Show item record

dc.contributor.advisorOwens, Robert Gwyn
dc.contributor.authorLapierre, David
dc.date.accessioned2014-10-06T18:34:36Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2014-10-06T18:34:36Z
dc.date.issued2014-09-29
dc.date.submitted2014-05
dc.identifier.urihttp://hdl.handle.net/1866/11107
dc.subjectNagefr
dc.subjectSimulationfr
dc.subjectAnalyse numériquefr
dc.subjectÉquations aux dérivées partiellesfr
dc.subjectÉquations de Navier-Stokesfr
dc.subjectInteraction fluide-structurefr
dc.subjectMéthode de la frontière immergéefr
dc.subjectMéthode de Runge-Kuttafr
dc.subjectThéorie non-linéaire des poutresfr
dc.subjectSwimfr
dc.subjectSimulationfr
dc.subjectNumerical analysisfr
dc.subjectPartial differential equationsfr
dc.subjectNavier-Stokes equationsfr
dc.subjectFluid-structure interactionfr
dc.subjectImmersed boundary methodfr
dc.subjectRunge-Kutta methodfr
dc.subjectNon-linear beam theoryfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleSimulation de la nage anguilliformefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractCe document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage.fr
dcterms.abstractThis paper first discusses various attempts at modeling and simulating anguilliform swimming, then we develop a new technique, based on a method of generalized immersed boundary and the beam theory of Reissner-Simo. Subsequent to the derivation of the equations of polar fluids, the beam theory is derived from continuum mechanics and the resulting equations are then discretized, allowing a numerical solution. For the first time, the theory of additive Runge-Kutta schemes are combined with the Runge-Kutta-Munthe-Kaas method to generate schemes of arbitrarily high formal order of convergence. Moreover, the interpolation and spreading operations are handled from a new point of view that suggests the use of interpolatory nodal splines instead of spreading traditional functions. Finally, many numerical verifications are done before considering simulations of swimming.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace