Liens externes
  • Répertoires
  • Facultés
  • Bibliothèques
  • Plan campus
  • Sites A-Z
  • Mon UdeM
    • Portail Mon UdeM
    • Mon courriel
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
Site d'accueil de l'UniversitéSite d'accueil de l'UniversitéSite d'accueil de l'Université
Papyrus : Dépôt institutionnel
Papyrus
Dépôt institutionnel
Papyrus
    • français
    • English
  • français 
    • français
    • English
  • Ouvrir une session
  • français 
    • français
    • English
  • Ouvrir une session
Voir le document 
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
  •   Accueil
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mon compte

Pour soumettre un document ou s'abonner à des alertes courriels
Ouvrir une session
Nouvel utilisateur?

Parcourir

Tout PapyrusCommunautés et CollectionsTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titresCette collectionTitresDates de publicationAuteursDirecteurs de rechercheSujetsProgrammesAffiliationIndex des titres

Statistiques

Données d'utilisation
Afficher les métadonnées
Permalien: http://hdl.handle.net/1866/11153

Special functions of Weyl groups and their continuous and discrete orthogonality

Thèse ou mémoire
Vignette
Motlochova_Lenka_2014_these.pdf (14.55Mo)
2014-04 (octroi du grade: 2014-09-29)
Auteur(s)
Motlochova, Lenka
Directeur(s) de recherche
Patera, Jiri
Cycle d'études
Doctorat
Programme
Mathématiques
Mots-clés
  • Groupes de Weyl
  • Fonctions spéciales C, S, S^s et S^l
  • Polynômes orthogonaux
  • Transformées discrètes
  • Formules de <<cubature>>
  • Weyl groups
  • Orbit functions C, S, S^s and S^l
  • Orthogonal polynomials
  • Discrete transforms
  • Cubature formulas
  • Mathematics / Mathématiques (UMI : 0405)
Résumé(s)
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <<cubature>>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques.
 
This thesis presents several properties and applications of four families of Weyl group orbit functions called $C$-, $S$-, $S^s$- and $S^l$-functions. These functions may be viewed as generalizations of the well-known Chebyshev polynomials. They are related to orthogonal polynomials associated with simple Lie algebras, e.g. the multivariate Jacobi and Macdonald polynomials. They have numerous remarkable properties such as continuous and discrete orthogonality. In particular, it is shown that the $S^s$- and $S^l$-functions characterized by certain parameters are mutually orthogonal with respect to a discrete measure. Their discrete orthogonality allows to deduce two types of Fourier-like discrete transforms for each simple Lie algebra with two different lengths of roots. Similarly to the Chebyshev polynomials, these four families of functions have applications in numerical integration. We obtain in this thesis various cubature formulas, for functions of several variables, arising from $C$-, $S^s$- and $S^l$-functions. We also provide a~complete description of discrete multivariate cosine transforms of types V--VIII involving the Weyl group orbit functions arising from simple Lie algebras $C_n$ and $B_n$, called antisymmetric and symmetric cosine functions. Furthermore, we study four families of multivariate Chebyshev-like orthogonal polynomials introduced via (anti)symmetric cosine functions.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [19116]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [403]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire
Certificat SSL / SSL Certificate
les bibliothèques/UdeM
  • Urgence
  • Offres d'emploi
  • Mon courriel
  • StudiUM
  • iTunes U
  • Nous écrire
  • Facebook
  • YouTube
  • Twitter
  • Fils des nouvelles UdeM