
 

 

 

Université de Montréal 

 

 

Study of Histone H3 Lysine 56 Deacetylation 

in Saccharomyces cerevisiae 

 

 

par 

Neda Delgoshaie 

 

 

Programmes de biologie moléculaire 

Faculté de médecine 

 

 

 

Thèse présentée à la Faculté de médecine 

en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.) 

en biologie moléculaire 

option biologie des systèmes 

 

 

 

Avril 2013 

 

 

 

© Neda Delgoshaie, 2013 

  



    

i 

Résumé 

Chez la levure Saccharomyces cerevisiae, l'acétylation de l'histone H3 sur la lysine 56 

(H3K56ac) est présente sur les histones néo-synthétisées déposées derrière les fourches de 

réplication et est essentielle pour préserver la viabilité cellulaire en réponse au dommage à 

l'ADN. La désacétylation d'H3K56 sur l'ensemble du génome catalysée par Hst3 et Hst4 et 

a lieu en phase G2 ou M. H3K56ac est une lame à double tranchant. L'absence d'H3K56ac 

rend les cellules sensibles aux dommages à l'ADN. En revanche, un excès d'acétylation 

d'H3K56 dans un mutant hst3Δ hst4Δ a des conséquences encore plus sévères tels que la 

thermo-sensibilité, l'hypersensibilité aux agents génotoxiques, l'instabilité génomique ainsi 

qu'une courte durée de vie réplicative. Les désacétylases Hst3 et Hst4 sont étroitement 

régulées au cours du cycle cellulaire afin de permettre à l'H3K56ac d'exercer son rôle en 

réponse aux dommages à l'ADN tout en évitant les conséquences néfastes de 

l'hyperacétylation d'H3K56. Dans cette thèse, nous avons identifié la machinerie 

moléculaire responsable de la dégradation de Hst3. De plus, nous avons exploré les raisons 

pour lesquelles l'absence de désacétylation donne lieu aux phénotypes du mutant hst3Δ 

hst4Δ. 

Au chapitre 2, nous démontrons que la dégradation d'Hst3 peut être complétée avant 

l'anaphase. Ceci suggère que la désacétylation de H3K56 a lieu durant une courte fenêtre 

du cycle cellulaire se situant entre la complétion de la phase S et la métaphase. De plus, 

nous avons identifié deux sites de phosphorylation d'Hst3 par la kinase cycline-dépendante 

1 (Cdk1) et démontré que ces évènements de phosphorylation conduisent à la dégradation 

d'Hst3 in vivo. Nous avons aussi démontré que l'ubiquityltransférase Cdc34 et l'ubiquitine 

ligase SCFCdc4 sont requises pour la dégradation d'Hst3. Finalement, nous avons montré 

que la phosphorylation d'Hst3 par la kinase mitotique Clb2-Cdk1 peut directement 

entraîner l'ubiquitylation d'Hst3 par SCFCdc4 in vitro.  

Au chapitre 3, nous avons étudié les mécanismes moléculaires sous-jacents à la sensibilité 

extrême du mutant hst3Δ hst4Δ aux agents qui endommagent l'ADN. Nous avons établi 
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qu'en raison de la présence anormale d'H3K56ac devant les fourches de réplication, le 

mutant hst3Δ hst4Δ exhibe une forte perte de viabilité lorsqu'exposé au méthyl 

méthanesulfonate (MMS) durant un seul passage à travers la phase S. Nous avons aussi 

découvert que, malgré le fait que le point de contrôle de réponse aux dommages à l'ADN 

est activé normalement dans le mutant hst3Δ hst4Δ, ce mutant est incapable de compléter la 

réplication de l'ADN et d'inactiver le point de contrôle pour une longue période de temps 

après exposition transitoire au MMS. L'ensemble de nos résultats suggère que les lésions à 

l'ADN induites par le MMS dans le mutant hst3Δ hst4Δ causent une forte perte de viabilité 

parce que ce mutant est incapable de compléter la réplication de l'ADN après une 

exposition transitoire au MMS.  

Dans la deuxième section du chapitre 3, nous avons employé une approche génétique afin 

d'identifier de nouveaux mécanismes de suppression de deux phénotypes prononcés du 

mutant hst3Δ hst4Δ. Nous avons découvert que la délétion de plusieurs gènes impliqués 

dans la formation de frontières entre l'hétérochromatine et de l'euchromatine atténue les 

phénotypes du mutant hst3Δ hst4Δ sans réduire l'hyperacétylation d'H3K56. Nos résultats 

indiquent aussi que l'abondante acétylation de l'histone H4 sur la lysine 16 (H4K16ac) est 

néfaste au mutant hst3Δ hst4Δ. Ce résultat suggère un lien génétique intriguant entre 

l'acétylation d'H3K56 et celle d'H4K16. L'existence de ce lien était jusqu'à présent inconnu. 

Nous avons identifié un groupe de suppresseurs spontanés où H3K56ac est indétectable, 

mais la majorité de nos suppresseurs ne montrent aucune réduction flagrante d'H3K56ac ou 

d'H4 K16ac par rapport aux niveaux observés dans le mutant hst3Δ hst4Δ. Une étude plus 

approfondie de ce groupe de suppresseurs est susceptible de mener à la découverte de 

nouveaux mécanismes génétiques ou épigénétiques permettant d'éviter les conséquences 

catastrophiques de l'hyperacétylation d'H3K56 chez le mutant hst3Δ hst4Δ. 

En résumé, cette thèse identifie la machinerie moléculaire responsable de la dégradation 

d'Hst3 (une désacétylase d'H3K56) durant une fenêtre de temps situées entre la fin de la 

phase S et la métaphase. Nos résultats permettent aussi d'expliquer pourquoi la dégradation 

d'Hst3 précède le début de la phase S durant laquelle l'acétylation d'H3K56 s'accumule 

derrière les fourches de réplication afin d'exercer son rôle de mécanisme de défense contre 
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le dommage à l'ADN. De plus, nous avons identifié plusieurs suppresseurs qui permettent 

de contourner le rôle important d'Hst3 et Hst4 en réponse au dommage à l'ADN. Plusieurs 

suppresseurs révèlent un lien génétique inattendu entre deux formes abondantes 

d'acétylation des histones chez Saccharomyces cerevisiae, soit H3K56ac et H4K16ac.  

Mots-clés: chromatine, acétylation de l'histone H3, acétylation de l'histone H4, H3K56ac, 

H4K16ac, Hst3, Hst4, SCFCdc4, Clb2-Cdk1, dommage à l'ADN, agent génotoxique, 

réplication de l'ADN, cycle cellulaire, acétylation, désacétylation 
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Abstract 

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is found in new 

histones deposited behind DNA replication forks and is needed for DNA damage survival. 

Genome-wide removal of H3K56ac by the deacetylases Hst3 and Hst4 occurs during G2 

and/or M phase. H3K56ac is a double-edged sword. Lack of H3K56ac results in DNA 

damage sensitivity. In contrast, overabundance of H3K56ac in hst3Δ hst4Δ mutants gives 

rise to even more severe and wide-ranging phenotypes, namely thermosensitivity, 

genotoxic agent hypersensitivity, genome instability and short replicative lifespan. The 

deacetylases Hst3 and Hst4 are tightly controlled during the cell cycle such that H3K56ac 

can contribute to the DNA damage response during each passage through S phase, while 

avoiding abnormal conditions where H3K56 remains hyperacetylated. In this thesis, we 

identified the molecular machinery that promotes Hst3 degradation. Moreover, we explored 

why failure to deacetylate H3K56 gives rise to the phenotypes of hst3Δ hst4Δ cells. 

In chapter 2, we showed that degradation of Hst3 can be completed prior to anaphase. This 

suggests that removal of H3K56ac occurs during a short time window between completion 

of S phase and metaphase. In addition, we found that Hst3 is phosphorylated at two   

cyclin-dependent kinase 1 (Cdk1) sites and demonstrated that these phosphorylation events 

promote degradation of Hst3 in vivo. Moreover, we demonstrated that the ubiquitin-

conjugating enzyme Cdc34 and the SCFCdc4 ubiquitin ligase are required for degradation of 

Hst3. Lastly, we showed that phosphorylation of Hst3 by the mitotic kinase Clb2-Cdk1 can 

directly drive its ubiquitylation by SCFCdc4 in vitro.  

In chapter 3, we investigated the molecular mechanisms that underlie the severe sensitivity 

of hst3Δ hst4Δ cells to DNA damaging agents. We established that the aberrant presence of 

H3K56ac in front of DNA replication forks causes hst3Δ hst4Δ cells to lose viability after a 

single passage through S phase in the presence of methyl methanesulfonate (MMS). We 

also found that, although hst3Δ hst4Δ cells show normal activation of the DNA damage 

checkpoint, these mutants fail to complete DNA replication and inactivate the checkpoint 
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long after MMS removal. Collectively, our results suggest that MMS-induced DNA lesions 

cause a severe loss of viability in hst3Δ hst4Δ cells because the mutant cells fail to 

complete DNA replication after MMS removal.  

In the second part of chapter 3, we employed a genetic approach to identify novel 

mechanisms for suppression of two pronounced phenotypes of hst3Δ hst4Δ mutants. We 

found that deletion of several genes involved in creating boundaries between 

heterochromatic and euchromatic regions alleviates the phenotypes of hst3Δ hst4Δ mutants 

without reducing H3K56 hyperacetylation. Our results also indicate that the highly 

abundant histone H4 lysine 16 acetylation (H4K16ac) is deleterious to hst3Δ hst4Δ 

mutants, suggesting an intriguing and hitherto undiscovered genetic link between H3K56ac 

and H4K16ac. We identified a group of spontaneous suppressors that exhibited 

undetectable levels of H3K56ac, but the majority did not show obvious decreases in 

H3K56ac or H4K16ac compared to the levels observed in hst3Δ hst4Δ cells. Further 

characterization of these suppressors might unravel additional genetic or epigenetic 

mechanisms that circumvent the catastrophic consequences of H3K56 hyperacetylation in 

hst3Δ hst4Δ cells. 

In summary, this thesis describes the molecular machinery that triggers destruction of the 

main H3K56 deacetylase Hst3 during a period of time delineated by the end of S phase and 

metaphase. Our findings also explain why degradation of Hst3 always precedes the onset of 

S phase when H3K56ac needs to accumulate behind DNA replication forks in order to act 

as defense mechanism against DNA damage. In addition, we uncover several novel 

suppressors that bypass the role of Hst3 and Hst4 in DNA damage resistance. Several 

suppressors reveal an unexpected genetic link between two abundant forms of histone 

acetylation, namely H3K56ac and H4K16ac.  

Keywords: chromatin, histone H3 acetylation, histone H4 acetylation, H3K56ac, 

H4K16ac, Hst3, Hst4, SCFCdc4, Clb2-Cdk1, DNA damage, genotoxic agent, DNA 

replication, cell cycle, acetylation, deacetylation 
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1.1. Chromatin structure and function 

In eukaryotic cells, several meters of genomic DNA is confined in a nuclear space of 

micrometers in diameter. To achieve this compaction, DNA undergoes multiple levels of 

higher-order organization starting at formation of a nucleoprotein structure with histones 

known as chromatin. Chromatin formation is a barrier to cellular processes that require 

access to the DNA substrate including transcription, DNA replication and repair. To 

accommodate these processes, a plethora of enzymatic activities modulate chromatin 

structure, many of which mediate covalent modification of core histones (Khorasanizadeh 

2004). In this section we describe the structure of chromatin and introduce post-

translational modifications of histones with a focus on histone acetylation and its enzymatic 

regulation. 

1.1.1. The nucleosome core particle 

The fundamental repeating unit of chromatin is the disk-shaped nucleosome core particle. 

Each nucleosome is composed of a protein octamer containing two molecules each of 

histones H2A, H2B, H3 and H4 around which 147 base pairs of left-handed superhelical 

DNA is wrapped in 1.7 turns (Figure 1.1) (Luger et al. 1997). Histones are small highly 

conserved proteins which are enriched for basic residues. Core histones are organized into a 

central “histone fold” domain composed of three α-helices (α1-α3) connected by two loops, 

L1 and L2. Histone fold domains are involved in histone-histone and histone-DNA contacts 

that stabilize the nucleosome structure: histone pairs interact through these globular 

domains to construct H2A-H2B and H3-H4 heterodimers. Histone H3 has a central role in 

stabilization of the nucleosome core particle, because it makes additional contacts outside 

of its heterodimer with histone H2A and also with the DNA helix at its entry and exit 

points around the nucleosome. Histones also form flexible N- and/or C-terminal extensions 

known as histone tail domains that protrude from the nucleosome core particle. These 

disordered regions associate with other nucleosomes or non-histone proteins and are 

involved in higher order organization of the chromatin fiber (Khorasanizadeh 2004). 
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Figure 1.1 The structure of the nucleosome core particle. The DNA duplex, shown in 
dark and light blue, makes 1.7 turns around an octamer of core histones to form the disk-
shaped nucleosome. Histones H3, H4, H2A and H2B are shown is green, yellow, red and 
pink, respectively (Khorasanizadeh 2004). 

1.1.2. Post-translational modifications of histones 

Core histones are subject to a diverse array of dynamically regulated post-translational 

modifications (PTMs) including acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation and poly (ADP) ribosylation (Khorasanizadeh 2004). Although the majority of 

PTMs are clustered on the accessible histone tails, technical advances in mass spectrometry 

have allowed identification of covalent modifications within histone fold domains. For 

instance in Saccharomyces cerevisiae, histone H3 is acetylated at K56 (Masumoto et al. 

2005) and methylated at K79 (van Leeuwen et al. 2002), and histone H4 is acetylated at 

K91 (Ye et al. 2005) within their globular domains.  

Histone PTMs have been implicated in regulation of all cellular processes involving DNA 

transactions. Acetylation and phosphorylation reduce the positive charge of histones that 

might directly affect histone-histone or histone-DNA interactions. However, the majority of 

histone PTMs exert their biological effect by recruiting chromatin “readers” that interact 
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with modified histones through specialized protein domains (Bannister et al. 2011, Yun et 

al. 2011). Moreover, numerous lines of evidence suggest an active interplay between 

different histone marks in regulation of chromatin function (Jenuwein et al. 2001). Hence, 

it has been proposed that modulation of chromatin structure and function is achieved 

through the sequential action or a combination of histone PTMs constituting a “histone 

code” (Strahl et al. 2000).  

1.1.2.1. Histone acetylation 

One of the most-studied modifications of core histones is the acetylation of lysine residues. 

Histone acetylation affects diverse nuclear processes such as transcription, DNA replication 

and repair, nucleosome assembly, and establishment of boundaries between 

heterochromatin and euchromatin. This reversible modification is added by histone 

acetyltransferases (HATs) and removed by histone deacetylases (HDACs) (Kurdistani et al. 

2003). Although HATs and HDACs were originally discovered based on their ability to 

modify histones, many of these enzymes were later found to have non-histone substrates in 

vivo. For instance, the tumor suppressor p53 is acetylated by the HAT p300/CBP and 

deacetylated by two HDACs, namely HDAC1 and SIRT1 (Glozak et al. 2005). 

Histone acetylation neutralizes the positive charge of the lysine side chain that allows its 

interaction with a specialized protein motif named the bromodomain. The bromodomain is 

a conserved 100 amino-acid module that contains a hydrophobic pocket to bind acetyl-

lysines and is found in numerous chromatin-interacting proteins (Dhalluin et al. 1999). In 

addition to bromodomains, other protein domains can also interact with acetyl-lysines. For 

instance, in S.cerevisiae the PH-like domain of the histone chaperone Rtt106 was shown to 

interact with K56 acetylated histone H3, and thus represents a novel class of acetyl-lysine 

binding domains (Li et al. 2008). Moreover, a tandem zinc-binding protein module named 

the PHD finger can bind to acetylated histone H3 and H4 molecules in human cells (Zeng 

et al. 2008).  
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1.1.2.1.1. Histone acetyltransferases 

Histone acetyltransferases (HATs) mediate conjugation of an acetyl group from acetyl 

coenzyme A (acetyl-CoA) to the ε-amine of the lysine side chain of histones (Marmorstein 

2001a). HATs often reside in multisubunit protein complexes containing specialized 

histone interacting domains that direct their enzymatic activity to appropriate chromatin 

regions. Based on catalytic domains, HATs are grouped into two major families: The Gcn5 

N-acetyltransferase (GNAT) family which was founded by Gcn5 and also includes PCAF, 

Elp3, Hat1, Hpa2 and Nut1, and the MYST family whose name is derived from its 

founding members Morf, Ybf2 (Sas3), Sas2 and Tip60. However, several HATs such as 

p300/CBP, Taf1 and the fungal Rtt109 lack consensus HAT domains and do not belong to 

either of the aforementioned families (Lee et al. 2007).  

HATs were originally classified in two distinct groups based on their cellular localization 

and substrate specificity: nuclear A-type HATs that acetylate nucleosomal histones, and 

cytoplasmic B-type HATs that acetylate newly synthesized histones prior to their 

deposition into chromatin (Brownell et al. 1996). In S. cerevisiae, acetylation of redundant 

sites in the N-terminal tails of newly synthesized histones H3 and H4 is essential for the 

replication-coupled nucleosome assembly and cell viability. Hence, identification of 

enzymes that acetylate these sites has been of particular interest. The first identified B-type 

HAT was Hat1 that mediates the evolutionarily-conserved pattern of new histone H4 

acetylation at lysines 5 and 12. Newly synthesized histone H3 is also acetylated at multiple 

sites prior to its deposition, but unlike histone H4, its acetylation pattern varies across 

specifies (Verreault 2000).  

Rtt109 is a fungal-specific HAT that mediates acetylation of newly synthesized histone H3. 

Rtt109 enzymatic activity is highly stimulated by the histone chaperones Vps75 and Asf1. 

Vps75 is tightly associated with Rtt109 and promotes its stability in vivo, but Asf1 has a 

weak and transient interaction with Rtt109. Moreover, the substrate specificity of these two 

enzymatic complexes is different in vivo: Rtt109-Asf1 can only associate with H3-H4 

heterodimers and exclusively acetylates H3 at lysine 56. In contrast, Rtt109-Vps75 binds 
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both H3-H4 dimers and (H3-H4)2 heterotetramers and catalyzes acetylation of histone H3 

at lysines 9 and 27, which are also acetylated by Gcn5 (D'Arcy et al. 2011).  

1.1.2.1.2. Histone deacetylases 

Histone deacetylases (HDACs) remove the acetyl moiety from the lysine side chain to 

restore its positive charge. Based on sequence homology, eukaryotic HDACs are divided 

into three families: Class I HDACs are nuclear enzymes with sequence homology to yeast 

Rpd3.  This family of HDACs also includes yeast Hos3 and human HDAC1, HDAC2 and 

HDAC3. The catalytic activity of these enzymes is inhibited by trichostatin A (TSA) and 

its derivative compounds such as suberoylanilide hydroxamic acid (SAHA) and trapoxin. 

Enzymes with sequence homology to yeast Hda1 constitute the Class II family of HDACs 

that also includes yeast Hos1 and Hos2 and human HDACs 4-8. These HDACs share the 

catalytic domain of Class I enzymes and are also inhibited by TSA and its related 

compounds. Nevertheless, members of this family contain additional N-terminal domains 

that are absent from Class I proteins. Moreover, Class II HDACs are cytoplasmic proteins 

that are transiently transported to the nucleus to deacetylate histones. Class III HDACs, 

also known as sirtuins, are nicotinamide adenine dinucleotide (NAD+)-dependent enzymes 

that are homologous to yeast Sir2. Sirtuins catalyze transfer of the acetyl group from the 

acetylated protein to the ADP-ribose moiety of NAD+ producing O-acetyl-ADP-ribose and 

nicotinamide (NAM) in the process. Therefore, the catalytic activity of these enzymes is 

inhibited by excess amounts of the reaction product NAM. This family of enzymes consists 

of five members in yeast (Sir2 and Hst1-4), and seven members in humans (SIRT1-7). 

Moreover, unlike the two other classes, different members of this family show nuclear or 

cytoplasmic localization (Marmorstein 2001b).  

1.2. Replication-coupled nucleosome assembly 

During S phase nucleosomes are transiently disrupted by progression of the DNA 

replication machinery, but nascent sister chromatids are rapidly reassembled into chromatin 
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behind the replication fork. Duplication of genetic material during DNA synthesis demands 

new histone supply for efficient packaging of nascent DNA duplexes. Therefore, 

maintenance of chromatin structure following DNA replication is achieved by two 

independent processes: first, parental histones are transferred behind replication forks in a 

process referred to as parental histone segregation, and the gaps in nucleosome arrays are 

then filled by incorporation of newly synthesized histones during replication-coupled (de 

novo) nucleosome assembly (Verreault 2000).  

Under physiological conditions, positively charged histones form insoluble aggregates with 

negatively charged DNA in vitro. To inhibit non-specific binding of histones to DNA, a 

variety of histone chaperones contribute to chromatin assembly in vivo by shielding the 

positive charge of histones and escorting them to sites of nucleosome assembly at the 

replication fork. During de novo nucleosome assembly, Chromatin Assembly Factor 1 

(CAF-1) first mediates deposition of two H3-H4 dimers onto nascent DNA. CAF-1 is 

recruited to the replication fork through its interaction with the DNA polymerase 

processivity clamp PCNA. The histone chaperone Asf1 binds to H3-H4 dimers and 

probably functions as the histone donor for CAF-1. Two H2A-H2B dimers then associate 

with the (H3-H4)2 heterotetramer to complete nucleosome formation. The histone 

chaperone NAP1 might be implicated in this process, but the assembly factors that directly 

deposit H2A-H2B dimers onto chromatin remain unidentified (Annunziato 2012). In S. 

cerevisiae, the histone chaperone Rtt106 also interacts with the large subunit of CAF-1 and 

binds to (H3-H4)2 heterotetramers in vivo. Therefore, it has been proposed that H3-H4 

dimers might be assembled into tetramers on Rtt106 before their deposition onto chromatin 

by CAF-1 (Fazly et al. 2012, Huang et al. 2005).  

As noted earlier, acetylation sites in the N-terminal domains of H3 and H4 function 

redundantly to promote de novo nucleosome assembly and cell viability in S. cerevisiae. 

The most common pre-deposition pattern is the diacetylation of histone H4 at lysines 5 and 

12 which is conserved from yeast to humans. However, the N-terminal domain of histone 

H4 is also acetylated at lysine 8 in budding yeast (Verreault 2000). New histone H3 is 

acetylated at lysines 9, 14, 23 and 27 in the N-terminal tail (Verreault 2000) and at lysine 
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56 in its histone fold domain (Masumoto, et al. 2005). H3K56ac promotes nucleosome 

assembly by CAF-1 and Rtt106 (Li, et al. 2008). Moreover, association of histone H3 with 

CAF-1 and Rtt106 is reduced in GCN5 deleted cells suggesting that Gcn5-mediated 

acetylation of new histone H3 at lysines 9 and 27 is also important for de novo nucleosome 

assembly (Burgess et al. 2010). 

1.3. DNA damage during S phase 

During S phase, progression of DNA replication forks is frequently challenged by DNA 

lesions from endogenous and exogenous sources. In order to maintain genomic integrity in 

the face of constant DNA damage, eukaryotic cells have evolved an elaborate surveillance 

mechanism known as the S phase checkpoint that coordinates DNA replication with DNA 

repair and chromosome segregation (Nyberg et al. 2002). In this section, we briefly 

describe the mechanism of action for several types of genotoxic agents that interfere with 

completion of DNA replication and introduce components of the S phase checkpoint. 

1.3.1. Inhibitors of topoisomerase I 

Topoisomerase I (Top1) relaxes supercoiled DNA in front of DNA replication forks or 

transcription complexes by catalyzing a two-step reaction. First, Top1 induces a transient 

single-strand break in DNA allowing rotation of the supercoiled double helix around the 

nick to relax DNA. At this step, an active site tyrosine of Top1 is covalently linked to the 

phosphate group at the 3´ end of the DNA nick in an enzyme-DNA intermediate known as 

the Top1 cleavage complex. The second step, or the religation reaction, occurs when the 

free 5´-hydroxyl end of nicked DNA attacks the tyrosyl-DNA phosphodiester link to 

regenerate intact DNA and release Top1. 

A variety of DNA lesions and genotoxic agents including camptothecin (CPT) trap Top1 

cleavage complexes by displacing the 5´-hydroxyl DNA end and inhibiting the Top1 

religation reaction. Stabilized Top1 cleavage complexes can give rise to DNA damage 
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through multiple mechanisms. For instance, during S phase DNA polymerases involved in 

leading strand synthesis can collide into Top1 cleavage complexes trapped by CPT giving 

rise to cytotoxic DNA double-strand breaks (DSBs) (Pommier et al. 2003). 

1.3.2. DNA methylating agents 

DNA methylating agents react with DNA at different sites to generate N- and O- 

methylated bases or methylphosphotriesters in the DNA backbone. Nevertheless, most of 

these agents including methyl methanesulfonate (MMS) methylate DNA to generate N7-

methylguanine (7-meG) and N3-methyladenine (3-meA) (Sedgwick 2004). MMS treatment 

activates the DNA damage checkpoint only during the S phase of the cell cycle, suggesting 

that methylated DNA becomes genotoxic during DNA replication (Tercero et al. 2003). 

Moreover, it has been shown that the presence of 3-meA in the template DNA blocks 

replication in vitro (Larson et al. 1985).  

1.3.3. Ribonucleotide reductase inhibitors 

The building blocks of DNA are deoxyribonucleoside triphosphates (dNTPs). 

Ribonucleotide reductase (RNR) is the enzyme that controls the rate-limiting step in the 

production of dNTPs by reducing ribonucleotides to deoxyribonucleotides. Unlike higher 

eukaryotes, S. cerevisiae cells lack deoxyribonucleoside kinase activity and therefore 

completely rely on RNR for dNTP synthesis during S phase. Therefore, RNR inhibitors 

such as hydroxyurea (HU) slow down progression of DNA replication forks by limiting the 

dNTP pools that are available to replicative polymerases (Reichard 1988). As described 

below, although treatment with HU does not cause DNA damage, it activates the S phase 

checkpoint response.  
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1.3.4. S phase checkpoint 

In response to limiting pools of dNTPs during S phase or replication forks blocked by DNA 

lesions, eukaryotic cells initiate a complex signaling cascade called the S phase checkpoint 

that promotes cell viability through multiple mechanisms. The checkpoint response slows 

down DNA replication by preventing the firing of new replication origins and protects 

stalled replication forks until DNA synthesis can resume. Moreover, the S phase checkpoint 

recruits the DNA repair machinery to sights of DNA damage. 

The key components of the S phase checkpoint and their global mode of action are 

evolutionarily conserved. In this signaling pathway, presence of stalled replication forks is 

relayed by several “sensors” to ATM (yeast Tel1) and ATR (yeast Mec1) that belong to the 

phosphoinositide 3-kinase related family of protein kinases (PIKKs). ATR activity requires 

its association with a protein named ATRIP (yeast Ddc2) in vivo. ATM and ATR activate 

the serine/threonine kinases CHK1 and CHK2 (yeast Rad53) that in turn phosphorylate 

numerous downstream effectors. In spite of significant overlap, replication forks stalled at 

DNA lesions engage a different branch of the S phase checkpoint as opposed to replication 

forks that have slowed down in the absence of DNA damage (Nyberg, et al. 2002). These 

signaling cascades are known as the DNA damage checkpoint and the DNA replication 

checkpoint, respectively. 

1.3.4.1. DNA damage checkpoint 

In eukaryotes, different types of DNA lesions are probably converted to single-strand DNA 

(ssDNA) or double-strand breaks (DSBs) before triggering the checkpoint response. In      

S. cerevisiae, DSBs are initially recognized by the MRX complex composed of Mre11, 

Rad50 and Xrs2. The MRX complex holds the DSB ends together, initiates resection of the 

DSB 5´ ends, and recruits Tel1 to sites of DNA damage. Resection of the DSB 5´ ends is 

initiated by Sae2, and assisted by Mre11, and extended by Exo1 and/or Dna2 to produce 3´ 

single-stranded overhangs (ssDNA). The replication protein A (RPA) then covers ssDNA 
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and recruits a number of downstream checkpoint proteins: the clamp loader Rad24-RFC 

complex, composed of Rad24 and Rfc2-5 subunits, binds RPA and loads the 9-1-1 clamp 

composed of Ddc1, Mec3 and Rad17 onto DNA. Moreover, RPA-coated ssDNA recruits 

Ddc2 and its binding partner Mec1 to sites of DNA damage. Upon activation, Mec1 

phosphorylates the adaptor protein Rad9 and the checkpoint kinase Rad53 that, in turn, 

phosphorylates other downstream effectors. The DNA damage checkpoint also triggers 

changes in the chromatin structure that subsequently contribute to checkpoint signaling. For 

instance, both Tel1 and Mec1 phosphorylate histone H2A at serine 129 (H2AP), which 

serves as a molecular marker of DSBs in several eukaryotes. H2AP functions in concert 

with histone H3 lysine 79 methylation (H3K79me) to increase the affinity of Rad9 for 

chromatin where it gets directly phosphorylated by Tel1 (Figure 1.2) (Lisby et al. 2009). 

 

 

 

 

 

 

 

 

 

Figure 1.2 The DNA damage checkpoint and its downstream effectors in                  
S. cerevisiae. Solid black lines show absolute requirements. Red dotted lines represent 
specific interactions, and arrows indicate modifying functions (Lisby, et al. 2009).  
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1.3.4.2. DNA replication checkpoint 

In response to defects in DNA replication, for instance in the presence of HU, stalled forks 

activate the DNA replication checkpoint that maintains the integrity of the replication 

machinery until DNA synthesis can resume. However, microarray evidence has revealed 

that DNA replication continues at slow rates in the presence of HU and all the programmed 

origins of replication eventually fire in the same order as in the absence of replicative stress 

(Alvino et al. 2007). Therefore, the checkpoint response to HU differs from the canonical S 

phase checkpoint in that it does not inhibit the firing of late origins of replication. 

At the stalled replication fork, the MCM helicase may continue to unwind the DNA duplex 

in front of the blocked DNA polymerase, thereby generating sufficient ssDNA to initiate 

the checkpoint response. RPA-coated ssDNA recruits Mec1-Ddc2 that phosphorylates the 

checkpoint mediator Mrc1 and activates Rad53. Mrc1, Tof1 and Csm3 constitute the 

replication-pausing checkpoint complex. This complex associates with the MCM helicase 

and other components of the replisome and contributes to the integrity of the stalled 

replication forks (Branzei et al. 2006). Moreover, when DNA replication slows down (e.g. 

in the presence of HU) or when the replicative polymerases are blocked at DNA lesions, 

Mec1 and Rad53 activate a downstream kinase named Dun1 that stimulates the activity of 

the ribonucleotide reductase (RNR) through multiple mechanisms to expand dNTP pools. 

Dun1 stimulates expression of RNR genes by inhibiting the transcriptional repressor Crt1. 

Moreover, Dun1 promotes RNR activity by phosphorylating the RNR inhibitors Sml1 and 

Dif1 and triggering their subsequent degradation by the proteasome (Labib et al. 2011).  

1.4. The ubiquitin-proteasome system 

Ubiquitin is a highly conserved 76-residue protein that controls diverse cellular functions 

through its conjugation to target proteins. Formation of specific types of ubiquitin chains on 

proteins directs them to a multisubunit protease called the proteasome for degradation. The 

ubiquitin-proteasome pathway mediates hydrolysis of the majority of short-lived proteins in 
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eukaryotes. Therefore, this proteolytic system controls every aspect of cellular function 

including cell cycle progression, transcription and signal transduction (Hershko et al. 

1998). In this section, we describe the enzymatic cascade for ubiquitin-protein conjugation 

and introduce the proteasome. 

1.4.1. The ubiquitin transfer enzymatic cascade 

Ubiquitin-protein conjugation results in formation of an isopeptide bond between the C-

terminal glycine residue (G76) of ubiquitin and the ε-amine of a lysine residue on substrate 

proteins. Ubiquitin transfer requires the sequential activity of three enzymes: first, the 

ubiquitin activating enzyme (E1) forms a high energy thioester bond between its cysteine 

residue and the carboxyl group of ubiquitin G76 in an ATP-dependent manner. Activated 

ubiquitin is then transferred to the ubiquitin conjugating enzyme (E2) by forming a 

thioester linkage with an active site cysteine of the E2. Lastly, the ubiquitin ligase (E3) 

promotes formation of the isopeptide bond between ubiquitin and the target protein (Figure 

1.3) (Pickart 2001). The ubiquitin transfer cascade has a hierarchical organization. For 

instance, yeast has a single E1 enzyme (Uba1), eleven E2 enzymes and a large repertoire of 

putative E3 enzymes (60-100). (Finley et al. 2012) 

Ubiquitin can be conjugated through its G76 to the lysine side chain of another ubiquitin 

molecule. Successive rounds of ubiquitin transfer to previously conjugated moieties results 

in formation of polyubiquitin chains on the target protein (Figure 1.3). Ubiquitin harbors 

seven lysine residues, namely K6, K11, K27, K29, K33, K48 and K63, all of which form 

polymers in vivo (Peng et al. 2003). In S. cerevisiae, the most abundant polyubiquitin chain 

that functions as the canonical signal for the proteasome is K48-linked (Xu et al. 2009). 

Consistent with its key role in protein degradation, mutation of lysine 48 of ubiquitin into 

an arginine (K48R) is lethal in yeast (Finley et al. 1994). Nevertheless, a quantitative mass 

spectrometry study revealed that noncanonical ubiquitin chains are also abundant in vivo 

and that all, but K63-linked chains, can trigger protein degradation (Xu, et al. 2009). 

Moreover, even K63-linked ubiquitin chains have been shown to trigger destruction of 
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specific substrates (Saeki et al. 2009). In support of these observations, K48 of ubiquitin 

cannot sustain cell viability in the absence of all other lysine residues, suggesting that K48 

and the other six lysines of ubiquitin have non-redundant signaling functions (Xu, et al. 

2009). Different E2-E3 complexes preferentially catalyze formation of specific types of 

ubiquitin chains. For instance, the yeast E2 enzyme Cdc34 that associates with the Skp1-

Cullin-F-box (SCF) complex mainly generates K48-linked ubiquitin chains (Petroski et al. 

2005), and the human E2 enzyme UbcH10 that collaborates with the anaphase promoting 

complex (APC) synthesizes K11-linked ubiquitin chains (Jin et al. 2008). 

Substrate selectivity of the ubiquitin-proteasome pathway is conferred by specific 

interactions between target proteins and their cognate E3 ubiquitin ligases. Target proteins 

often expose short primary sequence motifs known as degrons that are recognized and 

bound by specialized binding domains in E3 enzymes (Pickart 2001).  

       

1.3 The ubiquitin conjugation cascade. A) Ubiquitin is first activated by the ubiquitin 
activating enzyme (E1) in an ATP-dependent reaction. Activated ubiquitin is then 
transferred to the ubiquitin-conjugating enzyme (E2) and is subsequently attached to the 
substrate protein in a reaction catalyzed, or assisted, by the ubiquitin ligase (E3). Repeated 
rounds of ubiquitin transfer to the same lysine reside of the substrate generates a 
polyubiquitylated protein (Finley, et al. 2012). 
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1.4.1.1. E3 ubiquitin ligases 

E3 enzymes are divided into two families based on presence of either of two characteristic 

domains that define their mechanism of action. Ubiquitin ligases of the HECT domain 

family contain a highly conserved active-site cysteine in the C-terminal lobe of their ~350-

residue HECT domain that forms a thioester bond with ubiquitin prior to its transfer to the 

substrate protein. The N-terminal lobe of the HECT domain is responsible for recruiting the 

charged E2-Ub enzyme. In contrast, the RING domain family of E3 enzymes cannot 

directly bind to ubiquitin and are catalytically inert. These ubiquitin ligases use their zinc-

binding globular RING domain to recruit a charged E2-Ub enzyme and facilitate direct 

ubiquitin transfer from E2 to their bound protein target (Figure 1.4). Substrate recognition 

in this family of enzymes is either achieved by substrate binding domains within the same 

protein (single subunit RING E3) or by association of specialized substrate receptors to 

form multi-subunit E3 enzymes. In fact, most E3 enzymes of the RING domain family are 

modular proteins in which substrate recognition and ubiquitin conjugation have been 

delegated to separate subunits (Pickart 2001). S. cerevisiae has only five known HECT E3 

ligases and the vast majority of its ubiquitin ligases belong to the RING domain family 

(Finley, et al. 2012). 

The consensus structural RING domain contains eight conserved cysteine and histidine 

residues that bind two zinc ions and are classified in two groups: the RING-HC domain that 

encompasses seven cysteines and one histidine, and the RING-H2 domain that contains six 

cysteines and two histidines in a special configuration. However, some E3 ligases of this 

family have structural variants of the RING domain. For instance, APC and SCF are 

multisubunit E3 ligases that contain the RING domain variants Apc11 and Rbx1, 

respectively. In these non-canonical RING domains, three zinc ions, instead of two, are 

coordinated by three clusters of conserved residues (Willems et al. 2004). 
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Figure 1.4 HECT and RING domain E3 ligases. HECT E3s form a thioester intermediate 
with ubiquitin before transferring it to the substrate, whereas RING E3s promote direct 
ubiquitin transfer from activated E2 to the substrate protein (Finley, et al. 2012).                     

1.4.1.1.1. The Skp1-Cullin-F-box (SCF) complex  

Skp1-Cullin-F-box (SCF) complexes are conserved E3 ubiquitin ligases that trigger 

degradation of numerous substrates during the cell cycle. SCF is composed of an unvarying 

core of three subunits: the linker protein Skp1, the scaffold cullin subunit (human CUL1, 

yeast Cdc53) and the RING-H2 variant Rbx1 (also known as Hrt1or Roc1). The SCF core 

complex is assembled around the cullin subunit with Skp1 and Rbx1 binding to the N-

terminal and C-terminal regions of Cdc53, respectively. SCF substrates are recognized by a 

repertoire of adaptor subunits known as F-box proteins. These adaptor subunits bind Skp1 

through a 40-residue F-box motif and recruit their specific substrates through various 

protein interaction domains including WD-40 repeats and leucine-rich repeats (LRR). Rbx1 

then recruits an activated E2-Ub that directly conjugates ubiquitin to the SCF-bound target 

proteins. To date, Cdc34 is the only identified E2 enzyme that collaborates with the SCF 

complexes in S. cerevisiae (Willems, et al. 2004). 
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1.4.1.1.1.1. Regulation of SCF assembly and function 

SCF activity is regulated at multiple levels by post-translational modification of the cullin 

subunit, association of regulatory proteins, F-box protein dimerization and turnover, and 

substrate modifications.  

The cullin subunit of SCF is modified by the ubiquitin-like protein NEDD8 (Rub1 in yeast) 

that is conjugated to a conserved lysine residue in its C-terminal domain. NEDD8 

conjugation, also known as neddylation, is mediated by the heterodimeric E1-like enzyme 

composed of ULA1 and UBA3, the E2 enzyme UBC12, and the E3 ligase DCN1. This 

conserved enzymatic cascade is essential for viability in all studied organisms except S. 

cerevisiae. Neddylation promotes SCF activity by inducing a major conformational change 

in the C-terminal region of cullin such that RBX1 and its bound E2-Ub are positioned close 

to the F-box protein and its bound substrate for efficient ubiquitin transfer. Moreover, 

neddylation contributes to the SCF core assembly by preventing the inhibitor protein 

CAND1 from binding to cullin. CAND1 sequesters the cullin-RBX1 subcomplex by 

wrapping around unmodified cullin and occluding its N-terminal SKP1 binding site. 

However, neddylation is dynamically regulated and NEDD8 is removed from cullin by the 

CNS5 subunit of the COP9 signalosome (CNS) (Merlet et al. 2009). In budding yeast, The 

CNS5 ortholog Rri1 contributes to removal of Rub1 from Cdc53 (Cope et al. 2002). 

Moreover, the yeast deubiquitinating enzyme (DUB) Yuh1 functions primarily in Rub1 

removal (Linghu et al. 2002). 

SCF activity is also regulated by dimerization of its adaptor subunits. Various F-box 

proteins including human FBW7 and its yeast ortholog Cdc4 form homodimers through a 

conserved 40-residue D domain located upstream of the F-box motif (Merlet, et al. 2009). 

Cdc4 dimerization is essential for SCF activity in vivo because CDC4 mutants that cannot 

dimerize fail to complement cells that are deleted for CDC4. Moreover, although 

dimerization is dispensable for Cdc4 to bind its substrates, dimerization greatly stimulates 

ubiquitylation of the archetypical Cdc4 substrate Sic1 in vivo and in vitro. Structural 

analysis of dimeric SCFCdc4 revealed that dimerization provides different distances between 
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the catalytic site of Cdc34 and the substrate binding site of each Cdc4 molecule in the 

homodimer, and this configuration has been proposed to facilitate ubiquitin chain formation 

and elongation (Figure 1.5) (Tang et al. 2007).  

Moreover, SCF function is modulated by a self-regulatory mechanism that controls the 

stability of its adaptor subunits. In yeast, the F-box proteins Cdc4, Grr1 and Met30 show 

intrinsic instability in vivo. In spite of the steady levels of Cdc4 and Grr1 during the cell 

cycle, these proteins are constantly turned over by the ubiquitin-proteasome pathway. 

Degradation of Cdc4 and Grr1 occurs in an SCF-dependent manner and requires their intact 

F-box motifs, suggesting that SCF triggers ubiquitylation and subsequent degradation of its 

bound F-box proteins. It has been speculated that autoubiquitination allows rapid 

rearrangement of the SCF composition in response to changes in physiological conditions 

(Galan et al. 1999, Zhou et al. 1998).  

Lastly, substrate recognition by SCF is often controlled by phosphorylation of target 

proteins. In most cases, SCF substrates must be phosphorylated by cyclin-dependent 

kinases (Cdks) or other kinases in order to associate with their cognate F-box proteins. This 

mode of substrate recognition couples SCF-dependent proteolysis to intracellular signaling 

pathways that control cell cycle progression and other important cellular functions (Tang et 

al. 2005). In addition to phosphorylation, hydroxylation and glycosylation of protein 

substrates have also been reported for metazoan SCF and SCF-like complexes (Willems, et 

al. 2004). 
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Figure 1.5 Space-filling representation of the SCFCdc4 homodimer. The SCF subunits 
Skp1, Cdc53 and Rbx1 are shown in yellow, green and purple, respectively. The F-box 
protein Cdc4 is shown in blue and its substrate binding site is in white. The SCF-associated 
E2 enzyme Cdc34 is shown in grey. The calculated distances between the substrate binding 
site of each Cdc4 molecule and the Cdc34 catalytic site is also depicted (Tang, et al. 2007). 

1.4.1.1.1.2. The role of SCFCdc4 in cell cycle regulation 

In S. cerevisiae, SCFCdc4 is directly involved in control of cell cycle progression. SCFCdc4 

triggers the G1/S transition by directing the Cdk1 inhibitor Sic1 to proteasomal 

degradation, thereby allowing accumulation of cyclin-Cdk1 complexes that drive initiation 

of DNA synthesis (Willems, et al. 2004). Importantly, degradation of Sic1 is sufficient for 

entry into S phase because a sic1 null mutation suppresses the G1 arrest phenotype of 

CDC4 deleted cells (Goh et al. 1999). Furthermore, several lines of evidence suggest that 

Cdc4 activity contributes to entry and progression through mitosis. First, in addition to a 

cell cycle arrest in G1, deletion of CDC4 or inactivation of its conditional alleles gives rise 

to a population of cells that arrest the cell cycle in G2 or M phase. These CDC4 mutants 

take significantly longer to complete mitosis compared to wild-type cells. Moreover, CDC4 

mutants show genetic interactions with mutations in the APC complex and its key mitotic 

target, securin, that control entry into anaphase. The cdc4-10 mutation suppresses the 

thermosensitivity of the APC mutant cdc20-1. Moreover, the mitotic arrest phenotype of 

cdc4-12 mutants is suppressed by deletion of the yeast ortholog of securin, PDS1 (Goh, et 

al. 1999). Together, these results suggest that SCFCdc4 might work in parallel with APC to 

control the metaphase to anaphase transition. Although genetic evidence suggests an 
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important role for SCFCdc4 during mitosis, mitotic substrates of Cdc4 remain mostly 

unidentified. 

1.4.1.1.1.3. The Cdc4 phosphodegron 

To date, all known Cdc4 substrates contain phosphodegron motifs that are mostly 

generated by Cdk1 (Lyons et al. 2013, Tang, et al. 2005). Based on the high-affinity 

phosphodegron of cyclin E, short peptides were generated and characterized for their 

binding to Cdc4 in vitro, yielding I/L-I/L/P-pT-P-(K/R)4 as the consensus Cdc4 

phosphodegron (CPD). Surprisingly, in this sequence presence of basic residues, shown in  

( ), at the C-terminus of the phosphothreonine was found to be disfavored for Cdc4 binding. 

Hence, phosphorylation of a consensus Cdk1 site, residing in the S/T-P-X-K/R sequence, 

generates a weak Cdc4 binding site. Consistent with this prediction, the Cdc4 substrate 

Sic1 contains nine Cdk1 sites, phosphorylation of at least six of which is required for its 

degradation. On the other hand, substitution of the weak phosphodegrons of Sic1 with a 

single high-affinity CPD derived from cyclin E results in premature degradation of Sic1 

and causes genomic instability in vivo. Therefore, it has been proposed that 

phosphorylation of Sic1 at multiple Cdk1 sites constitutes a sensitive degradation switch 

that prevents premature destruction of Sic1 upon small changes in Cdk1 activity during G1 

(Nash et al. 2001). 

In spite of the predicted consensus sequence for Cdc4 binding, study of physiological Cdc4 

substrates suggests that CPDs are highly diverse. For instance, in addition to 

phosphothreonines, phosphoserines are also abundant in natural CPDs (Lyons, et al. 2013, 

Tang, et al. 2005). Moreover, the contribution of the residues flanking the phosphorylation 

site to Cdc4 binding remains uncertain. For example, mutation of the hydrophobic residues 

preceding the phosphorylation sites in a degron of the Tec1 protein does not affect Tec1 

stability in vivo (Bao et al. 2010). Furthermore, a recent study uncovered that 

phosphodegrons of several Cdc4 substrates contain two phosphorylation sites that are 

spaced 2-3 residues apart. This study also demonstrated that the three-residue spacing 
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between the two phosphorylation sites of the Eco1 degron, S94 and S98, is important for its 

efficient binding to Cdc4 in vitro and Eco1 degradation in vivo (Lyons, et al. 2013). 

1.4.2. Protein degradation by the proteasome 

As mentioned earlier, formation of specific types of ubiquitin chains on proteins targets 

them to proteasomal degradation. The proteasome is an ATP-dependent protease that 

mediates the destruction of polyubiquitylated proteins in eukaryotes. This proteolytic 

complex consists of two main compartments: the 20S core particle (CP) that contains 28 

subunits and the 19S regulatory particle (RP) that is comprised of 19 subunits in S. 

cerevisiae. The CP is organized into a barrel-like structure with its 28 subunits forming 

four stacks of heptameric rings; the outer α-rings and the inner β-rings. The proteolytic 

active sites of the enzyme are located in the β1, β2 and β5 subunits and are protected inside 

the lumen of the CP (Figure 1.6). The α-rings restrict substrate access to the internal 

chamber of the CP to prevent non-specific proteolysis: in the free form of the CP, the N-

terminal regions of all α-subunits occupy the center of the α-ring and block access to the 

substrate translocation channel of the CP that leads to its catalytic lumen. The α-ring also 

serves as a docking site for the RP and other CP regulatory proteins. The RP is organized 

into the nine-subunit lid and the ten-subunit base compartments. The proteasome lid 

contains the ATP-dependent deubiquitinating enzyme (DUB) Rpn11 that releases ubiquitin 

chains from RP-bound substrates. The RP base contains the ubiquitin receptors Rpn10 and 

Rpn13, and a hexameric ATPase ring composed of Rpt1-6. The proteasome holoenzyme 

forms upon binding of the RP to the end of the CP cylinder (Figure 1.7), and is stabilized 

by alignment of the Rpt ring of the RP with the α-ring of the CP. This interaction dislocates 

the N-terminal extensions that occupy the center of the α-ring and opens the substrate 

translocation channel of the CP (Finley 2009, Finley, et al. 2012). 

Previous studies have reported physical interaction of the proteasome lid with the 

components of E3 ligases including SCF and the APC (Verma et al. 2000, Xie et al. 2000). 

Therefore, it is possible that E3 enzymes escort their substrates to the degradation 
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machinery (Willems, et al. 2004). Once delivered to the proteasome, the ubiquitin chain of 

the substrate is recognized and bound by the ubiquitin receptors of the RP. The RP base 

subunits Rpn10 and Rpn13 and the RP-associated proteins Rad23, Dsk2 and Ddi1 function 

as ubiquitin receptors. The ubiquitin chain is then removed from the target protein by 

Rpn11 and the proteasome-associated DUBs Uch37 and Ubp6. The ATP hydrolysis 

required for Rpn11 activity is probably provided by the Rpt ATPase ring, therefore limiting 

Rpn11-mediated deubiquitination to proteins that have committed to proteasomal 

degradation. The Rpt ATPase ring then unfolds bound proteins and passes them into the 

substrate translocation channel of the CP. Unfolded proteins eventually reach the catalytic 

lumen of the CP where they are degraded into short peptides by a repertoire of site-specific 

proteases (Finley 2009, Finley, et al. 2012). 

Figure 1.6 The proteasome core particle (CP) Left: Surface representation of the free CP 
along its twofold symmetry axis showing the four stacks of heptameric rings. Each pair of 
subunits is shown in the same color except for β1 and β1´. Right: medial section of the 
closed-channel state of the CP demonstrating sequestration of its proteolytic active sites (in 
red). The approximate position of the entry port of the CP channel in its open state is shown 
with brackets (Finley 2009).  
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Figure 1.7 The yeast proteasome holoenzyme. Left: medial view of the Rpt ring of the 
RP base in association with the CP. The Rpt ring was modeled based on crystallographic 
studies of the orthologous PAN ATPase of Archaea. Slice surfaces are shown in black. The 
ATPase domain and the OB ring of the Rpt ring are shown in blue and its coiled-coil (CC) 
domain is shown in turquoise. The CP is shown in green and its proteolytic active sites are 
in red. The yellow lines indicate the presumptive location of the substrate translocation 
channel. Some structural features of the Rpt ring were not explained in the text for 
simplicity. Right: Tilted view of the RP. The Rpt ring and the CP are colored as in the left 
panel. The DUB Rpn11 is shown in turquoise and the presumptive substrate entry port is 
shown in red directly beneath it. The ubiquitin receptors Rpn13 and Rpn10 are shown in 
orange and yellow, respectively. Other RP subunits are in gray. Free ubiquitin is shown, in 
pink, at upper right for comparison (Finley, et al. 2012). 
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1.5. Histone H3 lysine 56 acetylation (H3K56ac) 

Histone H3 lysine 56 acetylation (H3K56ac) has been detected in several fungal species 

including S. cerevisiae (Masumoto, et al. 2005), Schizosaccharomyces pombe (Recht et al. 

2006) and Candida albicans (Lopes da Rosa et al. 2010, Wurtele et al. 2010) and in higher 

eukaryotes such as Drosophila (Xu et al. 2005). The abundance of H3K56ac in human cells 

has been a matter of controversy. Numerous studies have reported H3K56ac as an abundant 

histone modification in human cells that contributes to important cellular functions such as 

the DNA damage response (Das et al. 2009, Miller et al. 2010, Tjeertes et al. 2009, 

Vempati et al. 2010, Yuan et al. 2009). Moreover, H3K56ac has been proposed as a 

diagnostic biomarker for several types of human cancer (Das, et al. 2009). However, a 

quantitative mass spectrometry study established that the stoichiometry of H3K56ac is 

roughly 0.04% in transformed human cells and does not increase after treatment with 

several classes of HDAC inhibitors. This work also demonstrated that several commercial 

antibodies against H3K56ac strongly cross-react with other acetylated lysines in the         

N-terminal region of histone H3 which have a similar sequence context to K56. This 

finding suggests that the abundant signal detected by these antibodies probably represents 

acetylation of histone H3 at sites other than K56 in human cells (Drogaris et al. 2012).  

Lysine 56 is the last residue of the α-N helix of histone H3 located between the N-terminal 

tail and the histone fold domain. Based on the crystal structure of the nucleosome core 

particle, the amino group of H3K56 makes weak electrostatic interactions with the DNA 

superhelix at its entry and exit points around the histone octamer (Figure 1.8) (Luger, et al. 

1997). Therefore, it has been speculated that H3K56ac might weaken these histone-DNA 

contacts by neutralizing the positive charge of lysine (Masumoto, et al. 2005, Neumann et 

al. 2009, Xu, et al. 2005). 
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Figure 1.8 Position of histone H3 lysine 56 in the nucleosome core particle. Top: lysine 
56 is the last residue of the α-N helix of histone H3 located upstream of its histone fold 
domain. Bottom: the ε-amine group of H3K56, shown in red, makes electrostatic contacts 
with DNA, shown in green, at the entry and exit points of the nucleosome (Masumoto, et 
al. 2005). 

1.5.1. Regulation of H3K56ac during the cell cycle and in response to 

DNA damage  

In S. cerevisiae, H3K56ac levels peak concomitant to new histone synthesis during S phase 

(Masumoto, et al. 2005). Moreover, this histone mark accumulates prior to the first meiotic 

division (Recht, et al. 2006). Mass spectrometry analysis demonstrated that in the absence 

of deacetylase activity the stoichiometry of H3K56ac increases to about 50% as cells go 

from G1 to G2, suggesting that all new H3 molecules that account for 50% of total histones 

by the end of S phase bear this modification (Celic et al. 2006). H3K56ac is mediated by 

Rtt109 in concert with the histone chaperone Asf1 (Driscoll et al. 2007, Han et al. 2007a, 
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Han et al. 2007b, Tsubota et al. 2007). In the absence of DNA lesions, H3K56ac is 

removed from the genome during G2 or M phase. However, in response to DNA damage 

during S phase H3K56ac is sustained by the DNA damage checkpoint. For instance, 

persistence of H3K56ac in the presence of CPT requires the checkpoint proteins Mec1 and 

Rad9 (Masumoto, et al. 2005). 

1.5.1.1. Cell cycle regulated H3K56 deacetylation by Hst3 and Hst4 

Deacetylation of H3K56 during G2 or M phase is performed by two HDACs, namely Hst3 

and Hst4 (Maas et al. 2006, Thaminy et al. 2007). Hst3 and Hst4 belong to the sirtuin 

family of NAD+-dependent deacetylases (Class III), and they were named after the 

founding member of this family, Sir2 (Homolog of SIR Two) (Brachmann et al. 1995). 

Although the structures of Hst3 and Hst4 remain unresolved, mutational studies have 

established that the predicted NAD+ binding residues of Hst3, namely, N152, D154 and 

H184 are required for H3K56 deacetylation in vivo (Celic, et al. 2006). Moreover, full-

length recombinant Hst3 and Hst4 require NAD+ to remove H3K56ac from 

oligonucleosomes in vitro. In addition, as expected for class III HDACs, Hst3 and Hst4 are 

inhibited by nicotinamide but not TSA (Hachinohe et al. 2011). Thus far, H3K56ac is the 

only known substrate of these sirtuins in vivo, because lack of Hst3 and Hst4 does not 

increase acetylation at other sites in the N-terminal region of histones H3 or H4 (Celic, et 

al. 2006). 

Hst3 makes the major contribution to H3K56ac removal by the end of the cell cycle: when 

arrested in mitosis, HST3 single mutants (hst3Δ cells) show increased levels of H3K56ac, 

while deletion of HST4 has no detectable effect on H3K56ac levels measured by 

immunoblotting. Nevertheless, Hst3 and Hst4 are functionally redundant because in the 

absence of either sirtuin, H3K56ac is still completely removed from the genome by G1. In 

contrast, cells deleted for both HST3 and HST4 (hst3Δ hst4Δ cells) show almost 100% 

H3K56ac throughout the cell cycle confirming these sirtuins as the only H3K56 

deacetylases in vivo (Celic, et al. 2006). 
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The H3K56ac cycle is maintained by regulation of Hst3 and Hst4 levels during the cell 

cycle. HST3 belongs to the same cluster of genes as the mitotic cyclin CLB2 and is 

expressed during G2 (Koranda et al. 2000, Zhu et al. 2000), later than the incorporation of 

new K56-acetylated H3 molecules into nascent chromatin. Hst3 has a short half-life and is 

degraded by the ubiquitin-proteasome pathway (Thaminy, et al. 2007) by the end of the cell 

cycle (Maas, et al. 2006). However, the molecular machinery that controls the proteasomal 

destruction of Hst3 at the end of the cell cycle was not identified. Hst4 levels peak later 

than Hst3 during mitosis, but this sirtuin is still degraded before S phase when H3K56ac 

levels accumulate behind DNA replication forks (Maas, et al. 2006). Hst4 degradation is 

also controlled by the ubiquitin-proteasome system: Hst4 is phosphorylated by Cdk1 and 

polyubiquitylated by SCFCdc4 in vitro, and its degradation in vivo requires Cdc4 activity 

(Tang, et al. 2005). 

1.5.1.2. Regulation of Hst3 in response to DNA damage 

The main H3K56 deacetylase, Hst3, is downregulated in response to DNA damage during 

S phase, thus allowing H3K56ac to persist in the genome and contribute to the DNA 

damage response. Degradation of Hst3 following MMS treatment requires the checkpoint 

kinases Mec1 and Rad53, but not Dun1 (Maas, et al. 2006, Thaminy, et al. 2007). 

In response to genotoxic stress during S phase, Mec1 might control downregulation of Hst3 

by two distinct mechanisms. First, since expression of the HST3 gene is not detectable in 

cells released into S phase in the presence of MMS, a previous study proposed that Mec1 

promotes transcriptional repression of HST3 (Maas, et al. 2006). However, lack of HST3 

expression in MMS might be a passive consequence of delayed cell cycle progression and 

reflect the fact that cells did not reach G2 when they normally express HST3. In a second 

pathway, Mec1 triggers phosphorylation of Hst3 and directs it to ubiquitin-mediated 

degradation by the proteasome, although direct phosphorylation of Hst3 by Mec1 has not 

been established. Consistent with this, in asynchronously growing wild-type cells the half-

life of Hst3 is significantly reduced in the presence of MMS, while Hst3 levels are not 

affected in mec1Δ cells after MMS treatment (Thaminy, et al. 2007).  
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1.5.2. Cellular functions of H3K56ac 

In S. cerevisiae, H3K56ac has been implicated in a number of important cellular functions 

including replication-coupled nucleosome assembly, replication-independent histone 

deposition, regulation of gene expression and the DNA damage response. In this section, 

we describe the evidence that supports a role for this histone modification in the above-

mentioned processes.  

1.5.2.1. The role of H3K56ac in replication-coupled nucleosome assembly 

As mentioned earlier, the histone chaperone Rtt106 might assist CAF-1 in deposition of 

new histones H3 and H4 during replication-coupled nucleosome assembly (Fazly, et al. 

2012, Huang, et al. 2005). H3 molecules that are bound to CAF-1 and Rtt106 during S 

phase are K56-acetylated (Li, et al. 2008, Masumoto, et al. 2005). Moreover, H3K56ac 

enhances the affinity of CAF-1 and Rtt106 for histone H3 in vitro and in vivo, and 

promotes nucleosome assembly by these histone chaperones in vitro. In addition, the 

association of CAF-1 with chromatin is partially compromised in the absence of H3K56ac 

in rtt109Δ cells. Altogether, these results indicate that the acetylation of new histone H3 at 

K56 promotes H3-H4 deposition by CAF-1 and Rtt106 onto nascent chromatin during S 

phase. Moreover, H3K56ac might direct CAF-1 to the sites of chromatin assembly at the 

replication fork. Lastly, mutations that abolish H3K56ac show synthetic lethality with 

mutation of lysine residues in the N-terminal tails of H3 or H4 in the presence of genotoxic 

agents that cause DNA damage during S phase (Li, et al. 2008). This finding might suggest 

that H3K56ac works in parallel with the redundant acetylation sites in the N-terminal 

domains of histones H3 and H4 to promote replication-coupled chromatin assembly. 

1.5.2.2. The role of H3K56ac in replication-independent histone deposition 

Acetylation of histone H3 at K56 is not limited to S phase; new H3 molecules that are 

synthesized during G1 are also K56-acetylated (Masumoto, et al. 2005, Rufiange et al. 
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2007). Moreover, although the bulk of new histones are incorporated into chromatin during 

DNA replication, histone deposition also occurs outside of S phase (Kaplan et al. 2008, 

Rufiange, et al. 2007, Verzijlbergen et al. 2010). A genome-wide study demonstrated that 

the replication-independent incorporation of histone H3 largely correlates with 

transcription and is mainly targeted to promoter regions. However, basal H3 deposition at 

gene promoters is detectable even in the absence of transcription. This work demonstrated 

that H3K56ac is enriched at the promoter regions of actively transcribed genes and its 

abundance correlates with global levels of the transcription-dependent histone H3 

deposition (Rufiange, et al. 2007). Furthermore, study of histone turnover rates at single 

nucleosome resolution demonstrated that during G1, Rtt109 and Asf1 promote new histone 

deposition mostly at dynamically exchanged nucleosomes. Since H3K56 is the only known 

substrate of Rtt109-Asf1 in vivo, this observation suggests that H3K56ac is important for 

rapid histone turnover at dynamic chromatin regions (Kaplan, et al. 2008). Collectively, 

these results support a role for H3K56ac in replication-independent histone deposition at 

genomic regions where nucleosomes are rapidly exchanged. 

1.5.2.3. The role of H3K56ac in regulation of gene expression 

A group of studies have implicated H3K56ac in regulation of gene expression. Cells in 

which H3 lysine 56 has been mutated into a non-acetylateable arginine (H3K56R mutants) 

have decreased expression of genes encoding histones H2A and H2B. It has been proposed 

that reduced transcription in H3K56R mutants results from diminished recruitment of the 

SWI/SNF chromatin remodeling complex to the promoter and the coding region of histone 

genes in the absence of H3K56ac (Xu, et al. 2005). Consistently, another group 

demonstrated that rtt109Δ cells have reduced expression of the histone gene HTA1 

encoding histone H2A (Fillingham et al. 2009). Moreover, it has been suggested that Asf1 

and H3K56ac promote transcription of the model gene PHO5 by driving chromatin 

disassembly at its promoter region (Williams et al. 2008). In support of these experiments, 

global levels of H3K56ac correlate with RNA polymerase II occupancy at the promoter 

region and along the open reading frame of transcribed genes (Rufiange, et al. 2007). These 

results suggest that the incorporation of K56-acetylated histone H3 at transcribed loci might 
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further enhance gene expression by facilitating recruitment or progression of the 

transcription machinery at active genomic regions. 

1.5.2.4. The contribution of H3K56ac to the DNA damage response 

Cells lacking H3K56ac (i.e. rtt109Δ, asf1Δ or H3K56R mutants) are severely sensitive to 

genotoxic agents that cause DNA damage during S phase, such as MMS or CPT (Driscoll, 

et al. 2007, Han, et al. 2007a, Hyland et al. 2005, Masumoto, et al. 2005, Ozdemir et al. 

2005, Recht, et al. 2006, Schneider et al. 2006). These phenotypes indicate that H3K56ac 

has a critical importance for cell survival following genotoxic stress during DNA synthesis. 

After transient exposure to MMS during S phase, rtt109Δ cells fail to complete DNA 

replication of large genomic regions and show continual activation of the DNA damage 

checkpoint. Moreover, these cells show high abundance of persistent nuclear Rad52 foci 

suggesting the presence of unresolved recombination intermediates. Therefore, the 

pronounced genotoxic agent sensitivity in the absence of H3K56ac might stem from defects 

in completion of DNA replication or repair of certain types of DNA lesions (Wurtele et al. 

2012). However, the precise contribution of H3K56ac to the DNA damage response 

remains elusive. 

A previous study proposed that H3K56ac allows recovery from the DNA damage 

checkpoint by driving chromatin assembly after completion of DNA repair. This work 

demonstrated that in the absence of H3K56ac (asf1Δ or rtt109Δ cells), cells fail to 

reassemble chromatin and inactivate the DNA damage checkpoint after successful repair of 

a site-specific HO endonuclease-induced DSB (Chen et al. 2008). Nevertheless, it was 

subsequently demonstrated that a single site-specific DSB is not lethal to H3K56R mutant 

cells (Wurtele, et al. 2012). Hence, this system does not recapitulate the severe sensitivity 

of cells lacking H3K56ac to genome-wide DNA damage caused by genotoxic agents. 

Moreover, two lines of evidence suggest that the genotoxic agent sensitivity of cells lacking 

H3K56ac does not result from defects in S phase checkpoint inactivation. First, although 

deletion of the checkpoint adaptor RAD9 attenuates activation of Rad53 in response to 

MMS, RAD9 deletion severely exacerbates the sensitivity of rtt109Δ cells to genotoxic 
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stress (Thaminy, et al. 2007). Moreover, pharmacological inhibition of the S phase 

checkpoint kinases Mec1 and Tel1 by caffeine does not improve the viability of rtt109Δ 

cells after transient exposure to MMS (Wurtele, et al. 2012).  

1.6. The role of Hst3 and Hst4 in the maintenance of genomic stability 

Since Hst3 and Hst4 are functionally redundant, deletion of either sirtuin does not result in 

severe phenotypes. In contrast, cells lacking both H3K56 deacetylases (hst3Δ hst4Δ 

mutants) show pronounced phenotypes such as elevated rates of spontaneous DNA 

damage, thermosensitivity at 37°C, hypersensitivity to genotoxic agents that damage DNA 

during S phase, mitotic chromosome missegregation, telomeric silencing defects and 

reduced sister chromatid cohesion (Brachmann, et al. 1995, Celic, et al. 2006, Maas, et al. 

2006, Thaminy, et al. 2007, Yang et al. 2008). Moreover, hst3Δ hst4Δ cells have a 

significantly reduced replicative life span, and their progeny show increased loss of 

heterozygosity (LOH) which is indicative of genomic instability. It was demonstrated that 

the LOH phenotype of hst3Δ hst4Δ daughter cells is mainly caused by an increased 

incidence of chromosomal truncations, which are highly deleterious to genetic integrity 

(Hachinohe, et al. 2011). The broad range of deleterious phenotypes manifested in the 

absence of Hst3 and Hst4 suggest that these sirtuins have an essential role in the regulation 

of DNA metabolism and the maintenance of genomic stability. The severe phenotypes of 

hst3Δ hst4Δ cells stem, at least in part, from the failure of the deacetylase mutants to 

remove H3K56ac from the genome, because the H3K56R mutation completely suppresses 

the temperature sensitivity of hst3Δ hst4Δ cells and partially alleviates other phenotypes 

such as the high frequency of mitotic chromosome loss, and sensitivity to genotoxic agents 

(Celic, et al. 2006). Nonetheless, the link between hyperacetylation of H3K56 and genomic 

instability is poorly understood.  

The genomic instability of hst3Δ hst4Δ cells is also reflected by the fact that these mutants 

rapidly accumulate spontaneous suppressors of thermosensitivity (Ts) when grown at 37°C 

(Brachmann, et al. 1995). A previous study reported that the vast majority of the Ts 
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suppressors of H3K56 deacetylase mutants do not show reduced levels of H3K56ac 

compared to hst3Δ hst4Δ cells (Miller et al. 2006). This finding indicates that unknown 

genetic and/or epigenetic mechanisms can allow hst3Δ hst4Δ cells to avoid the catastrophic 

consequences of H3K56 hyperacetylation. 

1.6.1. The DNA damage response in hst3Δ hst4Δ cells 

In addition to sensitivity to genotoxic agents, cells lacking Hst3 and Hst4 exhibit 

spontaneous activation of the DNA damage checkpoint. For instance, hst3Δ hst4Δ cells 

show spontaneous accumulation of nuclear foci for the checkpoint protein Ddc2 (Thaminy, 

et al. 2007). Moreover, the H3K56 deacetylase mutants show high levels of Rad53 

phosphorylation and strong induction of the DNA damage response genes HUG1 and 

RNR3 in the absence of exogenous genotoxic stress (Celic et al. 2008, Thaminy, et al. 

2007). These phenotypes indicate that hst3Δ hst4Δ cells suffer from increased levels of 

spontaneous DNA damage and show chronic activation of the S phase checkpoint.  

A previous genetic screen unraveled that hst3Δ cells have elevated levels of spontaneous 

Rad52 foci, which might reflect defects in homologous recombination (HR) (Alvaro et al. 

2007). During HR in diploid cells, the choice of the identical sister chromatid over the 

homolog chromosome as repair template is critical for the maintenance of genomic 

integrity. A recent study demonstrated that repair of DSBs with the sister chromatid, also 

known as sister chromatid recombination (SCR), is significantly compromised in hst3Δ 

hst4Δ cells (Munoz-Galvan et al. 2013). This finding unravels yet another mechanism 

underlying the genomic instability of hst3Δ hst4Δ cells and suggests that the elevated rates 

of spontaneous DNA damage in H3K56 deacetylase mutants might partly result from 

defective repair of specific types of DNA lesions. 
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1.6.2. Genetic interactions of hst3Δ hst4Δ cells  

As noted earlier, in spite of the important role of Hst3 and Hst4 in the maintenance of 

genomic stability, the mechanisms underlying the severe phenotypes of hst3Δ hst4Δ 

mutants remain unknown. Several studies employed a genetic approach to elucidate the 

cellular pathways that are affected in the absence of Hst3 and Hst4. These studies 

uncovered genetic interactions between hst3Δ hst4Δ cells and mutations of genes involved 

in DNA replication or the DNA damage response.  

hst3Δ hst4Δ cells show genetic interactions with several components of the DNA 

replication machinery. For instance, overexpression of RFC1, the large subunit of the 

replicative clamp loader, partially suppresses the themosensitivity and genotoxic agent 

sensitivity of hst3Δ hst4Δ cells without decreasing the high levels of H3K56ac. On the 

other hand, H3K56 deacetylase mutants are extremely sensitive to small perturbations in 

the DNA replication machinery. Introducing the truncated pol2-11 allele of the DNA 

polymerase ε causes lethality in hst3Δ hst4Δ cells. Moreover, epitope tagging of PCNA 

(Pol30) or the replication protein Cdc45 is lethal in the hst3Δ hst4Δ background (Celic, et 

al. 2008).  

Genetic interactions have also been reported between hst3Δ hst4Δ cells and mutations in 

the components of the DNA damage response. Deletion of the checkpoint kinase MEC1 is 

lethal in the hst3Δ hst4Δ background, while deletion of its downstream kinases CHK1 and 

RAD53 are tolerated in these mutants. Moreover, as mentioned earlier Mec1 requires Rad9, 

the Rad24-RFC clamp loader, and the 9-1-1 clamp (composed of Ddc1-Mec3-Rad17) to 

relay the DNA damage signal to its effectors. Intriguingly, RAD9 deletion exacerbates the 

genotoxic agent sensitivity of hst3Δ hst4Δ cells (Brachmann, et al. 1995, Thaminy, et al. 

2007), but deletion of RAD24 or components of the 9-1-1 clamp suppresses the 

thermosensitivity of these mutants (Celic, et al. 2008). Collectively, these interactions 

suggest that hst3Δ hst4Δ cells depend on specific components of the S phase checkpoint to 

survive endogenous and exogenous DNA damage. In addition, hst3Δ hst4Δ cells show 
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synthetic lethality with deletion of several components of the DSB repair machinery: 

deletion of RAD52, any of the three subunits of the MRX complex (MRE11, RAD50 or 

XRS2), SRS2 or SLX4 is lethal to hst3Δ hst4Δ cells (Celic, et al. 2008). Surprisingly, 

Rad51, which is also involved in repair of DSBs, is dispensable for viability of cells 

lacking Hst3 and Hst4. These genetic interactions suggest that hst3Δ hst4Δ cells depend on 

certain components of the DNA repair machinery to survive DNA damage. 

1.7. Problematic and research objectives 

As previously mentioned, there is still much to understand about how H3K56 deacetylation 

is regulated during an unperturbed cell cycle and in response to DNA damage. Moreover, it 

is not clear how high levels of H3K56ac give rise to the numerous severe phenotypes of 

hst3Δ hst4Δ cells. In this thesis, we took advantage of diverse biochemical and genetic 

approaches to further our understanding of the regulation of H3K56 deacetylation in          

S. cerevisiae.  

In the second chapter of this thesis, we first set out to determine the stage of the cell cycle 

when the main H3K56 deacetylase, Hst3, is degraded. We prioritized this objective in order 

to understand how the deacetylase-free window is established during each passage through 

S phase to allow accumulation of H3K56ac behind DNA replication forks. Moreover, since 

the molecular machinery that promotes proteasomal degradation of Hst3 was previously 

unidentified, we sought to map the enzymatic cascade that carries out poly-ubiquitylation 

of Hst3 and directs it to the proteasome by the end of the cell cycle.  

In chapter 3, we investigated the mechanisms that underlie the severe phenotypes of 

H3K56 deacetylase mutants (hst3Δ hst4Δ cells). In the first section of this study, we used a 

biochemical approach to gain better insight into the hypersensitivity of hst3Δ hst4Δ cells to 

genotoxic stress during S phase. In the second part of this study, we used a genetic 

approach to identify mechanisms that can bypass the role of Hst3 and Hst4 in the DNA 

damage response.  
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2.1. Abstract 

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification 

of new H3 molecules deposited throughout the genome during S phase. H3K56ac is 

removed primarily by the sirtuin Hst3 after completion of DNA replication. Previous 

studies have indicated that regulated degradation of Hst3 plays an important role in the 

genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell 

cycle. In this manuscript we identify several components of the machinery that regulates 

Hst3 degradation during the cell cycle. Our in vivo and in vitro data indicate that Hst3 

degradation is mediated by an SCF (Skp1-Cullin-F-box) ubiquitin ligase that contains the 

F-box protein Cdc4. We also report that Hst3 is phosphorylated at two Cdk1 sites, 

threonines 380 and 384, in vivo. Moreover, we show that phosphorylation of Hst3 at T380 

and T384 is important for its degradation, suggesting that these Cdk1 sites comprise an 

Hst3 “phosphodegron” recognized by SCFCdc4. Unexpectedly, we find that Hst3 is 

degraded sometime between G2 and anaphase, a period of the cell cycle when Hst3 is 

needed for genome-wide deacetylation of H3K56. Our results suggest that H3K56 

deacetylation and the subsequent degradation of Hst3 by SCFCdc4 are tightly coordinated.  

2.2. Introduction 

During each passage through S phase, eukaryotic cells synthesize new histones that are 

needed to fill in the gaps in the nucleosome arrays created during DNA duplication. Newly 

synthesized histones H3 and H4 are acetylated at multiple lysine residues in their N-

terminal domains, and acetylation of these sites has been implicated in the replication-

coupled nucleosome assembly and the DNA damage response (Verreault 2000). In 

Saccharomyces cerevisiae, histone H3 is also acetylated at lysine 56 within its globular 

“histone fold” domain (Masumoto, et al. 2005, Ozdemir, et al. 2005, Xu, et al. 2005). 

Histone H3 lysine 56 acetylation (H3K56ac) occurs in all new H3 molecules that are 

deposited onto nascent chromatin behind DNA replication forks during S phase 

(Masumoto, et al. 2005). This modification is mediated by the histone acetyltransferase 
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Rtt109 in concert with the histone chaperone Asf1 (Driscoll, et al. 2007, Han, et al. 2007a, 

Han, et al. 2007b, Tsubota, et al. 2007). H3K56ac promotes cell viability in the face of 

DNA damage, because cells that lack this modification (i.e. RTT109 or ASF1-deleted cells 

or H3K56R mutants in which lysine 56 has been mutated into a non-acetylateable arginine) 

show severe sensitivity to genotoxic agents that cause DNA damage during S phase 

(Driscoll, et al. 2007, Han, et al. 2007a, Hyland, et al. 2005, Masumoto, et al. 2005, 

Ozdemir, et al. 2005, Recht, et al. 2006, Schneider, et al. 2006, Tsubota, et al. 2007, 

Wurtele, et al. 2012). In the absence of DNA lesions that interfere with completion of DNA 

replication, H3K56ac is removed from the genome during G2 or M phase (Masumoto, et 

al. 2005) by two cell cycle-regulated histone deacetylases known as Hst3 and Hst4 (Celic, 

et al. 2006, Maas, et al. 2006, Thaminy, et al. 2007). However, in response to DNA 

damage during S phase, H3K56ac is maintained in the genome by the DNA damage 

response, where it persists at sites of DNA damage (Maas, et al. 2006, Masumoto, et al. 

2005). 

Hst3 and Hst4 belong to the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-

dependent deacetylases (Brachmann, et al. 1995). HST3 is expressed from the end of S 

phase until mitosis as part of a gene cluster including the mitotic cyclin CLB2 (Koranda, et 

al. 2000, Zhu, et al. 2000). Hst3 is a short-lived protein, and it gets degraded near the end 

of the cell cycle by the proteasome (Thaminy, et al. 2007). However, the molecular 

machinery that controls the destruction of Hst3 has not been identified. Hst4 levels peak 

later than Hst3 in G2 or M phase, but Hst4 degradation is also completed before S phase 

when H3K56ac accumulates in the genome (Maas, et al. 2006). Hst3 and Hst4 show some 

functional redundancy because H3K56ac removal is only completely abolished in the 

absence of both sirtuins (hst3Δ hst4Δ cells) (Celic, et al. 2006, Maas, et al. 2006). In fact, 

mass spectrometry analysis has established that the stoichiometry of H3K56ac increases to 

about 98% in hst3Δ hst4Δ cells arrested in G2/M (Celic, et al. 2006). Nevertheless, HST3 

single mutants (hst3Δ) show a much greater increase in H3K56ac levels compared to HST4 

deleted cells (hst4Δ) suggesting that Hst3 is the main H3K56 deacetylase (Celic, et al. 

2006, Maas, et al. 2006). 
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Skp1-Cullin-F-box (SCF) is a conserved E3 ubiquitin ligase that controls the degradation of 

numerous substrates by the proteasome. In S. cerevisiae, the SCF core is composed of the 

linker protein Skp1, the scaffold protein Cdc53 and the RING protein Rbx1 (also known as 

Hrt1 or Roc1). The SCF substrates are recruited by a variety of adaptor F-box subunits, 

each recognizing a specific set of target proteins. SCF also associates with the E2 ubiquitin 

conjugating enzyme Cdc34 that directly builds lysine 48-linked ubiquitin chains onto        

substrates that are bound to F-box proteins. In most cases, phosphorylation of SCF 

substrates by cyclin-dependent kinase 1 (Cdk1) or other kinases is necessary for their 

recognition by cognate F-box proteins (Willems, et al. 2004). For instance, all known 

substrates of the F-box protein Cdc4 are phosphorylated, often by Cdk1, as a prerequisite 

for their SCF-mediated destruction (Lyons, et al. 2013, Tang, et al. 2005). SCFCdc4 is 

directly involved in the regulation of cell cycle progression. Cdc4 controls the G1/S 

transition of the cell cycle by directing the Cdk1 inhibitor Sic1 to the proteasome, thereby 

allowing accumulation of Cdk1 activity required for the initiation of DNA synthesis 

(Verma et al. 1997). Moreover, genetic evidence suggests an important function for Cdc4 

in entry and progression through mitosis (Goh, et al. 1999), although mitotic substrates of 

Cdc4 remain mostly unknown.  

In this manuscript, we investigated the mechanisms that control Hst3 degradation during 

the cell cycle in S. cerevisiae. We found that Hst3 degradation can be completed prior to 

anaphase. Moreover, we identified phosphorylation of Hst3 at two Cdk1 sites, threonines 

380 and 384, and demonstrated that these phosphorylation events limit the abundance of 

Hst3 in vivo. Our results indicate that Hst3 levels are directly controlled by Cdk1 and 

SCFCdc4, therefore establishing Hst3 as an immediate target of the molecular machinery that 

regulates progression through the cell cycle.  
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2.3. Material and methods 

2.3.1. Yeast strains 

All strains used in this study are listed in Table 2.1. Yeast strains were generated by 

standard methods and grown under standard conditions unless otherwise stated. 

Table 2.1 Yeast strains 

 
NDY1 

 
MATa leu2-3,112 ura3-1 trp1-1 his3-11,15 ade2-1 can1-100                   
HST3-TAP::HIS3MX6  

NDY7 
 

MATa leu2-3,112 ura3-1 TRP1 his3-11,15 ade2-1 can1-100 [PSI+] rad5-535 
cdc23-1 HST3-TAP::HIS3MX6  

NDY224 
 
HWYG12 

MATa ade2-1 can1-100 his3-11,15 leu2-3, 112 trp1-1 ura3-1 [PSI+]       
rad5-535 PDS1-HA::URA3 HST3-TAP::HIS3MX6 
FY MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 hst3Δ::KANMX 
hst4Δ::TRP1 

NDY241 
 

FY MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 hst3Δ::KANMX 
hst4Δ::TRP1 [pCEN-URA3-HST3] [pCEN-LEU2-HST3-TAP]  

NDY244 
 

FY MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 hst3Δ::KANMX 
hst4Δ::TRP1 [pCEN-URA3-HST3] [pCEN-LEU2-HST3 T380A-TAP]  

NDY247 
 

FY MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 hst3Δ::KANMX 
hst4Δ::TRP1 [pCEN-URA3-HST3] [pCEN-LEU2-HST3 T384A-TAP]  

NDY250 
 

FY MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 hst3Δ::KanMX 
hst4Δ::TRP1 [pCEN-URA3-HST3] [pCEN-LEU2-HST3 2A-TAP]  

NDY343 
 

MATa leu2-3,112 ura3-1 trp1-1 his3-11,15 ade2-1 can1-100 cdc34-2 
HST3-TAP::HIS3MX6 

NDY344 
 

MATa leu2-3,112 ura3-1 trp1-1 his3-11,15 ade2-1 can1-100 cdc53-1 
HST3-TAP::HIS3MX6 

NDY196 
 

MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 [PSI+] rad5-535 
cdc4-1 HST3-TAP::HIS3MX6 

NDY310 MATa cdc4-10 leu2-3,112 his3-11 trp1-1 ura3 HST3-TAP::HIS3MX6 
NDY318 
 

MATa cdc4Δ::URA3 leu2-1,112 his3-11 trp1-1 [pCEN-cdc4-12-TRP1-LEU2] 
HST3-TAP::HIS3MX6 
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2.3.2. Construction of pCEN-Hst3-TAP plasmids 

The original plasmid used to generate all pCEN-HST3-TAP constructs was the pCEN-

URA3-HST3 plasmid that was previously described (Celic, et al. 2006). We employed 

homologous recombination in yeast to replace the URA3 marker on the original plasmid 

with LEU2 and generate the pCEN-LEU2-HST3 plasmid. We used the same method to 

TAP-tag the C-terminal domain of Hst3 in pCEN-LEU2-HST3. The resulting construct was 

pCEN-LEU2-HST3-TAP that is referred to as pCEN-HST3-TAP throughout the manuscript. 

Either or both Cdk1 sites of Hst3, T380 and T384, were mutated into alanine in pCEN-

HST3-TAP by site-directed mutagenesis using the PfuTurbo DNA polymerase (Agilent) to 

generate pCEN-HST3 T380A-TAP, pCEN-HST3 T384A-TAP and pCEN-HST3 2A-TAP, 

respectively. These plasmids were individually transformed into the hst3Δ hst4Δ [pCEN-

URA3-HST3] strain (HWYG12) to generate the yeast strains NDY241, NDY244, NDY247 

and NDY250 (Table 2.1). Because hst3Δ hst4Δ mutants rapidly accumulate spontaneous 

suppressors (Brachmann, et al. 1995), the aforementioned strains were covered by the 

pCEN-URA3-HST3 plasmid encoding wild-type Hst3, in case that the Cdk1 site mutants of 

HST3 behaved as null mutations. Prior to each experiment, strains were streaked on plates 

containing 5-Fluoroorotic Acid (5-FOA) to remove the pCEN-URA3-HST3 plasmid. 

2.3.3. Time course experiments and cell synchronization techniques 

For time course experiments, cultures were grown to early exponential phase at 30°C (or at 

23°C for thermosensitive mutants) overnight. Cells were arrested in G1 with 5 μg/ml of   

α-factor for 2-3 h. To release cells from the G1 arrest, cell pellets were washed with water 

and resuspended in fresh medium containing 100 μg/ml pronase. For nocodazole arrest, 

cells were released from G1 into fresh medium containing 15 μg/ml of nocodazole added 

from a 15 mg/ml stock in dimethyl sulfoxide. To inactivate all thermosensitive mutants, 

cultures were switched to the restrictive temperature of 37°C. During the time course, 

aliquots were taken for immunoblots and determination of DNA content by flow 
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cytometry. Immunoblot samples were immediately flash frozen on dry ice. Flow cytometry 

samples were fixed in 70% ethanol and processed as described below. 

2.3.4. Measurement of DNA content by flow cytometry 

Cellular DNA content was measured by fluorescence-activated cell sorting (FACS) using 

Sytox Green (Invitrogen) as nucleic acid stain (Haase et al. 2002). About 2x106 cells were 

fixed in 70% ethanol for a minimum of 30 min at 4°C. Cells were pelleted, resuspended in 

500 μl of 50 mM Tris-HCl, pH 7.5 containing 400 µg/ml of ribonuclease A (Sigma) and 

incubated at 37°C overnight. Cell pellets were resuspended in 200 µl of 50 mM Tris-HCl, 

pH 7.5 buffer containing 400 µg/ml proteinase K (Sigma) and incubated for 30 min at 

50°C. Cells were then resuspended in 500 μl of 50 mM Tris-HCl, pH 7.5. Samples were 

prepared by adding 100 μl of processed cell suspension to 900 μl of 50 mM Tris-HCl, pH 

7.5 containing 1 μM Sytox Green (Invitrogen). FACS analysis was performed on BD 

Biosciences LSR II or FACSCanto II cytometers using the FACS Diva software. 

Histograms were generated using the FCS Express Version 3 software. 

2.3.5. Immunoblots 

Whole-cell yeast extracts were prepared from flash-frozen samples using a previously 

described alkaline method (Kushnirov 2000). For Hst3 immunoblots, whole-cell extracts 

were separated through SDS 12%–polyacrylamide gels by electrophoresis. Proteins were 

transferred to PVDF membranes using standard Towbin buffer (25 mM Tris, 192 mM 

glycine) containing 5% methanol and 0.02% SDS on a Bio-Rad SD semi-dry transfer 

apparatus. Transfer settings were 1 mA/cm2 of transfer area at 20 V for 2 h. The anti-TAP 

antibody was purchased from Open Biosystems. The anti-HA monoclonal antibody was 

12CA5. 
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2.3.6. Mass spectrometry identification of Hst3 phosphorylation sites 

Hst3 phosphorylation sites were identified during the course of a phosphoproteome study 

performed with wild-type cells (Kanshin et al. 2012). The Hst3 phosphorylation sites were 

identified from whole-cell lysates without prior purification of the Hst3 protein. The in vivo 

phosphorylation data were obtained from a SILAC experiment that used [13C6, 
15N4] heavy 

arginine, rather than the [12C6, 
14N4] natural form of arginine. Because of this, the mass of 

the doubly charged precursor peptide obtained from Hst3 in whole-cell lysates grown in 

SILAC medium is 5 Da higher than the theoretical mass of the natural peptide (Figure 

2.2C). The phosphorylated peptide of Hst3 identified after an in vitro kinase reaction was 

derived from the recombinant protein containing only naturally occurring amino acids 

(Figure 2.6A).  

2.3.7. Expression and purification of recombinant Hst3 

Recombinant wild-type Hst3 was expressed from the previously described pET28b-FLAG-

HIS10-HST3 plasmid (PHM187) (Hachinohe, et al. 2011). The Hst3 expression construct 

was transformed into ArcticExpress (Agilent) E. coli cells. Expression of Hst3 was induced 

by addition of 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) to cells grown in LB 

medium at 11.5°C. Cells were collected after 48 h of induction and flash-frozen on dry ice. 

His-tagged Hst3 was purified from ArcticExpress cell lysates using the Ni-NTA spin kit 

according to the manufacturer’s instructions (Qiagen).  

2.3.8. In vitro kinase and SCFCdc4 ubiquitylation assays on recombinant 

Hst3 

Hst3 was phosphorylated by Clb2-Cdk1 or cyclin A-CDK2 after incubation for 1 h at 30°C 

in 50 mM HEPES, pH 7.2, 2 mM ATP, 10 mM MgCl2 and 1 mM DTT. Ubiquitylation 

reactions contained 0.4 μM E1 (Uba1),  2 μM Cdc34, 0.1 μM SCFCdc4, 40 μM ubiquitin 

(K0), 2 mM ATP, 10 mM MgCl2, 50 mM NaCl, 0.1 mM DTT and 50 mM HEPES, pH 7.2. 
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Reactions were incubated for 1 h at 30°C. Clb2-Cdk1 was kindly provided by Dr. Adam 

Rudner (University of Ottawa). 

2.4. Results 

2.4.1. The H3K56 deacetylase Hst3 can be degraded prior to anaphase 

In this manuscript, we investigated the molecular mechanisms that control the proteasomal 

degradation of the main H3K56 deacetylase, Hst3, during the cell cycle in S. cerevisiae. 

Although it has not been formally established, previous studies suggest that the degradation 

of Hst3 occurs by the end of the cell cycle (Maas, et al. 2006, Thaminy, et al. 2007). In 

order to identify the molecular machinery that controls Hst3 levels, we first set out to 

determine when Hst3 was degraded during the cell cycle. Wild-type cells expressing   

TAP-tagged Hst3 were synchronized in G1 and released in the presence of the microtubule-

depolymerizing agent nocodazole. Through activation of the spindle checkpoint, 

nocodazole prevents cells from entering anaphase. Immunoblots revealed that Hst3 was 

degraded in cells arrested in metaphase in the presence of nocodazole (Figure 2.1A). The 

anaphase promoting complex (APC) is an E3 ubiquitin ligase that controls entry into 

anaphase by triggering the degradation of securin (yeast Pds1) and unleashing separase 

(yeast Esp1)-mediated cleavage of proteins involved in sister chromatid cohesion (Ciosk et 

al. 1998, Cohen-Fix et al. 1996). To confirm that Hst3 degradation occurs prior to 

anaphase, we employed the APC thermosensitive cdc23-1 mutant expressing TAP-tagged 

Hst3. cdc23-1 cells were released from G1 at the permissive temperature of 23°C and were 

later switched to the restrictive temperature of 37°C to inactivate APC and block cells in 

metaphase. Consistent with our previous result, Hst3 was degraded in cdc23-1 cells at the 

restrictive temperature (Figure 2.1B). Lastly, we also monitored the timing of Hst3 

degradation relative to the APC substrate Pds1. We released cells co-expressing TAP-

tagged Hst3 and HA-tagged Pds1 from G1 in the presence of nocodazole and found that 

Hst3 was degraded while Pds1 levels remained mostly stable (Figure 2.1C). Taken 



    

44 

together, these results demonstrate that Hst3 degradation can occur prior to entry into 

anaphase and does not require APC activity. 

Figure 2.1 The degradation of Hst3 can be completed before anaphase. A) Hst3 is 
down-regulated in cells arrested in nocodazole. Wild-type cells expressing TAP-tagged 
Hst3 were released from G1 in the presence of nocodazole at 30°C, and aliquots were 
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collected as a function of time. Cell cycle progression was monitored by FACS. Hst3 levels 
were assessed by immunoblotting with anti-TAP antibody. Ponceau S staining is shown as 
a loading control. B)  Hst3 can be degraded prior to anaphase in the absence of APC 
activity. cdc23-1 HST3-TAP cells were released from G1 at 23°C and switched to the 
restrictive temperature of 37°C after 45 min to inactivate APC. Samples were analyzed as 
in panel A. C) Hst3 degradation occurs when the APC substrate Pds1 is stable. PDS1-HA 
HST3-TAP cells were released from G1 into nocodazole at 30°C. Samples were processed 
as in panel A.  

2.4.2. Hst3 is phosphorylated at two Cdk1 sites, threonines 380 and 384, 

in vivo 

 To gain insight into mechanisms that control the degradation of Hst3 before anaphase, we 

searched for the presence of putative regulatory motifs in the Hst3 sequence. Cdk1 is an 

integral component of the cell cycle control machinery that phosphorylates a myriad of 

proteins during the cell cycle. The consensus sequence for phosphorylation by Cdk1 is 

S/T*-P-X-R/K, in which the phosphorylation site (marked with *) is followed by a basic 

residue at the +3 position, but many Cdk1 substrates are also phosphorylated at minimal 

S/T-P motifs (Holt et al. 2009, Ubersax et al. 2003). We found that the C-terminal domain 

of Hst3 contains a consensus Cdk1 site at T384 closely preceded by a minimal Cdk1 site at 

T380. These threonine residues are located outside the predicted catalytic core of Hst3 

(Figure 2.2A). Sequence alignments of Hst3 orthologs from several fungal species revealed 

that these two Cdk1 sites of Hst3 and their spacing are conserved in the pathogenic fungi 

Candida albicans and Candida tropicalis (Figure 2.2B), suggesting that phosphorylation of 

Hst3 at these sites might have an important regulatory function. In support of this, mass 

spectrometry analysis of whole cell lysates prepared from asynchronous S. cerevisiae 

cultures revealed that Hst3 is phosphorylated at both T380 and T384 in vivo (Figure 2.2C). 
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Figure 2.2 Hst3 is phosphorylated at the Cdk1 sites T380 and T384 in vivo. A) Hst3 
contains two putative Cdk1 sites at T380 and T384, highlighted in red. These Cdk1 sites 
are located outside of the predicted catalytic core of Hst3, residues 53-340, shown in bold 
characters. B) The two Cdk1 sites of Hst3 and their spacing are conserved in the pathogenic 
fungi C. albicans and C. tropicalis. C) Hst3 is phosphorylated at T380 and T384 in vivo. 
The figure shows a fragmentation spectrum containing a near complete y-ion series and a 
partial b-ion series. The positions of the two phospho-threonines are consistent with the 
observed masses of several y- and b-ions. The measured m/z ratio of the [M+2H]2+ 
precursor peptide is indicated. The phosphorylated Hst3 peptide was identified from a 
phosphoproteome of cells labeled with [13C6, 15N4] arginine. The experimentally 
determined mass of the intact peptide is within ppm of the theoretical mass for the doubly 
phosphorylated peptide containing a C-terminal [13C6, 15N4] arginine. 
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2.4.3. Phosphorylation of Hst3 at T380 and T384 promotes its 

degradation 

In order to uncover the physiological function of Hst3 phosphorylation at T380 and T384, 

we mutated either or both Cdk1 sites of Hst3 into non-phosphorylatable alanine. These 

constructs were named Hst3 T380A, Hst3 T384A and Hst3 2A, respectively. Wild-type or 

Cdk1 site mutants of Hst3 were expressed from the natural HST3 promoter on a 

centromeric plasmid in cells lacking endogenous copies of HST3 and HST4 (hst3Δ hst4Δ 

cells). When cells were released from G1 in the presence of nocodazole, all three Cdk1 site 

mutants of Hst3 showed a significant increase in abundance, and unlike wild-type Hst3, 

these mutants were not degraded in the presence of nocodazole. Moreover, mutation of 

either Cdk1 site stabilized Hst3 to the same extent as mutation of both Cdk1 sites (Figure 

2.3). Collectively, these results suggest that phosphorylation of Hst3 at T380 and T384 

constitutes a “phosphodegron” that triggers its subsequent degradation. 

2.4.4. Hst3 degradation requires components of the SCF ubiquitin ligase 

Our results indicated that phosphorylation of Hst3 at its Cdk1 sites is a prerequisite for its 

degradation. This requirement is characteristic of SCF substrates (Tang, et al. 2005). 

Hence, we tested whether the destruction of Hst3 was dependent on SCF activity by 

assessing Hst3 levels in the temperature-sensitive cdc53-1 mutant. cdc53-1 cells were 

released from G1 in the presence of nocodazole at permissive temperature and were 

switched to the restrictive temperature of 37°C after 120 min. Late inactivation of cdc53-1 

was to ensure that SCF performed its essential roles during the G1/S and G2/M transitions 

so that cells reached the metaphase block in nocodazole. Hst3 was not degraded in cdc53-1 

cells at restrictive temperature even after 4 h in the presence of nocodazole (Figure 2.4A). 

This is much longer than the time required for the degradation of Hst3 in wild-type cells 

(Figure 2.1A). 
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Figure 2.3 Phosphorylation of Hst3 at T380 and T384 promotes its destruction. Cells 
expressing TAP-tagged wild-type Hst3, as control, or the Cdk1 site mutants of Hst3 were 
synchronized in G1 and released in the presence of nocodazole at 30°C. Samples were 
processed by FACS, and immunoblotting with anti-TAP antibody. Ponceau S is shown as a 
loading control. 
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Next, we employed the thermosensitive cdc34-2 mutant to verify whether the SCF-

associated E2 enzyme Cdc34 was required for the degradation of Hst3. cdc34-2 cells were 

released from G1 into medium containing nocodazole and were switched to the restrictive 

temperature of 37°C after 90 min. Consistent with our previous result, cdc34-2 cells also 

failed to degrade Hst3 at restrictive temperature after 4 h in the presence of nocodazole 

(Figure 2.4B). These results demonstrate that SCF activity is required for Hst3 degradation 

prior to anaphase. 

 

Figure 2.4 SCF and Cdc34 are required for Hst3 degradation in vivo. A) Inactivation of 
the SCF subunit Cdc53 stabilizes Hst3 in G2/M. cdc53-1 HST3-TAP cells were released 
from G1 in nocodazole at 23°C and were switched to 37°C after 120 min to inactivate SCF. 
B) Hst3 cannot be degraded in the absence of the E2 enzyme Cdc34. cdc34-2 HST3-TAP 
cells were released from G1 at 23°C in the presence of nocodazole and were switched to 
37°C after 90 min to inactivate Cdc34. In both experiments, samples were analyzed by 
FACS, and immunoblotting with anti-TAP antibody. Ponceau S staining is shown as a 
loading control. 
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2.4.5. The SCF-dependent degradation of Hst3 requires Cdc4 

Hst3 degradation is controlled by an SCF-dependent mechanism (Figure 2.4). Moreover, 

phosphorylation of Hst3 at the two Cdk1 sites, T380 and T384, promotes its subsequent 

degradation (Figure 2.3). Numerous substrates of the F-box protein Cdc4 contain 

diphosphorylated degrons in which the two phosphorylation sites are 2-3 residues apart 

(Lyons, et al. 2013). Therefore, we tested whether Cdc4 was required for the degradation of 

Hst3 in cells arrested in mitosis. We monitored Hst3 levels in cells released from G1 into 

nocodazole in three independent thermosensitive mutants of CDC4, namely cdc4-1,     

cdc4-10 and cdc4-12. Similar to other SCF mutants, CDC4 mutants were initially released 

at the permissive temperature of 23°C and later switched to the restrictive temperature of 

37°C to allow cell cycle progression until metaphase. We found that all three CDC4 

mutants failed to degrade Hst3 at restrictive temperature after 150-240 min in the presence 

of nocodazole (Figure 2.5). Taken together, our findings suggest that Cdc34 in association 

with SCFCdc4 promotes the degradation of Hst3 before entry into anaphase. 

2.4.6. Hst3 is a substrate for Clb2-Cdk1 and SCFCdc4 in vitro 

Our results suggest that phosphorylation of Hst3 at the Cdk1 sites T380 and T384 promotes 

its degradation by an SCF-dependent pathway. In order to establish Hst3 as a bona fide 

Cdk1 substrate, we investigated whether the main mitotic kinase Clb2-Cdk1 

phosphorylated Hst3 in vitro. We performed a kinase assay on recombinant wild-type Hst3 

using Clb2-Cdk1 purified from S. cerevisiae. Mass spectrometry analysis revealed that the 

consensus Cdk1 site of Hst3, T384, was phosphorylated by Clb2-Cdk1 in vitro (Figure 

2.6A). Next, we tested whether phosphorylation of Hst3 by Clb2-Cdk1 primed it for 

ubiquitylation by SCFCdc4 in vitro. As a control for kinase activity, recombinant Hst3 was 

also phosphorylated by active cyclin A-CDK2 in the same experiment. Hst3 

phosphorylated by Clb2-Cdk1, or cyclin A-CDK2, was incubated with a ubiquitylation 

reaction mixture containing the yeast E1, E2 and E3 enzymes Uba1, Cdc34, and SCFCdc4, 

respectively. The ubiquitylation reaction on Hst3 phosphorylated by Clb2-Cdk1 produced 
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poly-ubiquitylated Hst3 species, demonstrating that phosphorylated Hst3 is a substrate for 

SCFCdc4 in vitro (Figure 6B). Hence, our results strongly suggest that Hst3 is directly 

targeted by Cdk1 and SCFCdc4 during the cell cycle in S. cerevisiae. 

 

 

Figure 2.5 Hst3 degradation requires the F-box protein Cdc4. cdc4-1, cdc4-10 and 
cdc4-12 mutants expressing TAP-tagged Hst3 were released from G1 in nocodazole at 
23°C and were switched to 37°C at the indicated times. Cell cycle progression was 
monitored by FACS. Whole cell lysates were probed by immunoblotting with anti-TAP 
antibody to monitor Hst3 levels. Ponceau S staining is shown as a loading control. 
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Figure 2.6 Hst3 is targeted by the mitotic kinase Clb2-Cdk1 and SCFCdc4 in vitro. A) 
Phosphorylation of Hst3 T384 by Clb2-Cdk1. The figure shows a fragmentation spectrum 
containing partial y-ion and b-ion series. The position of the phospho-threonine is 
consistent with the observed masses of several y-ions. The experimentally determined m/z 
ratio of the [M+2H]2+ precursor peptide is indicated. The corresponding mass is within ppm 
of the theoretical mass for the singly phosphorylated peptide. B) Recombinant Hst3-Flag 
(lane 1) was phosphorylated by Clb2-Cdk1 (lane 2), or cyclinA-CDK2 as control (lane3), 
and subsequently ubiquitinated by Cdc34-SCFCdc4 (Lanes 4 and 5). Reactions were 
resolved by SDS-PAGE followed by anti-FLAG immunoblotting. 
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2.5. Discussion 

In S. cerevisiae, H3K56ac makes an important contribution to the DNA damage response 

during S phase (Driscoll, et al. 2007, Han, et al. 2007a, Hyland, et al. 2005, Masumoto, et 

al. 2005, Ozdemir, et al. 2005, Recht, et al. 2006, Schneider, et al. 2006, Tsubota, et al. 

2007, Wurtele, et al. 2012). Therefore, the H3K56 deacetylases Hst3 and Hst4 must be 

degraded prior to initiation of DNA synthesis to allow accumulation of H3K56ac behind 

DNA replication forks. Indeed, a previous study demonstrated that both Hst3 and Hst4 are 

degraded before S phase (Maas, et al. 2006). However, it was not clear how the 

degradation of H3K56 deacetylases is temporally coordinated with waves of H3K56ac 

during the cell cycle. Moreover, although Hst3 was known to be degraded by the ubiquitin-

proteasome system near the end of the cell cycle (Thaminy, et al. 2007), the mechanism 

that controls its destruction remained completely unknown.  

Our results demonstrate that Hst3 degradation can be completed before entry into anaphase 

(Figure 2.1). Interestingly, we found that Hst3 is degraded in wild-type cells in the presence 

of nocodazole (Figure 2.1A), which is in contrast to results from a previous work (Maas, et 

al. 2006). We speculate that this discrepancy may result from different experimental 

designs: in our experiments Hst3 levels were assessed over multiple time points in cells 

released from G1 into nocodazole. However, the other group assessed Hst3 levels after a    

3 h treatment of asynchronously growing cells with nocodazole. Hence, the majority of 

cells may not have been arrested in metaphase long enough for Hst3 to be degraded. Since 

Hst3 is the main H3K56 deacetylase, our results imply that H3K56ac removal is mostly 

completed in a small window of time from the expression of Hst3 in G2 until its 

degradation prior to anaphase. Therefore, a surveillance mechanism might signal the 

completion of genome-wide H3K56 deacetylation before Hst3 is targeted to the 

proteasome. Alternatively, since Hst4 levels peak later than Hst3 during the cell cycle 

(Maas, et al. 2006), Hst4 might complete removal of remaining H3K56ac from the genome 

after the degradation of Hst3. However, cells lacking HST4 (hst4Δ cells) have no obvious 

phenotype suggesting that, at least in the absence of Hst4, Hst3 can complete genome-wide 

removal of H3K56ac before its degradation.  
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In this work, we also uncovered the molecular machinery that controls Hst3 degradation 

during the cell cycle. Mass spectrometry analysis revealed that Hst3 is phosphorylated at 

the two Cdk1 sites T380 and T384 in vivo (Figure 2.2C). Mutation of either or both Cdk1 

sites into alanine stabilized Hst3 in nocodazole-treated cells, suggesting that 

phosphorylation of Hst3 at these Cdk1 sites constitutes a phosphodegron that promotes its 

destruction (Figure 2.3). A recent study reported that several known Cdc4 phosphodegrons 

(CPDs) encompass two phosphorylation sites, mostly generated by Cdk1, which are 

separated by two or three residues. Moreover, this work established that the spacing 

between the two phosphorylation sites is essential for the degradation of the SCFCdc4 

substrate Eco1 in vivo (Lyons, et al. 2013). According to these criteria, phosphorylation of 

Hst3 at T380 and T384 completely matches the features of a CPD. In support of this, our 

results demonstrated that the SCF-associated E2 enzyme Cdc34 and SCFCdc4 are required 

for the degradation of Hst3 in vivo (Figures 2.4 and 2.5).  

Lastly, we established that Hst3 is a direct target of Cdk1 and SCFCdc4 in vitro. Mass 

spectrometry analysis uncovered that the mitotic kinase Clb2-Cdk1 phosphorylates Hst3 at 

its consensus Cdk1 site T384 in vitro (Figure 2.6A). We speculate that the minimal Cdk1 

site of Hst3, T380, is not an optimal Clb2-Cdk1 substrate, because we could not detect its 

phosphorylation in vitro. However, we cannot exclude the possibility that phosphorylation 

of Hst3 at T380 is mediated by a Cdk1 complex other than Clb2-Cdk1 or a different kinase 

in vivo. Nevertheless, our results indicate that phosphorylation of Hst3 by Clb2-Cdk1 is 

sufficient to drive its polyubiquitylation by SCFCdc4 in vitro (Figure 2.6B).  

The temporal relationship between completion of H3K56 deacetylation and the time at 

which Hst3 becomes unstable is poorly defined. Nonetheless, our findings suggest that 

phosphorylation and subsequent degradation of Hst3 occur around the stage of the cell 

cycle when this sirtuin is needed for removal of H3K56ac from the genome. The structure 

of the identified phosphodegron of Hst3 may provide an explanation for how Hst3 is 

protected from immediate degradation by the proteasome. Sequence characterization of 

peptides with high-affinity binding to Cdc4 in vitro has revealed that the presence of basic 

residues at the C-terminus of the Cdk1 phosphorylation site is disfavoured for Cdc4 
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binding. This suggests that phosphorylation of an optimal Cdk1 site within S/T-P-X-R/K 

sequence constitutes a weak Cdc4 degron (Nash, et al. 2001). Therefore, Hst3 

phosphorylated at T384, within the sequence TPPTTPLR, should be a weak Cdc4 

substrate. This prediction is consistent with the observation that the presence of T384 alone 

cannot trigger the degradation of Hst3 T380A in vivo (Figure 2.3). On the other hand, T380 

of Hst3 was not found to be phosphorylated by Clb2-Cdk1 in vitro, suggesting that Cdk1 

might not readily phosphorylate this site in vivo. Consistent with this, phosphorylation of 

Hst3 T380 alone cannot drive the degradation of Hst3 T384A in vivo (Figure 2.3). Hence, 

the presence of a minimal Cdk1 site (T380) and a weak Cdc4 binding site (T384) in the 

Hst3 phosphodegron may hinder generation of its destruction signal and create a window of 

opportunity for Hst3 to complete genome-wide H3K56 deacetylation before it is directed to 

the proteasome. 

In summary, this manuscript demonstrates a direct role for Cdk1 and SCFCdc4 in Hst3 

turnover during the cell cycle. SCFCdc4, together with the Cdk1 complexes that are active 

during G1, controls the G1/S transition of the cell cycle by directing the proteasomal 

degradation of Sic1 (Verma, et al. 1997). Hence, our results on the regulation of Hst3 by 

SCFCdc4 explain how the degradation of the main H3K56 deacetylase, Hst3, always 

precedes entry into S phase when H3K56ac levels peak behind DNA replication forks.  
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3.1. Abstract 

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification 

present in newly synthesized histones deposited throughout the genome during DNA 

replication. The sirtuins Hst3 and Hst4 are required for genome-wide deacetylation of 

H3K56 after completion of S phase. In cells lacking Hst3 and Hst4, nearly all the H3 

molecules are K56-acetylated throughout the cell cycle. Failure to deacetylate H3K56 

results in severe phenotypes: thermosensitivity, persistent spontaneous DNA damage, 

severe genomic instability, and acute sensitivity to genotoxic agents that damage DNA 

during replication. In this manuscript, we demonstrate that hst3∆ hst4∆ cells cannot 

complete genome duplication when transiently exposed to genotoxic agents during S phase. 

This phenotype arises from abnormal presence of H3K56ac in front of DNA replication 

forks in hst3∆ hst4∆ mutants. We also provide evidence that the thermosensitive phenotype 

of hst3∆ hst4∆ mutants is genetically linked to their genotoxic agent sensitivity. In 

addition, we demonstrate that mutations that impair histone H4 lysine 16 acetylation 

(H4K16ac) or loss-of-function mutations in the Rsc2 form of the RSC complex and Yta7 

attenuate the severe phenotypes of hst3∆ hst4∆ cells. Our results suggest that, in wild-type 

cells, DNA replication forks have evolved to proceed through nucleosomes that contain 

H4K16ac but lack H3K56ac, whereas the phenotypes of hst3∆ hst4∆ mutants result from 

the presence of nucleosomes that contain both modifications. Our results therefore shed 

light on patterns of histone acetylation that are important for completion of DNA 

replication even when DNA templates are damaged by genotoxic agents.   
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3.2. Introduction 

Chromatin structure influences several DNA metabolic processes such as transcription, 

DNA replication and DNA repair (Campos et al. 2009, Wurtele et al. 2006). The basic 

building block of chromatin is the nucleosome core particle, which is composed of 147 

base pairs of DNA wrapped around the surface of an octameric protein core that consists of 

two molecules each of core histones H2A, H2B, H3 and H4. During DNA replication, pre-

existing (old) histones are segregated onto sister chromatids, while new histones are 

deposited onto newly synthesized DNA in order to restore a normal nucleosome density 

onto nascent sister chromatids (Ransom et al. 2010, Su et al. 2012). In human cells, newly 

synthesized histone H3 and H4 molecules are acetylated on multiple residues within their 

N-terminal tails (Benson et al. 2006, Jasencakova et al. 2010, Ruiz-Carrillo et al. 1975) and 

they are deacetylated following their incorporation into chromatin (Jackson et al. 1976, 

Taddei et al. 1999). N-terminal tail acetylation of new H3 and H4 molecules also occurs in 

Saccharomyces cerevisiae (Burgess, et al. 2010, Parthun et al. 1996). In addition, histone 

H3 lysine 56 acetylation (H3K56ac) is present in virtually all newly synthesized H3 

molecules deposited throughout the genome during S phase (Celic, et al. 2006) but is 

absent from pre-existing (old) histones (Masumoto, et al. 2005). H3K56ac is catalyzed by 

the Rtt109 acetyltransferase that functions in concert with the histone-binding protein Asf1 

(Driscoll, et al. 2007, Han, et al. 2007a, Han, et al. 2007b, Tsubota, et al. 2007). The 

sirtuins Hst3 and Hst4 contribute to H3K56 deacetylation and are absent during S phase 

(Maas, et al. 2006, Thaminy, et al. 2007). Hence, H3K56ac peaks after completion of 

genome duplication (Kaplan, et al. 2008, Maas, et al. 2006, Masumoto, et al. 2005). In the 

absence of DNA damage, H3K56ac is then removed throughout the genome when Hst3 and 

Hst4 are expressed during the G2/M phase of the cell cycle (Maas, et al. 2006).  

This remarkable feature of the yeast chromosome cycle is important for response to DNA 

damage. Both acetylation and, to an even greater extent, deacetylation of H3K56 help cells 

survive spontaneous or genotoxic agent-induced lesions that arise during replication 

(Alvaro, et al. 2007, Celic, et al. 2006, Hyland, et al. 2005, Maas, et al. 2006, Masumoto, 

et al. 2005, Munoz-Galvan, et al. 2013, Ozdemir, et al. 2005, Recht, et al. 2006, Reid et al. 
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2011). The molecular mechanisms by which either lack of or excess H3K56ac render cells 

sensitive to DNA damage are poorly understood. H3K56ac promotes efficient chromatin 

assembly during DNA replication at least in part by enhancing the affinity of histone 

chaperones for newly synthesized H3 molecules (Li, et al. 2008, Su, et al. 2012). However, 

the fact that H3K56ac persists in response to DNA damage points to a role of H3K56ac in 

the DNA damage response (DDR) after new H3 molecules have been incorporated into 

chromatin (Masumoto, et al. 2005). Indeed, some DNA lesions that occur during S phase 

remain unrepaired for long periods of time after the majority of chromosomal DNA has 

been replicated (Wurtele, et al. 2012). 

The name Hst was coined because Hst3 and Hst4 are homologous to Sir2 (Brachmann, et 

al. 1995), the founding member of the sirtuin family of nicotinamide adenine dinucleotide 

(NAD+)-dependent deacetylases (Imai et al. 2000, Landry et al. 2000, Smith et al. 2000, 

Tanny et al. 2001). In several fungi, including human fungal pathogens, there is a single 

ortholog of Hst3/Hst4 (Haldar et al. 2008, Wurtele, et al. 2010). In contrast, Hst3 and Hst4 

are partially redundant in S. cerevisiae (Brachmann, et al. 1995, Celic, et al. 2006). 

Deletion of HST3 causes mild phenotypes such as an elevated incidence of spontaneous 

DNA damage and a shorter replicative lifespan (Alvaro, et al. 2007, Dang et al. 2009). In 

striking contrast, cell lacking both Hst3 and Hst4 (hst3∆ hst4∆ mutants) display severe 

phenotypes such as an extreme sensitivity to numerous genotoxic agents (Celic, et al. 2006, 

Celic, et al. 2008, Thaminy, et al. 2007). The hst3∆ hst4∆ double mutant cells also exhibit 

other strong phenotypes that might be related to their inability to respond appropriately to 

spontaneous DNA damage. These phenotypes include reduced viability even at the 

permissive temperature of 25°C (Brachmann, et al. 1995, Celic, et al. 2006), a high 

frequency of chromosome loss (Brachmann, et al. 1995, Celic, et al. 2006) and an 

extremely short replicative lifespan associated with dramatic genomic instability 

(Hachinohe, et al. 2011). Remarkably, many of the phenotypes of hst3∆ hst4∆ cells are 

strongly attenuated by mutating H3K56 into a non-acetylateable arginine residue (Celic, et 

al. 2006, Maas, et al. 2006). In contrast to hst3∆ or hst4∆ single mutants, essentially all the 

H3 molecules are K56-acetylated throughout the genome and during the entire cell cycle in 

hst3∆ hst4∆ cells (Celic, et al. 2006). These results strongly suggest that H3K56 
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hyperacetylation and/or the constitutive presence of H3K56ac throughout the cell cycle 

contribute to the severe phenotypes of hst3∆ hst4∆ mutants. However, the underlying basis 

of the severe phenotypes that result from excess H3K56 acetylation is poorly understood. 

3.3. Material and methods 

3.3.1. Strains, plasmids and growth conditions  

Plasmids pJP11 [pCEN LYS2 HHT1-HHF1] and [pCEN-URA3-HST3] (pRS416-based) 

were previously described (Celic, et al. 2006, Park et al. 2002). The series of pEMH-based 

plasmids encoding HHT2-HHF2 gene mutations [pCEN TRP1 HHT2-HHF2] were also 

previously described (Hyland, et al. 2005).  

All strains used in this work are described in Table 3.1. They were generated by standard 

methods and grown under standard conditions unless otherwise stated. Strain ICY1345 was 

used to determine the phenotypes caused by introducing histone H3/H4 gene mutations in 

cells carrying deletions of the HST3 and HST4 genes (Tables 3.2, 3.3 and 3.4). For this 

purpose, pEMH7-based plasmids that carried various H3 or H4 mutations were transformed 

into ICY1345 and Trp+ transformants were selected. The following step consisted in 

selecting against Lys+ cells containing the pJP11 plasmid encoding H3 and H4 on α-

aminoadipic acid plates (Ito-Harashima et al. 2004). To test whether specific H3 or H4 

gene mutations were able to suppress the phenotypes of hst3Δ hst4Δ cells, the 

aforementioned strains were plated on SC medium lacking tryptophan but containing        

5-fluoroorotic acid (5-FOA) at different temperatures or in the presence of genotoxic 

agents. The purpose of 5-FOA was to remove the [pCEN-URA3-HST3] plasmid. Selection 

against the HST3 plasmid to uncover hst3Δ hst4Δ phenotypes was always performed as the 

last step prior to phenotypic analysis because the propagation of hst3Δ hst4Δ mutant cells 

leads to the emergence of suppressors and genome rearrangements (Brachmann, et al. 

1995, Hachinohe, et al. 2011).  
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The same strategy was used to isolate spontaneous suppressors of hst3∆ hst4∆ mutants. 

Strain ICY703 (see Table 3.1) was used as a starting point to identify spontaneous 

suppressors of the Ts- phenotype. ICY703 contains chromosomal deletions of the HST3 

and HST4 genes that are covered by a [pCEN-URA3-HST3] plasmid. Cells that grew at 

37°C and were resistant to 5-FOA were streaked onto a second set of 5-FOA plates to 

isolate single colonies that were temperature- and 5-FOA-resistant. Those colonies were 

tested by PCR to ensure that the HST3 gene was absent from the thermoresistant strains. 

The PCR primers chosen for this test amplify a 670 bp 3'-end fragment of HST3. The 

forward primer was Hst3-C (5'- GTCACATTTCTTGAATCCCAAATAC) and the reverse 

primer was Hst3-D (5'- TTTGTAGACTGTTAAAGAGCCATCC). 

Table 3.1 Yeast strains 

 
HWY19 

 
BY4743 MATa ura3Δ0 leu2Δ0 his3Δ1 

FY  
ICY703 

MATa his3Δ200 leu2Δ1 lys2-202 trp1Δ63 ura3-52 
FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3]  

ICY918 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] sas2Δ::kanMX
ICY1081 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] rsc2Δ::kanMX
HWY A51 FY hst3Δ::HIS3 hst4Δ::KanMX hht1-hhf1::natMX  

hht2-hhf2::hygMX [pCEN TRP1 HHT2-hhf2 K16R] [pCEN URA3 HST3] 
HWY C38 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] yta7∆::LEU2
HWY C24 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] sir2∆::LEU2
HWY C28 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] sir2∆::LEU2 

sas2∆::KanMX 
HWY C30 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] sir2∆::LEU2 

rsc2∆::KanMX 
HWY C31 FY hst3Δ::HIS3 hst4Δ::KanMX hht1-hhf1::natMX hht2-hhf2::hygMX  

sir2∆::LEU2 [pCEN TRP1 HHT2-hhf2 K16R] [pCEN URA3 HST3] 
HWY E63 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] cdc45::CDC45-

HA::LEU2 
HWY E65 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN URA3 HST3] sas2Δ::kanMX 

cdc45::CDC45-HA::LEU2
HWY F7 FY hst3Δ::HIS3 hst4Δ::KanMX hht1-hhf1::natMX hht2-hhf2::hygMX  

[pCEN TRP1 HHT2-hhf2 K16R] [pCEN URA3 HST3] cdc45::CDC45-
HA::LEU2 

HWYE71 FY hst3Δ::HIS3 hst4Δ::TRP1 [pCEN-URA3-HST3] rtt109:: PGAL1-3HA-
RTT109:: KanMX6

Tr1 FY hst3Δ::HIS3 hst4Δ::TRP1  tr1 
Tr2 FY hst3Δ::HIS3 hst4Δ::TRP1  tr2 
Tr3 FY hst3Δ::HIS3 hst4Δ::TRP1  tr3
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Tr4 FY hst3Δ::HIS3 hst4Δ::TRP1  tr4
Tr5 FY hst3Δ::HIS3 hst4Δ::TRP1  tr5
Tr6 
Tr7 
Tr8 
Tr9 
Tr10 
Tr11 
Tr12 
Tr13 
Tr16 
Tr18 
Tr19 
Tr20 
Tr21 
DWY1 
DWY2 
DWY3 
DWY4 
DWY5 
DWY6 
ICY1345 
 
 

FY hst3Δ::HIS3 hst4Δ::TRP1  tr6 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr7 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr8 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr9 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr10 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr11 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr12 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr13 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr16 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr18 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr19 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr20 
FY hst3Δ::HIS3 hst4Δ::TRP1  tr21 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6  tr4 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6  tr6 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6  tr9 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6  tr11 
FY hst3Δ::HIS3 hst4Δ::TRP1 rtt109::RTT109-Flag::His3MX6  tr18 
FY hst3Δ::HIS3 hst4Δ::kanMX4 hht1-hhf1∆:: natMX4 hht2-hhf2∆:: hygMX4 
[pCEN URA3 HST3] [pCEN LYS2 HHT1-HHF1] 

___________________________________________________________________ 

3.3.2. Cell synchronization, transient treatment with genotoxic agents 

and cell viability assays  

Cells were grown overnight in YPD medium at 25°C and arrested in G1 at 30°C using 5 

μg/ml α-factor for 1.5 h, followed by the addition of a second dose of α-factor at 5 μg/ml 

for 1.25 h. Cells were then released into the cell cycle by washing them once with water 

and resuspending them in fresh YPD medium containing 50 μg/ml pronase and MMS. In 

some experiments, asynchronous populations of cells were directly treated with MMS. 

After transient MMS treatment, cells were washed with 2.5% sodium thiosulfate (a 

chemical that inactivates MMS) and released into fresh YPD medium. Aliquots of cells 

were collected as a function of time and flash frozen on dry ice before being processed for 

immunoblotting or pulsed field gel electrophoresis. Appropriate dilutions of cells were 
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plated on YPD to measure viability by colony formation assays. Cells were fixed with 70% 

ethanol prior to FACS flow cytometry analysis of DNA content. 

3.3.3. Measurement of DNA content by flow cytometry  

DNA content was determined by flow cytometry using Sytox Green (Invitrogen) as nucleic 

acid stain (Haase, et al. 2002). Briefly, about 106 cells were resuspended in 70% ethanol 

and incubated at 4°C from 1 h to overnight. Cells were pelleted, resuspended in 500 μl of 

50 mM Tris-HCl pH 7.5 containing 400 μg/ml of ribonuclease A (Sigma), sonicated briefly 

and incubated for 3 h at 42°C. Cells were then pelleted, resuspended in 200 μl of 50 mM 

Tris-HCl pH 7.5 buffer containing 400 μg/ml proteinase K (Sigma) and incubated for 30 

min at 50°C. Cells were then resuspended in 500 μl of 50 mM Tris-HCl pH 8.0 containing 

1 μM Sytox Green (Invitrogen). Flow cytometry was performed on a Becton-Dickinson 

LSR II instrument using the FACS Diva software. Histograms were generated using the 

Modfit LT 3.2 or the FCS Express Version 3 software. 

3.3.4. Immunoblots 

Whole-cell lysates were prepared for SDS–polyacrylamide gel electrophoresis using an 

alkaline method (Kushnirov 2000). SDS-PAGE and protein transfers were performed using 

standard molecular biology protocols. Our antibodies against H3K56ac (AV105) and H2A 

phosphorylated at S128 (AV137) and their specificity were previously described 

(Masumoto, et al. 2005). We used the 12CA5 monoclonal antibody to detect the HA 

epitope and an antibody against H4K16ac was purchased from Upstate (now EMD 

Millipore). Under our conditions, this antibody was specific for H4K16ac because it did not 

detect histones from cells bearing an H4K16R mutation. 
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3.3.5. Pulsed field gel electrophoresis  

107 cells were embedded in agarose plugs and treated for pulsed field gel electrophoresis as 

described previously (Maringele et al. 2006). Electrophoresis was performed using a Bio-

Rad CHEF DRII instrument (Bio-Rad Laboratories). 

3.3.6. Rad53 autophosphorylation assays 

Protein samples were resolved by SDS-PAGE and then transferred to PVDF membranes 

using standard Towbin buffer (25 mM Tris and 192 mM glycine) without methanol or SDS 

at 0.8 mA/cm2 of transfer area for 2 h on a Bio-Rad SD semi-dry transfer apparatus. 

Membranes were then processed as previously described to allow renaturation of Rad53 

prior to autophosphorylation assays (Pellicioli et al. 1999). 

3.3.7. Drug susceptibility assays   

Colony formation assays were performed as described previously (Tang et al. 2008). 

Colony formation was monitored after 3 to 5 days of incubation at the indicated 

temperature. Genotoxic agents were purchased from Sigma. 

3.4. Results 

3.4.1. Transient exposure to MMS causes persistent DNA damage and 

loss of viability of hst3Δ hst4Δ cells 

Based on genetic evidence, S. cerevisiae cells lacking the HST3 and HST4 genes are 

extremely sensitive to chronic (i.e. long term) exposure to genotoxic agents that damage 

DNA during replication (Celic, et al. 2006, Celic, et al. 2008, Thaminy, et al. 2007). 

However, it was not clear how rapidly hst3Δ hst4Δ cells lost viability following exposure 
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to genotoxic agents. Moreover, physical evidence of genotoxic-induced chromosome 

damage in hst3Δ hst4Δ cells has not been reported. We therefore tested if DNA damage 

caused by transient exposure to genotoxic agents during a single round of S phase led to a 

loss of viability of hst3Δ hst4Δ cells. Cells were synchronized in G1 and released in S 

phase in medium containing MMS. To assess their viability, cells were plated on rich 

medium (YPD lacking MMS) either before or after transient exposure to MMS for 1.5 h. 

Transient exposure to low concentrations of MMS during S phase led to an important loss 

of viability of hst3Δ hst4Δ cells (Figure 3.1A).  

Phosphorylation of yeast histone H2A on serine 128 (H2AP), which is functionally related 

to H2AX serine 139 phosphorylation in vertebrates (so-called γ-H2AX), is a well-

established marker of DNA double-strand breaks. In S. cerevisiae, H2AP is catalyzed by 

the DDR kinases Mec1 and Tel1 (Downs et al. 2000). After transient exposure to MMS, we 

found that both wild-type (WT) and hst3Δ hst4Δ cells showed a significant increase in 

H2AP (Figure 3.1B, 30 min time points). In WT cells, the H2AP signal decreased as a 

function of time after removal of MMS, suggesting that DNA damage was progressively 

repaired and Mec1/Tel1 were inactivated in these cells (Figure 3.1B). In contrast, H2AP 

levels remained high in hst3Δ hst4Δ cells for at least 4.5 h after removal of MMS (Figure 

3.1B). The persistence of high levels of H2AP in hst3Δ hst4Δ cells transiently exposed to 

MMS during S phase could result from either persistent activity of DDR kinases or failure 

to dephosphorylate H2AP following DNA repair. Mec1 and Rad53 are central DDR 

kinases and their activity is required to prevent irreversible damage when replication forks 

encounter MMS-induced DNA lesions (Segurado et al. 2008, Tercero et al. 2001). In 

response to DNA damage Rad53 is phosphorylated and activated by Mec1, and Rad53 also 

autophosphorylates on many amino acid residues (Pellicioli, et al. 1999, Sweeney et al. 

2005). As measured by autophosphorylation assays (Pellicioli, et al. 1999), the kinase 

activity of Rad53 was transiently detected for a period of 45-90 min after MMS removal in 

WT cells exposed to MMS during early S phase (Figure 3.1C). In contrast, Rad53 remained 

active for at least 3 h following MMS removal from hst3Δ hst4Δ cells (Figure 3.1C).  
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The persistence of two markers of DNA damage (H2AP and active Rad53) in hst3Δ hst4Δ 

cells transiently exposed to MMS suggested that the mutant cells sustain long-lasting DNA 

damage when replication forks encounter MMS-induced DNA lesions. The primary lesion 

caused by MMS is 3-methyladenine, which blocks the progression of replicative DNA 

polymerases (Budzowska et al. 2009). We monitored completion of chromosome 

replication in hst3Δ hst4Δ cells transiently exposed to MMS by flow cytometry to measure 

DNA content and pulsed field gel electrophoresis (PFGE) as an indicator of chromosome 

integrity. Incompletely replicated chromosomes cannot migrate through pulsed field gels 

and this results in decreased intensity of intact chromosome bands stained with ethidium 

bromide (Maringele, et al. 2006).  As a function of time after MMS removal, WT cells 

completed chromosome duplication as judged by the emergence of chromosome bands in 

pulsed field gels and the fact that most cells doubled their DNA contents as demonstrated 

by FACS (Figure 3.1D). In striking contrast to WT cells, none of the chromosomes of 

hst3Δ hst4Δ mutant cells entered pulsed field gels and DNA content did not significantly 

increase for at least 3 h following MMS removal from the culture (Figure 3.1D). These 

results indicate that MMS-induced DNA lesions in hst3Δ hst4Δ mutants lead to long delays 

in the completion of chromosome duplication and that this is true for all chromosomes. 

Caffeine is an inhibitor of Mec1 and Tel1, the two upstream kinases of the S. cerevisiae 

DDR pathway (Saiardi et al. 2005). Intriguingly, we found that simultaneous treatment of 

hst3Δ hst4Δ cells with both MMS and caffeine reproducibly increased viability compared 

with the addition of MMS alone (Figure 3.2A). Moreover, FACS analysis demonstrated 

that caffeine treatment allowed hst3Δ hst4Δ cells to complete DNA replication more 

efficiently in the presence of MMS (Figure 3.2B).  
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Figure 3.1 Transient exposure of hst3Δ hst4Δ cells to MMS causes persistent DNA 
damage and loss of viability. A) hst3∆ hst4∆ cells are sensitive to transient exposure to 
MMS. Cells were released from G1 in the presence of increasing concentrations of MMS 
for 1.5 h before being plated on YPD. Viability was defined as the ratio of colonies after 
MMS treatment to those formed by G1 cells before exposure to MMS. B) hst3∆ hst4∆ cells 
display markers of persistent DNA damage following transient exposure to MMS. Cells 
were released from G1 in the presence of 0.02% MMS for 1.5 h before being resuspended 
in fresh YPD lacking MMS. Whole-cell lysates were analyzed by immunoblotting to detect 
H2A S128 phosphorylation (H2AP). Ponceau S staining is shown as a loading control.     
C) The experiment was conducted as in panel B, except that autophosphorylation activity 
of Rad53 was detected with [γ-32P] ATP and autoradiography. D) hst3∆ hst4∆ cells cannot 
complete chromosome duplication after transient exposure to MMS. Experimental protocol 
was same as in panel B except that 0.03% MMS was used. Samples were taken at the 
indicated times to detect H2AP by immunoblotting, completion of chromosome duplication 
by PFGE and DNA content by FACS. 

 

 

Figure 3.2 Caffeine improves the viability of hst3∆ hst4∆ cells exposed to MMS.        
A) Cells were arrested in G1 and released into the cell cycle in the presence of the indicated 
chemicals for 1.5 h at 25°C. The MMS concentration was 0.02% for hst3∆ hst4∆ cells and 
0.04% for WT cells. The caffeine (CAF) concentration was 0.1%. Viability was assessed as 
in figure 1A. B) The effect of MMS and CAF on progression of DNA replication was 
monitored by FACS. 
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3.4.2. H3K56ac in front of replication forks causes genotoxic agent 

sensitivity 

Previous studies demonstrated that mutation of H3K56 into an arginine (H3K56R) reduces 

the genotoxic agent sensitivity of hst3Δ hst4Δ cells (Celic, et al. 2006). This suggests that 

the phenotypes of hst3Δ hst4Δ cells are caused by hyperacetylation of H3K56 and/or its 

presence at a stage of the cell cycle when H3K56ac is normally absent in WT cells. 

H3K56ac is transient in WT cells and largely restricted to new H3 molecules that are 

deposited onto nascent sister chromatids during replication (Masumoto, et al. 2005). In 

contrast, H3K56ac is present at high stoichiometry (about 98% of H3 molecules are K56-

acetylated) throughout the cell cycle in hst3Δ hst4Δ cells (Celic, et al. 2006). This creates 

an abnormal situation where the mutant cells progress through S phase with H3K56ac both 

in front and behind DNA replication forks. We sought to determine whether the anomalous 

presence of H3K56ac in front of replication forks might contribute to the acute sensitivity 

of hst3Δ hst4Δ mutants transiently exposed to genotoxic agents during S phase (Figure 

3.1A). For this purpose, we generated an hst3Δ hst4Δ strain in which the RTT109 gene was 

under the control of a galactose-inducible promoter (hst3Δ hst4Δ PGAL1-3HA-RTT109). 

When these cells are grown in galactose, the H3K56 acetyltransferase Rtt109 is strongly 

expressed and causes genome-wide H3K56ac because this strain cannot deacetylate 

H3K56. In contrast, glucose-mediated repression of RTT109 leads to an absence of 

H3K56ac, which suppresses the extreme genotoxic agent sensitivity of hst3Δ hst4Δ cells 

(Celic, et al. 2006). Hence, as expected, our strain was more sensitive to MMS when grown 

in galactose than in glucose (Figure 3.3A). In order to validate that our system works as 

expected, we first grew our hst3Δ hst4Δ PGAL1-3HA-RTT109 strain overnight in 

galactose, which leads to genome-wide H3K56ac. Cells were then arrested in G1 with      

α-factor either in the presence of glucose or galactose (Figure 3.3B). Rtt109 was clearly 

present when cells were arrested in G1 in galactose, but was undetectable in glucose 

(Figure 3.3B, G1 samples, 3HA-Rtt109 immunoblots). Cells were then released from G1 

into the cell cycle in medium containing either galactose (RTT109 ON) or glucose (RTT109 

OFF) in the absence of genotoxic agent. Consequently, after passage through S phase in 

glucose, H3K56ac decreased roughly 2-fold because new H3 molecules cannot be K56-
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acetylated when Rtt109 is absent (Figure 3.3B, glucose, compare the G1 and 180 min time 

points). In contrast, H3 molecules were K56-acetylated at similar levels in G1 cells and 

cells released through S phase in medium containing galactose (Figure 3.3B, galactose, 

compare the G1 and 180 min time points). This was expected because 3HA-Rtt109 is 

expressed in galactose, and because of the absence of Hst3 and Hst4 nearly all the H3 

molecules are constitutively K56-acetylated in our hst3Δ hst4Δ PGAL1-3HA-RTT109 

strain. These control experiments demonstrate that our system enables passage through S 

phase in the presence of old K56-acetylated H3 molecules and new H3 molecules that are 

either K56-acetylated or not (Figure 3.3E). We then proceeded to test whether these two 

conditions led to differential genotoxic agent sensitivity.   

To address this question, cells released from G1 in glucose or galactose were transiently 

exposed to either HU or MMS and viability was subsequently assessed (Figure 3.3C).  We 

observed the same loss of viability regardless of whether Rtt109 was expressed or not 

(Figure 3.3C and 3.3D). In our system, the vast majority of H3 molecules in front of 

replication forks are K56-acetylated when cells are released from G1 in either glucose or 

galactose (Figure 3.3E). In contrast, assuming that nearly all H3 molecules are K56-

acetylated in G1 cells, deposition of new H3 molecules that cannot be K56-acetylated when 

RTT109 is repressed in glucose would result in a stoichiometry of H3K56ac behind each 

replication fork of roughly 50%. This is the expected H3K56ac stoichiometry behind forks 

in WT cells (Celic, et al. 2006). We conclude that restoring the normal stoichiometry of 

H3K56ac behind replication forks does not rescue the severe MMS or HU sensitivity of the 

hst3Δ hst4Δ strain. Therefore, the genotoxic agent sensitivity of hst3Δ hst4Δ mutants 

(expressing RTT109 from its normal promoter) is not due to excessive H3K56ac 

stoichiometry behind replication forks. These results imply that the acute genotoxic agent 

sensitivity of hst3Δ hst4Δ cells is mainly caused by the presence of H3K56ac in old 

histones in front of DNA replication forks. 
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Figure 3.3 The presence of H3K56ac in front of replication forks contributes to the 
genotoxic agent sensitivity of hst3∆ hst4∆ cells. A) Control experiment showing that 
glucose-mediated repression of 3HA-RTT109 suppresses the MMS sensitivity of          
hst3∆ hst4∆ cells. Five-fold serial dilutions were plated on rich medium containing either 
glucose or galactose. The plates were incubated at 25°C. B) Control experiment showing 
that glucose-mediated repression of 3HA-RTT109 leads to a decrease in H3K56ac as cells 
go from G1 through S phase. Immunoblots showing the levels of 3HA-Rtt109 and 
H3K56ac in cells arrested in G1 or cells released into the cell cycle for 180 min in the 
presence of either galactose or glucose (without MMS or HU). C) Protocol for the 
experiment shown in panel D. D) The PGAL1-3HA-RTT109 hst3Δ hst4Δ strain was 
released from G1 in either galactose or glucose (to prevent H3K56ac in new histones) and 
transiently exposed to 200 mM HU or 0.01% MMS for 180 min. Viability was 
subsequently assessed as described in Figure 3.1A. E) Stoichiometry of H3K56ac in old 
and new H3 molecules when the PGAL1-3HA-RTT109 hst3Δ hst4Δ strain is released from 
G1 into S phase in either galactose or glucose. For clarity, old H3 molecules are only 
shown to segregate onto the "lagging strand chromatid", but it is known that they can be 
transferred onto either of the two nascent chromatids.   

3.4.3. Mutations that cripple H4 lysine 16 acetylation suppress hst3Δ 

hst4Δ phenotypes 

The H3K56R mutation that abolishes H3K56ac suppresses many of the phenotypes of 

hst3Δ hst4Δ cells (Celic, et al. 2006). We sought to determine whether other histone gene 

mutations suppress the temperature (Ts-) and/or genotoxic agent sensitivity of hst3Δ hst4Δ 

cells. For this purpose, we screened a collection of histone H3 or H4 mutants (Hyland, et 

al. 2005). This collection includes mutations of amino acid residues that carry either known 

or speculated modifications. Most H3 or H4 mutations, including mutations of basic 

residues located near K56 in H3 sequence, did not suppress hst3Δ hst4Δ phenotypes 

(Tables 3.3 and 3.4). As expected (Celic, et al. 2006), our screen revealed that histone 

H3K56 mutations suppressed the Ts-, HU and MMS sensitivity of hst3Δ hst4Δ mutants 

(Table 3.2). The phenotypes of hst3Δ hst4Δ mutants are caused, at least in part, by 

hyperacetylation of H3K56 (Celic, et al. 2006). H3K56A, H3K56R and H3K56Q mutations 

all suppressed the phenotypes of hst3Δ hst4Δ mutants (Table 3.2). Our results indicate that 

a glutamine is, at best, a poor mimic of H3K56ac. Otherwise, the H3K56Q mutation could 

not suppress the phenotypes of hst3Δ hst4Δ mutants because it would mimic a 

constitutively acetylated lysine 56.  
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Interestingly, histone H4 lysine 16 mutations suppressed the temperature, MMS and HU 

sensitivities of hst3Δ hst4Δ cells (Table 3.2 and Figure 3.4A). In S. cerevisiae, the SAS-I 

acetyltransferase complex, composed of Sas2, Sas4 and Sas5, is responsible for a major 

portion of histone H4 lysine 16 acetylation (H4K16ac) (Kimura et al. 2002, Suka et al. 

2002, Sutton et al. 2003). Therefore, we asked whether eliminating the contribution of Sas2 

to H4K16ac suppressed the phenotypes of hst3Δ hst4Δ cells (Figure 3.4A). We found that 

deletion of SAS2, which encodes the catalytic subunit of the SAS-I complex (Sutton, et al. 

2003), also resulted in partial suppression of the Ts- and genotoxic agent sensitivity 

phenotypes of hst3Δ hst4Δ mutants (Figure 3.4A). The degree of suppression imparted by 

the sas2Δ mutation was not as pronounced as the suppression conferred by an H4K16R 

mutation (Figure 3.4A). This result may reflect the fact that H4K16ac is completely 

abolished in H4K16R mutants, but a significant amount of H4K16ac persists in sas2Δ cells 

(Figure 3.4B).  Regardless, our results imply that both H3K56ac and H4K16ac are 

detrimental to hst3Δ hst4Δ mutants 

The SAS-I complex and H4K16ac are involved in preventing heterochromatin from 

invading euchromatic regions (Jambunathan et al. 2005, Kimura, et al. 2002, Raisner et al. 

2008, Suka, et al. 2002). Hence, we tested whether the suppression of hst3Δ hst4Δ 

phenotypes that results from decreased H4K16ac was observed in other mutants where the 

function of chromatin boundaries is impaired. Rsc2 is a subunit of one of the two forms of 

the RSC ATP-dependent chromatin remodeling complex (Cairns et al. 1999). RSC plays a 

number of cellular functions (Cairns, et al. 1999, Chambers et al. 2012, Floer et al. 2010), 

but it is also important to restrict the spread of silencing factors from heterochromatin into 

euchromatin (Jambunathan, et al. 2005). Likewise, Yta7 also contributes to chromatin 

boundary function (Jambunathan, et al. 2005, Raisner, et al. 2008, Tackett et al. 2005). We 

found that deletions of either RSC2 or YTA7 suppress the phenotypes of hst3Δ hst4Δ cells 

(Figure 3.4A). H4K16ac levels were comparable in WT cells and mutants lacking either 

Rsc2 or Yta7 (Figure 3.4B). This suggests that the rsc2Δ and yta7Δ mutations do not 

suppress the phenotypes of hst3Δ hst4Δ cells by causing a large decrease in H4K16ac. 

However, we cannot exclude the possibility that a loss of H4K16ac may occur at specific 

loci in rsc2Δ or yta7Δ cells.  
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Interestingly, none of our four suppressor mutations (H4K16R, sas2Δ, rsc2Δ or 

yta7Δ) showed reduced levels of spontaneous H2AP compared with the level observed in 

hst3Δ hst4Δ H4-WT cells (Figure 3.4B, left panel). Similarly, two of the suppressor 

mutations (rsc2Δ or yta7Δ)  exhibited spontaneous levels of Rad53 autophosphorylation (a 

surrogate marker of the overall kinase activity of Rad53) that were similar to that of    

hst3Δ hst4Δ cells (Figure 3.4B, right panel). These results suggest that the severe 

phenotypes of hst3Δ hst4Δ mutants can be suppressed without any obvious decrease in the 

extent of spontaneous DNA damage detectable as H2AP or by measuring the kinase 

activity of Rad53. One notable exception is the H4K16R mutation that gives rise to the 

lowest levels of Rad53 autophosphorylation in an in situ kinase assay (Figure 3.4B, right 

panel). H4K16R is also the mutation that suppresses hst3Δ hst4Δ phenotypes to the greatest 

extent (Figure 3.4A). 

One potential mechanism by which a decrease in H4K16ac could suppress the phenotypes 

of hst3Δ hst4Δ cells is the derepression of the silent mating type loci HMRa and HMLα. 

Sas2, Rsc2 and Yta7 are involved in the maintenance of chromatin boundaries at HMRa 

(Jambunathan, et al. 2005, Raisner, et al. 2008, Tackett, et al. 2005).  Heterochromatin 

spreading in sas2Δ, rsc2Δ or yta7Δ mutants likely requires that limiting pools of Sir 

complexes spread beyond their normal domains of action (Hoppe et al. 2002, Smith et al. 

1998). Because of this, these mutants may have leaky expression of mating type genes 

located at the silent loci. This would generate pseudo-diploid cells (haploid cells that 

express genes from both mating types), which are more resistant than haploid MATa or 

MATα cells to genotoxic agents such as MMS (Barbour et al. 2006, Livi et al. 1980). To 

test this hypothesis, we transformed hst3Δ hst4Δ MATa cells with plasmids that express 

either the MATa or MATα mating cassettes (Figure 3.4C). These plasmids suppress the 

MMS sensitivity of several DNA repair mutants of the opposite mating type (Barbour, et 

al. 2006). However, our results clearly show that ectopic expression of MATα mating type 

genes does not rescue the Ts- phenotype of hst3Δ hst4Δ MATa cells (Figure 3.4C). These 

results indicate that mutations that allow heterochromatin spreading beyond the silent 
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mating type loci (sas2Δ, rsc2Δ or yta7Δ) do not suppress the phenotypes of hst3Δ hst4Δ 

mutants by causing pseudo-diploidy.  

 

Figure 3.4 Genetic links between H4K16ac, modulators of chromatin boundaries and 
the phenotypes of hst3Δ hst4Δ mutants. A) Five-fold serial dilutions were spotted on 
YPD plates containing the indicated concentration of genotoxic agents and were incubated 
at 25°C or at 37°C. B) Whole-cell lysates of exponentially growing cells were probed by 
immunoblotting with H3K56ac or H2A pSer128 (H2AP) antibodies or used for in situ 
Rad53 autophosphorylation assays. The strain carrying the H4K16R mutation serves as 
specificity control for the H4K16ac antibody used in this experiment. C) Five-fold serial 
dilutions were spotted on YPD or 5-FOA plates and incubated at 25°C or 37°C.  
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Table 3.2 Suppression of hst3Δ hst4Δ phenotypes by histone gene mutations 

 
Histone mutant 

 
Sensitivity at 37°C 

 
MMS sensitivity 

 
HU sensitivity 

 
hst3Δ hst4Δ 

H3 -WT 
 

H3 K56A 

 
Ts- 

 
Tr 

 
S 
 

R 

 
S 
 

S 
H3 K56R Tr R R 
H3 K56Q Tr R R 

 
H4 K16A 
H4 K16R 

Tr 
Tr 

R 
R 

S 
S 

H4 K16Q Tr R S 
 

 
Ts-: Thermosensitive (fails to grow at 37°C)  
Tr:  Thermoresistant (grows at 37°C) 
S: Growth compromised on plates containing either 0.01% MMS or 100 mM HU 
R: Histone gene mutations that rescue, at least partially, the MMS or HU sensitivity of 
hst3Δ hst4Δ cells. 

We previously reported that epitope tagging of replication enzymes essential for cell 

viability did not result in obvious phenotypes in WT cells. In striking contrast, epitope 

tagging of same enzymes led to a loss of viability in hst3Δ hst4Δ cells (Celic, et al. 2008). 

We interpreted these results to mean that hst3Δ hst4Δ cells are exquisitely sensitive to 

subtle perturbations of DNA replication that have essentially no effect on the fitness of WT 

cells. Remarkably, we found that sas2∆ or H4K16R mutations allowed hst3Δ hst4Δ cells to 

survive HA epitope tagging of the essential replication protein Cdc45. However,       

Cdc45-HA causes lethality in hst3Δ hst4Δ cells (Figure 3.5A). The sas2∆ or H4K16R 

mutations also improved survival of hst3Δ hst4Δ cells transiently exposed to MMS during 

a single round of S phase (Figure 3.5B). Consistent with this, PFGE demonstrated that 

hst3Δ hst4Δ H4K16R cells were able to complete chromosome duplication more effectively 

than hst3Δ hst4Δ mutants after transient exposure to MMS during S phase (Figure 3.5C). 

Taken together, these results demonstrate that the absence of H4K16ac enhances the ability 

of hst3Δ hst4Δ cells to survive either subtle perturbations of the replisome (Cdc45-HA) or 
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DNA lesions caused by genotoxic agents that interfere with DNA replication fork 

progression (MMS).  

 

Figure 3.5 Decreasing H4K16ac suppresses the sensitivity of hst3Δ hst4Δ mutants to 
conditions that perturb DNA replication. A) Five-fold serial dilutions were spotted on 
SC-URA or 5-FOA plates and incubated at 25°C. B) Cells were arrested in G1 with          
α-factor and released into the cell cycle in the presence of MMS for 1.5 h. Cells were plated 
on YPD at G1 arrest or at the end of treatment with MMS. Viability was assessed as in 
Figure 3.1A. C) Exponentially growing cells were incubated in YPD containing 0.015% 
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MMS for 2 h at 30°C. After removal of MMS, cells were incubated in YPD for an 
additional 3 h. Samples were taken at indicated times and processed by PFGE. 

3.4.4. Links between the thermosensitivity and genotoxic agent 

sensitivity of hst3Δ hst4Δ cells 

 hst3Δ hst4Δ cells are extremely sensitive to genotoxic agents (Celic, et al. 2006, Celic, et 

al. 2008) and cannot grow at the restrictive temperature of 37°C (Brachmann, et al. 1995, 

Celic, et al. 2006, Celic, et al. 2008). However, the source of the temperature-sensitive  

(Ts-) phenotype of these mutants is poorly understood. In order to gain insight into the 

molecular mechanisms that underlie the temperature and genotoxic agent sensitivity of 

hst3Δ hst4Δ cells, we isolated spontaneous suppressors of their Ts- phenotype. For this 

purpose, hst3Δ hst4Δ cells that carry a URA3 CEN plasmid encoding wild-type HST3 were 

grown at 37°C on plates containing 5-fluoroorotic acid (5-FOA). This forces surviving cells 

to lose the URA3 plasmid encoding HST3, thus resulting in hst3Δ hst4Δ mutant cells that 

cannot form colonies at 37°C unless they acquire a genetic or epigenetic change that 

suppresses their Ts- phenotype. Single colonies that were resistant to 5-FOA and grew at 

37°C were isolated (Material and Methods). We found that most thermoresistant (Tr) 

isolates were, to varying degrees, more resistant to genotoxic agents than the starting    

hst3Δ hst4Δ mutant strain (Figure 3.6A). Among 18 spontaneous suppressors tested, we 

found that only one, Tr12, remained sensitive to 50 mM HU and 0.005% MMS. These 

results demonstrate that the Ts- phenotype and genotoxic agent sensitivity of hst3Δ hst4Δ 

cells are generally linked. As mentioned earlier, mutations that prevent H3K56ac partially 

suppress the phenotypes of hst3Δ hst4Δ cells (Celic, et al. 2006, Celic, et al. 2008). 

Nevertheless, a previous study had reported that spontaneous suppressors of hst3Δ hst4Δ 

mutants rarely showed a reduction in H3K56ac levels (2 out of 34 clones or 6%) (Miller, et 

al. 2006). In our study, we found 5 out of 18 suppressors of the Ts- phenotype (28%) where 

H3K56ac was below our detection threshold (Figure 3.6B: Tr4, Tr6, Tr9, Tr11 and Tr18). 

H3K56 acetylation requires both Rtt109 and Asf1 (Driscoll, et al. 2007, Han, et al. 2007a, 

Han, et al. 2007b, Tsubota, et al. 2007). In order to understand why H3K56ac was 

undetectable in this group of suppressors, we epitope-tagged either Rtt109 or Asf1 in these 
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Tr strains. Strains where H3K56ac was undetectable showed no decrease in the abundance 

of Asf1 (Figure 3.6C). In contrast, the Rtt109-Flag protein was undetectable in our five 

suppressors (Figure 3.6F). We confirmed that the RTT109 gene was appropriately    

epitope-tagged in these strains (Figure 3.6D and 3.6E). We also identified several Tr strains 

(72% of all Tr isolates) that were more resistant to genotoxic agents than hst3Δ hst4Δ 

mutants but did not show any obvious decrease in H3K56ac (e.g. Tr5 and Tr8 in Figure 

3.6A and 3.6B).  We naturally wondered whether this class of suppressors contained 

reduced levels of histone H4K16ac. However, our suppressors did not generally show any 

striking decrease in H4K16ac compared with Ts- hst3Δ hst4Δ cells (Figure 3.6B). In 

summary, we have identified two groups of spontaneous suppressors of hst3Δ hst4Δ mutant 

phenotypes. The first group includes strains with undetectable levels of Rtt109 and 

H3K56ac, but normal expression of Asf1. The second group includes strains with 

apparently normal levels of H3K56ac and H4K16ac. However, the two groups of strains 

exhibited partial suppression of the Ts- phenotype, HU and MMS sensitivity (Figure 6A). 
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Figure 3.6 Characterization of spontaneous suppressors of hst3∆ hst4∆ mutant 
phenotypes. A) Five-fold serial dilutions were spotted on YPD plates containing the 
indicated concentration of genotoxic agents and incubated at either 25°C or 37°C. Ts- is the 
starting hst3Δ hst4Δ strain from which thermoresistant suppressors were isolated.             
B) Immunoblots of whole-cell lysates of exponentially growing cells were probed with 
antibodies against H3K56ac and H4K16ac. Ponceau S staining is shown as a loading 
control. Lysates from the hst3Δ hst4Δ H4K16R strain and the rtt109Δ strain serve as 
specificity controls for the antibodies against H4K16ac and H3K56ac, respectively.          
C) Asf1 was epitope-tagged in five thermoresistant spontaneous suppressors derived from 
hst3Δ hst4Δ cells. Three independent clones derived from tagging Asf1 in each Tr strain 
were selected. Immunoblots of whole-cell lysates were probed to detect Asf1-Flag.           
D) Location of PCR primers used to ensure that DNA integration correctly resulted in an 
RTT109-FLAG gene. E) PCR results showing that the RTT109-FLAG gene is present in 
each of the strains analyzed for Rtt109-FLAG protein expression in panel F.                  
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F) The Rtt109-FLAG protein is not detectable in spontaneous suppressors that lack 
H3K56ac. Whole-cell lysates of exponentially growing cells were probed by 
immunoblotting with anti-Flag (M2) antibody. 

3.5. Discussion 

Genome-wide acetylation of H3K56 is a double-edged sword. H3K56ac is clearly 

important to promote resistance to genotoxic agents that damage DNA during replication 

(Alvaro, et al. 2007, Hyland, et al. 2005, Masumoto, et al. 2005, Munoz-Galvan, et al. 

2013, Ozdemir, et al. 2005, Recht, et al. 2006, Reid, et al. 2011). However, failure to 

deacetylate H3K56 leads to more dramatic phenotypes than those of cells that cannot 

acetylate H3K56 (Celic, et al. 2006, Maas, et al. 2006, Masumoto, et al. 2005, Ozdemir, et 

al. 2005). These phenotypes include temperature sensitivity, a high incidence of 

spontaneous DNA damage, chromosome loss and rearrangements, and severe genotoxic 

agent sensitivity (Brachmann, et al. 1995, Celic, et al. 2006, Celic, et al. 2008, Hachinohe, 

et al. 2011, Maas, et al. 2006). The molecular basis of these phenotypes is poorly 

understood.  

In this article, we showed that cells that cannot deacetylate H3K56ac are unable to 

complete DNA replication after transient exposure to MMS during S phase. This was 

accompanied by persistent activity of the DDR kinase Rad53 and histone H2A S128 

phosphorylation (H2AP) (Figure 3.1). Although hst3∆ hst4∆ mutants consistently exhibit 

elevated levels of spontaneous and genotoxic agent-induced H2AP, our results suggest that 

the DNA lesions that are cytotoxic to these mutants may not be DSBs. First, although 

homologous recombination plays a major role in DSB repair in S. cerevisiae, the Rad51, 

Rad54, Rad55 and Rad57 proteins are not essential for viability of hst3∆ hst4∆ cells (Celic, 

et al. 2008). These results are consistent with the fact that the anti-recombinase Srs2, an 

enzyme that disassembles Rad51 nucleoprotein filaments (Veaute et al. 2003), is essential 

for viability of hst3∆ hst4∆ cells (Celic, et al. 2008). Second, several mutations that 

modulate chromatin structure suppress the Ts- and genotoxic agent sensitivity of         

hst3∆ hst4∆ mutants without significantly reducing the abundance of H2AP (Figure 3.4B). 
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Third, if a lack of DSB repair were responsible for the phenotypes of hst3∆ hst4∆ cells, it 

would be surprising that their genotoxic agent sensitivity could be suppressed in the 

absence of Rsc2 (Figure 3.4A).  This is because the RSC complex is involved in the two 

major pathways of DSB repair: homologous recombination and non-homologous end 

joining (NHEJ) (Chai et al. 2005, Chambers, et al. 2012, Oum et al. 2011, Shim et al. 

2005). There are two distinct RSC complexes with both overlapping and unique functions 

in the DDR (Chambers, et al. 2012). However, the Rsc2 complex is significantly more 

abundant than the Rsc1 complex (Cairns, et al. 1999, Ghaemmaghami et al. 2003) and cells 

lacking only Rsc2 are generally more defective in DSB repair than cells lacking only Rsc1 

(Chambers, et al. 2012).  

Caffeine, a known inhibitor of Mec1 and Tel1 (Saiardi, et al. 2005), increased survival and 

completion of DNA replication in hst3∆ hst4∆ cells after transient exposure to MMS 

during DNA replication (Figure 3.2). This result was surprising because we previously 

showed that Mec1 is essential for viability of hst3∆ hst4∆ cells (Celic, et al. 2008). 

However, our caffeine treatment was transient and may have inhibited the kinase activity of 

Mec1 only partially. Interestingly, we previously reported that, unlike Mec1, Rad53 is not 

essential in hst3∆ hst4∆ mutants (Celic, et al. 2008). Thus, at least some of the functions of 

DDR kinases are dispensable in hst3∆ hst4∆ cells. One of the functions of Mec1 and Rad53 

is to inhibit the firing of late DNA replication origins (Santocanale et al. 1998). Based on 

this, it seems likely that persistent activity of DDR kinases in hst3∆ hst4∆ cells exposed to 

MMS (Figure 3.1C) would inhibit the firing of at least a subset of DNA replication origins. 

Our results with caffeine suggest that replication forks emanating from these origins are 

necessary to promote completion of genome duplication and survival of hst3∆ hst4∆ cells 

exposed to MMS. This would not be expected to occur if DSBs were impossible to repair 

in hst3∆ hst4∆ mutants. 

We conclude that the presence of H3K56ac in front of DNA replication forks gives rise to 

the DNA damage sensitivity of hst3∆ hst4∆ cells because restoring the normal 

stoichiometry (roughly 50%) of H3K56ac behind replication forks does not improve the 

survival of the hst3∆ hst4∆ mutant after transient exposure to HU or MMS (Figure 3.3). 
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The reason why the presence of H3K56ac in front of forks is detrimental to hst3∆ hst4∆ 

cells transiently exposed to genotoxic agents is not known. In WT cells that sustain DNA 

damage, Hst3 is phosphorylated and degraded in a Mec1-dependent manner (Thaminy, et 

al. 2007). Hst3 degradation likely helps in protecting H3K56ac behind replication forks 

where DNA is damaged (Masumoto, et al. 2005). The existence of this regulation implies 

that, in addition to the role of H3K56ac in promoting chromatin assembly, K56-acetylated 

H3 molecules incorporated into chromatin contribute to the DDR. In WT cells, H3K56ac 

may create a chromatin environment that restricts the recruitment of DDR proteins 

specifically behind replication forks. In hst3∆ hst4∆ mutants, inappropriate presence of 

these proteins in front of DNA replication forks might impede the repair process. An 

alternative, but not mutually exclusive, possibility is that the lack of H3K56ac in front of 

forks in WT cells prevents recruitment of interfering proteins to sites located ahead of 

replication forks that encounter DNA lesions. These interfering proteins might prevent 

replication forks coming from the opposite direction from rescuing forks blocked by DNA 

lesions.  

We found that a decrease in H4K16ac (sas2Δ mutation) and, to an even greater extent, a 

complete loss of H4K16ac (H4K16R mutation) suppress the Ts- phenotype, HU and MMS 

sensitivity of hst3∆ hst4∆ cells (Figure 3.4). Moreover, at least to some degree, an H4K16R 

mutation allows completion of chromosome duplication after transient exposure to MMS 

(Figure 3.5). Unlike H4K16R, single lysine-to-arginine mutations of the three other 

acetylateable lysine residues in the N-terminal tail of H4 (K5, K8 and K12) did not 

suppress the phenotypes of hst3∆ hst4∆ cells (Table 3.4). Interestingly, a previous study 

showed that K16-acetylated H4 molecules are very abundant in S. cerevisiae. 

Approximately 85% of H4 molecules are K16-acetylated in asynchronously proliferating 

WT cells (Smith et al. 2002). However, H4K16ac is absent from regions that are packaged 

into heterochromatin (Kimura, et al. 2002, Raisner, et al. 2008, Suka, et al. 2002). In fact, 

H4K16ac and the SAS-I enzyme (Sas2, Sas4 and Sas5) that acetylates H4K16 prevent the 

spreading of heterochromatin into euchromatic regions (Kimura, et al. 2002, Suka, et al. 

2002). Thus, the boundaries between euchromatin and heterochromatin coincide with 

regions where there is a transition between nucleosomes that contain H4K16ac and 
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nucleosomes that lack H4K16ac. We found that, like the H4K16R and sas2Δ mutations, 

rsc2Δ and yta7Δ mutations suppress the Ts-, HU and MMS sensitivity of hst3∆ hst4∆ cells 

(Figure 3.4A). Interestingly, Rsc2 and Yta7 have been implicated in preventing 

heterochromatin spreading from the silent mating type locus and Yta7 can be detected near 

chromatin boundaries (Jambunathan, et al. 2005, Raisner, et al. 2008, Tackett, et al. 2005). 

Rsc2 and Yta7 also have roles in other processes such as DSB repair (Rsc2) and gene 

transcription (Yta7) (Kurat et al. 2011, Lombardi et al. 2011). Nonetheless, it is tempting to 

speculate that the H4K16R, sas2Δ, rsc2Δ and yta7Δ mutations suppress the phenotypes of 

hst3∆ hst4∆ mutants through a common mechanism.  

One possibility for such a unifying mechanism is worth mentioning. In hst3∆ hst4∆ mutant 

cells, nucleosomes that contain both H3K56ac and H4K16ac are likely present throughout 

a major fraction of the genome because of the high stoichiometries of the two modifications 

(roughly 98% for H3K56ac and 85% for H4K16ac). DNA replication forks may not have 

evolved to progress through chromatin with a high density of nucleosomes that contain 

H3K56ac and H4K16ac. In WT cells, replication forks clearly do not progress through 

nucleosomes that contain H3K56ac because this modification is restricted to new H3 

molecules that are mainly deposited behind replication forks (Kaplan, et al. 2008, 

Masumoto, et al. 2005). Intriguingly, the 17-polypeptide subunit Rsc1 and Rsc2 complexes 

each contain 5 bromodomains (Yang 2004). Rsc2 itself contains two bromodomains 

(Chambers, et al. 2012). In fact, the RSC complex contains most of the bromodomain 

polypeptides encoded in the S. cerevisiae genome. Furthermore, the Yta7 protein contains a 

bromodomain-like module (Jambunathan, et al. 2005). Bromodomains are generally 

involved in binding acetylated lysine residues within specific structural contexts 

(Filippakopoulos et al. 2012) but, with few exceptions, the physiologically relevant targets 

of most yeast bromodomain proteins are not known. It is therefore conceivable that 

inappropriate binding of RSC and/or Yta7 to nucleosomes that contain both H3K56ac and 

H4K16ac may interfere with DNA replication fork progression. Inappropriate binding of 

bromodomain proteins may be particularly problematic when DNA synthesis proceeds 

slowly because of the presence of MMS-induced DNA lesions or in HU-treated cells where 

dNTPs are limiting. We identified a group of suppressors of hst3∆ hst4∆ mutants that do 
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not exhibit a striking decrease in either H3K56ac or H4K16ac (Figure 3.6B). At first 

glance, this result seems inconsistent with the aforementioned model but this may not be 

the case. It is possible that the abundance of any one of several yeast bromodomain proteins 

is reduced in those suppressors. Alternatively, we previously reported that null mutations of 

the genes encoding the large subunits of three replication factor C-related complexes 

(RAD24, ELG1 and CTF18) suppress hst3∆ hst4∆ mutant phenotypes without reducing 

H3K56ac (Celic, et al. 2008). Moreover, mutations of the genes encoding the three 

subunits of the PCNA-like 9-1-1 complex (MEC3, DDC1 and RAD17) also suppress   

hst3∆ hst4∆ mutant phenotypes (Celic, et al. 2008). Reduced expression of any one of 

those proteins could explain why many spontaneous suppressors retain high levels of 

H3K56ac and H4K16ac. Further studies are clearly needed to understand how histone 

modifications affect replication fork progression through nucleosomes in the absence or 

presence of lesions in DNA template strands. Nonetheless, the genetic and molecular data 

presented here provide interesting avenues for future investigation.  
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Table 3.3 Histone H3 gene mutations and phenotypes of hst3Δ hst4Δ mutant cells 

 
Histone mutant 

 
Sensitivity at 37°C 

 
MMS sensitivity 

 
HU sensitivity 

 
    

 hst3Δ hst4Δ       
H3-WT 

 
H3 R2A 
H3 R2K 

 
H3 T6A 
H3 T6E 

 
 

Ts- 
 

Ts- 
Ts- 

 
Ts- 
Ts- 

 
 

S 
 

S 
S 
 

S 
S 

 
 

S 
 

S 
S 
 

S 
S 

 
H3 K9A 
H3 K9R 

 
Ts- 
Ts- 

 
S 
S 

 
S 
S 

H3 K9Q Ts- S S 
 

H3 S10A 
H3 S10E 

 
H3 T11A 
H3 T11E 

 
H3 K14A 

Ts- 
Ts- 

 
Ts- 
Ts- 

 
Ts- 

S 
S 
 

S 
S 
 

S 

S 
S 
 

S 
S 
 

S 
H3 K14R Ts- S S 
H3 K14Q Ts- S S 

 
H3 R17A 
H3 R17K 

 
H3 K18A 
H3 K18R 
H3 K18Q 

 
H3 K23A 
H3 K23R 
H3 K23Q 

 
H3 R26A 
H3 K26K 

 
H3 K27A 
H3 K27R 
H3 K27Q 

Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

S 
S 
 

S 
S 
S 
 

S 
S 
S 
 

S 
S 
 

S 
S 
S 

S 
S 
 

S 
S 
S 
 

S 
S 
S 
 

S 
S 
 

S 
S 
S 
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Table 3.3 (continued) 

 
Histone mutant 

 
Sensitivity at 37°C 

 
MMS sensitivity 

 
HU sensitivity 

 
    

 hst3Δ hst4Δ       
H3-WT 

 
H3 S28A 
H3 S28E 

 
 

Ts- 
 

Ts- 
Ts- 

 
 

S 
 

S 
S 

 
 

S 
 

S 
S 
 

H3 R52A 
H3 R52R 
H3 R52Q 

 
H3 R53A 
H3 R53K 
H3 R53Q 

 
H3 K56A 
H3 K56Q 
H3K56R 

 
H3 K59A 
H3 K59Q 
H3 K59R 

 
H3 K91A 
H3 K91R 
H3 K91Q 

 
H3 R92A 

Ts- 
sTr 
Ts- 

 
sTr 
Ts- 
Ts- 

 
Tr 
Tr 
Tr 
 

Ts- 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
Ts- 

S 
sR 
S 
 

S 
S 
S 
 

R 
R 
R 
 

S 
S 
S 
 

S 
S 
S 
 

S 

S 
S 
S 
 

S 
S 
S 
 

S 
R 
R 
 

S 
S 
S 
 

S 
S 
S 
 

S 
H3 R92K 

 
Ts- S S 

H3 K115A 
H3 K115R 
H3 K115Q 

Ts- 
Ts- 
Ts- 

S 
S 
S 

S 
S 
S 
 

H3 T118A 
H3 T118E 

 
H3 K122A 
H3 K122R 
H3 K122Q 

Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

S 
S 
 

S 
S 
S 

S 
S 
 

S 
S 
S 
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Table 3.4 Histone H4 gene mutations and phenotypes of hst3Δ hst4Δ mutant cells 

 
Histone mutant 

 
Sensitivity at 37°C 

 
MMS sensitivity 

 
HU sensitivity 

 
 

hst3Δ hst4Δ 
H4-WT 

 
 

Ts- 
 

 
 

S 
 

 
 

S 

H4 S1A 
H4 S1E 

 
H4 R3A 
H4 R3K 

 
H4 K5A 
H4 K5R 
H4 K5Q 

 
H4 K8A 
H4 K8R 
H4 K8Q 

 
H4 K12A 
H4 K12R 
H4 K12Q 

 
 

H4 K31A 
H4 K31R 
H4 K31Q 

 
H4 S47A 

Ts- 
Ts- 

 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
Ts- 
Ts- 
Ts- 

 
 

Ts- 
Ts- 
Ts- 

 
Ts- 

S 
S 
 

S 
S 
 

S 
S 
S 
 

S 
S 
S 
 

S 
S 
S 
 

 
S 
S 
S 
 

S 

S 
S 
 

S 
S 
 

S 
S 
S 
 

S 
S 
S 
 

S 
S 
S 
 
 

S 
S 
S 
 

S 
H4 S47E Ts- S S 

    
 
Ts- : Thermo-sensitive (fails to grow at 37°C)  
Tr:  Thermo-resistant (grows at 37°C) 
S: Growth compromised on plates containing either 0.01% MMS or 100mM HU  
R: Histone gene mutations that rescue, at least partially, the MMS or HU sensitivity of 
hst3Δ hst4Δ cells. 
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In S. cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) peaks concomitantly with 

DNA synthesis and plays an essential role in resistance to DNA damage that occurs during 

S phase (Masumoto, et al. 2005). This modification is later removed from the genome 

during G2 or M phase (Masumoto, et al. 2005) by the two sirtuins Hst3 and Hst4 (Maas, et 

al. 2006, Thaminy, et al. 2007), although the former makes the major contribution to 

H3K56 deacetylation (Celic, et al. 2006). Given the importance of H3K56ac for the DNA 

damage response during S phase, H3K56 deacetylases should be degraded before the onset 

of DNA synthesis in the daughter cell such that H3K56ac can accumulate in the genome 

during the next round of replication. Indeed, it has been shown that both Hst3 and Hst4 are 

degraded prior to S phase (Maas, et al. 2006) by the ubiquitin-proteasome pathway (Tang, 

et al. 2005, Thaminy, et al. 2007). A previous study demonstrated that the degradation of 

Hst4 is triggered by the E3 ligase SCFCdc4(Tang, et al. 2005). However, the molecular 

machinery that controls destruction of Hst3 during the cell cycle remained unidentified. On 

the other hand, in spite of the critical function of H3K56ac in response to DNA damage, 

previous studies have established that hyperacetylation of H3K56 in cells lacking both Hst3 

and Hst4 (hst3Δ hst4Δ mutants) gives rise to spontaneous DNA damage and genomic 

instability (Brachmann, et al. 1995, Celic, et al. 2008). Nonetheless, it was not clear how 

lack of H3K56 deacetylation results in such catastrophic consequences. Therefore, this 

thesis was mainly focused on studying the regulation of the H3K56 deacetylase Hst3 

during the cell cycle and the mechanisms underlying the severe phenotypes of H3K56 

deacetylase mutants in S. cerevisiae. 

In chapter 2, we initiated a study on the regulation of the main H3K56 deacetylase, Hst3, 

during the cell cycle. First, we demonstrated that Hst3 degradation can be completed prior 

to entry into anaphase (Figure 2.1). Moreover, we found that Hst3 is phosphorylated at two 

Cdk1 sites, threonines 380 and 384, in vivo (Figure 2.2) and we established that these sites 

constitute a phosphodegron that triggers subsequent ubiquitylation and degradation of Hst3 

(Figures 2.3 and 2.6). Surprisingly, these phosphorylation events were uncovered by a 

phosphoproteomics study in the absence of the proteasome inhibitor MG132, suggesting 

that phosphorylation of Hst3 at T380 and T384 does not target it immediately to the 

proteasome. Moreover, we showed that Hst3 was phosphorylated by the main mitotic 
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kinase Clb2-Cdk1 in vitro (Figure 2.6). As noted in the introduction, HST3 and CLB2 

belong to a cluster of coregulated genes that are expressed simultaneously between late S 

phase and mitosis (Koranda, et al. 2000, Zhu, et al. 2000). This suggests that Hst3 may be 

phosphorylated by Clb2-Cdk1 as soon as it is synthesized. Hence, although paradoxical, the 

Hst3 destruction signal can be generated when this sirtuin is most needed for genome-wide 

removal of H3K56ac. A critical question that remains to be addressed is how 

phosphorylated Hst3 is protected from proteasomal degradation until it has completed 

H3K56 deacetylation. We speculated that the structure of the Hst3 phosphodegron may 

partially hinder its recognition by SCFCdc4 during mitosis. However, another attractive 

possibility is that the C-terminal phosphorylation sites of Hst3 are somehow masked from 

SCF until this sirtuin has completed H3K56ac removal. A potential mechanism for such 

protection could be association of Hst3 with other proteins or dimerization through its      

C-terminal domain. Thus, determining the structure of Hst3 and its protein interactions 

should greatly improve our understanding of its regulation by post-translational 

modifications in vivo. 

Previous work from our laboratory demonstrated that repression of Hst3 by nicotinamide 

(NAM) is cytotoxic to several pathogenic fungi including C. albicans and C. tropicalis in 

which Hst3 is the only H3K56 deacetylase. C. albicans cells lacking Rtt109 are resistant to 

NAM suggesting that Hst3 repression is highly detrimental because it results in H3K56 

hyperacetylation (Wurtele, et al. 2010). Given the clinical relevance of H3K56ac removal, 

it would be important to understand how Hst3 is regulated during the cell cycle in 

pathogenic fungi. Sequence alignments of Hst3 orthologs from several fungal species 

revealed that the Cdk1 sites of S. cerevisiae Hst3 and their spacing are conserved in          

C. albicans and C. tropicalis (Figure 2.2B). Therefore, our findings on the mechanism of 

Hst3 degradation in S. cerevisiae may provide insights into the post-translational control of 

H3K56 deacetylases in these fungal pathogens. The first step toward understanding the 

regulation of Hst3 in the aforementioned pathogenic fungi would be to verify whether the 

conserved Cdk1 sites of Hst3 get phosphorylated in these species.   
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In our study we originally hypothesized that, in the absence of Hst4, a non-degradable form 

of Hst3 would prematurely remove H3K56ac from the genome and render cells sensitive to 

genotoxic stress during S phase, because it would mimic the phenotype of rtt109Δ cells. 

However, our Cdk1 site mutants of Hst3 were still degraded prior to S phase (Figure 2.3), 

which might explain why these Hst3 mutants are at best mildly sensitive to genotoxic 

agents such as MMS (Figure 4.1). Nonetheless, complete stabilization of Hst3 during the 

cell cycle may not be sufficient to confer sensitivity to genotoxic agents. Because Hst3 is 

degraded by a Mec1 and Rad53-dependent pathway in response to DNA damage (Maas, et 

al. 2006, Thaminy, et al. 2007), Hst3 mutants that are not degradable during a normal cell 

cycle might still be phosphorylated by DNA damage response kinases and subsequently 

degraded. Hence, an important follow-up to our results would be to establish that the 

degradation of Hst3 is controlled by non-redundant pathways during the cell cycle and in 

response to DNA damage. Future studies should examine whether Hst3 is a direct target of 

Mec1 and/or Rad53 and identify sequence motifs that are required for its degradation in 

response to DNA damage. Moreover, it would be important to investigate whether E3 

ligases other than SCFCdc4 are involved in the degradation of Hst3 in the face of genotoxic 

stress. 

 

Figure 4.1 Spot assay on strains expressing Cdk1 site mutants of Hst3. 5-fold serial 
dilutions of each strain were spotted on Sc-Ura plate, or Sc-Leu medium containing          
5-FOA and 0.0.1% MMS. Plates were incubated at 25°C. 
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Our results indicated that Hst3 carrying mutations of its two Cdk1 sites (T380 and T384) is 

not completely stabilized throughout the cell cycle (Figure 2.3). This observation might 

suggest that Hst3 contains unidentified degrons that direct its destruction by SCFCdc4 in the 

absence of T380 and T384. However, it is also possible that SCF is not the only E3 enzyme 

that controls degradation of Hst3 during the cell cycle. In spite of the fact that Hst3 can be 

degraded prior to anaphase in the absence of APC activity, two lines of evidence support an 

important role for this E3 ligase in timely degradation of Hst3. Based on a previous 

publication, Hst3 has a short half-life of 8.5 min during an unperturbed cell cycle 

(Thaminy, et al. 2007). However, in the absence of APC activity (nocodazole-treated cells 

or cdc23-1 mutant cells at restrictive temperature), Hst3 levels persisted for much longer 

before it was eventually degraded by SCFCdc4 (Figure 2.1). Moreover, our unpublished 

results demonstrated that overexpressed Hst3 has a shorter half-life at mitotic exit and 

during G1 when APC is active than before entry into anaphase when APC is inactive 

(Figure 4.2). Taken together, these results suggest that APC may also contribute, either 

directly or indirectly, to degradation of Hst3 at the end of the cell cycle. Hst3 contains a 

consensus D-box motif, which is often found in APC substrates (Simpson-Lavy et al. 

2010). Mutation of this putative D-box only slightly increased the stability of Hst3 in vivo 

(unpublished data). However, rather than direct ubiquitylation of Hst3, APC might have an 

indirect role in regulation of Hst3 levels during the cell cycle. For instance, it is possible 

that entry into anaphase, which requires the ubiquitin ligase activity of APC, somehow 

signals for rapid degradation of Hst3 by SCFCdc4. Future studies should determine the 

timing of degradation of Hst3 during an undisturbed cell cycle (i.e. in the absence of 

nocodazole) and investigate whether Hst3 is a direct target of the APC complex. 
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Figure 4.2 Hst3 is most unstable at mitotic exit and during G1. The experimental design 
is described on the figure. All mutant strains were grown to early log-phase in raffinose 
overnight (asyn-Raff). Cells that arrested the cell cycle at different stages were then grown 
in the presence of 2% galactose (Gal) to overexpress plasmid-borne Hst3 from a   
galactose-inducible promoter (t0-Gal). Overexpression of Hst3 was repressed by addition 
of 2% glucose (Glc) and protein translation was blocked by addition of cycloheximide 
(CHX), and samples were collected as a function of time. For each strain, whole cell 
extracts prepared from equal number of cells were resolved through SDS-PAGE and 
probed by immunoblotting with anti-HA antibody to assess the stability of Hst3. Cell cycle 
arrest was verified by FACS analysis. 
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A few studies have reported a complex network of genetic interactions between APC, SCF 

and components of the de novo chromatin assembly pathway. When grown at the restrictive 

temperature, the thermosensitive APC mutant apc5CA and mutants of the SCF 

ubiquitination pathway cdc34-2 and cdc53-1 show chromatin assembly defects in vitro 

(Arnason et al. 2005, Harkness et al. 2002). Moreover, mutations that cripple the chromatin 

assembly factor CAF-1 show genetic interactions with mutations in the APC complex: 

deletion of genes encoding CAF-1 subunits exacerbates the thermosensitivity (Ts) of the 

APC mutants apc5CA, apc10Δ and apc26Δ. However, the connection between these E3 

ligases and the chromatin assembly pathway remains utterly unclear. We propose that the 

role of SCF and APC in regulation of H3K56 deacetylases during the cell cycle might 

provide a functional link between these ubiquitin ligases and the chromatin assembly 

pathway. As mentioned in the introduction, H3K56ac promotes replication-coupled 

nucleosome assembly (Li, et al. 2008). On the other hand, SCFCdc4 targets both H3K56 

deacetylases Hst3 and Hst4 to the proteasome. As mentioned above, APC activity probably 

also contributes, either directly or indirectly, to the degradation of Hst3 in vivo. Hence, 

mutations that impair SCF or APC activity should result in delayed or incomplete 

degradation of Hst3 and Hst4 during the cell cycle. Aberrant presence of H3K56 

deacetylases during S phase might in turn cripple chromatin assembly by prematurely 

removing H3K56ac from new histone H3 molecules. Consistent with this model, 

overexpression of Rtt109, Asf1, CAF-1 or histones H3-H4 suppress apc5CA phenotypes 

(Harkness et al. 2005, Turner et al. 2010). H3K56ac is mediated by Rtt109 in collaboration 

with Asf1, and overexpression of Asf1 alone has been shown to increase H3K56ac levels in 

wild-type and apc5CA cells (Turner, et al. 2010). In addition to its direct contribution to 

H3K56ac, Asf1 probably also presents H3-H4 dimers to CAF-1 during de novo chromatin 

assembly (Zhang et al. 2013). Furthermore, increased levels of CAF-1 and histones H3-H4 

might enhance nucleosome assembly behind replication forks and thus partially 

compensate for the lower affinity of CAF-1 and Rtt106 for histone H3 when H3K56ac is 

prematurely removed by Hst3/Hst4 during S phase. Indeed, previous studies showed that 

CAF-1 and Rtt106 bind more tightly to H3 molecules that are K56-acetylated than to    

non-modified H3 (Li, et al. 2008, Su, et al. 2012). Since SCFCdc4 has a central role in the 

degradation of H3K56 deacetylases, our proposed model predicts that mutations in the SCF 
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ubiquitination pathway should exacerbate the phenotypes of mutations in components of 

the de novo chromatin assembly machinery. It would be interesting to test this possibility in 

future studies. Based on our model, it would be also interesting to determine whether cell 

extracts containing abnormally high levels of Hst3 and/or Hst4 (e.g. extracts derived from 

cells expressing Cdk1 site mutants of HST3) are defective in chromatin assembly in vitro.  

Before our study it was not known how degradation of H3K56 deacetylases always 

precedes S phase when H3K56ac needs to accumulate behind DNA replication forks. 

Previous findings and our data on regulation of both Hst3 and Hst4 (Tang, et al. 2005) by 

SCFCdc4 explains how timely destruction of H3K56 deacetylases is achieved during the cell 

cycle. As mentioned before, SCFCdc4 controls entry into S phase by triggering degradation 

of the Cdk1 inhibitor Sic1 (Verma, et al. 1997). Hence, expression of Hst3 and Hst4 after S 

phase (Maas, et al. 2006) and degradation of Hst3, Hst4 and Sic1 by SCFCdc4 allows entry 

into S phase in the absence of H3K56 deacetylases such that H3K56ac can accumulate in 

the genome and perform its important functions during S phase (Figure 4.3). 

 

Figure 4.3 A model for the expression and degradation of H3K56 deacetylases during 
the cell cycle in S. cerevisiae. 
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In S. cerevisiae, cells that lack the sirtuins Hst3 and Hst4 (hst3Δ hst4Δ cells) show an 

elevated incidence of spontaneous DNA damage, hypersensitivity to genotoxic agents that 

damage DNA during replication and genomic instability (Brachmann, et al. 1995, Celic, et 

al. 2008, Hachinohe, et al. 2011, Thaminy, et al. 2007). Although the severe phenotypes of 

hst3Δ hst4Δ cells are known to stem from hyperacetylation of H3K56 (Celic, et al. 2006, 

Maas, et al. 2006), it is not clear why overabundance of this modification is so deleterious 

to genomic integrity. Therefore, in chapter 3 of this thesis we set out to decipher the 

molecular mechanisms that are responsible for the pronounced phenotypes of hst3Δ hst4Δ 

cells. In the first section of this study, we investigated the effect of transient treatment with 

genotoxic agents on the dynamics of DNA replication and the DNA damage response in 

H3K56 deacetylase mutants. In the second part of this chapter, we employed a genetic 

approach and discovered several novel classes of suppressors that partially alleviate the 

severe phenotypes of hst3Δ hst4Δ cells. Interestingly, we found that the majority of the 

identified suppressors do not have decreased levels of H3K56ac compared with hst3Δ 

hst4Δ cells. Thus, further characterization of these suppressors should yield valuable 

insights into how hyperacetylation of H3K56 interferes with normal DNA metabolism. 

In chapter 3, we demonstrated for the first time that hst3Δ hst4Δ cells lose viability after 

treatment with MMS during a single round of S phase (Figure 3.1A). Importantly, we 

found that unlike wild-type cells, H3K56 deacetylase mutants failed to complete DNA 

replication long after removal of the exogenous source of DNA damage (Figure 3.1D). 

Moreover, our results indicated that the severe loss of viability of hst3Δ hst4Δ cells after 

transient genotoxic stress does not result from defects in activation of the DNA damage 

checkpoint. However, we found that hst3Δ hst4Δ cells showed persistent activation of the 

DNA damage checkpoint after transient exposure to MMS suggesting that these cells 

struggle to repair MMS-induced DNA adducts and, as a result, exhibit persistent 

checkpoint activation (Figure 3.1, B and C). Intriguingly, we observed that 

pharmacological inhibition of DNA damage checkpoint kinases Mec1 and Tel1 by caffeine 

improved the viability of MMS-treated H3K56 deacetylase mutants (Figure 3.2). In hst3Δ 

hst4Δ cells, almost 100% of H3 molecules are K56-acetylated (Celic, et al. 2006). Thus, 

during DNA synthesis nearly all the parental histone H3 molecules in front of replication 
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forks, as well as the parental and new histone H3 molecules deposited onto DNA behind 

replication forks, bear H3K56ac. In this study, we established that restoring the wild-type 

stoichiometry of H3K56ac (almost 50%) behind the replication fork does not improve the 

viability of hst3Δ hst4Δ cells after transient exposure to MMS (Figure 3.3). This result 

suggests that the severe genotoxic agent sensitivity of hst3Δ hst4Δ cells is caused by 

hyperacetylation of H3K56 in front of replication forks. Taken together, our findings 

demonstrate that hyperacetylation of H3K56 impedes completion of DNA replication after 

transient exposure to MMS. 

In S. cerevisiae, histone H4 lysine 16 acetylation (H4K16ac) is a highly abundant 

modification that is present in almost 85% of H4 molecules (Smith et al. 2003). H4K16ac 

is mostly mediated by the histone acetyltransferase Sas2 and is removed from the genome 

by Sir2 (Kimura, et al. 2002, Suka, et al. 2002). Our data from a genetic screen 

demonstrated that point mutations of histone H4 lysine 16 strongly suppress the sensitivity 

phenotypes of hst3Δ hst4Δ mutants (Table 3.2). We found that mutations that abolish 

H4K16ac, namely the H4K16R mutation or SAS2 deletion, alleviated the thermosensitivity 

and genotoxic agent sensitivity of hst3Δ hst4Δ cells (Figure 3.4A), without decreasing 

H3K56ac or H2AP levels (Figure 3.4B). Moreover, we observed stronger suppression of 

hst3Δ hst4Δ phenotypes by the H4K16R mutation than the SAS2 deletion (Figure 3.4A). 

This probably reflects the fact that sas2Δ cells do not completely lack H4K16ac (Figure 

3.4B). Interestingly, in spite of high levels of DNA damage as monitored by H2AP,    

hst3Δ hst4Δ H4K16R cells showed attenuated activation of the DNA damage checkpoint 

(Figure3.4B) and completed DNA replication after transient MMS exposure (Figure 3.5C). 

Collectively, these findings suggest that the genome-wide presence of H4K16ac is 

deleterious to cells that cannot deacetylate H3K56.  

Our results suggest that the severe loss of viability of hst3Δ hst4Δ cells following 

genotoxic stress is mainly caused by failure to complete DNA synthesis rather than defects 

in repair of MMS-induced DNA lesions. As mentioned earlier, small perturbations to the 

replication machinery are toxic to hst3Δ hst4Δ cells, indicating that the H3K56 deacetylase 

mutants struggle with DNA synthesis even in the absence of exogenous DNA damage 



    

109 

(Celic, et al. 2008). In this study, we demonstrated that the H4K16R mutation or SAS2 

deletion strongly suppress the temperature and genotoxic agent sensitivity of hst3Δ hst4Δ 

cells without decreasing H3K56ac or H2AP levels. Moreover, mutations that reduce or 

abolish H4K16ac allow epitope tagging of replication proteins such as Cdc45 in the    

hst3Δ hst4Δ background, suggesting that they facilitate DNA replication in H3K56 

deacetylase mutants. Consistent with this, pulsed field gel electrophoresis demonstrated 

that hst3Δ hst4Δ H4K16R mutants completed DNA synthesis after transient MMS 

treatment (Figure 3.5C). Hence, even in the presence of H3K56 hyperacetylation and high 

levels of H2AP, which is a surrogate marker of DNA DSBs, completion of DNA 

replication was associated with an improved viability of hst3Δ hst4Δ cells. In support of 

this idea, a previous study reported that overexpression of the large subunit of the RFC 

complex, Rfc1, partially suppresses the genotoxic agent sensitivity of hst3Δ hst4Δ cells 

(Celic, et al. 2008). Given that the RFC complex loads the DNA polymerase processivity 

factor PCNA onto DNA (Howell et al. 1994), overexpression of Rfc1 might also facilitate 

DNA replication in hst3Δ hst4Δ cells. To test this possibility, it would be important to 

verify whether overexpression of Rfc1 in hst3Δ hst4Δ cells allows completion of DNA 

replication after transient MMS exposure. Furthermore, it would be interesting to 

investigate whether overexpression of the PCNA subunits or replicative polymerases can 

also suppress the temperature and genotoxic agent sensitivity of cells lacking Hst3 and 

Hst4.  

The contribution of the S phase checkpoint to resistance to genotoxic stress in hst3Δ hst4Δ 

cells remains enigmatic. Cells lacking Hst3 and Hst4 show synthetic lethality with deletion 

of several components of the S phase checkpoint including MEC1, RAD9, DUN1 and 

subunits of the replication-pausing checkpoint complex TOF1, MRC1 and CSM3 

(Brachmann, et al. 1995, Celic, et al. 2008, Thaminy, et al. 2007). On the other hand, 

deletion of RAD24 or ELG1, which are the large subunits of alternative RFC-like 

complexes involved in the DNA damage response, strongly suppresses the 

thermosensitivity of hst3Δ hst4Δ cells (Celic, et al. 2008). Moreover, deletion of DDC1, 

RAD17 or MEC3 encoding the three subunits of the 9-1-1 clamp also suppresses the Ts 

phenotype of hst3Δ hst4Δ mutants. The 9-1-1 complex is a key mediator of the DNA 
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damage checkpoint that is loaded at sites of DNA damage by the Rad24-RFC clamp loader 

(Nyberg, et al. 2002). Hence, it is puzzling that hst3Δ hst4Δ cells, which suffer from 

endogenous DNA damage, benefit from a loss of these RFC-like complexes or the 9-1-1 

clamp. Nonetheless, since the Rfc2-5 subunits are shared between the replicative clamp 

loader and RFC-like complexes, deletion of the large subunits of alternative clamp loaders 

might facilitate the action of the RFC complex that is essential for DNA replication (Celic, 

et al. 2008). Moreover, our results indicated that inhibition of Mec1 and Tel1 by caffeine 

partially improved the viability of hst3Δ hst4Δ cells after transient treatment with MMS 

(Figure 3.2). It is noteworthy that the DNA damage checkpoint inhibits the firing of late 

origins of replication (Nyberg, et al. 2002). Hence, inhibition of checkpoint kinases might 

improve cell viability by increasing the number of active origins and promoting completion 

of DNA replication in hst3Δ hst4Δ cells. In support of this idea, flow cytometry analysis 

demonstrated that the majority of hst3Δ hst4Δ cells treated with caffeine completed S phase 

after transient treatment with MMS (Figure 3.2B). In addition, we observed that completion 

of DNA replication in hst3Δ hst4Δ H4K16R cells correlated with diminished checkpoint 

signaling, as demonstrated by Rad53 autophosphorylation, in the presence of high levels of 

DNA damage measured by H2AP levels (Figure 3.4B). Altogether, these findings suggest 

that although the S phase checkpoint promotes cell survival in the face of genotoxic stress, 

its partial attenuation favors completion of DNA replication, which is highly beneficial for 

survival of hst3Δ hst4Δ cells treated with DNA damaging agents.  

H4K16ac has been implicated in creating boundaries between heterochromatin and 

euchromatin. It has been shown that the opposing action of Sas2 and Sir2 establishes a 

gradient of H4K16ac at the transition zone between subtelomeric heterochromatin and 

euchromatin. The heterochromatic region is devoid of H4K16ac, whereas the euchromatic 

side of the boundary contains high levels of this modification. Moreover, mutations that 

abolish H4K16ac allow silencing factors such as Sir3 to spread from heterochromatin into 

adjacent euchromatic regions (Kimura, et al. 2002, Suka, et al. 2002). H4K16ac might also 

contribute to regulation of chromatin boundaries at silent mating type loci and ribosomal 

DNA (rDNA) because Sas2 and Sir2 are important for silencing at these genomic regions 

(Kimura et al. 2004). Therefore, suppression of the phenotypes of hst3Δ hst4Δ mutants in 
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the absence of H4K16ac might result from modulation of barriers between heterochromatin 

and neighboring euchromatic regions. Consistent with this mode of suppression, the hst3Δ 

hst4Δ phenotypes are also partially suppressed by deletion of YTA7 or RSC2, which are 

important to prevent heterochromatin spreading away from the transcriptionally silent 

HMRa mating type locus (Jambunathan, et al. 2005). As is the case for mutations that 

abolish H4K16ac, these suppressors did not show reduced levels of H3K56ac or H2AP 

(Figure 3.4B). Collectively, these results strongly suggest that modulation of chromatin 

boundaries improves the viability of H3K56 deacetylase mutants. 

During DNA synthesis, replication forks pause when they encounter tightly-bound   

protein-DNA complexes at the rDNA locus, centromeres and telomeric regions of             

S. cerevisiae (Labib et al. 2007). Moreover, replication fork pausing has been reported at 

dormant replication origins close to the silent HMLα mating type locus (Wang et al. 2001). 

The natural pause sites are associated with an increased frequency of DNA recombination, 

the underlying mechanism of which is poorly understood (Labib, et al. 2007). However, 

several studies have proposed that increased recombination at paused replication forks 

might be directly caused by an elevated incidence of replication fork collapse (Admire et 

al. 2006, Defossez et al. 1999, Kobayashi et al. 1998, Lambert et al. 2005). Hence, it is 

possible that replication fork pausing at chromatin regions that contain natural pause sites is 

problematic for the replication machinery of hst3Δ hst4Δ cells, which is sensitive to subtle 

perturbations such as epitope tagging of its protein components. This possibility is 

consistent with the elevated rates of spontaneous DNA damage and chronic activation of 

the DNA damage checkpoint in H3K56 deacetylase mutants (Celic, et al. 2008, Thaminy, 

et al. 2007). To test this possibility, future studies should assess the presence of DNA 

damage at natural pause sites in hst3Δ hst4Δ mutants, compared with wild-type cells. 

As mentioned earlier, H4K16ac is likely important for creating boundaries at the 

aforementioned chromatin regions (Kimura, et al. 2004). An attractive hypothesis is that 

modulation of chromatin barriers facilitates replication of genomic regions that contain 

natural boundary elements in hst3Δ hst4Δ cells. In the absence of H4K16ac or proteins that 

contribute to boundary formation, such as Rsc2 or Yta7, the natural boundaries are 
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disrupted and heterochromatin spreads. However, limiting pools of Sir proteins will 

eventually restrict spreading of heterochromatin resulting in formation of new boundaries, 

the protein composition of which is most likely different from that of the natural 

boundaries. For instance, the boundaries of the silent HMRa mating type locus contain 

tRNA genes whose promoters are tightly bound by RNA polymerase III transcription 

factors (Donze et al. 2001, Valenzuela et al. 2009). Therefore, it is possible that DNA 

replication forks can proceed more easily through these newly established chromatin 

barriers to complete genome duplication in hst3Δ hst4Δ cells. Programmed stalling of 

replication forks has been studied extensively at the replication fork barrier (RFB) present 

within the rDNA repeat unit. In support of our hypothesis, a previous study demonstrated 

that the stability of stalled replication forks at a plasmid-borne rDNA RFB site were 

compromised in SIR2-deleted cells (Benguria et al. 2003). This result supports the notion 

that modulation of H4K16ac levels might be important for stabilization of stalled 

replication forks at natural pause sites in hst3Δ hst4Δ mutants. Interestingly, hst3Δ hst4Δ 

cells exhibit an abnormally high rate of rDNA repeat number expansion, which naturally 

occurs within the RDN1 locus through unequal sister chromatid recombination in response 

to changes in physiological conditions (Ide et al. 2013). This observation suggests that 

regulation of inter-repeat recombination at the RDN1 locus is compromised in hst3Δ hst4Δ 

cells. Nevertheless, H4K16ac is a highly abundant genome-wide modification and its 

contribution to regulation of chromatin structure and function is probably not restricted to 

chromatin boundaries. Therefore, the presence of H4K16ac might have a more global effect 

on progression of DNA replication forks in H3K56 deacetylase mutants. 

In chapter 3, we also described spontaneous suppressors that allow hst3Δ hst4Δ cells to 

grow at 37°C (Figure 3.6). We found that the vast majority of these spontaneous 

suppressors have acquired resistance to genotoxic agents, although a few of them showed 

various degrees of sensitivity to HU or MMS (Figure 3.6A). Simultaneous alleviation of 

the thermosensitivity and genotoxic agent sensitivity of hst3Δ hst4Δ cells in individual 

suppressors implies that these phenotypes are mechanistically linked. In other words, 

treatment with genotoxic agents might only exacerbate the intrinsic defects in DNA 

metabolism caused by hyperacetylation of H3K56 in hst3Δ hst4Δ cells. Moreover, we 
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identified a group of spontaneous suppressors that completely lacked H3K56ac, as judged 

by immunoblotting (Figure 3.6B). Further investigation revealed that this group of 

suppressors did not have detectable levels of Rtt109 (Figure 3.6F). The mechanism that 

leads to a loss of Rtt109 in these suppressors remains to be identified. However, all 

spontaneous suppressors lacking H3K56ac expressed normal levels of Asf1 (Figure 3.6C). 

This observation is surprising because, as is the case for Rtt109, lack of Asf1 also abolishes 

H3K56ac. The fact that, unlike Rtt109, Asf1 is never repressed in our spontaneous 

suppressors suggests the existence of selective pressure to retain Asf1. A possible 

explanation for this mode of suppression is that, in addition to its role in promoting 

H3K56ac, Asf1 also acts as a nucleosome assembly chaperone that binds to new H3-H4 

dimers (Zhang, et al. 2013). In contrast, Rtt109 does not directly bind to new histones and, 

therefore, it may be less deleterious for hst3Δ hst4Δ cells to lose Rtt109, rather than Asf1. 

Interestingly, we found that the majority of spontaneous suppressors did not exhibit any 

striking decrease in either H3K56ac or H4K16ac levels (Figure 3.6B). Therefore, further 

characterization of these suppressors may identify additional pathways to circumvent the 

deleterious effects of H3K56 hyperacetylation. Moreover, although repression of Hst3 by 

NAM has been proposed as an anti-fungal therapy (Wurtele, et al. 2010), unpublished 

results from our laboratory demonstrated that C. albicans cells can develop resistance to 

NAM treatment. Hence, characterization of the spontaneous suppressors of hst3Δ hst4Δ 

phenotypes will probably unravel pathways that lead to the emergence of fungal pathogens 

(e.g. C. albicans) that are resistant to repression of Hst3 by NAM.    

In summary, this thesis provides valuable insights into the regulation of H3K56 

deacetylation and its physiological significance for cell survival following DNA damage in 

S. cerevisiae. Our work raises a number of important questions regarding the regulation of 

H3K56 deacetylases during the cell cycle and in response to DNA damage. Moreover, 

there is still much to understand about how hyperacetylation of H3K56 cripples different 

aspects of DNA metabolism even in the absence of exogenous DNA damage. H3K56ac is 

involved in critical cellular processes such as replication-coupled chromatin assembly and 

the DNA damage response, and its overabundance is associated with genomic instability 

and short replicative life span in S. cerevisiae. Therefore, deciphering the mechanisms that 
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control H3K56ac levels during the cell cycle and in response to DNA damage will improve 

our understanding of the intricate relationship between chromatin structure and genomic 

integrity. 
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Abstract 

Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27 

and K56 of histone H3 through interaction with either of two distinct histone chaperones, 

Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex 

revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form 

a symmetrical holoenzyme with a ~12 Å diameter central hole. Vps75 and Rtt109 residues 

that mediate complex formation in the crystals are also important for Rtt109-Vps75 

interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 

residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 

acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate 

specificity through distinct mechanisms. These studies also suggest that Vps75 binding 

stimulates Rtt109 catalytic activity by appropriately presenting the H3–H4 substrate within 

the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones 

before deposition. 

Introduction 

Histone acetyltransferase (HAT) enzymes modify histone lysine residues to modulate 

various DNA-templated processes including replication, transcription, and DNA repair. 

Rtt109 is a fungal-specific HAT that acetylates lysine 56 on newly synthesized histone H3 

(H3K56) during S-phase to mediate nucleosome assembly during DNA replication and 

DNA repair. Rtt109 is also important for cell survival after treatment with a number of 

genotoxic agents (Collins et al., 2007; Driscoll et al., 2007; Han et al., 2007a; Tsubota et 

al., 2007). Together with Gcn5, Rtt109 was more recently shown to contribute to the 

acetylation of histone H3K9 (Fillingham et al., 2008) and H3K27 (Burgess et al., 2010). 

Rtt109 harbors very low acetyltransferase activity on its own (Driscoll et al., 2007; Tsubota 

et al., 2007), but its activity is stimulated by association with either of the histone 

chaperone proteins Asf1 or Vps75 (Albaugh et al., 2010; Berndsen et al., 2008; Han et al., 

2007b, c; Tsubota et al., 2007). In vivo, Rtt109-mediated acetylation of H3K56 requires 
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Asf1, an evolutionarily conserved histone chaperone that binds to H3–H4 dimers (English 

et al., 2006), although Asf1 does not appear to form a stable complex with Rtt109 in 

vitro (Driscoll et al., 2007; Han et al., 2007b; Tsubota et al., 2007). In addition, both the 

Asf1 and Vps75 histone chaperones contribute to H3K9 acetylation in vivo (Adkins et al., 

2007; Berndsen et al., 2008; Fillingham et al., 2008). Vps75 is a member of the NAP1 

histone chaperone family that binds to both (H3–H4)2 tetramers and H2A–H2B dimers 

(Park et al., 2008; Selth and Svejstrup, 2007). The Rtt109/Vps75 complex can also 

acetylate H3K56 in vitro (Berndsen et al., 2008; Lin and Yuan, 2008; Tsubota et al., 2007), 

but a vps75 null mutant shows no decrease in H3K56 acetylation in vivo (Tsubota et al., 

2007; Han et al., 2007c). Recently, H3K56 acetylation has been observed to overlap 

strongly with the binding of key pluripotency regulators at active and inactive promoters in 

human embryonic stem cells (Xie et al., 2009), but there have been conflicting reports 

about whether this modification is mediated by the GCN5 (Tjeertes et al., 2009) or 

p300/CBP HAT in association with ASF1 (Das et al., 2009). 

Our group and others have reported on the X-ray crystal structure of Rtt109 (Lin and Yuan, 

2008; Stavropoulos et al., 2008; Tang et al., 2008a), leading to the unexpected observation 

that Rtt109 is structurally related to p300/CBP, despite the lack of significant sequence 

conservation. We and others have also reported that Vps75 adopts a dimeric head-phone-

like structure (Berndsen et al., 2008; Park et al., 2008; Tang et al., 2008b) that is distinct 

from the monomeric β-sandwich fold of Asf1 (Daganzo, 2003; English et al., 2006). To 

obtain direct molecular insights into how Rtt109 activity is modulated by the binding of 

histone chaperones, we now report on the X-ray crystal structure of an Rtt109-

AcCoA/Vps75 complex. We also present structure-based mutagenesis, combined with 

biochemical and, enzymological data, and studies in yeast cells to derive molecular insights 

into the mechanism by which histone chaperones enhance and mediate lysine-specific 

histone acetylation by Rtt109. 
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Results 

Rtt109/Vps75 forms a symmetrical ring with a 2:2 stoichiometry 

We prepared the Rtt109/Vps75 complex by coexpressing the full-length Rtt109 protein 

with the core domain of Vps75 (residues 1–232) in bacteria and purifying the tightly 

associated complex to homogeneity using a combination of affinity, ion exchange and size 

exclusion chromatography. The protein complex was mixed with acetyl coenzyme A 

(AcCoA) and crystals were obtained in spacegroup P21212 (native crystal) that diffracted to 

3.2 Å resolution. Soaking of these crystals with a 14-amino acid peptide centered around 

H3K9 (peptide soaked crystal) produced crystals that diffracted to a higher resolution of 2.8 

Å, but with the peptide bound in a non-physiologically relevant manner, but otherwise 

essentially identical to the native Rtt109/Vps75 complex (see Figure S1 and Supplemental 

Experimental Procedures for more details). Because of its higher resolution, the peptide-

soaked Rtt109/Vps75 complex is used for further analysis as described below. Within the 

crystal lattice, each asymmetric unit contains one molecule each of Rtt109 bound to 

AcCoA and Vps75, related by a crystallographic 2-fold symmetry axis to form the 

functional heterotetramer with two bound AcCoA molecules. The structure was refined to 

2.8 Å resolution with refinement statistics of Rwork=0.191 (Rfree=0.253) and geometrical 

parameters of root-mean-square deviation (RMSD)bond length=0.009 Å and RMSDbond 

angle=1.154° (Table 1). 
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Table 1.  Data collection and refinement statistics 
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The Rtt109-AcCoA/Vps75 complex reveals that the obligate Vps75 homodimeric 

headphone-like structure, which contains an elongated helical dimerization domain and 

globular earmuff domains at each end of the dimerization domain, is bound on opposite 

ends by two globular Rtt109 molecules to form a symmetrical ring with a hole of ~12 Å 

diameter (Figure 1). The two Rtt109 subunits make extensive sequence-specific contacts 

with the Vps75 dimer burying a solvent-accessible surface (SAS) of 3725 Å2 for each 

Rtt109-Vps75 pair, whereas the two Rtt109 subunits make more modest and non-specific 

interactions with each other burying 1736 Å2 of SAS. Each Rtt109 subunit contacts the 

Vps75 dimer in two distinct regions. The Rtt109-α8-α9 helices pack against the α2-α5 

helices of the Vps75 earmuff domain (burying 1982 Å2 of SAS) and the Rtt109 130–179 

segment reaches around the Vps75 earmuff domain to engage the Vps75 dimerization 

helices (burying 1743 Å2 of SAS). The less extensive Rtt109-Rtt109 interface primarily 

involves non-specific contacts between the α7-β7 loops of both molecules. 

The tightly associated Rtt109-AcCoA/Vps75 complex does not involve 

significant structural changes in Rtt109 or Vps75 

The Rtt109-α8-α9 helices make predominantly hydrogen-bond contacts to the α2-α5 

helices of the Vps75 earmuff domain (Figure 2A). Specifically, lysines 356 and 363 of 

Rtt109-α8 hydrogen bond to Gln64 of Vps75-α2 and Asn70 of Vps75-α3, respectively; and 

Tyr364 of Rtt109-α8 makes van der Waals contact to Ala74 of Vps75-α4. Glu374, Glu378, 

and Arg390 of Rtt109-α9 make salt-bridges to Arg173 and Lys177 of Vps75-α5, and 

Arg73 and Asp81 of Vps75-α4, respectively. Asn382 of Rtt109-α9 also makes a hydrogen 

bond to the backbone NH of Ala74, and Leu389 of Rtt109-α9 makes van der Waals 

contacts to Phe77 and the aliphatic region of Lys78 of Vps75-α4. 
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Figure 1. Overall structure of the Rtt109/Vps75 complex. (A and C) Two orthogonal 
views of the Rtt109/Vps75 complex. The obligate Vps75 homodimer is shown with 
subunits in blue and green and the two Rtt109 subunits are shown in purple and orange. 
The proteins are shown in cartoon representation. The two interfaces that are boxed are 
shown in molecular detail in figures 2A and 2B. (B) and (D) are the same views as (A) and 
(C), respectively, but shown in surface representation. 
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The 130–179 segment of Rtt109 is not conserved in all species of yeast (Figure S2) and is 

either absent (deleted from the crystallized protein) or disordered in previously reported 

Rtt109 structures (Lin and Yuan, 2008; Tang et al., 2008a). However, in the Rtt109-

AcCoA/Vps75 complex, this segment contains a well-ordered central helix from residues 

144–155 (called α3i as it forms in between the previously defined α3 and α4 helices) and 

surrounding loop regions that are partially ordered (Figure 2B). The Rtt109-α3i helix 

contacts both Vps75 subunits through a combination of hydrogen bonding and van der 

Waals interactions. Arg154 of Rtt109-α3i forms a salt bridge with Asp222 of Vps75-α8, a 

residue at the base of the Vps75 earmuff domain that also forms two main-chain H-bonds 

with Ile138 of Rtt109. In addition, Arg149 of Rtt109-α3i forms a salt-bridge with Glu23 of 

Vps75-α1′ from the opposite subunit. Other residues of Rtt109-α3i also contact the α8 and 

α1′ helices of the Vps75 earmuff and dimerization domains, respectively, through mostly 

van der Waals interactions (Figure 2B). Specifically, Ala145, Leu148, Ile150, Leu151, and 

Ala152 of Rtt109-α3i and Ile138 within the preceding loop form a hydrophobic network 

with a cluster of Vps75-α8 (Val213 and Tyr216) and α1′ (Phe15, Leu16, and Ala19) 

residues. 

Except for the 130–179 segment of the Rtt109-CoA/Vps75 complex, the uncomplexed 

Rtt109 and Vps75 proteins superimpose well with no significant structural changes and 

RMS deviations for all ordered Cα atoms of 0.75 Å and 1.14 Å, respectively. Strikingly, 

even the Rtt109 active site residues Tyr199 and Trp222, the bound AcCoA and the 

acetylated Lys290 superimpose well (Figure 2C). This observation suggests that Vps75-

mediated stimulation of Rtt109 HAT activity does not involve an alteration of Rtt109 

conformation or its active site on Vps75 binding. Vps75 binding to Rtt109 strongly 

stimulates the kcat (~100-fold) and has little effect on the Km for H3 substrates (Berndsen et 

al., 2008). Based on this and the structures of the holoenzyme and free Rtt109, we propose 

that Vps75 stimulates Rtt109 HAT activity by productively positioning specific lysine 

residues of histone H3 within the Rtt109 active site. 
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Figure 2. Details of the two Rtt109-Vps75 interaction surfaces. (A) The Rtt109 interface 
with the Vps75 earmuff domain is shown in cartoon representation. Residues that mediate 
protein-protein interaction or near the protein-protein interface and targeted for 
mutagenesis are shown as stick models in CPK coloring. Hydrogen bonds are indicated as 
yellow dashed lines. The orientation is similar to figure 1A (boxed interface 1). (B) The 
Rtt109 interface with the Vps75 dimerization domain rendered as described above. (C) A 
superposition of the Rtt109 active site in the apo- and Vps75-bound forms is shown in 
cartoon representation. Active site residues in the insert are shown as stick models in CPK 
coloring (Lys290 is too far away to be included in the insert). 
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Stable Rtt109-Vps75 interaction is required for optimal HAT activation 

To determine the functional significance of the Rtt109-Vps75 contacts that are observed in 

the crystal structure of the complex, we carried out structure-based mutagenesis of Rtt109 

followed by Rtt109-Vps75 interaction and enzymatic assays using recombinant            

(H3–H4)2 tetramer as a substrate. 

Given that in the Rtt109-AcCoA/Vps75 complex, one Rtt109 molecule contacts both 

Vps75 subunits, we first asked whether Vps75 dimerization is required for its ability to 

stimulate Rtt109 HAT activity. For this purpose, we prepared the Vps75-

(C21E,V25S,I28E,V32E) mutant previously shown to produce monomeric Vps75 

(Berndsen et al., 2008) and found that it is strongly defective in binding to Rtt109 (Figure 

3A) as well as in stimulating Rtt109 HAT activity (Figure 3B). This result confirms that 

Vps75 dimer formation is required for Rtt109 interaction and optimal stimulation of Rtt109 

HAT activity. 

As Rtt109 interacts with Vps75 through two distinct surfaces (Figures 2 and S2A), we also 

asked whether both surfaces are required for Rtt109 function in vitro. We have previously 

reported mutagenesis data implicating two distinct Vps75 surfaces for Rtt109 interaction 

(Tang et al., 2008b). Specifically, we showed that the Vps75-(E218K,D222K) mutant 

abolishes Rtt109 interaction, whereas the distal Vps75-(R173E,K177E) mutant and Vps75-

Δ(167–178) deletion greatly compromise Rtt109 interaction. This data is consistent with 

the Rtt109-AcCoa/Vps75 structure reported here. Vps75-Asp222 and –Glu218 interact with 

the 130–179 segment of Rtt109 (Figure 2B), whereas Vps75-Arg173 and -Lys177 interact 

with the α8-α9 region of Rtt109. As shown in Figure 3A, another mutation, Vps75-

(R73D,A74D), that disrupts the interface with Rtt109-α8-α9, completely abolishes 

interaction with Rtt109. Vps75 mutations that reduce its interaction with Rtt109 in pull-

down assays also show a diminished ability to stimulate Rtt109 HAT activity (Figure 3B). 

In particular, the Rtt109 binding defective mutants, Vps75-(R73D, A74D),                  
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-(R173E,K177E), and -(E218K,D222K) each show a reduced ability to stimulate Rtt109 

HAT activity relative to the wild-type Vps75 protein. 

Mutation of Rtt109 residues that contact Vps75 also show a defect in pull-down assays and 

Vps75-mediated stimulation of Rtt109 HAT activity. As shown in Figure 3C, removal of 

the 130–179 segment of Rtt109 that contacts the Vps75 dimerization domain, or 

substitution mutations of Vps75-interacting residues in this segment, Rtt109-(L148D) or 

Rtt109-(I150D,L151D), abolish Vps75 binding. Similarly, combined substitution mutations 

in the Rtt109 α8-α9 residues that mediate contacts with the Vps75 earmuff domain, Rtt109-

(E378R,N382R) and Rtt109-(R355E,K356E), also diminish Vps75 binding. Correlating 

with the reduced Rtt109-Vps75 interaction, each of these Rtt109 mutants show reduced 

Vps75-stimulated HAT activity relative to wild-type Rtt109 (Figure 3D). Taken together, 

these studies indicate that the 130–179 segment and α8-α9 region of Rtt109 (Figure S2B) 

are both required for optimal Vps75 interaction and HAT activity stimulation. 

Comparison of free and Vps75-bound Rtt109 structures suggests that the Rtt109 130–179 

segment is only ordered in the presence of Vps75 (Lin and Yuan, 2008; Tang et al., 2008a). 

To confirm that this is also true in solution, we probed the proteolytic sensitivity of Rtt109 

as a function of Vps75 binding. To carry out these studies, we prepared three recombinant 

Rtt109 proteins: wild-type Rtt109, Rtt109-Δ(130–179) in which residues 130–179 are 

removed and Rtt109-(L148D), a mutant defective in Vps75 binding. As shown in Figure 

3E, in the absence of Vps75, Rtt109-wt and Rtt109-(L148D) are readily cleaved by trypsin, 

whereas the Rtt109-Δ(130–179) mutant is significantly more protease resistant. In the 

presence of Vps75, however, Rtt109-wt is protected from proteolysis. In contrast, the 

Rtt109-(L148D) mutant that cannot bind to Vps75 but retains the 130–179 segment, 

remains sensitive to trypsin even in the presence of Vps75. Taken together, these studies 

reveal that, in the absence of Vps75, Rtt109 is highly susceptible to trypsin cleavage, and 

this appears to be nucleated by the 130–179 segment of Rtt109. Interestingly, a recent 

report has shown that the in vivo stability of Rtt109 is compromised in cells lacking Vps75 

(Fillingham et al., 2008). Based on the structural and biochemical results reported here, we 

hypothesize that the reduced stability of Rtt109 in the absence of Vps75 in vivo correlates 



    

135 

with the exposure of the 130–179 segment, which renders Rtt109 susceptible to 

degradation. Interestingly, Rtt109 orthologs from several yeast species do not contain the 

130–179 region (Figure S2B), suggesting that these species may compensate for the 

absence of the 130–179 segment by employing other surfaces of Rtt109 to stabilize its 

interaction with Vps75. Alternatively, these species may not use Vps75 stimulate the HAT 

activity of Rtt109. 
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Figure 3. Identification and characterization of key residues that mediate          
Rtt109-Vps75 complex formation, Rtt109 HAT stimulation by Vps75 or Asf1, and H3 
substrate specificity by mutagenesis, pull-down, and enzymatic assays. (A) Pull-down 
studies of Vps75-wt and mutants by GST-Rtt109-wt. Published mutants (**) were included 
for comparison (Tang et al., 2008b). Vps75-(monomeric) number is Vps5-
(C21E,V25S,I28E,V32E) (Berndsen et al., 2008). (B) HAT assays were performed with 
(H3–H4)2 tetramer and [14C]AcCoA substrates and complexes of GST-Rtt109-wt with 
Vps75-wt and mutants. (C) Pull-down studies of Vps75-wt by GST-Rtt109-wt and mutants. 
A published mutant (**) was included for comparison (Tang et al., 2008b). (D) Enzymatic 
studies of GST-Rtt109-wt and mutants in the presence of Vps75-wt or yAsf1N (1–154). 
HAT assays were performed with (H3–H4)2 tetramer and [14C]AcCoA substrates. 
(E) Limited proteolysis of Rtt109/Vps75 complexes containing wild-type, mutant or 
truncated forms of Rtt109. Reaction products after 10 min of trypsin digestion are shown. 
A 30 min reaction showed a nearly identical pattern of digestion. (F) Catalytic rates (kcat) 
were measured for Rtt109-WT and Rtt109-(R292E) using the following substrates in the 
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context of the (H3–H4)2 tetramer: H3-WT, H3-(K9R/K56R), H3-(K27/K56R), H3-
(K9/K27R) and H3-(K9R, K27/K56R) (Figure S3). All parameters were determined by a 
non-linear regression fit to the Michaelis-Menten equation (see Experimental Procedures). 

Asf1 and Vps75 stimulate Rtt109 HAT activity through distinct 

mechanisms 

Given that Rtt109 HAT activity can be stimulated by both the Vps75 and Asf1 histone 

chaperones, we asked whether the regions of Rtt109 that mediate Vps75 interaction and 

stimulation of HAT activity are also employed for Asf1-mediated Rtt109 stimulation. To 

determine whether the stimulation of HAT activity by Asf1 requires the 130–179 segment 

of Rtt109, we assayed the acetyltransferase activity of Rtt109-wt and two Rtt109 mutants, 

Rtt109-Δ(130–179) and Rtt109-(L148D), in the presence or absence of Asf1. As shown 

in Figure 3D, Asf1 enhances the HAT activity of the Rtt109-Δ(130–179) and Rtt109-

(L148D) mutants as effectively if not better than the wild-type protein, demonstrating that 

Asf1 does not employ the 130–179 segment of Rtt109 to stimulate its HAT activity. This is 

in striking contrast to Vps75, which poorly increases the HAT activity of Rtt109-Δ(130–

179) and Rtt109-(L148D) (Figure 3D). In addition, Rtt109 α8-α9 mutations that 

significantly cripple stimulation of Rtt109 HAT activity by Vps75 do not show a defect in 

Asf1-stimulated HAT activity (Figure 3D). These include Rtt109-(R355E,K356E), Rtt109-

(E374R), Rtt109-(E378R) and Rtt109-(E378R,N382R). Taken together, these results 

suggest that Vps75 and Asf1 stimulate Rtt109 HAT activity through distinct mechanisms. 

To further probe the lysine substrate specificity of the Rtt109/Vps75 complex, we prepared 

histone H3 mutants that contain either K9R/K27R (K56 is available for acetylation), 

K27R/K56R (K9 is available for acetylation) or K9R/K56R (K27 is available for 

acetylation) substitutions in the context of the (H3–H4)2 tetramer and used them as 

substrates for Rtt109/Vps75. Kinetic analysis revealed that the wild-type Rtt109/Vps75 

complex exhibits comparable catalytic efficiency towards the wild-type and H3-

K27R/K56R mutant histone substrates but significant defects towards any of the histone 

substrates harboring a K9R mutation, showing a decrease in kcat of ~10-fold and elevated 
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Km values (Figure 3F; Figure S3A). This data is consistent with quantitative MS and 

Edman sequencing analyses of the reaction products obtained with wild-type (H3–H4)2, 

which showed that the Rtt109/Vps75 complex preferentially acetylates H3K9 over H3K56 

and other acetylation sites in the N-terminal tail of H3 (Figure S3D). 

In our survey of Rtt109 mutants that exhibit reduced HAT activity in the presence of 

histone chaperones, we were intrigued by an Rtt109-(R292E) mutant that did not affect 

Rtt109/Vps75 complex formation (Figure 3C) and only had a modest effect on Vps75-

stimulated H3 acetylation, but showed more dramatic defects in Asf1-stimulated 

acetylation (Figure 3D). To further probe this mutation, we carried out more detailed 

kinetics on the Rtt109/Asf1 and Rtt109-(R292E)/Asf1 complexes using the wild-type (H3–

H4)2 substrate. We found that, in contrast to wild-type Rtt109/Vps75 and Rtt109-

(R292E)/Vps75 that acetylate the (H3–H4)2 substrate with comparable activity (< 2-fold 

decrease in kcat/Km) and similar activity profiles for each of the substrates bearing H3 

mutants (Figures 3F; Figure S3B), the Rtt109-(R292E)/Asf1 mutant shows about a 45-fold 

decrease in kcat/Km for the (H3–H4)2 substrate relative to wild-type Rtt109/Asf1 (Figures 

3F and S3C). This observation demonstrates that residue Rtt109-R292 plays a more 

important role in Asf1- over Vps75-mediated Rtt109 acetylation of histone H3. 

Histone substrates bind within the interior of the Rtt109-AcCoA/Vps75 

ring 

The observation that the acetyl group of AcCoA and the active site residues of Rtt109 are 

facing towards the interior of the ring structure implies that the histone substrate is bound 

in the interior of the ring-shaped Rtt109-AcCoA/Vps75 complex. This hypothesis is 

supported by a mapping of sequence conservation onto the surfaces of both Rtt109 and 

Vps75, which reveals that the most highly conserved surfaces of Rtt109 and Vps75 are 

brought together in the interior of the ring (Figures 4A and 4B). In contrast, the exterior 

surface of the complex shows relatively poor sequence conservation (Figure 4C). 
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We also identified several conserved and solvent exposed Vps75 and Rtt109 residues 

within the ring that result in reduced HAT activity when mutated (Figures 3B, 3D and 4D). 

These mutants included Rtt109-(R194E), Rtt109-(E368R) and Rtt109-(EEYD368RRYR), 

as well as Vps75-(E206K,E207K). To determine the histone acetylation defects of these 

mutants more accurately, we determined their steady-state kinetic parameters in the 

presence of a large excess (presumed saturating) of Ac-CoA (Figure 4E; Figure S4). This 

analysis revealed that the Vps75-(E206K,E207K) mutant predominantly has a histone 

tetramer Km defect (> 10-fold), whereas the other mutants have defects in kcat of between 4- 

and 70-fold. Although the Km defect of the Vps75-(E206K,E207K) mutant likely reflects a 

defect in histone binding, the kcat defect of the other mutants could reflect a destabilization 

of the transition state of the acetylation reaction. Given that the mutated residues are not 

near the active site of the enzyme and are not involved in Rtt109/Vps75 interaction, we 

propose that they mediate correct positioning of the histone H3 substrate in the active site 

for optimal acetylation. This proposal is consistent with our structural observation that 

Vps75 binding to Rtt109 does not significantly alter the Rtt109 active site (Figure 2C), as 

well as a previous report showing that Vps75 binding stimulates Rtt109 activity by 

elevating the kcat, rather than by reducing the Km for the H3 substrate (Berndsen et al., 

2008). Taken together, these data further support the role of the interior of the ring-shaped 

complex in binding the histone substrate in a manner that is productive for H3 acetylation. 

It has been reported that a truncation of the C-terminal acidic tail of Vps75 (residues     

224–264) impairs its ability to activate Rtt109 without affecting Vps75 binding to Rtt109 

(Park et al., 2008). Because we found Vps75 residues as C-terminal as Asp225 are involved 

in Rtt109 interaction, we asked how the longer fragment (residues 1–232) used in our 

structure determination may impact Rtt109 HAT activity. To this end, we compared the 

Rtt109 activation capabilities of Vps75-wt, Vps75-(1–232) and Vps75-(1–223). We found 

that Vps75-(1–232) and Vps75-(1–223) activate Rtt109 to similar levels, and with an      

~4-fold reduced rate relative to full-length Vps75 (Figure 3B). These results suggest that 

Vps75 residues C-terminal to Leu232 are required for optimal activation of Rtt109. 

Because the last ordered residue of Vps75 in the structure of the complex, Glu226, points 
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toward the interior of the ring, we propose that the Vps75 C-terminal acidic tail may also 

be in position to associate with histones bound within the ring-shaped enzyme complex. 

        

Figure 4. Histone binding by the Rtt109-AcCoA/Vps75 complex. (A and B) Orthogonal 
surface representations of the Rtt109-AcCoA/Vps75 complex reveal a high degree of 
sequence conservation within the interior of the ring-shaped complex. The color-coding 
indicates the degree of conservation as shown in the bar key, with sequence conservation 
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information derived from previously published alignments (Tang et al., 2008a; Tang et al., 
2008b). For clarity, only one Rtt109 molecule and half of the Vps75 homodimer are shown 
(gray patch represents the cross section at point of omission). The orientation of (A) is the 
same as in Figure S2A. (C) The exterior surface of the ring-shaped Rtt109/Vps75 complex 
shows a low degree of sequence conservation. (D) Location of Rtt109 (Arg194 and 
Glu368) and Vps75 (Asp198, Glu206, and Glu207) residues whose mutation decreases 
HAT activity (E). These residues are not involved in mediating Rtt109-Vps75 interaction 
and do not appear to be part of the active site and, therefore, are suggested to participate in 
histone binding. The view is as in (A). (E) Summary of kinetic parameters of selected 
Rtt109 and Vps75 mutants within the ring interior of the Rtt109-AcCoA/Vps75 complex 
(Figure S4). All parameters were determined by a non-linear regression fit to the classical 
Michaelis- Menten equation (see Experimental Procedures). N.D.: not determined due to 
experimental considerations. 

Mutations that decrease Rtt109/Vps75 HAT activity in vitro reduce H3K9 

and H3K27, but not H3K56 acetylation in vivo 

In vitro, the Rtt109/Vps75 holoenzyme cannot acetylate nucleosomes (Han et al., 2007c; 

Tsubota et al., 2007a), suggesting that it may exclusively act on newly synthesized histones 

prior to their deposition onto DNA. Among the five acetylatable lysine residues in the N-

terminal tail of H3, lysines K9 and K27 were found to be the most extensively acetylated 

after a short pulse of [3H]-lysine in Saccharomyces cerevisiae (Kuo et al., 1996). 

Furthermore, in contrast to H3K56 acetylation, which is entirely dependent upon Rtt109 

and Asf1 (Driscoll et al., 2007; Drogaris et al., 2008; Han et al., 2007a; Tsubota et al., 

2007a), both Gcn5 and Rtt109-Vps75 contribute to H3K9 and H3K27 acetylation in 

vivo (Berndsen et al., 2008; Burgess et al., 2010; Fillingham et al., 2008). 

To characterize the effects of the structure-based Rtt109 mutations in vivo, we first 

validated our assays by monitoring H3K9/K27 and H3K56 acetylation in strains where 

selected HAT genes were deleted. Based on mass spectrometry (MS), H3K9 and H3K27 

acetylation is abundant in vivo, with ~20% of H3 molecules acetylated at K9 and K27 in 

wild-type cells (Figure 5B–C). As judged by MS, the levels of H3K9 and H3K27 

acetylation were considerably reduced, but not completely abolished in gcn5 single 

mutants, whereas H3K56 acetylation was as abundant as in wild-type cells (Figure 5A–C). 

In contrast, essentially no H3K9 or H3K27 acetylation remained in gcn5Δ vps75Δ or 
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gcn5Δ rtt109Δ double mutants and, consistent with previous reports, the rtt109Δ mutation 

essentially abolished H3K56 acetylation (Figure 5A–C) (Driscoll et al., 2007; Han et al., 

2007b). As judged by MS, avps75 null mutation did not significantly cripple acetylation of 

H3K14, H3K18 or H3K23, whereas H3K18 was essentially abolished in gcn5 single 

mutants (data not shown). These results demonstrate that, in vivo, the Rtt109/Vps75 

enzyme functionally overlaps with Gcn5 to acetylate H3K9 and H3K27, whereas Rtt109 

and Asf1 cooperate to promote H3K56 acetylation. 

Importantly, when introduced into either gcn5Δ rtt109Δ or gcn5Δ vps75Δ double mutants, 

low copy plasmids expressing wild-type Rtt109-Flag or Vps75-Flag, respectively, from 

their natural promoters, restored H3K9, K27 and K56 acetylation (Figures 5A–H). This 

provided assays to monitor the effects of structure-based Rtt109 mutations on histone 

acetylation. The structure-based Rtt109 mutants that we tested in vivo showed defects in 

H3K9 and K27 acetylation, with the Rtt109-(L148D) and Rtt109-(E378R,N382R) mutants 

being the most defective (Figures 5E–G and data not shown). Therefore, we focused our in 

vivo studies on these two Rtt109 mutants. Based on MS and immunoblotting, the Rtt109-

(L148D) and Rtt109-(E378R,N382R) were defective in H3K9/K27 acetylation, but not 

H3K56 acetylation in vivo (Figures 5D–G). As judged by MS and immunoblotting, the 

Rtt109-(L148D) mutation abolished its interaction with Vps75 whereas the Rtt109-

(E378R,N382R) mutant showed residual binding to Vps75 in vivo (Figures 6A and 6B). 

Consistent with the greater sensitivity of Rtt109-L148D and Rtt109-E378R,N382R to 

mutations, these residues are located within the Rtt109 (130–179) segment and α8-α9 helix 

region of Rtt109, respectively, which mediate contacts to the two distinct binding surfaces 

on Vps75 (Figure 2). In the absence of Vps75, Rtt109 has been reported to be less stable 

than in wild-type cells (Fillingham et al., 2008). In agreement with its strong defect in 

interaction with Vps75, the Rtt109-(L148D) mutation (and to a lesser extent the Rtt109-

(E378R,N382R) mutation) destabilized the protein to an extent similar to that observed in 

a vps75 null mutant even though each of the mutant proteins are expressed at similar 

steady-state levels (Figure 6D). 
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We also determined the effects of Vps75 mutations on histone acetylation and complex 

formation in vivo. In keeping with the structure of the holoenzyme (Figure 2), the      

Vps75-(R173E,K177E) and Vps75-(E218K,D222K) mutations reduced the interaction of 

Vps75 mutants with Rtt109 both in vitro (Figure 3A) and in vivo (Figure 6C). In contrast, 

mutation of residues E206 and E207, which line the central cavity of the Rtt109/Vps75 

holoenzyme and are not involved in interaction with Rtt109 (Figures 3A and 4D), only has 

a mild effect on the interaction of Rtt109 and Vps75 in vivo (Figure 6C). However, 

compared with WT Vps75, all three Vps75 mutations reduced H3K9/K27 acetylation 

without perturbing H3K56 acetylation in vivo (Figure 5H). These results taken together, 

demonstrate that mutations that decrease Rtt109/Vps75 interaction and H3K9 but not 

H3K56 acetyltransferase activity in vitro correlates with similar activities in vivo. 
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Figure 5. In vivo analysis of wild-type and mutant forms of the Rtt109/Vps75 
holoenzyme. (A–F) Histone lysine specificity of gcn5, rtt109 and vps75 null mutants and 
selected mutants that specifically target the integrity of the Rtt109/Vps75 holoenzyme as 
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determined by mass spectrometry. Total histones were purified from asynchronously 
growing cells and analyzed by mass spectrometry (Supplemental Experimental Procedures) 
to determine the fraction of H3 molecules acetylated at K9, K27 and K56. (G and 
H) Histone lysine specificity of selected Rtt109 and Vps75 mutants as determined by 
immunoblotting. 1.5-fold serial dilutions of whole-cell lysates (from left to right) were 
probed by immunoblotting to determine the levels of H3K9, K27 and K56 acetylation in 
cells expressing Rtt109 or Vps75 mutants. The asterisk points to a non-specific band that is 
weakly detected by our anti-H3K9ac in H3K9Rmutant cells (not shown). (I) Effect of 
selected Rtt109 mutants on histone assembly. Complexes of CAF-1 and histones H3/H4 
were affinity-purified from yeast cells to determine the amounts of histones bound to CAF-
1 in strains expressing Rtt109 mutants. 

Mutations that decrease the H3K9 HAT activity of the Rtt109/Vps75 

complex in vitro and in vivo are not sufficient to confer phenotypes 

associated with defects in nucleosome assembly 

In vivo, mutations that cripple the acetylation of new histones or interfere with replication-

coupled nucleosome assembly confer sensitivity to genotoxic agents and defects in cell 

proliferation and heterochromatin-mediated gene silencing (Burgess et al., 2010; Driscoll et 

al., 2007; Han et al., 2007a; Han et al., 2007b; Li et al., 2008; Tsubota et al., 2007). This is 

indeed what we observed in rtt109 single and rtt109 gcn5 double mutants (Figures 

S5 and S6). In rtt109Δ gcn5Δ double mutants, H3K9/K27 in the N-terminal tail and 

H3K56 acetylation are essentially abolished (Figure 5A–5C). However, none of our 

structure-based mutations that selectively disrupt the structure and/or activity of the 

Rtt109/Vps75 holoenzyme resulted in proliferation, genotoxic agent sensitivity or 

heterochromatin-mediated silencing (Figures S5A, S5B and S6C). This was true even when 

structure-based Rtt109/Vps75 mutations were combined with other mutations that should 

reduce the efficiency of the replication-coupled nucleosome assembly pathway, such as 

null mutations in gcn5 (that reduces N-terminal acetylation of new H3 molecules (Burgess 

et al., 2010), hat1 (an enzyme that acetylates new H4 molecules at lysines 5 and 12) (Kelly 

et al., 2000; Qin and Parthun, 2002) or rtt106 (a chaperone that binds to new H3/H4 

molecules) (Huang et al., 2007) (Figures S5B and S6A–C). These results suggested that the 

absence of the Rtt109/Vps75 enzyme is not sufficient to confer a physiologically 

significant defect in replication-coupled nucleosome assembly. To further confirm this 
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hypothesis, we affinity-purified Chromatin Assembly Factor 1 (CAF-1) and determined by 

MS the amounts of histones bound to CAF-1. CAF-1 is the prototypical replication-coupled 

nucleosome assembly factor (Kaufman et al., 1997) and cells where H3K56 acetylation is 

impaired contain low amounts of H3/H4 bound to CAF-1 (Kaufman et al., 1997; Li et al., 

2008). Consistent with the fact that they do not confer any striking phenotype, the Rtt109-

(L148D) and Rtt109-(E378R,N382R) mutants did not show any striking decrease in the 

amounts of H3/H4 bound to CAF-1, even in cells lacking Gcn5 (Figure 5I). Taken together, 

these studies show that the H3K9/K27 acetylation activity of the Rtt109/Vps75 complex is 

not sufficient to confer phenotypes associated with defects in nucleosome assembly. 
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Figure 6. In vivo analysis of the integrity of the Rtt109/Vps75 holoenzyme as a 
function of structure-based mutations. (A and B) Effect of selected Rtt109 mutations on 
the Rtt109-Vps75 interaction. Copurification of Rtt109 and Vps75 from strains expressing 
Rtt109 mutants was monitored by immunoblotting (A) or mass spectrometry (B), 
see Supplemental Experimental Procedures). All the strains used in (A) contain a wild-type 
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chromosomal VPS75 gene and an additional plasmid encoding a wild-type VPS75-
HA gene. (C) Effect of selected Vps75 mutations on the Rtt109-Vps75 interaction. Co-
purification of Rtt109 and Vps75 from strains expressing Vps75 mutants was monitored by 
immunoblotting. (D) Stability of Rtt109 mutants. The stability of Rtt109 mutants was 
determined by immunoblotting as a function of time after the addition of cycloheximide. 
The top panel is a control showing the reduced stability of wild-type Rtt109 in cells that 
lack Vps75. 

Discussion 

The Rtt109 histone acetyltransferase promotes nucleosome assembly and genome stability 

by acetylating K9, K27 and K56 on new non-nucleosomal histone H3 molecules through its 

interactions with either of two distinct histone chaperones, Vps75 or Asf1. H3K9 

acetylation, in particular, is evolutionarily conserved from yeast to human cells and is the 

most prominent site of acetylation in the N-terminal tail of new H3 molecules in                

S. cerevisiae (Adkins et al., 2007; Kuo et al., 1996). Despite the importance of the 

acetylation of new histones, the mechanism and the molecular basis of chaperone-mediated 

histone lysine acetylation specificity have gone largely unexplored. 

To explore the mechanism by which histone chaperones promote Rtt109 HAT activity and 

lysine specificity, we determined the X-ray crystal structure of an Rtt109-AcCoA/Vps75 

complex that revealed a 2-fold symmetrical heterotetrameric ring containing an interior 

cavity of ~12 Å diameter. Biochemical, enzymatic and in vivo studies further demonstrated 

that Rtt109-Vps75 contacts observed in the crystals are important for optimal H3K9/K27 

but not H3K56 acetylation both in vitro and in yeast cells. A comparison of the Rtt109-

AcCoA/Vps75 complex with the free Rtt109 and Vps75 proteins also showed that Vps75 

binding to Rtt109 does not alter the Rtt109 active site, suggesting that Vps75 binding 

stimulates Rtt109 catalytic activity by appropriately presenting histone H3 for acetylation. 

We also used information derived from the structure of the Rtt109-AcCoA/Vps75 complex 

to demonstrate that Asf1 and Vps75 stimulate the HAT activity of Rtt109 via different 

mechanisms. Along with other groups, we previously reported the identification of residues 

generally important for Rtt109-mediated H3 acetylation, including Rtt109 residues Asp89, 
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Tyr199, Trp222 and Asp287 (Han et al., 2007b; Tang et al., 2008a; Tsubota et al., 2007). In 

this study, we extended these findings to residues that play more dedicated roles in Vps75-

mediated activation of Rtt109 for H3K9 acetylation. We showed that the 130–179 segment 

of Rtt109 and other residues that contribute to interaction surfaces between Rtt109 and 

Vps75 play a particularly important role in Vps75-dependent histone H3K9 acetylation 

both in vitro and in yeast cells. We also showed that Rtt109-R292 plays a more important 

role in Asf1-mediated histone acetylation. 

The structure of the Rtt109-AcCoA/Vps75 complex, together with results from in 

vitro enzymological assays and analysis of acetylation in yeast cells, also indicate that 

histone substrate binding occurs within the interior surface of the ring-shaped 

Rtt109/Vps75 complex. Three lines of evidence support this model. First, the acetyl groups 

of the two Rtt109-bound AcCoA cofactors in the complex point into the interior of the ring. 

Second, the internal surface of the ring shows a much higher degree of sequence 

conservation than the exterior. Third, we have identified several Rtt109 and Vps75 

substitution mutations within the interior of the ring that reduce histone H3 acetylation in 

vitro and H3K9/K27 but not H3K56 acetylation in vivo. The 2:2 stoichiometry and 2-fold 

symmetry of the complex are also consistent with the observation that Vps75 preferentially 

binds (H3–H4)2 heterotetramers (Selth and Svejstrup, 2007) and strongly suggests that both 

H3 molecules of the heterotetramer are acetylated for histone deposition. In this way, the 

Vps75 histone chaperone serves as a cofactor for Rtt109-mediated acetylation by both 

appropriately positioning histone H3K9 for acetylation in the Rtt109 active site and 

ensuring homogenous histone H3 acetylation before H3–H4 deposition into nascent 

chromatin. 

The structure of the Rtt109-AcCoA/Vps75 complex also enabled us to design Rtt109 and 

Vps75 separation-of-function mutants. These mutations leave H3K56 acetylation 

unaffected, but completely abolish the H3K9/K27 acetylation that remains in gcn5Δ cells 

(Figures 5 and 6). Significantly, mutations that selectively perturb the Rtt109/Vps75 

enzyme do not exacerbate the phenotypes of gcn5Δ cells nor do they exhibit phenotypes 

that are commonly observed in mutants where replication-coupled nucleosome assembly is 



    

152 

defective. This is likely because of the overlapping substrate specificity of Gcn5 and 

Rtt109/Vps75 for H3K9/K27 and suggests that the Rtt109/Vps75 complex contributes to, 

but is not essential for replication-coupled nucleosome assembly. 

It is currently unclear why several distinct HATs (Hat1, Gcn5, Rtt109/Vps75, Rtt109/Asf1, 

and possibly others) contribute to the acetylation of new H3/H4 molecules. By analogy 

with isoenzymes, some of these HATs may not be functionally redundant under certain 

growth or cellular stress conditions. However, new tools will be necessary to determine 

whether this is the case. Thus far, studies aimed at assigning functions to the acetylation of 

newly synthesized histones have been mainly performed by creating yeast strains where H3 

and H4 carry several lysine-to-arginine mutations in the N-terminal tails. This experimental 

strategy has been helpful, but suffers from two limitations. First, these mutations cripple the 

acetylation of both newly synthesized and pre-existing histones and global disruption of 

histone acetylation interferes with transcription. Second, phenotypes that result from 

histone lysine-to-arginine substitutions might be due to mutations of the lysines, rather than 

the absence of acetylation. Rtt109/Vps75 is an enzyme that exclusively acetylates non-

nucleosomal histones at two specific residues in the N-terminal tails of new H3 molecules. 

Therefore, the structure-based Rtt109 mutants described here, which are specifically 

defective in H3K9/H3K27, but not H3K56 acetylation, may provide invaluable tools to 

investigate the elusive function of the acetylation of the N-terminal tails of newly 

synthesized histones. 

Experimental procedures 

Individual Rtt109 and Vps75 proteins were engineered as GST fusions as previously 

described (Tang et al., 2008a; Tang et al., 2008b), with the GST moiety removed by TEV 

protease as necessary. Quick-change site-directed mutagenesis (Stratagene) was used to 

introduce selected protein mutations. Recombinant human 6His-ASF1a protein (Tang et al., 

2006) and yeast (H3–H4)2 heterotetramer (Luger et al., 1999) were prepared as previously 

described. Yeast 6His-Asf1N(1–154) was cloned and prepared similarly to human ASF1a. 
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To produce complexes by coexpression, we subcloned DNAs encoding full-length Vps75 

(or a 1–232 fragment as used in crystallization) and full-length Rtt109 proteins into the 

MCS1 and MCS2 sites, respectively, of a modified 6His-TEV-pCDF-Duet1 vector. Protein 

complexes were expressed in bacteria and purified to homogeneity through a combination 

of Ni-affinity, TEV protease cleavage, MonoQ anion exchange and Superdex S200 gel 

filtration chromatography. 

Rtt109-Vps75 pull-down assays were carried out with wild-type or mutant GST-Rtt109 

proteins bound to glutathione resin and untagged wild-type or mutant forms of Vps75. 

After binding reactions, proteins retained on the resin were resolved by SDS-PAGE. For 

enzymatic assays, we adapted the radioactive HAT assay as previously described (Lau et 

al., 2000; Thompson et al., 2001) using yeast (H3–H4)2 tetramer as a substrate. Proteolysis 

studies of Rtt109 protein constructs were carried out with trypsin protease in the absence or 

presence of stoichiometric amounts of full length Vps75 and terminated by boiling the 

samples for resolution on SDS-PAGE. 

Native crystals of the Rtt109-AcCoA/Vps75-(1–232) complex were obtained using 

hanging-drop vapor-diffusion from a reservoir solution containing 10.0% (v/v) PEG8000, 

8% (v/v) ethylene glycol, and 100 mM HEPES pH 7.5 buffer. Peptide-soaked           

Rtt109-AcCoA/Vps75-(1–232) crystals were prepared by soaking native crystals with 1 

mM CoA and 1 mM of a H3K9 14-amino acid peptide. The structure of the peptide soaked 

Rtt109-AcCoA/Vps75-(1–232) complex was determined to 2.8 Å resolution using 

molecular replacement with Rtt109-Δ (130–179) (PDB ID 3D35) (Tang et al., 2008a) and a 

Vps75-(1–232) monomer (PDB ID 3DM7) (Tang et al., 2008b) as search models. The 

models were adjusted and refined to include the 130–179 segment of Rtt109, AcCoA, and 

residues 11–14 of the H3K9 peptide [(NH2)A-R-T-K-Q-T-A-R-K-S-T-G-G-K (CONH2)] 

(Figure S1; Table 1). Given that the peptide does not make extensive protein contact and is 

located far from the active site, we infer that this peptide-binding mode is not biologically 

relevant. The final model, with the addition of 23 water molecules, was checked for errors 

using composite simulated annealing omit maps (Table 1). The structure of the native 

Rtt109-AcCoA/Vps75-(1–232) crystals was determined using the refined peptide-soaked 
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Rtt109-AcCoA/Vps75-(1–232) model and refined to 3.3 Å resolution (Table 1). 

Comparison of the two crystal forms reveals that the presence of the H3K9 peptide does 

not alter the overall Rtt109-AcCoa/Vps75 complex structure. 

Yeast strains and plasmids to express Rtt109, as well as protocols to monitor H3K9 and 

K56 acetylation by immunoblotting and mass spectrometry, are described in detail in 

the Table S1 and Supplemental Experimental Procedures. 

Accession numbers 

Atomic coordinates and structure factors of the Rtt109-AcCoA/Vps75 complexes have 

been deposited in the Protein Data Bank with accession codes 3Q35 (native crystal) and 

3Q33 (peptide-soaked crystal), respectively. 
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Supplemental figures 

 

Figure S1, related to Figure1. Electron density maps of Rtt109/Vps75 complexes. 
Composite omit and 2Fo-Fc maps of the native Rtt109/Vps75 complex crystal (lower 
panels) and the peptide-soaked Rtt109/Vps75 complex crystal (upper panels) structures.  
The two crystal structures superimpose with an RMSD of 0.54 Å for all Cα atoms. This 
data shows that the binding of the H3K9 peptide (arrow) at the Rtt109-Vps75 interface 
does not cause local conformation changes. 



    

160 

 

 

Figure S2, related to Figure 2. (A) Interaction-defective mutations mapped onto Rtt109 
and Vps75: Right panel: Vps75 mutations that decrease both Rtt109 pull-down and   
Vps75-stimulated Rtt109 HAT activity are highlighted in red on the surface representation 
of the Vps75 dimer. For clarity only one subunit of Vps75 and the a1′ helix of the opposing 
subunit are shown. The interacting segments of the Rtt109 subunit (grey, helices α8, α9 
and α3i) are shown in grey cartoon; Left panel: Rtt109 mutations that decrease both Vps75 
pull-down and Vps75-stimulated Rtt109 HAT activity (by at least 2-fold) are indicated in 
red on the surface representation of one Rtt109 subunit (grey). Only one subunit of Vps75 
and the a1′ helix of the opposing subunit are shown in cartoon representation. This figure 
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shows that mutations that affect the activity of the Rtt109/Vps75 holoenzyme correlate with 
positions that are associated with protein complex formation. The relative orientation of the 
right and left panels is indicated. (B): Sequence alignment of Rtt109 and homologs around 
the 130-179 segment. The residue numbers of S. cerevisiae Rtt109 is indicated at the top, 
with the 130-179 segment underlined in blue. This figure shows that Rtt109’s 130-179 
segment is evolutionarily conserved only in a subset of species. 
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Figure S3, related to Figure 3. Kinetics of histone H3 acetylation by (A)             
Rtt109-WT/Vps75, (B) Rtt109-(R292E)/Vps75 and (C) Rtt109-WT/Asf1 and      
Rtt109-(R292E)/Asf1 complexes. The studies were carried out using 30 nM of the 
respective enzyme complex, saturating levels of acetyl coenzyme A and H3-WT and 
mutants (K9R/K27R, K9R/K56R, or K27R/K56R) in the context of the (H3-H4)2 substrate 
at specified concentrations.  The averages of two duplicate experiments are shown for each 
data point.  The kinetic parameters were determined by a non-linear regression fit to the 
Michaelis-Menten equation. This data shows that the Rtt109-WT/Vps75 complex 
preferentially acetylates H3K9 in vitro. (D) Lysine substrate selectivity of the 
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Rtt109/Vps75 complex isolated from yeast. The kinetics of histone H3 acetylation by the 
Rtt109-TAP/Vps75 complex (400 nM) purified from yeast cells with 20 μM               
acetyl-coenzyme A and H3 substrate in the context of 8.2 μM recombinant yeast (H3-H4)2 
substrate.  At each time point, proteins were precipitated with acetone. (Left panel) Proteins 
were resuspended in 0.1 M ammonium bicarbonate, propionylated, and subjected to trypsin 
digestion to determine the degree of site-specific histone H3 acetylation by mass 
spectrometry. (Right panel) Proteins from the 5-min time point were precipitated with 
acetone, resuspended in SDS-PAGE sample buffer and resolved through an SDS-15% 
polyacrylamide gel. After protein transfer to a PVDF membrane, Edman sequencing of H3 
was performed for 30 cycles. For each acetylatable lysine, the approximate abundance of 
the phenylthiohydantoin (PTH) derivatives of acetyl-lysine and lysine was determined. ND: 
Not detected. These studies demonstrate that the Rtt109/Vps75 enzyme preferentially 
acetylates H3K9 over K14, K18, K23, K27, or K56. 
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Figure S4, related to Figure 4. Kinetics of histone H3 acetylation by Rtt109 and Vps75 
mutants. Reactions were carried out with 30 nM of Rtt109 (WT, unless otherwise 
indicated), 150 nM of Vps75 (WT, unless otherwise indicated), 20 μM acetyl coenzyme A 
(saturating concentration for Rtt109 WT and Vps75 WT), and (H3-H4)2 substrate at 
specified concentrations. The average of two duplicate experiments are shown for each data 
point. The kinetic parameters were determined by a non-linear regression fit to the 
Michaelis-Menten equation.  This data identifies several Rtt109 and Vps75 mutations that 
decrease the activity of the holoenzyme. 
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Figure S5, related to Figure 5. Genotoxic agent sensitivity of mutants that disrupt the 
Rtt109/Vps75 complex. (A) 5-fold serial dilutions of each strain were analysed for colony 
formation on rich medium (YPD) or plates containing the genotoxic agents methyl methane 
sulfonate (MMS) and hydroxyurea (HU). (B) Proliferation of gcn5, rtt109 and vps75 single 
and double mutants was monitored by measuring absorbance at 660 nm. (C) Same as in A. 
The plates show 5-fold serial dilutions of each strain from left to right. These data show 
that mutations that selectively disrupt the Rtt109/Vps75 enzyme, without reducing H3K56 
acetylation, do not result in genotoxic agent sensitivity or slow proliferation. 
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C 

 

Figure S6, related to Figure 5. Phenotypic effect of mutations that impair Gcn5, Hat1 
or Rtt106 when combined with mutations that abolish the function of the 
Rtt109/Vps75 enzyme. (A-B) Each strain was tested for growth on rich medium (YPD) or 
plates containing the genotoxic agents methyl methanesulfonate (MMS) and hydroxyurea 
(HU).  The plates show 5-fold serial dilutions of each strain. (C) Expression of a sub-
telomeric URA3 reporter gene located on the left arm of chromosome VII was monitored 
by colony formation assays on minimal medium lacking uracil (SC-URA) or medium 
containing 5-Fluoroorotic acid (a drug that is cytotoxic to cells expressing the URA3 
reporter gene).  The figure shows 5-fold serial dilutions of wild-type cells (UCC18), four 
independent gcn5Δ isolates and one gcn5Δ vps75Δ clone derived from UCC18 gcn5Δ cells.  
This experiment shows that the silencing defect of a sub-telomeric heterochromatin 
reporter gene in a gcn5 null mutant strain is not enhanced by a vps75Δ mutation that 
disrupts the function of the Rtt109/Vps75 holoenzyme. 



    

169 

Supplemental experimental procedures 

Protein preparation 

For biochemical studies, N-terminal GST-fusion proteins of full-length Rtt109 and Vps75 

were prepared as recombinant proteins from bacteria as previously described (Tang et al., 

2008a; Tang et al., 2008b), and Quick-change site-directed mutagenesis (Stratagene) was 

employed to introduce selected protein mutations. An N-terminal 6xHis-fusion protein of 

full-length human ASF1a was prepared as previously described (Tang et al., 2006) and an 

analogous fusion protein to the S. cerevisiae Asf1 core domain (residues 1-154) was also 

prepared similarly. Both 6xHis-fusion proteins were purified through nickel affinity and 

size exclusion chromatography in Assay Buffer (25 mM HEPES pH 7.5, 300 mM NaCl, 

and 0.1 mM TCEP) and stored at 4°C before use. Overexpression plasmids encoding     

full-length S. cerevisiae H3 and H4 proteins were a gift from Dr. Bradley Cairns 

(University of Utah) and were used to prepare recombinant (H3-H4)2 tetramers using      

co-refolding of H3 and H4 followed by gel filtration to isolate homogeneous complexes as 

previously reported (Luger et al., 1999), which were stored in Assay Buffer at 4°C. 

To prepare wild-type and mutant Rtt109-Vps75 complexes for enzymatic assays, we 

subcloned DNAs encoding full-length wild-type or mutant forms of Vps75 and Rtt109 into 

the BamHI/SalI and NdeI/XhoI sites, respectively, of a modified 6His-TEV-pCDF-Duet1 

vector. To facilitate protein cocrystallization, we used gene fragments encoding Vps75-(1-

232) and full-length Rtt109. We transformed these plasmids into E. coli BL21 (DE3) Gold 

cells followed by cell growth at 37°C in LB medium and induction at OD600=0.8 with      

0.8 mM IPTG at 18°C overnight. Cells were harvested by centrifugation and lysed by 

sonication in 20 mM HEPES pH 7.5, 500 mM NaCl, 10 mM Imidazole (pH 7.0), and         

5 mM 2-Mercaptoethanol (2-ME), supplemented with protease inhibitor cocktail. The 

tightly associated complex was purified to homogeneity using a combination of Ni-affinity, 

overnight cleavage with TEV protease, and further purification by MonoQ anion exchange 

(in 20 mM HEPES pH 7.5 buffer with a NaCl gradient from 50 mM to 1000 mM and 5 mM 
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2-ME) and Superdex 200 gel filtration chromatography in Gel Filtration Buffer (20 mM 

HEPES pH 7.5, 150 mM NaCl and 5 mM 2-ME). The purified protein complex was 

concentrated using an Amicon concentrator to 10 mg/ml in the Gel Filtration Buffer for 

crystallization or dialyzed against Assay Buffer for enzymatic assays before flash freezing 

the protein complex in liquid nitrogen until use. 

In vitro Rtt109-Vps75 binding (pull-down) assays 

Wild-type and mutant GST-Vps75 fusion proteins were subjected to on-resin cleavage with 

TEV protease over-night, incubated with nickel resin to remove TEV protease, and the 

supernatant was dialyzed against PBS-βΜΕ for storage at 4 °C before use. Wild-type and 

mutant GST-Rtt109 proteins were retained on glutathione-Sepharose resin, aliquoted into 

1.5 ml Eppendorf tubes, washed 3 times with PBS-βME buffer and stored at 4°C before 

use. Samples were quantitated by SDS-PAGE analysis with BSA controls before addition 

of stoichiometric amounts of Vps75 protein to GST-Rtt109-bound glutathione-Sepharose 

resin. Binding reactions were incubated at 4°C for 1 h with gentle rotation followed by 

washing the resin 3 times with PBS-βME buffer. Protein retained on the resin was resolved 

by SDS-PAGE and visualized by Coomassie blue staining. As a negative control, Vps75 

proteins were also incubated with GST alone showing no detectable Vps75 binding to the 

resin. 

Histone Acetyltransferase (HAT) enzyme assay  

Wild-type or mutant GST-Rtt109 protein, eluted off glutathione resin with reduced 

glutathione, was dialyzed against Assay Buffer, quantified, and stored at 4°C before use.  

For enzymatic assays, we adapted the radioactive HAT assay as previously described (Lau 

et al., 2000; Thompson et al., 2001). Briefly, GST-Rtt109 proteins (36 nM) were mixed 

with excess chaperone (200 nM): either wild-type yAsf1N(1-154) or wild-type or mutant 

Vps75 proteins for 10 min before (H3-H4)2 tetramers were added to a final concentration of 

8.2 μM and equilibrated at 30ºC for 10 min. [14C]-AcCoA was added to a final 
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concentration of 20.8 μM and allowed to react for 5 min. We determined the reaction rates 

for the respective Rtt109/histone chaperone complex and mutants using the previously 

described gel-based assay that measures the incorporation of a 14C-labeled acetyl group into 

the yeast (H3-H4)2 substrate.   

For the determination of the apparent Km values for the (H3-H4)2 substrates (either wild 

type or bearing the H3 mutations K9R/K56R, K9R/K27R or K27R/K56R) in the presence 

of wild-type or mutant enzyme and Vps75 chaperone, GST-Rtt109 proteins (36 nM) were 

mixed with excess Vps75 (170 nM) for 10 min before the H3-H4 substrate was added over 

a range of concentrations and equilibrated at 30ºC for 10 min.  The reaction was initiated 

with [14C]-AcCoA at a final concentration of 20.4 μM. The data that was generated is 

shown in Supplemental Figures 3 and 4. All assays were performed in duplicate at least two 

times and the data generally agreed within 20%. It should be noted that the approximate 

40% difference between the kcat values for WT Rtt109 in Figures 3F and 4E are likely due 

to the use of two different enzyme and substrate preparations that were employed on 

separate occasions for these measurements. 

Limited proteolysis studies 

We employed three Rtt109 proteins for limited proteolysis studies: full-length Rtt109, 

Rtt109-∆(130-179) and Rtt109-(L148D). These proteins were prepared by treating the 

corresponding GST-fusion proteins with TEV protease and isolating the cleaved Rtt109 

proteins by Superdex 200 gel filtration chromatography in Gel Filtration Buffer. Incubation 

of the proteins, diluted to a concentration of 0.3 mg/ml (~6 μM), with trypsin protease (0.3 

μg/ml) in the absence or presence of stoichiometric amounts of full length Vps75 was 

carried out for 10 min and 30 min and terminated by boiling the samples in SDS-PAGE 

sample buffer. The reaction products were analyzed by SDS-PAGE. 
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Crystallization and structure determination of the Rtt109-Ac-CoA /Vps75 complex 

We obtained small crystals of the Rtt109/Vps75 (1-232) complex mixed with Ac-CoA 

(native crystal, PDB entry XXXX) using hanging-drop vapor-diffusion at room 

temperature from a reservoir solution containing 10.0% (v/v) PEG8000, 8% (v/v) ethylene 

glycol and 100 mM HEPES pH 7.5 buffer. We cryoprotected these crystals in a solution 

containing reservoir supplemented with increasing amounts of glycerol solution (0%, 10% 

and 20% (v/v)), soaking the crystals for about 5 min in each solution prior to flash freezing 

the crystals in liquid nitrogen. Peptide-soaked crystal (PDB entry YYYY) was prepared by 

soaking the native crystal above with 1 mM CoA and 1 mM of an H3K9 14-residue 

peptide, with sequence (NH2)A-R-T-K-Q-T-A-R-K-S-T-G-G-K (CONH2). 

Crystallographic data was collected using beamline GM-CA/CAT 23ID-B at the Advanced 

Photon Source at a wavelength of 0.997 Å at 100 K. The data was processed and scaled 

using the HKL2000 suite (Dauter et al., 2000). The native and peptide-soaked crystals 

diffracted to useful resolution limits of 3.2 and 2.8 Å, respectively.  The structure of the 

peptide-soaked crystal (PDB entry YYYY) was determined by molecular replacement 

using one Rtt109-Δ(130-179) (PDB ID 3D35) (Tang et al., 2008a) and one subunit of the 

Vps75-(1-232) homodimer (PDB ID 3DM7) (Tang et al., 2008b) as search models using 

the program PHASER (Potterton et al., 2003). The protein model was adjusted with 

reference to 2Fo-Fc and Fo-Fc difference fourier maps using the program COOT (Emsley 

and Cowtan, 2004) and the REFMAC library (Vagin et al., 2004) and refined with CNS 

(Brunger et al., 1998) using iterative model building, simulated annealing, and positional 

and B-factor refinement strategies. At the latter stages of the refinement, the Ac-CoA 

cofactor and segments of residues 130-179 of Rtt109 were modeled into difference Fourier 

maps and refined. Before the addition of water molecules, residues 11-14 of the H3K9 

peptide could be modeled into a continuous stretch of density near the Rtt109-Vps75 

interface. The presence of these peptide residues in the crystal lattice was confirmed with 

simulated annealing omit maps and the inclusion of this peptide fragment improved the 

refinement statistics. However, given that the peptide does not make extensive protein 

contact and is located far from the active site, we infer that this peptide-binding mode is not 
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biologically relevant. The 2.8 Å resolution refined model with the inclusion of 54 water 

molecules was checked for errors using composite simulated annealing omit maps (Table 

1). We evaluated the final model with PROCHECK (Laskowski et al., 1993) revealing 

good stereochemical parameters and Ramachandran plot statistics for most residues.  

Protein residues not modeled in the final structure due to poor electron density include 

residues 130-133, 166-171 and 405-436 of Rtt109 and residues 1-8, 131-135 and 227-232 

of Vps75. The structure of the native crystal (PDB entry XXXX) was determined using the 

refined native crystal structure as a model and refined to a resolution of 3.2 Å (Table 1).  

Comparison of the two crystal structures reveals that the presence of the H3K9 peptide in 

the crystal lattice of the peptide-soaked crystal does not alter the overall                  

Rtt109-CoA/Vps75 complex structure, in particular at the Rtt109-Vps75 interface that it 

contacts (Figure S1).  

Yeast expression plasmids 

The backbone vector for construction of yeast Rtt109 and Vps75 expression plasmids from 

their natural promoters was the modified YCplac111 3Flag His3MX1 LEU2 plasmid, which 

we previously described (Tang et al., 2008a). RTT109 wild-type and mutant genes were 

obtained by excising a BamHI-SmaI fragment from the modified 6His-TEV-pCDF-Duet1 

vector for bacterial expression of each Rtt109 construct. Restriction fragments were 

purified from agarose gels using QIAquick Gel Extraction Kit (QIAGEN). Insertion of 

RTT109 fragments into a yeast expression vector was achieved by homologous 

recombination in vivo. For this purpose, we co-transformed the BamHI-SmaI restriction 

fragments encoding the wild-type or mutant RTT109 genes along with the NotI linearized 

YCplac111 3Flag His3MX1 LEU2 plasmid into the ZGY954 yeast cells. Yeast Rtt109 

expression plasmids were recovered from Leu+ colonies and their sequence was verified by 

DNA sequencing. A DNA fragment containing the VPS75 promoter (408bp) and the 

VPS75 ORF (792bp) was inserted in-frame with the 3Flag epitope between the KpnI and 

PacI sites of the YCplac111 3Flag His3MX1 LEU2 plasmid. These plasmids were then 

used to transform the various yeast strains described in this study (Table S1). After plasmid 

transformation into gcn5 rtt109 double mutants, two clones of cells were analyzed further 
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for each Rtt109 expression vector. To rule out the possibility of reversion of Rtt109/Vps75 

point mutations, plasmids were isolated and sequenced from the strains used to monitor 

genotoxic agent sensitivity and in vivo acetylation. 

Yeast strains  

The BY4741 wild-type and deletion strains used in Figure S5C were purchased from Open 

Biosystems.  The genotypes of all the other yeast strains used in this study are described in 

Table S1. 

  Table S1. List of yeast strains 

Strain Genotype Source 

   
RMY212 
 
 

MATa ade2–101(och) his3200 lys2–801(amp) trp1901 ura3–52 
hht1-hhf1::LEU2 hht2-hhf2::HIS3 pRM212 [CEN4 ARS1 
TRP1 hht2-K9R HHF2] 
 

(Zhang et al., 
1998) 

WT BY4741 MATa ura3Δ0 leu2Δ0 his3Δ1 met15Δ0              Fillingham et 
al., 2008 

JF81 
  

BY4741 gcn5Δ::KanMX6 
 

Fillingham et 
al., 2008 

JF103 BY4741 MATa gcn5Δ::KanMX6 rtt109Δ::NatMX Fillingham et 
al., 2008 

DWY01 BY4741 rtt109Δ::KanMX (Pan et al., 
2004) 

DWY02 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX This work 

DWY03 JF103 p[ARS CEN LEU2 HIS3MX1 RTT109-(WT)-FLAG3] This work 

DWY04 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109-(L148D)-FLAG3] 
  

This work 

DWY05 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109-(R194E) –FLAG3] This work 

DWY06 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109-(K290R)-FLAG3] This work 
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DWY07 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109-(R292E)-FLAG3] This work 

DWY08 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109 (R355E, K356E)-
FLAG3] 
 

This work 

DWY09 JF103 p[ARS CEN LEU2 HIS3MX1 rtt109 (E378R, N382R) –
FLAG3] 
 

This work 

DWY10 DWY01 p[ARS CEN LEU2 HIS3MX1 RTT109-(WT)-FLAG3] This work 

DWY11 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(L148D)-
FLAG3] 
 

This work 
 

DWY12 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(R194E)-
FLAG3] 
                                           

This work 

DWY13 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(K290R-
FLAG3] 

This work 

DWY14 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(R292E)-
FLAG3] 
 

This work 

DWY15 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(R355E, 
K356E) –FLAG3] 
 

This work 

DWY16 DWY01 p[ARS CEN LEU2 HIS3MX1 rtt109-(E378R, 
N382R) –FLAG3] 
 

This work 

D10 W303 MATa leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 
bar1::HIS3 
 

Tang et al.,  
2008a 

ZGY954 W303 MATa leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 
bar1Δ::HIS3 rtt109Δ::KanMX6 
 

Han et al., 2007

WT 
BY4743 

MATa ura3Δ0 leu2Δ0 his3Δ1 This work 

rtt109Δ 
BY4743 

MATa ura3Δ0 leu2Δ0 his3Δ rtt109Δ::KanMX This work 

DWY17 DWY03 p[ARS CEN LEU2 URA3 VPS75-(WT)-HA] This work 

DWY18 DWY04 p[ARS CEN LEU2 URA3 VPS75-(WT)-HA] This work 

DWY19 DWY09 p[ARS CEN LEU2 URA3 VPS75-(WT)-HA] This work 

DWY20 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX RTT109-
TAP::HIS3MX6 p[ARS CEN LEU2 HIS3MX1 VPS75-(WT)-

This work 
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FLAG3] 
 

DWY21 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX RTT109-
TAP::HIS3MX6 p[ARS CEN LEU2 HIS3MX1 vps75-(R173E, 
K177E)-FLAG3] 
 

This work 

DWY22 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX RTT109-
TAP::HIS3MX6 p[ARS CEN LEU2 HIS3MX1 vps75-(E206K, 
E207K)-FLAG3] 
 

This work 

DWY23 
 

BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX RTT109-
TAP::HIS3MX6 p[ARS CEN LEU2 HIS3MX1 vps75-(E218K, 
D222K)-FLAG3] 
 

This work 
 

DWY24 BY4741 gcn5Δ::KanMX6 hat1Δ::URA3 This work 

DWY25 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX hat1Δ::URA3 This work 

DWY26 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX hat1Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 RTT109-(WT)-FLAG3] 
 

This work 

DWY27 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX hat1Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 rtt109-(L148D)-FLAG3] 
 

This work 

DWY28 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX hat1Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 rtt109-(E378R, N382R)-
FLAG3] 
 

This work 

DWY29 BY4741gcn5Δ::KanMX6 rtt106Δ::URA3 This work 

DWY30 BY4741 gcn5Δ::KanMX6 vps75Δ::HphMX  
rtt106Δ::URA3 
 

This work 

DWY31 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX rtt106Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 RTT109-(WT)-FLAG3] 
 

This work 
 

DWY32 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX rtt106Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 rtt109-(L148D)-FLAG3] 
 

This work 

DWY33 BY4741 gcn5Δ::KanMX6 rtt109Δ::NatMX rtt106Δ::URA3 
p[ARS CEN LEU2 HIS3MX1 rtt109-(E378R, N382R)-
FLAG3] 
 

This work 

UCC18 W303 MATa TEL VII-L adh4::URA3 (Aparicio et al., 
1991) 
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YAV178 UCC18 gcn5Δ::HphMX This work 

YAV179 UCC18 gcn5Δ::HphMX rtt109Δ::KanMX This work 

YAV183 YAV179 p[ARS CEN LEU2 HIS3MX1 RTT109-(WT)-
FLAG3] 
 

This work 

YAV184 DWY35 p[ARS CEN LEU2 HIS3MX1 rtt109-(E378R, 
N382R)-FLAG3] 
 

This work 

YAV180 UCC18 gcn5Δ::HphMX vps75Δ::KanMX This work 

YAV181 YAV180 p[ARS CEN LEU2 HIS3MX1 VPS75-(WT)-FLAG3] This work 

YAV182 DWY40 p[ARS CEN LEU2 HIS3MX1 vps75-(E206K, 
E207K)-FLAG3] 
 

This work 

YAV174 BY4741 CAC2-TAP::HIS3MX6 Open  
Biosystems 

YAV175 JF103 CAC2-TAP::URA3 p[ARS CEN LEU2 HIS3MX1 
RTT109-(WT)-FLAG3] 
 

This work 

YAV176 JF103 CAC2-TAP::URA3 p[ARS CEN LEU2 HIS3MX1 
RTT109-(L148D)-FLAG3] 
 

This work 

YAV177 JF103 CAC2-TAP::URA3 p[ARS CEN LEU2 HIS3MX1 
RTT109-(E378R,N382R)-FLAG3] 
 

This work 

Genotoxic agent susceptibility assays 

These assays were performed as previously described (Tang et al., 2008a). 

Immunoblotting 

Strains RMY212, WT, JF81, JF103, DWY01 and DWY02, which all lack LEU+ plasmids, 

were grown to exponential phase in minimal medium containing leucine at 30°C. Strains 

DWY03-DWY16, which contain LEU+ plasmids for expression of Rtt109-Flag, were 

grown to exponential phase in minimal medium lacking leucine at 30°C. Whole-cell lysates 

were prepared from 1-2×107 cells using an alkaline extraction method (Kushnirov, 2000).  
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Proteins from whole-cell lysates were separated in SDS-15% polyacrylamide gels. To 

verify expression of Rtt109-Flag proteins in strains DWY03-DWY09), proteins were 

transferred to PVDF membranes by semi-dry transfer for 1:15 h at 15 V using 1X Towbin 

buffer (25 mM Tris, 192 mM Glycine, pH 8.3), containing 5% Methanol and 0.02% SDS.  

Immunoblotting was performed using an antibody against the Flag epitope (anti-Flag M2, 

Sigma). For histone immunoblots, proteins were transferred to nitrocellulose membranes by 

semi-dry transfer for 1 h at 10 V using 1X Towbin buffer containing 20% Methanol and 

0.02% SDS. To probe for histone H3K56Ac, we used the H3K56Ac antibody (AV105) that 

we described previously (Masumoto et al., 2005). For histone H3K9Ac blots, we used a 

commercial antibody (Upstate, catalogue number: 07-352, Lot: DMA 1394804). For 

histone H3K27Ac blots, we used an antibody specific for histone H3K27 acetylation that 

was a gift from Dr. Zhiguo Zhang. Probing for histone H3 as a loading control was 

performed using a previously described rabbit polyclonal antibody (YAV77/78) raised 

against a C-terminal peptide of H3 that is not subject to post-translational modification 

(Tang et al., 2008a). 

Mass Spectrometry (MS) to quantify the stoichiometry of histone acetylation 

Histones were isolated from asynchronously growing S. cerevisiae cells using two different 

procedures that gave rise to similar results.  In the first approach, we purified histones from 

yeast cells as previously described (Poveda et al., 2004). The second procedure was 

performed as follows: 250 µl of protein A-Sepharose beads (GE healthcare) were incubated 

with 300 µg of affinity-purified antibody against the N-terminal domain of yeast H3 

(AV71/72) for 1 h at 4ºC in 10 mM Tris-HCl pH 8.0 (Xhemalce et al., 2007). The antibody 

beads were then washed three times with the same buffer. S. cerevisiae cells (1 ml cell 

pellet) were resuspended in 1 ml of lysis buffer (100 mM Tris-HCl pH 8.0, 200 mM NaCl, 

1X EDTA-free complete protease inhibitor cocktail (Roche), 100 mM sodium butyrate,    

10 µM trichostatin A, 100 mM nicotinamide, 1 mM dithiothreitol) and lysed using a 6850 

Freezer Mill (SPEX certiprep). The cell lysates were then incubated in the presence of    

200 µg/ml of ethidium bromide for 30 min on ice to force histone dissociation from DNA.  

After two brief (5-10 seconds) pulses of sonication, the cell lysates were centrifuged at 
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3000 rpm and 4ºC for 15 min in a tabletop centrifuge (Heraeus Multifuge 3S-R). The 

supernatant was mixed with 50 µl of H3 antibody beads and incubated overnight at 4ºC. 

The beads were washed five times in wash buffer (100 mM Tris-HCl pH 8, 100 mM NaCl), 

resuspended in 1X SDS-PAGE sample buffer and boiled for 5 min to elute bound proteins.  

Two alternative procedures were used to obtain histone H3 tryptic peptides for mass 

spectrometry (MS). In the first approach, acid extracts containing core histones were 

fractionated by reverse phase HPLC and the H3 fractions were pooled and processed for 

propionylation of unmodified lysine residues and trypsin digestion (Drogaris et al., 2008). 

Alternatively, acid extracts containing core histones were resolved in an SDS-15% 

polyacrylamide gel (29:1 acrylamide:N,N`-methylene bisacrylamide molar ratio), which 

was stained with Bio-Safe Coomassie G-250 stain (Bio-Rad) and destained in water. The 

bands corresponding to histone H3 were then cut from the gel for mass spectrometry. The 

gel bands were cut into small slices, transferred to Eppendorf tubes and incubated twice for 

at least 3 h with 1.5 ml of 5% acetic acid, 10% methanol. This solution was removed and 

gel bands were destained using deionized (DI) water, 50:50 DI water: acetonitrile (ACN), 

and pure ACN. The bands were washed and resuspended in a 0.1 M ammonium 

bicarbonate (Ambic) solution (pH 8.0). A propionic anhydride reagent (2:1 PA:water) was 

added to the bands in a 1:1 volume ratio and incubated for 1 h at room temperature with 

shaking. The buffer and derivatization mixture was replaced with fresh reagents to perform 

a second propionylation reaction for 1 h. After removing excess reagent, the bands were 

washed with a 0.1 M Ambic solution, and evaporated to dryness in a Speed-Vac.  

Rehydration with 0.1 M Ambic was followed by the addition of 1 µg of trypsin and 

overnight protein digestion. The digest supernatant was placed in a separate Eppendorf 

tube. Peptides were extracted twice with a 50:50 DI water:ACN solution containing 5% 

TFA (v:v:v). The bands were incubated for 15 min at room temperature with shaking. The 

two solutions containing extracted peptides were recovered, combined with the original 

tryptic digest supernatant, and evaporated to dryness in a Speed-Vac. Peptides were 

dissolved in the initial mobile phase (95:5 DI water:ACN, 0.2% formic acid (v:v:v) prior to 

injection onto the LC-MS instrument, an AB/Sciex API 4000 Q-Trap mass spectrometer 

(Thornhill, ON, Canada) equipped with a Nanospray II interface. 
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The different acetylated forms of H3 were detected by multiple reaction monitoring 

(MRM) (Lange et al., 2008). For each acetylated peptide, two to four precursor – product 

ion pairs corresponding to the following MRM transitions were monitored (ac, acetylation; 

pr, propionylation of ε-amino group): 

A) Doubly charged H3 peptide 54-FQK(ac)STELLIR-63:  

m/z 638.9  1001.6 and m/z 638.9  831.5 

B) Doubly charged H3 peptide 54-FQK(pr)STELLIR-63:  

m/z 645.9  1015.6 and m/z 638.9  831.5 

C) Doubly charged H3 peptide 9-K(ac)STGGK(pr)APR-17:  

m/z 500.3 742.4 and m/z 500.3 829.5 

D) Doubly charged H3 peptide 9-K(pr)STGGK(ac)APR-17:  

m/z 500.3  728.4 and m/z 500.3  815.4 

E) Doubly charged H3 peptide 9-K(ac)STGGK(ac)APR-17: 

m/z 493.3  728.4 and m/z 493.3  815.4 

F) Doubly charged H3 peptide 9-K(pr)STGGK(pr)APR-17:   

m/z 507.3  742.4 and m/z 507.3  742.4 

G) Doubly charged H3 peptide 18-K(ac)QLASK(pr)AAR-26:  

m/z 535.8  772.5 and m/z 535.8  659.4 

H) Doubly charged H3 peptide 18-K(pr)QLASK(ac)AAR-26:   

m/z 535.8  758.5 and m/z 535.8  645.4 

I) Doubly charged H3 peptide 18-K(pr)QLASK(pr)AAR-26:   

m/z 542.8  772.5 and m/z 542.8  659.4 

J) Triply charged H3 peptide 27-K(ac)SAPSTGGVK(pr)K(pr)PHR-40: 

m/z 535.3  990.6, m/z 535.3  777.5, m/z 535.3  329.2, and m/z 535.3  1275.7 

K) Triply charged H3 peptide 27-K(pr)SAPSTGGVK(pr)K(pr)PHR-40: 

m/z 540.0  990.6, m/z 540.0  777.5, m/z 540.0  343.2, and m/z 540.0  1275.7 

L) H3 peptide YK(pr)PGTVALR, a non-modified peptide used for normalization of H3 

quantities in each gel band and for fluctuations in the MS response: m/z 530.8  713.4 
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First, the abundance for each peptide MRM transitions (A to L) was normalized to the 

abundance of the non-modified peptide transition (L). These normalized values (An to Ln) 

were then used to calculate the stoichiometry of acetylation at each lysine residue as 

follows. 

 

%H3K56ac = 100 x An / (An + Bn) 

%H3K9ac = 100 x (Cn + En) / (Cn + Dn + En + Fn) 

%H3K14ac = 100 x (Dn + En) / (Cn + Dn + En + Fn) 

Purification of Rtt109-TAP/Vps75 complexes from yeast cells 

Cells expressing Rtt109-TAP or Rtt109-FLAG fusion proteins were grown to 2x107cells/ml 

in two liters of Synthetic Complete (SC) medium lacking leucine (to select for plasmids 

expressing Rtt109 or Vps75) and harvested. The volume of packed cells was estimated, and 

an equal volume of 2x lysis buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 20% glycerol, 

10 mM MgCl2, 10 mM 2-mercaptoethanol, 1 μM MG132) was added. The yeast cell 

suspension was frozen as droplets in liquid nitrogen and the cells were disrupted using a 

freezer mill as described below for the purification of CAF-1/histone complexes. The cell 

lysate was thawed out on ice, and incubated for 30 min with 100 μg/ml ethidium bromide 

and 1 U/ml of benzonase (Novagen). This was followed by two successive rounds of 

centrifugation for 20 min at 20,000 x g and 4ºC. To isolate Rtt109/Vps75 complexes, the 

supernatant cleared of debris was incubated for 60 min with IgG-agarose (Sigma) or anti-

FLAG M2-agarose beads (Sigma). After washing five times with 1.4 ml lysis buffer, 

proteins were eluted from the beads with SDS-PAGE sample buffer and resolved through 

SDS-12% or 15% polyacrylamide gels. The immunoprecipitated complexes were detected 

by immunoblotting with antibodies against CBP to detect Rtt109-TAP (Open Biosystems), 

HA (12CA5, Sigma) or FLAG (M2, Sigma). For mass spectrometry, the complexes 

affinity-purified with anti-FLAG M2-agarose beads were eluted with 0.1 M formic acid. 

The acid eluate was dried in a Speed-Vac, resuspended in 0.1 M ammonium bicarbonate 

(without pH adjustment) and subjected to trypsin digestion and MS analysis as described 

below.   
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Affinity purification of Cac2-TAP/H3/H4 complexes  

Yeast strains expressing Cac2-TAP and either WT or mutant forms of Rtt109 were cultured 

up to 2x107 cells/ml in SC minus leucine (to select for the Rtt109 expression plasmids) and 

harvested. The volume of packed cells was estimated, and an equal volume of 2x lysis 

buffer (50 mM Tris-HCl, pH 7.5, 200 mM NaCl, 2 mM DTT, 20% glycerol) was added. 

The cell suspension was frozen into droplets using liquid nitrogen. Yeast cells were broken 

by grinding in a Spex Certiprep 6850 freezer mill (4 cycles of cell breakage at 10 impacts 

per second with 2 min cooling intervals between each cycles of cell breakage). After 

thawing the cell lysate at 4ºC, 1X EDTA-free Protease Inhibitor Cocktail (Roche) and 100 

μg/ml ethidium bromide were added and, 15 min later, two rounds of centrifugation (20 

min, 16,000 rpm, 4ºC, SS-34 rotor) were performed to remove insoluble debris. The 

cleared supernatant was incubated with IgG-agarose beads (Sigma) for 2 h at 4ºC. The 

beads were recovered by low speed centrifugation (600 rpm, 1 min, 4ºC) and the 

supernatant was discarded. The beads were transferred into an Eppendorf tube and washed 

four times with 1.4 ml TEV cleavage buffer (10 mM Tris-HCl pH 7.5, 100 mM NaCl).  

The beads were resuspended in 200 μl TEV cleavage buffer. The CAF-1/histone complexes 

were eluted from the beads by cleavage with 7.5 μl 10 U/μl AcTEV protease (Invitrogen) 

and incubation for 1 h at 16ºC and 1000 rpm in a Thermomixer. The supernatant was 

recovered and the beads were washed three more times with 200 μl TEV cleavage buffer in 

order to recover as much as possible of the protein complexes released by the TEV 

protease. The four eluates were combined. Because a large excess of AcTEV protease was 

used, the His-tagged AcTEV protease was removed from the eluted protein complexes by 

incubation with 5μl nickel-NTA-agarose beads (Qiagen) for 2 h at 4ºC and 1000 rpm in a 

Thermomixer. The supernatant was concentrated in a Speed-Vac prior to mass 

spectrometry.  

Affinity-purified complexes were dialyzed against 0.1 M ammonium bicarbonate (the pH 

was not adjusted) and digested overnight at 37˚C with 1 µg of trypsin. Tryptic digests were 

evaporated to dryness in a Speed-Vac and subsequently dissolved in a 95:5 water: 
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acetonitrile mixture containing 0.2% formic acid (v:v:v) prior to nanoLC-MS/MS analyses 

using an Eksigent nano-2D LC system coupled to an LTQ-Orbitrap Velos mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany). Peptides were separated on a 

150-µm x 10-cm C18 (3 μm Jupiter particles, Supelco) analytical column using a gradient 

of 5-40% acetonitrile (in 0.2% formic acid) over 65 min. The mass spectrometer was 

operated in a data-dependent acquisition mode with a 1 sec survey scan at 60,000 

resolution, followed by six ion trap product ion spectra (MS/MS) of the most abundant 

precursor ions. The centroided data were merged into single peak-list files and searched 

with the Mascot search engine v2.10 (Matrix Science) against a custom database 

comprising S. cerevisiae Rtt109 (WT, L148D or E378R,N382R), Vps75, Cac1, Cac2, 

Cac3, H3 and H4. All MS/MS spectra with Mascot scores above 25 were selected and 

validated manually to confirm assignment. To determine the abundance of H3 and H4, the 

three most abundant tryptic peptides identified were selected, whereas the five most 

abundant peptides were analyzed for Rtt109, Vps75, Cac1, Cac2 and Cac3. The abundance 

of the same group of peptides was determined in complexes purified from each strain. The 

relative proportion of Rtt109 and Vps75 was obtained from the ratio of the summed 

abundance of tryptic peptides derived from each protein (five peptides each for Rtt109 and 

Vps75). Similarly, the relative proportion of histones and CAF-1 was determined from the 

ratio of the summed abundance of tryptic peptides derived from [H3+H4] and 

[Cac1+Cac2+Cac3] (three peptides each for H3 and H4, and five peptides each for Cac1, 

Cac2 and Cac3). 
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