrillation (AF) is the most common cardiac arrhythmia that causes 15% to 20% of 

strokes.  AF currently affects 2.3 million patients in North America alone 15. In the age of 50-60 

and 80 years or older the prevalence are, respectively, 0.5% and 8.8%. Age, gender, race and 

cardiovascular diseases (hypertension, congestive heart failure, myocardial infarction, and 

valvular disease) are some factors that affect AF prevalence. The risk of AF development in men 

is higher than women at all ages16.  

AF increases risk of stroke, impairs quality of life, decreases work efficiency, and increases rates 

of hospitalization. In 2004, AF caused losing over 9 million working days. In 2006, estimated 

cost of AF-associated stroke was $12 billion16. AF presents a considerable challenge for patients, 

clinicians, and hospital managers, due to increasing prevalence, frequent complications, and 

large expenses. New diagnostic methods and treatments are essential to provide best care for 

these patients. 

During AF, electrical activity in the two upper chambers (atria) of the heart is chaotic and causes 

fibrillating (i.e., quivering), instead of achieving coordinated contraction. Ventricular response 

causes poor blood flow to the body. AF may cause pathological changes (AF-induced 

remodeling) which include dilatation of the atrial chambers, fibrosis and loss of cell-to-cell 
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coupling, that can facilitate progression of the heart arrhythmias ("AF begets AF")1. The 

autonomic nervous system also plays a significant role in AF, especially at its early stage (vagal 

AF)16. 

The mechanisms of human atrial fibrillation are poorly understood. Moe and Abildskov17 have 

defined the random propagation of multiple wavelets across the atria as AF. This hypothesis has 

been verified experimentally by Allessie et al18. They demonstrated that sustained AF consists of 

four or six wavelets in dogs. Clinically, different forms of AF are observed. It often starts as 

transient self-terminating arrhythmia and becomes more persistent with time. It may be highly 

symptomatic (palpitations, dizziness, fainting, fatigue, shortness of breath, chest pain), or remain 

completely unnoticed. It is secondary to hypertension, coronary heart disease, valvular 

dysfunction, or heart failure but may also occur in the absence of organic heart disease (lone 

AF)16.  

The presence of AF can be confirmed either in the electrocardiogram (ECG) by the absence of P 

waves or by an irregular ventricular rate. Therefore, biophysics underlying the P wave which is 

atrial depolarization and repolarization must be studied. Certainly, it helps us to discover more 

about the initiation of heart arrhythmias. 

Action potential duration (APD)19can act as middle for AF development. It is defined as the time 

when cell reaches to the excitation threshold and starts to be depolarized till the time cell 

excitability is restored. APD shortening can increase the arrhythmogenicity of the substrate. 

Focal activation or circuits of macroreentry also promote or facilitate the initiation and 

maintenance of AF. Wavelength, which is defined as the distance travelled by an impulse during 

the refractory period, is one of the factors that affect the maintenance of arrhythmias. It is 
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calculated as the product of conduction velocity by refractory period. Researchers have shown 

that refractoriness is shorter in the left atrium than in the right atrium20,21.The Na+ current (I ) 

is a significant factor leading to the conduction velocity variation. Diminishing I  can cause 

reduction of conduction velocity and wavelength shortens; hence, diminishing I  may help 

maintain AF. 

The American College of Cardiology, American Heart Association, and European Society of 

Cardiology divide AF into three categories: paroxysmal, persistent, and permanent22.  A 

recurrent wavelet self terminates in less than 7 days is paroxysmal AF. Localized sources leading 

to fibrillatory conduction cause paroxysmal AF. Moreover, random multiple-wavelet reentry 

decreases the likelihood of self-termination. A recurrent wavelet for more than 7 days is called 

persistent AF. Permanent AF means that the recurrent wavelet is present in the long term and the 

heartbeat cannot be reverted back to a normal rhythm. 

Understanding the electrophysiology underlying heart action potential like depolarization and 

repolarization phases, APD, conduction velocity etc. not only can help physicians for detection 

of ectopic beat and making a good surgical ablation strategies but also engineers can have better 

understanding of AF mechanisms, and consequently, they can design better future catheters used 

in treatments. 

1.5 Heart mapping system 

Heart mapping systems allows physicians and scientists to investigate heart diseases, notably 

heart rhythm disturbances. In this section we will look at the heart anatomical and 

electrophysiological mapping technologies and their role in understanding the genesis of 

arrhythmias. 
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1.5.1 Cardiac anatomical imaging system 

1.5.1.1 Fluoroscopy 

Fluoroscopy uses x-ray to visualize the motion of liquid and anatomical structure of a patient. 

This system has been the first imaging system used in catheter ablation procedure of atrial 

fibrillation. Catheter ablation procedure using fluoroscopy is shown in the figure 1.9. The 

radiation exposure time is critical for patient and operator safety during ablation, especially for 

long and repetitive procedures. 

 

Figure 1.9- Ablation procedure is shown by fluoroscopy imaging system. A: Before ablation.  
B: After ablation. CS: coronary sinus catheter. Eso: esophagus (Reproduced from Natale et al.22). 
 

1.5.1.2 Computed tomography 

Cardiac computed tomography (CT) system is a non-invasive heart imaging system that uses an 

x-ray machine rotates around patient body and takes clear and detailed picture of the desired 

organ. CT can be used to reconstruct the geometry of pulmonary veins since it is the major 

anatomical region in the atria with high likelihood of atrial fibrillation triggers (figure 1.10).  

These images can be used for AF treatment notably navigation of the catheter during ablation 

procedure. However, access to the anatomical structure alone is not sufficient to identify cardiac 

diseases. 
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Figure 1.10- (A) 4 healthy Pulmonary veins captured by CT. (B) Pulmonary vein of a patient with AF before 
undergoing radiofrequency ablation. Asterisks show the left atrial appendage A: healthy 
B:throumbus(Reproduced from Prat-Gonzalez et al23) 
 

1.5.1.3 Magnetic resonance imaging 

Magnetic resonance imaging is a non-invasive and radiation-free system for generating organ 

and tissue images. Cardiac MRI has been used to obtain pictures of the beating heart and to 

evaluate its structure and function.  Mostly, MRI is used to improve treatment procedure such as 

radiofrequency ablation by its role in pre-surgical planning, preacquired anatomical mapping 

used during the procedure itself, and post-surgical confirmation of the integrity of the procedure.  

MRI images with 3-D electroanatomical navigation systems such as CARTO XP EP Navigation 

System by Biosense Webster and EnSite™ System by St. Jude Medical can be an excellent 

combination to facilitate catheter navigation, pre-procedure planning, and therapy delivery for 

arrhythmia (figure 1.11). 
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Figure 1.11- Left panel is CARTO bipolar map and right panel is MRI images. The arrows indicate the location 
of scar in the two systems which is miss matched ( Reproduced from Cordreanu et al.24). 
 

1.5.2 Three dimensional electroanatomical mapping system (EAM) 

Why AF is difficult to treat? one of the reasons is that we lack a good understanding of its 

causes. AF can change the pathophysiological and electrophysiological aspects of underlying 

tissue (remodeling) which results in other electrical and mechanical adaptations that aggravate 

the vulnerability to AF. One option to determine and observe degree of remodeling is to measure 

electrical changes from the inside of the heart by means of electroanatomical mapping systems. 

Electroanatomic mapping systems (EAM) include Biosense CARTO, EnSite/NavX, Non-contact 

mapping, and Real-Time position management system. They are used to gain access to the 

electrophysiological substrate of the heart. They display activation and propagation maps on 

three dimensional geometry of cardiac chamber of interest by non-fluoroscopic catheter. This 

3D bipolar voltage map             3D MRI LV reconstruction               MRI native view 
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facilitates and increases accuracy of ablation procedure.  Each EAM system has its own strengths 

and weaknesses, and should be chosen based on the information that we need (activation 

mapping, substrate mapping, and cardiac geometry) for therapy.  

The EAM systems allow operators to observe the location of origin of arrhythmia or ectopic beat 

in cardiac chamber geometry and catheter manipulation without fluoroscopic guidance. EAM 

system advantages such as less fluoroscopy time, less radiation dose, and procedure time have 

been proved by several studies. The most significant of these is its application to treatment of 

atrial fibrillation25-33.   

In summary, here are the main advantages of EAM as compared to the conventional mapping 

system: 

1. Facilitates cardiac arrhythmia mapping and ablation procedure 

2. Reduced fluoroscopy time 

3. Radiation dose 

4. Procedure time 

In our study, we used EnSite NavX system to preform catheter navigation and localization in the 

canine right atrium. It was also used to reconstruct canine right atrium geometry for creating the 

computer model which will be discussed in the method section. 

1.5.2.1 Contact epicardial mapping  

Epicardial mapping is an experimental tool to study the electrophysiological characteristics of 

the atrial fibrillation. This system simultaneously records electrical activity from several or even 

hundreds of electrodes placed directly on the epicardium during open-chest surgery. We need 

information from all anatomical location of the heart for mapping characteristics of AF- chaotic 
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and rapidly changing of activation. Our system (Figure 1.12) consists of 5 silicone plaques with 

191 unipolar recording contacts (4.6–5.9 mm spacing) were positioned on (1) Bachmann bundle 

and adjacent base of the medial atrial appendage on the right and the left side, (2) the right atrial 

free wall and lateral right atrial appendage, (3) the left atrial free wall, (4) the lateral left atrial 

appendage, (5) the dorsal left atrial wall between the pulmonary veins to cover entire atria. 

Contact endocardial mapping is also possible using an inflatable balloon constructed with nylon 

and with 64 electrodes placed on its surface34. This balloon is inserted in the atrial chamber 

through an incision in the atrial appendage. The balloon is inflated to ensure 

contact with the endocardium. Continuous recording over multiple beats is  difficult since the 

balloon has to be deflated to avoid affecting too much cardiac hemodynamics. 

(A)                                                            (B) 

 

Figure 1.12- (A) Epicardial mapping system; (B) Five epicardial electrode plaques include: LAA, RAA—left 
and right atrial appendage; LAFW, RAFW—left and right atrial free wall; BB—Bachmann bundle; PV—
pulmonary veins 
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1.5.2.2 Non-contact endocardial mapping 

The EnSite Array multielectrode array (MEA; Endocardial Solutions, St. Jude Medical, Inc., St. 

Paul, MN, USA) is a new technology for non-contact cardiac electroanatomic mapping (figure 

1.13).  It has been Introduced in 200135 and is able to produce three dimensional pictures of the 

electrical activity of the cardiac chamber of interest. 

 

Figure 1.13- Non-contact mapping system; Balloon catheter; Asterisks are two rings electrodes that are 
used to construct cardiac geometry.  
 
 
Non-contact mapping system includes a computer workstation that is used to display three 

dimensional maps of cardiac electrical activity, custom designed amplifier system, with a balloon 

shape multi-electrode array catheter (MEA) to map endocardial activation.  

The MEA is a collapsible balloon-shaped catheter consisting of 64 intersecting electrodes on its 

surface which will be expanded once located in the cardiac chamber of interest. The electrical 

potential present on the MEA’s surface is recorded, permitting calculation of the endocardial 

potential by solving an inverse problem (see section 1.7). This allows reconstruction of 

electrograms at endocardial sites in the absence of physical electrode contact at those locations. 

MEA position in the chamber is identified by applying a low level 5.6 kHz current in two ring 

electrodes along its shaft and measuring the resulting potential on the body surface. Finally, 

moving the mapping catheter along the endocardial surface helps to reconstruct chamber 

geometry (figure 1.16 (asterisks)). 
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Recording cardiac electrical activity from thousands of points simultaneously and enabling 

reconstructing over 2048 electrograms from a single beat are two of the most elegant abilities of 

the non-contact mapping system. For these reasons, non-contact mapping has been validated for 

its application in human ventricles and atria36-40. It has been also validated in a human study for 

reconstruction of the endocardial electrograms in human left ventricular during sinus rhythm41. 

It has been demonstrated that non-contact endocardial mapping is practical in the diagnosis and 

treatments (such as catheter ablation) for various cardiac arrhythmias35 including atypical right 

atrial flutter42, focal right atrial tachycardia (RAT)43, right ventricular tachycardia44,45, left atrial 

tachycardia46 and atrial fibrillation36,47,48. Non-contact endocardial mapping has been used in 

different types of arrhythmias for the purpose of investigation and treatment. For example, the 

circuit of the right atrial flutter and the zones of the slow conduction have been identified using 

non-contact endocardial mapping system for performing radiofrequency ablation49,50.It is also 

able to show the macroreentry circuit during atrial flutter even with functional and anatomical 

variations between different patients51. 

The majority of  the researches by this new catheter were done in right atrial (56%) due to 

anatomical limitation of the left atrium; thus its application in the left atrial still needs more 

investigations35. 

From the treatment point of view, most important advantages of non-contact endocardial 

mapping are tracking an arrhythmia and guiding an ablation catheter by a single beat. In addition, 

construction of 2048 signals from one beat allows precise mapping even in a patient with rare 

focal activity. Fluoroscopy time, radiation dosage, and procedure time are reduced by using non-

contact mapping conjunction with conventional mapping strategies52. Other useful features are: 
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radiation-free catheter navigation, re-visitation of points of interest, and cataloging ablation 

points on the three dimensional model. 

Non-contact endocardial mapping has a good precision in recording the endocardial potential at 

distance <40 mm from the MEA; hence, the equator of the MEA ought to be placed close to the 

area of interest 47,53,54. Earley et al. used non-contact endocardial mapping to map the permanent 

AF and validate noncontact mapping. Based on their work, the signal morphology, correlation 

and the timing are strongly dependent on the distance of the balloon catheter from the recorded 

point38. Hindricks et al. had 17 patients with episodes of paroxysmal atrial fibrillation who 

underwent non-contact mapping of the left atrium to identify the localization of pulmonary vein 

foci that initiate paroxysmal atrial fibrillation36. 

Disadvantages of this technique can be listed as: 1) inaccuracy of the recorded potentials in terms 

of time and morphology at great distances from the MEA, 2) limited accuracy of the 

reconstructed signal because it is the solution to an inverse problem which is an ill-posed 

problem, 3) difficulty in deployment of the balloon catheter into the atria, 4) inaccuracy in 

recording the electrical potentials in certain atrial geometry like appendages and 5) the possibility 

of inducing non-sustained arrhythmia by MEA36.  

On the other hand, the conventional mapping technologies, like CARTO, can only map one 

location at time. Therefore, it is time consuming and, sometimes, mechanical induction of 

ectopic activity might occur during localization of arrhythmogenic foci.  

Atrial fibrillation is often triggered by ectopic foci in pulmonary veins for that reason, this focal 

triggers are typically targeted  by ablation strategy55. 
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Ectopic foci are critical points for designing ablation strategy. Hindricks et al. have determined 

the location of pulmonary vein foci by using noncontact mapping36 and , ability of the system to 

identify scar and low voltage areas in right atrial has been proved53. 

1.6 Computer modeling 

The electrophysiological and neurological mechanisms underlying cardiac arrhythmias are 

complicated. Investigations about cardiac arrhythmias can be performed in patients, in animal 

models, or in computer models. Testing a new approach or technology in patients is not trouble-

free and cost efficient. Hence, a combination of animal models and computer models may 

provide more details about electrophysiological and neurological mechanisms underlying heart 

functionality and cardiac arrhythmias like atrial fibrillation. 

Computer models of the heart allow us to selectively change the local properties of ionic 

channels and set it to work only on the target that we are interested in. This option reduces 

confounding effects related to the physiological substrate. Changing the electrical properties of 

individual cardiac cells can set the stage for AF. Each cardiac cell contains a large number of ion 

channels of different types, and the proper function of a cardiac cell depends on a choreography 

involving all of these ion channels i.e. the proper number of each type of ion channels, the 

individual channels that must open and close at the proper time. Consequently, by ionic channel 

manipulation, the conditions necessary for a re-entrant arrhythmia or AF may be created. 

Computer simulation of function of the heart offers the potential to guide disease treatment and 

management, to clarify the causes creating these conditions and eventually, to develop new 

treatment tools and drugs to reduce their threat to life. 

The heart modeling steps can be summarized in the following chart8: 
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In order to achieve a predictive model of the heart, we should first consider the 

electrophysiological details about cardiac cell i.e. ions fluxes across membranes and from cell to 

cell. 

 

The first atrial cell models were developed using rabbit atrial cells by Hilgemann et al.56 and 

Lindblad et al.57 Later, Nygren et al.58 and Courtemanche et al.59 introduced two human atrial 

cell models. The Courtemanche model can be modified to produce atrial arrhythmias and 

incorporate the effect of acetylcholine (vagal stimulation) 58. Moreover, a canine version of the 

model has been created. 

Excitable cells are connected through gap junctions. The interconnections of the cellular network 

form the cardiac tissue. Action potential propagates from cell to cell by this pathway. When this 

network is approximated by a continuous conductive medium, impulse propagation is governed 

by the monodomain or bidomain equations (nonlinear partial differential equations of the 

reaction-diffusion type)8. 

The geometry of atria has been constructed using different medical imaging modalities like 

magnetic resonance imaging60,61, electroanatomical mapping system, computer aided 

tomography62, and dataset resulting from Visible Human project63-66. 

The computer models are able to simulate heart disease, genetically modified cells, and regional 

heterogeneity by changes in membrane kinetics8, mainly ionic currents which have a significant 

impact on the repolarization phase of the action potentials and on the occurrence of conduction 

Molecular 
level

Membrane 
model Cell level Tissue level Organ level
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block or reentry67-70. They have been used to study the effect of cardiac cell remodelling- a 

pathophysiological adaptation of the atrial cells to the fibrillatory rhythm8. 

As already mentioned, the autonomic nervous system has a complementary role to create AF 

substrate. Vagal stimulation and acetylcholine (ACh) concentration can change rhythm 

adaptation and spatial heterogeneity in the heart. Computer models provide a framework to 

investigate the role of nervous system in atrial arrhythmias. For instance, Vigmond et al. induced 

reentries in a 3-D canine atrial model by modulating ACh 71.  

In this work, we are going to create an electro-anatomical computer model of canine right atrium 

based on geometrical data acquired from catheter localization system (EnSite NavX). This model 

will be used to generate contact and noncontact (epicardial/endocardial) signals to validate and 

evaluate the signal processing tools and relevance of the both mapping systems. 

In the next section, we are going to define the concepts used to compute electrical signals in 

noncontact mapping system and produce a mathematical model of the heart. 

1.7 Forward and Inverse problem 

In recent years, scientists have applied mathematics for visualizing important electrical 

phenomena in the human heart. As mentioned earlier, the heart is a pump that works efficiency if 

the conduction system sends impulse properly. Electrical impulse starts from the SA node and 

propagates throughout the whole heart, causing contraction in heart muscle. Distribution of these 

waves in the heart is termed heart electrical activity which reflects to the chest, which allows 

physicians to measure electrical potential called an electrocardiogram or ECG. 
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1.7.1 Forward problem 

Computing electrical potentials on the thorax surface (body surface potential) from heart surface 

potentials is known as the forward problem of electrocardiography (figure 1.14). One of the main 

applications of the forward problem is in the simulation of ECG signals in computer models and 

studying the effects of torso inhomogenities on the ECG. The solution to the forward problem 

entails surface methods and volume methods. More detail information about these methods can 

be found in 72.  

 

Figure 1.14- Definition of the Forward problem. Arrows indicate the direction of computation which is from 
heart surface potential to the body surface potential; ∅ is heart surface potential and  ∅ is body surface 
potential (Reproduced with permission from Cluitmans et al.73). 

 

However, application of forward problem in medical domain is limited since we need 

information about heart surface potentials and electrophysiological activity of the heart, notably, 

the potentials at the outer heart wall (the epicardium). Hence, computing heart surface potentials 

from body surface potentials is desirable for clinical applications72. 

1.7.2 Inverse problem 

The inverse problem consists in predicting electrical potentials on the heart surface using 

electrical potential on the body surface (Figure 1.15). 
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Figure 1.15- Definition of the inverse problem; Arrows indicate the direction of computation which is from 
body surface potential to the heart surface potential. ∅ is heart surface potential and∅   is body surface potential 
(Reproduced with permission from Cluitmans et al.73). 

 

The procedure of reconstructing heart surface potentials or solving the inverse problem is 

illustrated in the figure 1.15. 74 Briefly, it starts by acquiring potential recordings (ECGs) on the 

body surface of a patient, finding the anatomical relationship between the heart and body surface 

(transfer matrix) which requires generating a patient-specific model of the torso, and finally 

reconstructing the heart surface potentials (epicardial) using mathematical techniques (pseudo-

inverse and regularization) (figure 1.16). 

In our project, the balloon catheter was located in the cardiac chamber and the endocardial 

activity was computed by means of an inverse problem (figure 1.17).  
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Figure1.16- Application of inverse problem in electrocardiography. The procedure of reconstruction of 
heart surface potential from body surface potential (Reproduced with permission from Cluitmans and et 
al.73,75). 

 

                                                       Recording                            Source 
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Balloon Catheter                     Right atrium 

               

Figure 1.17- Application of inverse problem in noncontact mapping; Balloon catheter inside the cardiac 
chamber and compute the endocardial potential by using inverse problem (Reproduced with permission 
from Cluitmans and Salinet et al.73,75). 
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In figure 1.17, electrical potential is recorded from chest and balloon catheter, respectively, for 

body surface potential maps and noncontact mapping. Next, heart and right atrium endocardial 

electrical activity are reconstructed from the recorded electrical potentials -from the chest and 

balloon catheter- by means of inverse problem. 

Nowadays, medical companies are interested in non-invasive technology and also other similar 

procedures due to their unique properties. Any successful demonstration of application of this 

technique would significantly advance cardiac diagnostic procedures. Unfortunately, up to now 

in most cases the quality of reconstructed electrical potentials has not been satisfactory enough 

for a reliable diagnosis72. 

The main source of the difficulty stems from the fact that the inverse problem in cardiac 

electrophysiology is well known to be a mathematically ill-posed problem; i.e. its solution can 

oscillate wildly with the slightest noise or measurement errors or it is not unique or even exists. 

The number of parameters in the desired solution, i.e. the complexity of the assumed heart 

model, can change the ill-posed nature of the inverse problem. Therefore, the solution to the 

inverse problem may vary depending on the assumptions of the computer model72. 

In order to remove ill-posed nature of inverse problem the desired solution needs to be stabilized 

by a mathematical technique known as regularization. 

The solutions to the inverse problem may be based on 70: 

1) Multipole coefficient 

2) Moving-dipole inverse solutions 

3) Multiple-dipole inverse solutions 
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In our project, forward problem was used to compute the electrical potential appearing on the 

surface of the balloon catheter (64 electrodes) and the electrical potential of 103 electrodes on the 

2 silicone plaques, for noncontact endocardial and epicardial mapping respectively. 

Right atrium endocardial electrical activity (2048 signals) was reconstructed from electrical 

activity recorded by 64 electrodes on the surface of balloon catheter by solving an inverse 

problem. 

These methods provide comprehensive information about cardiac electrophysiological activity. 

1.8 Signal processing tools 

In this section we are looking at basic principles underlying intracardiac electrogram analysis and 

their technical applications in cardiac electrophysiology. To describe atrial depolarization and 

repolarization, two parameters have been considered in this study: activation time and area under 

the atrial T waves (ATa). These parameters provide basic information about normal and 

abnormal electrophysiological properties. 

1.8.1 Activation time 

Activation time is one of the most fundamental factors to describe the mechanisms of atrial 

arrhythmias. For instance, identifying the earliest activation site by mapping activation time is 

essential for ablation procedure to recognize sites of ectopic beats. The concept of activation time 

is defined in figure 1.18 for a unipolar electrogram76. 
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Figure 1.18- The concept of activation time. (A) Activation is going to reach to cell beneath the electrode 
(Depolarization phase). (B) Activation has reached beneath the electrode (Plateau and repolarization). (C) 
Activation is going to pass to adjacent cells (Rest). 

 

Activation time was defined as the time where the peak negative derivative reach the maximum 

value and validated by Ndrepepa77 using extracellular electrograms. It has been recognized as the 

most accurate indicator of activation beneath the electrode, and is supported by both 

experimental and theoretical work77-80. 

In figure 1.19, the first signal represents an atrial depolarization and the red point indicates the 

activation time. The red point is located at the peak negative in the panel B. The last signal is the 

transmembrane potential that indicates the cellular activation beneath the electrodes after red 

point or activation time (the extracellular potential is directly proportional to the second temporal 

derivative of the intracellular potential).  

 

Activation time is the moment when 
the action potential passes underneath 
the electrode 

Electrode 

Action potential 
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Figure 1.19- Activation time mathematical definition is shown by red dot. (A) An atrial beat. (B) 
Derivative of A. (C) Transmembrane voltage. 

 

Mapping of activation sequence has been studied in epicardial and endocardial signals in the 

isolated canine right atrium to determine the concordance between epicardial and endocardial 

activation times. The difference between epicardial and endocardial activation was small during 

sinus rhythm but can be significant during arrhythmias80.  

Armour et al used epicardial and non-contact endocardial mapping to identify the sites of origin 

of sinus or ectopic beat preceding atrial fibrillation. They also have shown the contribution of the 

efferent neuronal elements in electrophysiological substrate of the atrial tachyarrhythmias81. 

In order to map the activation time sequence of the endocardial surface of cardiac chamber, we 

can use cardiac anatomical mapping systems by either one catheter or multielectrode catheter. A 

balloon catheter with 64 electrodes was used in our study. In addition, three dimensional color 

coded maps was reconstructed using electroanatomical mapping system (EnSite array).     

The maximum negative derivative  
of an electrogram corresponds to  
the upstroke of action potential  

Transmembrane voltage

B 

A 
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Our aim is to compare two cardiac mapping systems in term of activation times by analyzing 

right atrium beats in canine experiments. To avoid having ventricular beat mask relevant atrial 

activity (notably repolarization), atrial activity was disassociated from ventricular activity by 

pharmacological suppression of the AV node and ventricular pacing. Ventricular beats remained 

present but were not synchronized with atrial repolarization. In order to choose appropriate beats 

in which ventricular beats were located far enough from atrial beats (250-300 ms later), 

activation times and ventricular beats were plotted for each catheter location and for all 

experiments as shown in figure 1.20. For instance, the time interval between activation time and 

ventricular beat is less than 300 ms in beat number 1, 2, 3 in the figure 1.20 (A), therefore, beat 

number 4and 5 were chosen for this case. 
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Figure 1.20- Activation times and ventricular beats are plotted for (A) Right ganglionic plexus and (B) for 
all experiments. 
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In order to choose the corresponding beats between epicardial and non-contact endocardial 

signals, the delay between these two mapping system was calculated then the activation times 

were plotted for all experiments in figure 1.21.  

 

Figure 1.21- Concordance between epicardial and non-contact endocardial activation times for all catheter 
locations; The purple dots are non-contact endocardial activation times, the black dots are epicardial 
activation times, and blue stars are ventricular beats. 

 

In addition, activation times were plotted for each catheter location separately, as seen in the 

figure 1.22. Also, we mapped them on the epicardial and endocardial geometry to ensure that the 

correspondent beats were chosen. 

For example, the activation times for both mapping systems are plotted for catheter located in the 

right atrium ganglionated plexus in figure 1.25. Beats number 1 to 4 of the epicardial signals 
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correspond to beats number 1 to 4 of the endocardial signals in figure 1.25(A). Meanwhile, the 

earliest activation time happens near the SVC for both mapping systems (shown as asterisks).    

  

 

 

 

 

Figure 1.22- Experimental activation times; (A) Activation times are plotted for one catheter location to notice 
the correspondence between the beats. (B)  Activation times are mapped for the same beats. Anatomical 
locations are shown by the stars and arrows. SVC superior vena cava; IVC inferior vena cava, RAGP right 
atrium ganglionated plexus (catheter location). 

The same procedure was done for the simulated epicardial and endocardial signals shown in 

figure 1.23.  
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Figure 1.23- Simulated activation times; (A) Activation times are plotted for one experiment to notice the 
correspondence between the beats. (B)  Activation times are mapped for the same beats. Anatomical locations 
are shown by the stars and arrows. SVC superior vena cava; IVC inferior vena cava, RAGP right atrium 
ganglionic plexi (catheter location). 

1.8.2 Area under the atrial T wave 

Spatial repolarization changes can be measured by computing the area under the repolarization 

waveform. For atrial waves, it is known as area under the atrial T wave or ATa. ATa is a marker 

of arrhythmogenic repolarization gradient. We computed ATa by integration over a defined 
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distance start from 40 ms after the activation time, as shown in figure 1.24.The effect of 

stimulation of efferent autonomic neural elements on the atria has been studied by the area of 

QRST deflections to detect regional changes in atrial electrical activity82. Page et al. introduced 

ATa to identify the different spatial regions affected by specific nerve stimulation. The spatial 

distribution of repolarization changes displayed heterogeneity in atrial electrical response to 

autonomic nervous system stimulation19,82. 

Cardinal et al. induced tachyarrhythmias by mediastinal nerve stimulation to point out the 

relation between the origin of the beat immediately preceding tachyarrhythmias onset and 

spatially concordant sites of neurogenically induced repolarization changes using epicardial and 

non-contact endocardial mapping. They also showed the role of spatial heterogeneity of atrial 

repolarization properties in tachyarrhythmias initiation.  Based on their results, further 

information about arrhythmias could be extracted by gaining insights into the 

electrophysiological markers related to repolarization properties in the atria83. 

 

Figure 1.24- The area under the atrial T wave; ATa is shown by green color. 
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1.8.2.1 Correction of the baseline for ATa calculation 

One of the difficulties for ATa calculation was possible (low frequency and typically small 

amplitude in our data) baseline wandering. We addressed this problem by detecting the last point 

of the integration and shifting it to zero for each beat in all 103 epicardial signals and 2048 

endocardial signals (figure 1.25). 

 

Figure 1.25- Baseline correction for computation of ATa (Experimental signals). 
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2.1 Abstract  

Epicardial high-density electrical mapping is a well-established experimental instrument to 

monitor in vivo the activity of the atria in response to pacing, remodeling, arrhythmias and 

modulation of the autonomic nervous system. In regions that are not accessible by epicardial 

mapping, noncontact endocardial mapping performed through a balloon catheter may provide a 

more comprehensive description of atrial activity. We developed a computer model of the canine 

right atrium to compare epicardial and noncontact endocardial mapping. The model was derived 

from an experiment in which electroanatomical reconstruction, epicardial mapping (103 

electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-

channel balloon catheter), and direct-contact endocardial catheter recordings were 

simultaneously performed in a dog. The recording system was simulated in the computer model. 

For simulations and experiments (after atrio-ventricular node suppression), activation maps were 

computed during sinus rhythm. Repolarization was assessed by measuring the area under the 

atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-

endocardial correlation coefficient of 0.8 (experiment) and 0.96 (simulation) between activation 

times, and a correlation coefficient of 0.57 (experiment) and 0.92 (simulation) between ATa 

values. Noncontact mapping appears to be a valuable experimental device to retrieve information 

outside the regions covered by epicardial recording plaques. 

2.2 Introduction 

Despite decades of investigations, many questions related to the mechanisms underlying the 

initiation and maintenance of atrial fibrillation remain open.84 The origin of atrial fibrillation may 

be neurogenic (the role of the intrinsic cardiac nervous system is critical in this case), myogenic 

(related to abnormalities or remodeling in the heart muscle), or due to a combination of both.85 
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Animal models have been developed to investigate the relation between atrial fibrillation and the 

autonomic nervous system.86 In these models, atrial tachyarrhythmias could be induced by 

electrically stimulating the vagosympathetic trunks in the neck87 or mediastinal nerves.88,89  

Heterogeneity of repolarization was created locally in various atrial areas depending on which 

nerve was stimulated. Tachyarrhythmia beats typically originated from areas of increased 

repolarization heterogeneity.  

The area under the atrial repolarization wave (ATa) in unipolar electrograms has been proposed 

as a marker of neurogenically-induced repolarization gradients.90 The importance and spatial 

distribution of the influence of the autonomic nervous system on atrial repolarization has been 

demonstrated by measuring ATa in epicardial mapping data.91 However, anatomical landmarks 

(fat pads, veins and arteries) caused obstruction to epicardial plaque placement, leaving relevant 

regions (e.g. septum) unmapped. To circumvent that problem, the use of noncontact endocardial 

mapping has been proposed.91 Noncontact mapping92,93 is a clinical device that computes virtual 

endocardial electrograms from a multielectrode array (balloon catheter) inserted in the atrium. 

This tool has been applied to assess reentrant circuits49-51 and focal activity.36 Activation and 

isopotential maps derived from virtual endocardial electrograms have been successfully 

compared to direct-contact mapping.94,95 Simulation tools for noncontact mapping have been 

developed.96 However, atrial repolarization waves and ATa in noncontact mapping has not been 

investigated yet. 

The aim of this paper is to evaluate the use of noncontact mapping for extracting activation times 

and ATa values. Dog experiments and a computer model of the canine right atrium were 

combined to address this question. Simultaneous epicardial and noncontact endocardial mapping 

were compared in their ability to describe atrial depolarization and repolarization. 
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2.3 Material and methods 

2.3.1 Animal preparation 

A large mongrel dog (about 35 kg) was anesthetized by sodium thiopental and maintained under 

positive pressure ventilation. After bilateral open chest surgery to expose the heart, anesthetic 

was changed to α-chloralose. Atrioventricular blockade was performed by formaldehyde 

injection to dissociate atrial and ventricular electrical activity, as in Armour et al.91 The right 

ventricle was electrically stimulated at 82 bpm to assure sufficient cardiac output. The atria were 

in sinus rhythm during the whole experiment. This study was approved by the ethical committee 

of the Hôpital du Sacré-Coeur de Montréal. 

2.3.2 Experimental recording system 

Two silicone plaques comprising 103 epicardial unipolar recording contacts were placed (1) in 

the right atrial free wall and lateral right atrial appendage (79 channels), and (2) in the 

Bachmann's bundle and adjacent base of the medial atrial appendage (24 channels).91The 

electrodes were connected to a multi-channel recording system (EDI 12/256, Institut de génie 

biomédical, École Polytechnique de Montréal). Signals were band-pass filtered (0.05-450 Hz) 

and digitized with a sampling rate of 1 kHz. 

In parallel, a noncontact, endocardial balloon catheter (EnSite 3000 Multi Electrode Array with 

64 channels; St Jude Medical Inc., St Paul, MN) was inserted in the right atrium. This device 

solves an inverse problem (see below) to compute endocardial electrograms at 2048 sites on a 

virtual closed surface representing the endocardium based on the potential at the 64 electrodes of 

the balloon.41 This procedure requires reconstructing the endocardial geometry using a catheter 

localization system (EnSite NavX electroanatomical navigation system). Reconstruction of atrial 

geometry is shown in Fig. 2-1A for the dog considered in this study. The acquisition system 
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outputs 2048 (virtual) endocardial electrograms as well as 3-lead ECG at a sampling rate of 

1.2 kHz. 

A second catheter in the right atrium served to measure direct-contact endocardial bipolar 

electrograms. This catheter, also localized and tracked by the system, was moved to record 

signals at 7 different locations (> 5 sec stable recording at each location) near the superior vena 

cava, the right atrium ganglionated plexus, the inter-atrial bundles and the coronary sinus (stars 

in Fig. 2-1A). 

Epi- and endocardial signals were simultaneously recorded using a separate digital acquisition 

system. To enable their synchronization, both systems had a “clock” input channel connected to 

a manually-driven tick generator. 
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Figure 2.1- Right atrium geometry and electrode configuration. (A) Endocardial surface of a canine right 
atrium as reconstructed by the EnSite NavX system (left side: anterior view; right side: posterior view). 
Anatomical features identified by the catheter localization system are shown in red. Blue stars represent 
recording sites of the direct-contact endocardial catheter (B) 3D geometrical model (same views as panel 
A) of the right atrium after processing. Dashed circles represent the location of heterogeneity regions, 
shown here with a radius of 3 mm. (C) Epicardial electrode position for the two plaques in the computer 
model. (D) Left side: Balloon catheter with its 64 electrode. Right side: closed endocardial surface used 
for the inverse problem. RAA: right atrium appendage; SVC: superior vena cava; IVC: inferior vena cava; 
TV: tricuspid valve; CS: coronary sinus; SAN: sino-atrial node; RAGP: right atrium ganglionated plexus; 
IA: inter-atrial bundles. 
 

2.3.3 Simulation of electrical propagation in the right atrium 
 

The geometry extracted by the Ensite NavX system (Fig. 2-1A) formed the basis for constructing 

a 3D model of the canine right atrium. The triangulated surface was processed and smoothed 
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using VRMesh (VirtualGrid, Bellevue City, WA). Holes corresponding to the superior and 

inferior vena cava and to the tricuspid valve were created based on several points around their 

circumference identified using the catheter localization system (Fig. 2-1A). A thin-walled 3D 

cubic mesh (wall thickness: 1.75 mm; spatial resolution 0.25 mm; see Fig. 2-1B) was generated 

from the resulting triangulated surface as in our previous works.97 Fiber orientation was specified 

following a rule-based approach.98 There was no attempt to reproduce fine anatomical details and 

the trabecular structure of the right atrium (terminal crest and pectinate muscles) since no 

preparation-specific information was available for these anatomical features. Due to the limited 

spatial resolution of the NavX system, the details of the right atrium appendage anatomy were 

only grossly incorporated, as in older models.8 

Electrical propagation was simulated by solving the monodomain equation99 in the cubic mesh 

using finite difference methods.100 Explicit time integration with a time step of 20 µs was used. 

Membrane kinetics was described by the Ramirez et al. model of canine atrial cell.101,102 

Effective tissue conductivity was 12 mS/cm (longitudinal), anisotropy ratio was 3:1, and 

membrane surface-to-volume ratio was 2000 cm-1. Sinus rhythm propagation was elicited by 

injecting intracellular current at the anatomical location corresponding to the sino-atrial node (or 

more precisely to the focal point of activation) as identified using the catheter localization system 

(Fig. 2-1A). 

To introduce repolarization heterogeneity in a way that replicates the Kneller et al. model of 

cholinergic atrial arrhythmia,101 we created circular zones of heterogeneity in membrane 

properties (Fig. 2-1B). Similarly to Vigmond et al.,71 zone radius was varied between 2 and 5 

mm. In these zones (one at a time), acetylcholine (ACh) concentration was set to 0.03 μM based 
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on Kneller et al.101 The resulting increase in ACh-dependent K+ current significantly shortened 

action potential durations in the zone, thus creating repolarization gradients.71 

For each substrate (control + 7 zone locations × 3 zone radius = 22 simulations), sinus rhythm 

with a stable cycle length of 600 ms was simulated (experimentally-measured cycle length was 

595±9 ms at baseline). Simulations were run until steady-state was reached, as determined by 

convergence of action potential durations (beat-to-beat variation < 1%). Analysis was performed 

on the last simulated beat. 

2.3.4 Simulation of epicardial electrograms 

Epicardial mapping ("plaques") was simulated using the same tools as in Jacquemet et al.103 Two 

plaques were used, as in the experiment: one in the right atrium free wall and one between 

Bachmann's bundle and the appendage. Electrode configuration reproducing each experimental 

plaque was projected on the atrial epicardial surface on the basis of three manually-positioned 

control points (two electrodes at the extremities and one at the center of the plaque). The 

configuration is shown in Fig. 2-1C. 

Electric potential at each of the 103 unipolar electrodes was computed using the current source 

approximation as in previous works.19,103 In this framework assuming an infinite uniform volume 

conductor, the potential φ of an electrode located at x is given by 
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where is σo the extracellular conductivity, Im is the transmembrane current computed from the 

time course of the membrane potential in all simulated cardiac cells, and Vmyo is the integration 

domain (myocardium).99 The same formula (1) was used to compute potentials in the 

endocardium and in the blood cavity (see below). 
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2.3.5 Simulation of noncontact endocardial electrograms 

Since the EnSite software is proprietary, the noncontact mapping system was simulated using not 

exactly the same method, but a conceptually similar one based on Harley et al.104 In these 

approaches, the atrial geometry is specified by a closed surface S near the endocardium and 

whose interior V contains only blood. The surface S used by the EnSite software for the 

experiments is displayed in Fig. 2-1A; the one used for the simulations is shown on the right side 

of Fig. 2-1D. The 64 electrodes of the Ensite Array Catheter are located at xi, i = 1 to 64, all 

inside the surface S (Fig. 2-1D, left side). Potentials at these 64 electrodes were computed using 

Eq. (1). Assuming homogeneity and isotropy of blood conductive properties and neglecting the 

effect of the catheter on volume conduction, the electric potential φ satisfies the Laplace equation 

∆φ  = 0 in V. 

The effect of the catheter was ignored in order to be consistent with the assumptions of 

electrogram computation [Eq. (1)]. In more sophisticated models, the interior of the catheter is 

assumed to be an insulator, resulting in a no-flux boundary condition on the surface of the 

balloon catheter103. 

Because of the uniqueness of the solution to the Laplace equation with Dirichlet boundary 

conditions, the values of φ on S determine the value of φ at xi, denoted by c
iϕ (c stands for 

catheter). An explicit formula can be derived from potential theory. From the Green's second 

identity, if x is in the interior of V, then104 
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where r is the distance between x and the surface element dS, Ee is the normal component of 
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ϕ∇− with respect to the surface S (the index e stands for endocardium), and 

)(d)/1(),(d ySxy r∇=Ω  is the solid angle subtended at x by the element dS located at y.99 

In order to compute these integrals numerically, S is discretized as a triangulated surface with N 

nodes located at yj, j = 1 to N, where N is of the order of 2000. The field φ is approximated on 

the endocardium surface S using piecewise linear basis functions ψj: 
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j yϕϕ = . If the 64-by-N matrices Oec and Sec are defined as: 
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then (2) can be written as 
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Similarly, if x is on the boundary S, because of the singularity at r = 0, 
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and by defining the N-by-N matrices Oee and See as 
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the potential on the surface satisfies the equation 

eeeeeee φSEOφ +−=  .        (8) 

After Ee is isolated in (8) and substituted in (5), the potential at the catheter electrodes is 

expressed as eecc φTφ = , where the 64-by-N forward transfer matrix is given by 
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2
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where I is the identity matrix. Since the function ψj is linear on every triangle, the integrals from 

(4) and (7) are finite and can be computed analytically,105,106 including in the presence of a 

singularity (i.e. when r = 0 in the integration domain). The auto-solid angle ee
iiS  is defined such 

that the sum of each row of See gives 1. 

To estimate the potential at the endocardium from the potential at the catheter electrodes, the 

forward transfer matrix needs to be inverted. Because the system is underdetermined, Tikhonov 

regularization99 was used to compute the inverse transfer matrix Tce: 

( ) tecectecce TITTT
1−

+= λ        (10) 

where λ is a positive regularization parameter. The parameter λ was set to 1.4 ·10-5 based on a 

comparison between electrograms computed directly using Eq. (1) and those obtained by solving 

the inverse problem. 

2.3.6 Processing of atrial electrograms 

Atrial activation times were identified in both epi- and endocardial electrograms using a 

dedicated event detector based on signal derivative.107 Activation maps were validated manually 

by visual inspection of electrogram waveforms and activation times. Noncontact mapping 

sometimes produced fractionated endocardial waveforms (double potentials due to solution of 

inverse problem which can oscillate wildly) that reduced the accuracy of detected activation 

times. To cope with that limitation, spatial filtering (Gaussian filter with a space constant of 5 

mm) was applied to the resulting endocardial activation maps. 

For each ventricular activation in the experimental signals, the onset of the Q wave and the offset 

of the T wave were identified manually on the ECG. For each atrial activation, the atrial activity 
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interval was defined as the time interval between the earliest atrial activation time and the latest 

atrial activation + 300 ms, assuming that atrial action potential durations were always shorter 

than 300 ms (which was a posteriori verified by inspecting the atrial T waves). Only atrial beats 

for which the atrial activity interval did not overlap with any QT interval were considered for 

subsequent analysis, in order to prevent the contamination of atrial signals by ventricular 

activity. This issue was not present in the simulated signals. 

To quantify the local repolarization gradient, the area under the atrial T wave19,90 (ATa) was 

computed. The (non-dimensional) ATa of an electrogram waveform φ(t) was defined as: 
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where ta is the activation time and σφ is the standard deviation of the whole signal φ. The 

integration bounds T1 and T2 were initialized to 50 and 300 ms. Further manual validation was 

performed to ensure appropriate positioning of integration bounds. After minor manual 

adjustments (mostly for the lower bound), the interval length T2–T1 was respectively 256±20 ms 

and 254±16 ms in epi- and endocardial experimental signals. For simulated signals, the bounds 

were set to T1 = 35 ms and T2 = 300 ms. Normalization by interval length was aimed at providing 

a non-dimensional ATa. It did not significantly influence the results since interval length was 

essentially the same across all electrodes. Amplitude normalization compensated epi-endo and 

between-channels amplitude differences that may be generated by the inverse problem solver, 

and facilitated the comparison between simulations and experiments. Baseline correction applied 

in (11) assumed that the point at the upper integration bound was isoelectric (just after the end of 

atrial repolarization and before the next onset of the Q wave). Since the previous and next atrial 

beats were typically partially masked by ventricular activity no interpolation of the isoelectric 

line was possible. 
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2.3.7 Correspondence between epicardial and endocardial maps 

One issue was to determine which endocardial electrode was closest to each epicardial 

electrode. In the computer model, this task was simply performed by identifying the endocardial 

electrode that minimized the Euclidian distance to the given epicardial electrode. In the 

experiment, the locations of epicardial electrodes in the EnSite endocardial coordinate system 

were not accurately known. The approximate location of some of the electrodes was however 

obtained using the catheter localization system.  

The epi-endo correspondence was reconstructed iteratively. The grid of electrodes (plaques) was 

created based on three control points (like for the simulation of epicardial mapping, see above). 

The location of these three points was initialized using a priori knowledge about plaque 

placement. Their positions were then adjusted by random search within circular regions of 

diameter 5 mm around each initial control point position. The optimization criterion was the root 

mean squared (RMS) difference between activation times in the epicardial map and at the 

corresponding electrodes of the endocardial map, summed up over three carefully-validated 

beats. Since anatomical reconstruction of the appendage was not accurate, electrodes located in 

the appendage were excluded in the computation of the optimization criterion. 

2.4 Results 

2.4.1 Activation maps 

During the experiment, the RR interval was 733±2 ms (ventricular pacing) and the QT interval 

was 353±22 ms. As a result, there were sequences of 380-ms intervals free of ventricular 

activity, while atrial depolarization and repolarization always lasted less than 350 ms. In total, 12 

atrial beats were found in these intervals free of ventricular activity. At least one suitable beat 

was identified for each of the 7 recording sites of the endocardial catheter.  
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Figures 2-2A and B show an example of simultaneous epicardial and endocardial mapping. The 

location of epicardial electrodes on the endocardial surface (white dots in Fig. 2-2A) were 

obtained by optimization of the correspondence between epi- and endocardial map (Fig. 2-2C). 

The overall epi- and endocardial activation patterns were consistent. The RMS difference in 

activation time was 10 ms and the correlation coefficient was 0.8. The main inconsistency 

between epi- and endocardial mapping was found in the appendage, a region that is distant from 

the balloon catheter and at the same time poorly geometrically represented for the inverse 

problem. Note that the sinus beat originates from a focal point located outside the epicardial 

plaques. 

In the computer model, exactly-known electrode location and geometry improved the 

consistency of the results. The endocardial activation map (Fig. 2-2D) was quantitatively similar 

to the epicardial map (Fig. 2-2E). Epi- and endocardial times (Fig. 2-2F) had a correlation 

coefficient of 0.96 and an RMS difference of 3.5 ms. The repolarization heterogeneities 

considered (changes in ACh concentration) had essentially no effect on the activation map at 100 

bpm (maximum difference < 0.8 ms). 

With the exception of the appendage region, the computer model qualitatively reproduced 

experimental epi- and endocardial activation. Simulated and experimental epicardial maps (18 

appendage data points excluded) had a correlation coefficient of 0.82 with an RMS difference of 

6.8 ms (respectively 0.7 and 8.5 ms with all data points included). Since the computer model was 

derived from the experimental endocardial surface, endocardial activation could also be easily 

compared (data points in the valve and veins were excluded). Simulated and experimental 

endocardial activation times had a correlation coefficient of 0.91 with an RMS difference of 

11 ms. 
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Figure 2.2- Endo- and epicardial activation maps in the experiment (A-C) and in the computer model (D-
F). (A) Color-coded experimental endocardial activation map. White dots represent epicardial electrode 
positions. The white star denotes the earliest activation point. (B) Experimental epicardial activation map 
for the same atrial beat. (C) Epi- vs endocardial experimental activation times, along with the linear 
regression curve (dashed black line), for the three beats (each shown with a different color) that served to 
identify epicardial plaque location. (D) Simulated endocardial activation map in control. (E) Simulated 
epicardial activation map. (F) Epi- vs endocardial simulated activation times. SVC: superior vena cava; 
IVC: inferior vena cava; RAA: right atrium appendage; BB: Bachmann's bundle; RAGP: right atrium 
ganglionated plexus. 
 
 

2.4.2 Morphology of bipolar electrograms 

Direct-contact bipolar electrograms (Fig. 2-3, first row) were recorded at the 7 endocardial sites 

as shown in Fig. 2-1A. Since noncontact endocardial electrograms were unipolar, noncontact 

bipolar electrograms were reconstructed by computing the difference between noncontact 

unipolar electrograms measured at two locations in the vicinity (<5 mm) of the bipolar recording 
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site (Fig. 2-3, second row). Because bipolar waveform depends on the unknown orientation of 

the bipolar electrode, the location of these two sites were adjusted to better match direct-contact 

recording. The correlation coefficient between contact and noncontact waveforms ranged from 

0.8 to 0.95, except near the coronary sinus where the value was lower. 

In the computer model, bipolar electrograms were also computed as the difference between 

unipolar electrograms at two close sites. Dipole orientation was selected to generate the same 

types of waveform morphology observed in the experiment (Fig. 2-3, third row). Noncontact 

bipolar electrograms (Fig. 2-3, fourth row) were computed as the difference between two 

noncontact unipolar electrograms measured at exactly the same location as the direct-contact 

unipolar electrograms. Correlation coefficient between contact and noncontact waveforms 

ranged from 0.62 to 0.92, except in the coronary sinus. These values are sometimes lower than in 

the experimental data because we have not allowed the independent optimization of noncontact 

electrode positions with respect to the catheter electrode. 

 

Figure 2.3- Morphology of direct-contact (catheter) and non-contact bipolar electrograms for 7 recording 
sites in the experiment and in the computer model. SVC: superior vena cava; RAGP: right atrium 
ganglionated plexus; IA: inter-atrial bundles; CS: coronary sinus. 
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2.4.3 Area under the atrial T wave 

The ATa provides a quantitative measure to assess atrial repolarization in experimental electrical 

recordings. Figure 2-4 illustrates the range of atrial T wave morphologies observed in the 

experiments and in the simulations at corresponding epi- and endocardial sites. Simulated atrial 

T waves had significantly lower amplitude (similarly to Vigmond et al.19), suggesting that canine 

atria contain more intrinsic heterogeneities than the model. Despite some differences in 

epicardial and noncontact endocardial atrial T wave morphology (notably atrial T wave did not 

become negative in experimental noncontact signals), epi- and endocardial ATa measurements 

appears to be correlated in these examples.  

 

 

Figure 2.4- Examples of unipolar epicardial and noncontact endocardial electrograms measured at 
corresponding epi- and endocardial sites (both experimental and simulated). The area under the atrial T 
wave is displayed as a shaded area. Simulated signals are saturated to highlight their atrial T wave. 
 

To further investigate this question, epi- and endocardial ATa maps were compared (Figs. 2-5A 

and B). The epi- and endocardial ATa patterns were found to be qualitatively comparable, except 
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in the right appendage where signals were less reliable. The correspondence between epi- and 

endocardial ATa is summarized in Fig. 2-5C for all electrodes and 12 beats. To facilitate the 

interpretation, data point density was estimated using a kernel-based method108 (kde2d Matlab 

script implementation by Z. I. Botev, available on Matlab Central website) and displayed as 

contour lines. The correlation coefficient between epi- and endocardial ATa values was 0.57. 

The same analysis was performed on simulated data. Note that there was no attempt to match 

experimental repolarization properties. Figures 2-5D and E show endo- and epicardial ATa maps 

for a simulated beat with a heterogeneity region of radius 3 mm around the white star in Fig. 2-

5D. This region of increased repolarization gradients was characterized by higher ATa values. 

Epi- and endocardial ATa maps were consistent. The correlation coefficient between epi- and 

endocardial ATa values from the 22 simulations with different repolarization heterogeneity 

distributions was 0.92, as illustrated in Fig. 2-5F. 
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Figure 2.5- Endo- and epicardial ATa maps in the experiment (A-C) and in the computer model (D-F). 
(A) Color-coded experimental endocardial ATa map. White dots represent epicardial electrode positions. 
(B) Experimental epicardial ATa map for the same beat. (C) Epi- vs endocardial experimental ATa for all 
beats combined, along with the linear regression curve and 50% confidence interval. Data point density 
estimated by kernel-based method is displayed as contour lines. (D) Simulated endocardial ATa map in 
the presence of a repolarization heterogeneity with a radius of 3 mm around the white star. (E) Simulated 
epicardial ATa map for the same beat. (F) Epi- vs endocardial ATa for all simulations with different 
repolarization heterogeneity distributions. SVC: superior vena cava; IVC: inferior vena cava; RAA: right 
atrium appendage; BB: Bachmann's bundle; RAGP: right atrium ganglionated plexus. 
 

2.4.4 Temporal changes in area under the atrial T wave 

Experimental endocardial ATa maps were similar in the 12 analyzed beats. The correlation 

coefficient between any pair of them was always >0.9. The differences between ATa maps 

(separated by a few seconds or minutes) may reflect autonomic neural modulation.91 To illustrate 

how endocardial ATa maps may be used to identify changes that occur outside the region 
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covered by epicardial mapping, Figs. 2-6A-C displays ATa maps for two beats as well as their 

difference (∆ATa). On the ∆ATa map, regions where changes occur can be easily identified. 

In the simulations (Figs. 2-6D-F), repolarization gradients were induced by increasing ACh 

concentration in a circular zone, which affected ATa values. In the control beat (Fig. 2-6D), 

spatial variations in ATa were observed due to small repolarization gradients created by 

wavefront curvature or collision (this effect was |∆ATa| < 0.04 in epicardial signals), and also 

due to distortions caused by the inverse problem. After subtraction, though, the pattern became 

clearer (Fig. 2-6F), thus enabling localization of the altered region. The distance between the 

center of the altered region and the maximum of the ∆ATa map was < 5 mm for the 4 regions in 

the right atrium ganglionated plexus and the inter-atrial bundles (Fig. 2-1B), and < 9 mm for the 

3 regions closest to the venae cavae. For the region near the superior vena cava, changes in 

repolarization were detectable only for a radius > 3 mm. Otherwise, the radius of the region did 

not significantly affect the results in the range of parameters considered. 
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Figure 2.6- Endocardial ATa maps. (A) First experimental beat. (B) Another beat at a later time. (C) 
Difference between maps A and B. (D) Simulated ATa map during sinus rhythm in a uniform substrate. 
(E) Simulated ATa map with repolarization heterogeneity (3 mm radius in the right atrium ganglionated 
plexus; shown as a dashed circle). (F) Difference between maps D and E. 

 
 

2.5 Discussion 

This paper presents a computational framework to evaluate the potential of noncontact mapping 

as a complement to epicardial mapping for studying neurogenically-induced changes in 

activation pattern and repolarization gradients. The simulation results can be seen as a best-case 

scenario as compared to animal experiment. The heart is not mechanically beating and the 

electrodes stay at fixed, exactly known locations. In this situation, noncontact mapping was able 

to correctly represent both activation maps (depolarization, Fig. 2-2) and ATa maps 

(repolarization, Fig. 2-4), making it possible to identify and localize changes in repolarization 

properties (Fig. 2-6). In the control case with uniform membrane properties, ATa values derived 
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from noncontact mapping were overestimated in the region were the balloon catheter was closest 

(Fig. 2-6D, where tissue properties are uniform), suggesting that the inverse problem introduces 

distortions that are noticeable in the repolarization phase. These distortions were however 

considerably reduced on ΔATa maps (Fig. 2-6). Note that the numerical methods and the inverse 

problem procedure could be improved.96 Our intent was not to overperform the commercial 

package EnSite, but rather to illustrate in a computer model the possible distortions that the 

inverse problem can create. Further development of the model including more detailed 

anatomical representation of the trabecular structure and intrinsic variations in membrane 

properties would influence the baseline ATa map and require the use of ΔATa maps to properly 

interpret the data. 

To compare epi- and endocardial data in the experiment, a major obstacle was to associate each 

epicardial electrode to an endocardial channel. Here, an optimization scheme was used to 

position the grid on the atrial surface. More reliable information about this correspondence may 

further improve the correlation between epi- and endocardial data (Figs. 2-2 and 2-4). Because of 

heart motion and limited details in geometrical reconstruction (especially veins, valve and 

appendage), this correspondence may however not be perfectly accurate. On the other hand, 

when signals from the endocardial catheter and from noncontact endocardial channels at the 

same known location were compared, waveform morphology was relatively similar (Fig. 2-3), as 

reported in previous clinical and modeling works.36,95,96 

The relevance of epicardial ATa measurements for the identification of regions responding to 

autonomic neural modulation has been demonstrated in canine experiments and in computer 

models. Occasionally, epicardial plaques failed to identify the origin of neurogenically-induced 

ectopic beat when it occurred outside the region covered by the plaques. The extension to 
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noncontact endocardial ATa would allow extracting information about regions that cannot be 

mapped on the epicardium. Results showed consistent ATa patterns in epi- and endocardial 

electrograms despite several limitations (Fig. 2-4). Noncontact endocardial signals, reconstructed 

from 64 electrodes, did not reproduce the full spectrum of atrial T wave morphologies observed 

in epicardial signals. For example, the ATa was always positive in noncontact signals, while 

many epicardial channels featured negative ATa values. Endocardial ATa maps were smoother, 

which facilitated the identification of regions with increased ATa (as in Fig. 2-6) but did not 

reproduce the large differences in ATa sometimes observed between neighboring epicardial 

electrodes. Although used here as reference, epicardial mapping has also its limitations regarding 

ATa measurement, notably in the appendage where the tissue had to be “flattened” to suture the 

plaques. Discrepancies between epi- and endocardial ATa could be caused by distortions in 

epicardial signals. In addition, there may be actual differences in epi- vs endocardial electrical 

activity due to complex (micro-) structures within the atrial wall. 

The application of noncontact mapping to animal experiments has been so far very rare. The 

system has been designed for clinical setting. As a result, the atrial chambers need to be large 

enough to insert the balloon catheter (the balloon may not be maximally expanded if necessary), 

as is the case with large dogs. A more severe limitation (as in most unipolar recordings) is the 

contamination by ventricular activity. Atrio-ventricular node suppression and beat selection 

enabled us to extract atrial beats free of ventricular activity. In order to monitor ATa on a beat to 

beat basis, efficient QRST cancellation algorithms dedicated to atrial electrograms need to be 

developed. This would be a prerequisite for clinical applications. 

Overall, noncontact mapping provides a complementary tool to achieve a more complete 

description of atrial electrical activity in canine experiments. Despite distance (balloon-atrial 
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wall) and dimension reduction (64 electrodes), some information about atrial repolarization 

remains present in noncontact signals. Further validation in the context of nerve stimulation 

(neurogenically-induced changes in repolarization) would reveal the ability of this technique to 

examine the activity preceding the onset of atrial arrhythmias. 
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3 Discussion 

Our aim was to combine epicardial contact mapping and endocardial non-contact mapping to 

investigate the possibility of extracting additional information about atrial repolarization 

heterogeneity in a dog. Contact mapping consisted of 103 unipolar electrodes located in the right 

atrium. Non-contact mapping was performed using the EnSite multielectrode array (balloon 

catheter with 64 electrodes). Contact and non-contact electrograms were also simulated in an 

electro-anatomical computer model of canine right atrium. We compared non-contact 

endocardial mapping with contact epicardial mapping to evaluate the use of non-contact mapping 

in experiments and simulations. In order to gain information about both depolarization and 

repolarization, activation times and ATa parameter values were extracted from epicardial and 

non-contact endocardial electrograms for both experiments and simulations. Correlation 

coefficients were computed for both mapping systems in terms of the area under the atrial T 

wave (ATa) as well as activation times. They were well correlated in the experimental and 

simulated electrograms. 

