Show item record

dc.contributor.advisorBroer, Abraham
dc.contributor.authorAmalega Bitondo, François
dc.date.accessioned2015-03-17T17:42:02Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2015-03-17T17:42:02Z
dc.date.issued2015-02-18
dc.date.submitted2014-08
dc.identifier.urihttp://hdl.handle.net/1866/11507
dc.subjectType de ramificationfr
dc.subjectRevêtements galoisiensfr
dc.subjectuplet de classes de conjugaisons kappa-rationnellefr
dc.subjectRamification typefr
dc.subjectGalois coveringfr
dc.subjectKappa-rational tuple of conjugacy classesfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleProblème inverse de Galois : critère de rigiditéfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractDans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis.fr
dcterms.abstractIn this master thesis we study finite Galois extensions of C(x). We prove Riemann existence theorem. The notions of rigidity, weak rigidity, and rationality are developed. We obtain the rigidity criterion which enable us to realise some groups as Galois groups over Q. Many examples of ramification types are constructed.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record