Show item record

dc.contributor.advisorCourville, Aaron
dc.contributor.authorLavoie-Marchildon, Samuel
dc.date.accessioned2021-01-22T14:32:10Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2021-01-22T14:32:10Z
dc.date.issued2020-12-16
dc.date.submitted2019-12
dc.identifier.urihttp://hdl.handle.net/1866/24324
dc.subjectDeep learningfr
dc.subjectOptimal transportfr
dc.subjectTransfer learningfr
dc.subjectUnsupervised image to image translationfr
dc.subjectUnsupervised domain translationfr
dc.subjectApprentissage profondfr
dc.subjectTransport optimalfr
dc.subjectTransfert d’apprentissagefr
dc.subjectTraduction d’images non-superviséefr
dc.subjectTraduction de domaine non-superviséefr
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)fr
dc.titleRepresentation learning in unsupervised domain translationfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractCe mémoire s'adresse au problème de traduction de domaine non-supervisée. La traduction non-supervisée cherche à traduire un domaine, le domaine source, à un domaine cible sans supervision. Nous étudions d'abord le problème en utilisant le formalisme du transport optimal. Dans un second temps, nous étudions le problème de transfert de sémantique à haut niveau dans les images en utilisant les avancés en apprentissage de représentations et de transfert d'apprentissages développés dans la communauté d'apprentissage profond. Le premier chapitre est dévoué à couvrir les bases des concepts utilisés dans ce travail. Nous décrivons d'abord l'apprentissage de représentation en incluant la description de réseaux de neurones et de l'apprentissage supervisé et non supervisé. Ensuite, nous introduisons les modèles génératifs et le transport optimal. Nous terminons avec des notions pertinentes sur le transfert d'apprentissages qui seront utiles pour le chapitre 3. Le deuxième chapitre présente \textit{Neural Wasserstein Flow}. Dans ce travail, nous construisons sur la théorie du transport optimal et démontrons que les réseaux de neurones peuvent être utilisés pour apprendre des barycentres de Wasserstein. De plus, nous montrons que les réseaux de neurones peuvent amortir n'importe quel barycentre, permettant d'apprendre une interpolation continue. Nous montrons aussi comment utiliser ces concepts dans le cadre des modèles génératifs. Finalement, nous montrons que notre approche permet d'interpoler des formes et des couleurs. Dans le troisième chapitre, nous nous attaquons au problème de transfert de sémantique haut niveau dans les images. Nous montrons que ceci peut être obtenu simplement avec un GAN conditionné sur la représentation apprise par un réseau de neurone. Nous montrons aussi comment ce processus peut être rendu non-supervisé si la représentation apprise est un regroupement. Finalement, nous montrons que notre approche fonctionne sur la tâche de transfert de MNIST à SVHN. Nous concluons en mettant en relation les deux contributions et proposons des travaux futures dans cette direction.fr
dcterms.abstractThis thesis is concerned with the problem of unsupervised domain translation. Unsupervised domain translation is the task of transferring one domain, the source domain, to a target domain. We first study this problem using the formalism of optimal transport. Next, we study the problem of high-level semantic image to image translation using advances in representation learning and transfer learning. The first chapter is devoted to reviewing the background concepts used in this work. We first describe representation learning including a description of neural networks and supervised and unsupervised representation learning. We then introduce generative models and optimal transport. We finish with the relevant notions of transfer learning that will be used in chapter 3. The second chapter presents Neural Wasserstein Flow. In this work, we build on the theory of optimal transport and show that deep neural networks can be used to learn a Wasserstein barycenter of distributions. We further show how a neural network can amortize any barycenter yielding a continuous interpolation. We also show how this idea can be used in the generative model framework. Finally, we show results on shape interpolation and colour interpolation. In the third chapter, we tackle the task of high level semantic image to image translation. We show that high level semantic image to image translation can be achieved by simply learning a conditional GAN with the representation learned from a neural network. We further show that we can make this process unsupervised if the representation learning is a clustering. Finally, we show that our approach works on the task of MNIST to SVHN.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace