Résumé·s
Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.
Several families of multivariable special functions, called orbit functions, are defined in the context of Weyl groups of compact simple Lie groups/Lie algebras. These functions have been studied for almost a century now because of their relation to characters of irreducible representations of Lie algebras, their symmetries and orthogonalities. Our main interest is the description of discrete orthogonality relations and their corresponding discrete transforms which allow the applications of orbit functions in the processing of multidimensional data. This description is provided for the Weyl group of different lengths of root, in particular groups of rank 2 for so-called $E-$orbit functions and of rank 3 for all the other families of special functions.