Liens externes
  • Répertoires
  • Facultés
  • Bibliothèques
  • Plan campus
  • Sites A-Z
  • Mon UdeM
    • Mon portail UdeM
    • Mon courriel
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
Site d'accueil de l'UniversitéSite d'accueil de l'UniversitéSite d'accueil de l'Université
Papyrus : Dépôt institutionnel
Papyrus
Dépôt institutionnel
Papyrus
    • français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • français 
    • français
    • English
  • Ouvrir une session
Voir le document 
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • Voir le document
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mon compte

Pour soumettre un document ou s'abonner à des alertes courriels
Ouvrir une session
Nouvel utilisateur?

Parcourir

Tout PapyrusCommunautés et CollectionsTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titresCette collectionTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titres

Statistiques

Données d'utilisation
Afficher les métadonnées
Permalien: http://hdl.handle.net/1866/21284

Difference target propagation

Thèse ou mémoire
Vignette
Lee_Dong-Hyun_2018_memoire.pdf (1.020Mo)
2018-07 (octroi du grade: 2018-10-18)
Auteur(s)
Lee, Dong-Hyun
Directeur(s) de recherche
Bengio, Yoshua
Cycle d'études
Maîtrise
Programme
Informatique
Mots-clés
  • Neural networks
  • Machine learning
  • Deep learning
  • Representation learning
  • Optimization
  • Biological plausibility,
  • Learning rule
  • Backpropagation
  • Target propagation
  • Réseaux de neurones
  • Apprentissage automatique
  • Optimisation
  • Régle d’apprentissage
  • Régle d’apprentissage biologiquement plausible
  • Rétropropagation
  • Applied Sciences - Artificial Intelligence / Sciences appliqués et technologie - Intelligence artificielle (UMI : 0800)
Résumé(s)
Backpropagation has been the workhorse of recent successes of deep learning but it relies on infinitesimal effects (partial derivatives) in order to perform credit assignment. This could become a serious issue as one considers deeper and more non-linear functions, e.g., consider the extreme case of non-linearity where the relation between parameters and cost is actually discrete. Inspired by the biological implausibility of Backpropagation, this thesis proposes a novel approach, Target Propagation. The main idea is to compute targets rather than gradients, at each layer in which feedforward and feedback networks form Auto-Encoders. We show that a linear correction for the imperfectness of the Auto-Encoders, called Difference Target Propagation is very effective to make Target Propagation actually work, leading to results comparable to Backpropagation for deep networks with discrete and continuous units, Denoising Auto-Encoders and achieving state of the art for stochastic networks. In Chapters 1, we introduce several classical learning rules in Deep Neural Networks, including Backpropagation and more biological plausible learning rules. In Chapters 2 and 3, we introduce a novel approach, Target Propagation, more biological plausible learning rule than Backpropagation. In addition, we show that Target Propagation is comparable to Backpropagation in Deep Neural Networks.
 
L'algorithme de r etropropagation a et e le cheval de bataille du succ es r ecent de l'apprentissage profond, mais elle s'appuie sur des e ets in nit esimaux (d eriv ees partielles) a n d'e ectuer l'attribution de cr edit. Cela pourrait devenir un probl eme s erieux si l'on consid ere des fonctions plus profondes et plus non lin eaires, avec a l'extr^eme la non-lin earit e o u la relation entre les param etres et le co^ut est r eellement discr ete. Inspir ee par la pr esum ee invraisemblance biologique de la r etropropagation, cette th ese propose une nouvelle approche, Target Propagation. L'id ee principale est de calculer des cibles plut^ot que des gradients a chaque couche, en faisant en sorte que chaque paire de couches successive forme un auto-encodeur. Nous montrons qu'une correction lin eaire, appel ee Di erence Target Propaga- tion, est tr es e cace, conduisant a des r esultats comparables a la r etropropagation pour les r eseaux profonds avec des unit es discr etes et continues et des auto- encodeurs et atteignant l' etat de l'art pour les r eseaux stochastiques.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17173]
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires [732]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Urgence
  • Vie privée
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Urgence
  • Vie privée
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM