

Université de Montréal

Parallelization of SAT on Reconfigurable Hardware
An Architectural Exploration of Techniques

Par

Teodor Ivan

Département d’informatique et recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences

en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

Avril, 2013

© Teodor Ivan, 2013

i

Résumé

Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est

fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux

dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des

solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin

de produire ces outils, notamment l’approche logicielle et matérielle.

 Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont

été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des

problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature

logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des

solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels.

Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils

restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels

n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT.

 Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le

contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un

solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une

plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se

mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans

utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une

option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement

abordées par une approche logicielle.

Mots-clés: SAT, solveur matériel, solveur matériel parallèle sur FPGA

ii

Abstract

Though very difficult to solve, the Boolean satisfiability problem (SAT) is extensively used to

model various real-world applications and problems. Over the past two decades, researchers

have tried to provide tools that are used, to a certain degree, to find solutions to the Boolean

satisfiability problem. The nature of these tools is broadly divided in software and

reconfigurable hardware solvers. In addition, the main algorithms used to solve this problem

have also been complemented with heuristics of various levels of sophistication to help

overcome some of the NP-hardness of the problem. The end goal of these tools has been to

provide solutions to industrial-sized problems of enormous size. Initially, reconfigurable

hardware tools provided a promising avenue to accelerating SAT solving over traditional

software based solutions. However, the level of sophistication of software solvers overcame

their hardware counterparts, which remained limited to smaller problem instances. Even so,

modern state-of-the-art software solvers still fail unpredictably on some instances.

 The main focus of this thesis is to explore solving SAT on reconfigurable hardware in

order to gain an understanding of what would be essential ingredients to add (and discard) to a

very efficient hardware SAT solver that obtains its processing power from the raw parallelism

of an FPGA platform. The parallel prototype solver that was implemented in this work has

been found to be comparable with other hardware and software solvers in terms of execution

speed even though no heuristics or other helping techniques were implemented. We thus show

that our approach provides a very promising avenue to solving large, industrial SAT instances

that might be difficult to handle by software solvers.

Keywords: SAT, hardware solver, FPGA parallel SAT solver

iii

Table of Contents
Chapter 1 – Introduction ... 1

1.1 Software SAT Solvers ... 1

1.2 Reconfigurable Computing and FPGA ... 2

1.3 Objectives of the Current Work .. 4

1.4 Contributions ... 5

1.5 Organization .. 5

Chapter 2 – The Boolean Satisfiability Problem .. 6

2.1 Problem Representation .. 6

2.2 A Variant of the Davis-Putnam Algorithm ... 8

2.3 Enhancements over the Basic DP-Variant .. 10

2.3.1 Pure Literal Assignment Rule .. 10

2.3.2 Non-Chronological Backtracking and Dynamic Clause Addition 11

2.3.3 Dynamic Decision Variable Ordering ... 11

2.4 Incomplete Algorithms ... 12

Chapter 3 – Hardware Architectures for Solving SAT ... 14

3.1 Some History – The Boolean Analyzer .. 14

3.2 Instance Specificity – The First Generation of Solvers .. 16

3.3 Application Specificity – Software/Hardware Hybrid Solvers 22

3.4 Application Specificity – Modern Solvers .. 26

3.5 Summary and Analysis of Hardware SAT Solvers ... 33

Chapter 4 – The Evaluation Platform ... 38

4.1 Introducing a DP-Based Solver .. 39

4.2 Encoding a SAT Problem Instance ... 40

4.3 Disjunction, Inclusion and Implication – Solving SAT .. 41

4.4 Solution Space Exploration ... 44

4.5 LFSR and Pseudo-randomness in Variable Decision ... 46

4.6 Some Remarks .. 47

Chapter 5 – Experimental Results ... 48

5.1 Regression Analysis – Rules of Thumb .. 50

iv

5.2 Comparison between Hardware and Software .. 54

5.3 Comparison with other Solvers ... 56

5.4 Effect of Pseudo-Randomness on SAT Resolution .. 59

5.5 Computing All Implications in One Clock Cycle ... 61

Chapter 6 – Conclusion and Future Work .. 64

6.1 A Review of Our Contributions .. 65

6.2 Future directions – Eliminating Memory Altogether and More 66

v

List of Tables
Table 1: Summary of hardware SAT solvers .. 35

Table 2: Characteristics of circuits used in the regression analysis .. 50

Table 3: Comparison between HW and SW versions of our DP-like solver 56

Table 4: Comparison of HW version of our solver with other HW solvers 57

Table 5: Run-time comparison of HW version of our solver with MiniSAT 58

Table 6: Comparison of HW version of our solver with other HW solvers cont’d 58

Table 7: Comparison between binary and LFSR decision modes (clock cycle counts) 59

Table 8: Improvement in performance by calculating all implications in 1 clock cycle 62

vi

List of Figures
Figure 1: Basic FPGA design flow [12] ... 3

Figure 2: A 5-clause 7-variable formula ... 7

Figure 3: Representation of a Boolean formula φ ... 7

Figure 4: Pseudo-code of a DP-like algorithm ... 8

Figure 5: GSAT incomplete SAT algorithm [1] ... 12

Figure 6: WSAT incomplete SAT algorithm [1] .. 13

Figure 7: Logical designs of the BA and of its processing register [3] 15

Figure 8: Suyama et al. flow of logic circuit synthesis [9] ... 16

Figure 9: Zhong et al. hardware SAT solver architectures [15], [21] 18

Figure 10: Platzner et al. FSM-based architecture [8] .. 19

Figure 11: High-level view the architectures proposed by Abramovici et al. [2], [22] 21

Figure 12: Dandalis et al. SAT deduction engine and clause module details (bottom) [14] 23

Figure 13: Leong et al. GSAT hardware implementation [4] ... 24

Figure 14: Datapath of Leong et al. WSAT core [16] .. 25

Figure 15: Configuware/Software SAT solver proposed by Sousa et al. [5] 26

Figure 16: Sousa et al. clause pipeline [5] .. 27

Figure 17: Skliarova and Ferrari's matrix based solver architecture [13] 28

Figure 18: Safar et al. SAT solver architecture [7] ... 29

Figure 19: Safar et al. 5-stage pipelined solver [6] ... 30

Figure 20: Gulati et al. solver architecture (top) and decision engine FSM (bottom) [11] 31

Figure 21: Kanazawa and Maruyama WSAT based solver [10] .. 32

Figure 22: DNF of formula φ .. 38

Figure 23: High-level model of a DP-based SAT solver .. 39

Figure 24: Operation of DP-like solver .. 45

Figure 25: Example of an 8-bit LFSR ... 46

Figure 26: Cyclone II logic element ... 49

Figure 27: Relationship between an instance’s size and its associated circuit size 52

Figure 28: Relationship between an instance’s size and its associated circuit build time 53

Figure 29: Relationship between an instance’s size and its associated circuit frequency 54

vii

Figure 30: Memory requirements (ROM and stack) of the DP-like solver 55

Figure 31: Speedup obtained from using LFSR in variable decision assignments 60

Figure 32: Speedup obtained from computing all implications in one clock cycle 63

viii

List of Abbreviations
ALU Arithmetic and Logical Unit

ASIC Application Specific Integrated Circuit

BA Boolean Analyzer

BCP Boolean Constraint Propagation

CAD Computer aided design

CDCL Conflict-driven-clause-learning

CNF Conjunctive normal form

DIMACS Centre for Discrete Mathematics and Theoretical Computer Science

DNF Disjunctive Normal Form

DP Davis-Putnam

FPGA Field programmable gate array

FSM Finite State Machine

HDL Hardware Description Language

I/O Input-Output

IC Integrated circuit

LE Logic Element

LFSR Linear Feedback Shift Register

LUT Look-up table

MB Megabytes

MHz Megahertz

MOM Maximum Occurrences in Clauses of Minimum Size

OPB On-chip Peripheral Bus

PLB Processor Local Bus

RAM Random Access Memory

ROM Read-only memory

SAT Boolean satisfiability problem

UPT Average time to resolve implications or detect a conflict

VHDL Very High Speed Integrated Circuit Hardware Description Language

ix

À Yaroslava Chtompel

x

Acknowledgments

I would like to express my profound gratitude to Professor El Mostapha Aboulhamid for

enabling me to pursue my studies in his laboratory where I have gained a great deal of

technical and other knowledge in these past few years. I would also like to take this

opportunity to thank my family, and in particular my wife Yaroslava, for their support, help

and encouragement, without which I would surely not have been able to finish my work.

Chapter 1 – Introduction

The Boolean Satisfiability problem (SAT) is considered to be fundamental in the field of

computation. As SAT is NP-complete [26], it is computationally intractable as there exists no

known polynomial time algorithm capable of solving problem instances with 3 or more

variables per clause (unlike instances with 2 variables in each clause [27]). It should also be

noted that SAT’s importance is further highlighted by the fact that it was discovered to be at

the core of the study of the NP-completeness of computational complexity theory. For

example, Richard Karp showed [28] that there exists a polynomial time many-one reduction

from SAT to 21 combinatorial and graph computation problems (e.g. KNAPSACK,

EXACT_COVER) thereby implying that these problems are NP-complete as well.

From an applied standpoint, SAT is used to model various real-life problems and

applications such as automated reasoning, computer aided design (CAD), computer-aided

manufacturing, machine vision, robotics, integrated circuit (IC) design and computer

architecture design [29] despite its computational hardness. In addition, SAT has also been

known to play a role in a great variety of decision and optimization problems which can be

thought of as its extensions. Indeed, these problems either use SAT as a core problem solving

engine or employ some of its various techniques and methods. Examples of such problems

include the Satisfiability Modulo Theories, pseudo-Boolean constraints, maximum

satisfiability, model counting and Quantified-Boolean Formulas [30].

1.1 Software SAT Solvers

The tools used to provide solutions to SAT instances are mainly software-based. The past two

decades have seen a vertiginous improvement in the ability of these solvers. One of the main

driving forces behind the advancement of these SAT solvers has been the SAT Solver

Competition [31], a recurring event that is geared toward the objective evaluation of the

current progress of state-of-the-art SAT solving techniques. Examples of such successful

solvers include GRASP [32], CHAFF [33] and MiniSAT1. There exists a multitude of features

1 Solver site: http://minisat.se

2

fundamental to the efficiency and fast execution speed of these tools, the four main of which

are conflict-driven clause learning (CDCL), random search restarts, Boolean constraint

propagation (BCP) by use of lazy data structures and conflict-based adaptive branching [34].

To further challenge the limits of SAT solving, researchers have continued to discover and

implement additional performance enhancing techniques such as random restart strategies and

conflict clause minimization. These methods have augmented the level of sophistication and

complexity of modern SAT solvers. However, it should be noted that despite this rapid

advancement there is still some ambiguity in the research community as to the relative

usefulness and interactions of all these features as well as to the reasons why software SAT

solvers fail to generate solutions on many problem instances [34].

1.2 Reconfigurable Computing and FPGA

Alternatively to software-based solutions, SAT may be analyzed by means of reconfigurable

hardware using field programmable gate arrays (FPGAs). Indeed, in the past decade,

reconfigurable computing based on FPGA devices has matured into a stable discipline that has

provided solutions to computing problems that feature substantial advantages over those

offered by traditional multi-purpose processors. In addition to the fact that FPGA devices offer

increased flexibility as they can be reconfigured, they are also able to generate, by means of

their extensive parallelism, very fast application execution times. It is not uncommon to see

accelerations of several orders of magnitude over general purpose processors even though

circuit clock speeds are orders of magnitude lower [35]. Other added benefits of

reconfigurable devices are their low power consumption and reduced energy (each

application’s circuitry is optimized for the problem at hand) as well as reduction in component

count and size, improved time-to-market and upgradeability [35].

A general overview [12] of the basic FPGA design methodology is illustrated in Figure

1. Initially, a designer will describe the circuit hardware using either a hardware description

language (HDL) or a schematic editor. Next, logic synthesis deals with the generation of a

netlist of logic gates and other blocks present in FPGA devices that is independent of the

intended FPGA technology. At this point, the designer can make use of a functional simulation

tool to ensure of the logical correctness of the circuit. Following logic synthesis, the

3

previously obtained generic netlist is used to obtain a specialized circuit of look-up tables

(LUTs) as it is mapped towards a specific FPGA LUT-based architecture. This process

attempts to minimize the FPGA area, the circuit delay and the power consumption as much as

possible [36]. During the placement step, physical resources of the FPGA device are selected

for the specialized netlist by means of an optimal strategy. Placement is extremely important

for maximal circuit frequency and power consumption as it directly influences a circuit’s

routability [37]. The next step of the design methodology is routing, a difficult process as it is

limited to the particular FPGA device’s resources such as wires, programmable switches and

multiplexers [12]. Finally, before allowing a CAD tool to generate the bitstream necessary to

program the FPGA, a timing simulation may be performed to ensure that circuit timing

constraints are met. Of course, as errors and bugs are discovered during simulations, the

designer may review the circuit’s schematic or HDL code in order to correct them.

Figure 1: Basic FPGA design flow [12]

4

1.3 Objectives of the Current Work

The Boolean satisfiability problem is inherently massively parallel. As detailed below,

verifying that a particular problem clause is satisfied can be done independently of the

verification of all other remaining clauses with the only limiting factor being the number of

evaluation units available. As such, it is natural to assume that SAT would map very well to

FPGAs given their ability to perform many computations in parallel. However, an FPGA

board has several limitations and restrictions that impact the amount of parallelism extracted

when mapping a problem. Examples of this include the amount of on and off-chip memories

that are available, the maximal frequencies at which reading from these memories is possible

as well as their number of physical read ports. Thus, one of our principal objectives has been

to explore and evaluate the impact of FPGA on-chip memory on SAT resolution as well as the

different trade-offs necessary to garner maximal parallelism for execution speed. To

characterize these issues, a solver prototype was implemented using VHDL and targeted to an

Altera Cyclone II DE2-70 FPGA board. In addition, a software counterpart with an identical

execution model was also developed and used to simulate the hardware on problem instances.

As SAT instances come in many shapes and sizes, a focus of the current work has been

to allow for many of them to be analyzed easily. Therefore, a secondary objective of this work

has been to take advantage of the reconfigurability of the FPGA device so as to create

hardware that is specialized (in terms of the size of the resulting circuit) to the problem at

hand. This also allows for simpler, tailored solutions that avoid complex control and other

structures and whose theoretical limitations are imposed not by the solver’s design but by

FPGA capacity.

Finally, an important objective of our work has been to identify, explore and evaluate

suitable parallelization techniques applicable to the Boolean satisfiability problem. In

particular, the methodology used in the experimental section of this work rests heavily upon

evaluating potential solutions in one clock cycle. In addition, one of our goals in developing

this prototype was to identify bottlenecks and other problem areas in order to propose a

solution that would pave the way towards the development of a mature, efficient solver

capable of tackling industrial-size instances comprising millions of variables and clauses.

5

1.4 Contributions

This work has brought forth four main contributions which are listed below.

• One of the most important contributions of this work is the exploration of the various

techniques and methods that can be applied when solving SAT on FPGA.

• A testing platform composed of an HDL synthesizable model and a Java software

simulator of a hardware SAT prototype relying solely on FPGA parallelism for execution

speed was built and characterized.

• Trouble areas that restrict the use of FPGAs in SAT solving have been identified.

Examples of these limitations include the limited size of on-chip memory as well as the

use of registers (which effectively play the role of a multi-port random access memory

(RAM) but claim a large amount of hardware resources).

• We quantify our technique by means of simulation using problems from the DIMACS2 set

and present comparisons with results available from other state-of-the art hardware and

software solvers.

1.5 Organization

This thesis is organized as follows. Chapter 1 has offered an introduction to the Boolean

Satisfiability problem as well as to reconfigurable computing and FPGAs. The objectives,

contributions and organization of this thesis were also presented. Chapter 2 will describe the

Boolean Satisfiability problem, the Davis-Putnam-like (DP-like) algorithm used in this work

as well as some of its possible enhancements. Chapter 3 presents the various hardware

architectures that are employed in solving SAT, beginning with an older Boolean Analyzer

(BA) machine and ending with fairly recent hardware solvers. A summary of these tools is

presented at the end of the chapter. Chapter 4 will detail the testing platform created to assess

our solver prototype and Chapter 5 will present the experimental results obtained during the

testing phase. The work will conclude with Chapter 6 as a discussion and future research

directions are given.

2 Obtained from http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

6

Chapter 2 – The Boolean Satisfiability Problem

The Boolean Satisfiability problem is one of determining whether or not a given Boolean

formula φ can evaluate to true. As stated beforehand, SAT is an NP-complete problem as the

fastest known algorithms that can solve it require an asymptotically exponential amount of

time in the size of φ to either find a solution or to assert that no solution exists. In addition, it

is almost impossible to claim that faster algorithms exist although nobody has yet proven the

contrary [38].

 When considering an formula φ of a SAT instance in conjunctive normal form (CNF),

one must take into account three components or sets [29]:

• A set of variables x0, x1, …, xn, where n is the number of variables of φ.

• A set of literals. A literal is an appearance of variable x as either itself or its negation x

(for example x1 and x1 are the two possible literals of variable x1).

• A set of m distinct clauses:

o Each clause consists of disjunctions of literals combined with the or (∨)

logical connective.

o The whole Boolean formula φ consists of conjunctions of clauses combined

with the and (∧) logical connective.

To satisfy the Boolean formula φ is to determine if a variable assignment exists such that the

conjunctive normal form of φ evaluates to true. Figure 2 below illustrates an example3 of a

Boolean formula φ featuring 5 clauses (represented by γ−) and 7 variables. This example will

also be used in subsequent chapters for illustrative purposes.

2.1 Problem Representation

SAT is usually expressed in conjunctive normal form. However, an equivalent way of

expressing SAT is the disjunctive normal form (DNF). By using De Morgan’s law4 of duality,

3 Example borrowed and adapted from: http://www.cs.cmu.edu/~mtschant/15414-f07/lectures/grasp-ex.pdf
4 http://en.wikipedia.org/wiki/De_Morgan's_laws

7

Figure 2: A 5-clause 7-variable formula

one can easily obtain one form from the other by simply inverting all literal polarities (x

becomes x and vice-versa) and by replacing all ∨ logical connectives with ∧ logical

connectives. In this manner, φ is obtained from φ.

 A variable is represented in a clause by a literal which can be either false or true. A

variable can also not have any influence on a clause because neither of its literals is present.

For example, clause γ2 in Figure 2 has two literals which are true (x2 and x5) whereas all

other variables are absent. To represent problem clauses, three variable states are needed:

present as true, present as false and not present. Thus, 2 bits are required to express this

information: “10”, “01” and “11”. The “00” state is not necessary and therefore it is not used.

Figure 3 illustrates this encoding on the previous 5 clauses of formula φ. The matrix is read

from right to left and from top to bottom. Each row represents a clause and each column

represents a variable. For example, the first row of Figure 3 represents the first clause, γ0, and

⎩
⎪
⎨

⎪
⎧

γ0 = (𝑥4 ∨ 𝑥3 ∨ 𝑥1 ∨ 𝑥0)
γ1 = (𝑥4 ∨ 𝑥3 ∨ 𝑥1 ∨ 𝑥0)
γ2 = (𝑥5 ∨ 𝑥2)
γ3 = (𝑥6 ∨ 𝑥3 ∨ 𝑥0)
γ4 = (𝑥6 ∨ 𝑥3 ∨ 𝑥1) ⎭

⎪
⎬

⎪
⎫

φ(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = γ4 ∧ γ3 ∧ γ2 ∧ γ1 ∧ γ0

⎣
⎢
⎢
⎢
⎢
⎡
("11") ("11") ("10") ("10") ("11") ("10") ("10")
("11") ("11")
("11") ("10")
("10") ("11")
("01") ("11")

("01") ("10") ("11") ("10") ("10")
("11") ("11") ("10") ("11") ("11")
("11") ("01") ("11") ("11") ("10")
("11") ("01") ("11") ("10") ("11")⎦

⎥
⎥
⎥
⎥
⎤

Figure 3: Representation of a Boolean formula φ

8

the rightmost column displays literal information for variable x0.

2.2 A Variant of the Davis-Putnam Algorithm

The method used in this work to solve SAT is based on the classical Davis-Putnam algorithm

[39]. This resolution-based, backtracking procedure is described by the pseudo-code of Figure

4. The procedure uses a two-dimensional vector termed the Candidate that uses the 3-state

encoding scheme discussed above. A stack (last-in-first-out data structure) is also required for

backtracking purposes whenever erroneous assignments are made. Lines 4 – 9 represent the

initialization section. At line 4, the Candidate is initialized as all its variable positions are

assigned “11” to represent the fact that they are free. Lines 5 and 6 show that the stack is

 1: Procedure DP-Variant
 2: Input: A set of clauses Γ, a set of variables Ψ
 3: Output: SAT if all clauses of Γ evaluate to true, UNSAT otherwise

 4: Candidate ← all variables free;
 5: Stack ← empty;
 6: TOS ← -1; // top of the stack
 7: υ ← -1;
 8: Candidate(0) ← ‘0’;
 9: Stack.push(0);

10: while(true)
11: if SAT(Γ) then
12: return SAT;
13: else if CONTRADICTION(Γ) then
14: if Stack.empty then
15: return UNSAT;
16: else
17: TOS ← Stack.pop;
18: RESET_ASSIGNS(Candidate, TOS);
19: Candidate(TOS) ← ‘1’;
20: else if ONE_IMPLICATION(Candidate) then
21: ASSIGN_IMPLICATION(Candidate);
22: else
23: υ ← NEXT_FREE_VAR(Candidate, Ψ);
24: Candidate(υ) ← ‘0’;
25: Stack.push(υ);
26: end if;
27: end while;

Figure 4: Pseudo-code of a DP-like algorithm

9

initially empty and the top of the stack (TOS) is initialized to -1. At line 7, the temporary

variable index υ also receives -1 as staring value. Lines 8 and 9 indicate that the procedure

starts by first deciding to assign ‘0’ to x0. Inside the procedure’s only while-loop, there are

four main sections.

The first section spans lines 22 – 25. Here new decisions are made regarding the

assignment of the current next available free variable (obtained from the auxiliary procedure

NEXT_FREE_VAR(Candidate, Ψ)). These variables are termed decision variables and are

different from implication variables (described shortly). As soon as the index of the next free

variable is determined, it is used as an index into the Candidate vector where ‘0’ is assigned as

a first (arbitrary) try. This index is pushed onto the stack so that the procedure can keep track

of the decisions it has made.

The second section of the loop is formed by lines 20 and 21. Here the implications of

the decisions made in the first section above are determined. As the procedure makes

decisions, more and more literals receive assignments in clauses. At a certain point, a clause

can become a unit clause when it has only one literal that is yet unassigned in the Candidate

and all its other literals are false. For example, Candidate

("11")("11")("11")("01")("01")("01")("01") would cause γ0, γ1 and γ2 to become unit as

all three clauses have only one remaining literal, namely x4, x4 and x5respectively and all their

other literals are assigned false. Focusing only on γ0, the implication of having previously

assigned x3 to be false is that variable x4 in the Candidate must be assigned ‘1’ so that the

clause is satisfied. This assignment is carried out by the auxiliary function

ASSIGN_IMPLICATION(Candidate). This section implements the unit clause rule (also called

BCP) which is an important feature that helps to augment the resolution of partial solutions so

that the search space is pruned. Moreover, it is important to note that index 4 is not pushed

onto the stack as x4 is an implied variable and not a decision variable.

The next section spans lines 13 – 19. Contradictions are found by the

CONTRADICTION(Γ) auxiliary procedure. These arise when the function has found one

clause to be false as all its literals evaluate to false. Continuing with the partial Candidate

solution ("11")("11")("10")("01")("01")("01")("01") from above after implying variable x4

10

to ‘1’ we find that γ1 is now false. Inside this third section, at line 17 the stack is popped and

the TOS receives the index of the last decision variable which in this case is 3. All

assignments beyond this point (including the offending assignment on 𝑥4) are reset by

RESET_ASSIGNS(Candidate, TOS). Since ‘0’ did not work as a decision on x3 ‘1’ is now tried.

Index 3 is not pushed onto the stack this time because both possibilities have been exhausted

for variable x3. Line 14 determines if the problem is unsatisfiable. As the DP-Variant

procedure proceeds through the problem’s search space, it will examine both possibilities for

all decision variables. As both these possibilities are unsatisfactory, the procedure backtracks

to earlier and earlier decisions. If all decision variables have been tried in both polarities

unsuccessfully, the stack will be empty. This means that no matter what decisions are made on

any decision variable, it is impossible to satisfy all clauses and the problem is unsatisfiable.

The last section includes lines 11 and 12 where the SAT(Γ) auxiliary procedure is

invoked to determine if all clauses have been satisfied. If all clauses are true or satisfied, the

DP-Variant procedure terminates with satisfiable (SAT) as answer. If at least one clause is not

yet satisfied SAT(Γ)returns false. A clause can be unsatisfied in two cases. In the first, it can

be neither false nor true as not all of its variables have yet received an assignment

(considering the example of Figure 2, this situation would arise for clause γ0 after only x0

and x1 would receive “01” or false as assignments; the clause still requires more assignments

to be resolved). In the second case, the clause is false because all of its variables evaluate to

false. For example, Candidate ("11")("01")("11")("11")("01")("11")("11") would render

clause γ2 false because x5 and x2 are both false.

2.3 Enhancements over the Basic DP-Variant

The basic procedure described in the previous section leaves room for improvement by means

of several techniques and heuristics that have been proposed by researchers over the years.

Some of the more important of these features are described in this section.

2.3.1 Pure Literal Assignment Rule

The pure literal assignment rule consists of examining all literals of clauses that are not yet

satisfied and determining if there are any that occur in only one polarity (i.e. either true or

11

false) in all the problem’s clauses. The variable that is associated with this literal can thus be

assigned ‘1’ if all literals in the remaining unsatisfied clauses are true or ‘0’ if they are false.

This method, paired with the unit clause rule described above, are termed reduction methods

as they increase the resolution of the partial solution and permit the simplification of the

Boolean formula (by satisfying all clauses in which the variable is present) [40].

2.3.2 Non-Chronological Backtracking and Dynamic Clause Addition

The backtracking that is described higher for the DP-Variant procedure is of a chronological

nature. In other words, if a contradiction arises, the procedure pops the stack and uses that

index to try a different solution. As long as the contradiction is present, the stack is popped

and eventually the offending decision is found and the contradiction is resolved. However, the

contradiction may not have been caused by the last decision made. Introduced by Marques-

Silva and Sakallah in [32], GRASP is a search algorithm that features a more sophisticated

method of backtracking and pruning the search space. An analysis is performed on the clauses

involved in contradictions so that the level of the actual decision variable responsible for the

erroneous situation is identified. In addition, it is also possible to construct one or more

conflict clauses (that are added to the initial Boolean formula) that prevent future repetition of

the same conflict.

2.3.3 Dynamic Decision Variable Ordering

The DP-Variant procedure described in this chapter makes use of a simple static method of

deciding which variable is picked for the next decision as the next free variable is always

selected. However, it is also possible to determine during execution which variable should be

chosen so that the maximum number of variable implications are generated in an effort to

identify contradictions quickly. In [18], Suyama et al. use two heuristics to improve the

execution time of their implementation of the Davis-Putnam procedure. The first is termed

Maximum Occurrences in Clauses of Minimum Size (MOM). Simply put, this method

attempts to find the variable that occurs in most clauses that have only two unassigned literals.

The intuition is that choosing and assigning this variable will create many unit clauses. The

second heuristic used to dynamically select decision variables is called Experimental Unit

12

Propagation (EUP). This technique is computationally more intensive as for each unassigned

variable both ‘0’ and ‘1’ are tried in parallel. The variable that gives rise to the most unit

clauses is hence selected.

2.4 Incomplete Algorithms

The algorithm presented here is a complete method. In other words, given a SAT instance, the

algorithm is always able to either find a solution or report that no solution exists.

 SAT can also be solved by a different approach. An incomplete SAT solving algorithm

is one that can find a satisfying assignment but can never declare the instance unsatisfiable.

Unlike the DP-Variant procedure whose main approach is exhaustive branching (decision

variables) and backtracking, incomplete algorithms most often use stochastic local search.

These algorithms are greatly superior than DP-based approaches on some problem instances

[1]. Two of the most important incomplete algorithms that have been highly successful in

solving SAT by using local search are GSAT [41] and WSAT (or Walksat) [42].

 GSAT, whose algorithm is given in Figure 5, initially begins with a random truth

assignment for all variables. It then tries to greedily flip variable assignments that would

create the greatest decline in the number of unsatisfied clauses. This is repeated either until a

solution has been found or until MAX-FLIPS has been reached. The whole procedure is

Figure 5: GSAT incomplete SAT algorithm [1]

13

repeated MAX-TRIES times [1].

WSAT, shown in Figure 6, further focuses the search by looking in unsatisfied clauses

when selecting the variable to flip (the clause from which this variable is chosen is also

selected randomly). The “freebie move” is performed when the algorithm finds a variable

whose flipping does not cause any currently satisfied clauses to become unsatisfied. If no such

variable exists, with a predetermined probability, a random literal is flipped in the randomly

chosen unsatisfied clause and with the remaining probability a variable in this same clause is

flipped in such a way that the “breakout count”, or the number of currently satisfied clauses

that become unsatisfied, is minimized. The parameter p which controls the frequency of non-

greedy moves has been empirically found, for various related problem instances, to sometimes

have an optimal value. For example, for random 3-SAT formulas, this parameter should be set

to 0.57.

Figure 6: WSAT incomplete SAT algorithm [1]

Chapter 3 – Hardware Architectures for Solving SAT
Generally, there have been two kinds of architectures that have been explored by researchers

when implementing hardware SAT solvers, namely instance-specific and application-specific

approaches. Instance-specific solvers have their circuits specialized for the problem at hand

and thus need to be recompiled or reconfigured before every execution. Application-specific

solvers feature a more general construction and can solve all SAT instances without needing to

be recompiled. There are benefits and caveats to both these approaches such as long

compilation times for the former and access to memory for the latter. A very comprehensive

review focusing on detailed architectural aspects as well as on programming models is

presented by Skliarova and Ferrari in their 2004 work [40]. There seems to have been a

gradual shift towards instance specificity from application specificity. This chapter will

therefore take a historical approach at presenting relevant previous works.

3.1 Some History – The Boolean Analyzer

Perhaps one of the earliest attempts at utilizing specialized hardware to treat Boolean

equations and formulas was undertaken in 1968 by Antonin Svoboda as he proposed a

Boolean Analyzer (BA) [3] capable of producing all the prime implicants of a Boolean

formula given the Disjunctive Normal Form (DNF) of its complement. Svoboda’s main goal

in building the BA was to achieve accelerations over the then fastest general purpose

computers which displayed execution times much longer than acceptable. The author

identifies some the factors responsible for BA accelerations as being the parallel processing of

a large number of Boolean terms and the reduction of Boolean information processing to a

repetition of the same operation whose result is only a single bit of information. In order to

parallelize the design and achieve accelerations considering the factors mentioned above, the

author makes use of triadic and binary counters, a main memory where information for each

term is stored, logic gate control and special processing registers that are able to evaluate

Boolean terms in parallel. Figure 7 shows the logical organizations of the BA (left) and of the

processing register (right). Essentially, the BA uses the triadic counter to generate all 3n

possible candidate solutions for a Boolean function y of n variables. This triadic counter is

necessary to express the three possible states that a variable can find itself in in a given

15

minterm: assigned true, assigned false or not present. For example, consider the following 4-

variable Boolean formula y taken from Svoboda’s 1968 work [3]:

y = x2 x1 x0 + x2 x1

There are two minterms which are encoded using a ternary scheme as follows: 0122 and

0210. To represent the fact that the variable is not present (for example, x3 does not appear

anywhere in the formula) 0 is used. If the variable is present as itself (for example x2 in the

first minterm), 1 is used. Finally, if the variable is present in its negated form (x0 in the first

minterm) 2 is used. Therefore, in order to be able to represent these 3 states, 2 bits are needed.

Candidates are checked against the terms of y to find disjunction points. If a candidate

solution is disjoint from all terms of y it is not included in it but is included in y. The memory

is used to store intermediate and final results for each candidate examined. The binary counter

is used by the BA during its solving of Boolean equations (not shown here).

The BA is attempting to solve a very difficult problem which is harder than SAT and

as such is unsuitable for tackling any SAT instances modeling real-life applications whose

sizes sometimes exceed millions of variables. Because the BA is examining all possible terms

Figure 7: Logical designs of the BA and of its processing register [3]

16

of a Boolean formula as opposed to all possible minterms, its search space is composed of 3n

possibilities instead of 2n. The universe of possible solutions is explored in a brute-force

manner and therefore has a time complexity which is exponential. In addition, there is also an

explosion in the amount of memory resources needed as they also grow in exponentially.

3.2 Instance Specificity – The First Generation of Solvers

By their nature, FPGAs offer great flexibility. As SAT instances can vary greatly in their size

and complexity, it was natural for researchers to initially explore an instance-specific approach

when creating SAT solvers whose logic circuit was uniquely tailored after the problem at

hand. In this manner, the various variable and clause relationships were imbibed into a

specialized circuit that was built each time to solve one instance.

Amid successful early efforts exploring the applicability of FPGAs to SAT solving,

Suyama et al. suggested an instance specific approach [19], [9], [17], [18] that is capable of

finding all or a fixed number of solutions to a SAT instance. The method is complete as the

solver is capable of determining if at least one solution exists. The authors’ design flow

(Figure 8) entails initially having a C program examining a file containing the description of a

SAT instance and generating a high-level HDL behavioral description of the problem at hand.

The logic circuit thus described is subsequently analyzed, synthesized and mapped by a CAD

tool. In order to increase the efficiency of their parallel algorithm, the authors make use of a

Figure 8: Suyama et al. flow of logic circuit synthesis [9]

17

static variable ordering technique in [19] and two dynamic variable ordering techniques in

[9], [17] and [18]. The first of these ordering techniques is termed experimental unit

propagation (EUP) and entails assigning both possible values to a variable and verifying these

assignments concurrently. The second technique, named maximal occurrences in minimum

length clauses (MOM), deals with selecting variables occurring in a maximal number of

binary clauses [9]. In addition, the approach is characterized by the avoidance of using

memory for backtracking purposes as each variable is assigned a register that records the

depth of the search tree where its value was decided. The reason offered for this design choice

is that the memory required for a stack can become quite large and sequential memory

accesses can introduce undesired latencies and bottlenecks. The authors report an

implementation status [18] of the mapping of a SAT instance featuring 200 variables and 320

clauses on 21 FLEX10K250 FPGA chips. However, even though the total logic utilization is

about 13%, the resulting circuit requires a large amount of wiring resources and therefore

necessitates all 21 FPGAs. The authors also report an FPGA implementation of a 128-

variable, 256-clause circuit that was synthesized at 10 MHz.

 Similarly, Zhong et al. were able to develop a series of instance-specific SAT solver

architectures [20], [15], [21] (Figure 9) all based on the DP algorithm [39]. The authors

identify implication and conflict checking [15] as the most computation intensive tasks (from

a software solution’s standpoint) and try to focus their efforts to generating hardware able to

accelerate these areas of the basic DP algorithm. The architecture presented in [15] is based on

having one finite-state machine (FSM) (Figure 9 top) for each variable keeping track of its

state (assigned logical ‘0’, ‘1’ or free). All FSMs are connected in a serial chain and, at any one

time, only one FSM is active. If the right-most FSM attempts to pass control to its right, a

solution has been found. On the other hand, if the left-most FSM wishes to pass control to its

left, the SAT instance has been found to be unsatisfiable. Like Suyama et al., the authors use a

C program to generate a VHDL model from the problem’s specification. The implication

circuit is formula-specific whereas the FSM circuit, since it is identical for all problems, is

designed from components that are reused in all circuits. The order of the FSMs on the serial

chain is determined statically before execution and variables are sorted depending on the

number of their occurrences in the SAT formula. This architecture implies that only one

18

variable can receive an assignment at any one time, either due to backtracking, implication or

decision. It should be noted that even though the design obviates the need for a backtracking

stack, it introduces an unnecessary delay when backtracking as the solver backtracks not to the

most recently decided variable but to the variable immediately to the left of the currently

active FSM. The key drawbacks of the work presented in [15] are a low clock frequency of 0.7

– 2.0 MHz as well as very long compilation times of up to several hours on their Sun 5

machine featuring 110 MHz and 64 MB of RAM. In [20], non-chronological backtracking is

used to further enhance the acceleration that is obtained over the software solution (GRASP

solver). In order to resolve the low clock frequencies and high compilation times, Zhong et al.

altered the architecture of their solver to a regular ring-based interconnect [21] with

centralized control (Figure 9, bottom). This new architecture uses repeated clause modules on

Figure 9: Zhong et al. hardware SAT solver architectures [15], [21]

19

a pipelined bus which allows for higher clock speeds of about 30 MHz. However, at any one

time, only a subset of the problem’s clauses care evaluated in parallel. In addition, compilation

times decreased drastically due to incremental synthesis and place-and-route (using Xilinx

tools). To this effect, a reusable template for general components is first created. A Java

program examines a SAT formula as well as a bitstream file describing this generic template

of reusable modules. This is followed by a customization step to generate the appropriate logic

function programs and routing connections. The result of this customization can then be

downloaded onto the FPGA. The whole process is said to require only a few seconds.

In an approach similar to that proposed by Zhong et al. in [20], Platzner et al. [24], [8]

also make use of an array of finite-state machines, each associated with one variable, that are

connected in such a manner that an FSM can activate its top or bottom neighbors (Figure 10).

A combinational datapath circuit takes variables states as input and computes information that

is resupplied to the FSMs. There is a global controller that initiates computations and ensures

proper I/O communication. The datapath portion of the circuit and the number of FSMs are

Figure 10: Platzner et al. FSM-based architecture [8]

20

instance-specific whereas the global controller and FSM structures do not change. At the

outset, all variables are unassigned, which leads the datapath to compute its result (CNF line in

Figure 10) as unassigned (‘X’). In this case, following activation by the global controller, the

first FSM (#1) assigns ‘0’ to its variable and verifies the CNF line. If ‘1’ is observed, the partial

assignment satisfies the Boolean formula and a solution has been found. On the other hand, if

‘0’ is observed, the variable assignment does not satisfy the Boolean formula and the FSM

complements its value and reuses the datapath once again. If ‘X’ is observed, the partial

assignment is neutral and neither satisfies nor unsatisifies the Boolean formula and the FSM

activates the FSM below it. If both ‘0’ and ‘1’ assigned to a variable yield a CNF value of ‘0’,

control is passed (backtracking) to the FSM above. If the first FSM activates the global

controller, the Boolean formula is found to be unsatisfiable. Once again, as was encountered

by Zhong et al., the [24] architecture suffers from long compilation times (between 103 and

597 seconds) which dominate the time required to find a solution (e.g. it takes 0.005 seconds

to find a solution to problem hole6 of the DIMACS set but 103 seconds to compile the

circuit). It should be mentioned that the maximal circuit frequencies for [24] found were found

to be between 27 and 65 MHz and therefore somewhat higher than those found by Zhong et al.

(for all their architectures reviewed here). As there is no implication computation in [24] the

authors use a C simulator program to evaluate enhancing the architecture with this and other

features (such as the identification of unassigned variables in satisfied clauses, termed don’t

care variables) [8]. Simulation results for the architecture performing implication computation

show several orders of magnitude speedup over the GRASP software solver although many of

the problems tested would not fit onto the FPGA used (XC4020). Finally, physical synthesis

results that take into account compilation times showed speedups between 0.03 and 6.54 on

the problems from the hole benchmark class against the same GRASP software solver.

A radically different approach proposed by Abramovici et al. [2], [22] makes use of the

PODEM algorithm [43] that is employed in the solving of test generation problems. The

central concept of the approach is the objective which is the desired assignment of a value to a

signal that is currently unknown. The main goal of the procedure is to assign the value ‘1’ to

the primary output of the combinational SAT circuit by finding the appropriate values for

primary inputs (variables). For this purpose, a backtracing procedure is used to propagate an

21

objective along a single path [2] to a primary input so that the objective may be achieved. An

important feature of the approach is that primary inputs can be assigned in any desired order

and pure literals are identified dynamically. For backtracking purposes, a hardware stack is

used and a central control unit is in charge of performing the search process. The method

allows for fine grain parallelism as all operations between successive division steps are done

in one clock cycle [2]. Figure 11 (a) shows a high-level block diagram of the architecture

proposed in [2]. However, the PODEM algorithm requires the propagation of objectives

backward in the circuit whereas a hardware circuit always propagates values forward. To solve

this issue, the authors use two distinct element models: every gate of the original circuit is

mapped into a forward element and a backward element, each belonging to the forward and

backward networks respectively. The authors conclude that the approach is hardware intensive

as just the forward network alone is almost twice the size of the initial SAT circuit and the

complete circuit is about ten times larger. In [22], a revised architecture is proposed (shown

Figure 11 (b)). The Variable Logic block transforms (either implications or decisions)

objectives into and maintains current variable assignments. These assignments are sent to the

Literal Logic block whose job it is to distribute them to the Clause Logic block. The latter

block determines clause values, the output of the overall formula and determines all literal

objectives which are sent backwards to the Literal Logic block where they are merged with all

other objectives (that are arriving for the same variable) into a single objective for a single

Figure 11: High-level view the architectures proposed by Abramovici et al. [2], [22]

22

variable. As an enhancement over the previous work where only one objective was propagated

along a single path, backtracing of all objectives over all possible paths is now done in parallel

and several variables are assigned concurrently. In addition, in [22] objectives are propagated

with different priorities and unate variables (pure literals) are identified dynamically. It should

also be mentioned that the authors propose a partitioning scheme as SAT problems are

decomposed into independent sub-problems to be processed in parallel or sequentially [22].

Finally, it appears that this approach is also hardware demanding as a 13-variable, 29-clause,

69-literal circuit ran at 3.5 MHz. and occupied the whole area of a XC6264 FPGA.

3.3 Application Specificity – Software/Hardware Hybrid Solvers

As it became evident that instance-specific approaches resulted in resource-hungry solutions,

researchers turned their attention to a different programming model, namely the application-

specific paradigm which entails creating a circuit that is compiled once and that is able to treat

different SAT instances. These solvers rely on memory modules to store a problem’s clauses.

 An interesting solver based on dynamic learning and FPGA reconfiguration is

presented by Dandalis et al. [23], [14]. This approach is similar to that of Zhong et al. [21] in

that it uses chains of pipelined clause modules (Figure 12). A given CNF formula is split into a

fixed number of modules (groups of clauses) and thus implications and conflicts are deduced

in parallel. Merge units are then used to combine information from the pipelines into a

variable set that is consistent. These variables are then fed back to the pipelines until no more

implications occur or a conflict has been detected. It is worth noting that only the implication

process is executed in hardware with decisions and backtracking done in software. Each clause

module has a memory unit that contains each variable’s current value (which can be ‘1’, ‘0’,

undecided or conflicting). A novel contribution of this work is the fact that the circuit evolves

dynamically as it tries to find, by means of previously constructed FPGA template

configurations, the minimal time needed to resolve implications or to raise conflicts (UPT). In

order to do so, the solver relies on information computed during execution. A greedy heuristic

executed by a host computer is used for this purpose. At the beginning, the template having a

minimal number of clause modules per group (and thus the highest level of parallelism

because more clause pipelines are created) is used to configure the FPGA. The UPT of this

23

configuration is retained and the host computer decreases the level of parallelism of the next

template by increasing the amount of modules per pipeline group. If the newly determined

UPT is smaller than the previous minimum, it is retained and reused for the next round of

implication and conflict determination. As the host machine reconfigures the FPGA with

different templates, the hardware search process does not restart at the root of the search tree

but continues from where the previous template had left off. Thus, the optimization process

involves finding the level of parallelism that leads to a maximal speedup compared to the

baseline solution which uses only one pipeline group for the complete SAT instance. Using a

simulator, the authors report, on SAT instances from the DIMACS set, speedups ranging from

1.06 to 5.44 over the baseline solution.

Contrary to the complete nature of the solutions provided by the solvers examined so

far, Leong et al. examined not only such a solution in [44] but also turned their attention to

incomplete algorithms [4], [16] which can generate solutions but cannot pronounce a SAT

Figure 12: Dandalis et al. SAT deduction engine and clause module details (bottom) [14]

24

instance unsatisfiable. The work presented in [44] is based on a forward checking tree search

method and will not be presented here.

In [4] the incomplete search heuristic GSAT (Figure 5, page 12) was implemented for

3-SAT problem instances (Figure 13). The approach deals with modifying the low-level

FPGA configuration bitstream while taking into account the SAT specification. The clause

checker in Figure 13 is problem dependent and is customized by a C program according to the

SAT instance. Xilinx tools are then used to partially and dynamically reconfigure the FPGA

bitstream. The rest of the circuit is generated from a VHDL description and is common to all

instances. This eliminates the need for synthesis, mapping, placement and routing of the entire

circuit. The inner for-loop of the GSAT algorithm is implemented in hardware whereas the

outer for-loop is performed by software. The process starts with a new variable assignment

which is downloaded onto the FPGA board. The hardware takes over and, by flipping

variables, tries to find the assignment that would create the greatest number of satisfied

clauses. If a solution is found, the algorithm terminates. If not, a new random variable

assignment is made by software and the process restarts (for a predefined number of times).

The solver was tested on a small problem from the aim suite of the DIMACS set but no

accelerations were observed when compared to a software implementation of GSAT [4].

Figure 13: Leong et al. GSAT hardware implementation [4]

25

In [16] Leong et al. addressed the WSAT incomplete algorithm (Figure 6, page 13) and

proposed a solver capable of accommodating 3-SAT problems of maximum 50 variables and

170 clauses (Figure 14). As was done for GSAT, the inner loop of WSAT was implemented in

hardware and a software host was made to call the GSAT core a predefined number of times

with random variable assignments. The clause checker portion of this core also requires

configuration at runtime. This method directly manipulates bitstreams to generate FPGA

configurations and the usual FPGA synthesis, place-and-route and mapping operations are

avoided once again. The results obtained for this solver show accelerations (versus a software

implementation of WSAT [16]) on problems from the DIMACS set of 0.1 to 3.3. The core

was built to run at 33 MHz.

Figure 14: Datapath of Leong et al. WSAT core [16]

26

3.4 Application Specificity – Modern Solvers

With the work of de Sousa et al. [5], [25] it is possible to see that while hardware SAT solvers

still present a hybrid hardware/software approach based on an application-specific

programming model, partitioning of the SAT instance into sub-problems starts to become

apparent.

Indeed, de Sousa et al. propose a configurware/software approach (Figure 15). Their

SAT solver features dynamic conflict diagnosis and conflict clause identification which are

done in software whereas implication computation and identification of decision variables

(using heuristics) are done in hardware. When problem instances do not fit completely in

hardware, the authors use context switching. They divide the original circuit in pages that are

successively loaded with intermediate results from RAM modules. A high-level view of the

SAT core is shown in Figure 15. The shaded portions are implemented in hardware. Of note is

the use of a clause pipeline (Figure 16) that is architecturally similar to that used by Zhong et

Figure 15: Configuware/Software SAT solver proposed by Sousa et al. [5]

27

al. in [21]. There are several engines that compose the SAT core. The first is the decision

engine that, based on a predetermined heuristic, selects one variable for decision. The

deduction engine’s task is to determine all implications that arise due to a decision by using

the unit clause rule and also signals conflicts. If conflicts have been generated, the diagnosis

engine analyzes them and constructs a set of offending variables. The variable (belonging to

this set) that was assigned most recently is complemented and all implications that arose from

it, as well as all subsequent decisions are reset. New implications that were created by the

complementation are found and the search continues. In [25], the authors use an XCV2000E

FPGA board (97% resource usage) and report that SAT instances of up to 7680 variables and

214304 clauses can be processed. However, the software interface was not yet completed and

thus no execution times were reported.

 Another prominent example of researchers trying to avoid long hardware compilation

times can be seen in the 2004 work of Skliarova and Ferrari [13]. This approach involves

using functional units such as registers and arithmetic and logical units (ALUs) to construct a

SAT co-processor that avoids being instance-specific (Figure 17). A hardware template circuit

based on a ternary matrix that is able to accommodate a SAT sub-problem of a specific size

was built. If the sub-problem (appearing at a specific level of the search tree) can fit onto the

FPGA, it is downloaded and the aforementioned circuit, implemented on the basis of a DP-like

algorithm, is used to solve it. If the sub-problem does not fit, software is used to simplify and

reduce it so that it may be downloaded again. Hardware resources are used efficiently in this

manner, although the success of instance partitioning between software and hardware is tied to

Figure 16: Sousa et al. clause pipeline [5]

28

the nature of the SAT problem at hand. The authors implemented three different circuit

templates, all of different sizes. The largest circuit occupied 54% of the XCV812E FPGA and

featured a maximal frequency of 30.516 MHz. Comparisons were made with the GRASP

software solver on all instances of the hole suite from the DIMACS benchmark set. Speedups

reportedly ranged from 0.289 to 111.245 (considering all three templates). Since it is difficult

to correctly ascertain the efficiency of the solver on only one type of problem, other DIMACS

instances were used to compare it to GRASP but no significant accelerations were observed.

One limiting aspect of the approach is the communication between the software and hardware.

As problems become larger and more difficult, more simplifications, reductions, and thus

more downloads to the FPGA board are required, which may lead to a decrease in

performance.

 A slightly different SAT solver flavor is presented by Safar et al. [7], [6] as their

solution is implemented completely in hardware and avoids instance specificity by storing

SAT instance information in RAM modules. In [7], the presented approach is based on

Figure 17: Skliarova and Ferrari's matrix based solver architecture [13]

29

performing a depth first search which is paired up with non-chronological, conflict directed

backtracking (Figure 18). In addition, the proposed methodology distinguishes itself by the

method employed for clause evaluation as a shift register is used to encode when clauses are

satisfied (right shift), unsatisfied (left shift) or there is no impact by the current variable

assignment. The authors restrict the range of acceptable problems to 3-SAT and use the

“0001000” vector in the shift register-based clause evaluator. A clause thus has two chances

to be satisfied and if a ‘1’ is present in the left-most bit, a conflict has been detected. For non-

chronological backtracking purposes, a priority encoder is used to determine the return level.

Variables are ordered statically and the maximal problem size that can by analyzed by this

solver is 100 variables and 200 clauses. The circuit was able to runs at a maximal frequency of

65 MHz and occupies 85% of the XC2VP4 FPGA used.

 Building on notions from their previously mentioned work, Safar et al. enhance their

design [6] with a five stage pipeline (Figure 19). The first, called the variable decision stage

(VD), is in charge of the overall control of the solver, performs static variable decision (there

Figure 18: Safar et al. SAT solver architecture [7]

30

is no implication computation) as well as conflict analysis. The second stage, termed the

variable effect fetch stage (VF), uses a memory module to keep track of variable assignment

effects on clauses. The principle behind clause evaluation from [7] is reused in the clause

evaluate stage (CE) where 7-bit shift registers (one for each clause) are used to evaluate all

clauses in parallel. The fourth stage (CD) deals with conflict detection (as before, a ‘1’ in the

left-most bit position of a clause evaluator register indicates a conflict) whereas the fifth and

final stage (CA) analyzes conflicts. There are several advanced techniques employed in this

solver. These include non-chronological backjumping, dynamic backtracking and learning

without explicit implication graph traversal. As in their previous work [7], the authors use

RAM modules to store SAT problem information thereby avoiding instance specificity. The

maximal size of any one problem that can be accommodated by this solver is 511 variables

and 511 clauses. This solver circuit operates at 120 MHz and occupies 82% of available LUTs

in the XC2VP30-FF896 FPGA used as well as 47% of all available on-chip RAM. The authors

report on a comparison made with the SATzilla2009_C software solver which revealed

speedups and decelerations between 0.31 and 8.81.

 Another example of partitioning SAT problems into smaller instances is provided by

Gulati et al. in their work [11] based on their previous custom application-specific integrated

circuit (ASIC) implementation [45]. The general architecture and the FSM of the decision unit

are presented in Figure 20. The solver proposed here traverses the implication graph as well as

generates conflict clauses in hardware in parallel. The BCP methods and non-chronological

Figure 19: Safar et al. 5-stage pipelined solver [6]

31

backtracking of the GRASP software SAT solver are implemented in hardware. The selection

of decision variables is done statically and the number of variables and clauses (as well as

clause width) is fixed.

Before solving a SAT problem, a preprocessing step is needed to heuristically partition

it into instances that can fit onto the FPGA. For this purpose a 2-dimensional graph bandwidth

minimization algorithm with greedy bin-packing is used. In order to find a solution to a

problem, all sub-instance bins must be satisfied. Initially, all problem sub-instances are stored

in off-chip RAM and are subsequently loaded into on-chip memory by a PowerPC core using

the on-chip peripheral bus (OPB) and processor local bus (PLB) protocols from Xilinx. The

authors use a XC2VP30 FPGA to implement their solution, which occupies about 70% of

logic resources, and the maximal problem size is 8K variables and 14K clauses. Of note is the

Figure 20: Gulati et al. solver architecture (top) and decision engine FSM (bottom) [11]

32

mathematical model developed by the authors to project their results to the larger

XC4VFX140 FPGA. On this platform, the authors extrapolate their solver to accommodate

10K variables and 280K clauses. Moreover, comparisons of XC4VFX140 projected runtimes

on various SAT instances with MiniSAT, a successful software solver, yielded a speedup of

about 90.

Similar to the above-mentioned Leong et al. approach, Kanazawa and Maruyama’s

solver (Figure 21 shows a high level view) [10] explores the use of an incomplete SAT

algorithm in solving very large 3-SAT problem instances on FPGA using a variant of the

WSAT stochastic local search algorithm. The authors justify their selection of this incomplete

SAT method with the fact that the resulting circuit does not need complex control structures as

Figure 21: Kanazawa and Maruyama WSAT based solver [10]

33

well as with the idea that WSAT has very good inherent parallelism that can be used. In order

to reduce circuit size, Kanazawa and Maruyama’s solver evaluates, in parallel, only clauses

that have the possibility of being unsatisfied by the flipping of a variable. Furthermore, this

approach makes use of multi-threaded execution as a way to increase performance as many

independent tries are executed in parallel. On-chip memory is heavily used for different tables

and buffers as well as for storing variables which can be flipped in 1 clock cycle. An important

aspect of this use of memories is the fact that the size of both on and off-chip memories as

well as off-chip memory bandwidth affect performance. The authors present two

implementations. The first does not use off-chip memory as the problem is completely handled

by the FPGA and its memory resources. This circuit has a maximal frequency of 85.2 MHz,

claims 51% of the XCV6000 FPGA slices and 90% of on-chip RAM. The maximal problem

size is 2048 variables with the number of variables depending on the instance analyzed (the

authors have verified up to 8500 clauses). A comparison was made with the Walksat5 software

solver which revealed speedups between 3.4 and 50.8 on problems from the SATLIB

benchmark suites6. The second implementation makes use of 8 off-chip memory banks, runs at

67.2 MHz, and requires 88% of the same FPGA’s slices and 97% of its on-chip memory

blocks. The largest problem accommodated by this circuit has 32K variables and 128K

clauses. A second comparison made with the same Walksat solver revealed accelerations

between 13.8 and 37.0 on problems from the SAT Live7 benchmark suite.

3.5 Summary and Analysis of Hardware SAT Solvers

To provide a compact view of all works presented heretofore, Table 1 lists characteristics and

attributes of the hardware solvers presented in this chapter. A large hurdle that a hardware-

based SAT solver has to face is the potentially enormous instance representation as some

problems have thousands to millions of clauses and variables. Even though FPGA capacities

can, up to a certain extent, accommodate these problems, there is still a barrier that hinders the

use of these powerful devices to solving SAT. Indeed, as can be seen in Table 1, the

approaches presented in this chapter have mostly focused on trying to fit problems on their

5 Solver site: http://www.cs.rochester.edu/u/kautz/walksat/
6 Site: http://www.satlib.org/
7 Site: http://www.satlive.org/

34

FPGA platform in a timely and efficient manner rather than on enhancing solvers with

sophisticated heuristics and techniques, as is done for their software counterparts [34]. In

addition, with larger problem sizes come immense, complicated circuits that require long

times to generate. Since the principal goal of hardware SAT solvers is to provide accelerations

over software solutions, long circuit build times significantly decrease or even nullify the raw

speedup generated by the hardware. Thus, from instance specificity, a seemingly natural way

to map SAT to hardware harvesting great amounts of FPGA parallelism, SAT solvers started

evolving towards pipelined, sometimes software aided, problem-partitioning natures that rely

on memory modules to store instance clauses. By doing so, solver authors have avoided

having to bulk up hardware with clause-variable relationships. A tradeoff was thence made

between the parallelism obtained from instance-specific circuits requiring long times for

compilation and the more coarse parallelism provided by pipelined application-specific

circuits with no compilation overhead. On the other hand, it is our intuition that instance

specificity is a necessary avenue for providing fine grained FPGA parallelism that is required

to tackle the NP-hardness of SAT. Application-specific solvers use memory modules where

problem clauses are stored. Nevertheless, different problems arise from the use for memory

such as latencies and other limitations (e.g. can only access a fixed width word at a time).

Solvers built in this manner have, in our opinion, generally mitigated these barriers by using

heuristics such as dynamic variable ordering and non-chronological backtracking. However,

for real-world applications with immense problem sizes, memory transactions are

unacceptable. Consequently, the rest of this work will focus on assessing the influence of

memory on hardware SAT solving and on highlighting the fact that instance specificity

parallelism is required to solve the Boolean satisfiability problem. To this effect, a testing

platform was implemented that simulates an on-chip memory with as many read ports as there

are clauses in the problem instance. The fundamental unit that was used in building this

memory is the 1-bit register (grouped in arrays) residing in each logic element of the Altera

DE2-70 FPGA board. As such, a focus of this investigation was to develop 2 versions of a

SAT solver model based on the complete DP method that has access to all problem clauses at

once. One version is a software simulator that is able to provide accurate clock cycle counts

and the second is a VHDL description of the hardware necessary to implement the model on

an FPGA board.

35

Table 1: Summary of hardware SAT solvers

Solver Year Specificity Algorithm HW/SW
Execution

Maximal
Problem

Size
(approx.)

Comments

Svoboda
[3] 1968 Application Exhaustive

search
-All execution
in HW. N/A

-Highly parallel
design: one
register for each
minterm.
-Explosion of
time and
memory needed
due to
exhaustive
search.

Suyama
[9, 17-19]

1996-
2001 Instance

DP-based
with MOM
and EUP
dynamic
variable
selection

-All execution
in HW.

~200 variables,
~300 clauses

-Use of registers
for backtracking.
-Large amount
of resources due
to wirring
requirements.

Zhong
[15, 20, 21]

1998-
2000 Instance

DP-based
with non-
chronological
backtracking
and dynamic
clause
addition

-All execution
in HW.

~200 variables,
~1000 clauses

-Only a subset of
total problem
clauses
evaluated at any
one time
-FSM and Ring
architectures
-Incremental
synthesis
decreases
compilation time

Platzner
[8, 24]

1998-
1999 Instance DP-based -All execution

in HW.
~100 variables
~500 clauses

-High circuit
frequencies (27
– 65 MHz).
-FSM
architecture.

Abramovici
[2, 22]

1997-
2000 Instance

PODEM with
pure literal
rule

-All execution
in HW.

~10 variables
~30 clauses

-Dynamic pure
literal
identification.
-Hardware
intensive.
-High
parallelism: e.g.
several variables
can be assigned
concurrently.
-Partitioning
scheme
proposed

36

Table 1 cont’d : Summary of hardware solvers

Solver Year Specificity Algorithm HW/SW
Execution

Maximal
Problem

Size
(approx.)

Comments

Dandalis
[14, 23]

2000-
2002 Application DP-based

-Implication
computation in
HW.
-Variable
decisions and
backtracking
in SW.

N/A

-Dynamic
learinng to
reconfigure
FPGA.
-Focuses on
minimizing time
to resolve
implications or
raise conflicts
-Pipeline
processes groups
of clauses.

Leong
[4, 16]

1999-
2001 Application GSAT,

WSAT

-Inner
algorithm
loop in HW.
-Outer
algorithm loop
in SW

50 variables,
170 clauses

-Problem
specific FPGA
runtime
configuration
-Circuit speed
moderately
high(33 MHz)

de Sousa
[5, 25]

2001-
2002 Application DP-based

-Implication
computation
and selecting
decision
variable in
HW.
-Conflict
analysis,
backtracking,
clause addition
in SW.

~7000
variablesa,
~200000
clausesa

-Use context
switching for
instances that do
not fit onto
FPGA.
-Use of clause
pipeline to
evaluate clauses.

Skliarova
and Ferrari
[13]

2004 Application DP-based

-SW splits and
reduces
problem until
can fit onto
HW.

~100 variables,
~850 clauses

-Communication
with host
processor is not
negligeable.

Safar
[6, 7]

2007-
2011 Application

DP-based
with dynamic
backtracking
and clause
learning;
static variable
selection.

-All execution
in HW

511 variables,
511 clauses

-Store
information in
memory.
-5-stage
pipeline.
- No implication
computation.

a
Interface with software was not implemented and no real execution times were available. Circuit was synthesized for XCV2000E board.

37

Table 1 cont’d: Summary of hardware solvers

Solver Year Specificity Algorithm HW/SW
Execution

Maximal
Problem

Size
(approx.)

Comments

Gulati
[11] 2009 Application

Based on
GRASP
software
solver

-SW partitions
problem.
-HW performs
non-
chronological
backtracking

~8000
variablesb,
~14000 clausesb

-Heavy use of
memory.
-Use of general
purpose PC and
busses to
transfer clause
information.

Kanazawa
and
Maruyama
[10]

2010 Application WSAT -All execution
in HW

~32000
variables,
~128000
clauses

-Heavy use of
memory.
-Memory
bandwithd
limitations.
-High circuit
frequencies
(85.2 MHz and
67.2 MHz).

b Authors developed a mathematical model that provides projections toward a larger FPGA where the maximal problem size is about 10000
variables and 280000 clauses. No actual problems of this size were tested. From projected runtime comparisons with MiniSAT, the largest

problem had 3301 variables and 10092 clauses.

Chapter 4 – The Evaluation Platform
This chapter will describe in detail the platform that was built. Before proceeding with details

regarding the functioning of the DP-like solver, consider the clauses γi (this time expressed in

DNF) of the 5-clause, 7-variable formula φ7F

8 that are shown in Figure 22. The CNF form of its

inverse φ was introduced in Chapter 2.

As an initial step in our exploration, we attempted an implementation of Svoboda’s

Boolean analyzer [3]. Since this solver makes use of the DNF, it was deemed natural to

continue with this notation when considering SAT which is a simpler but nearly identical

problem (Svoboda attempts to find all solutions to a Boolean formula while SAT attempts to

find one such solution). This form is easily obtained by applying De Morgan’s law of duality9.

From a SAT standpoint, finding a solution to the Boolean formula φ starting with its negation

φ now involves finding a variable assignment that renders the entire formula false. In other

words, the satisfying assignment must have at least one disjunction point (one variable

assigned differently) with all clauses belonging to formula φ. The significance of this

disjunction is that if a solution is not included in the set of all solutions to the inverse formula

φ then surely it must be a solution of φ.

8 Example borrowed and adapted from: http://www.cs.cmu.edu/~mtschant/15414-f07/lectures/grasp-ex.pdf
9 http://en.wikipedia.org/wiki/De_Morgan's_laws

⎩
⎪
⎨

⎪
⎧

γ0 = (x0 ∧ x1 ∧ x4 ∧ x3)
γ1 = (x0 ∧ x1 ∧ x4 ∧ x3)
γ2 = (x2 ∧ x5)
γ3 = (x3 ∧ x6 ∧ x0)
γ4 = (x3 ∧ x6 ∧ x1) ⎭

⎪
⎬

⎪
⎫

φ(x0, x1, x2, x3, x4, x5, x6) = γ0 ∨ γ1 ∨ γ2 ∨ γ3 ∨ γ4

Figure 22: DNF of formula φ

39

4.1 Introducing a DP-Based Solver

Figure 23 below shows a high-level view of the DP-like solver that was constructed. The

components shaded in grey represent a generic decision machine that uses information from

registers to analyze a Boolean formula in the attempt to finding a solution. The portions of

Figure 23 not shaded in grey represent the different memories used by the solver. The nature

of the solver may be therefore thought of as a hybrid between instance and application

specificity. Indeed, the model is in part instance-specific as the size of the clause register array

(both the number of registers and also their size in the number of bits), the current partial

solution register (Candidate in Figure 23) as well as the size of the stack memory need to be

specified at compile time. The application-specific flavor of the solver comes from the fact

Figure 23: High-level model of a DP-based SAT solver

40

that it uses a memory, a read-only memory (ROM) in this case, to hold problem information

(initially only). With some adjustments, the solver can bend towards application specificity.

For example, adding a few extra configuration registers would allow for programming the size

of the problem. The only component then needing reconfiguration would be the ROM. This

would, however, enforce a theoretical maximal limit (regarding problem size) on the solver

but recompilation would only be needed when the problem size would exceed this limit.

4.2 Encoding a SAT Problem Instance

The first step that the solver performs before solving the SAT instance is transferring SAT

clauses from the ROM to an array of clause registers. The ROM is generated automatically

(not shown) by a Java program from a CNF file specification10. A variable may be in any of 3

states (therefore needing only 2 encoding bits): “10” or true, “01” meaning false and “11” or

unassigned; the state “00” is illegal and is treated as a don’t care value. Each ROM address

represents a clause index and the width of the memory word is thus equal to the number of

variables of the problem at hand. The ROM module can be thought of as storing 2 dimensional

quantities as at each address a word is as long as there are variables in the problem and each

variable state is encoded with two bits. The size in bits of the ROM needed for problem

representation is therefore twice the number of clauses multiplied by the number of variables.

The Candidate register is also 2 bits wide and uses the same encoding scheme to represent

variable states. An index into this register represents a variable index. The stack memory used

in backtracking is as deep as there are variables in a problem and as wide as log2 NumVars

where NumVars is the number of variables of the problem. Indeed, a secondary job of the

Java program is to determine, from the CNF file, the sizes needed for the different registers

and memories previously described. Finally, the register array (ClauseReg in Figure 23) also

uses the state encoding scheme mentioned above and holds the information transferred from

the ROM module. This register array is used to simulate the memory whose words are all

accessible at once and whose latency is only of 1 clock cycle. Of course, a ressource penalty

must be paid as each register is located inside a logic element (LE) of the DE2-70 FPGA.

10 For CNF file specification see: http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

41

4.3 Disjunction, Inclusion and Implication – Solving SAT

In Figure 23, the logic-cloud shapes represent combinational circuits that, within 1 clock

cycle, are responsible for computing various results that are used to solve SAT. To obtain

these circuits, the following three Boolean formulas were used:

Disjoint = � � α1[j] ∗ Υ0[i][j]
Ν−1

j=0

+ α0[j] ∗ Υ1[i][j]
Γ−1

i=0

Included = � � α0[j] ∗ Υ0[i][j] + α1[j] ∗ Υ1[i][j]
Ν−1

j=0

Γ−1

i=0

ImplyOne = � � Unit(γi) ∗ Disjoint(γi)
Ν−1

j=0

Γ−1

i=0

∗ Υ1[i][j] ∗ Υ0[i][j] ∗ α1[j] ∗ α0[j]

The ′ ∗ ′ and ′ + ′ operators implement the usual Boolean logical-and and logical-or

operations. Symbols Γ, Ν and represent the total number of clauses and the total number of

variables, respectively. The α− symbol is the appropriate dimension of the current variable

assignments vector (Candidate solution), Υ− denotes one of the dimensions of the clause

register array Υ while γi means the ith clause belonging to it. For example, Υ1[0][2] stands for

the 1st state bit of clause 0, variable 2 whereas α0[8] can be taken to mean the 0th state bit of

variable 9. The functions Unit(γi) and Disjoint(γi) are implemented as auxiliary circuits that

are used to find out if a particular clause is a unit clause, meaning it has only one unassigned

variable, and if this same clause has at least one variable that creates a disjunction point from

the current assignment; these are necessary conditions for implication computation.

The Disjoint formula describes the circuit used to determine if a solution has been

found to the SAT instance as it calculates the disjunction of the candidate solution from all

problem clauses. The formula examines, for a given clause, the assignment value of each

variable. If at least one (logical-summation Σ) variable value has been found to be of different

polarity from the current solution (assigned “10” in the clause and “01” in the Candidate),

then the clause is disjoint. The logical-product Π large operator dictates that all clauses must

be disjoint in order for the formula result to be equal to ‘1’.

42

The Included formula calculates whether a given partial (or full) solution is included

in at least one of the clauses of (and therefore provides a solution to) the Boolean formula φ. If

such a situation occurs, the algorithm backtracks as a contradiction has occurred since a

solution to φ is necessarily not a solution to φ. This second formula also examines all clauses

of the problem. This time, logical-product Π operator is used inside the logical-summation Σ

operator since for inclusion it is necessary that all literals inside at least one clause be of same

value as the variable assignments of the Candidate (there is no point of disjunction, or the

corresponding clause of φ is false). For example, looking at the example presented earlier, the

partial solution ("11")("11")("10")("01")("01")("01")("01") (in other words “--10000”) is

included in clause γ1 = (x0 ∧ x1 ∧ x4 ∧ x3) and leads to a contradiction because φ is

satisfied and φ is not.

Finally, the ImplyOne formula is at the origin of the implications’ finding circuit. Four

conditions must be met to allow a variable to be implied to a value in the Candidate. Firstly,

the variable must be specified in a given clause. This is determined by the Υ1[i][j] ∗ Υ0[i][j]

portion of the formula. Secondly, the examined clause must necessarily have only one

unassigned variable as well as no other disjunction points from the current assignment vector.

These computations are performed by Unit(γi) and Disjoint(γi) as already discussed. Lastly,

it is necessary to check that the variable has not been assigned in the current Candidate

solution, a verification which is done by the α1[j] ∗ α0[j] portion of the formula. If all these

conditions are met, the variable is simply assigned the opposite value of that which it has in

the clause.

To illustrate how these formulas are used consider the following (partial) Candidate

solution (to the formula presented at the beginning of this chapter)

("11")("11")("10")("01")("01")("01")("01"), remembering that the left-most bracket

contains the current assignment for variable 6 and the right-most for variable 0. The Disjoint

circuit starts with clause 𝛾0 = (𝑥0 ∧ 𝑥1 ∧ 𝑥4 ∧ 𝑥3) and looks at every variable position in

the clause. Variable 0 is represented by its negative literal. As the Candidate also has assigned

false to variable 0 (the right-most bracket contains “01”), no disjunction point is found here.

Next in line is variable 1 where the same situation repeats itself. When x2 is examined, the

43

solver determines that this variable is not present in the clause and thus does not affect the

outcome of the Disjoint operation. When x3 is considered, the Candidate features “01” as the

variable is assigned false which prevents this variable from forming a disjunction point from

the clause. As x4 is analyzed, a disjunction point is found as the variable is assigned false in

the clause but not in the Candidate. At this point, the first clause has been determined to be

disjoint, and thus unsatisfied. The solver will continue on to clause γ1. If all clauses have at

least one disjunction point, a solution has been found.

Examining the same partial assignment, the Included circuit is tasked with

determining if any contradictions have occurred. This situation happens when all the variable

assignments in the Candidate have the same polarity as they do in the clause. As Disjoint had

done, clauses are examined in turn and their variables are analyzed one by one. It is possible to

see that all variables present in clause γ0 are assigned as they are in the Candidate with the

exception of x4, which is true in the partial solution but false in the clause. Therefore, the

Candidate is not included in this clause. However, the contradiction arises with the next

clause γ1 = (x0 ∧ x1 ∧ x4 ∧ x3) as all variables feature the same polarity in both the

Candidate and the clause.

Finally, to illustrate the ImplyOne circuit, consider the following partial assignment:

("11")("11")("11")("01")("01")("01")("01") which is almost identical to the one used for

the first two circuits with the exception that x4 is free. The ImplyOne formula dictates that we

look at each variable present in every clause. Starting with γ0, the formula asks if the clause is

a unit clause, which is the case as variables 0,1 and 3 are all assigned in the Candidate. The

next step involves determining if the clause has a disjunction point with the Candidate, which

it does not as x0, x1 and x3 have identical polarity in both the clause and the Candidate

register; the second portion of the formula is satisfied. Next, with Υ1[i][j] ∗ Υ0[i][j] the

formula stipulates that in the clause register array, the variable must be present (therefore

cannot exist as “11” as this means the variable is free or absent; e.g. in clause γ0 variable x2 is

free). This is the case for x4. Finally, the last portion of the formula makes sure that the

variable is actually not assigned in the Candidate. Indeed, x4 is not assigned. In this case, an

44

implication has arisen and x4 is assigned true, the opposite of the polarity found in the clause

(which is false in this case).

4.4 Solution Space Exploration

The method used in exploring the space of solutions to a Boolean function is based on the

famous DP SAT algorithm. The circles of Figure 23 represent a FSM that implements a

variant of this algorithm.

The solution search space is organized as a tree and the main goal is to find a solution

that unsatisfies all clauses. At the root, no assignments have been made and all variables are

said to be free. The Candidate displays “11” at all its positions to indicate this fact. In order to

move forward, the solver uses a simple circuit (not shown here) that detects the next

unassigned free variable by examining the Candidate vector in a sequential manner (as a

sidebar, it is worth mentioning that several interesting heuristics used in selecting this variable

do exist [13] and can be used to increase the performance of the solver, although this would

come at the price of increased FPGA area that the solver would require). This variable is

termed the decision variable as the solver decides it to be false and pushes its index onto the

stack. Considering our earlier example, Figure 24 (a) shows the first three decision steps of the

algorithm in which the solver decides to assign ‘0’ to variables x0, x1 and x2. The choice of ‘0’

and is purely arbitrary. The indexes of these variables are pushed onto the stack in order. The

incomplete solution that results from these decisions does not yet constitute an unsatisfying

assignment (although this is possible as some variables can be deemed superfluous) but does

not raise any contradictions either. Clauses γ0 and γ1 contain x0 and x1 and are not yet

unsatisfied. However, clause γ2 has only two literals, one of which is x2. The decision on this

variable has rendered γ2 a unit clause. This is significant as it is no longer necessary to make a

decision on x5 later in the search process. All sub-trees resulting from decisions on x5 do not

need to be explored and the search space is pruned in a significant manner. Now, the decision

to make x2 ‘0’ has as an implication the fact that x5 must be assigned ‘1’ so that γ2 can be

unsatisfied and therefore disjoint from the solution (green arrow in Figure 24 (a)).

As it was previously mentioned, it is possible for contradictions to arise. This situation

occurs when the same variable is implied to different values by at least two unit clauses. In our

45

current situation, after assigning ‘0’ to the first three variables and implying the 6th one to ‘1’

the solver proceeds (as the implication did not cause a contradiction but did not generate a

solution either because, with the exception of γ2 all clauses are still not disjoint from the

assignment) by choosing the next available free variable, x3, which, as was done before, is

decided to be ‘0’. The solver checks for and detects 2 new unit clauses, γ0 and γ1. The only

variable left to assign in both these clauses is x4. Sequentially, the solver starts to check for

implications by looking at γ0 and implies the value of x4 to ‘1’ so that the clause is unsatisfied.

However, during the next cycle, the current variable assignment of “-110000” renders γ1 true

and thus creates a contradiction. Figure 24 (b) shows the backtracking mechanism employed

by the solver to correct this situation. Index 3 had been pushed onto the stack as its variable

had been decided. However, since a contradiction was raised by this decision, this index is

popped off the stack, all assignments starting with index 3 are reset and the value of its

associated variable (x3) is complemented. At this point, both possibilities have been tried for

variable x3. Variable x5 is once again implied as before. In addition, γ3 has emerged as new

unit clause. This event allows the solver to set the variable x6 to ‘1’ so that the clause is

Figure 24: Operation of DP-like solver

46

unsatisfied. This will again lead to a contradiction as the last clause of the problem is now true

because x1 evaluates to true as its assignment is ‘0’ while x3 and x6 are also true as their

assignments are ‘1’. After resolving all contradictions resulting from decisions and

implications, the solver proceeds with new decisions. The search terminates when the circuit

described by Disjoint evaluates to true or all values of all variables have been tried.

4.5 LFSR and Pseudo-randomness in Variable Decision

In the previous section, the manner in which variables get their value is described as arbitrarily

starting with ‘0’, an assignment which is inverted with subsequent conflicts. In addition to this

predefined choice of always starting with false, it is also possible to configure the DP-like

solver to use a linear feedback shift register (LFSR) to pseudo-randomly select a value during

execution by selecting a bit from the LFSR output. Figure 2511 shows an example of an 8-bit

LFSR.

 As the LFSR’s seed is randomly generated at compile time (by the same Java program

that generates the problem ROMs) it allows the introduction of almost randomness into solver

operation so that it can take random paths to solutions. Thus, for a given seed and a given

problem instance, the LFSR method of deciding on a variable value will always yield the same

11 Figure taken from : http://www.markharvey.info/fpga/lfsr/lfsrfig4.gif

Figure 25: Example of an 8-bit LFSR

47

solution. However, if the circuit is recompiled with a different seed, it is possible (and highly

likely) that a new solution will be found in a different time period.

4.6 Some Remarks

While this DP-based search algorithm does solve SAT instances in a manner that is

significantly more efficient than, say, a brute-force approach where all solutions are

enumerated and verified, there are many improvements that were suggested in the other

solvers presented in this thesis that could be used to further accelerate its execution. Examples

include dynamic variable ordering [9], [17], [18] and non-chronological backtracking as

presented in [21] whereby conflicts are analyzed so that the solver backtracks not to the last

decision variable (chronological backtracking) but to the level responsible for the

contradiction. Moreover, implication generation is one of the most important aspects of SAT

solving. As more and more decisions are made, a greater number of unit clauses appear and

the solver is capable of verifying quickly if its decisions are correct. Thus, a measure of SAT

solver efficiency may be thought of as the number of implications that it can raise in a small

amount of time

These enhancements do come with a price in terms of the hardware resources needed

to implement them. For example, the Disjoint circuit for the example used in this chapter (as

compiled with the Quartus II version 12.0 CAD software, which was also used during the

experiments portion of this work) requires 47 logic elements, the Included circuit needs 55

whereas the ImplyOne circuit claims 204 logic elements.

Chapter 5 – Experimental Results

The solver model presented in this work is very hardware intensive and as such does not offer

a viable solution for a successful, efficient SAT solver from a practical point of view. Rather,

the solver presented here forms an exploration platform that paves the way for similarly

constituted solvers relying heavily on FPGA fine-grained parallelism for processing power. As

such, the main goal of the experimental section of this work will be to assess exactly how

quick a DP-based solver (relying on no heuristics or other enhancements except perhaps

pseudo-random variable assignment and computing all implications in 1 clock cycle) is when

compared to other solutions, be they hardware or software in nature, if memory limitations are

eliminated by using a large, fast memory module capable of producing clause information in 1

clock cycle.

To simulate the multi-port memory (in order to have as many read ports as there are

clauses in a problem instance) so as to benefit from extensive parallelism when evaluating

instance clauses, registers located in each logic element of the DE2-70 Cyclone II FPGA

(Figure 2612) used are necessary to hold state information bits for each variable present in each

every clause. The Cyclone II DE2-70 FPGA board has 68416 logic elements (1 logic element

≈ 1 LUT, Figure 26). This number constitutes an upper limit on the size of the problem that

can be considered via our approach. In addition, registers are also needed for the candidate

solution, although the space that this component requires is minimal compared to problem

clause information. Furthermore, some logic elements are used for computing tasks and cannot

be used for the aforementioned purpose. Compilation techniques are employed by the Quartus

II CAD tool to optimize the design in a number of ways. One such technique is called register

packing12 and can be used to reduce the total number of device resources used by utilizing the

LUT and the register of a logic element for functions that are not related to one another.

However, very small problems (from a real-world application size standpoint) claim large

amounts of resources. For example, one problem of 30 variables and 99 clauses necessitated

25966 logic elements or about 38% of the total number of logic elements of the FPGA.

12 Obtained from the Cyclone II device handbook.

49

The heavy hardware requirements pose a significant barrier as not many problems can

be implemented and run directly on FPGA. Thus it was decided that the software simulator

version of our solver would be used to obtain clock cycle counts for the different problems

examined in this work. As gate-level HDL simulators such as ModelSim perform simulations

at a very low level evaluating all signals of an HDL specification, their runtimes can

sometimes be exceedingly long (hours and even days of simulation time). Thus, a custom

simulator written in the Java programming language was developed that is faithful in every

way to the specification of the VHDL model of the DP-based solver. This simulator was then

used to obtain clock cycle counts for problems analyzed by other solvers for comparison

purposes. Furthermore, to estimate probable circuit frequencies regression curves were used as

the VHDL version of the solver was synthesized for small problems randomly generated by

the makewff utility that can be obtained with the Walksat software SAT solver13.

13 Solver site: http://www.cs.rochester.edu/u/kautz/walksat/

Figure 26: Cyclone II logic element

50

5.1 Regression Analysis – Rules of Thumb

The problems used in the regression analysis to approximate various circuit parameters are

shown in Table 2. Note that what is sought here are not exact relationships between various

parameters but rather rules of thumb that can be used to approximate and characterize the

suitability of using FPGAs in solving SAT. In total, 20 random 3-SAT problems were

synthesized and their circuit build times, maximal circuit frequencies and required amount of

memory bits were used in constructing graphs illustrating relationships between these metrics

and an instance’s size.

 Indeed, researchers have tried for many decades to develop sophisticated algorithms to

solve hard optimization problems [46]. Experiments were carried out to see which algorithms

Variable
Number

Clause
Number

Build
Time(sec)

Maximal
Frequency

Memory
Bits

10 33 74 62.1 1280
11 36 75 59.41 1408
12 39 94 55.61 1536
13 43 104 50.7 1664
14 46 112 43.19 1792
15 49 125 39.3 1920
16 53 138 38.02 2048
17 56 167 42.34 2261
18 59 174 33.79 2394
19 63 204 41.4 2527
20 66 226 31.31 5220
21 69 262 39.34 5481
22 72 262 35.8 5742
23 76 297 36.97 6003
24 79 303 27.19 6264
25 82 368 32.92 6525
26 86 398 33.12 6786
27 89 450 32.68 7047
28 92 476 30.7 7308
29 95 492 30.2 7569
30 99 577 29.1 7830

Table 2: Characteristics of circuits used in the regression analysis

51

perform best on benchmark instances that are publicly available but provided no useful

conclusions. In addition, the no-free-lunch theorem [47] states that there is no algorithm that

can indicate which algorithm would perform better than all other algorithms on all instances of

a given problem [46]. It is therefore difficult to establish exactly what metric (e.g. problem

size, clauses-to-variables ratios, number of literals present in one polarity or another, etc.) best

characterizes a SAT instance as it is solved by the DP algorithm. Various combinations of

these metrics could be used to create easier or harder problems. However, the approach of

exploring various metric combinations is neither useful nor particularly feasible. Instead,

inspiration was drawn from a famous result by Selman et al. [48], which states that a clauses-

to-variables ratio of 4.26 in random 3-SAT instances makes for very difficult problems.

Consequently, the 3.29 average clauses-to-variables ratio of all problems used in comparing

our solver to others was used to generate random 3-SAT problems using the makewff utility.

In this manner, some of the SAT instances’ structure is reflected in the smaller problems used

in the regression analysis.

Before proceeding with the description of the data obtained it is worthwhile to note that

the general purpose PC used in this work features an octa-core Intel i7 processor running at

2.80 GHz with 8 GB of RAM. The operating system used was the 64-bit version of the

Ubuntu operating system (12.04 LTS).

The first graph generated is shown in Figure 27 and it depicts the size of a circuit

expressed as the number of logic elements claimed on the Cyclone II FPGA as influenced by

the number of clauses present in the SAT instance. The curve that fits the experimental data is

best expressed by power type regression. The formula representing the rule of thumb relating

logic elements to the number of clauses present in a SAT instance was in this way

approximately found to be:

logic_elements = 2.8 ∗ num_clauses2

 It is now possible to infer that the maximal problem size that can be accommodated by

our FPGA features about 156 clauses and, since we have assumed 3-SAT, 52 variables. Of

course, this limit is imposed by the capacity of the FPGA board used. However, using larger

52

FPGAs would not allow the solver to process significantly bigger problems. Solving this area

issue constitutes one of our most important research priorities.

Even though the circuits generated by our approach are large, the relationship between

the time to build a circuit and instance size is also best expressed by a power regression curve

(as opposed to an exponential one). The graph showing this is displayed in Figure 28 and the

relationship between the circuit build time and the size of the problem as expressed by the

number of clauses is given below:

circuit_build_time = 0.08 ∗ num_clauses2

Thus, once again, the problem that occupies the entire FPGA (whose parameters are

given higher) is solved by a circuit that would require approximately 1950 seconds (about 32

minutes) of build time.

 The most important approximation that was performed concerns circuit frequency as

dictated by problem size. This parameter is employed later after the simulator version of our

y = 2.8225x1.9833

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

Ci
rc

ui
t S

iz
e

(lo
gi

c
el

em
en

ts
)

Number of Clauses

Relationship between Instance Size and
Circuit Size

Figure 27: Relationship between an instance’s size and its associated circuit size

53

solver is used to obtain clock cycle counts for problems that do not fit onto our FPGA. Figure

29 shows the graph of circuit frequency versus circuit size. The relationship expressing the

link between circuit frequency and the number of clauses of a problem is given below:

frequency = 552 �(num_clauses)23⁄

The minimal circuit frequency featured by the largest problem fitting onto the DE2-70

Cyclone II FPGA is thus considered to be about 19 MHz. This result differs somewhat from

those found in other works presented in this thesis although the problem sizes considered are

small. However, a circuit spanning the entire FPGA is still able to function at a relatively high

frequency.

Lastly, to get an idea of the amount of the amount of memory bits required by the

ROM module to store the problem clauses, a graph illustrating the relationship between this

quantity and the number of clauses of an instance is given in Figure 30. The stair-like effect on

the graph is attributed to the fact that memory address width is always a power of 2. For

example, the point on the graph just before the inflection represents a problem of 19 variables

y = 0.0757x1.9198

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Ci
rc

ui
t B

ui
ld

 T
im

e
(s

ec
on

ds
)

Number of Clauses

Relationship between Instance Size and
Circuit Build Time

Figure 28: Relationship between an instance’s size and its associated circuit build time

54

and 63 clauses. As mentioned previously, in each clause we need 2 bits to represent variable

states. As we have a word width of 19 (for the total number of variables), the number of

memory bits required is 26*19 *2 = 2432 bits (where 26 = 64 are the total number of words in

the memory; this is computed from CEILING (lg2(num_clauses)) = 6). There is a

discrepancy with the value reported in Table 2 due to the fact that the stack memory is also

taken into account (19 variables would require 19 * 5 = 95 bits which brings the total up to the

reported 2527 bits). On the other hand, if the stack memory is too small, as is the case for the

first problems, the compiler selects logic elements to implement it rather than dedicated

memory bits. Now, the next point on the line represents a problem of 20 variables and 66

clauses. The next power of 2 available is 7 (CEILING(lg2(66)) = 7) and the total number of

bits now jumps to 27 * 20 * 2 + 20 * 5 (for the stack) = 5220.

5.2 Comparison between Hardware and Software

The first execution time comparison was made between the 2 versions of our solver using

problems from the DIMACS benchmark suite. The purpose of this comparison is to assess

y = 551.72x-0.645

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

CI
rc

ui
t F

re
qu

en
cy

 (M
Hz

.)

Number of Clauses

Relationship between Instance Size and
Circuit Frequency

Figure 29: Relationship between an instance’s size and its associated circuit frequency

55

exactly how much faster or slower the hardware version is than the software simulator.

Paramount to this comparison is the fact that circuit build times were not taken into

consideration when reporting speedups. As the instances used in the comparison do not fit

onto the FPGA, their build times for larger platforms would necessarily take up more than the

32 minutes reported higher whereas the raw execution time for these problems is

predominantly on the order of seconds. The goal here is to use run-times to characterize fine-

grained parallelism as applied to solving SAT. Thusly instance specificity is pushed to the

maximum (memory modules have been eliminated and all clauses are readily accessible by the

solver in one clock cycle) to explore the limits of this parallelism.

 Table 3 shows the run-times of the two solver flavors on various problems. The

columns indicate, from left to right, the instance’s name, how many clauses and variables it

has, the number of simulated clock cycles (obtained from the software simulator), the

estimated circuit frequency in Megahertz, the theoretical hardware execution time, the

software simulation time and the resulting speedup. As can be seen from Table 3, most of the

time, the hardware circuit is two orders of magnitude faster than the software simulator. On

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120

M
em

or
y

Bi
ts

Number of Clauses

Relationship between Instance Size and
Required Memory

Figure 30: Memory requirements (ROM and stack) of the DP-like solver

56

some problem instances three orders of magnitude were discovered. It is also important to note

that the simulator is running on a general purpose CPU whose frequency is about two orders

of magnitude faster than the estimated frequencies.

5.3 Comparison with other Solvers

Comparisons were also made with other hardware solutions that were presented in this work.

An important aspect of this comparison is that all solvers used in the examination used a

variant of the DP algorithm that was augmented with various sophisticated heuristics that can,

in some cases, greatly help with solving instances faster. Techniques such as non-

chronological backtracking whereby the solver backtracks not to the most recent variable

Problem
Name Clauses Vars. Clock

Cycles
Freq.

(MHz.)
Time
(sec)

Simulation
Time (s) Speedup

dubois20 160 60 5.77E+07 18.73 3.08E+00 4.65E+02 1.51E+02
dubois21 168 63 1.21E+08 18.13 6.65E+00 1.00E+03 1.51E+02

aim-50-2_0-yes-
1-2 100 50 1.69E+03 25.62 6.58E-05 6.80E-02 1.03E+03

aim-100-2_0-yes-
1-4 200 100 4.66E+07 16.14 2.89E+00 5.38E+02 1.86E+02

aim-200-6_0-yes-
1-1 1200 200 3.54E+05 4.89 7.24E-02 1.33E+01 1.84E+02

par8-1-c 254 64 1.39E+02 13.76 1.01E-05 3.20E-02 3.17E+03
par16-1-c 1264 317 1.76E+07 4.72 3.73E+00 1.03E+03 2.76E+02
pret60_40 160 60 6.49E+07 18.73 3.46E+00 7.36E+02 2.13E+02

hole9 415 90 2.11E+08 9.92 2.13E+01 2.71E+03 1.27E+02
hole8 297 72 1.37E+07 12.40 1.10E+00 2.50E+02 2.26E+02
hole7 204 56 9.77E+05 15.93 6.13E-02 1.82E+01 2.97E+02
hole6 133 42 7.80E+04 21.19 3.68E-03 2.37E+00 6.43E+02

uuf100-0457 430 100 3.09E+06 9.69 3.19E-01 6.03E+01 1.89E+02
uuf125-07 538 125 8.26E+06 8.34 9.90E-01 1.54E+02 1.55E+02

aim-100-1_6-
yes1-1 160 100 9.00E+08 18.73 4.81E+01 4.80E+03 9.98E+01

aim-50-2_0-no-4 100 50 2.81E+05 25.62 1.10E-02 2.46E+00 2.24E+02
aim-50-1_6-no-1 80 50 7.31E+06 29.73 2.46E-01 4.45E+01 1.81E+02

aim-100-3_4-
yes1-4 340 100 2.84E+05 11.33 2.50E-02 5.16E+00 2.06E+02

aim-50-2_0-no-1 100 50 3.61E+06 25.62 1.41E-01 2.39E+01 1.70E+02

Table 3: Comparison between HW and SW versions of our DP-like solver

57

decision but to the variable decision that has caused the contradiction can prune the search

space even further by avoiding dead-ends in the search path. Heuristics such as these were not

implemented for the presented solver because it was deemed that the basic DP algorithm was

sufficient for the purposes of our investigation. A mature, powerful solver would, however,

require some of these state-of-the art methods to increase its efficiency.

 Table 4 and Table 6 report the run-times obtained for problem instances from the

DIMACS benchmark set. Considering the older solvers presented in Table 4, we can see that

some accelerations are achieved. On the other hand, the newer solvers presented in Table 6 are

faster on most instances. Of note is the fact that execution times presented in [11] by Gulati et

al. for their 2009 solver are projections to a large, industrial grade FPGA platform. In addition,

it is worth remarking that the solver presented by Safar et al. in their 2011 paper [6] is capable

of much faster execution on a specific set of benchmark problems, namely the aim set. This

may be the result of Safar et al.’s implementation of heuristics that are suitable for this

particular type of problem.

 Finally, a very important result was obtained by comparing our simulation results of

Problem
Name

Zhong et al. (2000) Suyama et al. (2001) Skliarova and
Ferraria (2004)

Time (s) Speedup Time (s) Speedup Time (s) Speedup
dubois20 8.44E+00 2.74E+00 2.07E+01 6.72E+00

N/A

dubois21 N/A 4.26E+01 6.40E+00
aim-50-2_0-

yes-1-2 4.00E-04 6.08E+00

N/A

aim-100-2_0-
yes-1-4 9.70E+00 3.36E+00

aim-200-6_0-
yes-1-1 8.90E-01 1.23E+01
par8-1-c 3.50E-05 3.47E+00

par16-1-c 2.20E+00 5.90E-01
pret60_40 9.00E+00 2.60E+00

hole9

N/A

5.36E+00 2.51E-01
hole8 8.88E-01 8.05E-01
hole7 3.98E-01 6.49E+00
hole6 3.89E-01 1.06E+02

a Values reported for authors c256 circuit. The time used for acceleration computation is the reported ttotal parameter.

Table 4: Comparison of HW version of our solver with other HW solvers

58

Problem
Name

Gulati et al. (2009) Safar et al. (2011)
Time (s) Speedup Time (s) Speedup

aim-50-2_0-
yes-1-2 1.79E-06 2.72E-02 5.20E-05 7.91E-01
par8-1-c

N/A
2.03E-05 2.01E+00

pret60_40 1.11E-02 3.20E-03
hole9 1.47E+00 6.90E-02
hole8 1.51E-01 1.37E-01 1.43E-01 1.30E-01
hole7 N/A 1.53E-02 2.49E-01
hole6 2.73E-03 7.42E-01 1.81E-03 4.92E-01

uuf100-0457 3.02E-02 9.46E-02 5.90E-01 1.85E+00
uuf125-07 1.04E+00 1.05E+00 N/A

aim-100-1_6-
yes1-1

N/A

1.42E-04 2.96E-06
aim-50-2_0-

no-4 1.30E-03 1.18E-01
aim-50-1_6-

no-1 2.50E-05 1.02E-04
aim-100-3_4-

yes1-4 9.40E-02 3.76E+00
aim-50-2_0-

no-1 7.29E-05 5.18E-04

run-times of problems from the difficult hole suite of the DIMACS set with those of

MiniSAT, a very efficient software solver. These problems are unsatisifiable and are very

laboriously solved by software. Table 5 relates MiniSAT’s execution time as well as the

resulting speedup. On the smaller of the 4 problems tested, hole6 and hole7, our solver is

actually able to execute slightly faster whereas on the remaining two problems, though slower,

it is still able to provide a solution within one order of magnitude. These results are important

as our future goal is to develop a hardware-based FPGA solver that is able to outperform

efficient software solvers on large, difficult, industrial-type problems.

Table 6: Comparison of HW version of our solver with other HW solvers cont’d

Problem
Name

MiniSAT
Time (s) Speedup

hole9 8.68E+00 4.07E-01
hole8 4.32E-01 3.92E-01
hole7 6.40E-02 1.04E+00
hole6 4.00E-03 1.09E+00

Table 5: Run-time comparison of HW version of our solver with MiniSAT

59

5.4 Effect of Pseudo-Randomness on SAT Resolution

In our solver, the first decision when needing to assign a value to a variable is to always

initially to try ‘0’. This is, arbitrary and may or may not help with finding a solution faster.

There are methods available, such as the experimental unit propagation (EUP) that is used in

[17], that attempt to assign variable values based on some heuristic to find solutions faster.

The EUP technique assigns both values to a variable and attempts to verify these decisions in

parallel. However, a resource price must be paid for this computation.

 To avoid having to always pick false as an initial variable assignment we have decided

to use an LFSR to pseudo-randomly decide variable values. The LFSR is given an initial seed

obtained from the operating system as the Java program creates the ROM memories as

described higher. For a given seed the same solution will be found. However, it is possible to

obtain different solutions (with the HW version) if solver is reset (in the current

implementation the LFSR is always running and is never reset with the rest of the solver).

 To characterize the influence of the LFSR, several problems from the same DIMACS

set were selected (Table 7, Figure 31). As before, these problems were not synthesized but

rather the software simulator was used to obtain clock cycle counts. Unlike the previous

Table 7: Comparison between binary and LFSR decision modes (clock cycle counts)

Problem Name Binary
LRSF

(Avg. over 100) Speedup
uf20-01 195 104 1.875
uf50-01 8735 8466 1.031774
uf50-02 1821 4462 0.408113
uf75-01 52625 36276 1.450684

uf100-01 114135 328309 0.347645
hole6 77954 77954 1
hole7 976947 976947 1

par8-1-c 139 423 0.328605
par8-1 6171 5260 1.173194

aim-50-2_0-no-4 281379 274427 1.025333
aim-50-2_0-yes1-2 1685 1861 0.905427

aim-100-3_4-yes1-4 283538 613125 0.462447
ii8a1 210 155 1.354839
ii8a2 568857 194352 2.926942
jnh1 1084 120029 0.009031
jnh2 52632 56391 0.93334

60

section, where the regression analysis was used to infer approximate circuit frequencies, only

clock cycle counts were used for comparison. Initially, the problem is run with the simulator

in ‘binary assignment mode’ whereby each variable gets ‘0’ as a first assignment.

Subsequently, the same problem is executed 100 times using random variable assignments

from the LFSR after which an average is computed. It should be mentioned that in the

simulator, the LFSR is modeled by the Random Java object. Table 7 shows, for the problems

chosen, the number of clock cycles in binary assignment mode, the average number of clock

cycles in LFSR assignment mode and the resulting speedup. Figure 31 graphically illustrates

these results in the following manner. The horizontal axis indicates the problem name while

the vertical axis indicates the speedup obtained over the binary assignment mode. This latter

result (binary assignment speedup) is always shown as 1 on the graph.

Interestingly, on two of the hole problems the LFSR seems to have no influence

whatsoever as the clock cycle counts are identical. In addition, other families of problems such

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Speedup from LFSR

Figure 31: Speedup obtained from using LFSR in variable decision assignments

61

as the uf class seem to exhibit accelerations in some cases and not in others. Moreover, the

aim family of problems, with the exception of aim-100-3_4-yes1-4, do not seem to be as

influenced by the LFSR, although not to the extent of the hole problems. Finally, other

problem families such as par and jnh demonstrate rather unpredictable results.

In conclusion, it is difficult to characterize the effect of using a pseudo-random manner

in deciding variable assignments. The average speedup conferred on all problems test is about

1.01 if the ii8a2 result is considered. However, removing this problem from the average

speedup calculation yields an average speedup of about 0.89. Given that the LFSR requires

FPGA resources, it would seem that always deciding false as an initial variable assignment is

appropriate when compared to the pseudo-random LFSR variable decision method.

5.5 Computing All Implications in One Clock Cycle

The DP-like solver presented here has much room for improvement. Indeed, one example of

just such an alteration that is conducive towards the improvement of the solver is the

computation of all implications in one clock cycle.

To illustrate this, consider a hypothetical SAT instance with 500 variables and 1500

clauses. The solver starts deciding variables starting with index 0. In order, variables 0 to, say,

9 are decided without having any implications or contradictions raised. All of a sudden, after

deciding variable 10 to 0, as is currently done in our solver, variables 450 to 499 become

implication variables. In addition, consider that variable 499 causes a contradiction. The solver

starts its implication phase, which lasts 50 clock cycles as there are 50 variables to imply.

During cycles 0 – 48, no contradiction is found. As the solver gets to 49, the contradiction is

raised, and the solver backtracks. As the last decision variable is 10, the solver pops the stack,

inverts variable 10 to true and resets all previously computed implications. If the solver had

been able to assign all 50 implications in the first cycle, 49 clock cycles would have been

saved. Now, assume that perhaps it is variable 0 being assigned false that causes this

contradiction. The solver must compute all 50 implications (with the 50th always causing a

contradiction) 10 times (as it must backtrack all the way to the first variable) before variable 0

is flipped and the solver can assign the 50 implications without contradiction. This further

exacerbates the number of clock cycles lost. To show just how much determining all

62

implications in one clock cycle is beneficial, consider Table 8 and Figure 32. In Table 8, the

“Clock Cycles” column is divided in two columns, one giving the number of clock cycles

necessary to solve the respective SAT instance when 1 implication computation is performed

per clock cycle and the other when all implications are done in one clock cycle. The chart

shown in Figure 32 indicates that significant speedups are achieved for all problems tested

(maximum of over 15 and minimum of about 3 times faster). Coming back to the comparisons

with other hardware solvers we observe that our solver model is now faster than almost all

others. For example, Skliarova and Ferrari’s solver was faster on the hole9 and hole8

problems by one order of magnitude. Looking at Figure 32, these problems execute about 12

times and 10 times faster than before which allows us to make up this order of magnitude. Our

solver is now about 2 and 8 times faster on these problems. The same can be said about most

other solvers with the sole exception being Safar et al.’s solver which is still sometimes faster

Table 8: Improvement in performance by calculating all implications in 1 clock cycle

Problem Name Clock Cycles Speedup
 (1 implication) (all implications)

dubois20 5.77E+07 1.26E+07 4.58E+00
dubois21 1.21E+08 2.52E+07 4.79E+00

aim-50-2_0-yes-1-2 1.69E+03 5.65E+02 2.98E+00
aim-100-2_0-yes-1-4 4.66E+07 9.15E+06 5.10E+00
aim-200-6_0-yes-1-1 3.54E+05 3.73E+04 9.49E+00

par8-1-c 1.39E+02 1.30E+01 1.07E+01
par16-1-c 1.76E+07 1.13E+06 1.56E+01
pret60_40 6.49E+07 1.09E+07 5.93E+00

hole9 2.11E+08 1.69E+07 1.25E+01
hole8 1.37E+07 1.30E+06 1.05E+01
hole7 9.77E+05 1.13E+05 8.66E+00
hole6 7.80E+04 1.12E+04 6.98E+00

uuf100-0457 3.09E+06 3.73E+05 8.29E+00
uuf125-07 8.26E+06 8.93E+05 9.25E+00

aim-100-1_6-yes1-1 9.00E+08 2.42E+08 3.72E+00
aim-50-2_0-no-4 2.81E+05 8.54E+04 3.30E+00
aim-50-1_6-no-1 7.31E+06 2.51E+06 2.91E+00

aim-100-3_4-yes1-4 2.84E+05 5.56E+04 5.10E+00
aim-50-2_0-no-1 3.61E+06 9.80E+05 3.68E+00

63

(for example on the aim-100-1_6-yes1-1 problem we only gain speedup of about 4 which

does not defeat the 6 orders of magnitude by which the Safar solver is faster).

 In addition, when considering the comparison with MiniSAT, the gained speedup of

computing all implications in one clock cycle now allows our solver to be faster on all

problems tested. For example, hole7 is now executed almost one order of magnitude faster

than before. This result indicates that it is possible for a bare (no heuristics) hardware

implementation of the DP algorithm to outperform a very efficient software solver.

Figure 32: Speedup obtained from computing all implications in one clock cycle

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

Chapter 6 – Conclusion and Future Work

Though the Boolean satisfiability problem has seen dramatic improvement in its methods and

techniques in the past two decades it remains hard to solve. In addition to its computational

intractability, researchers have found it difficult to link SAT problem structure to the heuristics

and techniques implemented in modern, state-of-the-art software CDCL solvers (like

MiniSAT) that can reliably solve various problem instances that model real-life applications.

As a starting point to further improve SAT solving performance, researchers propose to

establish analytical/theoretical models that are able to predict the performance of these CDCL

solvers on SAT instances [34]. Examples of CDCL attributes that can be considered are the

symmetries of CNF formulas, the cut width of graph representations of CNF instances as well

as the scale-free graph structure of industrial problems [34].

Although desirable in a mature solver implementation, there are no CDCL features

present in the solver that is the subject of this work. Indeed, the approach presented here is one

that focuses on exploiting to the utmost extent the strengths of an FPGA platform and

characterizing their suitability to SAT solving. For example, an instance-specific approach

was chosen despite the modern shift of hardware solvers towards application specificity

because FPGAs are reprogrammable devices. A hugely important factor that has motivated

this shift has been the extremely long compilation time of instance-specific circuits. This can

also be seen the present work as a circuit that spans the entire Cyclone II FPGA would require

over half an hour of compilation time. If a software solver is able to find a solution in less time

there is no need to use hardware to accelerate SAT. On the other hand, application-specific

solvers have their own limitations. For example, memory bandwidth may be considered as the

greatest one. In a SAT solver that is based on the DP method, many contradictions are raised

and clauses are continuously evaluated; accessing a memory module to read clause

information greatly diminishes the acceleration that is obtained from the hardware.

We believe that a return toward instance specificity, with a focus on how a problem is

represented and partitioned constitutes a viable option when solving SAT with reconfigurable

hardware so as to obtain accelerations. As was seen with the work of Zhong et al. [21]

techniques exist that are able to reduce compilation times essentially to zero. In addition,

65

instance specificity allows for very fine granularity. The basic unit that is treated in our solver

is the clause (compared to a pipeline of clause modules). In the same clock cycle, all clauses

are presented to and are easily accessed by the decision machine of our solver and there is no

need for general purpose memories. As was stated previously, the solver model that was

implemented is not to be considered as a final product but rather an assessment platform,

composed of a synthesizable VHDL model used for circuit frequency inference, as well as of a

functionally identical software simulator homologue that we used to identify the fact that

memory bottlenecks are not acceptable in a future version of our solver. In addition, we have

seen that the solver is able to keep up (in raw hardware execution time as the circuits could not

be synthesized for our board) with a very sophisticated software solver and even outperform it

with the modification of computing all implications in 1 clock cycle.

6.1 A Review of Our Contributions

One of the most important aspects of this thesis is, in our opinion, a comprehensive

exploration of the existing methodologies and techniques that have been employed in solving

the Boolean Satisfiability problem on FPGA. Following this exploration, it was determined

that an instance-specific approach that entails infusing problem clauses into a corresponding

hardware circuit constitutes a very promising avenue to obtaining high-performing hardware

SAT solvers. The largest obstacle to this approach is the method by which this information

was injected into the circuit (by means of registers).

 Useful in making the above claim is the exploratory testing platform that was

constructed. The software simulator constitutes a useful tool for approximating and

characterizing SAT instances without having to go through the (sometimes long) process of

compiling and synthesizing a complete circuit. In addition, this simulator can also serve as an

initial evaluator for new features that would be added to the hardware version. By first trying

these heuristics in the software simulator, one may assess whether or not they would be useful

to the hardware solver. This latter version of our solver thus constitutes a starting base for a

more efficient, future solver implementation.

 By using these two counterparts, we have determined (by measuring our solver on

DIMACS benchmark problems) that the hefty memory constraint is considerable. Researchers,

66

by wanting to avoid long compilation times and turning towards application specificity, have

tried to alleviate this constraint by adding heuristics to their solvers. However, for large

problems, memory latencies and physical port constraints will have an even greater impact on

SAT solving that will dilute the effect of these heuristics. On the other hand, we envision

targeting our future efficient implementation to large problems that are difficult to solve (or

perhaps impossible in an adequate time frame) by the best current state-of-the-art software

solvers. In this arena, a circuit’s long build time is not as important and the large fine-grained

FPGA parallelism coupled with key heuristics may provide faster solutions to these problems.

6.2 Future directions – Eliminating Memory Altogether and More

The current main focus of our work is to eliminate having to deal with memory altogether,

whether it is on-chip, off-chip or even register arrays. In addition to tying up logic elements,

registers also require a great deal of wiring resources on the FPGA. It is therefore paramount

that we find a way to represent the problem instance other than by placing clause information

in a ROM.

 Additionally, in order to be successful, a full implementation of our solver requires

several additions. The simplest feature, which was shown earlier as having a big impact, is to

allow the solver to compute all implications generated by variable decisions in one clock

cycle. In this manner, contradictions will be raised faster. A second technique to be

incorporated is the implementation of some sort of dynamic variable ordering (when choosing

decision variables). The MOM technique mentioned previously is a simple but powerful

candidate that we will consider. Thirdly, in an effort to explore and instance’s search space

more efficiently so as to avoid dead ends, non-chronological backtracking is required. For

example, a simple solution would be to have an array of 1-bit registers that would record

whether a variable has been decided or implied. A second array of integers would record,

when applicable, the index of the variables that have implied other variables. In this manner,

when a contradiction is raised there is information available to backtrack to the appropriate

level in the search tree. Of course, this is a rather hardware heavy method and alternatives of

keeping track of this information can be examined. Finally, it would be possible to bestow

upon our solver the ability to learn from its mistakes. Conflict driven clause learning, whereby

67

new clauses are added to the original problem set to make sure that discovered contradictions

do not recur, is to be considered. A way to implement this feature would be to have a small

memory where extra clause information can be added dynamically.

 Finally, as a longer term research avenue, it is worthwhile investigating building

custom CAD tools that are tailored to our needs. As the decision machine of the solver is

pretty much fixed and does not need to change with each problem instance, it could possibly

be synthesized only once. All other circuits, such as the backtrack stack, can be synthesized

for each problem. Having this custom tool would avoid generic CAD tools optimizations that

are perhaps not necessary for our purposes.

68

Bibliography
1. Biere, A., Handbook of satisfiability. Vol. 185. 2009: IOS Press.
2. Abramovici, M. and D. Saab. Satisfiability on reconfigurable hardware. in Field-

Programmable Logic and Applications. 1997. Springer.
3. Svoboda, A. Boolean analyzer. in Proceedings of IFIP Conference. 1968. Edinburgh,

UK: North-Holland
4. Yung, W., et al. A runtime reconfigurable implementation of the GSAT algorithm. in

Field Programmable Logic and Applications. 1999. Springer.
5. de Sousa, J., J. Da Silva, and M. Abramovici. A configurable hardware/software

approach to SAT solving. in Field-Programmable Custom Computing Machines, 2001.
FCCM'01. The 9th Annual IEEE Symposium on. 2001. IEEE.

6. Safar, M., et al. A reconfigurable, pipelined, conflict directed jumping search SAT
solver. in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011. 2011. IEEE.

7. Safar, M., et al. A Shift Register based Clause Evaluator for Reconfigurable SAT
Solver. in Design, Automation & Test in Europe Conference & Exhibition, 2007.
DATE'07. 2007. IEEE.

8. Platzner, M. and G. De Micheli, Acceleration of satisfiability algorithms by
reconfigurable hardware. Field-Programmable Logic and Applications From FPGAs
to Computing Paradigm, 1998: p. 69-78.

9. Suyama, T., M. Yokoo, and H. Sawada. Solving satisfiability problems using logic
synthesis and reconfigurable hardware. in System Sciences, 1998., Proceedings of the
Thirty-First Hawaii International Conference on. 1998. IEEE.

10. Kanazawa, K. and T. Maruyama, An Approach for Solving Large SAT Problems on
FPGA. ACM Transactions on Reconfigurable Technology and Systems (TRETS),
2010. 4(1): p. 10.

11. Gulati, K., et al., FPGA-based hardware acceleration for Boolean satisfiability. ACM
Trans. Design Autom. Electr. Syst, 2009. 14(2).

12. Qasim, S.M., S.A. Abbasi, and B. Almashary. A review of FPGA-based design
methodology and optimization techniques for efficient hardware realization of
computation intensive algorithms. in Multimedia, Signal Processing and
Communication Technologies, 2009. IMPACT'09. International. 2009. IEEE.

13. Skliarova, I. and A.d.B. Ferrari, A software/reconfigurable hardware SAT solver. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2004. 12(4): p. 408-
419.

14. Dandalis, A. and V.K. Prasanna, Run-time performance optimization of an FPGA-
based deduction engine for SAT solvers. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 2002. 7(4): p. 547-562.

15. Zhong, P., et al., Using configurable computing to accelerate Boolean satisfiability.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
1999. 18(6): p. 861-868.

69

16. Leong, P.H., et al., A bitstream reconfigurable FPGA implementation of the WSAT
algorithm. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2001.
9(1): p. 197-201.

17. Suyama, T., M. Yokoo, and A. Nagoya. Solving satisfiability problems on FPGAs
using experimental unit propagation. in Principles and Practice of Constraint
Programming–CP’99. 1999. Springer.

18. Suyama, T., et al., Solving satisfiability problems using reconfigurable computing.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2001. 9(1): p.
109-116.

19. Yokoo, M., T. Suyama, and H. Sawada. Solving satisfiability problems using field
programmable gate arrays: First results. in Principles and Practice of Constraint
Programming—CP96. 1996. Springer.

20. Zhong, P., et al. Using reconfigurable computing techniques to accelerate problems in
the CAD domain: a case study with Boolean satisfiability. in Proceedings of the 35th
annual Design Automation Conference. 1998. ACM.

21. Zhong, P., M. Martonosi, and P. Ashar. FPGA-based SAT solver architecture with
near-zero synthesis and layout overhead. in Computers and Digital Techniques, IEE
Proceedings-. 2000. IET.

22. Abramovici, M. and J.T. De Sousa, A SAT solver using reconfigurable hardware and
virtual logic. Journal of Automated Reasoning, 2000. 24(1): p. 5-36.

23. Redekopp, M. and A. Dandalis, A Parallel Pipelined SAT Solver for FPGA’s. Field-
Programmable Logic and Applications: The Roadmap to Reconfigurable Computing,
2000: p. 462-468.

24. Mencer, O. and M. Platzner. Dynamic circuit generation for boolean satisfiability in
an object-oriented design environment. in System Sciences, 1999. HICSS-32.
Proceedings of the 32nd Annual Hawaii International Conference on. 1999. IEEE.

25. Reis, N. and J. de Sousa. On implementing a configware/software SAT solver. in Field-
Programmable Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE
Symposium on. 2002. IEEE.

26. Cook, S.A. The complexity of theorem-proving procedures. in Proceedings of the third
annual ACM symposium on Theory of computing. 1971. ACM.

27. Krom, M.R., The Decision Problem for a Class of First‐Order Formulas in Which all
Disjunctions are Binary. Mathematical Logic Quarterly, 1967. 13(1‐2): p. 15-20.

28. Karp, R.M., Reducibility among combinatorial problems. 50 Years of Integer
Programming 1958-2008, 2010: p. 219-241.

29. Gu, J., et al., Algorithms for the Satisfiability (SAT) Problem: A Survey. Handbook of
Combinatorial Optimization: Supplement, 1999: p. 379-510.

30. Marques-Silva, J. Practical applications of Boolean satisfiability. in Discrete Event
Systems, 2008. WODES 2008. 9th International Workshop on. 2008. IEEE.

31. Järvisalo, M., et al., The International SAT Solver Competitions. AI Magazine, 2012.
33(1): p. 89-92.

32. Marques-Silva, J.P. and K.A. Sakallah, GRASP: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on, 1999. 48(5): p. 506-521.

33. Moskewicz, M.W., et al. Chaff: Engineering an efficient SAT solver. in Proceedings of
the 38th annual Design Automation Conference. 2001. ACM.

70

34. Katebi, H., K. Sakallah, and J. Marques-Silva, Empirical study of the anatomy of
modern sat solvers. Theory and Applications of Satisfiability Testing-SAT 2011, 2011:
p. 343-356.

35. Todman, T.J., et al. Reconfigurable computing: architectures and design methods. in
Computers and Digital Techniques, IEE Proceedings-. 2005. IET.

36. Manohararajah, V., S.D. Brown, and Z.G. Vranesic, Heuristics for area minimization
in LUT-based FPGA technology mapping. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 2006. 25(11): p. 2331-2340.

37. Wu, J.-O., Y.-H. Fan, and S.-F. Wang. FPGA placement methodology based on grey
relational clustering. in Consumer Electronics, Communications and Networks
(CECNet), 2012 2nd International Conference on. 2012. IEEE.

38. Porter, B., Handbook of knowledge representation. 2008, Elsevier Science Limited.
39. Davis, M., G. Logemann, and D. Loveland, A machine program for theorem-proving.

Communications of the ACM, 1962. 5(7): p. 394-397.
40. Skliarova, I. and A. de Brito Ferrari, Reconfigurable hardware SAT solvers: A survey

of systems. Computers, IEEE Transactions on, 2004. 53(11): p. 1449-1461.
41. Selman, B., H. Levesque, and D. Mitchell. A new method for solving hard satisfiability

problems. in Proceedings of the tenth national conference on Artificial intelligence.
1992.

42. Selman, B., H. Kautz, and B. Cohen, Local search strategies for satisfiability testing.
Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, 1993.
26: p. 521-532.

43. Goel, P., An implicit enumeration algorithm to generate tests for combinational logic
circuits. Computers, IEEE Transactions on, 1981. 100(3): p. 215-222.

44. Chung, C. and P. Leong. An architecture for solving boolean satisfiability using
runtime configurable hardware. in Parallel Processing, 1999. Proceedings. 1999
International Workshops on. 1999. IEEE.

45. Gulati, K., et al., Efficient, scalable hardware engine for Boolean satisfiability and
unsatisfiable core extraction. Computers & Digital Techniques, IET, 2008. 2(3): p.
214-229.

46. Smith-Miles, K. and L. Lopes, Measuring instance difficulty for combinatorial
optimization problems. Computers & Operations Research, 2012. 39(5): p. 875-889.

47. Wolpert, D.H. and W.G. Macready, No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1997. 1(1): p. 67-82.

48. Selman, B., D.G. Mitchell, and H.J. Levesque, Generating hard satisfiability problems.
Artificial intelligence, 1996. 81(1): p. 17-29.

	Chapter 1 – Introduction
	1.1 Software SAT Solvers
	1.2 Reconfigurable Computing and FPGA
	1.3 Objectives of the Current Work
	1.4 Contributions
	1.5 Organization

	Chapter 2 – The Boolean Satisfiability Problem
	2.1 Problem Representation
	2.2 A Variant of the Davis-Putnam Algorithm
	2.3 Enhancements over the Basic DP-Variant
	2.3.1 Pure Literal Assignment Rule
	2.3.2 Non-Chronological Backtracking and Dynamic Clause Addition
	2.3.3 Dynamic Decision Variable Ordering

	2.4 Incomplete Algorithms

	Chapter 3 – Hardware Architectures for Solving SAT
	3.1 Some History – The Boolean Analyzer
	3.2 Instance Specificity – The First Generation of Solvers
	3.3 Application Specificity – Software/Hardware Hybrid Solvers
	3.4 Application Specificity – Modern Solvers
	3.5 Summary and Analysis of Hardware SAT Solvers

	Chapter 4 – The Evaluation Platform
	4.1 Introducing a DP-Based Solver
	4.2 Encoding a SAT Problem Instance
	4.3 Disjunction, Inclusion and Implication – Solving SAT
	4.4 Solution Space Exploration
	4.5 LFSR and Pseudo-randomness in Variable Decision
	4.6 Some Remarks

	Chapter 5 – Experimental Results
	5.1 Regression Analysis – Rules of Thumb
	5.2 Comparison between Hardware and Software
	5.3 Comparison with other Solvers
	5.4 Effect of Pseudo-Randomness on SAT Resolution
	5.5 Computing All Implications in One Clock Cycle

	Chapter 6 – Conclusion and Future Work
	6.1 A Review of Our Contributions
	6.2 Future directions – Eliminating Memory Altogether and More

	Bibliography

