Show item record

dc.contributor.advisorKoukoulopoulos, Dimitrios
dc.contributor.authorLemieux, Simon
dc.date.accessioned2023-09-14T18:31:52Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-09-14T18:31:52Z
dc.date.issued2023-08-15
dc.date.submitted2023-06
dc.identifier.urihttp://hdl.handle.net/1866/28710
dc.subjectRecouvrementfr
dc.subjectCombinatoirefr
dc.subjectAnalysefr
dc.subjectConjecture du coureur solitairefr
dc.subjectProblème d'obstructionfr
dc.subjectCoveringfr
dc.subjectCombinatoricsfr
dc.subjectAnalysisfr
dc.subjectLonely runner conjecturefr
dc.subjectObstruction problemfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleÀ propos de la conjecture du coureur solitairefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractLa conjecture du coureur solitaire est un problème formulé indépendamment par J.M. Wills en (1972) et par Thomas Cusick (1973). Soit ∥·∥ la distance avec les entiers ∥x∥ = mink∈Z(|x − k|) pour pour x ∈ R. La conjecture nous demande si pour un ensemble de n + 1 réels {v1,v2 . . . vn+1} distincts il existe pour tout k ∈ {1,2,3, . . . ,n,n + 1} un temps t ∈ R tel que pour toute autre vitesse vi,i ̸= k on a ∥t(vi − vk)∥ ≥ 1 n+1 . La conjecture a été montrée pour n + 1 ≤ 7, le cas n + 1 = 7 montré en 2007 par Barajas et Serra. Plusieurs auteurs ont écrit à propos de ce sujet. Dans ce mémoire, il sera question d’exposer les différentes techniques qui ont été utilisées pour les cas n + 1 ≤ 7, certains scénarios dans lesquels la conjecture tient ainsi que les efforts pour trouver des meilleures bornes inférieures pour l’écart de solitude.fr
dcterms.abstractThe lonely runner conjecture was formulated by J.M. Wills en (1972) and Thomas Cusick (1973). If ∥·∥ denotes the distance from integers, for x ∈ R ∥x∥ = mink∈Z(|x − k|), this conjecture is asking whether or not for any set of n + 1 distinct real numbers {v1,v2 . . . vn+1} and for any k ∈ {1,2,3 . . . ,n + 1} there is a time t ∈ R such that for any other speed vi,i ̸= k we have ∥t(vi − vk)∥ ≥ 1 n+1 . It has been proven to be true for n + 1 ≤ 7 , the last case n + 1 = 7 was shown by Barajas and Serra in 2007. Many authors have wrote about this subject each bringing more knowledge. In this thesis, there will be an exposure on different techniques that have been used to prove the cases for n + 1 ≤ 7, differents cases in wich the conjecture holds and the problem of getting better lower bounds for the gap of loneliness.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.