Show item record

dc.contributor.advisorRahman, Qazi Ibadur
dc.contributor.advisorGiroux, André
dc.contributor.authorHachani, Mohamed Amine
dc.date.accessioned2014-10-06T16:22:22Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2014-10-06T16:22:22Z
dc.date.issued2014-09-29
dc.date.submitted2014-06
dc.identifier.urihttp://hdl.handle.net/1866/11087
dc.subjectBernstein's inequalityfr
dc.subjectPolynomial and trigonometric polynomialfr
dc.subjectEntire functions of exponential typefr
dc.subjectSchwarz-Pick theoremfr
dc.subjectInégalité de Bernsteinfr
dc.subjectPolynôme et polynôme trigonométriquefr
dc.subjectFonctions entières de type exponentielfr
dc.subjectThéorème de Schwarz-Pickfr
dc.subjectIntégrale infiniefr
dc.subjectThéorème des trois cercles d'Hadamardfr
dc.subjectInfinite integralfr
dc.subjectHadamard's three circles theoremfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleCertain problems concerning polynomials and transcendental entire functions of exponential typefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractSoit P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré n et M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions.fr
dcterms.abstractLet P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ a polynomial of degree n and M:=\sup_{|z|=1}|P(z)|$. Without any additional restriction, we know that $|P '(z) | \leq Mn$ for $| z | \leq 1$ (Bernstein's inequality). Now if we assume that the zeros of the polynomial $P$ are outside the circle $| z | = k$, which improvement could be made to the Bernstein inequality? It is already known [{\bf \ref{Mal1}}] that in the case where $k \geq 1$, one has$$ (*) \qquad | P '(z) | \leq \frac{n}{1 + k} M \qquad (| z | \leq 1),$$ what would it be in the case where $k < 1$? What is the analogous inequality for an entire function of exponential type $\tau$? On the other hand, if we assume that $P$ has all its zeros in $| z | \geq k \, \, (k \geq 1),$ which is the estimate of $| P '(z) |$ on the unit circle, in terms of the first four terms of its Maclaurin series expansion. This thesis comprises a contribution to the analytic theory of polynomials in the light of these problems.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.