Show item record

dc.contributor.advisorJerbi, Karim
dc.contributor.authorToupin, Gabrielle
dc.date.accessioned2022-04-19T20:35:07Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2022-04-19T20:35:07Z
dc.date.issued2022-03-16
dc.date.submitted2021-05
dc.identifier.urihttp://hdl.handle.net/1866/26582
dc.subjectamusementfr
dc.subjecthumourfr
dc.subjectapprentissage machinefr
dc.subjectapprentissage profondfr
dc.subjectLSTMfr
dc.subjectForêt d'arbre décisionnelsfr
dc.subjectmachine learningfr
dc.subjectdeep learningfr
dc.subjectmachine learningfr
dc.subjectRandom Forestfr
dc.subject.otherPsychology - Cognitive / Psychologie cognitive (UMI : 0633)fr
dc.titleCaractérisation du niveau d’amusement grâce à des techniques d’apprentissage machinefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplinePsychologiefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractIntroduction. L'humour est un processus cognitif complexe qui peut entraîner un état émotionnel positif d’amusement. La réponse émotionnelle déclenchée par l'humour possède plusieurs bénéfices pour la santé. Son utilisation en recherche et lors d’essais cliniques est d’ailleurs de plus en plus fréquente. Malheureusement, l’appréciation de l’humour varie considérablement d’un individu à l’autre, et entraîne des réponses émotionnelles très différentes. Cette variabilité, rarement prise en compte dans les études de recherche, est donc importante à quantifier pour pouvoir évaluer de manière robuste les effets de l’humour sur la santé. Objectifs. Ce projet de maîtrise vise à explorer différentes modalités permettant d’établir une mesure objective de l'appréciation de l'humour via des techniques d'apprentissage automatique et d'apprentissage profond. Les caractéristiques de la vidéo, les expressions faciales et l'activité cérébrale ont été testées comme prédicteur potentiels de l’intensité de l'amusement. Étude 1. Dans notre première étude, les participants (n = 40) ont regardé et évalué des vidéos humoristiques et neutres pendant que leurs expressions faciales étaient enregistrées. Pour chaque vidéo, nous avons calculé le mouvement moyen, la saillance et deux scores sémantiques. L’algorithme d’arbres aléatoire a été entraîné sur les caractéristiques des vidéos et le sourire des participants afin de prédire à quel point le participant a évalué la vidéo comme étant drôle, et ce, à trois moments durant la vidéo (début, milieu et fin). De plus, nous avons utilisé l'expression faciale du participant pour explorer la dynamique temporelle de l'appréciation de l'humour tout au long de la vidéo et ses impacts sur la vidéo suivante. Nos résultats ont montré que les caractéristiques des vidéos permettent de bien classifier les vidéos neutres et les vidéos humoristiques, mais ne permettent pas de différencier les intensités d'humour. À l’inverse, le sourire est un bon prédicteur de l’intensité de l’amusement au sein des vidéos humoristiques (contribution=0.53) et est la seule modalité à fluctuer dans le temps; montrant ainsi que l'appréciation de l'humour est plus grande à la fin de la vidéo et après la vidéo. Étude 2. Notre deuxième étude a utilisé des techniques d'apprentissage profond afin de prédire l’intensité de l’amusement ressenti par les participants (n = 10) lorsqu’ils visionnaient des vidéos humoristiques avec un casque EEG commercial. Nous avons utilisé un algorithme LSTM pour prédire les intensités d'amusement vi (faible, modéré, élevé, très élevé) en fonction d'une seconde d'activité cérébrale. Les résultats ont montré une bonne transférabilité entre les participants et une précision de décodage dépassant 80% d’exactitude. Conclusion. Les caractéristiques de la vidéo, les expressions faciales des participants et l'activité cérébrale ont permis de prédire l'appréciation de l'humour. À partir de ces trois modalités, nous avons trouvé que les réactions physiologiques (expression faciale et activité cérébrale) prédisent mieux les intensités de l’amusement tout en offrant une meilleure précision temporelle de la dynamique d'appréciation de l'humour. Les futures études employant l'humour gagneraient à inclure le niveau d’appréciation, mesuré via le sourire ou l’activité cérébrale, comme variable d’intérêt dans leurs protocoles expérimentaux.fr
dcterms.abstractIntroduction. Humour is a complex cognitive process that can result in a positive emotional state of amusement. The emotional response triggered by humour has several health benefits and is used in many research and clinical trials as treatments. Humour appreciation varies greatly between participants and can trigger different levels of emotional response. Unfortunately, research rarely considers these individual differences, which could impact the implication of humour in research. These researches would benefit from having an objective method to detect humour appreciation. Objectives. This master's thesis seeks to provide an appropriate solution for an objective measure of humour appreciation by using machine learning and deep learning techniques to predict how individuals react to humorous videos. Video characteristics, facial expressions and brain activity were tested as potential predictors of amusement’s intensity. Study 1. In our first study, participants (n=40) watched and rated humorous and neutral videos while their facial expressions were recorded. For each video, we computed the average movement, saliency and semantics associated with the video. Random Forest Classifier was used to predict how funny the participant rated the video at three moments during the clip (begging, middle, end) based on the video's characteristics and the smiles of the participant. Furthermore, we used the participant's facial expression to explore the temporal dynamics of humour appreciation throughout the video and its impacts on the following video. Our results showed that video characteristics are better to classify between neutral and humorous videos but cannot differentiate humour intensities. On the other hand, smiling was better to determine how funny the humorous videos were rated. The proportion of smiles also had more significant fluctuations in time, showing that humour appreciation is greater at the end of the video and the moment just after. Study 2. Our second study used deep learning techniques to predict how funny participants (n=10) rated humorous videos with a commercial EEG headset. We used an LSTM algorithm to predict the intensities of amusement (low, medium, high, very high) based on one second of brain activity. Results showed good transferability across participants, and decoding accuracy reached over 80%. Conclusion. Video characteristics, participant's facial expressions and brain activity allowed us to predict humour appreciation. From these three, we found that physiological reactions (facial expression and brain activity) better predict funniness intensities while also offering a better temporal precision as to when humour appreciation occurs. Further studies using humour would benefit from adding physiological responses as a variable of interest in their experimental protocol.fr
dcterms.languagefrafr
UdeM.ORCIDAuteurThese0000-0002-6004-0798fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.