Search
Now showing items 1-10 of 11
Understanding deep architectures and the effect of unsupervised pre-training
(2011-05-05)
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la ...
Algorithmes de recommandation musicale
(2010-05-05)
Ce mémoire est composé de trois articles qui s’unissent sous le thème de la recommandation musicale à grande échelle.
Nous présentons d’abord une méthode pour effectuer des recommandations musicales en récoltant ...
Structured prediction and generative modeling using neural networks
(2017-03-28)
Cette thèse traite de l'usage des Réseaux de Neurones pour modélisation de données séquentielles. La façon dont l'information a été ordonnée et structurée est cruciale pour la plupart des données. Les mots qui composent ...
WikiGames : une plateforme de jeux dédiée à la validation d’une base de connaissances produite à partir de techniques d’extraction d’information ouverte
(2018-03-21)
L’extraction d’information ouverte permet la création de larges collections de triplets
relationnels à partir de corpus de textes non structurés. Ces larges collections de triplets
extraits contiennent souvent une grande ...
Factorized second order methods in neural networks
(2018-03-21)
Les méthodes d'optimisation de premier ordre (descente de gradient) ont permis d'obtenir des succès impressionnants pour entrainer des réseaux de neurones artificiels. Les méthodes de second ordre permettent en théorie ...
Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks
(2014-09-29)
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les ...
Generative models for natural images
(2018-03-21)
Nous traitons de modèles génératifs construits avec des réseaux de neurones dans le contexte de la modélisation d’images. De nos jours, trois types de modèles sont particulièrement prédominants: les modèles à ...
Learning to sample from noise with deep generative models
(2017-09-27)
L’apprentissage automatique et spécialement l’apprentissage profond se sont imposés ces
dernières années pour résoudre une large variété de tâches. Une des applications les plus
remarquables concerne la vision par ...
Representation Learning for Visual Data
(2018-10-18)
Cette thèse par article contribue au domaine de l’apprentissage de représentations profondes, et plus précisément celui des modèles génératifs profonds, par l’entremise de travaux sur les machines de Boltzmann restreintes, ...
Reparametrization in deep learning
(2018-10-18)
L'apprentissage profond est une approche connectioniste à l'apprentissage automatique. Elle a pu exploiter la récente production massive de données numériques et l'explosion de la quantité de ressources computationelles ...