Liens externes
  • Répertoires
  • Facultés
  • Bibliothèques
  • Plan campus
  • Sites A-Z
  • Mon UdeM
    • Portail Mon UdeM
    • Mon courriel
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
Site d'accueil de l'UniversitéSite d'accueil de l'UniversitéSite d'accueil de l'Université
Papyrus : Dépôt institutionnel
Papyrus
Dépôt institutionnel
Papyrus
    • français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • français 
    • français
    • English
  • Ouvrir une session
Voir le document 
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mon compte

Pour soumettre un document ou s'abonner à des alertes courriels
Ouvrir une session
Nouvel utilisateur?

Parcourir

Tout PapyrusCommunautés et CollectionsTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titresCette collectionTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titres

Statistiques

Données d'utilisation
Afficher les métadonnées
Permalien: http://hdl.handle.net/1866/5147

Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien

Thèse ou mémoire
Vignette
Patenaude_Valerie_2011_memoire.pdf (1.147Mo)
2011-04 (octroi du grade: 2011-05-05)
Auteur(s)
Patenaude, Valérie
Directeur(s) de recherche
Angers, Jean-François
Doray, Louis G.
Dubuc, Serge
Cycle d'études
Maîtrise
Programme
Statistique
Mots-clés
  • Fonctions monotones bidimensionnelles
  • Monotone bivariate functions
  • Tables de mortalité
  • Life tables
  • Splines monotones
  • Monotone splines
  • Contraintes de monotonie
  • Constraints of monotonicity
  • Méthodes de Monte Carlo par chaînes de Markov
  • Markov chain Monte Carlo techniques
  • Mathematics / Mathématiques (UMI : 0405)
Résumé(s)
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.
 
This master’s thesis is about the estimation of bivariate tables which are monotone within the rows and/or the columns, with a special interest in the approximation of life tables. This problem is approached through a nonparametric Bayesian regression model, in particular linear combinations of regression splines. By condensing a life table, our goal is to reduce its storage space without losing the entries’ accuracy. We will also study the reconstruction time of the table with our estimators. The properties of the reference table, specifically its monotonicity, must be preserved in the estimation. We are working with a monotone spline basis since splines are flexible and their derivatives can easily be manipulated. Those properties enable the imposition of constraints of monotonicity on our model. A brief review on univariate approximations of monotone functions is then extended to bivariate estimations. We use hierarchical Bayesian modeling to include the constraints in the prior distributions. We then explain the Markov chain Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the estimator’s behaviour by applying our model on the Standard Normal table and the Student’s t table. We estimate our data of interest, the life table, to establish the improvement in data accessibility.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [18819]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [398]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM