Université de Montréal

ARF1 contrôle la migration des cellules hautement invasives du cancer du sein via Rac1

par
Sebastian Lewis-Saravalli

Département de pharmacologie, Université de Montréal
Faculté de Médecine

Mémoire présenté à la Faculté de Médecine
en vue de l’obtention du grade de Maîtrise ès sciences
en pharmacologie option moléculaire

Décembre, 2012

© Sebastian Lewis-Saravalli, 2012
Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé :

ARF1 contrôle la migration des cellules hautement invasives du cancer du sein via Rac1

Présenté par :
Sebastian Lewis-Saravalli

evvalué par un jury composé des personnes suivantes :

Dr. Jean-François Gauchat, président-rapporteur
Dr. Jean-François Côté, examinateur externe
Dre. Audrey Claing, directrice de recherche
SOMMAIRE

Dans un contexte où la forte prévalence du cancer du sein chez les femmes demeure depuis plusieurs années un enjeu de société majeur, les nouvelles stratégies visant à réduire la mortalité associée à cette maladie sont le sujet de nombreuses recherches scientifiques. Les facteurs d’ADP-ribosylation sont des petites protéines G monomériques importantes pour la réorganisation du cytosquelette d’actine, le remodelage des lipides membranaires et la formation de vésicules. Notre laboratoire a précédemment montré qu’ARF1 est surexprimée dans les cellules hautement invasives du cancer du sein et contribue à leur phénotype migratoire accru. Dans le cadre de ce mémoire, nous avons défini le rôle de cette GTPase dans la migration de telles lignées cellulaires. Pour ce faire, nous avons étudié le rôle d’ARF1 dans l’activation de Rac1, un membre de la famille des GTPases Rho connu pour son implication dans la formation de lamellipodes ainsi que dans la migration cellulaire. Globalement, nous avons déterminé que l’activation d’ARF1 permet l’activation subséquente de Rac1 ainsi que de la voie de signalisation nécessaire au processus de migration. Par une approche d’interférence à l’ARN dans les cellules MDA-MB-231, nous avons d’abord montré la contribution essentielle de Rac1 à la migration dépendante d’ARF1. Puis, de façon à établir le mécanisme derrière cette régulation, nous avons montré que l’inhibition de l’expression endogène d’ARF1 altère l’activation de Rac1 dépendante de l’EGF. Nous avons ensuite examiné les conséquences d’une telle inhibition sur les partenaires d’interaction de Rac1. Nous avons découvert qu’ARF1 et Rac1 forment un complexe constitutif, puis qu’ARF1 est nécessaire à l’association de Rac1 à IRSp53, une protéine importante dans la formation de lamellipodes. La translocation dépendante de l’EGF du complexe Rac1/IRSp53 à la membrane plasmique est également sous le contrôle d’ARF1. En conclusion, cette étude fournit un nouveau mécanisme par lequel ARF1 régule la migration cellulaire et identifie cette GTPase en tant que cible pharmacologique prometteuse pour freiner le développement des métastases chez les patients atteints du cancer du sein.

Mots-clés : Cancer du sein, Récepteur du facteur de croissance épidermique, Facteur d’ADP-ribosylation 1, Rac1, Migration cellulaire, IRSp53
TABLE DES MATIÈRES

SOMMAIRE .. i
TABLE DES MATIÈRES .. ii
LISTE DES FIGURES .. iv
LISTE DES ABRÉVIATIONS ... v
REMERCIEMENTS .. viii

CHAPITRE I. INTRODUCTION ... 1
1.1. Le cancer du sein .. 1
 1.1.1. L’origine ... 1
 1.1.2. La carcinogenèse .. 2
 1.1.2.1. La formation de métastases .. 4
 1.1.3. Les sous-types .. 5
 1.1.4. Les traitements ... 6
 1.1.4.1. Les thérapies générales .. 6
 1.1.4.2. Les thérapies ciblées ... 7
 1.2. Les récepteurs à activité tyrosine kinase ... 9
 1.2.1. Les récepteurs du facteur de croissance épidermique 10
 1.2.1.1. Le mécanisme d’activation de l’EGFR ... 12
 1.2.1.2. Les voies de signalisation associées à l’EGFR .. 13
 1.2.1.2.1. La voie Ras/MAPK .. 15
 1.2.1.2.2. La voie PI3K/Akt .. 15
 1.2.1.2.3. La voie STAT ... 16
 1.2.1.3. L’implication de l’EGFR dans le cancer du sein 16
 1.2.1.3.1. Les thérapies ciblant l’EGFR ... 17
 1.3. Les petites protéines G monomériques .. 18
 1.3.1. La famille des facteurs d’ADP-ribosylation ... 20
 1.3.1.1. La structure des ARFs .. 21
 1.3.1.2. La régulation de l’activité des ARFs ... 22
 1.3.1.3. La GTPase ARF1 ... 23
1.3.2. La famille des Rho ... 24
1.3.2.1. La régulation de l’activité des Rho 25
1.3.2.2. La GTPase Rac1 ... 26
1.4. La migration cellulaire .. 27
1.4.1. La protéine IRSp53 ... 30
1.5. Hypothèse de recherche ... 31

CHAPITRE II. ARTICLE .. 32
 Résumé ... 33
 Abstract ... 34
 Introduction .. 35
 Materials and Methods ... 36
 Results ... 40
 Discussion ... 43
 References .. 45
 Figures .. 50

CHAPITRE III. DISCUSSION ... 56
3.1. ARF1 dans la migration cellulaire .. 56
3.2. La communication entre ARF1 et Rac1 57
3.3. ARF1 dans le remodelage du cytosquelette d’actine 58
3.4. Conclusion ... 60
3.5. Perspectives ... 60
3.5.1. La modulation de l’état d’activation d’ARF1 et Rac1 60
3.5.2. La modulation de l’interaction ARF1/Rac1 61
3.5.3. L’implication des GEFs .. 61
3.5.4. L’implication des isoformes d’ARF1 .. 62
3.5.5. La régulation de l’activité de WAVE .. 63
3.5.6. ARF1 dans la formation de métastases 64
3.5.7. ARF1 dans les autre types de cancer 65

BIBLIOGRAPHIE ... 66
LISTE DES FIGURES

Figure 1. La carcinogénèse... 3
Figure 2. La famille du récepteur du facteur de croissance épidermique 11
Figure 3. Modèle d’activation de l’homodimère EGFR 13
Figure 4. Les voies de signalisation de l'EGFR 14
Figure 5. Le cyclage des GTPases ... 19
Figure 6. La structure tridimensionnelle d'ARF1................................. 22
Figure 7. La migration cellulaire... 29
LISTE DES ABRÉVIATIONS

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREG</td>
<td>amphiréguline</td>
</tr>
<tr>
<td>ARF</td>
<td>facteur d’ADP-ribosylation</td>
</tr>
<tr>
<td>Arp2/3</td>
<td>protéine reliée à l’actine 2/3</td>
</tr>
<tr>
<td>ARNO</td>
<td>ADP-Ribosylation factor Nucleotide-binding site Opener</td>
</tr>
<tr>
<td>BRCA</td>
<td>breast cancer</td>
</tr>
<tr>
<td>BTC</td>
<td>bétacelluline</td>
</tr>
<tr>
<td>Cdk</td>
<td>kinase dépendante des cyclines</td>
</tr>
<tr>
<td>EGF</td>
<td>facteur de croissance épidermique</td>
</tr>
<tr>
<td>EGFR</td>
<td>récepteur du facteur de croissance épidermique</td>
</tr>
<tr>
<td>ER</td>
<td>récepteur à l’œstrogène</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular-Regulated Kinase</td>
</tr>
<tr>
<td>EREG</td>
<td>épiréguline</td>
</tr>
<tr>
<td>GAP</td>
<td>protéine activatrice de GTPase</td>
</tr>
<tr>
<td>GEF</td>
<td>facteur d’échange de nucléotide guanylique</td>
</tr>
<tr>
<td>GDI</td>
<td>inhibiteurs de la dissociation du GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>HB-EGF</td>
<td>facteur de croissance épidermique liant l’héparine</td>
</tr>
<tr>
<td>HER2</td>
<td>récepteur humain du facteur de croissance épidermique de type 2</td>
</tr>
<tr>
<td>IMD</td>
<td>IRSp53 and MIM (missing in metastases) homology Domain</td>
</tr>
<tr>
<td>IRSp53</td>
<td>substrat p53 du récepteur tyrosine kinase à l’insuline</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-Activated Protein Kinase</td>
</tr>
<tr>
<td>MEK</td>
<td>MAP ERK kinase</td>
</tr>
<tr>
<td>MMP</td>
<td>métalloprotéase matricielle</td>
</tr>
<tr>
<td>PARP</td>
<td>poly(ADP-ribose) polymérase</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PIP2</td>
<td>phosphatidylinositol 4,5-bisphosphate</td>
</tr>
<tr>
<td>PIP3</td>
<td>phosphatidylinositol 3,4,5-trisphosphate</td>
</tr>
</tbody>
</table>
PR : récepteur à la progestérone
RTK : récepteur à activité tyrosine kinase
SH2/3 : Src Homology 2/3
STAT : Signal Transducer and Activator of Transcription
TGFα : facteur de croissance transformant alpha
VEGF : facteur de croissance de l’endothélium vasculaire
WASP : protéine du syndrome de Wiskott–Aldrich
WAVE : protéine homologue à la verproline de la famille des WASP
À mes parents

Isabelle et Miguel
REMERCIEMENTS

J’aimerais avant tout remercier ma directrice de recherche Dre. Audrey Claing. La généreuse confiance dont tu m’as témoigné en m’acceptant au sein de ton laboratoire me touche beaucoup et je t’en serai reconnaissant tout au long de ma vie professionnelle. Merci de m’avoir ouvert les yeux sur le monde de la science et d’avoir été pour moi un mentor aussi inspirant.

Je tiens également à remercier tous les membres de mon équipe, soit Pierre-Luc Boulay, Shirley Campbell, Sabrina Schlienger, Ricardo Charles, Eric Haines, Danaë Tassy et Mohamed Bournoum, pour avoir fait de mon passage au laboratoire une expérience plus humaine. Merci particulièrement à Rick et Sab pour les beaux moments culturels (théâtre, impro, humour), les 5 à 7 impromptus, les courses de chaises, et tous ces autres beaux souvenirs qui m’ont fait sentir que nous étions plus que de simples collègues de laboratoire.

Il m’est évidemment très important de remercier tous les membres de mon jury pour avoir si gentiment accepté d’examiner mon mémoire. Sachez que votre temps et dévouement sont sincèrement appréciés.

D’un point de vue plus personnel, merci infiniment à ma famille d’avoir fait de moi la personne que je suis. Votre amour a été pour moi la plus grande des motivations et votre soutien m’a été essentiel tout au long de ma maîtrise. J’espère de tout cœur que cet accomplissement contribuera à vous rendre fiers.

Merci à ma copine Marie-France pour son immense support et ses belles attentions qui ont apporté l’équilibre nécessaire au maintien de ma persévérance. Je t’aime! Merci également à mon grand ami Marc-André de s’être occupé de moi en me faisant constamment rire aux éclats! Toujours là pour moi, même quand je suis sur les "chapeaux de roue".

Finalement, merci à des femmes courageuses telles que Solange Longpré, Sylvie Mathurin, et Louise Gareau qui ont tous été touchées à différents niveaux par les problématiques discutées dans cet ouvrage. Votre courage est pour moi une grande source d’inspiration.
CHAPITRE I. INTRODUCTION

1.1. Le cancer du sein

1.1.1. L’origine

Le cancer du sein est la forme de cancer la plus répandue chez les Canadiennes. Il est estimé qu’une femme sur neuf risque d’en être atteinte au cours de sa vie (Société canadienne du cancer, 2012). Bien que les causes ne puissent pas toujours être décrites avec précision, de nombreux gènes de susceptibilité au cancer du sein ont été identifiés. Des mutations dans ces gènes peuvent être retrouvées au niveau des cellules germinales dans le cas d’une prédisposition héréditaire au cancer, ou dans les cellules somatiques dans le cas de tumeurs sporadiques (1).

Les individus héritant d’une mutation germinale au niveau des gènes de susceptibilités BRCA (Breast Cancer), particulièrement BRCA1 et BRCA2, ont un risque significativement plus élevé de développer le cancer du sein (2,3). Ces gènes sont reconnus pour leur implication dans la régulation de la réparation des dommages à l’ADN (4). Ainsi, un défaut de fonctionnalité des protéines codant pour ces gènes crée une instabilité génétique favorisant l’apparition du cancer en interférant avec la fidélité du processus de réplication de l’ADN. Plusieurs autres gènes de plus faible pénétrance tels que CHEK2, ATM, NBS1, RAD50, BRIP1 et PALB2 ont été associés à un risque modéré de cancer du sein et sont également impliqués dans les cancer du sein familiaux (5,6).

Bien que les mutations liées aux gènes précédemment évoqués puissent être retrouvés au niveau germlal, il est estimé que l’héritabilité n’est responsable que de 5 à 10% des cas de cancer du sein reportés (7,8). La majorité des cas résultent plutôt de l’accumulation de mutations au niveau des gènes somatiques, sans égard aux mutations germinales. Ces cancers, dits sporadiques, seraient causés par l’exposition à des carcinogènes environnementaux tels que les œstrogènes (9), les radiations (10), la cigarette (11,12) et/ou des éléments de la diète (13).
1.1.2. La carcinogenèse

Le développement d’un carcinome, ou carcinogénèse, peut prendre des décennies suite à l’exposition à une dose suffisante de carcinogène (14). De plus, il faut généralement plusieurs mutations dans les gènes de susceptibilité au cancer avant qu’une tumeur se développe (9). Un model de progression en plusieurs étapes a été proposé pour décrire ce processus de carcinogenèse. Tel que décrit dans la figure 1, celui-ci comprend les étapes d’initiation, de promotion et de progression vers la formation de métastases (15). Notons cependant que ce processus n’est pas linéaire puisque certaines tumeurs peuvent être éliminées alors que d’autres ne progressent pas jusqu’à la formation de métastases.

L’initiation consiste en une altération génétique dans un gène lié au cancer de l’épithélium mammaire. Tel que mentionné dans la section précédente, cette mutation peut être d’origine héréditaire ou sporadique et sera conservée de manière permanente et irréversible. Vient ensuite l’étape de la promotion dans laquelle la cellule mutée, alors génétiquement instable, est sensible aux effets d’un promoteur (ex : hormone) stimulant la prolifération cellulaire. Lorsqu’en présence d’une exposition suffisante au promoteur, cette étape donne lieu à une expansion clonale interruptible et réversible qui initie le processus de néoplasie, soit la prolifération anormale des cellules mutées (16). Au fil de cette expansion, qui constitue l’étape de progression, les cellules filles acquièrent des mutations somatiques additionnelles conduisant à un changement karyotypique. Celles-ci acquièrent alors de nouvelles fonctions telles que la perte de différentiation et d’inhibition de contact, une croissance incontrôlée, la capacité d’invasion, la néo-angiogénèse ainsi qu’une capacité d’échapper au système immunitaire et aux signaux d’apoptose (17). Les cellules transformées évoluent ainsi d’une tumeur bénigne vers un carcinome à caractère malin et, ultimement, vers la formation de métastases (18).
Figure 1. La carcinogénèse

Lors de l’initiation, une cellule normale subit une mutation permanente et irréversible lui offrant des avantages de prolifération. La promotion et la progression consistent en une expansion clonale donnant lieu à des cellules filles transformées. Ces cellules s’organisent d’abord en tumeur primaire, puis évoluent vers un carcinome à caractère malin.
1.1.2.1. La formation de métastases

La formation de métastases est un processus en plusieurs étapes par lequel les cellules cancéreuses doivent envahir la matrice extracellulaire, pénétrer dans la circulation sanguine (intravasation), survivre au transport dans le système circulatoire, et finalement ressortir de la circulation sanguine (extravasation) afin de coloniser les organes distants (19-21). Puisqu’environ 90% des cas de décès liés au cancer sont dus aux métastases (22,23), il y a intérêt à développer des stratégies de traitements permettant d’inhiber leur formation.

Plusieurs mécanismes sont utilisés pour permettre aux cellules tumorales d’envahir les tissus environnants et les vaisseaux sanguins. Premièrement, la cellule doit être en mesure de se détacher des autres cellules. En effet, il a été démontré qu’une forte expression d’E-cadhérine, une protéine d’adhésion cellule-cellule, est retrouvée dans les carcinomes mammaires in situ alors que les carcinomes avec métastases en expriment très peu (24). Cette différence d’expression reflète la nécessité pour la cellule cancéreuse de se détacher des autres cellules afin de former une métastase. Deuxièmement, la cellule doit être en mesure de migrer. Tel qu’il le sera décrit à la section 1.4 du présent manuscrit, le remodelage du cytosquelette d’actine est essentiel à ce processus. Ainsi, la suractivation des protéines promouvant ce remodelage contribue au cancer du sein. L’activation de WAVE3 (25) ou du complexe WAVE2-Arp2/3, par exemples, promeuvent la migration de cellules de cancer du sein hautement invasif (26). À l’opposé, l’expression d’un dominant négatif de la Rho GTPase Rac1 inhibe la migration cellulaire de cellules de cancer du sein hautement invasif (27). Troisièmement, la cellule doit être en mesure de remodeler la matrice extracellulaire qui constitue une barrière à ses déplacements. Pour se faire, les cellules produisent des métalloprotéases matricielles (MMP) permettant la dégradation de protéines de la matrice extracellulaire de façon à se déplacer et à pénétrer dans la circulation sanguine (28). La MMP-1 et 7, par exemples, sont surexprimées dans les cellules de cancer du sein hautement invasives (29).

Après avoir envahies les tissus environnant, les cellules tumorales doivent pénétrer à l’intérieur des vaisseaux sanguins de façon à s’éloigner de la tumeur primaire. Encore une
fois, la motilité cellulaire constitue une étape importante à ce processus puisqu’il a été démontré que l’inhibition de CD151, une protéine associée à l’intégrine, permet d’inhiber l’intravasation cellulaire et la formation de métastases en réduisant la migration cellulaire (30). De plus, afin de voyager à travers la circulation sanguine, les cellules doivent acquérir une résistance à l’anoïkose, soit l’apoptose qui survient normalement lors de la perte de contact avec la matrice extracellulaire ou des cellules voisines (31). La surexpression de la protéine D4-GDI, par un mécanisme dépendant de Rac1, augmente la résistance à l’anoïkose dans les cellules de cancer du sein hautement invasif (32).

Une fois pénétrées dans la circulation sanguine, les cellules tumorales doivent finalement en ressortir afin de coloniser un organe secondaire. À ce moment, les cellules doivent retrouver leurs propriétés leur permettant de croître en formant une masse tumorale (33). De plus, la théorie de «la graine et du sol», formulée par Paget et al. (34), stipule que toutes les cellules complétant l’étape d’extravasation ne réussiront pas à se développer. En effet, la cellule, qui représente la graine, doit se trouver dans un environnement favorable à sa croissance, représenté par le sol, afin qu’une tumeur secondaire puisse se former. Pour le cancer du sein, les sites de métastases les plus communs incluent les os, les poumons, le foie et le cerveau (35).

1.1.3. Les sous-types

Les tumeurs luminales regroupent les cellules positives pour ER et exprimant les cytokératines de faibles poids moléculaires 8/18, un profil d’expression rappelant les cellules épithéliales luminales de la glande mammaire normale (39). Parmi ce sous-type, les
tumeurs luminales de type B ont souvent un plus haut grade histologique, un taux de prolifération supérieur et un pire pronostic que les tumeurs luminales de type A (40). Les tumeurs ErbB2, quant à elles, sont généralement négatives pour ER et caractérisées par une surexpression de HER2 (36). Les tumeurs de type basal expriment les cytokératines de hauts poids moléculaires 5/6 et 17 et sont elles aussi généralement négatives pour ER, un profil rappelant les cellules basales/mésoépithéliales normales du sein (41,42). De plus, elles surexpriment souvent le récepteur du facteur de croissance épidermique (43).

Parmi tous les cancers du sein, environ 15-20% sont dits triples négatifs (44). Cette appellation faisant référence à l’absence des récepteurs ER, PR et HER2 est souvent confondue avec le sous-type basal. Bien qu’aucun consensus ne soit établi quant à la différence entre ces 2 sous-types de cancers, des phénotypes différents suggèrent une distinction entre le cancer du sein triple-négatif et basal (45). Les cancers du sein triple-négatifs sont associés à un mauvais pronostic, notamment en raison du manque de thérapies ciblées (46,47).

1.1.4. Les traitements

1.1.4.1. Les thérapies générales

Selon de nombreuses considérations cliniques telles que l’âge, le type de tumeur, le grade histologique, l’emplacement, le métabolisme de l’individu, etc, différents traitements généraux sont mis à la disposition des patients atteints du cancer du sein. Parmi ceux-ci, on compte des traitements locaux tels que la chirurgie et la radiothérapie, ainsi que des
traitements systémiques tels que la chimiothérapie. Une association de traitements est généralement préconisée pour optimiser l’efficacité de traitement (48).

La chirurgie constitue le traitement le plus commun face au cancer du sein (49). Elle a pour but de retirer la tumeur ainsi qu’une partie du tissus sain environnant (ex : ganglions, vaisseaux lymphatiques voisins, etc) susceptible de contenir des cellules tumorales. On parle d’une tumorectomie dans le cas d’une ablation mammaire partielle ou d’une mastectomie dans le cas d’une ablation totale. La radiothérapie et la chimiothérapie, pour leur part, ont pour but de freiner la progression tumorale. La radiothérapie consiste à créer des lésions à l’ADN par exposition à de multiples doses de radiations (50). Les cellules cancéreuses réplicatives n’ayant pas le temps de réparer ces dommages meurent tandis que les cellules saines, dont la machinerie de réparation est plus efficace, possèdent un avantage de survie (51). La chimiothérapie cible aussi les cellules en réplications (52) et consiste en l’administration, souvent concomitante, de diverses molécules telles que des agents alkylants, des alcaloïdes, des antibiotiques ou des anti-métabolites par exemples. La combinaison de molécules possédant différents mécanismes d’actions permet de réduire la possibilité de résistance aux médicaments (53).

1.1.4.2. Les thérapies ciblées

Selon les particularités associées aux différents sous-types de cancer du sein, des traitements ciblés peuvent être envisagés. Les patients dont les tumeurs expriment les récepteurs hormonaux (ER et PR) par exemple, peuvent avoir recours à l’hormonothérapie. Celle-ci a pour but de freiner la progression tumorale en empêchant la signalisation via ces récepteurs, bien connus pour favoriser la prolifération cellulaire en réponse aux hormones (27,54-56). Ainsi, les antagonistes des récepteurs aux œstrogènes (ex : tamoxifène), les inhibiteurs de la synthèse d’œstrogènes (ex : anastrozole) ou la suppression ovarienne constituent tous des exemples de l’arsenal de l’hormonothérapie. Les patients dont les tumeurs expriment HER2, quant à eux, peuvent avoir recours à des anticorps monoclonaux
(ex : trastuzumab) dirigés contre ce récepteur. L’approbation de cette thérapie a d’ailleurs grandement améliorée la survie des patients répondant à ce traitement (57,58). Dans le cas des patients triple négatifs par contre, le manque de cibles thérapeutiques a poussé la recherche vers le développement de thérapies ciblant des molécules surexprimées dans les cellules tumorales. Parmi les molécules ciblées, on retrouve par exemples le facteur de croissance de l’endothélium vasculaire, certaines protéines impliquées dans les mécanismes de réparations, le facteur de croissance épidermique, la cible humaine de la rapamycine, certaines protéines de la voie de signalisation associée à Src, les histones déacétylases et les récepteurs aux androgènes (59).

Le facteur de croissance de l’endothélium vasculaire (VEGF) joue un rôle majeur sur l’apport en oxygène aux tissus corporels, soit une étape essentielle à la formation de vaisseaux sanguins. Une forte expression du VEGF est associée à un mauvais pronostic dans le cancer du sein (60,61). Les inhibiteurs de l’angiogénèse forment donc une stratégie thérapeutique intéressante pour contrer la progression tumorale. Le bevacizumab, par exemple, est un anticorps monoclomal dirigé contre le VEGF. Néanmoins, les études de phase III menées jusqu’à présent sur cette molécules n’ont pas permis de démontrer une amélioration du taux de survie des patients (62-64).

La poly(ADP-ribose) polymérase (PARP) est une protéine nucléaire abondante appartenant à une famille d’enzymes permettant la poly(ADP-ribosylation) de protéines liant d’ADN. De par son rôle clé dans la réparation de l’ADN, la famille des PARPs constitue une bonne cible thérapeutique contre le cancer. En ce sens, plusieurs études cliniques de phase I et de phase II ont conduits à des résultats positifs, ce qui a permis de mener les inhibiteurs de PARP aux études de phase III (65). La plupart de ces inhibiteurs sont des analogues de la β-nicotinamide adénine dinucléotide qui compétitionnent avec le site actif de l’enzyme, une région hautement conservée à travers les différents homologues des PARPs (66). Utilisé en monothérapie, ils auraient le potentiel d’induire l’apoptose dans certains cancers en raison d’une forte accumulation de dommages à l’ADN, alors qu’en combinaison avec un agent thérapeutique, ils pourraient potentialiser les effets du premier traitement (67).
Plusieurs autres molécules ont démontré un intérêt dans le traitement du cancer du sein triple-négatif. La voie PI3K/Akt étant souvent dérégulée dans le cancer du sein (68,69), l’everolimus, un inhibiteur de mTOR, a conduit à des effets bénéfiques chez les femmes atteintes d’un cancer du sein positif pour HER2 (70). Le dasatinib, un inhibiteur de tyrosine kinase, est actuellement en essai mais n’a pas encore démontré d’efficacité lorsque pris seul (71). La bicalutamide, un inhibiteur des récepteurs aux androgènes, est présentement à l’essai pour les patients atteints du cancer du sein métastatiques (72).

Finalement, le récepteur du facteur de croissance épidermique (EGFR) est surexprimé dans environ 60% des cancers triples négatifs (73). Ce récepteur, faisant parti de la grande famille des récepteurs à activité tyrosine kinase, été associé aux processus de prolifération, de migration et de survie à l’apoptose (74-76), faisant de l’EGFR une cible intéressante pour freiner le développement tumoral.

1.2. Les récepteurs à activité tyrosine kinase

Les récepteurs à activité tyrosine kinase (RTK) sont des récepteurs de surface cellulaire possédant une grande affinité envers plusieurs facteurs de croissance, de cytokines et d’hormones (77). Près de 20 classes différentes de RTK ont été identifiées (78). À l’exception du récepteur à l’insuline (79) et du récepteur au facteur de croissance semblable à l’insuline-1 (80), ceux-ci existent tous sous la forme de monomères (81). Chaque monomère possède une région N-terminale extracellulaire, un domaine transmembranaire et une région C-terminale intracellulaire (82). La portion N-terminale contient une variété d’éléments conservés propre à chaque famille de RTK et qui agissent à titre de sites de liaison à leurs ligands extracellulaires respectifs. La portion C-terminale est quant à elle très conservée entre les familles de RTK et contient des domaines catalytiques responsables de l’activité kinase de ces récepteurs. Suite à la liaison de leur ligand, la dimérisation des récepteurs monomériques catalyse l’autophosphorylation des résidus tyrosine du domaine intracellulaire des récepteurs et la phosphorylation des substrats des RTK.
Bien que considérés comme des régulateurs importants des processus biologiques normaux, les récepteurs tyrosine kinases ont aussi un rôle critique dans le développement et la progression du cancer du sein (83-85). Plus particulièrement, puisque la majorité des cancers du sein surexpriment l’EGFR, celui-ci représente actuellement un domaine de recherche très actif.

1.2.1. Les récepteurs du facteur de croissance épidermique

La famille du récepteur du facteur de croissance épidermique (EGFR), également appelée ErbB, constitue une des classes de RTK. Tel que représenté dans la figure 2, cette famille comprend quatre membres structurellement reliés : ErbB1 (aussi appelé HER-1, ErB1 ou EGFR), ErbB2 (HER-2 ou Neu), ErbB3 (HER-3) et ErbB4 (HER-4). Ces récepteurs sont activés par dimérisation et bien qu’une combinaison de 10 dimères soit possible, ceux-ci ne sont pas tous biologiquement actifs (86). ErbB2, par exemple, ne possède aucun ligand connu, mais constitue le partenaire préféré de tous les membres de la famille en raison d’une vaste boucle d’interaction le rendant constitutivement disponible pour la dimérisation. ErbB3, quant à lui, ne possède pas d’activité catalytique mais peut s’associer aux autres membres pour les activer (87).

Plusieurs ligands sont connus pour lier la famille de l’EGFR, tel que le facteur de croissance épidermique (EGF), le facteur de croissance semblable à l’EGF liant l’héparine (HB-EGF), l’amphiréguline (AREG), l’épiréguline (EREG), le facteur de croissance transformant alpha (TGFα), l’épigène, la bêta-celluline (BTC) et quatre isoformes de neuréguline (88,89). Ceux-ci comprennent tous une séquence connue comme le motif EGF constituée de six résidus cystéine spatialement conservés (90). Ce motif est nécessaire pour la liaison des membres de la famille de l’EGFR. Les ligands de cette famille existent sous forme de précurseurs ancrés à la membrane dont les ectodomaines sont clivés par des métalloprotéinases, ce qui mène à la relâche de facteurs solubles permettant l’activation de l’EGFR (91). La portion de ligand transmembranaire peut également stimuler l’EGFR des
cellules adjacentes via un mécanisme de signalisation juxtracrine (92). De plus, l'EGFR est souvent transactivé par des récepteurs hétérologues tels que les récepteurs couplés aux protéines G (93).

Figure 2. La famille du récepteur du facteur de croissance épidermique

La famille du récepteur du facteur de croissance épidermique comprend les membres ErbB(1 à 4). La liaison de leur ligand respectif conduit à la dimérisation des récepteurs, un processus nécessaire à leur activation. Le récepteur ErbB2 ne possède pas de ligand connu. Le récepteur ErbB3 ne possède pas d’activité catalytique. *(Inspiré de Hynes et al., 2005)* (94)
1.2.1.1. Le mécanisme d’activation de l’EGFR

Le mécanisme d’activation de l’EGFR comprend les étapes d’activation du récepteur depuis la liaison du ligand au niveau de sa portion extracellulaire jusqu’à la phosphorylation de son domaine kinase intracellulaire où les effecteurs interagiront. Ce mécanisme peut être schématisé selon l’exemple de l’hétérodimère ErbB2-ErbB3 illustré à la figure 3.

La portion extracellulaire de l’EGFR est formée de quatre domaines (I-IV). Les domaines I et III servent à la liaison bivalente du ligand à l’intérieur d’un même monomère. Le domaine II, quant à lui, contient une boucle de dimérisation qui, en absence de ligand, se trouve séquestré par des interactions moléculaires du domaine IV. Ces interactions stabilisent la conformation repliée du récepteur, inhibant ainsi la dimérisation du récepteur. Suite à la liaison du ligand, un changement conformationnel libère et expose la boucle de dimérisation. Cette conformation allongée lui permet d’interagir avec un second récepteur lié à un ligand de façon à former un homodimère ou un hétérodimère (95,96).

Le domaine kinase intracellulaires de l’EGFR est, pour sa part, constitué de deux lobes. Lors de la dimérisation des récepteurs, le lobe C-terminal d’un récepteur entre en contact avec le lobe N-terminal de l’autre récepteur de façon à le transphosphoryler asymétriquement. Cette activation induit l’autophosphorylation des résidus tyrosine des domaines cytoplasmiques des récepteurs, ce qui génère des sites de recrutement pour plusieurs protéines en aval (97-99). Le complexe EGFR-ligand est ensuite internalisé dans les endosomes précoces de façon à être recyclé à la membrane plasmique ou ubiquitiné pour sa dégradation (88).
Figure 3. Modèle d’activation de l’homodimère EGFR

En absence de ligand (L), l’EGFR adopte une conformation repliée. Lors de la liaison du ligand, l’EGFR activé adopte une conformation allongée. Au niveau de la portion extracellulaire, les récepteurs dimérisent au niveau du domaine II. Au niveau de la portion intracellulaire, le lobe C-terminal d’un récepteur transphosphoryle asymétriquement le lobe N-terminal de l’autre récepteur, provoquant l’autophosphorylation des résidus sur les queues cytoplasmiques. (Inspiré de Carraway et al., 2009) (100)

1.2.1.2. Les voies de signalisation associées à l’EGFR

Tel qu’illustré à la figure 4, l’activation de l’EGFR induit la cascade de plusieurs voies de signalisation. Parmi celles-ci, l’EGFR est principalement connu pour activer la voie Ras/MAPK, la voie PI3K/Akt et la voie STAT, résultant en l’activation de plusieurs processus biologiques tels que, la survie cellulaire (101), l’invasion (102), la prolifération ou la migration cellulaire (74).
Figure 4. Les voies de signalisation de l'EGFR

Suite à l’activation de l'EGFR, celui-ci signale via les voies de signalisation Ras/MAPK, PI3K/Akt et STAT. Ces voies consistent en une cascade de phosphorylation de protéines résultant en la transcription de gènes responsables de nombreux processus biologiques.
1.2.1.2.1. **La voie Ras/MAPK**

Une fois l’EGFR activé, les résidus tyrosines phosphorylés des domaines cytoplasmiques du récepteur servent de site de liaison pour une série de protéines adaptatrices permettant l’activation de la GTPase Ras. Pour ce faire, la protéine Grb2 se lie aux résidus tyrosines phosphorylés via son domaine SH2. Les domaines SH3 de cette protéine adaptatrice permettent ensuite la liaison aux motifs riches en proline de SOS, un facteur d’échange de nucléotide catalysant l’activation de la GTPase Ras (103). Une fois la GTPase activée, celle-ci initie une cascade de phosphorylation de protéines constituants les MAP kinases, en débutant par la protéine kinase Raf. Raf activée phosphoryle ensuite les résidus sérines et thréonines des protéines kinases MEK1/2. Ces dernières phosphorylent à leur tour les résidus thréonines et tyrosines de ERK1/2, un groupe de protéines qui, une fois activées, transloquent au noyau afin d’y phosphoryler plusieurs facteurs de transcription. Parmi les protéines activées par ERK1/2, on retrouve Jun, une protéine composant le facteur de transcription AP-1, et des protéines de la famille des facteurs de transcription Ets (104). Ces facteurs de transcription activent la transcription de gènes précoces codant pour la production d’autres facteurs de transcription, incluant Myc, Fos, et Jun, qui activent à leur tour la transcription d’une famille de gènes tardifs. Un de ces gènes code pour le facteur de transcription E2F dont le rôle est de contrôler l’entrée en phase S (105). Parmi les gènes tardifs, plusieurs gènes codent également pour les cyclines ou les kinases dépendantes des cyclines (Cdk) dont la production conduit à la formation de complexes Cdk-cycline qui phosphoryle Rb et, ainsi, provoque le passage de la phase G1 à S.

1.2.1.2.2. **La voie PI3K/Akt**

L’activation de l’EGFR conduit également à l’activation de la phosphoinositide 3-kinase (PI3K). Celle-ci peut être activée de plusieurs façons, soit par sa liaison directe aux résidus tyrosines phosphorylées du récepteur, via l’intermédiaire de protéines adaptatrices telles qu’IRS-1 (106), ou via d’autres protéines telle que la GTPase Ras
activée (107). Une fois activée, la PI3K migre dans la paroi interne de la membrane plasmique et catalyse l’addition d’un groupement phosphate sur le phosphatidylinositol 4,5-bisphosphate (PIP2), un des lipides membranaires constituant la bicouche lipidique de la membrane plasmique. Le PIP2 est alors converti en phosphatidylinositol 3,4,5-trisphosphate (PIP3). Le PIP3 recrute ensuite des protéines kinases à la surface interne de la membrane plasmique conduisant à l’activation de la sérine-théonine kinase Akt. En phosphorylant plusieurs protéines clés, telles que GSK3, mTOR, et des facteurs de transcription de la famille *Forkhead*, Akt permet la suppression de l’apoptose et inhibe l’arrêt du cycle cellulaire (108). L’effet net de la voie de signalisation PI3K est donc de promouvoir la survie cellulaire et la prolifération.

1.2.1.2.3. La voie STAT

Les protéines STAT ont la capacité d’être activées par leur liaison aux résidus tyrosines phosphorylés de l’EGFR activé via leur domaine SH2. Une fois activés, les STAT dimérisent et transloquent au noyau où ils se lient à des gènes ou des facteurs de transcription tels que Fos et Jun, permettant ainsi la prolifération cellulaire (109).

1.2.1.3. L’implication de l’EGFR dans le cancer du sein

L’EGFR joue des rôles majeurs dans la pathogénèse associée au cancer du sein tels que la prolifération, la migration et la survie à l’apoptose (74-76). La plupart des récepteurs ErbB et de leurs ligands sont surexprimés dans la glande mammaire (110). L’intérêt de l’EGFR dans le contexte du cancer du sein a vu le jour suite à la démonstration du profil d’expression génique de plusieurs carcinomes mammaires. Bien que l’utilisation de l’EGFR à titre de marqueur pronostic demeure à ce jour controversée, il reste qu’une association entre certains sous-types de cancer du sein et la surexpression du récepteur à été établie (111). Tous les membres de la famille ErbB sont exprimés à différents niveaux dans le cancer du sein: ErbB2>EGFR>ErbB3>ErbB4 (112).
Plusieurs dérégulations de la voie EGFR ont été décrites. Parmi les mécanismes menant à ces dérégulations, on dénote la surexpression ainsi que la suractivation du récepteur (110,113). La surexpression du récepteur est occasionnée par amplification génique ou par des mécanismes épigénétiques. La suractivation du récepteur est quant à elle liée à l’action de ses ligands ou à des mutations sur le récepteur. La mutation EGFRvIII a également été décrite dans certaines études (114,115). Cette mutation délétère cause une forme tronquée de l’EGFR le rendant insensible aux ligands en raison de la délétion du domaine I et II du domaine extracellulaire. En revanche, le récepteur muté possède une activité d’autophosphorylation supérieure et reste constamment disponible puisqu’il ne se fait pas internaliser (116). Malgré tout, les mutations de l’EGFR sont rarement retrouvés dans le cancer du sein (117).

1.2.1.3.1. Les thérapies ciblant l’EGFR

En se basant sur le mécanisme d’activation de l’EGFR, des thérapies ciblées sont présentement en développement dans le but de traiter les patients atteints du cancer de sein. Ces thérapies peuvent être divisées en au moins 2 catégories, soit les inhibiteurs de l’activité kinase du récepteur, ainsi que les inhibiteurs de la dimérisation ou de la liaison du ligand.
Les inhibiteurs de l’activité kinase sont des petites molécules inhibitrices se fixant au site de liaison à l’ATP du domaine tyrosine kinase intracellulaire de l’EGFR, empêchant ainsi la signalisation du récepteur. Malheureusement, la majorité de ces molécules, tel que l’erlotinib ou le gefitinib, n’ont démontré qu’un taux de réponse pas plus haut que 5% chez les patients atteints de cancer du sein métastatique (125). Les inhibiteurs de la dimérisation/liaison au ligand consistent plutôt en des anticorps monoclonaux dirigés contre la portion extracellulaire du récepteur. Un de ces inhibiteurs, le cetuximab, est actuellement approuvé pour le traitement de certains carcinomes colorectaux métastatiques (Santé Canada, 2012). Néanmoins, les études cliniques portées jusqu’à présent dans le contexte du cancer du sein n’ont démontré qu’une faible efficacité lorsqu’administré en combinaison (126,127).

1.3. Les petites protéines G monomériques

Les petites protéines G monomériques, également appelées GTPases, appartiennent à une famille d’enzymes ayant la capacité de lier les nucléotides guanyliques. Tel qu’illustré dans la figure 5, la régulation de ces protéines se fait sous le contrôle de protéines régulatrices permettant à la petite protéine G de cycler entre son état actif et son état inactif. D’une part, les facteurs d’échange de nucléotide guanylique (GEF) stimulent l’échange d’une molécule de guanosine diphosphate (GDP) pour une molécule de guanosine triphosphate (GTP), activant ainsi la GTPase qui interagira avec ses effecteurs. À l’opposé, les protéines activatrices de GTPase (GAP) catalysent l’activité hydrolase intrinsèque de la GTPase, permettant ainsi l’inactivation de la GTPase en hydrolysant le GTP en GDP.
Figure 5. Le cyclage des GTPases

Les GTPases possèdent une activité hydrolase intrinsèque. Celles-ci sont toutefois sous le contrôle de protéines régulatrices, leur permettant de cycler entre leur état inactif (lié au GDP) et leur état actif (lié au GTP). Les GAPs catalysent la réaction d’hydrolise du GTP en GDP. Les GEFs favorisent le remplacement du GDP par du GTP. (Inspiré de Taylor et al., 2004) (130)

cytosquelette (137-141). Les membres de la famille de Rab (142-144) et Sar1/ARF (145-148) sont d’avantage connus pour réguler le trafic vésiculaire intracellulaire. Finalement, les membres de la famille Ran régulent le transport nucléocytoplasmique pendant la phase G1, S et G2 du cycle cellulaire (149,150) et l’organisation des microtubules pendant la phase M (151,152).

1.3.1. La famille des facteurs d’ADP-ribosylation

Les facteurs d’ADP-ribosylation (ARF) sont des petites protéines G monomériques de 20 kDa faisant parti de la superfamille de Ras. La famille des ARFs est composée de 6 isoformes regroupées en 3 classes selon leur similarité de séquence : la classe I incluant ARF1, ARF2 et ARF3, la classe II comprenant ARF4 et ARF5, et la classe III contenant ARF6. Bien que présents chez la plupart des mammifères, le gène codant pour l’isoforme ARF2 semble avoir été perdu au courant de l’évolution (153).

Les membres de la classe I et II possèdent des fonctions redondantes puisque l’inhibition de l’expression de chacun de ces membres individuellement n’affecte pas la morphologie du Golgi (154). Ceux-ci sont principalement localisés au niveau de l’appareil de Golgi et des endosomes où ils régulent les voies de sécrétion cellulaires. Dans leur état inactif, les ARFs de classe I/II sont localisés dans le cytosol puis, lorsqu’activés, transloquent au niveau des compartiments membranaires du Golgi où ils recrutent des protéines essentielles à la formation de vésicules et au trafic rétrograde (Golgi vers réticulum endoplasmique) et antérograde (réticulum endoplasmique vers Golgi) (155).

L’unique membre constituant la classe III, ARF6, est structurellement et fonctionnellement moins similaire que les isoformes des autres classes. Dans son état inactif, ARF6 est localisé dans les compartiments endosomaux puis, lorsqu’activé, transloque au niveau de la membrane plasmique (146,156). ARF6 est impliqué dans plusieurs processus tels que le trafic membranaire via la régulation du métabolisme lipidique (157), l’internalisation de
certains récepteurs couplés aux protéines G aux compartiments endosomaux (158), ainsi que le remodelage du cytosquelette d’actine (159,160).

1.3.1.1. La structure des ARFs

Les membres familles des ARFs possèdent certaines caractéristiques structurales communes. Tout d’abord, ils possèdent une hélice amphipathique en N-terminal leur permettant de s’insérer aux membranes. Cette hélice distingue la famille des ARFs des autres familles de GTPases qui possèdent plutôt une modification lipidique en C-terminal (161). Une autre caractéristique des ARFs réside dans le fait que leur liaison au GTP cause le déplacement d’une boucle située entre les régions switch et permettant le déplacement de l’hélice amphipathique N-terminale loin du site de liaison au GTP. Cette boucle, formée d’un feuillet beta et constituant la région interswitch, provoque ainsi le déplacement de l’hélice d’une pochette hydrophobe vers une région hydrophobe adjacente telle qu’une membrane cellulaire (Figure 6) (162). L’insertion de l’hélice est nécessaire aux fonctions de la ARF aux membranes (163). De plus, les ARFs sont modifiées par myristoylation sur leur second résidu glycine en N-terminale. Cette modification est également requise pour son recrutement membranaire (164).
Figure 6. La structure tridimensionnelle d'ARF1

La liaison d’ARF1 au GTP modifie la conformation des régions switch et cause le déplacement d’une boucle constituée de la région interswitch. Cette modification permet le déplacement de l’hélice amphipathique N-terminale d’une pochette hydrophobe vers une région hydrophobe adjacente. *(Inspiré de Gillingham et al., 2007)* (162)

1.3.1.2. La régulation de l’activité des ARFs

Il existe au moins 15 différents facteurs d’échange de nucléotides guanyliques (GEF) pour les ARFs. Ceux-ci jouent un rôle déterminant dans la quantité et la distribution spatiotemporelle des ARFs activées (165). Bien qu’exprimant une faible homologie de séquence, les différentes ARF GEFs possèdent une région centrale commune de 200 acides aminés connue comme le domaine Sec7 avec lequel elles interagissent avec les ARFs (166). L’interaction avec une ARF, via ce domaine Sec7, est nécessaire et suffisante pour permettre l’activité de la GEF (167). La brefeldine A, un antibiotique de type lactone, est
connue pour inhiber l’activité de certaines GEFs en interagissant avec celles-ci au niveau de leur domaine Sec7 (168). Ce mécanisme a pour effet l’inhibition du transport antérograde au profit du transport rétrograde, occasionnant une accumulation de protéines au niveau du RE et provoquant éventuellement la désintégration de l’appareil de Golgi (169). Les GEFs n’étant pas tous sensibles à la brefeldine A (170), plusieurs autres inhibiteurs d’ARF GEFs ont été développés dans le but d’étudier la fonction des ARFs ainsi que pour le développement de traitements ayant pour but la modulation de l’activité des ARFs. Parmi les plus connus, on retrouve le LM11 qui agit à titre d’inhibiteur non-compétitif du complexe formé par ARF1-GDP et d’une de ses GEFs cytohésine-2 (171). D’autres inhibiteurs, tel que la SecinH3, agissent de façon moins spécifique en liant les cytohésines 1 à 3 (172).

À l’opposé, plus de 15 gènes codent pour des protéines activatrices de GTPases (GAP) ciblant les ARFs ont été identifiées. Chacun de ces membres contient un domaine catalytique ARF GAP conservé formé d’un domaine doigts de zinc responsable de l’hydrolyse du GTP lié à la ARF (173). Bien qu’inactivant les ARFs, ces protéines peuvent également être perçues comme des régulateurs positifs de la fonction des ARFs en permettant leur cyclage, un processus essentiel la complétion de plusieurs fonctions des ARFs (156,174). Ainsi, il n’est pas étonnant que les ARF GAPs soient impliqués dans plusieurs fonctions des ARFs telles que l’adhésion cellulaire, la migration cellulaire et l’invasion cellulaire (175,176).

1.3.1.3. La GTPase ARF1

ARF1 est une GTPase de 21 kDa ubiquitaire et hautement conservée chez les mammifères (177). Comme les autres membres de la classe I/II, cette isoforme possède un motif MXXE permettant sa localisation à l’appareil de Golgi où elle y exerce plusieurs fonctions (178). Classiquement, ARF1 permet de recruter des protéines effectrices essentielles aux voies de sécrétion golgiennes, telles que les coatomères, la protéine adaptatrice de clathrine 1 et les
protéines GGA (179). ARF1 contribue également au maintien de la morphologie et à l’orientation du Golgi en régulant le cytosquelette d’actine et en activant des enzymes de modification lipidiques au niveau des membranes (178). La forme active d’ARF1 a également été retrouvée localisée au niveau de la membrane plasmatique (74,180-182), notamment via son activation par des facteurs de croissance.

Dans le contexte du cancer, la GTPase ARF1 a entre autre été retrouvée surexprimée dans les carcinomes gastriques (183) ainsi que dans les cellules de cancer du sein hautement invasifs. Dans les cellules mammaires cancéreuses, ARF1 contrôle l’activation de la PI3K, ce qui a pour effet de réguler la prolifération ainsi que la migration cellulaire (74). Plus précisément, ARF1 contrôle la prolifération en régulant l’association du suppresseur de tumeur pRB au facteur de transcription E2F1 (184). Le mécanisme permettant à ARF1 de contrôler la migration cellulaire demeure, quant à lui, incompris. Les études menées sur ARF6 suggèrent néanmoins une voie de signalisation impliquant des membres de la famille des Rho GTPases (185).

1.3.2. La famille des Rho

mesure d’être dirigés à la membrane plasmique, les Rho GTPases subissent des modifications post-traductionnelles telles que l’ajout d’un groupement farnesyl ou geranylgeranyl sur une séquence CAAX située en C-terminal (195). Un second signal immédiatement en amont de la séquence CAAX consiste en une région polybasique ou sur une cystéine servant de site pour la palmitoylation (196,197).

1.3.2.1. La régulation de l’activité des Rho

Tel que décrit précédemment, les Rho GTPases sont sous le contrôle de GEFs et de GAPs permettant le cyclage entre leur état actif lié au GTP et leur état inactif lié au GDP. Toutefois, une troisième classe de protéines intervient dans le cyclage de la majorité des Rho GTPases, soit les inhibiteurs de la dissociation du GDP (Rho GDI).

Sous leur forme liée au GDP, les Rho GTPases sont principalement séquestrées dans le cytosol par les Rho GDIs, ce qui prévient l’échange GTP/GDP. Une dissociation de Rho GDI doit donc se produire pour que la GTPase soit activée. Lors d’une activation cellulaire, les Rho GTPases sont relâchées par les Rho GDIs et peuvent donc être activées afin d’être transloquées aux membranes (198). En régulant leur activité, les Rho GDIs jouent donc un rôle important dans la régulation de la localisation des RhoGTPase entre les membranes et le cytoplasme et, par conséquent, influencent aussi leurs fonctions effectrices (199,200).

Les Rho GEFs, quant à elles, peuvent être regroupées en 2 sous-familles (201). La première, dont le génome humain à révélé 69 membres, regroupe les RhoGEFs partageant tous un domaine d’homologie à la protéine Dbl (domaine DH) nécessaire à leur activité catalytique (202). Ils possèdent également un domaine d’homologie à la pleckstrine régulant l’activité de ce domaine DH et leur permettant d’être localisées à la membrane plasmique par liaison aux lipides (203). Parallèlement, la seconde sous-famille regroupe 11 membres comprenant le domaine d’homologie à la région Dock et dont de nombreux membres sont spécifiques à Rac (204,205). Les RhoGEFs possèdent également d’autres domaines importants pour la signalisation tels que le domaine SH3 ou le domaine doigts de
zinc (206). La spécificité des RhoGEFs envers leur effecteur est déterminée par une poche formée par la région switch I, switchII et les régions formés par les brins β1-3 des RhoGTPase (207). Par exemples, le résidu Trp58 de RhoA, le résidu Phe56 de Cdc42 et le résidu Trp56 de Rac1 sont considérés comme des discriminants importants dans la spécificité du domaine DH de plusieurs RhoGEFs envers les Rho GTPases (208). L’analyse de ces informations structurelles a permis la synthèse du NSC23766, un inhibiteur spécifique de l’interaction entre Rac1 et certaines de ses GEFs qui n’affecte pas les autres GTPases tel que RhoA ou Cdc42 (209).

De façon intéressante, la ARF GEF ARNO a été identifiée comme importante pour la régulation de Rac1 (185). De plus, plusieurs ARF GAPs telles que Git1 (210) ou les ARAPs (211) ont également démontré des fonctions similaires. Un lien semble donc exister entre la famille des ARF et des Rho et puisque cette dernière famille est reconnue pour son implication dans la migration cellulaire, il semblerait que les ARFs puissent exercer un contrôle sur l’activité des Rho dans le but de moduler la migration cellulaire.

1.3.2.2. La GTPase Rac1

La famille de Rac comprend les isoformes Rac1, Rac2, Rac3 et RhoG (212). Celles-ci ont un niveau d’homologie élevé alors que la plus grande divergence se retrouve dans la queue C-terminale, aussi connue comme la région hypervariable de Ras (213). L’isoforme Rac1 est exprimée de façon ubiquitaire, Rac2 est uniquement exprimée dans les cellules hématopoïétiques, et Rac3 est principalement exprimée dans le cerveau (186).

La délétion du gène RAC2 ou RAC3 permet le développement normal de souris, bien que des défauts soient observés dans l’érythropoïèse (214) et au niveau neuronal (215) respectivement. La délétion du gène RAC1 est, quant à elle, létale puisque Rac1 est essentielle à la motilité cellulaire nécessaire à la grastulation, une étape précoce du développement embryonnaire (216). Ce fait démontre bien un des rôles les plus étudiés de Rac1, soit son implication essentielle dans la migration cellulaire (159,217-220).
En plus de ses fonctions de migration, Rac1 est impliquée dans plusieurs processus tels que la prolifération, la survie, la différenciation et l’adhésion cellulaire (221-224). Ainsi, il n’est pas étonnant que Rac1 soit un oncogène pour plusieurs types de cancers. En effet, une dérégulation de la signalisation de Rac1 peut survenir suite à la surexpression ou la suractivation de la GTPase, affectant ainsi le niveau d’expression ou d’activation de ses effecteurs en aval (225). Une dérégulation de la signalisation de Rac1 a d’ailleurs été observée dans le cancer des testicules (226), dans le carcinome gastrique (227), dans le carcinome à cellules squameuses (228) et dans le cancer du sein (229). De plus, un variant d’épissage de Rac1 faiblement exprimé dans les cellules normales, Rac1b, montre une expression significativement élevée dans les tumeurs colorectales (230) et le cancer du sein (231). D’un point de vue structurel, ce variant possède les propriétés biochimiques d’une GTPase constitutivement active (232). Finalement, alors que les mutations de Rac1 aient rarement été identifiées dans un contexte de cancer, une mutation somatique non-sens du codon 29 de Rac1 a récemment été découverte dans plus de 9% des mélanomes liés à l’exposition au soleil (233). L’expression protéique du mutant Rac1(P29S), qui possède une activité accrue envers les effecteurs de Rac1 (234), engendre une augmentation de la prolifération, de la migration cellulaire, et stimule l’ondulation membranaire ainsi que la signalisation via les MAPK (235). Cette découverte place Rac1 parmi les trois proto-oncogènes les plus communs dans le mélanome, évoquant par le fait même la possibilité qu’une inhibition des effecteurs de la signalisation de cette Rho GTPase puisse être bénéfique d’un point de vue thérapeutique.

1.4. La migration cellulaire

Tel qu’illustré à la figure 7, la migration cellulaire peut être divisée en 4 étapes: la formation d’une protrusion, l’adhésion, la contraction du corps cellulaire et le détachement de l’arrière. Dans le contexte du cancer du sein, la motilité cellulaire est nécessaire à la formation de métastases et constitue donc une cible intéressante pour freiner l’évolution de la tumorigénèse vers un caractère malin.
La migration cellulaire est habituellement initiée en réponse à un signal pouvant provenir de facteurs présents dans le milieu extracellulaire, de la matrice extracellulaire ou de cellules voisines (225). Ces signaux activent les récepteurs transmembranaires qui stimulent les voies de signalisation intracellulaires menant à l’initiation de la migration cellulaire.

La protéine du syndrome de Wiskott–Aldrich (WASP) et la protéine homologue à la verproline de la famille des protéines du syndrome Wiskott-Aldrich (WAVE) sont des facteurs contrôlant la polymérisation de l’actine (236). Au niveau moléculaire, ces protéines permettant l’assemblage des monomères d’actine via le complexe de la protéine reliée à l’actine 2/3 (Arp2/3). Ce complexe se lie aux filaments d’actine pré-existants et agit à titre de site de nucléation pour la formation d’un nouveau filament d’actine. De cette façon, Arp2/3 promeut la formation d’un réseau de filaments en branches, ce qui permet l’extension graduelle d’une protrusion membrainaire du nom de lamellipode (237,238). La famille des protéines WASP/WAVE est régulée via de nombreuses protéines. D’une part, WASP peut être activée par la GTPase Cdc42, le PIP2, WIP/verproline et certaines protéines au domaine SH3 (239,240). Parallèlement, WAVE est connue pour être activée par la GTPase Rac1 sous sa forme GTP (241). Toutefois, puisque WAVE ne possède pas de domaine liant les GTPases (242), il a été démontré que le substrat p53 du récepteur tyrosine kinase à l’insuline (IRSp53) agit à titre de protéine adaptatrice pour permettre la liaison de Rac1 à WAVE2 (243-245).

Lors de la formation du lamellipode, la cellule forme des complexes d’adhésions permettant la stabilisation de cette protrusion en l’attachant à la matrice extracellulaire (246). Selon le mouvement du lamellipode, les complexes d’adhésions peuvent se défaire ou maturer en adhésions focales larges et stables permettant l’ancrage solide du lamellipode à la matrice extracellulaire (247). Il a d’ailleurs été démontré que Rac1 est important pour l’assemblage de ces adhésions via le recrutement d’intégrines (248). Il est essentiel que ces complexes puissent être éventuellement désassemblés pour permettre à la cellule de poursuivre sa migration (249). Lorsque formés, les adhésions focales servent de points
d’ancrage sur lesquels la cellule peut se tirer pour avancer. Le processus par lequel la cellule rétracte son corps cellulaire vers l’avant de façon dépendante de l’actomyosine consiste en l’étape de contraction (250). À fur et à mesure que la cellule se propulse vers l’avant, le détachement des adhésions focaux libère la cellule qui pourra recommencer ces étapes de migration. Le cyclage entre l’attachement et le détachement de la cellule à la matrice contribue largement à déterminer la vitesse de migration (251).

Figure 7. La migration cellulaire

La migration cellulaire peut être décrite comme un processus cyclique. En réponse à un signal externe, la cellule se polarise et l’extension d’une protrusion se produit en direction du mouvement. La protrusion formée, des adhésions la fixe au substrat sur lequel la cellule migre. Ces adhésions servent, en partie, de points de traction pour la migration, et initient des signaux régulant la dynamique d’adhésion et l’activité des protrusions. Le corps cellulaire est ensuite déplacé à l’avant par contraction et les adhésions de la queue de la cellule sont relâchées pendant que la cellule se rétracte.
1.4.1. La protéine IRSp53

Le substrat p53 du récepteur tyrosine kinase à l’insuline (IRSp53) est une protéine adaptatrice possédant un domaine d’homologie IRSp53-MIM (IMD) en N-terminal, un domaine de liaison à Cdc42/Rac (CRIB) partiel en position centrale ainsi qu’un domaine SH3 en C-terminal (252).

Bien que le domaine CRIB soit connu pour lier Cdc42 et Rac1, celui d’IRSp53 est atypique et ne lie que Cdc42 activé (258). En revanche, les acides aminés positivement chargés en N-terminal du domaine IMD sont responsables de la liaison à Rac1. Ainsi, IRSp53 possède deux sites de liaison distincts pour chacune de ces GTPases, suggérant que cette protéine adaptatrice puisse exercer des fonctions effectrices indépendantes propres à Cdc42 et Rac1 (252). De plus, IRSp53 possède un domaine SH3 permettant sa liaison aux séquences riches en proline de WAVE2 et N-WASP (244,253,259). Ainsi, IRSp53 constitue une protéine clé dans la liaison indirecte entre Rac1 et WAVE2. Ce complexe étant nécessaire afin que Rac1 exerce son rôle activateur sur WAVE2, IRSp53 joue un rôle important dans la polymérisation de l’actine. En somme, de par son habileté à interagir avec l’actine et les membranes, IRSp53 représente une protéine majeure dans la migration cellulaire en assurant le lien moléculaire entre la réorganisation du cytosquelette d’actine et la déformation de la membrane plasmique nécessaire à l’extension du pseudopode. Cette
protéine a d’ailleurs été reportée pour son implication dans la motilité cellulaire ainsi que dans le caractère invasif de cellules de cancer du sein (260).

1.5. Hypothèse de recherche

Il a été démontré par notre laboratoire qu’ARF1 est surexprimée dans les cellules tumorales hautement invasives (74). Cette protéine contribue à la forte migration cellulaire observée suite à leur stimulation à l’EGF. La motilité cellulaire étant fortement associée aux fonctions de la GTPase Rac1, nous avons émis l’hypothèse qu’ARF1 exerce un contrôle sur cette dernière afin de moduler la migration cellulaire. Afin de vérifier cette hypothèse, nous avons recouru à la technique de l’interférence à l’ARN afin de diminuer l’expression d’ARF1 dans les MDA-MB-231, une lignée cellulaire très invasive de cancer du sein surexprimant ARF1 de façon endogène. Nous avons d’abord examiné l’importance de l’expression d’ARF1 sur la migration. Nous avons ensuite déterminé l’influence d’ARF1 sur l’activité de Rac1. Nous avons finalement analysés les mécanismes moléculaires par lesquels ARF1 module les fonctions de Rac1.
CHAPITRE II. ARTICLE

ARF1 regulates cell migration of highly invasive cancer cells through interaction between Rac1 and IRSp53

Sebastian Lewis-Saravalli, Shirley Campbell & Audrey Claing

Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada H3C 3J7

Correspondence should be addressed to:
Audrey Claing,
P.O. Box 6128, Downtown station,
Montreal (QC)
Canada
H3C 3J7
Telephone: (514) 343-6352
Fax: (514) 343-2291

Running title: ARF1 regulates Rac1 and IRSp53 in MDA-MB-231

Keywords: Epidermal Growth Factor Receptor/ ADP-ribosylation Factor-1/ Rac1/ breast cancer/ cell migration/IRSp53.

[ARTICLE EN PRÉPARATION]
Résumé

Les facteurs d’ADP-ribosylation sont des petites protéines G monomériques importantes pour la réorganisation du cytosquelette d’actine, le remodelage des lipides membranaires et la formation de vésicules. Notre laboratoire a précédemment montré qu’ARF1 est surexprimé dans les cellules hautement invasives du cancer du sein et contribue à leur forte prolifération ainsi qu’à leur phénotype migratoire. Dans cette étude, nous proposons de définir le rôle d’ARF1 sur l’activation de Rac1, un membre de la famille des GTPases Rho impliqué dans la formation de lamellipodes et la migration cellulaire. Globalement, nous avons évalué si l’activation d’ARF1 peut affecter l’activation de Rac1 et de la voie de signalisation nécessaire au processus de migration. Par une approche d’interférence à l’ARN dans les cellules MDA-MB-231, nous avons d’abord déterminé la contribution essentielle de Rac1 la migration dépendante d’ARF1. D’un point de vue mécanistique, nous avons montré que l’inhibition de l’expression endogène d’ARF1 altère l’activation de Rac1 dépendante de l’EGF. Nous avons ensuite examiné les conséquences d’un tel effet sur les partenaires d’interaction de Rac1. Nous avons découvert qu’ARF1 et Rac1 forment un complexe constitutif mais qu’ARF1 est nécessaire à l’association dépendante de l’EGF de Rac1 à IRSp53, une protéine importante dans la formation de lamellipodes. Lorsque dans l’impossibilité d’interagir, la translocation complexe Rac1/IRSp53 à la membrane plasmique était considérablement inhibée. En conclusion, cette étude fournit un nouveau mécanisme par lequel ARF1 régule la migration cellulaire et identifie cette GTPase en tant que cible pharmacologique prometteuse pour freiner le développement des métastases chez les patients atteints du cancer du sein.
Abstract

ADP-ribosylation factors (ARFs) are monomeric G proteins important for actin cytoskeleton reorganization, lipid membrane remodeling, and vesicle formation. Our laboratory has previously shown that ARF1 is overexpressed in highly invasive breast cancer cells and contribute to their enhanced proliferation and migration phenotype. In this study, we propose to define the role of ARF1 on the activation of Rac1, an important member of the Rho family of GTPases implicated in the formation of lamellipodia and in the migration process. Globally, we evaluated whether ARF1 activation could affect Rac1 activation and the signaling pathway necessary for cell migration. Using an RNAi approach in MDA-MB-231 breast cancer cells, we first determined the essential contribution of Rac1 in ARF1-dependant migration. Mechanistically, endogenous inhibition of ARF1 expression altered EGF-dependent Rac1 activation. We next investigated the consequences of such effect on Rac1 interaction partners. We showed that ARF1 and Rac1 are constitutively complexed but that ARF1 is necessary for EGF-dependent Rac1 association with IRSp53, an essential protein for lamellipodia formation. When unable to interact, Rac1/IRSp53 complex translocation to plasma membrane was considerably inhibited. In conclusion, this study provides a new mechanism by which ARF1 regulates cell migration and identifies this GTPase as a promising pharmacological target to reduce metastasis formation in breast cancer patients.
Introduction

Breast cancer is the most common cancer among women (1). Although considerable advances have been realized over the past years, patients with triple-negative breast cancer, which represents 15-20% of all breast cancers (2), still suffer from a limited choice of targeted therapies (3,4). In addition, the aggressive nature of this type of cancer is associated to a high risk of metastasis formation (5,6). Therefore, triple-negative breast cancer remains associated with a poor prognosis (7,8). In this regard, proteins involved in cell migration, which represent a key step in metastasis, has been considered as a promising pharmacological target in the development of new cancer treatment strategies.

The Rho GTPase family plays an important role in intracellular actin dynamics processes including cell adhesion, polarity, motility and cell-cycle progression (9-12). Among the family members, *Ras* related *C3* botulinum toxin substrate 1 (Rac1) is known to regulate different signaling pathways to promote cytoskeleton remodeling, lamellipodia formation and cell migration (13-15). This GTPase cooperates with the *Wiskott-Aldrich syndrome protein* family *verprolin homologous protein* (WAVE) complex to activate actin-related protein 2/3 (Arp2/3) complex, leading to actin nucleation of a network of branched actin filaments (16). Since WAVE proteins lack the GTPase-binding domain (17), it has been shown that the *insulin receptor tyrosine kinase substrate* p53 (IRSp53) acts as the adaptor protein linking Rac1 to WAVE2 to induce actin polymerization (18-20). In pathological conditions, Rac1 activation can induce invasion and metastasis of *in vitro* and *in vivo* breast cancer cell line models (21) by enhancing cell migration.

Invasiveness level of triple-negative breast cancer cells, which lack estrogen receptor, progesterone receptor and human epithelial growth factor receptor 2, is correlated with expression of the epithelial growth factor receptor (EGFR) (22). It has been shown that this receptor and its downstream proteins play a role in migration, invasion, and progression of the malignant phenotype of breast cancer cells (23). Our laboratory has previously shown that ADP-ribosylation factor 1 (ARF1), a determining GTPase implicated in actin cytoskeleton dynamics, is overexpressed in highly invasive breast tumor cell. This ARF isoform contributes to enhanced proliferation and migration phenotype following EGFR
stimulation (24).
In this study, we investigated the molecular mechanisms by which ARF1 regulates Rac1-dependent migration in MDA-MB-231, a highly invasive cell line. We opted for an RNAi approach to better define the effect of ARF1 overexpression in these cells. Our findings showed that depletion of ARF1 is associated with a reduced migratory phenotype, confirming the potential of ARF1 to inhibit cell motility. At the molecular level, we showed that the active state of ARF1 influence the EGF-dependent activation of Rac1. ARF1 was found constitutively bound to Rac1 in cells. Furthermore, depletion of ARF1 impaired the ability of Rac1 to interact with IRSp53, a key step for controlling actin nucleation. Finally, these two interaction partners lost the ability to translocate to the plasma membrane following stimulation when ARF1 expression was inhibited. The understanding by which ARF1 controls EGF-dependant cell migration is crucial for the development of future breast cancer therapies and could offer new options to patients suffering from triple-negative breast cancer.

Materials and Methods
Reagents and Antibodies
Polyclonal anti-ARF1 was purchased from Proteintech (Chicago, IL, USA), monoclonal anti-Rac1 from Millipore (Billerica, MA, USA) and polyclonal anti-IRSp53 from Abcam (Cambridge, MA, USA). Another polyclonal anti-IRSp53 was also purchased from Millipore for the immunocytochemistry experiments. EGF was obtained from Fitzgerald (Acton, MA, USA). Secondary antibodies coupled to an Alexa-Fluor were from Molecular Probes (Eugene, OR). All others products were from Sigma Aldrich Company (Oakville, ON, Canada).

DNA Plasmids and Small Interfering RNA
Double-stranded small interfering RNA (siRNA) targeting human Rac1 (sequence: 5′-GAGGAAGAGAAUAUGCCUG-3′), human ARF1 siRNA and the non-targeting control
were purchased from Thermo Fisher Scientific (Nepean, ON, Canada). GST-Rac1(ΔCAAX) was a gift from J. D. Lambeth (Emory University, Atlanta, GA, USA). Rac1(Q61L)-myc, and GST-PAK(CRIB) were obtained from Dr. N. Lamarche-Vane (McGill University, Montreal, QC, Canada). GST-GGA3 was from Dr. J.-L. Parent (Université de Sherbrooke, Sherbrooke, QC, Canada).

Cell Culture and Transfection

MDA-MB-231 cells were obtained from Dr. Sylvie Mader (Université de Montréal, Montreal, QC, Canada). Cells were maintained at 37°C, 5% CO₂, in Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum and 10% penicillin/streptomycin. All cell culture reagents were purchased from Wisent Bioproducts (St-Bruno, QC, Canada). Transfection of DNA plasmids (48h) and siRNAs (72h) were conducted using Lipofectamine® 2000 from Invitrogen (Burlington, ON, Canada) according to the manufacturer's instructions.

Wound Healing Assay

MDA-MB-231 cells were transiently transfected in 10 cm dishes with 25 μM of Rac1 siRNA, 50 μM of ARF1 siRNA or 50 μM of non-targeting siRNA. The next day, cells were seeded onto coverslips in 6-well plates. 72h post-transfection, confluent cells were serum-starved for 8h. Three scratches per well were then performed using a micropipette tip under an angle of approximately 30 degrees. Cells were washed twice with serum deprived DMEM, treated with 10 ng/ml EGF, and left for 24h. Cells were fixed using a paraformaldehyde solution (4% in phosphate buffered saline, 20 min) and stained with a crystal violet solution (0.1% in 20% methanol, 16h). Images were acquired using a 10X objective on an Olympus IX81 inverted microscope. A violet pseudocolor was applied to the pictures with Adobe Photoshop CS5.1 to facilitate visualization.
Migration Assay

MDA-MB-231 cells were transiently transfected with 25 μM of Rac1 siRNA, 50 μM of ARF1 siRNA or 50 μM of non-targeting siRNA. 24h later, cells were transiently transfected with with 2 μg of Rac1(Q61L)-myc DNA or the equal quantity of empty vector. 24h later, cells were trypsinized and 40,000 cells were seeded onto Transwell® permeable support of polycarbonate membrane with 8.0 μm pore (Corning, NY, USA) coated on both sides with collagen (Sigma-Aldrich, Oakville, ON, Canada). One hour later, cells were stimulated on the bottom chamber with 10 ng/ml EGF and incubated for 6h. A paraformaldehyde solution (4% in phosphate buffered saline, 20 min) was used to fix the cells and a violet crystal solution (0.1% in 20% methanol, 16h) for staining. Cells present in the upper chamber were removed with a cotton swab and migrated cells were quantified in the lower chamber by counting.

GTPase Activation Assay

MDA-MB-231 cells were plated in 10 cm dishes and serum starved 16h. The cells were stimulated with EGF (10 ng/ml) at 37°C for the indicated times. Cells were lysed in 150 μl of ice-cold MLB buffer (pH 7.5, 25 mM HEPES, 150 mM NaCl, 10 mM MgCl₂, 1 mM EDTA, 10% glycerol, 1% nonidet P-40, 0.3 mg/ml PMSF, 1.0 mM Na₃VO₄ and protease inhibitors). Samples were spun for 10 min at 12,000 g (4°C). Glutathione S-transferase-GGA3 ARF binding protein 3 (GST-GGA3) or glutathione-S-transferase-p21-activated kinase-Cdc42/Rac interactive binding domain (GST-PAK-CRIB) coupled to glutathione-sepharose 4B was added to each tube and incubated for 1h at 4°C. Samples were tumbled at 4 °C for 1 h. Beads were washed three times with lysis buffer and proteins were eluted in 20 μl of SDS-sample buffer by heating to 65°C for 15 min. Detection of GTP-bound GTPases was performed by Western blot analysis using a specific anti-ARF1 or anti-Rac1 antibody.

Co-Immunoprecipitation Experiments

MDA-MB-231 cells were plated in 10 cm dishes and serum starved 16h. The cells were
stimulated with EGF (10 ng/ml) at 37°C for the indicated times. Cells were lysed in 150 μl of ice-cold TGH buffer (pH 7.3, 50 mM HEPES, 50 mM NaCl, 5 mM EDTA, 10% glycerol, 1% Triton X-100 and protease inhibitors). Samples were spun for 10 min at 12,000 g (4°C) and equal amounts of soluble protein were incubated with specific anti-ARF1 or anti-Rac1 antibodies for 1h (4°C). Protein G+ agarose beads (Santa Cruz Biotech Inc, Santa Cruz, CA, USA) were then added for 2h. Beads were washed three times with lysis buffer and proteins were eluted in 20 μl of SDS-sample buffer by heating to 65°C for 15 min. Detection of co-precipitated GTPases was performed by Western blot analysis using a specific anti-ARF1 or anti-Rac1 antibody.

GST Pulldown Assay

Purified non-myristoylated recombinant ARF1 was a gift from Dr. Nicolas Vitale. GST pulldown assays were described previously (25). Briefly, for the fusion protein loading experiments, equal amounts of GST and GST-Rac1(ΔCAAX) were incubated at 30°C with either GDPβS (100 μM) or GTPγS (10 μM) for 30 min with an agitation of 900 rpm. Nucleotide loading was stopped by adding MgCl2 (60 mM) at 4°C. Purified ARF1 was then added to the mixture and samples were incubated for 4h at 4°C. For ARF1 nucleotide loading experiments, the purified ARF1 was incubated with GDPβS or GTPγS before being mixed with GST-Rac1(ΔCAAX) as described for the fusion protein loading experiments. Beads were then washed three times with lysis buffer. Proteins were eluted into 20 μl of SDS sample buffer by heating to 65°C for 15 min. Detection of interacting GTPases was performed by Western blot analysis using a specific anti-ARF1 or anti-Rac1 antibody.

Western Blotting

Proteins were run on polyacrylamide gels and transferred onto nitrocellulose membranes. The membranes were blotted for relevant proteins using specific antibodies described in the following sections. For Rac1 detection, FITC-conjugated secondary antibody fluorescence was detected using a Typhoon 9410 scanner (Amersham Biosciences, Baie D'Urfé, QC, Canada) while the other proteins where detected by enhanced chemiluminescence of a
HRP-conjugated secondary antibody (R&D Systems, Minneapolis, MN, USA).

Immunofluorescence

MDA-MB-231 cells were seeded onto coverslips in 6-well plates. The next day, cells were transiently transfected with 25 μM of Rac1 siRNA, 50 μM of ARF1 siRNA or 50 μM of non-targeting siRNA. 48h post-transfection, cells were serum-starved for 24h. Cells were then stimulated with EGF (10 ng/ml) at 37°C for 30 min. Cells were fixed with a 4% paraformaldehyde solution for 10 min, permeabilized with a 0.1% Triton X-100 solution for 10 min and blocked with 2% BSA for 1h. The cells were subsequently incubated with the primary and secondary antibodies for 1h each. Endogenous Rac1 and IRSp53 were detected using a goat anti-mouse secondary antibody coupled to Alexa-Fluor 568 and a donkey anti-rabbit secondary antibody coupled to Alexa-Fluor 488 respectively. Images of cells after they were mounted were acquired using an epifluorescent inverted microscope (Carl Zeiss Axio Observer A1) with ZEN Pro 2011 software Blue edition. Images were finally treated using ImageJ 1.46o software (National Institutes of Health, USA).

Statistical Analysis

Quantification of the digital images obtained by Western blot analysis was performed using ImageJ 1.46o software (National Institutes of Health, USA). Statistical analyses were calculated using a one-way analysis of variance followed by a Bonferroni’s multiple comparison tests using GraphPad Prism Software (ver. 5.02; San Diego, CA, USA).

Results

Depletion of ARF1 inhibits EGF-induced cell migration

Inhibition of Rac GTPases has been shown to block the invasiveness of human breast cancer cells (26). We studied the impact of ARF1 on Rac1-dependent cell migration. Globally, we observed at least a twofold increase in the motility of MDA-MB-231 cells upon EGF stimulation (Fig. 1). In a wound healing assay, depletion of either GTPase
markedly impaired the ability of cancer cells to migrate (Fig. 1A). Similarly, depletion of Rac1 (Fig. 1C) or ARF1 (Fig. 1B) completely abrogated EGF-induced cell migration in a collagen-coated Boyden chamber assay. Furthermore, expression of a constitutively active mutant form of Rac1, Rac1(Q61L), spontaneously increased the basal level of migration to the level of control stimulated cells while resulting in a threefold increase in EGF-promoted migration. Rac1(Q61L)-myc mutant prevented EGF-induced migration without completely blocking the enhanced basal level of motility.

effect of ARF1 depletion on EGF-dependent cell migration. Taken together, these results suggest that ARF1 cooperates with Rac1 to modulate EGF-induced migration.

Depletion of ARF1 inhibits EGF-dependent Rac1 activation
We first examined the profile of ARF1 and Rac1 activation in MDA-MB-231 cells upon EGF stimulation. As shown in figure 2A, a rapid and transient activation of endogenous ARF1 was observed after 1 min stimulation whereas maximal levels of endogenous Rac1-GTP were detected after 5 min. To assess whether ARF1 and Rac1 could both act in the same signaling axis, we next investigated whether activation of one GTPase could regulate the function of the other using an RNAi approach. Depletion of ARF1 significantly inhibited EGF-dependent activation of Rac1 (Fig. 2B). However, depletion of Rac1 had no effect on ARF1 activation, suggesting that this ARF isoform acts upstream to control key processes mediating the activation of the Rho GTPase. Altogether, these results suggest that EGF-induced ARF1 activation modulates Rac1 activation in MDA-MB-231 cells.

ARF1 interacts with Rac1
We have previously shown that ARF6 can be found in complex with Rac1 upon Ang II stimulation of HEK 293 cells (25). To further address the role of ARF1 on Rac1, we examined whether these two GTPases could be found in complex in MDA-MB-231 cells. As depicted in figure 3A, endogenously expressed Rac1 was found in ARF1 co-immunoprecipitates. Interestingly, this association was not modulated by EGF stimulation.
We next examined if this interaction was direct. Using purified proteins preloaded with either GDPβS or GTPγS, we observed that ARF1 can directly interact with Rac1 and that the nature of the nucleotide bound to the GTPases does not impact on their interaction (Fig. 3B). Taken together, these results suggest that in MDA-MB-231 cells, ARF1 and Rac1 are found constitutively associated independently of their activation state.

ARF1 controls Rac1 interaction with IRSp53

In renal cell carcinoma, proteins regulating the actin cytoskeleton like the Kank family of proteins have been shown to inhibit actin remodeling by preventing the interaction between Rac1 and IRSp53 (27). Since ARF1 also acts has a molecular switch to control cell migration, we investigated whether this GTPase could prevent cell motility in a similar way in breast cancer cells. As shown in figure 4A, EGF stimulation of the cells led to the formation of a complex including Rac1 and IRSp53. Maximal effect was observed after 15 min stimulation. As expected, this interaction was completely lost when Rac1 expression was knocked down in cells (Fig. 4B). Interestingly, it was also markedly reduced when cells were depleted of ARF1. In sum, these results suggest that ARF1 is required for EGF-dependent Rac1 interaction with IRSp53 and could therefore inhibit cell migration via this loss of function. Moreover, our observation that this key Rac1/IRSp53 complex is impaired could provide a mechanism by which ARF1 regulates cell migration.

Depletion of ARF1 blocks the translocation of Rac1 and IRSp53 to the plasma membrane

It has been shown that Rac1 can form an IRSp53-mediated complex with WAVE2 which translocates to the plasma membrane (18). Knowing that IRSp53 has the ability to interact with the activated form of Rac1, we next investigated the effect of ARF1 depletion on the localization of the two proteins. As depicted in figure 5, a significant pool of Rac1 and IRSp53 is found colocalized to the plasma membrane following 30 min EGF stimulation. When inhibiting the endogenous expression of ARF1, Rac1 and IRSp53 remained in the cytosol. Depletion of Rac1 was used as a negative control and drastically prevented IRSp53 targeting to the plasma membrane. Moreover, cells were unable to form EGF-induced
membrane protrusions. Altogether, these results suggest that ARF1 is necessary for membrane targeting of Rac1 and IRSp53 to the plasma membrane.

Discussion

The ARF family of GTPase is known for its implication in the regulation of actin cytoskeleton. Notably, we previously showed that ARF6 (25) and ARF1 (24) are key regulators of the cell motility. In this study, we further investigated the molecular mechanism behind ARF1-dependent cell migration by establishing a role for this ARF isoform in the regulation of Rac function. These experiments were performed in highly invasive MDA-MB-231 cells which overexpress EGFR. As illustrated in figure 6, stimulation of this receptor leads to the rapid and transient activation of both ARF1 and Rac1, provoking cells to migrate. Depletion of either GTPase inhibited cell migration. Moreover, ARF1 depletion inhibited EGF-induced Rac1 activation while depletion of Rac1 did not affect ARF1 activation. Since Rac1 is known as a major regulator of actin remodeling, we investigated if an association between the two GTPases could occur. We found that ARF1 was constitutively bound to Rac1, suggesting a proximal regulation of Rac1 by ARF1. To explain the influence of ARF1 on Rac1-dependent cell migration, we looked at the interaction between Rac1 and IRSp53 and determined that the expression of ARF1 could modulate their association. This EGF-dependent interaction was correlated with relocalization of the complex to membrane protrusions when ARF1 was expressed. Activation of Rac1 is necessary for the formation of lamellipodia, which represents a critical step in the cell migration process (28). The observation that ARF1 depletion could inhibit migration to the same extent than Rac1 evoked the possibility for a common pathway uniting the two GTPases. On neuronal cultures, it has been shown that the functional inactivation of ARF1 by ARFGAP1 could prevent Rac1 activation (29). Consistent with this result, we demonstrate that ARF1 is acting upstream of Rac1 since the inhibition of endogenous expression of ARF1 in breast cancer cells leads to a markedly reduced level of activated Rac1. Expression of ARF1 is therefore necessary for Rac1
activity, suggesting that ARF1 might influence a nucleotide loading event associated with Rac1 activation. A possible explanation would have been that ARF1 modulates Rac1 activity by physically interacting with it, since we found that the two proteins were able to interact directly. However, this association was not modulated by EGF stimulation, raising the possibility that ARF1 could rather influence Rac1 activity by forming a docking site for other proteins to complex and activate it.

It is generally believed that crosstalk between GTPases can regulate specific cellular functions in either a cooperative or antagonistic manner (30). To date, studies on ARF/Rac signaling pathway have mainly focused on ARF6 isoform (31), but a recent paper has also identified Arl4A (32), another ARF family member, as a modulator of Rac1 activity. In both cases, the GTPases are thought to crosstalk via a signaling bridge formed by the ARF GEF ARNO and the Rac GEF complex Dock180/ELMO (31,32). In a similar way, the close proximity of ARF1 and Rac1 in our model could prompt the formation of such a complex, leading to the recruitment of a Rac GEF allowing Rac1 activation. This would also explain the mechanism by which the depletion of ARF1 blocks Rac1 activity as we observed in our model, possibly by impairing the recruitment of a Rac GEF.

Rac1 is known to interact with the WAVE regulatory complex to promote actin nucleation of a network of branched actin filaments. *In vitro*, experiments have shown that the recruitment and activation of this complex by Rac1 is radically enhanced by the concomitant presence of ARF1 (33), supporting the idea that this ARF isoform acts as a cooperative modulator of Rac1 functions. According to this hypothesis, we found that ARF1 expression, in our model, is essential to the EGF-dependent Rac1 interaction with IRSp53 and to the translocation of this complex to the membrane protrusions. Interestingly, overexpression of the Rac GEF Tiam1 have also been shown to enhance IRSp53 binding to GTP-Rac1 and to promote the relocalization of IRSp53 to lamellipodia (36). Considering that MDA-MB-231 cells endogenously overexpress Tiam1, the similarity of these results would strengthen the theory by which Rac1 activation might be regulated by the ARF1. In this case, ARF1 would be considered as a major player in the activation of the WAVE regulatory complex by acting as the key modulator to the fully functional Rac1-
GTP/IRSp53/WAVE complex assembly. In addition, since it has been demonstrated that the membrane targeting of WAVE2 alone is not sufficient for WAVE2-dependent actin polymerization (18), it could be possible that ARF1, by controlling this multicompact, induces a conformational change in WAVE2 making it available for further activation of Arp2/3 to active sites of actin assembly.

In conclusion, we have shown that ARF1 regulates cell migration of highly invasive cancer cells through Rac1 and IRSp53 interaction. Because ARF1 is highly expressed in MDA-MB-231 cells, our findings could provide new insights into the development of targeted therapies against triple-negative breast cancer.

Acknowledgements
This work was supported by grants from the Canadian Institutes of Health Research.

References

FIGURE 1. **Depletion of ARF1 inhibits EGF-induced Rac1 cell migration.** A) MDA-MB-231 cells were transfected with a scrambled, ARF1 or Rac1 siRNA. Scratches were performed on confluent cells stimulated or not with EGF (10 ng/ml). Wound healing was assessed after 24h. Images are representative of 5 independent experiments. ***P<0.001 are values compared with the basal level of migration. B) MDA-MB-231 cells were transfected with ARF1 or Rac1 siRNA, constitutively active Rac1(Q61L)-myc mutant plasmid, or the appropriate amount of control (scrambled siRNA + empty vector). Cells were seeded on Boyden chambers and stimulated or not with EGF (10 ng/ml). Migration was assessed after 6h. These results are the mean ± SEM of 3 independent experiments. **P<0.01, ***P<0.001 are values compared with the unstimulated control condition.
FIGURE 2. Depletion of ARF1 inhibits EGF-dependent Rac1 activation. A) MDA-MB-231 cells were treated with EGF (10 ng/ml) for the indicated times. Endogenous levels of activated ARF1 and Rac1 were analyzed by a GST pulldown assay and visualized by Western blotting. These results are the mean ± SEM of 4 independent experiments. *P<0.05, ***P<0.001 are values compared with the basal level of activation. B) MDA-MB-231 cells were transfected with a scrambled, ARF1 or Rac1 siRNA. Endogenous levels of activated GTPase were assessed as in A. These results are the mean ± SEM of 3 independent experiments. **P<0.01, ***P<0.001 are values compared with the basal level of activation.
FIGURE 3. ARF1 interacts with Rac1. A) MDA-MB-231 cells were treated with EGF (10 ng/ml) for the indicated times. Endogenous Rac1 or ARF1 was immunoprecipitated using a specific antibody and associated GTPase was examined by Western blotting. These results are representative of 3 independent experiments. B) GST-Rac1 was incubated with purified ARF1 preloaded or not with either GDP or GTP. Interacting proteins were precipitated by a GST pulldown assay and visualized by Western blotting. Inverse protocol was also performed. These results are representative of 3 independent experiments.
FIGURE 4. **ARF1 controls Rac1 interaction with IRSp53.** A) MDA-MB-231 cells were treated with EGF (10 ng/ml) for the indicated times. Endogenous Rac1 was immunoprecipitated using a specific anti-Rac1 antibody and associated IRSp53 was examined by Western blotting using a IRSp53 antibody. These results are the mean ± SEM of 4 independent experiments. **P<0.01 are values compared with the basal level of interaction. B) MDA-MB-231 cells transfected with a scrambled, ARF1 or Rac1 siRNA were stimulated or not with EGF 10 ng/ml for 15 min. These results are the mean ± SEM of 4 independent experiments. ***P<0.001 are values compared with the basal level of interaction.
FIGURE 5. **Depletion of ARF1 blocks the recruitment of IRSp53 to cell membrane.** MDA-MB-231 cells were transfected with a scrambled, ARF1 or Rac1 siRNA. Cells stimulated or not with EGF 10 ng/ml for 30 min were fixed, permeabilized and incubated with specific anti-Rac1 and anti-IRSp53 antibodies. Labeling of Rac1 and IRSp53 was performed using a secondary antibody coupled to Alexa-Fluor 568 (red) or Alexa-Fluor 488 (green) respectively. Images are representative of at least 20 cells observed in five independent experiments.
FIGURE 6. **Model illustrating the role of ARF1 in cell migration.** EGFR stimulation promotes ARF1 activation, which in turn activates Rac1. This later activation allows Rac1 to interact with IRSp53, resulting in a complex that translocates to the membrane protrusions to stimulate actin remodeling. This process is necessary for the EGF-dependant migration of breast cancer cells.
CHAPITRE III. DISCUSSION

La famille des ARFs est connue pour son implication dans le remodelage du cytosquelette d’actine. Nous avons précédemment démontré qu’ARF6 (159) et ARF1 (74) sont des régulateurs importants de la motilité cellulaire. Dans la présente étude, nous avons étudié les mécanismes moléculaires contrôlant la migration cellulaire dépendante d’ARF1 en décrivant une nouvelle voie de signalisation liant cette protéine à la GTPase Rac1. Ces expériences ont été réalisées dans les MDA-MB-231, une lignée cellulaire hautement invasive du cancer du sein surexprimant l’EGFR. La stimulation de ce récepteur conduit à l’activation rapide et transitoire d’ARF1 et de Rac1, stimulant la cellule à migrer. La déplétion de ces deux GTPases inhibe la migration cellulaire. De plus, la déplétion d’ARF1 inhibe l’activation de Rac1 dépendante de l’EGF alors que la déplétion de Rac1 n’affecte pas l’activation d’ARF1. Puisque Rac1 est connu comme un régulateur majeur du remodelage du cytosquelette d’actine, nous avons étudié si les deux GTPases pouvaient interagir. Nous avons démontré qu’ARF1 est constitutivement complexé à Rac1, ce qui suggère une régulation directe et proximale de Rac1 par ARF1. De façon à expliquer l’influence d’ARF1 sur la migration cellulaire dépendante de Rac1, nous avons regardé l’interaction entre Rac1 et IRSp53 et nous avons déterminé que l’expression d’ARF1 pouvait moduler leur association. Cette interaction, dépendante de l’EGF, est corrélée avec la translocation du complexe à la membrane plasmique lorsqu’ARF1 est exprimé.

3.1. ARF1 dans la migration cellulaire

Il a été démontré que la surexpression de régulateurs de l’activité des ARFs peut influencer des fonctions associées à Rac1. L’expression de la ARF GAP Git1, par exemple, induit le remodelage des adhérences focales, permettant ainsi d’augmenter la motilité cellulaire (261). À l’opposé, la surexpression de Git2 diminue la migration dans les cellules épithéliales mammaires en inhibant le remodelage des adhérences focales (262). Ainsi, il semble qu’un lien soit déjà établi entre la régulation des ARFs et des événements essentiels à la migration cellulaire. L’inhibition de la migration observée suite à la déplétion d’ARF1 dans
la présente étude abonde également en ce sens. De plus, le fait que cette inhibition soit équivalente à celle observée suite à la déplétion de Rac1 évoque la possibilité d’une voie de signalisation commune à ces deux GTPases. Notre laboratoire a notamment démontré qu’ARF1 contrôle la voie PI3K afin de réguler la migration cellulaire stimulée par l’EGF (74). On peut donc penser que les deux GTPases puissent emprunter cette voie pour exercer leur effet d’inhibition sur la migration.

Il a été démontré sur des cultures neuronales que l’inactivation d’ARF1 par ARFGAP1, une autre ARF GAP, permet de prévenir l’activation de Rac1 (263). Puisque l’activité de Rac1 est nécessaire à la migration cellulaire, il était donc possible d’envisager que l’inhibition de la migration cellulaire observée suite à la déplétion d’ARF1 soit le résultat d’une inhibition de l’activation de Rac1. Tel qu’attendu, l’inhibition de l’expression endogène d’ARF1 dans les cellules de cancer du sein conduit à une réduction marquée des niveaux d’activation de Rac1. La déplétion de Rac1, quant à elle, n’a eu aucun effet sur l’activation d’ARF1, ce qui place ARF1 en amont de Rac1. Dans notre modèle, l’expression d’ARF1 est donc nécessaire à l’activité de Rac1, ce qui suggère qu’ARF1 puisse contrôler une étape impliquée dans l’échange nucléotidique essentielle à l’activation de Rac1.

3.2. La communication entre ARF1 et Rac1

Sachant qu’un lien existe entre ARF1 et Rac1, nous nous sommes intéressés au mécanisme moléculaire régissant cette régulation. Considérant qu’ARF1 exerce une influence sur l’activation de Rac1, on peut penser qu’ARF1 puisse réguler Rac1 de deux manières : directement, ou via des protéines intermédiaires influençant l’activité de Rac1.

Afin de vérifier la première hypothèse, nous avons étudié l’interaction entre ces 2 protéines. La dimérisation entre GTPases a précédemment été reportée, notamment au niveau des homodimères d’ARF1 (147) et de Rac1 (264). Dans notre modèle, ARF1 et Rac1 ont montré la capacité de former un hétérodimère en interagissant de manière directe, évoquant la possibilité d’ARF1 de réguler Rac1 via une interaction physique modifiant la conformation de cette dernière. Toutefois, cette association n’était pas modulable par la stimulation à
l’EGF, supportant la seconde hypothèse stipulant qu’ARF1 pourrait plutôt réguler l’activité de Rac1 en influençant des protéines intermédiaires responsables de son activation. Dans cette optique, le complexe ARF1/Rac1 pourrait permettre le recrutement de protéines nécessaires à l’activité de Rac1 en un multi-complexe.

La collaboration entre GTPases peut réguler les fonctions cellulaires de manière coopérative ou antagoniste (265). À ce jour, les études des voies de signalisation impliquant un lien fonctionnel entre les ARF et Rac1 ont principalement été menées sur ARF6 (266). Un article récent sur Arl4A, un autre membre de la famille des ARF, identifie également cette protéine en tant que modulateur de l’activité de Rac1 (267). Dans ces deux cas, la collaboration entre les GTPases semble être réalisée par le biais d’un pont signalétique formé par ARNO, une ARF GEF, ainsi que par le complexe Dock180/ELMO, une Rac GEF (266,267). Par analogie, la proximité d’ARF1 et Rac1 observée dans la présente étude pourrait promouvoir la formation d’un tel complexe permettant le recrutement d’une Rac GEF activant Rac1. Cette théorie expliquerait également le mécanisme par lequel la déplétion d’ARF1 bloque l’activité de Rac1, en empêchant l’activation de Rac1 par sa Rac GEF.

3.3. ARF1 dans le remodelage du cytosquelette d’actine

IRSp53 est connue comme une protéine chaperonne permettant l’interaction indirecte entre Rac1 et WAVE2 nécessaire à la formation d’un réseau de filaments d’actine. Dans ce contexte, des expériences in vitro ont montré que le recrutement et l’activation de WAVE par Rac1 sont significativement augmentés en présence d’ARF1 (268). Il semblerait donc qu’ARF1 agisse en tant que modulateur coopératif des fonctions de Rac1. En accord avec cette idée, l’expression d’ARF1, dans notre modèle d’étude, est essentielle à l’interaction entre Rac1 et IRSp53 ainsi qu’à la translocation de ce complexe vers les protrusions membranaires. De façon intéressante, la surexpression de la Rac GEF Tiam1 dans les fibroblastes de souris provoque elle aussi une augmentation de l’interaction IRSp53/Rac1 ainsi qu’une relocalisation d’IRSp53 aux lamellipodes (269). Considérant que les MDA-
MB-231 surexpriment Tiam1 de façon endogène (270,271), la similitude de ces résultats renforce la théorie où l’activation de Rac1 pourrait être régulée par le recrutement ARF1-dépendant d’une Rac GEF.

Les études réalisées sur IRSp53 suggèrent que des interactions intramoléculaires entre le domaine IMD et le domaine SH3 de la protéine la place dans un état d’auto-inhibition intrinsèque. Il a de plus été démontré que la liaison de Cdc42-GTP à IRSp53 libère cette dernière de cet état d’inhibition, lui permettant ainsi de former un complexe avec Mena, une protéine importante dans la formation de filopodes (272). Par analogie, on peut penser que la liaison de Rac1 à IRSp53 soit également nécessaire au bon repliement d’IRSp53, exposant ainsi ses domaines importants pour ses fonctions effectrices. Considérant que le domaine IMD d’IRSp53 est à la fois important pour sa liaison aux membranes tout comme sa liaison à Rac1, on peut supposer que Rac1-GTP, en se fixant au domaine IMD, le rend disponible pour sa liaison aux lipides. Conformément à cette théorie, nous remarquons dans la présente étude que la déplétion ou l’inactivation de Rac1 empêche IRSp53 de transloquer aux protrusions membranaires.

Il est intéressant de noter que l’habileté d’IRSp53 à lier Rac1, naturellement faible, est significativement augmentée lors de l’interaction préalable d’IRSp53 à WAVE2 (273). Puisqu’une interaction EGF-dépendante entre Rac1 et IRSp53 est observée dans notre étude et que la déplétion d’ARF1 bloque la formation de ce complexe, il est donc fort possible que l’expression d’ARF1 soit nécessaire à la formation du complexe IRSp53/WAVE2 préalable à l’interaction avec Rac1. Ainsi, ARF1 serait responsable de l’assemblage du complexe Rac1-GTP/IRSp53/WAVE. De plus, considérant qu’une translocation de WAVE2 à la membrane, alors qu’elle n’est pas complexée aux autres protéines, n’active pas la polymérisation de l’actine (243), il pourrait être suggéré que le complexe induit un changement conformationnel dans WAVE2 la rendant plus accessible pour l’activation de Arp2/3 aux sites de nucléation d’actine. Dans cette optique, ARF1 serait ainsi considéré comme un modulateur important de l’activation de WAVE2 en permettant un assemblage séquentiel et fonctionnel du complexe Rac1-GTP/IRSp53/WAVE2.
3.4. Conclusion

En conclusion, nous avons démontré qu’ARF1 régule la migration des cellules hautement cancéreuses du cancer du sein. De par son contrôle exercé sur Rac1, ARF1 permet la migration cellulaire dépendante de l’EGF. Puisqu’ARF1 est surexprimée dans plusieurs lignées cellulaires du cancer du sein, ces découvertes pourraient offrir une nouvelle cible thérapeutique dans le développement de thérapies ciblées contre le cancer du sein triple-négatif.

3.5. Perspectives

Les résultats de recherche discutés dans ce mémoire ont permis de mettre en lumière le rôle d’ARF1 dans la migration cellulaire. Cette connaissance évoque de nouvelles questions de recherche qui pourraient être exploitées dans le futur.

3.5.1. La modulation de l’état d’activation d’ARF1 et Rac1

En conditions physiologique, on retrouve principalement ARF1 sous sa forme liée au GTP dans les MDA-MB-231 (184). Par une approche d’ARNi, nous avons démontré que l’expression protéique d’ARF1 est nécessaire à l’activation de Rac1 par une stimulation à l’EGF. Toutefois, cette méthode seule ne permet pas de distinguer si l’effet d’inhibition de la migration est dû à l’absence de la GTPase ou à la diminution des niveaux d’ARF1-GTP. Ainsi, il serait intéressant de déterminer si la simple inactivation d’ARF1 permet de reproduire les résultats obtenus dans la présente étude. L’utilisation d’un mutant dominant négatif d’ARF1 pourrait permettre de vérifier si les effets obtenus par déplétion sont le résultat de l’inactivation d’ARF1 ou si la présence physique d’ARF1 joue également un rôle dans la signalisation de Rac1 en servant de site de recrutement protéique, par exemple, pour une ARF GEF.
3.5.2. La modulation de l’interaction ARF1/Rac1

La présente étude a permis de mettre évidence la coopération d’ARF1 et Rac1 dans la régulation de la migration cellulaire. Le résultat concernant l’interaction directe entre ARF1 et Rac1 suggère une modulation potentielle de la fonction de ces protéines via l’inhibition de cette interaction. La caractérisation des domaines d’interaction serait donc une perspective intéressante à ce projet puisqu’elle pourrait permettre le développement d’inhibiteurs, tels que de petits peptides, empêchant l’interaction des deux GTPases et donc des fonctions qui en dépendent.

L’Arfaptine est une protéine exprimée de façon ubiquitaire et connue pour sa capacité de lier spécifiquement certaines ARFs et Rac1 avec des affinités similaires. Sa liaison aux ARF est dépendante de leur forme liée au GTP et l’affinité pour ARF1 est 10 fois supérieure à ARF6 (274). L’Arfaptine possède toutefois la possibilité de lier Rac1 peu importe sa forme liée au GDP ou au GTP, et celle-ci semble spécifique aux autres membres de la famille des Rho GTPases. Des études de compétition ont montré que la liaison de Rac1 ou des ARFs à l’Arfaptine était mutuellement exclusive, démontrant que les deux GTPases possèdent, au moins en partie, le même site de liaison à l’Arfaptine (275). Ainsi, en séquestrant à la fois ARF1-GTP et Rac1 de façon spécifique, l’Arfaptine semble être un outil intéressant quant à la caractérisation des domaines d’interaction ou pour l’inhibition de la formation du complexe ARF1/Rac1. Une surexpression de cette protéine dans les cellules NIH 3T3 a déjà permis de démontrer une inhibition d’une fonction d’ARF1 en inhibant le transport vésiculaire (276). Il est donc fort possible que la surexpression de l’Arfaptine dans notre modèle puisse également supprimer des fonctions d’ARF1, telle que la migration cellulaire.

3.5.3. L’implication des GEFs

En permettant l’activation d’ARF1 et de Rac1, toutes deux nécessaires à la migration cellulaire, les GEFs sont d’une importance capitale dans notre modèle d’étude. Il a d’ailleurs
été démontré que la surexpression de GEP100, une ARF GEF, permet à des cellules dérivées d’adénocarcinomes mammaires non-invasifs d’acquérir un phénotype invasif. Ainsi, il serait important d’étudier le profil d’expression des différentes ARF GEFs et des Rac GEFs dans les MDA-MB-231 afin de déterminer lesquelles pourraient être impliquées dans la voie de signalisation permettant à ARF1 de contrôler la migration cellulaire. La déplétion ou l’utilisation de mutants de GEFs, tant pour ARF1 que Rac1, pourrait permettre de déterminer les GEFs importantes dans ce processus et d’ainsi établir de nouvelles cibles pour moduler l’activité des GTPases.

Il est intéressant de noter que les inhibiteurs actuellement disponibles en laboratoire agissent souvent en empêchant l’interaction des ARFs avec une ou plusieurs de ses GEFs. Considérant que certaines GEFs sont redondantes pour plusieurs ARFs, la découverte des GEFs impliqués dans le processus de migration permettrait de développer des petits peptides bloquant l’interaction spécifique des ces GEFs envers leur effecteur, ce qui limiterait les effets secondaires liés à l’inactivation de certaines ARFs. De plus, puisque plusieurs ARFs peuvent être impliqués de façon synergie dans la migration cellulaire, l’inhibition d’une GEF jouant sur plusieurs isoformes pourrait permettre d’obtenir des effets plus puissants que ceux obtenus par l’inhibition d’une seule isoforme.

3.5.4. L’implication des isoformes d’ARF1

Les isoformes ARF1 et ARF3 possèdent plus de 96% d’homologie et présentent plusieurs fonctions redondantes. Notamment, ces isoformes partagent plusieurs effecteurs communs impliqués dans la motilité cellulaire (274,277,278) et sont activées par les mêmes GEFs au niveau du Golgi. Considérant ce fait, il est possible qu’ARF3 exerce également un contrôle sur la voie de signalisation régulant la migration cellulaire. Pour cette raison, il serait pertinent d’étudier le profil d’expression des différentes isoformes des ARFs dans les MDA-MB-231 dans le but d’étudier leurs fonctions dans le contexte de la présente étude. L’implication d’ARF6 dans cette lignée cellulaire, par exemple, a déjà été reportée pour
son importance dans la migration cellulaire suite à une stimulation à l’EGF (279). Ainsi, il serait important de vérifier la contribution d’ARF6 sur les protéines en aval d’ARF1 de façon à déterminer si les deux isoformes s’influencent via une voie de signalisation commune.

3.5.5. **La régulation de l’activité de WAVE**

Nous avons démontré que la liaison d’IRSp53 à Rac1 est nécessaire à la translocation de ce complexe. Cela laisse penser que l’inhibition de la migration observée dans cette étude est due à l’impossibilité des protéines du complexe Rac1-GTP/IRSp53/WAVE2 d’agir au site de polymérisation de l’actine. Il serait cependant intéressant d’étudier si cette inhibition provient réellement d’un défaut de localisation, ou si l’assemblage du complexe en tant que tel est nécessaire à l’activité des protéines qui y sont impliquées.

Une controverse existe quant au mode de régulation de l’activité de WAVE. Certains auteurs proposent que WAVE existe sous une forme constitutivement active et que la fonction de celle-ci est régulée de façon spatiale (280, 281). D’autres études suggèrent plutôt que l’activation de WAVE se fait suite à la liaison de Rac1 sous sa forme GTP (243, 282). Afin de vérifier la situation s’appliquant à notre modèle, des essais de polymérisation de l’actine pourraient être réalisés à partir de lysats cellulaires de MDA-MB-231. Cette technique permettrait d’examiner l’activité de Arp2/3, ce qui témoignerait de façon indirecte de l’activité de WAVE2. Cette expérience servirait à déterminer si l’inhibition de l’expression endogène d’ARF1 permet d’empêcher l’activation de WAVE2 ou si cette dernière est constitutivement activée. Ces effets pourraient être comparés aux effets d’inhibition de l’expression endogène de Rac1, ou d’IRSp53 dont la déplétion est connue pour bloquer l’activation d’Arp2/3 dans une souche cellulaire A431 dérivée du carcinome épidermoïde humain (257).
3.5.6. ARF1 dans la formation de métastases

Nous avons démontré l’implication essentielle d’ARF1 dans la migration cellulaire. Ce processus constituant une étape limitante dans la formation de métastases, une perspective intéressante de ce projet serait d’évaluer l’implication d’ARF1 dans la dissémination tumorale en évaluant d’autres caractéristiques importantes du processus de carcinogénèse telles que l’angiogénèse, l’adhésion, l’EMT et l’invasion. Par exemple, des essais de dégradation de matrigel, en présence ou non d’ARF1, pourraient permettre d’évaluer la capacité des cellules à envahir les tissus environnant via leur sécrétion de MMP. Des études de survie cellulaire, tant au niveau des mécanismes leur permettant d’échapper à l’apoptose ou de résister à l’anoïkose, pourraient quant à elles nous renseigner sur la capacité des cellules à se propager dans l’organisme via le système circulatoire.

En ce qui a trait aux modèles animales, des études ont déjà permis de démontrer l’importance d’ARF6 dans la croissance tumorale et la formation de métastases in vivo (283). Par une approche similaire, la production de cellules exprimant de manière stable un shRNA inductible d’ARF1 pourrait permettre l’étude de l’implication d’ARF1 dans la formation de métastases in vivo. L’injection ces cellules dans la veine latérale de la queue de souris athymiques, par exemple, permettrait d’induire la formation de tumeurs et d’évaluer l’effet de l’inhibition de l’expression d’ARF1 dans la formation de métastases au poumon.

Finalement, afin de valider ARF1 en tant que cible pharmacologique impliquée dans le caractère malin de certains cancers du sein hautement invasifs, la surexpression protéique d’ARF1 pourrait être étudiée dans des cellules épithéliales mammaires normales, telles que les MCF10a par exemple. Ainsi, les expériences suggérées dans la présente section pourraient tous être répétés de façon à vérifier si la surexpression d’ARF1 chez les MCF10a permet à ces cellules non-cancéreuses d’acquérir un phénotype ressemblant à celui des MDA-MB-231.
3.5.7. ARF1 dans les autres types de cancer

La recherche scientifique analysant l’implication d’ARF1 dans le cancer a surtout été axée envers le cancer du sein. Toutefois, une récente étude a reporté la surexpression d’ARF1 dans le carcinome gastrique humain, ayant pour conséquence une augmentation de la prolifération cellulaire, de la migration et de l’invasion (183). Bien qu’il s’agisse d’un tout autre type de cancer, il est possible que les conclusions tirées dans ce présent mémoire puissent être, au moins en partie, généralisables à certains autres types de cancer surexprimant ARF1, comme il est le cas dans le cancer gastrique. Afin de vérifier l’implication de cette GTPase dans plusieurs types de cancer, il serait intéressant de caractériser son expression dans des échantillons tissulaires provenant de différents types de cancer, à l’aide de micromatrices tissulaires par exemple. Sachant cela, il serait alors possible de comparer les voies de signalisation empruntées par ARF1 selon le type de cancer et d’ainsi déterminer si le développement d’une thérapie pharmacologique ciblant ARF1 puisse être bénéfique pour plusieurs indications.
BIBLIOGRAPHIE

of Rac-dependent p38 and JNK signaling. The Journal of biological chemistry 284, 12956-12965

42. Perou, C. M. (2011) Molecular stratification of triple-negative breast cancers. The oncologist 16 Suppl 1, 61-70

112. McIntyre, E., Blackburn, E., Brown, P. J., Johnson, C. G., and Gullick, W. J. (2010) The complete family of epidermal growth factor receptors and their ligands are co-
ordinately expressed in breast cancer. *Breast cancer research and treatment* **122**, 105-110

exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. *Science signaling* **5**, ra71

