Show item record

dc.contributor.advisorSahraoui, Houari
dc.contributor.authorBatot, Edouard
dc.date.accessioned2019-05-13T18:51:08Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2019-05-13T18:51:08Z
dc.date.issued2019-03-13
dc.date.submitted2018-11
dc.identifier.urihttp://hdl.handle.net/1866/21737
dc.subjectSoftware engineeringfr
dc.subjectModel-driven engineeringfr
dc.subjectSearch based software engineeringfr
dc.subjectLearning from examplesfr
dc.subjectGeneralization and representativenessfr
dc.subjectMachine learningfr
dc.subjectAritficial intelligencefr
dc.subjectGénie logicielfr
dc.subjectApprentissage machinefr
dc.subjectIntelligence artificiellefr
dc.subjectGénie logiciel expérimentalfr
dc.subjectApprentissage à partir d'exemplesfr
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)fr
dc.titleFrom examples to knowledge in model-driven engineering : a holistic and pragmatic approachfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLe Model-Driven Engineering (MDE) est une approche de développement logiciel qui propose d’élever le niveau d’abstraction des langages afin de déplacer l’effort de conception et de compréhension depuis le point de vue des programmeurs vers celui des décideurs du logiciel. Cependant, la manipulation de ces représentations abstraites, ou modèles, est devenue tellement complexe que les moyens traditionnels ne suffisent plus à automatiser les différentes tâches. De son côté, le Search-Based Software Engineering (SBSE) propose de reformuler l’automatisation des tâches du MDE comme des problèmes d’optimisation. Une fois reformulé, la résolution du problème sera effectuée par des algorithmes métaheuristiques. Face à la pléthore d’études sur le sujet, le pouvoir d’automatisation du SBSE n’est plus à démontrer. C’est en s’appuyant sur ce constat que la communauté du Example-Based MDE (EBMDE) a commencé à utiliser des exemples d’application pour alimenter la reformulation SBSE du problème d’apprentissage de tâche MDE. Dans ce contexte, la concordance de la sortie des solutions avec les exemples devient un baromètre efficace pour évaluer l’aptitude d’une solution à résoudre une tâche. Cette mesure a prouvé être un objectif sémantique de choix pour guider la recherche métaheuristique de solutions. Cependant, s’il est communément admis que la représentativité des exemples a un impact sur la généralisabilité des solutions, l'étude de cet impact souffre d’un manque de considération flagrant. Dans cette thèse, nous proposons une formulation globale du processus d'apprentissage dans un contexte MDE incluant une méthodologie complète pour caractériser et évaluer la relation qui existe entre la généralisabilité des solutions et deux propriétés importantes des exemples, leur taille et leur couverture. Nous effectuons l’analyse empirique de ces deux propriétés et nous proposons un plan détaillé pour une analyse plus approfondie du concept de représentativité, ou d’autres représentativités.fr
dcterms.abstractModel-Driven Engineering (MDE) is a software development approach that proposes to raise the level of abstraction of languages in order to shift the design and understanding effort from a programmer point of view to the one of decision makers. However, the manipulation of these abstract representations, or models, has become so complex that traditional techniques are not enough to automate its inherent tasks. For its part, the Search-Based Software Engineering (SBSE) proposes to reformulate the automation of MDE tasks as optimization problems. Once reformulated, the problem will be solved by metaheuristic algorithms. With a plethora of studies on the subject, the power of automation of SBSE has been well established. Based on this observation, the Example-Based MDE community (EB-MDE) started using application examples to feed the reformulation into SBSE of the MDE task learning problem. In this context, the concordance of the output of the solutions with the examples becomes an effective barometer for evaluating the ability of a solution to solve a task. This measure has proved to be a semantic goal of choice to guide the metaheuristic search for solutions. However, while it is commonly accepted that the representativeness of the examples has an impact on the generalizability of the solutions, the study of this impact suffers from a flagrant lack of consideration. In this thesis, we propose a thorough formulation of the learning process in an MDE context including a complete methodology to characterize and evaluate the relation that exists between two important properties of the examples, their size and coverage, and the generalizability of the solutions. We perform an empirical analysis, and propose a detailed plan for further investigation of the concept of representativeness, or of other representativities.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record