Search
Now showing items 1-6 of 6
Apprentissage de représentations musicales à l'aide d'architectures profondes et multiéchelles
(2012-10-11)
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur ...
Understanding deep architectures and the effect of unsupervised pre-training
(2011-05-05)
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la ...
Reparametrization in deep learning
(2018-10-18)
L'apprentissage profond est une approche connectioniste à l'apprentissage automatique. Elle a pu exploiter la récente production massive de données numériques et l'explosion de la quantité de ressources computationelles ...
Representation Learning for Visual Data
(2018-10-18)
Cette thèse par article contribue au domaine de l’apprentissage de représentations profondes, et plus précisément celui des modèles génératifs profonds, par l’entremise de travaux sur les machines de Boltzmann restreintes, ...
Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks
(2014-09-29)
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les ...
Sequence-to-sequence learning for machine translation and automatic differentiation for machine learning software tools
(2019-05-08)
Cette thèse regroupe des articles d'apprentissage automatique et s'articule autour de deux thématiques complémentaires.
D'une part, les trois premiers articles examinent l'application des réseaux de neurones artificiels ...