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Résumé 

Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est 

fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux 

dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des 

solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin 

de produire ces outils, notamment l’approche logicielle et matérielle.  

 Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont 

été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des 

problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature 

logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des 

solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. 

Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils 

restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels 

n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. 

 Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le 

contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un 

solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une 

plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se 

mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans 

utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une 

option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement 

abordées par une approche logicielle.  

Mots-clés: SAT, solveur matériel, solveur matériel parallèle sur FPGA  
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Abstract 

Though very difficult to solve, the Boolean satisfiability problem (SAT) is extensively used to 

model various real-world applications and problems. Over the past two decades, researchers 

have tried to provide tools that are used, to a certain degree, to find solutions to the Boolean 

satisfiability problem. The nature of these tools is broadly divided in software and 

reconfigurable hardware solvers. In addition, the main algorithms used to solve this problem 

have also been complemented with heuristics of various levels of sophistication to help 

overcome some of the NP-hardness of the problem. The end goal of these tools has been to 

provide solutions to industrial-sized problems of enormous size. Initially, reconfigurable 

hardware tools provided a promising avenue to accelerating SAT solving over traditional 

software based solutions. However, the level of sophistication of software solvers overcame 

their hardware counterparts, which remained limited to smaller problem instances. Even so, 

modern state-of-the-art software solvers still fail unpredictably on some instances.  

 The main focus of this thesis is to explore solving SAT on reconfigurable hardware in 

order to gain an understanding of what would be essential ingredients to add (and discard) to a 

very efficient hardware SAT solver that obtains its processing power from the raw parallelism 

of an FPGA platform. The parallel prototype solver that was implemented in this work has 

been found to be comparable with other hardware and software solvers in terms of execution 

speed even though no heuristics or other helping techniques were implemented. We thus show 

that our approach provides a very promising avenue to solving large, industrial SAT instances 

that might be difficult to handle by software solvers.    

Keywords: SAT, hardware solver, FPGA parallel SAT solver 
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Chapter 1 – Introduction 

The Boolean Satisfiability problem (SAT) is considered to be fundamental in the field of 

computation. As SAT is NP-complete [26], it is computationally intractable as there exists no 

known polynomial time algorithm capable of solving problem instances with 3 or more 

variables per clause (unlike instances with 2 variables in each clause [27]). It should also be 

noted that SAT’s importance is further highlighted by the fact that it was discovered to be at 

the core of the study of the NP-completeness of computational complexity theory. For 

example, Richard Karp showed [28] that there exists a polynomial time many-one reduction 

from SAT to 21 combinatorial and graph computation problems (e.g.  KNAPSACK, 

EXACT_COVER) thereby implying that these problems are NP-complete as well. 

From an applied standpoint, SAT is used to model various real-life problems and 

applications such as automated reasoning, computer aided design (CAD), computer-aided 

manufacturing, machine vision, robotics, integrated circuit (IC) design and computer 

architecture design [29] despite its computational hardness. In addition, SAT has also been 

known to play a role in a great variety of decision and optimization problems which can be 

thought of as its extensions. Indeed, these problems either use SAT as a core problem solving 

engine or employ some of its various techniques and methods. Examples of such problems 

include the Satisfiability Modulo Theories, pseudo-Boolean constraints, maximum 

satisfiability, model counting and Quantified-Boolean Formulas [30].  

1.1 Software SAT Solvers 

The tools used to provide solutions to SAT instances are mainly software-based. The past two 

decades have seen a vertiginous improvement in the ability of these solvers. One of the main 

driving forces behind the advancement of these SAT solvers has been the SAT Solver 

Competition [31], a recurring event that is geared toward the objective evaluation of the 

current progress of state-of-the-art SAT solving techniques. Examples of such successful 

solvers include GRASP [32], CHAFF [33] and MiniSAT1. There exists a multitude of features 

                                                 
1 Solver site: http://minisat.se 
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fundamental to the efficiency and fast execution speed of these tools, the four main of which 

are conflict-driven clause learning (CDCL), random search restarts, Boolean constraint 

propagation (BCP) by use of lazy data structures and conflict-based adaptive branching [34]. 

To further challenge the limits of SAT solving, researchers have continued to discover and 

implement additional performance enhancing techniques such as random restart strategies and 

conflict clause minimization. These methods have augmented the level of sophistication and 

complexity of modern SAT solvers. However, it should be noted that despite this rapid 

advancement there is still some ambiguity in the research community as to the relative 

usefulness and interactions of all these features as well as to the reasons why software SAT 

solvers fail to generate solutions on many problem instances [34]. 

1.2 Reconfigurable Computing and FPGA 

Alternatively to software-based solutions, SAT may be analyzed by means of reconfigurable 

hardware using field programmable gate arrays (FPGAs). Indeed, in the past decade, 

reconfigurable computing based on FPGA devices has matured into a stable discipline that has 

provided solutions to computing problems that feature substantial advantages over those 

offered by traditional multi-purpose processors. In addition to the fact that FPGA devices offer 

increased flexibility as they can be reconfigured, they are also able to generate, by means of 

their extensive parallelism, very fast application execution times. It is not uncommon to see 

accelerations of several orders of magnitude over general purpose processors even though 

circuit clock speeds are orders of magnitude lower [35]. Other added benefits of 

reconfigurable devices are their low power consumption and reduced energy (each 

application’s circuitry is optimized for the problem at hand) as well as reduction in component 

count and size, improved time-to-market and upgradeability [35]. 

A general overview [12] of the basic FPGA design methodology is illustrated in Figure 

1. Initially, a designer will describe the circuit hardware using either a hardware description 

language (HDL) or a schematic editor. Next, logic synthesis deals with the generation of a 

netlist of logic gates and other blocks present in FPGA devices that is independent of the 

intended FPGA technology. At this point, the designer can make use of a functional simulation 

tool to ensure of the logical correctness of the circuit. Following logic synthesis, the 
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previously obtained generic netlist is used to obtain a specialized circuit of look-up tables 

(LUTs) as it is mapped towards a specific FPGA LUT-based architecture. This process 

attempts to minimize the FPGA area, the circuit delay and the power consumption as much as 

possible [36]. During the placement step, physical resources of the FPGA device are selected 

for the specialized netlist by means of an optimal strategy. Placement is extremely important 

for maximal circuit frequency and power consumption as it directly influences a circuit’s 

routability [37].  The next step of the design methodology is routing, a difficult process as it is 

limited to the particular FPGA device’s resources such as wires, programmable switches and 

multiplexers [12].  Finally, before allowing a CAD tool to generate the bitstream necessary to 

program the FPGA, a timing simulation may be performed to ensure that circuit timing 

constraints are met. Of course, as errors and bugs are discovered during simulations, the 

designer may review the circuit’s schematic or HDL code in order to correct them. 

Figure 1: Basic FPGA design flow [12] 
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1.3 Objectives of the Current Work 

The Boolean satisfiability problem is inherently massively parallel. As detailed below, 

verifying that a particular problem clause is satisfied can be done independently of the 

verification of all other remaining clauses with the only limiting factor being the number of 

evaluation units available. As such, it is natural to assume that SAT would map very well to 

FPGAs given their ability to perform many computations in parallel. However, an FPGA 

board has several limitations and restrictions that impact the amount of parallelism extracted 

when mapping a problem. Examples of this include the amount of on and off-chip memories 

that are available, the maximal frequencies at which reading from these memories is possible 

as well as their number of physical read ports. Thus, one of our principal objectives has been 

to explore and evaluate the impact of FPGA on-chip memory on SAT resolution as well as the 

different trade-offs necessary to garner maximal parallelism for execution speed. To 

characterize these issues, a solver prototype was implemented using VHDL and targeted to an 

Altera Cyclone II DE2-70 FPGA board. In addition, a software counterpart with an identical 

execution model was also developed and used to simulate the hardware on problem instances. 

As SAT instances come in many shapes and sizes, a focus of the current work has been 

to allow for many of them to be analyzed easily. Therefore, a secondary objective of this work 

has been to take advantage of the reconfigurability of the FPGA device so as to create 

hardware that is specialized (in terms of the size of the resulting circuit) to the problem at 

hand. This also allows for simpler, tailored solutions that avoid complex control and other 

structures and whose theoretical limitations are imposed not by the solver’s design but by 

FPGA capacity. 

Finally, an important objective of our work has been to identify, explore and evaluate 

suitable parallelization techniques applicable to the Boolean satisfiability problem. In 

particular, the methodology used in the experimental section of this work rests heavily upon 

evaluating potential solutions in one clock cycle. In addition, one of our goals in developing 

this prototype was to identify bottlenecks and other problem areas in order to propose a 

solution that would pave the way towards the development of a mature, efficient solver 

capable of tackling industrial-size instances comprising millions of variables and clauses.   
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1.4 Contributions  

This work has brought forth four main contributions which are listed below. 

• One of the most important contributions of this work is the exploration of the various 

techniques and methods that can be applied when solving SAT on FPGA.  

• A testing platform composed of an HDL synthesizable model and a Java software 

simulator of a hardware SAT prototype relying solely on FPGA parallelism for execution 

speed was built and characterized. 

• Trouble areas that restrict the use of FPGAs in SAT solving have been identified. 

Examples of these limitations include the limited size of on-chip memory as well as the 

use of registers (which effectively play the role of a multi-port random access memory 

(RAM) but claim a large amount of hardware resources). 

• We quantify our technique by means of simulation using problems from the DIMACS2 set 

and present comparisons with results available from other state-of-the art hardware and 

software solvers.  

1.5 Organization   

This thesis is organized as follows. Chapter 1 has offered an introduction to the Boolean 

Satisfiability problem as well as to reconfigurable computing and FPGAs. The objectives, 

contributions and organization of this thesis were also presented. Chapter 2 will describe the 

Boolean Satisfiability problem, the Davis-Putnam-like (DP-like) algorithm used in this work 

as well as some of its possible enhancements. Chapter 3 presents the various hardware 

architectures that are employed in solving SAT, beginning with an older Boolean Analyzer 

(BA) machine and ending with fairly recent hardware solvers. A summary of these tools is 

presented at the end of the chapter. Chapter 4 will detail the testing platform created to assess 

our solver prototype and Chapter 5 will present the experimental results obtained during the 

testing phase. The work will conclude with Chapter 6 as a discussion and future research 

directions are given.  

                                                 
2 Obtained from http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html   
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Chapter 2 – The Boolean Satisfiability Problem  

The Boolean Satisfiability problem is one of determining whether or not a given Boolean 

formula φ can evaluate to true. As stated beforehand, SAT is an NP-complete problem as the 

fastest known algorithms that can solve it require an asymptotically exponential amount of 

time in the size of φ to either find a solution or to assert that no solution exists. In addition, it 

is almost impossible to claim that faster algorithms exist although nobody has yet proven the 

contrary [38].  

 When considering an formula φ of a SAT instance in conjunctive normal form (CNF), 

one must take into account three components or sets [29]: 

• A set of variables x0, x1, …, xn, where n is the number of variables of φ. 

• A set of literals. A literal is an appearance of variable x as either itself or its negation x 

(for example x1 and x1 are the two possible literals of variable x1). 

• A set of m distinct clauses:  

o Each clause consists of disjunctions of literals combined with the or (∨) 

logical connective.  

o The whole Boolean formula φ consists of conjunctions of clauses combined 

with the and (∧) logical connective. 

To satisfy the Boolean formula φ is to determine if a variable assignment exists such that the 

conjunctive normal form of φ evaluates to true. Figure 2 below illustrates an example3 of a 

Boolean formula φ featuring 5 clauses (represented by γ−) and 7 variables. This example will 

also be used in subsequent chapters for illustrative purposes.  

2.1 Problem Representation 

SAT is usually expressed in conjunctive normal form. However, an equivalent way of 

expressing SAT is the disjunctive normal form (DNF).  By using De Morgan’s law4 of duality, 

                                                 
3 Example borrowed and adapted from: http://www.cs.cmu.edu/~mtschant/15414-f07/lectures/grasp-ex.pdf 
4 http://en.wikipedia.org/wiki/De_Morgan's_laws 
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Figure 2: A 5-clause 7-variable formula 

one can easily obtain one form from the other by simply inverting all literal polarities (x 

becomes x and vice-versa) and by replacing all ∨ logical connectives with ∧ logical 

connectives. In this manner, φ is obtained from φ.  

 A variable is represented in a clause by a literal which can be either false or true. A 

variable can also not have any influence on a clause because neither of its literals is present. 

For example, clause  γ2 in Figure 2 has two literals which are true (x2 and  x5) whereas all 

other variables are absent. To represent problem clauses, three variable states are needed: 

present as true, present as false and not present. Thus, 2 bits are required to express this 

information: “10”, “01” and “11”. The “00” state is not necessary and therefore it is not used. 

Figure 3 illustrates this encoding on the previous 5 clauses of formula φ. The matrix is read 

from right to left and from top to bottom. Each row represents a clause and each column 

represents a variable. For example, the first row of Figure 3 represents the first clause, γ0, and 

⎩
⎪
⎨

⎪
⎧

γ0  =  (𝑥4 ∨ 𝑥3 ∨ 𝑥1 ∨ 𝑥0)
γ1  =  (𝑥4 ∨ 𝑥3 ∨ 𝑥1 ∨ 𝑥0)
γ2  =  (𝑥5 ∨  𝑥2)
γ3  =  (𝑥6 ∨ 𝑥3 ∨ 𝑥0)
γ4  =  (𝑥6 ∨ 𝑥3 ∨ 𝑥1) ⎭

⎪
⎬

⎪
⎫

 

φ(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) =  γ4  ∧  γ3  ∧  γ2  ∧ γ1  ∧  γ0 

⎣
⎢
⎢
⎢
⎢
⎡
("11") ("11") ("10") ("10") ("11") ("10") ("10")
("11") ("11")
("11") ("10")
("10") ("11")
("01") ("11")

("01") ("10") ("11") ("10") ("10")
("11") ("11") ("10") ("11") ("11")
("11") ("01") ("11") ("11") ("10")
("11") ("01") ("11") ("10") ("11")⎦

⎥
⎥
⎥
⎥
⎤

 

 

Figure 3: Representation of a Boolean formula φ 
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the rightmost column displays literal information for variable x0.   

2.2 A Variant of the Davis-Putnam Algorithm 

The method used in this work to solve SAT is based on the classical Davis-Putnam algorithm 

[39]. This resolution-based, backtracking procedure is described by the pseudo-code of Figure 

4. The procedure uses a two-dimensional vector termed the Candidate that uses the 3-state 

encoding scheme discussed above. A stack (last-in-first-out data structure) is also required for 

backtracking purposes whenever erroneous assignments are made. Lines 4 – 9 represent the 

initialization section. At line 4, the Candidate is initialized as all its variable positions are 

assigned “11” to represent the fact that they are free. Lines 5 and 6 show that the stack is 

 1: Procedure DP-Variant 
 2: Input: A set of clauses Γ, a set of variables Ψ 
 3: Output: SAT if all clauses of Γ evaluate to true, UNSAT otherwise 
 
 4: Candidate ← all variables free; 
 5: Stack ← empty; 
 6: TOS ← -1; // top of the stack 
 7: υ ← -1; 
 8: Candidate(0) ← ‘0’; 
 9: Stack.push(0); 
 
10: while(true)   
11:  if SAT(Γ) then  
12:    return SAT; 
13:  else if CONTRADICTION(Γ) then  
14:    if Stack.empty then  
15:      return UNSAT; 
16:    else 
17:      TOS ← Stack.pop; 
18:      RESET_ASSIGNS(Candidate, TOS); 
19:      Candidate(TOS) ← ‘1’; 
20:  else if ONE_IMPLICATION(Candidate) then  
21:    ASSIGN_IMPLICATION(Candidate); 
22:  else 
23:    υ ← NEXT_FREE_VAR(Candidate, Ψ); 
24:    Candidate(υ) ← ‘0’; 
25:    Stack.push(υ); 
26:  end if; 
27: end while; 
   

Figure 4: Pseudo-code of a DP-like algorithm 
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initially empty and the top of the stack (TOS) is initialized to -1. At line 7, the temporary 

variable index υ also receives -1 as staring value. Lines 8 and 9 indicate that the procedure 

starts by first deciding to assign ‘0’ to x0. Inside the procedure’s only while-loop, there are 

four main sections. 

The first section spans lines 22 – 25. Here new decisions are made regarding the 

assignment of the current next available free variable (obtained from the auxiliary procedure 

NEXT_FREE_VAR(Candidate, Ψ)). These variables are termed decision variables and are 

different from implication variables (described shortly). As soon as the index of the next free 

variable is determined, it is used as an index into the Candidate vector where ‘0’ is assigned as 

a first (arbitrary) try. This index is pushed onto the stack so that the procedure can keep track 

of the decisions it has made.  

The second section of the loop is formed by lines 20 and 21. Here the implications of 

the decisions made in the first section above are determined. As the procedure makes 

decisions, more and more literals receive assignments in clauses. At a certain point, a clause 

can become a unit clause when it has only one literal that is yet unassigned in the Candidate 

and all its other literals are false. For example, Candidate 

("11")("11")("11")("01")("01")("01")("01") would cause γ0, γ1 and  γ2 to become unit as 

all three clauses have only one remaining literal, namely x4, x4 and x5respectively and all their 

other literals are assigned false. Focusing only on γ0, the implication of having previously 

assigned x3 to be false is that variable x4 in the Candidate must be assigned ‘1’ so that the 

clause is satisfied. This assignment is carried out by the auxiliary function 

ASSIGN_IMPLICATION(Candidate). This section implements the unit clause rule (also called 

BCP) which is an important feature that helps to augment the resolution of partial solutions so 

that the search space is pruned. Moreover, it is important to note that index 4 is not pushed 

onto the stack as x4 is an implied variable and not a decision variable. 

The next section spans lines 13 – 19. Contradictions are found by the 

CONTRADICTION(Γ) auxiliary procedure. These arise when the function has found one 

clause to be false as all its literals evaluate to false. Continuing with the partial Candidate 

solution ("11")("11")("10")("01")("01")("01")("01") from above after implying variable x4 
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to ‘1’ we find that  γ1 is now false. Inside this third section, at line 17 the stack is popped and 

the TOS receives the index of the last decision variable which in this case is 3. All 

assignments beyond this point (including the offending assignment on 𝑥4) are reset by 

RESET_ASSIGNS(Candidate, TOS). Since ‘0’ did not work as a decision on x3 ‘1’ is now tried. 

Index 3 is not pushed onto the stack this time because both possibilities have been exhausted 

for variable x3. Line 14 determines if the problem is unsatisfiable. As the DP-Variant 

procedure proceeds through the problem’s search space, it will examine both possibilities for 

all decision variables. As both these possibilities are unsatisfactory, the procedure backtracks 

to earlier and earlier decisions. If all decision variables have been tried in both polarities 

unsuccessfully, the stack will be empty. This means that no matter what decisions are made on 

any decision variable, it is impossible to satisfy all clauses and the problem is unsatisfiable.  

The last section includes lines 11 and 12 where the SAT(Γ) auxiliary procedure is 

invoked to determine if all clauses have been satisfied. If all clauses are true or satisfied, the 

DP-Variant procedure terminates with satisfiable (SAT) as answer. If at least one clause is not 

yet satisfied SAT(Γ)returns false. A clause can be unsatisfied in two cases. In the first, it can 

be neither false nor true as not all of its variables have yet received an assignment 

(considering the example of Figure 2, this situation would arise for clause  γ0 after only  x0 

and  x1 would receive “01” or false as assignments; the clause still requires more assignments 

to be resolved). In the second case, the clause is false because all of its variables evaluate to 

false. For example, Candidate ("11")("01")("11")("11")("01")("11")("11") would render 

clause  γ2 false because  x5 and  x2 are both false.  

2.3 Enhancements over the Basic DP-Variant 

The basic procedure described in the previous section leaves room for improvement by means 

of several techniques and heuristics that have been proposed by researchers over the years. 

Some of the more important of these features are described in this section.  

2.3.1 Pure Literal Assignment Rule 

The pure literal assignment rule consists of examining all literals of clauses that are not yet 

satisfied and determining if there are any that occur in only one polarity (i.e. either true or 
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false) in all the problem’s clauses. The variable that is associated with this literal can thus be 

assigned ‘1’ if all literals in the remaining unsatisfied clauses are true or ‘0’ if they are false. 

This method, paired with the unit clause rule described above, are termed reduction methods 

as they increase the resolution of the partial solution and permit the simplification of the 

Boolean formula (by satisfying all clauses in which the variable is present) [40].  

2.3.2 Non-Chronological Backtracking and Dynamic Clause Addition 

The backtracking that is described higher for the DP-Variant procedure is of a chronological 

nature. In other words, if a contradiction arises, the procedure pops the stack and uses that 

index to try a different solution. As long as the contradiction is present, the stack is popped 

and eventually the offending decision is found and the contradiction is resolved. However, the 

contradiction may not have been caused by the last decision made. Introduced by Marques-

Silva and Sakallah in [32], GRASP is a search algorithm that features a more sophisticated 

method of backtracking and pruning the search space. An analysis is performed on the clauses 

involved in contradictions so that the level of the actual decision variable responsible for the 

erroneous situation is identified. In addition, it is also possible to construct one or more 

conflict clauses (that are added to the initial Boolean formula) that prevent future repetition of 

the same conflict.   

2.3.3 Dynamic Decision Variable Ordering  

The DP-Variant procedure described in this chapter makes use of a simple static method of 

deciding which variable is picked for the next decision as the next free variable is always 

selected. However, it is also possible to determine during execution which variable should be 

chosen so that the maximum number of variable implications are generated in an effort to 

identify contradictions quickly. In [18], Suyama et al. use two heuristics to improve the 

execution time of their implementation of the Davis-Putnam procedure. The first is termed 

Maximum Occurrences in Clauses of Minimum Size (MOM). Simply put, this method 

attempts to find the variable that occurs in most clauses that have only two unassigned literals. 

The intuition is that choosing and assigning this variable will create many unit clauses. The 

second heuristic used to dynamically select decision variables is called Experimental Unit 
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Propagation (EUP). This technique is computationally more intensive as for each unassigned 

variable both ‘0’ and ‘1’ are tried in parallel. The variable that gives rise to the most unit 

clauses is hence selected.  

2.4 Incomplete Algorithms 

The algorithm presented here is a complete method. In other words, given a SAT instance, the 

algorithm is always able to either find a solution or report that no solution exists.  

 SAT can also be solved by a different approach. An incomplete SAT solving algorithm 

is one that can find a satisfying assignment but can never declare the instance unsatisfiable. 

Unlike the DP-Variant procedure whose main approach is exhaustive branching (decision 

variables) and backtracking, incomplete algorithms most often use stochastic local search. 

These algorithms are greatly superior than DP-based approaches on some problem instances 

[1]. Two of the most important incomplete algorithms that have been highly successful in 

solving SAT by using local search are GSAT [41] and WSAT (or Walksat) [42].     

 GSAT, whose algorithm is given in Figure 5, initially begins with a random truth 

assignment for all variables. It then tries to greedily flip variable assignments that would 

create the greatest decline in the number of unsatisfied clauses. This is repeated either until a 

solution has been found or until MAX-FLIPS has been reached. The whole procedure is 

 

Figure 5: GSAT incomplete SAT algorithm [1] 
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repeated MAX-TRIES times [1].  

WSAT, shown in Figure 6, further focuses the search by looking in unsatisfied clauses 

when selecting the variable to flip (the clause from which this variable is chosen is also 

selected randomly). The “freebie move” is performed when the algorithm finds a variable 

whose flipping does not cause any currently satisfied clauses to become unsatisfied. If no such 

variable exists, with a predetermined probability, a random literal is flipped in the randomly 

chosen unsatisfied clause and with the remaining probability a variable in this same clause is 

flipped in such a way that the “breakout count”, or the number of currently satisfied clauses 

that become unsatisfied, is minimized. The parameter p which controls the frequency of non-

greedy moves has been empirically found, for various related problem instances, to sometimes 

have an optimal value. For example, for random 3-SAT formulas, this parameter should be set 

to 0.57.  

 

Figure 6: WSAT incomplete SAT algorithm [1] 



 

 

 

Chapter 3 – Hardware Architectures for Solving SAT 
Generally, there have been two kinds of architectures that have been explored by researchers 

when implementing hardware SAT solvers, namely instance-specific and application-specific 

approaches. Instance-specific solvers have their circuits specialized for the problem at hand 

and thus need to be recompiled or reconfigured before every execution. Application-specific 

solvers feature a more general construction and can solve all SAT instances without needing to 

be recompiled. There are benefits and caveats to both these approaches such as long 

compilation times for the former and access to memory for the latter. A very comprehensive 

review focusing on detailed architectural aspects as well as on programming models is 

presented by Skliarova and Ferrari in their 2004 work [40]. There seems to have been a 

gradual shift towards instance specificity from application specificity. This chapter will 

therefore take a historical approach at presenting relevant previous works. 

3.1 Some History – The Boolean Analyzer 

Perhaps one of the earliest attempts at utilizing specialized hardware to treat Boolean 

equations and formulas was undertaken in 1968 by Antonin Svoboda as he proposed a 

Boolean Analyzer (BA) [3] capable of producing all the prime implicants of a Boolean 

formula given the Disjunctive Normal Form (DNF) of its complement. Svoboda’s main goal 

in building the BA was to achieve accelerations over the then fastest general purpose 

computers which displayed execution times much longer than acceptable. The author 

identifies some the factors responsible for BA accelerations as being the parallel processing of 

a large number of Boolean terms and the reduction of Boolean information processing to a 

repetition of the same operation whose result is only a single bit of information. In order to 

parallelize the design and achieve accelerations considering the factors mentioned above, the 

author makes use of triadic and binary counters, a main memory where information for each 

term is stored, logic gate control and special processing registers that are able to evaluate 

Boolean terms in parallel. Figure 7 shows the logical organizations of the BA (left) and of the 

processing register (right). Essentially, the BA uses the triadic counter to generate all 3n 

possible candidate solutions for a Boolean function y of n variables. This triadic counter is 

necessary to express the three possible states that a variable can find itself in in a given 
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minterm: assigned true, assigned false or not present. For example, consider the following 4-

variable Boolean formula y taken from Svoboda’s 1968 work [3]: 

y =  x2 x1 x0  +  x2 x1     

There are two minterms which are encoded using a ternary scheme as follows: 0122 and 

0210. To represent the fact that the variable is not present (for example, x3 does not appear 

anywhere in the formula) 0 is used. If the variable is present as itself (for example x2 in the 

first minterm), 1 is used. Finally, if the variable is present in its negated form (x0 in the first 

minterm) 2 is used. Therefore, in order to be able to represent these 3 states, 2 bits are needed.  

Candidates are checked against the terms of y to find disjunction points. If a candidate 

solution is disjoint from all terms of y it is not included in it but is included in y. The memory 

is used to store intermediate and final results for each candidate examined. The binary counter 

is used by the BA during its solving of Boolean equations (not shown here).   

The BA is attempting to solve a very difficult problem which is harder than SAT and 

as such is unsuitable for tackling any SAT instances modeling real-life applications whose 

sizes sometimes exceed millions of variables. Because the BA is examining all possible terms 

Figure 7: Logical designs of the BA and of its processing register [3] 
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of a Boolean formula as opposed to all possible minterms, its search space is composed of 3n 

possibilities instead of 2n. The universe of possible solutions is explored in a brute-force 

manner and therefore has a time complexity which is exponential. In addition, there is also an 

explosion in the amount of memory resources needed as they also grow in exponentially.   

3.2 Instance Specificity – The First Generation of Solvers 

By their nature, FPGAs offer great flexibility. As SAT instances can vary greatly in their size 

and complexity, it was natural for researchers to initially explore an instance-specific approach 

when creating SAT solvers whose logic circuit was uniquely tailored after the problem at 

hand. In this manner, the various variable and clause relationships were imbibed into a 

specialized circuit that was built each time to solve one instance.   

Amid successful early efforts exploring the applicability of FPGAs to SAT solving, 

Suyama et al. suggested an instance specific approach [19], [9], [17], [18] that is capable of 

finding all or a fixed number of solutions to a SAT instance. The method is complete as the 

solver is capable of determining if at least one solution exists. The authors’ design flow 

(Figure 8) entails initially having a C program examining a file containing the description of a 

SAT instance and generating a high-level HDL behavioral description of the problem at hand. 

The logic circuit thus described is subsequently analyzed, synthesized and mapped by a CAD 

tool. In order to increase the efficiency of their parallel algorithm, the authors make use of a 

Figure 8: Suyama et al. flow of logic circuit synthesis [9] 
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static variable ordering technique in [19] and two dynamic variable ordering techniques in  

[9], [17] and [18]. The first of these ordering techniques is termed experimental unit 

propagation (EUP) and entails assigning both possible values to a variable and verifying these 

assignments concurrently. The second technique, named maximal occurrences in minimum 

length clauses (MOM), deals with selecting variables occurring in a maximal number of 

binary clauses [9]. In addition, the approach is characterized by the avoidance of using 

memory for backtracking purposes as each variable is assigned a register that records the 

depth of the search tree where its value was decided. The reason offered for this design choice 

is that the memory required for a stack can become quite large and sequential memory 

accesses can introduce undesired latencies and bottlenecks. The authors report an 

implementation status [18] of the mapping of a SAT instance featuring 200 variables and 320 

clauses on 21 FLEX10K250 FPGA chips. However, even though the total logic utilization is 

about 13%, the resulting circuit requires a large amount of wiring resources and therefore 

necessitates all 21 FPGAs. The authors also report an FPGA implementation of a 128-

variable, 256-clause circuit that was synthesized at 10 MHz. 

 Similarly, Zhong et al. were able to develop a series of instance-specific SAT solver 

architectures [20], [15], [21] (Figure 9) all based on the DP algorithm [39]. The authors 

identify implication and conflict checking [15] as the most computation intensive tasks (from 

a software solution’s standpoint) and try to focus their efforts to generating hardware able to 

accelerate these areas of the basic DP algorithm. The architecture presented in [15] is based on 

having one finite-state machine (FSM) (Figure 9 top) for each variable keeping track of its 

state (assigned logical ‘0’, ‘1’ or free). All FSMs are connected in a serial chain and, at any one 

time, only one FSM is active. If the right-most FSM attempts to pass control to its right, a 

solution has been found. On the other hand, if the left-most FSM wishes to pass control to its 

left, the SAT instance has been found to be unsatisfiable. Like Suyama et al., the authors use a 

C program to generate a VHDL model from the problem’s specification. The implication 

circuit is formula-specific whereas the FSM circuit, since it is identical for all problems, is 

designed from components that are reused in all circuits. The order of the FSMs on the serial 

chain is determined statically before execution and variables are sorted depending on the 

number of their occurrences in the SAT formula. This architecture implies that only one 
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variable can receive an assignment at any one time, either due to backtracking, implication or 

decision. It should be noted that even though the design obviates the need for a backtracking 

stack, it introduces an unnecessary delay when backtracking as the solver backtracks not to the 

most recently decided variable but to the variable immediately to the left of the currently 

active FSM. The key drawbacks of the work presented in [15] are a low clock frequency of 0.7 

– 2.0 MHz as well as very long compilation times of up to several hours on their Sun 5 

machine featuring 110 MHz and 64 MB of RAM. In [20], non-chronological backtracking is 

used to further enhance the acceleration that is obtained over the software solution (GRASP 

solver). In order to resolve the low clock frequencies and high compilation times, Zhong et al. 

altered the architecture of their solver to a regular ring-based interconnect [21] with 

centralized control (Figure 9, bottom). This new architecture uses repeated clause modules on 

Figure 9: Zhong et al. hardware SAT solver architectures [15], [21] 
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a pipelined bus which allows for higher clock speeds of about 30 MHz. However, at any one 

time, only a subset of the problem’s clauses care evaluated in parallel. In addition, compilation 

times decreased drastically due to incremental synthesis and place-and-route (using Xilinx 

tools). To this effect, a reusable template for general components is first created. A Java 

program examines a SAT formula as well as a bitstream file describing this generic template 

of reusable modules. This is followed by a customization step to generate the appropriate logic 

function programs and routing connections. The result of this customization can then be 

downloaded onto the FPGA. The whole process is said to require only a few seconds. 

In an approach similar to that proposed by Zhong et al. in [20], Platzner et al. [24], [8] 

also make use of an array of finite-state machines, each associated with one variable, that are 

connected in such a manner that an FSM can activate its top or bottom neighbors (Figure 10). 

A combinational datapath circuit takes variables states as input and computes information that 

is resupplied to the FSMs. There is a global controller that initiates computations and ensures 

proper I/O communication. The datapath portion of the circuit and the number of FSMs are 

Figure 10: Platzner et al. FSM-based architecture [8] 
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instance-specific whereas the global controller and FSM structures do not change. At the 

outset, all variables are unassigned, which leads the datapath to compute its result (CNF line in 

Figure 10) as unassigned (‘X’). In this case, following activation by the global controller, the 

first FSM (#1) assigns ‘0’ to its variable and verifies the CNF line. If ‘1’ is observed, the partial 

assignment satisfies the Boolean formula and a solution has been found. On the other hand, if 

‘0’ is observed, the variable assignment does not satisfy the Boolean formula and the FSM 

complements its value and reuses the datapath once again. If ‘X’ is observed, the partial 

assignment is neutral and neither satisfies nor unsatisifies the Boolean formula and the FSM 

activates the FSM below it. If both ‘0’ and ‘1’ assigned to a variable yield a CNF value of ‘0’, 

control is passed (backtracking) to the FSM above. If the first FSM activates the global 

controller, the Boolean formula is found to be unsatisfiable. Once again, as was encountered 

by Zhong et al., the [24] architecture suffers from long compilation times (between 103 and 

597 seconds) which dominate the time required to find a solution (e.g. it takes 0.005 seconds 

to find a solution to problem hole6 of the DIMACS set but 103 seconds to compile the 

circuit). It should be mentioned that the maximal circuit frequencies for [24] found were found 

to be between 27 and 65 MHz and therefore somewhat higher than those found by Zhong et al. 

(for all their architectures reviewed here). As there is no implication computation in [24] the 

authors use a C simulator program to evaluate enhancing the architecture with this and other 

features (such as the identification of unassigned variables in satisfied clauses, termed don’t 

care variables) [8]. Simulation results for the architecture performing implication computation 

show several orders of magnitude speedup over the GRASP software solver although many of 

the problems tested would not fit onto the FPGA used (XC4020). Finally, physical synthesis 

results that take into account compilation times showed speedups between 0.03 and 6.54 on 

the problems from the hole benchmark class against the same GRASP software solver.  

A radically different approach proposed by Abramovici et al. [2], [22] makes use of the 

PODEM algorithm [43] that is employed in the solving of test generation problems. The 

central concept of the approach is the objective which is the desired assignment of a value to a 

signal that is currently unknown. The main goal of the procedure is to assign the value ‘1’ to 

the primary output of the combinational SAT circuit by finding the appropriate values for 

primary inputs (variables). For this purpose, a backtracing procedure is used to propagate an 
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objective along a single path [2] to a primary input so that the objective may be achieved. An 

important feature of the approach is that primary inputs can be assigned in any desired order 

and pure literals are identified dynamically. For backtracking purposes, a hardware stack is 

used and a central control unit is in charge of performing the search process. The method 

allows for fine grain parallelism as all operations between successive division steps are done 

in one clock cycle [2]. Figure 11 (a) shows a high-level block diagram of the architecture 

proposed in [2]. However, the PODEM algorithm requires the propagation of objectives 

backward in the circuit whereas a hardware circuit always propagates values forward. To solve 

this issue, the authors use two distinct element models: every gate of the original circuit is 

mapped into a forward element and a backward element, each belonging to the forward and 

backward networks respectively. The authors conclude that the approach is hardware intensive 

as just the forward network alone is almost twice the size of the initial SAT circuit and the 

complete circuit is about ten times larger. In [22], a revised architecture is proposed (shown 

Figure 11 (b)). The Variable Logic block transforms (either implications or decisions) 

objectives into and maintains current variable assignments. These assignments are sent to the 

Literal Logic block whose job it is to distribute them to the Clause Logic block. The latter 

block determines clause values, the output of the overall formula and determines all literal 

objectives which are sent backwards to the Literal Logic block where they are merged with all 

other objectives (that are arriving for the same variable) into a single objective for a single 

Figure 11: High-level view the architectures proposed by Abramovici et al. [2], [22] 
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variable. As an enhancement over the previous work where only one objective was propagated 

along a single path, backtracing of all objectives over all possible paths is now done in parallel 

and several variables are assigned concurrently. In addition, in [22] objectives are propagated 

with different priorities and unate variables (pure literals) are identified dynamically. It should 

also be mentioned that the authors propose a partitioning scheme as SAT problems are 

decomposed into independent sub-problems to be processed in parallel or sequentially [22]. 

Finally, it appears that this approach is also hardware demanding as a 13-variable, 29-clause, 

69-literal circuit ran at 3.5 MHz. and occupied the whole area of a XC6264 FPGA.  

3.3 Application Specificity – Software/Hardware Hybrid Solvers 

As it became evident that instance-specific approaches resulted in resource-hungry solutions, 

researchers turned their attention to a different programming model, namely the application-

specific paradigm which entails creating a circuit that is compiled once and that is able to treat 

different SAT instances. These solvers rely on memory modules to store a problem’s clauses.  

 An interesting solver based on dynamic learning and FPGA reconfiguration is 

presented by Dandalis et al. [23], [14]. This approach is similar to that of Zhong et al. [21] in 

that it uses chains of pipelined clause modules (Figure 12). A given CNF formula is split into a 

fixed number of modules (groups of clauses) and thus implications and conflicts are deduced 

in parallel. Merge units are then used to combine information from the pipelines into a 

variable set that is consistent. These variables are then fed back to the pipelines until no more 

implications occur or a conflict has been detected. It is worth noting that only the implication 

process is executed in hardware with decisions and backtracking done in software. Each clause 

module has a memory unit that contains each variable’s current value (which can be ‘1’, ‘0’, 

undecided or conflicting). A novel contribution of this work is the fact that the circuit evolves 

dynamically as it tries to find, by means of previously constructed FPGA template 

configurations, the minimal time needed to resolve implications or to raise conflicts (UPT). In 

order to do so, the solver relies on information computed during execution. A greedy heuristic 

executed by a host computer is used for this purpose. At the beginning, the template having a 

minimal number of clause modules per group (and thus the highest level of parallelism 

because more clause pipelines are created) is used to configure the FPGA. The UPT of this 
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configuration is retained and the host computer decreases the level of parallelism of the next 

template by increasing the amount of modules per pipeline group. If the newly determined 

UPT is smaller than the previous minimum, it is retained and reused for the next round of 

implication and conflict determination. As the host machine reconfigures the FPGA with 

different templates, the hardware search process does not restart at the root of the search tree 

but continues from where the previous template had left off. Thus, the optimization process 

involves finding the level of parallelism that leads to a maximal speedup compared to the 

baseline solution which uses only one pipeline group for the complete SAT instance. Using a 

simulator, the authors report, on SAT instances from the DIMACS set, speedups ranging from 

1.06 to 5.44 over the baseline solution.  

Contrary to the complete nature of the solutions provided by the solvers examined so 

far, Leong et al. examined not only such a solution in [44] but also turned their attention to 

incomplete algorithms [4], [16] which can generate solutions but cannot pronounce a SAT 

Figure 12: Dandalis et al. SAT deduction engine and clause module details (bottom) [14] 
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instance unsatisfiable. The work presented in [44] is based on a forward checking tree search 

method and will not be presented here. 

In [4] the incomplete search heuristic GSAT (Figure 5, page 12) was implemented for 

3-SAT problem instances (Figure 13). The approach deals with modifying the low-level 

FPGA configuration bitstream while taking into account the SAT specification. The clause 

checker in Figure 13 is problem dependent and is customized by a C program according to the 

SAT instance. Xilinx tools are then used to partially and dynamically reconfigure the FPGA 

bitstream. The rest of the circuit is generated from a VHDL description and is common to all 

instances. This eliminates the need for synthesis, mapping, placement and routing of the entire 

circuit. The inner for-loop of the GSAT algorithm is implemented in hardware whereas the 

outer for-loop is performed by software. The process starts with a new variable assignment 

which is downloaded onto the FPGA board. The hardware takes over and, by flipping 

variables, tries to find the assignment that would create the greatest number of satisfied 

clauses. If a solution is found, the algorithm terminates. If not, a new random variable 

assignment is made by software and the process restarts (for a predefined number of times). 

The solver was tested on a small problem from the aim suite of the DIMACS set but no 

accelerations were observed when compared to a software implementation of GSAT [4].  

Figure 13: Leong et al. GSAT hardware implementation [4] 
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In [16] Leong et al. addressed the WSAT incomplete algorithm (Figure 6, page 13) and 

proposed a solver capable of accommodating 3-SAT problems of maximum 50 variables and 

170 clauses (Figure 14). As was done for GSAT, the inner loop of WSAT was implemented in 

hardware and a software host was made to call the GSAT core a predefined number of times 

with random variable assignments. The clause checker portion of this core also requires 

configuration at runtime. This method directly manipulates bitstreams to generate FPGA 

configurations and the usual FPGA synthesis, place-and-route and mapping operations are 

avoided once again. The results obtained for this solver show accelerations (versus a software 

implementation of WSAT [16]) on problems from the DIMACS set of 0.1 to 3.3. The core 

was built to run at 33 MHz.  

Figure 14: Datapath of Leong et al. WSAT core [16] 
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3.4 Application Specificity – Modern Solvers 

With the work of de Sousa et al. [5], [25] it is possible to see that while hardware SAT solvers 

still present a hybrid hardware/software approach based on an application-specific 

programming model, partitioning of the SAT instance into sub-problems starts to become 

apparent.  

Indeed, de Sousa et al. propose a configurware/software approach (Figure 15). Their 

SAT solver features dynamic conflict diagnosis and conflict clause identification which are 

done in software whereas implication computation and identification of decision variables 

(using heuristics) are done in hardware. When problem instances do not fit completely in 

hardware, the authors use context switching. They divide the original circuit in pages that are 

successively loaded with intermediate results from RAM modules. A high-level view of the 

SAT core is shown in Figure 15. The shaded portions are implemented in hardware. Of note is 

the use of a clause pipeline (Figure 16) that is architecturally similar to that used by Zhong et 

Figure 15: Configuware/Software SAT solver proposed by Sousa et al. [5] 
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al. in [21]. There are several engines that compose the SAT core. The first is the decision 

engine that, based on a predetermined heuristic, selects one variable for decision. The 

deduction engine’s task is to determine all implications that arise due to a decision by using 

the unit clause rule and also signals conflicts. If conflicts have been generated, the diagnosis 

engine analyzes them and constructs a set of offending variables. The variable (belonging to 

this set) that was assigned most recently is complemented and all implications that arose from 

it, as well as all subsequent decisions are reset. New implications that were created by the 

complementation are found and the search continues. In [25], the authors use an XCV2000E 

FPGA board (97% resource usage) and report that SAT instances of up to 7680 variables and 

214304 clauses can be processed. However, the software interface was not yet completed and 

thus no execution times were reported. 

 Another prominent example of researchers trying to avoid long hardware compilation 

times can be seen in the 2004 work of Skliarova and Ferrari [13]. This approach involves 

using functional units such as registers and arithmetic and logical units (ALUs) to construct a 

SAT co-processor that avoids being instance-specific (Figure 17). A hardware template circuit 

based on a ternary matrix that is able to accommodate a SAT sub-problem of a specific size 

was built. If the sub-problem (appearing at a specific level of the search tree) can fit onto the 

FPGA, it is downloaded and the aforementioned circuit, implemented on the basis of a DP-like 

algorithm, is used to solve it. If the sub-problem does not fit, software is used to simplify and 

reduce it so that it may be downloaded again. Hardware resources are used efficiently in this 

manner, although the success of instance partitioning between software and hardware is tied to 

Figure 16: Sousa et al. clause pipeline [5] 
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the nature of the SAT problem at hand. The authors implemented three different circuit 

templates, all of different sizes. The largest circuit occupied 54% of the XCV812E FPGA and 

featured a maximal frequency of 30.516 MHz. Comparisons were made with the GRASP 

software solver on all instances of the hole suite from the DIMACS benchmark set. Speedups 

reportedly ranged from 0.289 to 111.245 (considering all three templates). Since it is difficult 

to correctly ascertain the efficiency of the solver on only one type of problem, other DIMACS 

instances were used to compare it to GRASP but no significant accelerations were observed. 

One limiting aspect of the approach is the communication between the software and hardware. 

As problems become larger and more difficult, more simplifications, reductions, and thus 

more downloads to the FPGA board are required, which may lead to a decrease in 

performance.  

 A slightly different SAT solver flavor is presented by Safar et al. [7], [6] as their 

solution is implemented completely in hardware and avoids instance specificity by storing 

SAT instance information in RAM modules. In [7], the presented approach is based on 

Figure 17: Skliarova and Ferrari's matrix based solver architecture [13] 
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performing a depth first search which is paired up with non-chronological, conflict directed 

backtracking (Figure 18). In addition, the proposed methodology distinguishes itself by the 

method employed for clause evaluation as a shift register is used to encode when clauses are 

satisfied (right shift), unsatisfied (left shift) or there is no impact by the current variable 

assignment. The authors restrict the range of acceptable problems to 3-SAT and use the 

“0001000” vector in the shift register-based clause evaluator. A clause thus has two chances 

to be satisfied and if a ‘1’ is present in the left-most bit, a conflict has been detected. For non-

chronological backtracking purposes, a priority encoder is used to determine the return level. 

Variables are ordered statically and the maximal problem size that can by analyzed by this 

solver is 100 variables and 200 clauses. The circuit was able to runs at a maximal frequency of 

65 MHz and occupies 85% of the XC2VP4 FPGA used. 

 Building on notions from their previously mentioned work, Safar et al. enhance their 

design [6] with a five stage pipeline (Figure 19). The first, called the variable decision stage 

(VD), is in charge of the overall control of the solver, performs static variable decision (there 

Figure 18: Safar et al. SAT solver architecture [7] 
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is no implication computation) as well as conflict analysis. The second stage, termed the 

variable effect fetch stage (VF), uses a memory module to keep track of variable assignment 

effects on clauses. The principle behind clause evaluation from [7] is reused in the clause 

evaluate stage (CE) where 7-bit shift registers (one for each clause) are used to evaluate all 

clauses in parallel. The fourth stage (CD) deals with conflict detection (as before, a ‘1’ in the 

left-most bit position of a clause evaluator register indicates a conflict) whereas the fifth and 

final stage (CA) analyzes conflicts. There are several advanced techniques employed in this 

solver. These include non-chronological backjumping, dynamic backtracking and learning 

without explicit implication graph traversal. As in their previous work [7], the authors use 

RAM modules to store SAT problem information thereby avoiding instance specificity. The 

maximal size of any one problem that can be accommodated by this solver is 511 variables 

and 511 clauses. This solver circuit operates at 120 MHz and occupies 82% of available LUTs 

in the XC2VP30-FF896 FPGA used as well as 47% of all available on-chip RAM. The authors 

report on a comparison made with the SATzilla2009_C software solver which revealed 

speedups and decelerations between 0.31 and 8.81.  

 Another example of partitioning SAT problems into smaller instances is provided by 

Gulati et al. in their work [11] based on their previous custom application-specific integrated 

circuit (ASIC) implementation [45]. The general architecture and the FSM of the decision unit 

are presented in Figure 20. The solver proposed here traverses the implication graph as well as 

generates conflict clauses in hardware in parallel. The BCP methods and non-chronological 

Figure 19: Safar et al. 5-stage pipelined solver [6] 
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backtracking of the GRASP software SAT solver are implemented in hardware. The selection 

of decision variables is done statically and the number of variables and clauses (as well as 

clause width) is fixed.  

Before solving a SAT problem, a preprocessing step is needed to heuristically partition 

it into instances that can fit onto the FPGA. For this purpose a 2-dimensional graph bandwidth 

minimization algorithm with greedy bin-packing is used. In order to find a solution to a 

problem, all sub-instance bins must be satisfied. Initially, all problem sub-instances are stored 

in off-chip RAM and are subsequently loaded into on-chip memory by a PowerPC core using 

the on-chip peripheral bus (OPB) and processor local bus (PLB) protocols from Xilinx. The 

authors use a XC2VP30 FPGA to implement their solution, which occupies about 70% of 

logic resources, and the maximal problem size is 8K variables and 14K clauses. Of note is the 

Figure 20: Gulati et al. solver architecture (top) and decision engine FSM (bottom) [11]  
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mathematical model developed by the authors to project their results to the larger 

XC4VFX140 FPGA. On this platform, the authors extrapolate their solver to accommodate 

10K variables and 280K clauses. Moreover, comparisons of XC4VFX140 projected runtimes 

on various SAT instances with MiniSAT, a successful software solver, yielded a speedup of 

about 90.  

Similar to the above-mentioned Leong et al. approach, Kanazawa and Maruyama’s 

solver (Figure 21 shows a high level view) [10] explores the use of an incomplete SAT 

algorithm in solving very large 3-SAT problem instances on FPGA using a variant of the 

WSAT stochastic local search algorithm. The authors justify their selection of this incomplete 

SAT method with the fact that the resulting circuit does not need complex control structures as 

Figure 21: Kanazawa and Maruyama WSAT based solver [10] 
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well as with the idea that WSAT has very good inherent parallelism that can be used. In order 

to reduce circuit size, Kanazawa and Maruyama’s solver evaluates, in parallel, only clauses 

that have the possibility of being unsatisfied by the flipping of a variable. Furthermore, this 

approach makes use of multi-threaded execution as a way to increase performance as many 

independent tries are executed in parallel. On-chip memory is heavily used for different tables 

and buffers as well as for storing variables which can be flipped in 1 clock cycle. An important 

aspect of this use of memories is the fact that the size of both on and off-chip memories as 

well as off-chip memory bandwidth affect performance. The authors present two 

implementations. The first does not use off-chip memory as the problem is completely handled 

by the FPGA and its memory resources. This circuit has a maximal frequency of 85.2 MHz, 

claims 51% of the XCV6000 FPGA slices and 90% of on-chip RAM. The maximal problem 

size is 2048 variables with the number of variables depending on the instance analyzed (the 

authors have verified up to 8500 clauses). A comparison was made with the Walksat5 software 

solver which revealed speedups between 3.4 and 50.8 on problems from the SATLIB 

benchmark suites6. The second implementation makes use of 8 off-chip memory banks, runs at 

67.2 MHz, and requires 88% of the same FPGA’s slices and 97% of its on-chip memory 

blocks. The largest problem accommodated by this circuit has 32K variables and 128K 

clauses. A second comparison made with the same Walksat solver revealed accelerations 

between 13.8 and 37.0 on problems from the SAT Live7 benchmark suite.  

3.5 Summary and Analysis of Hardware SAT Solvers 

To provide a compact view of all works presented heretofore, Table 1 lists characteristics and 

attributes of the hardware solvers presented in this chapter. A large hurdle that a hardware-

based SAT solver has to face is the potentially enormous instance representation as some 

problems have thousands to millions of clauses and variables. Even though FPGA capacities 

can, up to a certain extent, accommodate these problems, there is still a barrier that hinders the 

use of these powerful devices to solving SAT. Indeed, as can be seen in Table 1, the 

approaches presented in this chapter have mostly focused on trying to fit problems on their 
                                                 
5 Solver site: http://www.cs.rochester.edu/u/kautz/walksat/ 
6 Site: http://www.satlib.org/ 
7 Site: http://www.satlive.org/ 
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FPGA platform in a timely and efficient manner rather than on enhancing solvers with 

sophisticated heuristics and techniques, as is done for their software counterparts [34]. In 

addition, with larger problem sizes come immense, complicated circuits that require long 

times to generate. Since the principal goal of hardware SAT solvers is to provide accelerations 

over software solutions, long circuit build times significantly decrease or even nullify the raw 

speedup generated by the hardware. Thus, from instance specificity, a seemingly natural way 

to map SAT to hardware harvesting great amounts of FPGA parallelism, SAT solvers started 

evolving towards pipelined, sometimes software aided, problem-partitioning natures that rely 

on memory modules to store instance clauses. By doing so, solver authors have avoided 

having to bulk up hardware with clause-variable relationships. A tradeoff was thence made 

between the parallelism obtained from instance-specific circuits requiring long times for 

compilation and the more coarse parallelism provided by pipelined application-specific 

circuits with no compilation overhead. On the other hand, it is our intuition that instance 

specificity is a necessary avenue for providing fine grained FPGA parallelism that is required 

to tackle the NP-hardness of SAT. Application-specific solvers use memory modules where 

problem clauses are stored. Nevertheless, different problems arise from the use for memory 

such as latencies and other limitations (e.g. can only access a fixed width word at a time). 

Solvers built in this manner have, in our opinion, generally mitigated these barriers by using 

heuristics such as dynamic variable ordering and non-chronological backtracking. However, 

for real-world applications with immense problem sizes, memory transactions are 

unacceptable. Consequently, the rest of this work will focus on assessing the influence of 

memory on hardware SAT solving and on highlighting the fact that instance specificity 

parallelism is required to solve the Boolean satisfiability problem. To this effect, a testing 

platform was implemented that simulates an on-chip memory with as many read ports as there 

are clauses in the problem instance. The fundamental unit that was used in building this 

memory is the 1-bit register (grouped in arrays) residing in each logic element of the Altera 

DE2-70 FPGA board. As such, a focus of this investigation was to develop 2 versions of a 

SAT solver model based on the complete DP method that has access to all problem clauses at 

once. One version is a software simulator that is able to provide accurate clock cycle counts 

and the second is a VHDL description of the hardware necessary to implement the model on 

an FPGA board.   
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Table 1: Summary of hardware SAT solvers 

Solver  Year Specificity Algorithm HW/SW  
Execution 

Maximal 
Problem  

Size 
(approx.) 

Comments 

Svoboda 
[3] 1968 Application Exhaustive 

search 
-All execution 
in HW. N/A  

-Highly parallel 
design: one 
register for each 
minterm. 
-Explosion of 
time and 
memory needed 
due to 
exhaustive 
search. 

Suyama 
[9, 17-19] 

1996-
2001 Instance 

DP-based 
with MOM 
and EUP 
dynamic 
variable 
selection 

-All execution 
in HW. 

~200 variables, 
~300 clauses 

-Use of registers 
for backtracking. 
-Large amount 
of resources due 
to wirring 
requirements.  

Zhong 
[15, 20, 21] 

1998-
2000 Instance 

DP-based 
with non-
chronological 
backtracking 
and dynamic 
clause 
addition 

-All execution 
in HW. 

~200 variables, 
~1000 clauses 

-Only a subset of 
total problem 
clauses 
evaluated at any 
one time 
-FSM and Ring 
architectures 
-Incremental 
synthesis 
decreases 
compilation time 

Platzner 
[8, 24] 

1998-
1999 Instance DP-based -All execution 

in HW. 
~100 variables 
~500 clauses 

-High circuit 
frequencies (27 
– 65 MHz). 
-FSM 
architecture. 

Abramovici 
[2, 22] 

1997-
2000 Instance 

PODEM with 
pure literal 
rule  

-All execution 
in HW. 

~10 variables 
~30 clauses 

-Dynamic pure 
literal 
identification. 
-Hardware 
intensive. 
-High 
parallelism: e.g. 
several variables 
can be assigned 
concurrently. 
-Partitioning 
scheme 
proposed 
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Table 1 cont’d : Summary of hardware solvers 

Solver  Year Specificity Algorithm HW/SW  
Execution 

Maximal 
Problem  

Size 
(approx.) 

Comments 

Dandalis 
[14, 23] 

2000-
2002 Application DP-based 

-Implication 
computation in 
HW. 
-Variable 
decisions and 
backtracking 
in SW.  

N/A  

-Dynamic 
learinng to 
reconfigure 
FPGA. 
-Focuses on 
minimizing time 
to resolve 
implications or 
raise conflicts 
-Pipeline 
processes groups 
of clauses. 

Leong 
[4, 16] 

1999-
2001 Application GSAT, 

WSAT 

-Inner 
algorithm  
loop in HW. 
-Outer 
algorithm loop 
in SW 

50 variables,  
170 clauses 

-Problem 
specific FPGA 
runtime 
configuration  
-Circuit speed 
moderately 
high(33 MHz) 

de Sousa 
[5, 25] 

2001-
2002 Application DP-based 

-Implication 
computation 
and selecting 
decision 
variable in 
HW. 
-Conflict 
analysis, 
backtracking, 
clause addition 
in SW. 
 

~7000 
variablesa, 
~200000 
clausesa 

-Use context 
switching for 
instances that do 
not fit onto 
FPGA. 
-Use of clause 
pipeline to 
evaluate clauses. 

Skliarova 
and Ferrari 
[13] 

2004 Application DP-based 

-SW splits and 
reduces 
problem until 
can fit onto 
HW. 

~100 variables, 
~850 clauses 

-Communication 
with host 
processor is not 
negligeable.  

Safar 
[6, 7] 

2007-
2011 Application 

DP-based 
with dynamic 
backtracking 
and clause 
learning; 
static variable 
selection. 

-All execution 
in HW 

511 variables, 
511 clauses 

-Store 
information in 
memory. 
-5-stage 
pipeline. 
- No implication 
computation.  

a 
Interface with software was not implemented and no real execution times were available. Circuit was synthesized for XCV2000E board. 
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Table 1 cont’d: Summary of hardware solvers 

Solver  Year Specificity Algorithm HW/SW  
Execution 

Maximal 
Problem  

Size 
(approx.) 

Comments 

Gulati 
[11] 2009 Application 

Based on 
GRASP 
software 
solver 

-SW partitions 
problem. 
-HW performs 
non-
chronological 
backtracking 

~8000 
variablesb, 
~14000 clausesb 

-Heavy use of 
memory. 
-Use of general 
purpose PC and 
busses to 
transfer clause 
information. 

Kanazawa  
and 
Maruyama 
[10] 

2010 Application WSAT -All execution 
in HW 

~32000 
variables, 
~128000 
clauses 

-Heavy use of 
memory. 
-Memory 
bandwithd 
limitations. 
-High circuit 
frequencies 
(85.2 MHz and 
67.2 MHz). 

b Authors developed a mathematical model that provides projections toward a larger FPGA where the maximal problem size is about 10000 
variables and 280000 clauses. No actual problems of this size were tested. From projected runtime comparisons with MiniSAT, the largest 

problem had 3301 variables and 10092 clauses. 



 

 

 

Chapter 4 – The Evaluation Platform  
This chapter will describe in detail the platform that was built. Before proceeding with details 

regarding the functioning of the DP-like solver, consider the clauses γi (this time expressed in 

DNF) of the 5-clause, 7-variable formula  φ7F

8 that are shown in Figure 22. The CNF form of its 

inverse φ was introduced in Chapter 2. 

As an initial step in our exploration, we attempted an implementation of Svoboda’s 

Boolean analyzer [3]. Since this solver makes use of the DNF, it was deemed natural to 

continue with this notation when considering SAT which is a simpler but nearly identical 

problem (Svoboda attempts to find all solutions to a Boolean formula while SAT attempts to 

find one such solution). This form is easily obtained by applying De Morgan’s law of duality9. 

From a SAT standpoint, finding a solution to the Boolean formula φ starting with its negation 

φ now involves finding a variable assignment that renders the entire formula false. In other 

words, the satisfying assignment must have at least one disjunction point (one variable 

assigned differently) with all clauses belonging to formula φ. The significance of this 

disjunction is that if a solution is not included in the set of all solutions to the inverse formula 

φ then surely it must be a solution of φ.  

 

 
                                                 
8 Example borrowed and adapted from: http://www.cs.cmu.edu/~mtschant/15414-f07/lectures/grasp-ex.pdf   
9 http://en.wikipedia.org/wiki/De_Morgan's_laws 

⎩
⎪
⎨

⎪
⎧

γ0  =  (x0  ∧  x1  ∧  x4  ∧  x3)
γ1  =  (x0  ∧  x1  ∧  x4  ∧  x3)
γ2  =  (x2  ∧  x5)
γ3  =  (x3  ∧  x6  ∧  x0)
γ4  =  (x3  ∧  x6 ∧  x1) ⎭

⎪
⎬

⎪
⎫

 

φ(x0, x1, x2, x3, x4, x5, x6) =  γ0  ∨  γ1  ∨  γ2  ∨ γ3  ∨  γ4 

Figure 22: DNF of formula  φ 
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4.1 Introducing a DP-Based Solver 

Figure 23 below shows a high-level view of the DP-like solver that was constructed. The 

components shaded in grey represent a generic decision machine that uses information from 

registers to analyze a Boolean formula in the attempt to finding a solution. The portions of 

Figure 23 not shaded in grey represent the different memories used by the solver. The nature 

of the solver may be therefore thought of as a hybrid between instance and application 

specificity. Indeed, the model is in part instance-specific as the size of the clause register array 

(both the number of registers and also their size in the number of bits), the current partial 

solution register (Candidate in Figure 23) as well as the size of the stack memory need to be 

specified at compile time. The application-specific flavor of the solver comes from the fact 

Figure 23: High-level model of a DP-based SAT solver 
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that it uses a memory, a read-only memory (ROM) in this case, to hold problem information 

(initially only). With some adjustments, the solver can bend towards application specificity. 

For example, adding a few extra configuration registers would allow for programming the size 

of the problem. The only component then needing reconfiguration would be the ROM. This 

would, however, enforce a theoretical maximal limit (regarding problem size) on the solver 

but recompilation would only be needed when the problem size would exceed this limit.  

4.2 Encoding a SAT Problem Instance 

The first step that the solver performs before solving the SAT instance is transferring SAT 

clauses from the ROM to an array of clause registers. The ROM is generated automatically 

(not shown) by a Java program from a CNF file specification10. A variable may be in any of 3 

states (therefore needing only 2 encoding bits): “10” or true, “01” meaning false and “11” or 

unassigned; the state “00” is illegal and is treated as a don’t care value. Each ROM address 

represents a clause index and the width of the memory word is thus equal to the number of 

variables of the problem at hand. The ROM module can be thought of as storing 2 dimensional 

quantities as at each address a word is as long as there are variables in the problem and each 

variable state is encoded with two bits. The size in bits of the ROM needed for problem 

representation is therefore twice the number of clauses multiplied by the number of variables. 

The Candidate register is also 2 bits wide and uses the same encoding scheme to represent 

variable states. An index into this register represents a variable index. The stack memory used 

in backtracking is as deep as there are variables in a problem and as wide as log2 NumVars 

where NumVars is the number of variables of the problem. Indeed, a secondary job of the 

Java program is to determine, from the CNF file, the sizes needed for the different registers 

and memories previously described. Finally, the register array (ClauseReg in Figure 23) also 

uses the state encoding scheme mentioned above and holds the information transferred from 

the ROM module. This register array is used to simulate the memory whose words are all 

accessible at once and whose latency is only of 1 clock cycle. Of course, a ressource penalty 

must be paid as each register is located inside a logic element (LE) of the DE2-70 FPGA. 

                                                 
10 For CNF file specification see: http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html 
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4.3 Disjunction, Inclusion and Implication – Solving SAT 

In Figure 23, the logic-cloud shapes represent combinational circuits that, within 1 clock 

cycle, are responsible for computing various results that are used to solve SAT. To obtain 

these circuits, the following three Boolean formulas were used:  

Disjoint =  � � α1[j] ∗ Υ0[i][j]
Ν−1

j=0

+ α0[j] ∗ Υ1[i][j]
Γ−1

i=0

 

Included = � � α0[j] ∗ Υ0[i][j]  + α1[j] ∗ Υ1[i][j]
Ν−1

j=0

Γ−1

i=0

 

ImplyOne = � � Unit(γi) ∗  Disjoint(γi) 
Ν−1

j=0

Γ−1

i=0

∗  Υ1[i][j] ∗  Υ0[i][j]  ∗ α1[j] ∗ α0[j] 

The ′ ∗ ′ and ′ + ′ operators implement the usual Boolean logical-and and logical-or 

operations.  Symbols Γ, Ν and represent the total number of clauses and the total number of 

variables, respectively. The α− symbol is the appropriate dimension of the current variable 

assignments vector (Candidate solution), Υ− denotes one of the dimensions of the clause 

register array Υ while γi means the ith clause belonging to it. For example, Υ1[0][2] stands for 

the 1st state bit of clause 0, variable 2 whereas α0[8] can be taken to mean the 0th state bit of 

variable 9. The functions Unit(γi) and Disjoint(γi) are implemented as auxiliary circuits that 

are used to find out if a particular clause is a unit clause, meaning it has only one unassigned 

variable, and if this same clause has at least one variable that creates a disjunction point from 

the current assignment; these are necessary conditions for implication computation.  

The Disjoint formula describes the circuit used to determine if a solution has been 

found to the SAT instance as it calculates the disjunction of the candidate solution from all 

problem clauses. The formula examines, for a given clause, the assignment value of each 

variable. If at least one (logical-summation Σ) variable value has been found to be of different 

polarity from the current solution (assigned “10” in the clause and “01” in the Candidate), 

then the clause is disjoint. The logical-product Π large operator dictates that all clauses must 

be disjoint in order for the formula result to be equal to ‘1’.   
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The Included formula calculates whether a given partial (or full) solution is included 

in at least one of the clauses of (and therefore provides a solution to) the Boolean formula φ. If 

such a situation occurs, the algorithm backtracks as a contradiction has occurred since a 

solution to φ is necessarily not a solution to φ. This second formula also examines all clauses 

of the problem. This time, logical-product Π operator is used inside the logical-summation Σ 

operator since for inclusion it is necessary that all literals inside at least one clause be of same 

value as the variable assignments of the Candidate (there is no point of disjunction, or the 

corresponding clause of φ is false). For example, looking at the example presented earlier, the 

partial solution ("11")("11")("10")("01")("01")("01")("01") (in other words “--10000”) is 

included in clause γ1  =  (x0  ∧  x1  ∧  x4  ∧  x3) and leads to a contradiction because φ is 

satisfied and φ is not.  

Finally, the ImplyOne formula is at the origin of the implications’ finding circuit. Four 

conditions must be met to allow a variable to be implied to a value in the Candidate. Firstly, 

the variable must be specified in a given clause. This is determined by the Υ1[i][j] ∗  Υ0[i][j] 

portion of the formula. Secondly, the examined clause must necessarily have only one 

unassigned variable as well as no other disjunction points from the current assignment vector. 

These computations are performed by Unit(γi) and Disjoint(γi) as already discussed. Lastly, 

it is necessary to check that the variable has not been assigned in the current Candidate 

solution, a verification which is done by the α1[j] ∗ α0[j] portion of the formula. If all these 

conditions are met, the variable is simply assigned the opposite value of that which it has in 

the clause.  

To illustrate how these formulas are used consider the following (partial) Candidate 

solution (to the formula presented at the beginning of this chapter) 

("11")("11")("10")("01")("01")("01")("01"), remembering that the left-most bracket 

contains the current assignment for variable 6 and the right-most for variable 0. The Disjoint 

circuit starts with clause 𝛾0 =  (𝑥0  ∧  𝑥1  ∧  𝑥4  ∧  𝑥3) and looks at every variable position in 

the clause. Variable 0 is represented by its negative literal. As the Candidate also has assigned 

false to variable 0 (the right-most bracket contains “01”), no disjunction point is found here. 

Next in line is variable 1 where the same situation repeats itself. When x2 is examined, the 
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solver determines that this variable is not present in the clause and thus does not affect the 

outcome of the Disjoint operation. When x3 is considered, the Candidate features “01” as the 

variable is assigned false which prevents this variable from forming a disjunction point from 

the clause. As x4 is analyzed, a disjunction point is found as the variable is assigned false in 

the clause but not in the Candidate. At this point, the first clause has been determined to be 

disjoint, and thus unsatisfied. The solver will continue on to clause γ1. If all clauses have at 

least one disjunction point, a solution has been found. 

Examining the same partial assignment, the Included circuit is tasked with 

determining if any contradictions have occurred. This situation happens when all the variable 

assignments in the Candidate have the same polarity as they do in the clause. As Disjoint had 

done, clauses are examined in turn and their variables are analyzed one by one. It is possible to 

see that all variables present in clause  γ0 are assigned as they are in the Candidate with the 

exception of x4, which is true in the partial solution but false in the clause. Therefore, the 

Candidate is not included in this clause. However, the contradiction arises with the next 

clause γ1  =  (x0  ∧  x1  ∧  x4  ∧  x3) as all variables feature the same polarity in both the 

Candidate and the clause.  

Finally, to illustrate the ImplyOne circuit, consider the following partial assignment: 

("11")("11")("11")("01")("01")("01")("01") which is almost identical to the one used for 

the first two circuits with the exception that x4 is free. The ImplyOne formula dictates that we 

look at each variable present in every clause. Starting with  γ0, the formula asks if the clause is 

a unit clause, which is the case as variables 0,1 and 3 are all assigned in the Candidate. The 

next step involves determining if the clause has a disjunction point with the Candidate, which 

it does not as x0, x1 and x3 have identical polarity in both the clause and the Candidate 

register; the second portion of the formula is satisfied. Next, with Υ1[i][j] ∗  Υ0[i][j] the 

formula stipulates that in the clause register array, the variable must be present (therefore 

cannot exist as “11” as this means the variable is free or absent; e.g. in clause  γ0 variable x2 is 

free). This is the case for x4. Finally, the last portion of the formula makes sure that the 

variable is actually not assigned in the Candidate. Indeed, x4 is not assigned. In this case, an 
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implication has arisen and x4 is assigned true, the opposite of the polarity found in the clause 

(which is false in this case).  

4.4 Solution Space Exploration 

The method used in exploring the space of solutions to a Boolean function is based on the 

famous DP SAT algorithm. The circles of Figure 23 represent a FSM that implements a 

variant of this algorithm. 

The solution search space is organized as a tree and the main goal is to find a solution 

that unsatisfies all clauses. At the root, no assignments have been made and all variables are 

said to be free. The Candidate displays “11” at all its positions to indicate this fact. In order to 

move forward, the solver uses a simple circuit (not shown here) that detects the next 

unassigned free variable by examining the Candidate vector in a sequential manner (as a 

sidebar, it is worth mentioning that several interesting heuristics used in selecting this variable 

do exist [13] and can be used to increase the performance of the solver, although this would 

come at the price of increased FPGA area that the solver would require). This variable is 

termed the decision variable as the solver decides it to be false and pushes its index onto the 

stack. Considering our earlier example, Figure 24 (a) shows the first three decision steps of the 

algorithm in which the solver decides to assign ‘0’ to variables x0, x1 and x2. The choice of ‘0’ 

and is purely arbitrary. The indexes of these variables are pushed onto the stack in order. The 

incomplete solution that results from these decisions does not yet constitute an unsatisfying 

assignment (although this is possible as some variables can be deemed superfluous) but does 

not raise any contradictions either. Clauses γ0 and γ1 contain x0 and x1 and are not yet 

unsatisfied. However, clause γ2 has only two literals, one of which is  x2. The decision on this 

variable has rendered γ2 a unit clause. This is significant as it is no longer necessary to make a 

decision on x5 later in the search process. All sub-trees resulting from decisions on x5 do not 

need to be explored and the search space is pruned in a significant manner. Now, the decision 

to make x2 ‘0’ has as an implication the fact that x5 must be assigned ‘1’ so that γ2 can be 

unsatisfied and therefore disjoint from the solution (green arrow in Figure 24 (a)).  

As it was previously mentioned, it is possible for contradictions to arise. This situation 

occurs when the same variable is implied to different values by at least two unit clauses. In our 
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current situation, after assigning ‘0’ to the first three variables and implying the 6th one to ‘1’ 

the solver proceeds (as the implication did not cause a contradiction but did not generate a 

solution either because, with the exception of γ2 all clauses are still not disjoint from the 

assignment) by choosing the next available free variable, x3, which, as was done before, is 

decided to be ‘0’. The solver checks for and detects 2 new unit clauses, γ0 and γ1. The only 

variable left to assign in both these clauses is x4. Sequentially, the solver starts to check for 

implications by looking at γ0 and implies the value of x4 to ‘1’ so that the clause is unsatisfied. 

However, during the next cycle, the current variable assignment of “-110000” renders γ1 true 

and thus creates a contradiction. Figure 24 (b) shows the backtracking mechanism employed 

by the solver to correct this situation. Index 3 had been pushed onto the stack as its variable 

had been decided. However, since a contradiction was raised by this decision, this index is 

popped off the stack, all assignments starting with index 3 are reset and the value of its 

associated variable (x3) is complemented. At this point, both possibilities have been tried for 

variable x3. Variable x5 is once again implied as before. In addition, γ3 has emerged as new 

unit clause. This event allows the solver to set the variable  x6 to ‘1’ so that the clause is 

Figure 24: Operation of DP-like solver 
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unsatisfied. This will again lead to a contradiction as the last clause of the problem is now true 

because x1 evaluates to true as its assignment is ‘0’ while x3 and x6 are also true as their 

assignments are ‘1’. After resolving all contradictions resulting from decisions and 

implications, the solver proceeds with new decisions. The search terminates when the circuit 

described by Disjoint evaluates to true or all values of all variables have been tried.  

4.5 LFSR and Pseudo-randomness in Variable Decision 

In the previous section, the manner in which variables get their value is described as arbitrarily 

starting with ‘0’, an assignment which is inverted with subsequent conflicts. In addition to this 

predefined choice of always starting with false, it is also possible to configure the DP-like 

solver to use a linear feedback shift register (LFSR) to pseudo-randomly select a value during 

execution by selecting a bit from the LFSR output. Figure 2511 shows an example of an 8-bit 

LFSR.  

 As the LFSR’s seed is randomly generated at compile time (by the same Java program 

that generates the problem ROMs) it allows the introduction of almost randomness into solver 

operation so that it can take random paths to solutions. Thus, for a given seed and a given 

problem instance, the LFSR method of deciding on a variable value will always yield the same 

                                                 
11 Figure taken from : http://www.markharvey.info/fpga/lfsr/lfsrfig4.gif 

Figure 25: Example of an 8-bit LFSR 
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solution. However, if the circuit is recompiled with a different seed, it is possible (and highly 

likely) that a new solution will be found in a different time period.  

4.6 Some Remarks 

While this DP-based search algorithm does solve SAT instances in a manner that is 

significantly more efficient than, say, a brute-force approach where all solutions are 

enumerated and verified, there are many improvements that were suggested in the other 

solvers presented in this thesis that could be used to further accelerate its execution. Examples 

include dynamic variable ordering [9], [17], [18] and non-chronological backtracking as 

presented in [21] whereby conflicts are analyzed so that the solver backtracks not to the last 

decision variable (chronological backtracking) but to the level responsible for the 

contradiction. Moreover, implication generation is one of the most important aspects of SAT 

solving. As more and more decisions are made, a greater number of unit clauses appear and 

the solver is capable of verifying quickly if its decisions are correct. Thus, a measure of SAT 

solver efficiency may be thought of as the number of implications that it can raise in a small 

amount of time  

These enhancements do come with a price in terms of the hardware resources needed 

to implement them. For example, the Disjoint circuit for the example used in this chapter (as 

compiled with the Quartus II version 12.0 CAD software, which was also used during the 

experiments portion of this work) requires 47 logic elements, the Included circuit needs 55 

whereas the ImplyOne circuit claims 204 logic elements.  



 

 

 

Chapter 5 – Experimental Results  

The solver model presented in this work is very hardware intensive and as such does not offer 

a viable solution for a successful, efficient SAT solver from a practical point of view. Rather, 

the solver presented here forms an exploration platform that paves the way for similarly 

constituted solvers relying heavily on FPGA fine-grained parallelism for processing power. As 

such, the main goal of the experimental section of this work will be to assess exactly how 

quick a DP-based solver (relying on no heuristics or other enhancements except perhaps 

pseudo-random variable assignment and computing all implications in 1 clock cycle) is when 

compared to other solutions, be they hardware or software in nature, if memory limitations are 

eliminated by using a large, fast memory module capable of producing clause information in 1 

clock cycle.  

To simulate the multi-port memory (in order to have as many read ports as there are 

clauses in a problem instance) so as to benefit from extensive parallelism when evaluating 

instance clauses, registers located in each logic element of the DE2-70 Cyclone II FPGA 

(Figure 2612) used are necessary to hold state information bits for each variable present in each 

every clause. The Cyclone II DE2-70 FPGA board has 68416 logic elements (1 logic element 

≈ 1 LUT, Figure 26). This number constitutes an upper limit on the size of the problem that 

can be considered via our approach. In addition, registers are also needed for the candidate 

solution, although the space that this component requires is minimal compared to problem 

clause information. Furthermore, some logic elements are used for computing tasks and cannot 

be used for the aforementioned purpose. Compilation techniques are employed by the Quartus 

II CAD tool to optimize the design in a number of ways. One such technique is called register 

packing12 and can be used to reduce the total number of device resources used by utilizing the 

LUT and the register of a logic element for functions that are not related to one another. 

However, very small problems (from a real-world application size standpoint) claim large 

amounts of resources. For example, one problem of 30 variables and 99 clauses necessitated 

25966 logic elements or about 38% of the total number of logic elements of the FPGA.  

                                                 
12 Obtained from the Cyclone II device handbook. 
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The heavy hardware requirements pose a significant barrier as not many problems can 

be implemented and run directly on FPGA. Thus it was decided that the software simulator 

version of our solver would be used to obtain clock cycle counts for the different problems 

examined in this work. As gate-level HDL simulators such as ModelSim perform simulations 

at a very low level evaluating all signals of an HDL specification, their runtimes can 

sometimes be exceedingly long (hours and even days of simulation time). Thus, a custom 

simulator written in the Java programming language was developed that is faithful in every 

way to the specification of the VHDL model of the DP-based solver. This simulator was then 

used to obtain clock cycle counts for problems analyzed by other solvers for comparison 

purposes. Furthermore, to estimate probable circuit frequencies regression curves were used as 

the VHDL version of the solver was synthesized for small problems randomly generated by 

the makewff utility that can be obtained with the Walksat software SAT solver13. 

                                                 
13 Solver site: http://www.cs.rochester.edu/u/kautz/walksat/ 

Figure 26: Cyclone II logic element 
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5.1 Regression Analysis – Rules of Thumb 

The problems used in the regression analysis to approximate various circuit parameters are 

shown in Table 2. Note that what is sought here are not exact relationships between various 

parameters but rather rules of thumb that can be used to approximate and characterize the 

suitability of using FPGAs in solving SAT. In total, 20 random 3-SAT problems were 

synthesized and their circuit build times, maximal circuit frequencies and required amount of 

memory bits were used in constructing graphs illustrating relationships between these metrics 

and an instance’s size.  

 Indeed, researchers have tried for many decades to develop sophisticated algorithms to 

solve hard optimization problems [46]. Experiments were carried out to see which algorithms 

Variable 
Number 

Clause 
Number 

Build 
Time(sec) 

Maximal 
Frequency 

Memory 
Bits 

10 33 74 62.1 1280 
11 36 75 59.41 1408 
12 39 94 55.61 1536 
13 43 104 50.7 1664 
14 46 112 43.19 1792 
15 49 125 39.3 1920 
16 53 138 38.02 2048 
17 56 167 42.34 2261 
18 59 174 33.79 2394 
19 63 204 41.4 2527 
20 66 226 31.31 5220 
21 69 262 39.34 5481 
22 72 262 35.8 5742 
23 76 297 36.97 6003 
24 79 303 27.19 6264 
25 82 368 32.92 6525 
26 86 398 33.12 6786 
27 89 450 32.68 7047 
28 92 476 30.7 7308 
29 95 492 30.2 7569 
30 99 577 29.1 7830 

 

Table 2: Characteristics of circuits used in the regression analysis 
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perform best on benchmark instances that are publicly available but provided no useful 

conclusions. In addition, the no-free-lunch theorem [47] states that there is no algorithm that 

can indicate which algorithm would perform better than all other algorithms on all instances of 

a given problem [46]. It is therefore difficult to establish exactly what metric (e.g. problem 

size, clauses-to-variables ratios, number of literals present in one polarity or another, etc.) best 

characterizes a SAT instance as it is solved by the DP algorithm. Various combinations of 

these metrics could be used to create easier or harder problems. However, the approach of 

exploring various metric combinations is neither useful nor particularly feasible. Instead, 

inspiration was drawn from a famous result by Selman et al. [48], which states that a clauses-

to-variables ratio of 4.26 in random 3-SAT instances makes for very difficult problems. 

Consequently, the 3.29 average clauses-to-variables ratio of all problems used in comparing 

our solver to others was used to generate random 3-SAT problems using the makewff utility. 

In this manner, some of the SAT instances’ structure is reflected in the smaller problems used 

in the regression analysis. 

Before proceeding with the description of the data obtained it is worthwhile to note that 

the general purpose PC used in this work features an octa-core Intel i7 processor running at 

2.80 GHz with 8 GB of RAM. The operating system used was the 64-bit version of the 

Ubuntu operating system (12.04 LTS).   

The first graph generated is shown in Figure 27 and it depicts the size of a circuit 

expressed as the number of logic elements claimed on the Cyclone II FPGA as influenced by 

the number of clauses present in the SAT instance. The curve that fits the experimental data is 

best expressed by power type regression. The formula representing the rule of thumb relating 

logic elements to the number of clauses present in a SAT instance was in this way 

approximately found to be:   

logic_elements = 2.8 ∗  num_clauses2 

 It is now possible to infer that the maximal problem size that can be accommodated by 

our FPGA features about 156 clauses and, since we have assumed 3-SAT, 52 variables. Of 

course, this limit is imposed by the capacity of the FPGA board used. However, using larger 
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FPGAs would not allow the solver to process significantly bigger problems. Solving this area 

issue constitutes one of our most important research priorities.   

Even though the circuits generated by our approach are large, the relationship between 

the time to build a circuit and instance size is also best expressed by a power regression curve 

(as opposed to an exponential one). The graph showing this is displayed in Figure 28 and the 

relationship between the circuit build time and the size of the problem as expressed by the 

number of clauses is given below: 

circuit_build_time = 0.08 ∗  num_clauses2 

Thus, once again, the problem that occupies the entire FPGA (whose parameters are 

given higher) is solved by a circuit that would require approximately 1950 seconds (about 32 

minutes) of build time.  

 The most important approximation that was performed concerns circuit frequency as 

dictated by problem size. This parameter is employed later after the simulator version of our 
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solver is used to obtain clock cycle counts for problems that do not fit onto our FPGA. Figure 

29 shows the graph of circuit frequency versus circuit size. The relationship expressing the 

link between circuit frequency and the number of clauses of a problem is given below:  

frequency =  552 �(num_clauses)23⁄  

The minimal circuit frequency featured by the largest problem fitting onto the DE2-70 

Cyclone II FPGA is thus considered to be about 19 MHz. This result differs somewhat from 

those found in other works presented in this thesis although the problem sizes considered are 

small. However, a circuit spanning the entire FPGA is still able to function at a relatively high 

frequency.  

Lastly, to get an idea of the amount of the amount of memory bits required by the 

ROM module to store the problem clauses, a graph illustrating the relationship between this 

quantity and the number of clauses of an instance is given in Figure 30. The stair-like effect on 

the graph is attributed to the fact that memory address width is always a power of 2. For 

example, the point on the graph just before the inflection represents a problem of 19 variables 
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and 63 clauses. As mentioned previously, in each clause we need 2 bits to represent variable 

states. As we have a word width of 19 (for the total number of variables), the number of 

memory bits required is 26*19 *2 = 2432 bits (where 26 = 64 are the total number of words in 

the memory; this is computed from CEILING (lg2(num_clauses)) = 6). There is a 

discrepancy with the value reported in Table 2 due to the fact that the stack memory is also 

taken into account (19 variables would require 19 * 5 = 95 bits which brings the total up to the 

reported 2527 bits). On the other hand, if the stack memory is too small, as is the case for the 

first problems, the compiler selects logic elements to implement it rather than dedicated 

memory bits. Now, the next point on the line represents a problem of 20 variables and 66 

clauses. The next power of 2 available is 7 (CEILING(lg2(66)) = 7) and the total number of 

bits now jumps to 27 * 20 * 2 + 20 * 5 (for the stack) = 5220. 

5.2 Comparison between Hardware and Software  

The first execution time comparison was made between the 2 versions of our solver using 

problems from the DIMACS benchmark suite. The purpose of this comparison is to assess 
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exactly how much faster or slower the hardware version is than the software simulator. 

Paramount to this comparison is the fact that circuit build times were not taken into 

consideration when reporting speedups. As the instances used in the comparison do not fit 

onto the FPGA, their build times for larger platforms would necessarily take up more than the 

32 minutes reported higher whereas the raw execution time for these problems is 

predominantly on the order of seconds. The goal here is to use run-times to characterize fine-

grained parallelism as applied to solving SAT. Thusly instance specificity is pushed to the 

maximum (memory modules have been eliminated and all clauses are readily accessible by the 

solver in one clock cycle) to explore the limits of this parallelism.  

 Table 3 shows the run-times of the two solver flavors on various problems. The 

columns indicate, from left to right, the instance’s name, how many clauses and variables it 

has, the number of simulated clock cycles (obtained from the software simulator), the 

estimated circuit frequency in Megahertz, the theoretical hardware execution time, the 

software simulation time and the resulting speedup. As can be seen from Table 3, most of the 

time, the hardware circuit is two orders of magnitude faster than the software simulator. On 
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some problem instances three orders of magnitude were discovered. It is also important to note 

that the simulator is running on a general purpose CPU whose frequency is about two orders 

of magnitude faster than the estimated frequencies.  

5.3 Comparison with other Solvers 

Comparisons were also made with other hardware solutions that were presented in this work. 

An important aspect of this comparison is that all solvers used in the examination used a 

variant of the DP algorithm that was augmented with various sophisticated heuristics that can, 

in some cases, greatly help with solving instances faster. Techniques such as non-

chronological backtracking whereby the solver backtracks not to the most recent variable 

Problem 
Name Clauses Vars. Clock 

Cycles 
Freq. 

(MHz.) 
Time 
(sec) 

Simulation 
Time (s) Speedup 

dubois20 160 60 5.77E+07 18.73 3.08E+00 4.65E+02 1.51E+02 
dubois21 168 63 1.21E+08 18.13 6.65E+00 1.00E+03 1.51E+02 

aim-50-2_0-yes-
1-2 100 50 1.69E+03 25.62 6.58E-05 6.80E-02 1.03E+03 

aim-100-2_0-yes-
1-4 200 100 4.66E+07 16.14 2.89E+00 5.38E+02 1.86E+02 

aim-200-6_0-yes-
1-1 1200 200 3.54E+05 4.89 7.24E-02 1.33E+01 1.84E+02 

par8-1-c 254 64 1.39E+02 13.76 1.01E-05 3.20E-02 3.17E+03 
par16-1-c 1264 317 1.76E+07 4.72 3.73E+00 1.03E+03 2.76E+02 
pret60_40 160 60 6.49E+07 18.73 3.46E+00 7.36E+02 2.13E+02 

hole9 415 90 2.11E+08 9.92 2.13E+01 2.71E+03 1.27E+02 
hole8 297 72 1.37E+07 12.40 1.10E+00 2.50E+02 2.26E+02 
hole7 204 56 9.77E+05 15.93 6.13E-02 1.82E+01 2.97E+02 
hole6 133 42 7.80E+04 21.19 3.68E-03 2.37E+00 6.43E+02 

uuf100-0457 430 100 3.09E+06 9.69 3.19E-01 6.03E+01 1.89E+02 
uuf125-07 538 125 8.26E+06 8.34 9.90E-01 1.54E+02 1.55E+02 

aim-100-1_6-
yes1-1 160 100 9.00E+08 18.73 4.81E+01 4.80E+03 9.98E+01 

aim-50-2_0-no-4 100 50 2.81E+05 25.62 1.10E-02 2.46E+00 2.24E+02 
aim-50-1_6-no-1 80 50 7.31E+06 29.73 2.46E-01 4.45E+01 1.81E+02 

aim-100-3_4-
yes1-4 340 100 2.84E+05 11.33 2.50E-02 5.16E+00 2.06E+02 

aim-50-2_0-no-1 100 50 3.61E+06 25.62 1.41E-01 2.39E+01 1.70E+02 
 

Table 3: Comparison between HW and SW versions of our DP-like solver 
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decision but to the variable decision that has caused the contradiction can prune the search 

space even further by avoiding dead-ends in the search path. Heuristics such as these were not 

implemented for the presented solver because it was deemed that the basic DP algorithm was 

sufficient for the purposes of our investigation. A mature, powerful solver would, however, 

require some of these state-of-the art methods to increase its efficiency.    

 Table 4 and Table 6 report the run-times obtained for problem instances from the 

DIMACS benchmark set. Considering the older solvers presented in Table 4, we can see that 

some accelerations are achieved. On the other hand, the newer solvers presented in Table 6 are 

faster on most instances. Of note is the fact that execution times presented in [11] by Gulati et 

al. for their 2009 solver are projections to a large, industrial grade FPGA platform. In addition, 

it is worth remarking that the solver presented by Safar et al. in their 2011 paper [6] is capable 

of much faster execution on a specific set of benchmark problems, namely the aim set. This 

may be the result of Safar et al.’s implementation of heuristics that are suitable for this 

particular type of problem.  

 Finally, a very important result was obtained by comparing our simulation results of 

Problem 
Name 

Zhong et al. (2000) Suyama et al. (2001) Skliarova and 
Ferraria (2004) 

Time (s) Speedup Time (s) Speedup Time (s) Speedup 
dubois20 8.44E+00 2.74E+00 2.07E+01 6.72E+00 

N/A 

dubois21 N/A 4.26E+01 6.40E+00 
aim-50-2_0-

yes-1-2 4.00E-04 6.08E+00 

N/A 

aim-100-2_0-
yes-1-4 9.70E+00 3.36E+00 

aim-200-6_0-
yes-1-1 8.90E-01 1.23E+01 
par8-1-c 3.50E-05 3.47E+00 

par16-1-c 2.20E+00 5.90E-01 
pret60_40 9.00E+00 2.60E+00 

hole9 

N/A 

5.36E+00 2.51E-01 
hole8 8.88E-01 8.05E-01 
hole7 3.98E-01 6.49E+00 
hole6 3.89E-01 1.06E+02 

a Values reported for authors c256 circuit. The time used for acceleration computation is the reported ttotal parameter.  

Table 4: Comparison of HW version of our solver with other HW solvers 
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Problem 
Name 

Gulati et al. (2009) Safar et al. (2011) 
Time (s) Speedup Time (s) Speedup 

aim-50-2_0-
yes-1-2 1.79E-06 2.72E-02 5.20E-05 7.91E-01 
par8-1-c 

N/A 
2.03E-05 2.01E+00 

pret60_40 1.11E-02 3.20E-03 
hole9 1.47E+00 6.90E-02 
hole8 1.51E-01 1.37E-01 1.43E-01 1.30E-01 
hole7 N/A 1.53E-02 2.49E-01 
hole6 2.73E-03 7.42E-01 1.81E-03 4.92E-01 

uuf100-0457 3.02E-02 9.46E-02 5.90E-01 1.85E+00 
uuf125-07 1.04E+00 1.05E+00 N/A 

aim-100-1_6-
yes1-1 

N/A 

1.42E-04 2.96E-06 
aim-50-2_0-

no-4 1.30E-03 1.18E-01 
aim-50-1_6-

no-1 2.50E-05 1.02E-04 
aim-100-3_4-

yes1-4 9.40E-02 3.76E+00 
aim-50-2_0-

no-1 7.29E-05 5.18E-04 
 

run-times of problems from the difficult hole suite of the DIMACS set with those of 

MiniSAT, a very efficient software solver. These problems are unsatisifiable and are very 

laboriously solved by software. Table 5 relates MiniSAT’s execution time as well as the 

resulting speedup. On the smaller of the 4 problems tested, hole6 and hole7, our solver is 

actually able to execute slightly faster whereas on the remaining two problems, though slower, 

it is still able to provide a solution within one order of magnitude. These results are important 

as our future goal is to develop a hardware-based FPGA solver that is able to outperform 

efficient software solvers on large, difficult, industrial-type problems.  

Table 6: Comparison of HW version of our solver with other HW solvers cont’d 

Problem 
Name 

MiniSAT 
Time (s) Speedup 

hole9 8.68E+00 4.07E-01 
hole8 4.32E-01 3.92E-01 
hole7 6.40E-02 1.04E+00 
hole6 4.00E-03 1.09E+00 

 

Table 5: Run-time comparison of HW version of our solver with MiniSAT 
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5.4 Effect of Pseudo-Randomness on SAT Resolution 

In our solver, the first decision when needing to assign a value to a variable is to always 

initially to try ‘0’. This is, arbitrary and may or may not help with finding a solution faster. 

There are methods available, such as the experimental unit propagation (EUP) that is used in 

[17], that attempt to assign variable values based on some heuristic to find solutions faster. 

The EUP technique assigns both values to a variable and attempts to verify these decisions in 

parallel. However, a resource price must be paid for this computation.  

 To avoid having to always pick false as an initial variable assignment we have decided 

to use an LFSR to pseudo-randomly decide variable values. The LFSR is given an initial seed 

obtained from the operating system as the Java program creates the ROM memories as 

described higher. For a given seed the same solution will be found. However, it is possible to 

obtain different solutions (with the HW version) if solver is reset (in the current 

implementation the LFSR is always running and is never reset with the rest of the solver).   

 To characterize the influence of the LFSR, several problems from the same DIMACS 

set were selected (Table 7, Figure 31). As before, these problems were not synthesized but 

rather the software simulator was used to obtain clock cycle counts. Unlike the previous 

Table 7: Comparison between binary and LFSR decision modes (clock cycle counts) 

Problem Name Binary 
LRSF  

(Avg. over 100) Speedup 
uf20-01 195 104 1.875 
uf50-01 8735 8466 1.031774 
uf50-02 1821 4462 0.408113 
uf75-01 52625 36276 1.450684 

uf100-01 114135 328309 0.347645 
hole6 77954 77954 1 
hole7 976947 976947 1 

par8-1-c 139 423 0.328605 
par8-1 6171 5260 1.173194 

aim-50-2_0-no-4 281379 274427 1.025333 
aim-50-2_0-yes1-2 1685 1861 0.905427 

aim-100-3_4-yes1-4 283538 613125 0.462447 
ii8a1 210 155 1.354839 
ii8a2 568857 194352 2.926942 
jnh1 1084 120029 0.009031 
jnh2 52632 56391 0.93334 
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section, where the regression analysis was used to infer approximate circuit frequencies, only 

clock cycle counts were used for comparison. Initially, the problem is run with the simulator 

in ‘binary assignment mode’ whereby each variable gets ‘0’ as a first assignment. 

Subsequently, the same problem is executed 100 times using random variable assignments 

from the LFSR after which an average is computed. It should be mentioned that in the 

simulator, the LFSR is modeled by the Random Java object. Table 7 shows, for the problems 

chosen, the number of clock cycles in binary assignment mode, the average number of clock 

cycles in LFSR assignment mode and the resulting speedup. Figure 31 graphically illustrates 

these results in the following manner. The horizontal axis indicates the problem name while 

the vertical axis indicates the speedup obtained over the binary assignment mode. This latter 

result (binary assignment speedup) is always shown as 1 on the graph.  

Interestingly, on two of the hole problems the LFSR seems to have no influence 

whatsoever as the clock cycle counts are identical. In addition, other families of problems such 
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as the uf class seem to exhibit accelerations in some cases and not in others. Moreover, the 

aim family of problems, with the exception of aim-100-3_4-yes1-4, do not seem to be as 

influenced by the LFSR, although not to the extent of the hole problems. Finally, other 

problem families such as par and jnh demonstrate rather unpredictable results.  

In conclusion, it is difficult to characterize the effect of using a pseudo-random manner 

in deciding variable assignments. The average speedup conferred on all problems test is about 

1.01 if the ii8a2 result is considered. However, removing this problem from the average 

speedup calculation yields an average speedup of about 0.89. Given that the LFSR requires 

FPGA resources, it would seem that always deciding false as an initial variable assignment is 

appropriate when compared to the pseudo-random LFSR variable decision method. 

5.5 Computing All Implications in One Clock Cycle 

The DP-like solver presented here has much room for improvement. Indeed, one example of 

just such an alteration that is conducive towards the improvement of the solver is the 

computation of all implications in one clock cycle.  

To illustrate this, consider a hypothetical SAT instance with 500 variables and 1500 

clauses. The solver starts deciding variables starting with index 0. In order, variables 0 to, say, 

9 are decided without having any implications or contradictions raised. All of a sudden, after 

deciding variable 10 to 0, as is currently done in our solver, variables 450 to 499 become 

implication variables. In addition, consider that variable 499 causes a contradiction. The solver 

starts its implication phase, which lasts 50 clock cycles as there are 50 variables to imply. 

During cycles 0 – 48, no contradiction is found. As the solver gets to 49, the contradiction is 

raised, and the solver backtracks. As the last decision variable is 10, the solver pops the stack, 

inverts variable 10 to true and resets all previously computed implications. If the solver had 

been able to assign all 50 implications in the first cycle, 49 clock cycles would have been 

saved. Now, assume that perhaps it is variable 0 being assigned false that causes this 

contradiction. The solver must compute all 50 implications (with the 50th always causing a 

contradiction) 10 times (as it must backtrack all the way to the first variable) before variable 0 

is flipped and the solver can assign the 50 implications without contradiction. This further 

exacerbates the number of clock cycles lost. To show just how much determining all 
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implications in one clock cycle is beneficial, consider Table 8 and Figure 32. In Table 8, the 

“Clock Cycles” column is divided in two columns, one giving the number of clock cycles 

necessary to solve the respective SAT instance when 1 implication computation is performed 

per clock cycle and the other when all implications are done in one clock cycle. The chart 

shown in Figure 32 indicates that significant speedups are achieved for all problems tested 

(maximum of over 15 and minimum of about 3 times faster). Coming back to the comparisons 

with other hardware solvers we observe that our solver model is now faster than almost all 

others. For example, Skliarova and Ferrari’s solver was faster on the hole9 and hole8 

problems by one order of magnitude. Looking at Figure 32, these problems execute about 12 

times and 10 times faster than before which allows us to make up this order of magnitude. Our 

solver is now about 2 and 8 times faster on these problems. The same can be said about most 

other solvers with the sole exception being Safar et al.’s solver which is still sometimes faster 

Table 8: Improvement in performance by calculating all implications in 1 clock cycle 

Problem Name Clock Cycles  Speedup 
 (1 implication) (all implications)  

dubois20 5.77E+07 1.26E+07 4.58E+00 
dubois21 1.21E+08 2.52E+07 4.79E+00 

aim-50-2_0-yes-1-2 1.69E+03 5.65E+02 2.98E+00 
aim-100-2_0-yes-1-4 4.66E+07 9.15E+06 5.10E+00 
aim-200-6_0-yes-1-1 3.54E+05 3.73E+04 9.49E+00 

par8-1-c 1.39E+02 1.30E+01 1.07E+01 
par16-1-c 1.76E+07 1.13E+06 1.56E+01 
pret60_40 6.49E+07 1.09E+07 5.93E+00 

hole9 2.11E+08 1.69E+07 1.25E+01 
hole8 1.37E+07 1.30E+06 1.05E+01 
hole7 9.77E+05 1.13E+05 8.66E+00 
hole6 7.80E+04 1.12E+04 6.98E+00 

uuf100-0457 3.09E+06 3.73E+05 8.29E+00 
uuf125-07 8.26E+06 8.93E+05 9.25E+00 

aim-100-1_6-yes1-1 9.00E+08 2.42E+08 3.72E+00 
aim-50-2_0-no-4 2.81E+05 8.54E+04 3.30E+00 
aim-50-1_6-no-1 7.31E+06 2.51E+06 2.91E+00 

aim-100-3_4-yes1-4 2.84E+05 5.56E+04 5.10E+00 
aim-50-2_0-no-1 3.61E+06 9.80E+05 3.68E+00 
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(for example on the aim-100-1_6-yes1-1 problem we only gain speedup of about 4 which 

does not defeat the 6 orders of magnitude by which the Safar solver is faster).   

 In addition, when considering the comparison with MiniSAT, the gained speedup of 

computing all implications in one clock cycle now allows our solver to be faster on all 

problems tested. For example, hole7 is now executed almost one order of magnitude faster 

than before. This result indicates that it is possible for a bare (no heuristics) hardware 

implementation of the DP algorithm to outperform a very efficient software solver. 

Figure 32: Speedup obtained from computing all implications in one clock cycle 
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Chapter 6 – Conclusion and Future Work 

Though the Boolean satisfiability problem has seen dramatic improvement in its methods and 

techniques in the past two decades it remains hard to solve. In addition to its computational 

intractability, researchers have found it difficult to link SAT problem structure to the heuristics 

and techniques implemented in modern, state-of-the-art software CDCL solvers (like 

MiniSAT) that can reliably solve various problem instances that model real-life applications. 

As a starting point to further improve SAT solving performance, researchers propose to 

establish analytical/theoretical models that are able to predict the performance of these CDCL 

solvers on SAT instances [34]. Examples of CDCL attributes that can be considered are the 

symmetries of CNF formulas, the cut width of graph representations of CNF instances as well 

as the scale-free graph structure of industrial problems [34]. 

Although desirable in a mature solver implementation, there are no CDCL features 

present in the solver that is the subject of this work. Indeed, the approach presented here is one 

that focuses on exploiting to the utmost extent the strengths of an FPGA platform and 

characterizing their suitability to SAT solving. For example, an instance-specific approach 

was chosen despite the modern shift of hardware solvers towards application specificity 

because FPGAs are reprogrammable devices. A hugely important factor that has motivated 

this shift has been the extremely long compilation time of instance-specific circuits. This can 

also be seen the present work as a circuit that spans the entire Cyclone II FPGA would require 

over half an hour of compilation time. If a software solver is able to find a solution in less time 

there is no need to use hardware to accelerate SAT. On the other hand, application-specific 

solvers have their own limitations. For example, memory bandwidth may be considered as the 

greatest one. In a SAT solver that is based on the DP method, many contradictions are raised 

and clauses are continuously evaluated; accessing a memory module to read clause 

information greatly diminishes the acceleration that is obtained from the hardware.   

We believe that a return toward instance specificity, with a focus on how a problem is 

represented and partitioned constitutes a viable option when solving SAT with reconfigurable 

hardware so as to obtain accelerations. As was seen with the work of Zhong et al. [21] 

techniques exist that are able to reduce compilation times essentially to zero. In addition, 
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instance specificity allows for very fine granularity. The basic unit that is treated in our solver 

is the clause (compared to a pipeline of clause modules). In the same clock cycle, all clauses 

are presented to and are easily accessed by the decision machine of our solver and there is no 

need for general purpose memories. As was stated previously, the solver model that was 

implemented is not to be considered as a final product but rather an assessment platform, 

composed of a synthesizable VHDL model used for circuit frequency inference, as well as of a 

functionally identical software simulator homologue that we used to identify the fact that 

memory bottlenecks are not acceptable in a future version of our solver. In addition, we have 

seen that the solver is able to keep up (in raw hardware execution time as the circuits could not 

be synthesized for our board) with a very sophisticated software solver and even outperform it 

with the modification of computing all implications in 1 clock cycle.  

6.1 A Review of Our Contributions 

One of the most important aspects of this thesis is, in our opinion, a comprehensive 

exploration of the existing methodologies and techniques that have been employed in solving 

the Boolean Satisfiability problem on FPGA. Following this exploration, it was determined 

that an instance-specific approach that entails infusing problem clauses into a corresponding 

hardware circuit constitutes a very promising avenue to obtaining high-performing hardware 

SAT solvers. The largest obstacle to this approach is the method by which this information 

was injected into the circuit (by means of registers).  

 Useful in making the above claim is the exploratory testing platform that was 

constructed. The software simulator constitutes a useful tool for approximating and 

characterizing SAT instances without having to go through the (sometimes long) process of 

compiling and synthesizing a complete circuit. In addition, this simulator can also serve as an 

initial evaluator for new features that would be added to the hardware version. By first trying 

these heuristics in the software simulator, one may assess whether or not they would be useful 

to the hardware solver. This latter version of our solver thus constitutes a starting base for a 

more efficient, future solver implementation. 

 By using these two counterparts, we have determined (by measuring our solver on 

DIMACS benchmark problems) that the hefty memory constraint is considerable. Researchers, 
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by wanting to avoid long compilation times and turning towards application specificity, have 

tried to alleviate this constraint by adding heuristics to their solvers. However, for large 

problems, memory latencies and physical port constraints will have an even greater impact on 

SAT solving that will dilute the effect of these heuristics. On the other hand, we envision 

targeting our future efficient implementation to large problems that are difficult to solve (or 

perhaps impossible in an adequate time frame) by the best current state-of-the-art software 

solvers. In this arena, a circuit’s long build time is not as important and the large fine-grained 

FPGA parallelism coupled with key heuristics may provide faster solutions to these problems.  

6.2 Future directions – Eliminating Memory Altogether and More  

The current main focus of our work is to eliminate having to deal with memory altogether, 

whether it is on-chip, off-chip or even register arrays. In addition to tying up logic elements, 

registers also require a great deal of wiring resources on the FPGA. It is therefore paramount 

that we find a way to represent the problem instance other than by placing clause information 

in a ROM.  

 Additionally, in order to be successful, a full implementation of our solver requires 

several additions. The simplest feature, which was shown earlier as having a big impact, is to 

allow the solver to compute all implications generated by variable decisions in one clock 

cycle. In this manner, contradictions will be raised faster. A second technique to be 

incorporated is the implementation of some sort of dynamic variable ordering (when choosing 

decision variables). The MOM technique mentioned previously is a simple but powerful 

candidate that we will consider. Thirdly, in an effort to explore and instance’s search space 

more efficiently so as to avoid dead ends, non-chronological backtracking is required. For 

example, a simple solution would be to have an array of 1-bit registers that would record 

whether a variable has been decided or implied. A second array of integers would record, 

when applicable, the index of the variables that have implied other variables. In this manner, 

when a contradiction is raised there is information available to backtrack to the appropriate 

level in the search tree. Of course, this is a rather hardware heavy method and alternatives of 

keeping track of this information can be examined. Finally, it would be possible to bestow 

upon our solver the ability to learn from its mistakes. Conflict driven clause learning, whereby 
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new clauses are added to the original problem set to make sure that discovered contradictions 

do not recur, is to be considered. A way to implement this feature would be to have a small 

memory where extra clause information can be added dynamically.  

 Finally, as a longer term research avenue, it is worthwhile investigating building 

custom CAD tools that are tailored to our needs. As the decision machine of the solver is 

pretty much fixed and does not need to change with each problem instance, it could possibly 

be synthesized only once. All other circuits, such as the backtrack stack, can be synthesized 

for each problem. Having this custom tool would avoid generic CAD tools optimizations that 

are perhaps not necessary for our purposes.   
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