Endocardial non-contact mapping can provide access to the regions that are not accessible by 

epicardial mapping. This mapping system may provide more information about reentry circuit 

and origin of atrial fibrillation. Furthermore, more information about atrial arrhythmias may be 

obtained by looking at non-contact mapping data during sinus beats preceding neurogenically 

induced atrial fibrillation. A combination of epicardial mapping and endocardial mapping system 

appears to be an excellent option to explore heart diseases.  

We concluded that non-contact mapping is a complement to epicardial mapping since it can 

display cardiac potentials as a 3D color coded map of the entire cardiac chamber. It could also 

provide more information about heart electrophysiology during sinus rhythm or arrhythmias such 
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as atrial fibrillation since noncontact virtual electrograms are simultaneously available at all 

locations throughout the endocardium. Consequently, this technology has a potentially broad 

utility in the diagnosis and treatment of a wide range of cardiac arrhythmias and could possibly 

be considered as a first line approach for treatments of nonsustained, complex, and unknown 

arrhythmias. 

The activation time and ATa can be computed in signals captured during neurogenically induced 

repolarization gradient-leading to AF as shown in figure 3.1- and mapped for both mapping 

systems. This would allow us to investigate about initiation of AF in dog experiments. The 

activation and ATa maps would help us to address questions such as where does AF most 

frequently occur? How is it initiated?  Does it take a long time to start AF after 

tachyarrhythmias? Can we extract the features of beats before AF initiation in order to predict 

AF occurrence or location of reentry circuits? 

We listed the works in the following paragraphs that could be done to address these questions, as 

well as some preliminary data for the sake of illustration.   

3.1 Activation time maps in the presence of neurogenically induced 
repolarization gradient 

The involvement of different neuronal elements in the genesis of neurogenically induced atrial 

fibrillation has already been described by Armour at al81. Subsequently, electrophysiological 

mapping may give us insights about the effect of each neuronal element on onset of atrial 

fibrillation. In order to have better understanding of loci initiating AF for treatment purposes 

such as ablations, we suggest that sites of origin of initiating beat- the onset of atrial fibrillation- 

can be identified by applying these two mapping systems as shown in figures 3.1 and 3.2.  
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In figure 3.1, the earliest activation starts from the superior portion of right atrium or SVC in the 

basal beats, and terminates in the IVC and RAA. The earliest activation time in the second group 

of the beats initiates from inferior right atrial regions and stops in the RAA. The initiation point 

has completely changed in the last beat that occurs in IVC and terminates in SVC, indicating 

heart rhythm irregularity. The same changes have been seen for the next group till AF.   

 

               

Figure 3.1- The upper diagram is a schematic view of 2 plaques carrying 103 unipolar recording contacts 
distributed over the entire right atrial epicardial surface (SVC, IVC –superior and inferior vena cava; 
RAA- right atrial appendage; RAFW- right atrial free wall). (A) The unipolar epicardial electrogram 
demonstrates responses of right atrium to electrical stimuli which were delivered to vagal nerve. It 
illustrates the sinus rhythm followed by tachycardia, bradycardia, and atrial fibrillation. Epicardial maps 
demonstrate activation pattern of selected beats. Beat 1 to 5 (group B)  are basal beats or sinus rhythms in 
which the earliest epicardial activations (shown by asterisks) are started from SVC- SA node located in 
the SVC- then continued toward inferior portion of right atrium, and finally terminated in IVC and RAA. 
Group C (tachycardia), the earliest epicardial activations start from inferior right atrial regions i.e. the 
areas where the earliest activation shifted to the locations in IVC; and terminated at RAA which are 
indicated as irregularities in the heart’s electrical activity pathways. It can be seen that the electrical 
activities are completely erratic in the last beat of this group. (D) Finally, the latter beats are bradycardia 

A 
Epicardial signal with AF 

B C D

B C D 
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before AF where earliest activations were shifted toward RAFW. The last map is atrial fibrillation which 
is difficult to interpret due to presence of multiple breakthrough areas. 

 

In the figure 3.2, the earliest activation time starts in the inferior region of the SVC and goes to 

the IVC and RAFW which indicates changing in anatomical location of earliest pacemaker 

activity during neurogenically induced atrial fibrillation. 

 

 

Figure 3.2- (A) The unipolar endocardial electrograms of the same case as the previous figure. AF started 
after 4 beats. (B) The earliest endocardial activation, shown by asterisks for the 4 beats, is caudally shifted 
from superior portion toward inferior portion of the right atrium. Atrial beat started from the IVC toward 
SVC instead of starting from the SVC. The origin of the activation is developed towards the RAFW in the 
last two beats. 

 

Consequently, for the beat that led to onset of AF, the earliest activation time moved within the 

right atrium as compared to the basal beats in the two mapping systems (yellow asterisks).  
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3.2 SA node shift 

Cells located at the wall of right atrium, near entrance of superior vena cava form the sinoatrial 

(SA) node which acts as the heart's natural pacemaker. The native rate is constantly modified by 

activity of sympathetic and parasympathetic nerve fibers. 

The origin of pacemaker activity can be shifted by sympathetic and parasympathetic nerve 

stimulation or changes in extracellular potassium. Shifts in the origin of pacemaker activity will 

change the pattern of atrial excitation. For instance, stimulation of right sympathetic nerves can 

shift it rostrally (rotational) within the node and stimulation of vagal nerve can shift it caudally 

(toward the posterior end) within the SA node and to non-SA-nodal pacemaker109-111. 

Understanding the effect of the nervous system on the control of heart rate, rhythm, and 

pacemaker location can answer relevant questions related to heart abnormalities, and it will 

increase our knowledge about autonomic nervous system. 

We observed SA node shift in the endocardial activation time mappings during vagal nerve 

stimulations shown in the figure 3.3, in agreement with previous observations about pacemaker 

shifts after nerve stimulation 108-110. Further experimental studies are required to clarify this 

point. 
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Figure 3.3- (A) The electrical activity starts form the superior portion of right atrium or SVC. (B) It is 
longer lasting in the peripheral and inferior reigns of the SVC than SA node center. The earliest 
endocardial activation time is shown by asterisks. 

 

3.3 ATa maps during neurogenically induced AF 

To further investigate heart arrhythmias, mapping ATa values during sinus rhythm and 

neurogenically induced atrial fibrillation would be beneficial. As already mentioned, the ATa 

provides a quantitative measure to assess atrial repolarization in experimental recordings. 

Therefore, comparing ATa maps for two heart conditions, sinus rhythm and neurogenically 

induced atrial fibrillation, might give us a better view on the repolarization gradient changes 

during heart arrhythmias. In the figure 3.4, the maximum of ATa or repolarization gradient were 

found in the superior portion of the SVC toward IVC for sinus rhythm. In contrast, ATa maps 

during nerve stimulation had their maximal value at lower part of right atrium near the right 

atrium ganglionated plexus. 

This preliminary result confirms previous findings that vagal stimulation increases the number of 

electrode displaying positive ATa19. 

 

 

(A)  Without nerve stimulation 

0 

25 

ms 

 (B)   With nerve stimulation 
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Figure 3.4- The repolarization gradient heterogeneity of the atria during sinus rhythm (A) and 
neurogenically induced atrial fibrillation (B). 

 

This project was not designed to study ATa and activation time patterns during episodes of 

neurogenically induced atrial fibrillation. We only focused on validation of non-contact mapping 

using epicardial mapping by means of activation time and ATa. Therefore, further research is 

required to investigate repolarization gradient heterogeneity pattern in the atria before and during 

cardiac arrhythmias. 
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3.4 Summary of advantages and disadvantages of mapping systems 
 

 
Contact epicardial mapping Noncontact endocardial mapping 

Electrode # 
• 103 electrodes 

• 192 electrodes for right and 

left atria 

• 2048 virtual electrodes computed from a 64-

channel balloon catheter 

Sampling 

frequency 
• 1 kHz • 1.2 kHz 

Inaccessible 

regions 

• Fat pads like right atrium 

ganglionic plexi 

• septum 

• The measurements are not accurate enough in the 

appendage 

Accessible 

regions 

 

• Access to right and left atria 

simultaneously 

• Inter atria bundle 

• Bachmann bundle 

• Access to one atria at a time 

• Septum 

 

Activation 

time maps 

• Detection of the activation can 

be hard due to wide variety of 

epicardial waveform, notably, 

in the appendage region 

• Noncontact mapping often produced fractionated 

endocardial waveforms (double potentials) that 

reduced the accuracy of detected activation times. 

ATa maps • We saw negative and positive 

ATa values in our recording. 

 

• We saw only positive ATa values in our recording. 

Device 

limitation 
• Tissue of the cardiac chamber 

has to be flattened to suture 

the epicardial plaques. 

• Noncontact mapping has been designed for human; 

however, it can be applied in the animals if the 

cardiac chamber is large enough for insertion of 

balloon catheter. 

• Inverse problem has to be solved to derived the 

signals 

 

Table 3.1- Summary of characteristic of contact epicardial mapping and non-contact endocardial mapping.  
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