Liens externes
  • Répertoires
  • Facultés
  • Bibliothèques
  • Plan campus
  • Sites A-Z
  • Mon UdeM
    • Portail Mon UdeM
    • Mon courriel
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
Site d'accueil de l'UniversitéSite d'accueil de l'UniversitéSite d'accueil de l'Université
Papyrus : Dépôt institutionnel
Papyrus
Dépôt institutionnel
Papyrus
    • français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • français 
    • français
    • English
  • Ouvrir une session
Voir le document 
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de physique
  • Faculté des arts et des sciences – Département de physique - Thèses et mémoires
  • Voir le document
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de physique
  • Faculté des arts et des sciences – Département de physique - Thèses et mémoires
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mon compte

Pour soumettre un document ou s'abonner à des alertes courriels
Ouvrir une session
Nouvel utilisateur?

Parcourir

Tout PapyrusCommunautés et CollectionsTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titresCette collectionTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titres

Statistiques

Données d'utilisation
Afficher les métadonnées
Permalien: http://hdl.handle.net/1866/24811

Searching for supersymmetry using deep learning with the ATLAS detector

Thèse ou mémoire
Vignette
Gagnon_Louis-Guillaume_2020_these.pdf (12.46Mo)
2020-07 (octroi du grade: 2020-12-16)
Auteur(s)
Gagnon, Louis-Guillaume
Directeur(s) de recherche
Arguin, Jean-François
Cycle d'études
Doctorat
Programme
Physique
Mots-clés
  • Physique des particules
  • Particle physics
  • Supersymmetry
  • Supersymétrie
  • LHC
  • ATLAS
  • Apprentissage machine
  • Machine learning
  • Apprentissage profond
  • Deep learning
  • Neural networks
  • Réseaux de neurones
  • Physics - Elementary Particles and High Energy / Physique - Particules (UMI : 0798)
Résumé(s)
Le Modèle Standard de la physique des particules (MS) est une théorie fondamentale de la nature dont la validité a été largement établie par diverses expériences. Par contre, quelques problèmes théoriques et expérimentaux subsistent, ce qui motive la recherche de théories alternatives. La Supersymétrie (SUSY), famille de théories dans laquelle une nouvelle particule est associée à chaque particules du MS, est une des théories ayant les meilleures motivations pour étendre la portée du modèle. Par exemple, plusieurs théories supersymétriques prédisent de nouvelles particules stables et interagissant seulement par la force faible, ce qui pourrait expliquer les observations astronomiques de la matière sombre. La découverte de SUSY représenterait aussi une importante étape dans le chemin vers une théorie unifiée de l'univers. Les recherches de supersymétrie sont au coeur du programme expérimental de la collaboration ATLAS, qui exploite un détecteur de particules installé au Grand Collisioneur de Hadrons (LHC) au CERN à Genève, mais à ce jours aucune preuve en faveur de la supersymétrie n'a été enregistrée par les présentes analyses, largement basées sur des techniques simples et bien comprises. Cette thèse documente l'implémentation d'une nouvelle approche à la recherche de particules basée sur l'apprentissage profond, utilisant seulement les quadri-impulsions comme variables discriminatoires; cette analyse utilise l'ensemble complet de données d'ATLAS enregistré en 2015-2018. Les problèmes de la naturalité du MS et de la matière sombre orientent la recherche vers les partenaires supersymétriques du gluon (le gluino), des quarks de troisième génération (stop et sbottom), ainsi que des bosons de gauge (le neutralino). Plusieurs techniques récentes sont employées, telles que l'utilisation directe des quadri-impulsions reconstruites à partir des données enregistrées par le détecteur ATLAS ainsi que la paramétrisation d'un réseau de neurone avec les masses des particules recherchées, ce qui permet d'atteindre une performance optimale quelle que soit l'hypothèse de masses. Cette méthode améliore la signification statistique par un facteur 85 par rapport au dernier résultat d'ATLAS pour certaines hypothèses de masses, et ce avec la même luminosité. Aucun excès signifif au-delà du Modèle Standard n'est observé. Les masses du gluino en deçà de 2.45 TeV et du neutralino en deça de 1.7 TeV sont exclues à un niveau de confiance de 95%, ce qui étend largement les limites précédentes sur deux modèles de productions de paires de gluinos faisant intervenir des stops et des sbottoms, respectivement.
 
The Standard Model of particle physics (SM) is a fundamental theory of nature whose validity has been extensively confirmed by experiments. However, some theoretical and experimental problems subsist, which motivates searches for alternative theories to supersede it. Supersymmetry (SUSY), which associate new fundamental particles to each SM particle, is one of the best-motivated such theory and could solve some of the biggest outstanding problems with the SM. For example, many SUSY scenarios predict stable neutral particles that could explain observations of dark matter in the universe. The discovery of SUSY would also represent a huge step towards a unified theory of the universe. Searches for SUSY are at the heart of the experimental program of the ATLAS collaboration, which exploits a state-of-the-art particle detector installed at the Large Hadron Collider (LHC) at CERN in Geneva. The probability to observe many supersymmetric particles went up when the LHC ramped up its collision energy to 13~TeV, the highest ever achieved in laboratory, but so far no evidence for SUSY has been recorded by current searches, which are mostly based on well-known simple techniques such as counting experiments. This thesis documents the implementation of a novel deep learning-based approach using only the four-momenta of selected physics objects, and its application to the search for supersymmetric particles using the full ATLAS 2015-2018 dataset. Motivated by naturalness considerations as well as by the problem of dark matter, the search focuses on finding evidence for supersymmetric partners of the gluon (the gluino), third generation quarks (the stop and the sbottom), and gauge bosons (the neutralino). Many recently introduced physics-specific machine learning developments are employed, such as directly using detector-recorded energies and momenta of produced particles instead of first deriving a restricted set of physically motivated variables and parametrizing the classification model with the masses of the particles searched for, which allows optimal sensitivity for all mass hypothesis. This method improves the statistical significance of the search by up to 85 times that of the previous ATLAS analysis for some mass hypotheses, after accounting for the luminosity difference. No significant excesses above the SM background are recorded. Gluino masses below 2.45 TeV and neutralino masses below 1.7 TeV are excluded at the 95% confidence level, greatly increasing the previous limit on two simplified models of gluino pair production with off-shell stops and sbottoms, respectively.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [19116]
  • Faculté des arts et des sciences – Département de physique - Thèses et mémoires [522]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM