Liens externes
  • Répertoires
  • Facultés
  • Bibliothèques
  • Plan campus
  • Sites A-Z
  • Mon UdeM
    • Portail Mon UdeM
    • Mon courriel
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
Site d'accueil de l'UniversitéSite d'accueil de l'UniversitéSite d'accueil de l'Université
Papyrus : Dépôt institutionnel
Papyrus
Dépôt institutionnel
Papyrus
    • français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • français 
    • français
    • English
  • Ouvrir une session
Voir le document 
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mon compte

Pour soumettre un document ou s'abonner à des alertes courriels
Ouvrir une session
Nouvel utilisateur?

Parcourir

Tout PapyrusCommunautés et CollectionsTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titresCette collectionTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titres

Statistiques

Données d'utilisation
Afficher les métadonnées
Permalien: http://hdl.handle.net/1866/12575

Régression logistique bayésienne : comparaison de densités a priori

Thèse ou mémoire
Vignette
Deschenes_Alexandre_2015_memoire.pdf (1.261Mo)
2015-07 (octroi du grade: 2015-09-30)
Auteur(s)
Deschênes, Alexandre
Directeur(s) de recherche
Angers, Jean-François
Cycle d'études
Maîtrise
Programme
Statistique
Mots-clés
  • Régression logistique
  • Bayésien
  • Densité a priori
  • Simulation MCMC
  • Logistic regression
  • Bayesian
  • Prior density
  • MCMC simulation
  • Mathematics / Mathématiques (UMI : 0405)
Résumé(s)
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.
 
Logistic regression is a model of generalized linear regression (GLM) used to explain binary variables. The model seeks to estimate the probability of success of this variable by the linearization of explanatory variables. When the goal is to estimate more accurately the impact of various incentives from a marketing campaign (coefficients of the logistic regression), the identification of the choice of the optimum prior density is sought. In our simulations, using the MCMC method of slice sampling, we compare different prior densities specified by different types of density, location and scale parameters. These comparisons are applied to samples of different sizes generated with different probabilities of success. The maximum likelihood estimate, Gelman’s method and Genkin’s method complement the comparative. Our simulations demonstrate that the MCMC method with a normal prior density centered at 0 with variance of 3,125, the MCMC method with a Student prior density with 3 degrees of freedom centered at 0 with variance of 3,125 and Gelman’s method with a Cauchy density centered at 0 with scale parameter of 2,5 get estimates that are globally the most accurate of the coefficients of the logistic regression.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [19116]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [403]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM