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RÉSUMÉ 

 

La sclérodermie (sclérose systémique, ScS) est une maladie auto-immune du tissu conjonctif 
caractérisée  par  l’épaississement  de  la  peau,  l’apparition  spontanée de lésions cicatricielles, des 
maladies  des  vaisseaux  sanguins,  divers  degrés  d’inflammation,  en  association  avec  un  système  
immunitaire hyperactif. La pathogénèse exacte de cette maladie est inconnue et aucun traitement 
approprié   n’est   disponible.   La fibrose est un élément distinctif de la maladie de ScS et est 
considérée   résulter   d’une   incapacité   à  mettre   fin   de   façon   appropriée   à   la   réponse   normale   de  
réparation   des   plaies.   L’analyse   histologique   du   stade   initial   de   la   ScS   révèle   une   infiltration  
périvasculaire de cellules mononucléaires dans le derme, associée à une synthèse accrue de 
collagène dans les fibroblastes environnants. Ainsi, la compréhension des moyens de contrôler le 
stade inflammatoire de la ScS pourrait être bénéfique pour contrôler la progression de la maladie 
peu après son apparition. La mPGES-1 est une enzyme inductible qui agit en aval de la cyclo-
oxygénase (COX) pour catalyser spécifiquement la conversion de la prostaglandine (PG) H2 en 
PGE2. La mPGES-1   joue  un   rôle  clé  dans   l’inflammation,   la  douleur  et   l’arthrite;;   toutefois,   le  
rôle de la mPGES-1 dans les mécanismes de fibrose, spécifiquement en rapport avec la ScS 
humaine, est inconnu. Mon laboratoire a précédemment montré que les souris à mPGES-1 nulle 
sont résistantes à la fibrose   cutanée   induite   par   la   bléomycine,   à   l’inflammation,   à  
l’épaississement  cutané,  à  la  production  de  collagène  et  à  la  formation  de  myofibroblastes.  Sur  la  
base  de  ces  résultats,  j’ai  formulé  l’hypothèse  que  l’inhibition pharmacologique de la mPGES-1 
régulera à la baisse la production de médiateurs pro-inflammatoires et pro-fibreux au cours de la 
maladie   de   ScS.   Afin   d’explorer   le   rôle   de   la   mPGES-1   dans   l’inflammation   et   la   fibrose  
associées  à   la  maladie  de  ScS,   j’ai  d’abord  examiné   l’expression  de   la  mPGES-1 dans la peau 
normale comparativement à des biopsies de peau extraites de patients atteints de ScS. Mes 
résultats ont montré que la mPGES-1 est nettement élevée dans la peau de patients atteints de 
ScS en comparaison avec la peau humaine normale. De plus, les niveaux de PGE2 dérivés de la 
mPGES-1 étaient également significativement plus élevés dans les fibroblastes cutanés isolés de 
patients  atteints  de  ScS  comparativement  aux  fibroblastes  isolés  de  témoins  sains.  J’ai  également  
étudié  l’effet  de  l’inhibition pharmacologique de la mPGES-1  sur  l’expression  de  marqueurs  pro-
fibreux.   Mes   études   ont   montré   que   l’expression   de   médiateurs   pro-fibreux clés (α-SMA, 
endothéline-1, collagène de type 1 et facteur de croissance du tissu conjonctif (FCTC)) est élevée 
dans les fibroblastes cutanés ScS en comparaison avec les fibroblastes cutanés normaux. Un 
traitement avec un inhibiteur de la mPGES-1 a eu pour effet de réduire significativement 
l’expression  de  l’α-SMA,  de  l’endothéline-1, du collagène de type 1 mais pas du FCTC dans les 
fibroblastes  ScS,  sans  effet  significatif  sur  les  fibroblastes  normaux.  J’ai  en  outre  examiné  l’effet  
de   l’inhibition   de   la   mPGES-1 sur des cytokines pro-inflammatoires clés impliquées dans la 
pathologie de la ScS, incluant IL-6, IL-8 et MCP-1.  L’inhibition  pharmacologique  de  la  mPGES-
1 a eu pour effet de réduire significativement les niveaux de production de cytokines pro-
inflammatoires IL6, IL8 et MCP-1 dans les fibroblastes avec lésion ScS comparativement à des 
fibroblastes non traités. De plus, les patients atteints de ScS ont présenté des niveaux plus élevés 
de p-AKT, de p-FAK et de p-SMAD3 en comparaison avec les fibroblastes cutanés normaux. 
L’inhibiteur  de  la  mPGES-1 a pu réguler à la baisse cette expression accrue  de p-AKT et de p-
FAK, mais pas de p-SMAD3,  dans  les  fibroblastes  ScS.  Ces  résultats  ont  suggéré  que  l’inhibition  
de la mPGES-1 pourrait être une méthode viable pour réduire le développement de sclérose 
cutanée et constituent une cible thérapeutique potentielle pour contrôler les mécanismes fibreux 
et inflammatoires associés à la pathophysiologie de la maladie de ScS. 

L’un   des   autres   processus   critiques   reliés   à   l’évolution de la réponse fibreuse associée à la 
maladie de ScS est la différenciation des fibroblastes en des cellules activées spécialisées 
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appelées myofibroblastes, responsables de déclencher une signalisation adhésive excessive et le 
dépôt excessif de matrice extracellulaire,   conduisant   à   la   destruction   de   l’architecture   de  
l’organe.  Ainsi,  l’identification  des  facteurs  endogènes  qui  initient/  favorisent  la  différenciation  
fibroblaste-myofibroblaste peut mener à des stratégies thérapeutiques prometteuses pour 
contrôler  l’excès  de  signalisation  adhésive  et  de  fibrose  associé  à  la  maladie  de  ScS.  Des  études  
antérieures  dans  le  domaine  de  la  biologie  du  cancer  ont  suggéré  que  l’éphrine  B2,  une  protéine  
transmembranaire appartenant à la famille des éphrines, est impliquée dans la signalisation 
adhésive   et   le   remodelage   extracellulaire.   Cependant,   son   rôle   dans   la   fibrose   n’a   jamais   été  
exploré.  Dans  la  deuxième  partie  de  mon  étude,  j’ai  donc  étudié  le  rôle  de  l’éphrine  B2  dans  la  
fibrose.  Mes  études  montrent  que  l’expression  de  l’éphrine  B2  est  significativement  augmentée  
dans la peau humaine ScS comparativement à la peau normale. Plus important encore, le 
traitement in vitro de   fibroblastes   de   la   peau   humaine   normale   avec   de   l’éphrine   B2  
recombinante est capable de transformer des fibroblastes en cellules myofibroblastiques 
manifestant toutes les caractéristiques myofibroblastiques typiques, incluant la formation accrue 
de  fibres  de  tension,  des  adhérences  focales,  l’activation  accrue  de  la  FAK,  un  accroissement  de  
l’expression  et  de  la  migration  de  fibroblastes  et  de  leur  adhérence  à  la  fibronectine  à  la  fois  chez  
les   fibroblastes   cutanés   normaux   et   ScS.   En   outre,   j’ai   traité   des   souris   avec   de   l’éphrine   B2  
recombinante et montré que ces souris ont développé une fibrose cutanée significative associée à 
une épaisseur dermique et à une synthèse de collagène augmentées, une teneur en 
hydroxyproline (teneur en collagène) accrue et un nombre accru de myofibroblastes exprimant 
de   l’α-SMA, une activation augmentée de la FAK et de marqueurs pro-fibreux incluant le 
collagène de type 1 et le FCTC. 

Dans  l’ensemble,  mes  études  ont  identifié  deux  médiateurs  endogènes  cruciaux  impliqués  dans  la  
propagation  de  l’inflammation  et  de  la  fibrose  associées  à  la  maladie  de  ScS.  L’inhibition  de  la  
mPGES-1  pourrait  représenter  une  bonne  stratégie  alternative  pour  contrer  l’inflammation  et   la  
fibrose au moins durant les stades précoces de la maladie de ScS. De plus, une signalisation 
excessive   de   l’éphrine B2 favorise la signalisation adhésive et fibreuse en déclenchant la 
différenciation  de  fibroblastes  en  myofibroblastes  par  l’activation  de  la  voie  de  signalisation  de  
la  FAK.  Ainsi,  l’inhibition  d’éphrine  B2  bloquera  la  formation  de  fibroblastes-myofibroblastes et 
régulera à la baisse la fibrose associée à la maladie de ScS. En somme, la mPGES-1  et  l’éphrine  
B2 semblent toutes deux des cibles attrayantes pour le traitement de la ScS et des troubles 
fibreux qui y sont reliés. 

 

Mots-clés. Sclérose systémique, Microsomal prostaglandin synthase-1 (mPGES-1), Fibroblaste, 
Myofibroblaste, Éphrine B2, Éphrine B4. 
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                                                                SUMMARY 

Scleroderma (Systemic sclerosis, SSc) is an autoimmune disease of the connective tissue 
featuring skin thickening, spontaneous scarring, and blood vessel disease, varying degrees of 
inflammation, associated with an overactive immune system. The exact pathogenesis of this 
disease is unknown and there is no appropriate treatment available. Fibrosis is a hallmark of SSc 
disease and is considered to arise due to an inability to appropriately terminate the normal wound 
repair response. Histological analysis of the initial stage of SSc reveals perivascular infiltrates of 
mononuclear cells in the dermis, which is associated with increased collagen synthesis in the 
surrounding fibroblasts. Thus understanding how to control the inflammatory stage of SSc may 
be of benefit in controlling the progression of early onset disease. mPGES-1 is an inducible 
enzyme that acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion 
of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key role in inflammation, pain and 
arthritis; however, the role of mPGES-1 in fibrotic mechanisms especially with respect to human 
SSc is unknown. My laboratory has previously shown that mPGES-1-null mice are resistant to 
bleomycin-induced skin fibrosis, inflammation, cutaneous thickening, collagen production and 
myofibroblast formation. Based on these results I hypothesized that pharmacological inhibition 
of mPGES-1 will downregulate the production of pro-inflammatory and pro-fibrotic mediators 
during SSc disease. To explore the role of mPGES-1 in inflammation and fibrosis associated 
with SSc disease, I first investigated the expression of mPGES-1 in normal skin compared to 
skin biopsies extracted from SSc patients. My results showed that mPGES-1 is markedly 
elevated in SSc skin compared to normal human skin. In addition, the levels of mPGES-1-
derived PGE2 were also significantly higher in skin fibroblasts isolated from SSc patients 
compared to fibroblasts isolated from healthy controls. I further investigated the effect of 
pharmacological inhibition of mPGES-1 on the expression of pro-fibrotic markers. My studies 
showed the expression of key pro-fibrotic  mediators  (α-SMA, endothelin-1, collagen type 1 and 
connective tissue growth factor) are elevated in SSc skin fibroblasts compared to normal skin 
fibroblasts.  Treatment with mPGES-1 inhibitor resulted in significant reduction in the 
expression  of  α-SMA, endothelin-1, collagen type 1 but not CTGF in SSc and normal fibroblasts. 
Further, I investigated the effect of mPGES-1 inhibition on key pro-inflammatory cytokines 
implicated in SSc pathology including IL-6, IL-8 and MCP-1. Pharmacological inhibition of 
mPGES-1 resulted in significant reduction in the production levels of pro-inflammatory 
cytokines, IL6, IL8 and MCP-1 in SSc-lesioned fibroblasts compared to untreated fibroblasts. In 
addition, SSc patients exhibited higher levels of p-AKT, p-FAK and p-SMAD3 compared to 
normal skin fibroblasts. mPGES-1 inhibitor was able to down regulate this increased expression 
of p-AKT, p-FAK but not p-SMAD3 in SSc fibroblasts. These results suggested that inhibition 
of mPGES-1 may be a viable method to alleviate the development of cutaneous sclerosis and is a 
potential therapeutic target to control fibrotic and inflammatory mechanisms associated with the 
pathophysiology of SSc disease. 

One of the other critical processes associated with the evolution of fibrotic response associated 
with SSc disease is the differentiation of fibroblasts into specialized activated cells called 
myofibroblasts responsible for triggering excessive adhesive signaling and deposition of 
excessive extracellular matrix (ECM) leading to the destruction of organ architecture. Thus 
identifying endogenous factors which initiate/promote fibroblast-myofibroblast differentiation 
can lead to promising therapeutic strategies to control excessive adhesive signaling and fibrosis 
associated with SSc disease. Previous studies in cancer biology have suggested that ephrin B2, a 
transmembrane protein belonging to the family of ephrins, is involved in adhesive signaling and 
extracellular remodeling. However its role in fibrosis has never been explored. Therefore, in 
second part of my study, I investigated the role of ephrin B2 in fibrosis. My studies show ephrin 
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B2 expression is significantly enhanced in human SSc skin versus normal skin.  Most 
importantly, in vitro treatment of normal human skin fibroblasts with recombinant ephrin B2 is 
able to transform fibroblasts into myofibroblastic cells exhibiting all typical myofibroblastic-
characteristics including increased stress fibre formation, focal adhesions, increased activation of 
FAK, increased expression of  and enhanced fibroblast migration and adhesion to fibronectin in 
both normal and SSc skin fibroblasts. Further, I treated mice with recombinant ephrin B2 and 
showed that these mice developed significant skin fibrosis associated with enhanced dermal 
thickness and collagen synthesis, increased hydroxyproline content (collagen content) and 
increased   number   of   α-SMA-expressing myofibroblasts, enhanced activation of FAK and pro-
fibrotic markers including type-I collagen and CTGF.  

Overall, my studies have identified two crucial endogenous mediators involved in propagating 
inflammation and fibrosis associated with SSc disease. mPGES-1 inhibition may present a good 
alternative strategy to counteract inflammation and fibrosis at least during early stages of SSc 
disease. Further, excessive ephrin B2 signaling promotes adhesive and fibrotic signaling by 
triggering fibroblast to myofibroblast differentiation via activation of the FAK signaling 
pathway. Thus, inhibition of ephrin B2 will block fibroblast-myofibroblast formation and 
downregulate fibrosis associated with SSc disease. Overall, both mPGES-1 and ephrin B2 seems 
to be attractive targets for treatment of SSc and related fibrotic disorders.   

 

Keywords. Systemic sclerosis, Microsomal prostaglandin synthase-1 (mPGES-1), Fibroblast, 
Myofibroblast, Ephrin B2, Ephrin B4. 
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INTRODUCTION

SCLERODERMA (SYSTEMIC SCLEROSIS) 

Scleroderma (Systemic sclerosis, SSc) is a fibroproliferative disorder associated with the 

production and accumulation of excessive fibrous connective tissue [1]. Primary features of SSc 

disease include autoimmunity, inflammation, obliterative vasculopathy and fibrosis. SSc does not 

just affect single organ and it spreads in large area of the skin and one or more internal organs 

such as kidneys, esophagus, heart, and lungs[2].  

SSc has a global distribution. More women suffer from the disease than men[3] . The 

factors behind this gender disposition have not yet been elucidated and the overall incidence rate 

of SSc among adults in America is in the region of 20 for every 1 million persons annually. 

Statistics indicate that there was an increase in this rate between 1943 and 1973 but since then the 

rate has remained more or less constant. It is also reported that the prevalence rate of SSc among 

adults in America has remained more or less constant at 240 per million[4] . The frequency of 

occurrence of SSc in America is higher than that seen in UK, Asia, and continental Europe. There 

are between 75,000 and 100,000 people suffering from SSc in U.S.  There is also a racial factor 

in the incidence and prevalence of SSc. The incidence of SSc is much higher in black women 

than in white women [4] 

SSc is a leading cause of morbidity and case-specific mortality amongst all autoimmune 

rheumatic illnesses. Majority of the morbidity and mortality associated with SSc disease arises 

due to the development of complications that include gastrointestinal, renal, or cardiopulmonary 

diseases. Common organ involvement and manifestations in SSc disease include skin lesions, 
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gastrointestinal manifestations, cardiac involvement, pulmonary arterial hypertension (PAH), 

interstitial pulmonary fibrosis, and renal disease. Skin tightening and subcutaneous thickness may 

be the initial complaint that causes patients to seek for help. Generalized pruritus and cutaneous 

vasculitis are two more common cutaneous presentations where an underlying systemic disease 

may be present and will influence management[5]. Although skin manifestations are one of the 

most important components of clinical diagnosis and classification, studies have shown that life-

threatening complications are independent from skin fibrosis [6]. Gastrointestinal manifestations 

represent the most common organ complications in patients suffering from SSc [7]. It is 

estimated that close to 90% of all patients with SSc manifest some form of gastrointestinal 

involvement with the most common of these being gastro-esophageal manifestations [8]. 

However, most of the gastrointestinal manifestations in patients with SSc disease are non-life 

threatening. Patients who have established SSc usually present with serious small intestine 

involvement causing dilation of small bowel loops leading to frequent bouts of intestinal pseudo-

obstruction. Overgrowth of bacteria in the small intestine can then lead to reduced motility 

causing bloating, diarrhea, weight loss, cachexia, and malnutrition[7]. 

Involvement of the cardiac system is also one of the key determinants of mortality in 

patients with SSc which is largely seen in patients with the diffused cutaneous SSc form of 

systemic sclerosis[1] . It is however difficult to establish the precise percentage of cardiac 

involvement in patients with SSc due to diagnostic limitations[9]. Estimates suggest that the 

percentage of patients with SSc who have pericardial effusions is 35%. Involvement of the 

myocardium in patients with SSc has been attributed to fibrosis, ischemia, and myocarditis[1]. 

PAH is yet another organ complication that may occur in patients with SSc. PAH refers to 

elevated mean pulmonary artery pressure exceeding 25 mmHg when a person is resting, the right 

heart is catheterized and the pulmonary capillary wedge pressure (PCWP) is normal. This 
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complication occurs in both the limited systemic sclerosis (lcSSc) and the diffuse cutaneous 

sclerosis (dcSSc) forms of SSc and is a major cause of death in patients with SSc [10]. 

Interstitial pulmonary fibrosis has also been reported in patients with systemic fibrosis. 

The main types of interstitial lung disease observed in patients with SSc are the non-specific 

interstitial pneumonia (NSIP) and the usual interstitial pneumonia (UIP). Development of 

interstitial lung disease in people with SSc occurs insidiously and usually culminates in 

irreversible fibrosis of the lung.  Reduced lung function is witnessed in only 15% of patients with 

SSc and this reduction usually occurs during the initial 4 years of disease [10] . The main types of 

renal manifestations that afflict patients with SSc are inflammatory renal pathology, chronic 

kidney disease, and scleroderma renal crisis (SRC). The most significant renal complication in 

SSc is SRC and it is seen in 10-15% of patients who have dcSSc. It is however very uncommon 

in patients with lcSSc as only 1-2% get to have SRC [11]. There is a high mortality of patients 

with SSc due to SRC [12]. Some evidence suggests that SRC may be triggered by intake of 

corticosteroids [13]. 

Subtypes of SSc disease 

Systemic sclerosis is divided into specific mutually exclusive subsets because of their 

variable prognostic and diagnostic characteristics. The 2 main subsets of SSc are the limited 

systemic sclerosis (lcSSc) and the diffuse cutaneous sclerosis (dcSSc). The 2 subtypes are 

distinguished by the degree and scope of skin thickening and susceptibility to visceral 

involvement[14]. The autoantibody profile is also used to distinguish between the limited and 

diffuse disease forms[15] . 

Limited Systemic Sclerosis (LcSSc) 

In the lcSSc form of SSc disease, fibrosis is largely limited to the distal portions of the elbows or 

knees[16] . Skin involvement may also be witnessed in the face. Progress of fibrosis is usually 
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slow. Patients with this form of disease have a somewhat smaller risk of developing serious 

involvement of the interstitial lung [17]. 

Table 1: Differences between Limited cutaneous sclerosis (lcSSc) and Diffuse cutaneous 

sclerosis (dcSSc) [9] 

Limited cutaneous sclerosis (lcSSc) Diffuse cutaneous sclerosis (dcSSc) 

Fibrosis limited to the distal portions of the 

elbows or knees 

Fibrosis limited to the proximal portions of the 

trunk and extremities 

Heart involvement is minimal Heart involvement is severe in 10% of patients 

Interstitial lung disease is severe in 15% of 

patients 

Interstitial lung disease is severe in 15% of 

patients 

PAH is seen in 10-15% of patients PAH is seen in 5-10% of patients 

Minimal kidney involvement  Kidney involvement is severe in 10-15% of 

patients 

Concurrent primary biliary cirrhosis in 6-8% of 

patients 

Large joint contractures 

The overall survival rate is better than that of 

dcSSc 

 

  

Diffuse cutaneous sclerosis (dcSSc) 

In the dcSSc form of SSc, fibrosis is largely limited to the proximal portions of the trunk 

and extremities [16]. Patients with dcSSc stand a higher risk of getting serious heart and kidney 

involvement than patients with the lcSSc form of disease [18] . Table 1 above depicts the primary 

distinguishing features between the 2 forms of SSc.  



 
 

 5 

The main disadvantage of this subset classification method is that patients who have the 

early disease but show no visceral involvement and having or lacking minimal skin thickening fit 

nowhere in this scheme. To address this shortcoming, a new scheme for classifying subsets of 

SSc was proposed. In this scheme, it is possible to classify patients with early disease based on 

particular   autoantibodies,   changes   in   the   nail   fold   capillary,   and   Reynaud’s   phenomenon. (An 

exaggeration of vasomotor responses to cold or emotional stress causes skin discoloration). 

  They can be grouped in the limited form of systemic sclerosis also termed as pre-

scleroderma [16] . However, validation of the proposed scheme is yet to be done [15] .  

Barnett et al [19] and  Ferri et al [20] describe yet another scheme that can be used to 

subtype systemic sclerosis. In this scheme, 3 subtypes of systemic sclerosis have been described 

and these include limited cutaneous sclerosis, intermediate cutaneous sclerosis, and diffuse 

cutaneous sclerosis. In this scheme, the main feature of the limited cutaneous sclerosis subset is 

that the thickening of the skin is limited to digits and facial involvement may be present or 

absent. In intermediate cutaneous sclerosis, there is skin involvement in the limbs while in the 

diffuse cutaneous sclerosis; there is skin involvement in the trunk. This method of classifying 

subsets of SSc is better because its discrimination power is higher than that based on only 2 

subsets [21]. Methods that only encompass skin changes and fail to factor in autoantibodies and 

imaging characteristics are inadequate and can hardly be used for the optimal classification of 

subsets of SSc. Classification of SSc can also be done based on the Preliminary Criteria for the 

Classification of SSc which was formulated by The American College of Rheumatology (ACR). 

This is a diagnostic criteria which has however been shown to be unsuitable for the diagnosis of 

SSc [10]. 
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Symptoms 

Reynaud’s   phenomenon   is   one   of   the   earliest   symptoms   observed   in   SSc.   Reynaud’s  

phenomenon is a condition in which the toes and fingers undergo vasospasm due to cold. It 

occurs periodically, is reversible and manifests long before other signs of disease are observed 

[17]. In  Reynaud’s  phenomenon,   the   toes,   fingers  and  other  extremities  become  discolored  and  

may cause acral ulcer upon persistence [22] . Other common symptoms of SSc are telangiectases 

or obviously dilated blood vessels, sclerodactyly, vasculitis, and calcinosis in the hands, fingers 

and bony regions. Calcinosis refers to deposits of calcium in these areas[23]. 

Other symptoms include ulceration which may result in dry gangrene and fingertip loss, 

thickening of the skin, changes in the nail fold capillaries, SRC, malignant hypertension, PAH, 

and gastric antral vascular ectasia [3] . Symptoms are also dependent on the type and extent of 

organ involvement. Patients with renal involvement and specifically SRC may show non-specific 

symptoms such as fever, headache, dyspnea, and malaise[3].  Acute renal failure, pulmonary 

edema, hypertensive retinopathy and encephalopathy may be symptomatic in patients with end-

organ damage. Coagulopathy is an uncommon symptom but thrombocytopenia and 

microangiopathic hemolytic anemia are common, occurring in 50% and 60% of patients 

respectively[23] . 

Patients with SRC and SSc also manifest reduced significant systemic hypertension and 

reduced renal function [11] . Dry cough, dyspnea, and rare hemoptysis and chest pain are the 

main symptoms in patients with SSc who have interstitial pulmonary fibrosis. Pulmonary arterial 

hypertension (PAH) can be asymptomatic until it becomes very advanced. A common symptom 

is dyspnea while less common symptoms are syncope and chest pain. Symptoms of patients with 

gastrointestinal involvement include bloating, diarrhea, and weight loss, cachexia, malabsorption, 
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and malnutrition in severe cases. Classic symptoms are bowel pattern changes accompanied with 

abdominal distension and regular loose, floating and foul-smelling stools [7].   

Etiology  

SSc disease is highly heterogeneous [17] and the exact etiology of this debilitating disease 

is largely unknown [15] . Possible causative agents of SSc include viruses such as 

cytomegalovirus (CMV), exposure to silica, vinyl chloride, and organic solvents, and drugs [24] . 

In particular, Namboodiri et al [25] and Lunardi et al  [26] have detected antibodies against CMV 

in patients with SSc. These antibodies do not only enhance endothelial cell apoptosis but also 

activate fibroblasts in cell culture assays, implying that they play a direct role in the damage of 

tissues in SSc. In addition, human CMV infection also causes an increase in the production of the 

connective tissue growth factor (CTGF) which is associated with the activation of fibroblasts and 

has been shown to play a role in pathological fibrosis[27]. 

Possible Genetic Association 

There is a genetic association with SSc. SSc is inherited but not in a Mendelian fashion. 

There is a low disease concordance rate that does not exceed 5% among both dizygous and 

monozygous twins. The disease is seen more in families and less in the general population. 

Among families, the rate of the disease is 1.6% and this far exceeds the rate among the general 

population which is just 0.026% [17] . A positive family history of SSc is the biggest risk factor 

for the disease [28]. It has been observed that there are geographic clusters of the disease. Such 

clusters of SSc include the Chocktaw Native American Cluster and Italy and London clusters. 

The former cluster suggests that the disease is caused by yet to be identified genetic factors. 

Familial clustering has also been reported in Australia and the United States[4] .  

Gender and the major histo-compatibilty complex (MHC) are also important genetic 

factors associated with SSc. The female to male ratio of SSc is 3:6.1 while people with systemic 
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sclerosis have a higher frequency of class I and class II MHC alleles. It has been shown that SSc 

is primarily associated with the linkage of DRw52 with DR5 and DR3 and that lung fibrosis is 

largely associated with B8-DR3-DRw52-DQB2. Presence of Antitopoisomerase (ATA) and 

DR52a can be used to predict pulmonary disease. Black women are more prone to the disease 

than white women [1]. 

 

Prognosis 

The prognosis of SSc is variable and this is largely due to the variability of the disease 

spectrum [29]. Prognosis is improved by optimal and early treatment. There is no effective cure 

for SSc and people with dcSSc have a higher risk of mortality. The survival rate of patients with 

this form of disease is 55% at 10 years [30]. Varga et al [2] assert that better management of 

systemic sclerosis has led to an improvement in clinical outcomes. However, a cure for the 

disease has not yet been found and dcSSc has a higher fatality risk than the lcSSc form of disease 

[23].  

The leading cause of death in SSc is pulmonary disease. Renal and cardiac diseases are 

also associated with poor prognoses. Whereas morbidity due to gastrointestinal disease has been 

noted, it is not easy to quantify the degree to which this occurs. There has been an improvement 

in the overall survival of people with SSc over the past few decades. The mean survival from 

diagnosis is estimated at 12 years. The prognosis also varies depending on the type and extent of 

organ involvement [30]. Patients with SSc and PAH have a median survival of between 1 and 3 

years [31]. The mean survival for patients with SSc and severe pulmonary fibrosis is less than 3 

years [31]. 
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Pathogenesis  

Even though the pathogenesis of SSc is complex and heterogeneous, the large number of 

studies carried out in the recent past has helped to shed more light on the pathophysiological 

events associated with this condition. It is characterized by sequence of events that are common 

among all the subsets of the disease. During pathogenesis of SSc, microvascular change is 

followed by inflammation and immune activation which eventually leads to fibrosis[32] .   

  Vascular injury caused by physical trauma, autoantibodies, viruses, and oxidative stress 

leads to activation of endothelial cells, leukocyte adhesion, vascular obliteration, and tissue 

hypoxia. These events trigger inflammation and autoimmunity resulting in production of growth 

factors and cytokines which cause activation of fibroblasts causing fibrosis [23] . 

Microvascular Changes 

The first events to occur during pathogenesis of SSc involve vascular injury. Vascular 

injury can be caused by autoantibodies that are cell-specific, physical trauma, granzymes, 

reactive oxygen species (ROS) that are generated as a result of ischemia and reperfusion, 

inflammatory cytokines, and vasculotropic viruses. Vascular injury is manifested by changes in 

the nail fold capillaries, cutaneous telangiectasia, malignant hypertension, PAH, and gastric antral 

vascular ectasia [3] . Vascular injury leads to the activation of endothelial cells and renders them 

dysfunctional as well [33] . It also results in changes in the permeability of capillaries, modified 

secretion of vasoactive mediators, and enhanced expression of the endothelial leukocyte adhesion 

molecule1 and VCAM-1[34] . Vascular injury also causes fibrinolytic and platelet pathways to 

become activated [35].  

Once activated, the endothelial cells release endothelin-1 (ET-1). Endothelin-1 (ET-1) is a 

powerful vasoconstrictor, which also activates fibroblasts, enhances the proliferation of smooth 



 

 

10 

10 

muscle cells, and induces the adhesion of leukocytes to the endothelium. Due to the vascular 

injury, vascular remodeling occurs and hypertrophy of the medial and intimal layers is seen 

together with adventitial fibrosis to result in the gradual narrowing of the lumen and its eventual 

elimination[36] . Apoptosis of the endothelial cells combines with the preceding processes to lead 

to cause the gradual loss of blood vessels and disruption of angiogenesis. Impaired formation of 

blood vessels has been attributed to the impaired differentiation and reduction of the CD34+ cells 

originating from the bone marrow [37, 38]. Consequently, hypoxia occurs and causes a 

significant increase in the expression of the vascular endothelial growth factor (VEGF) and its 

receptors [39], [34] . 

Inflammation and Immune cell activation 

The onset of inflammation in dcSSc is longer than that of lcSSc. In addition, there is an 

extensive spread of inflammation in the musculoskeletal and skin in the dcSSc form of SSc. This 

inflammation is accompanied by edema, which is indicative of changes in the permeability of the 

endothelium.   As   the   disease   progresses,   widespread   fibrotic   changes   occur   and   Reynaud’s  

symptoms can manifest simultaneously with skin changes or can occur after the changes[4] .In 

contrast, the onset of lcSSc is much slower and there may be a pre-existence   of   Reynaud’s  

phenomenon for a couple of years. In addition, the prominence of the vascular component is a 

characteristic feature of lcSSc and accounts for most of the manifestations of the disease 

including renal involvement, digital ulceration, and PAH. There is nevertheless a small amount of 

fibrosis and this is usually observed in the face, skin, gastrointestinal tract, and extremities[4].  

Vascular injury leads to inflammation and autoimmunity. Following vascular injury, 

leukocytes are recruited. Chemokines such as monocyte chemoattractant protein 3 (MCP-3) and 

monocyte chemoattractant protein 1 (MCP-1) lead to the accumulation of mononuclear cells 

namely neutrophils and macrophages. Mononuclear cells produce cytokines such as interleukin 1 
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(IL-1) and TGFβ,  which activate fibroblasts thereby initiating fibrogenesis. These cytokines also 

activate resident fibroblasts produced by pericytes and mesenchymal progenitor cells thereby 

further enhancing fibrinogenesis. Production of resident fibroblasts by pericytes is induced by the 

activity of the platelet-derived growth factor (PDGF), the basic fibroblast growth factor (bFGF), 

and the endothelin-1 (ET-1) on the pericytes. According to Varga et al [2] PDGF is a powerful 

mitogen  and  chemoattractant  for  fibroblasts  and  can  stimulate  them  to  produce  TGFβ,  IL-6, and 

MCP-1 and to generate collagen, proteoglycans, and fibronectin. Activated fibroblasts are also 

acted  upon  by  TGFβ  and  connective tissue growth factor (CTGF) produced by the T helper cell 2 

(TH2) leading to the formation of myofibroblasts which cause permanent scarring through tissue 

remodeling and fibrosis[4] . 

There is a delicate balance between TH2 and TH1 cells and alteration of this balance is 

associated with increased fibrinogenesis. There is a shift towards TH2 predominance in SSc. 

Whereas  TH1  cells  predominantly  secrete  interferon  gamma  (IFNγ)  and  interleukin  2  (IL2),  TH2  

cells largely produce IL4, IL13, and IL5 [40]. The   IFNγ   inhibits   the   expression   of   collagen-

encoding   genes   and   abolishes   the   stimulatory   actions   of   TGFβ.   As   such,   IFNγ   is   a   powerful  

inhibitor of the contraction of fibrogenesis since it inhibits the trans-differentiation of fibroblasts 

into myofibroblasts, the contraction of the extracellular matrix, and the proliferation of 

fibroblasts.  The regulatory T cell also activates Myofibroblasts. 
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MAJOR PRO-INFLAMMATORY CYTOKINES IMPLICATED IN SSc 

DISEASE  

 Interleukin- 6 (IL- 6) 

IL- 6 is a cytokine, which is produced by local tissues and later released in the circulation system. 

It is a polypeptide that comprises of 212 amino acids and is produced by various cells such as the 

T- cells and the monocytes. The molecular weight of IL- 6 ranges from 21- 29 kDa due to 

variable and extensive glycosylation and phosphorylation [41]. IL- 6 is vital in almost 

homeostatic perturbation situations such as trauma and acute infections [42].  It is also a 

multifunctional cytokine with a vital role in host defense due to its various ways of immune and 

hematopoietic activities [43].  IL-6 modulates various functions in the body such as apoptosis, 

cell differentiation and proliferation, and inflammation. Apart from its main function, IL- 6 also 

influences various body systems such as neural and endocrine systems, skeletal muscles and bone 

metabolism [44]. 

Studies by Yu et al showed that IL-6 contributes to the initiation and extension of the 

inflammatory process. During inflammation process, IL- 6 activates B and T lymphocytes and 

also stimulates hepatocytes to produce acute phase proteins [45]. Studies demonstrated that IL- 6 

has anti-inflammatory and protective properties too. These properties include the ability to inhibit 

production of tumor necrosis factor (TNF), IL- 1 and macrophage inflammatory proteins [45].    

 IL- 6 is vital in activating fibroblasts to produce extracellular matrix whose excessive 

accumulation leads to SSc. Some Studies demonstrated that IL- 6 is highly expressed in patients 

with SSc especially during the early stages of the disease in inflammatory phase [46].  High IL- 6 

expression is associated with more severe skin involvement at early stages.  Fibroblasts isolated 
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and cultured from SSc lesional skin involvement produced higher level of IL- 6 compared with 

non lesional SSc samples [47].  

Interleukin- 8 (IL- 8) and SSc 

Interleukin- 8 (IL- 8) is a member of a family of structurally related proinflammatory factors that 

have a low molecular weight and are referred as the chemokine [48]. IL- 8 has a low molecular 

weight of approximately 8kDa. It  is a non-glycosylated protein comprising of 72 amino acids. A 

number of studies have been carried out in the past to determine the possible changes in the 

serum levels of IL-8 in patients with SSc disease. According to a study by Reitamo and others 

[49], the levels of IL-8 and autoantibodies to IL-8 were significantly higher in patients with SSc 

disease [49]. In fact, the levels were undetectable in normal serum, but highly detectable in more 

than 12.5% of the patients. A study by Guang-bin Cui et al have also shown similar results [50] 

where the levels of the IL-8 were determined in mice induced with persistent inflammatory pain, 

such as the one experienced in SSc. In this case, it was found that in all the mice samples used, 

the level of serum IL-8 had raised significantly. The study indicates that the up-regulation of the 

IL-8 in mice is related to the activation of fibroblasts or mononuclear phagocytes and other 

immune cells [50].  In addition, such activation may be related to the production of the 

autoanitibodies targeting IL-8 molecules that are now detectable in the serum.   

Monocyte chemo attractant protein- 1(MCP- 1) and SSc 

MCP- 1 is an inflammatory chemokine that is produced predominantly by macrophages and 

endothelial cells. The expression of this chemokine increases in patients who have atherosclerotic 

lesions, thus, MCP-1 plays a vital role in artherogenesis [51]. MCP- 1 secretion is induced by the 

cytokine activation and also interaction of activated platelets with monocytes or endothelial cells. 

Research shows that MCP- 1 is a chemokine that links monocyte activation to vascular 

inflammation of patients with SSc [52] . Studies revealed that MCP- 1 has both proinflammatory 
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role and pro fibrotic role is SSc patients.  In the early stages of SSc, MCP- 1 is released. It then 

attracts the T cells and mononuclear cells to the affected area. This leads to the production of pro- 

fibrotic cytokines such as IL- 4, which then activate the synthesis of ECM in dermal fibroblasts, 

and causes fibrosis in later stages of SSc [52]. Studies have shown that the inhibition of MCP-1 

reduces the extent of SSc as well as atheroma in mice induced with hypercholesteroma [53].  

Many other studies on targeting MCP-1 as a possible treatment for SSc patients revealed 

promising result in animal models [52]. Ongoing clinical trials are testing the MCP-1 antagonists 

on various disease as well as SSc patients.  

Fibrosis 

Fibrosis is the definitive feature of SSc [54]. It involves the gradual replacement of tissue 

architecture by the extracellular matrix (ECM), which is rich in collagen and other fibrotic 

components. Excessive ECM deposition in fibrotic organs leads to organ dysfunction [55]. 

Fibrosis commonly occurs in the lungs, skin, heart, gastrointestinal tract, endocrine glands, 

ligaments, and tendons, and it constitutes a large part of the mortality and morbidity that are 

associated with SSc[56].  

Typically, the extracellular matrix is made up of 2 compartments, the cellular and connective 

tissue compartments [4]. According to Namboodiri et al. [25], the former compartment consists 

of inhabitant and infiltrating cells while the latter compartment consists of adhesion molecules, 

collagens, fibrillins, and proteoglycans. The extracellular matrix is also a reservoir for 

matricellular  proteins  as  well  as  growth  factors  such  as  CTGF  and  TGFβ.  These  proteins  regulate  

the differentiation, function continued existence of mesenchymal cells in concert with the 

connective tissue compartment.  
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Fibroblasts and Myofibroblasts 

Fibroblasts are cells found in the connective tissue throughout the body which produce collagen 

and other proteins found in the extracellular spaces of cell [57]. They have a vital role in matrix 

deposition, matrix degradation and also in growth factor secretion as well as inflammatory 

response and control [58].  Fibroblasts migrate within tissues through a process known as cell 

migration; Cell migration is a cellular process that has a role in disease and health such as wound 

healing, immune response and tissue development.[59] Fibroblasts take part on wound healing 

since they have the ability to move to the site of the wound to repair damaged tissue and 

eventually heal the wound [60]. Tissue injury and microenvironmental changes are important 

stimuli for phenotype transition of fibroblasts to myofibroblasts. In response to tissue injury and 

as a change in normal intracellular environment, fibroblasts acquire actin fibers, the stress fibers 

which are the hallmark of stable protomyofibroblasts. The final step of fibroblast differentiation 

to  myofibroblasts  is  the  expression  of  α-SMA  in  protomyofibroblasts.  The  generation  of  α-SMA 

needs TGF-β  1and  β2,  ED-A fibronectin (an isoform de novo expressed during wound healing 

and fibrotic changes) and the high extracellular matrix stress.  

Fibrosis is largely executed by the differentiation of fibroblasts to myofibroblasts [61]. 

Myofibroblasts express the stress fibers that lead to ECM contraction. Myofibroblasts also 

produce   α-SMA   (α-smooth muscle actin), which is an important contractile factor [62]. 

Moreover, fibroblasts produce collagen in response to stimuli from inflammatory cells, platelets, 

and epithelial and endothelial cells. Stimuli also cause fibroblasts to secrete other molecules of 

the ECM that attach, contract, organize, and remodel connective tissue.  In fibrotic disorders, 

myofibroblasts exhibit defective apoptosis process resulting in the maintenance of the fibrosis 

[63]. Cytokines and growth factors are also produced by fibroblasts, which can also undergo 

trans-differentiation to form contractile myofibroblasts [64]. Several growth factors and signaling 
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pathways have been shown to be implicated in the pathogenesis of fibrosis. Pro-fibrotic proteins, 

including TGF-β,   Endothelin-1, and connective tissue growth factor, are believed to play an 

important role in the pathogenesis of fibrosis [65],[33].  

Transforming growth factor-β  (TGF-β)   

TGF-β   is   an   important   regulatory   cytokine   that   has   diverse   effects   on   cell   differentiation,  

proliferation, survival, and remodeling [66, 67]. At least three isoforms of TGF-β   have   been  

identified in mammals, but only TGF-β1  has been shown to play a pivotal role in wound healing 

and fibrosis. TGF-β  is stored in a latent form in ECM, and it binds to the latent TGF-β  binding  

factor (LTF). When the proteolysis of the carboxyterminal in LTF occurs, TGF-β  is  converted  to  

its active form and signaling starts through the TGF-β  specific  receptors.  TGF-β  has  2  types  of  

receptors with several subtypes. There are five Activin receptor–like kinases (ALKs) for type II. 

There are seven type I receptors [68]. When TGF-β  binds   to   the   receptors,   the   aggregation   of  

both  receptors  occurs  consequently,  and  TβRII  (TGF-β  Receptor  type  II)  activates  TβRI  (TGF-β  

Receptor type I). The signaling cascade occurs through the phosphorylation of the SMAD 

proteins. Moreover, TGF-β   also   acts   through   other signaling pathways. The mitogen-activated 

protein kinase (MAPK), P38, and Jun-kinase (JNK) cascade are other pathways [69], [70]. Upon 

the activation of TGF-β,  the  expression  of  collagens  and  fibronectin  increases,  which  causes  the  

matrix deposition.   Furthermore,   TGFβ   inhibits   the   activation   of   matrix metalloproteinases 

(MMPS) that degrade the ECM [71], [72]. Studies by Desmouliere et al show that TGF plays an 

important   role   in   the  differentiation  of  myofibroblasts   through  α-smooth  muscle  actin  (α-SMA) 

activation [73]. In their study, the administration of TGF-β   in   rats   induced   the   formation   of  

granulation  tissue  with  high  expressions  of  α-SMA in myofibroblasts, which is specific for TGF-

β. Choi et al demonstrated that knocking down TGF-β   expression   using   anti-sense RNA 
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decreases the fibrotic tissue after injury [74]. Studies by Bonniaud et al show that an 

overexpression of TGF-β  in  lungs  leads  to  lung  fibrosis  in  mice  [75].  

Signaling Pathways 

SMAD signaling pathway 

The SMAD pathway is the major pathway involved in transmitting signals   from   the   TGFβ  

receptors. As already indicated before, the extracellular matrix is a reservoir of inactive or latent 

TGFβ.   The   dormancy   of   the   latent   TGFβ   is   maintained   by   the   latent   TGFβ   binding   proteins  

(LTBPs).   The   TGFβ   is   activated   by   plasmin,   integrins, THY-1, and thrombospondins and 

attaches   to   the   cell   surface   receptors   namely   TGFβRII   and   TGFβRI.   An   intracellular   signal  

transduction  cascade  is  triggered  due  to  the  binding  of  the  TGFβ  to  the  receptors  and  this  leads  to  

activation of the target genes. The receptors are serine-threonine kinases and they cause 

phosphorylation of SMAD proteins [76].  

When SMAD2 and SMAD3 are phosphorylated, they create hetero-complexes with SMAD4 and 

move into the nucleus from the cytoplasm. In the nucleus, the hetero-complexes attach to the cis-

acting DNA sequence (CAGAC), which characterizes the consensus SMAD-binding element 

(SBE). The SBE is present in the promoters of a large number of genes that can be induced by 

TGFβ.  After   attachment   to   the   SBE,   recruitment   of   transcriptional   factors   to   the  DNA   by   the  

activated SMAD proteins occurs and this induces the transcription of the collagen-encoding 

genes. Inhibition of SMAD-dependent signal transduction is mediated by SMAD7. Studies have 

shown that SSc is associated with changes in the activation and inhibition of specific cofactors 

and proteins involved in the SMAD signaling pathway [2], [23] ,[77]. 

The Non-SMAD pathways 
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The non-SMAD pathways also play a critical role in the pathogenesis of SSc. The non-SMAD 

pathway involves the activation of the focal adhesion kinase (FAK), MAPK, Jun kinase (JNK), 

calcineurin,   TGFβ   activated   kinase   1 and lipid kinases such as AKT and PI3K. . Bujor et al 

studied the role of AKT in deposition of collagen by normal dermal fibroblasts. They discovered 

that the basal production of collagen was hindered when AKT was inhibited. Inhibition of AKT 

also led to elevated production of matrix metalloproteinase 1 (MMP1) and elimination of the 

inhibitory effect   of   TGFβ   on  MMP1.   The   findings   demonstrate   that   AKT   is   profibrotic   as   it  

increases the synthesis and reduces the degradation of collagen. It was thus concluded that AKT 

plays a role in fibrosis in SSc [78]. 

Focal adhesion kinase (FAK) 

Focal Adhesion kinase (FAK) is a 125 kD protein which plays an important role in the focal 

adhesion dynamics between cells, as well as in motility and cell survival. FAK is phosphorylated 

in response to growth factors, integrin, and other stimulation [79]. Studies demonstrate that the 

phosphorylation of the FAK (p-FAK) is involved in myofibroblast differentiation and plays a role 

in the pathogenesis of SSc[80]. In SSc patients,  myofibroblasts   have   the   ability   to   produce   α-

SMA with the stimulation of TGF-β.   For   this   induction,   TGF-β   needs   focal   adhesion   kinase  

phosphorylation on the Tyr-397 site [81]. Moreover, studies by Mimura et al [80] demonstrate 

that P-FAK on the Tyr-397 site is also higher in the myofibroblasts of SSc patients as compared 

to that in normal fibroblasts. These results also confirm the possible role of p-FAK in the 

pathogenesis of SSc by TGF-β  signaling  and  α-SMA expression in myofibroblasts. 

Endothelin-1   

Endothelin-1 (ET-1), which is a potent vasoconstrictor secreted from endothelial cells, plays a 

critical role in the pathogenesis of SSc[82]. Studies by Abraham el al [83] show that ET-1 is 

overexpressed by SSc fibroblasts, thus confirming the possible role of ET-1 in SSc and other 
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fibrotic disorders. Studies by Mutsaers et al [84] demonstrate that ET-1 levels are elevated in 

animal models of lung fibrosis. ET-1 binds to ETA and ETB receptors on fibroblasts directly to 

induce the differentiation of myofibroblasts [85]. Moreover, studies of lung fibrosis also show 

that ET-1   induces   elevated   levels   of   α-SMA through Akt and the ras/MEK/ERK signaling 

pathway [86, 87]. 

Connective Tissue Growth Factor 

Connective tissue growth factor (CTGF) is a cysteine-rich protein and a member of the CCN 

superfamily, plays a direct role in fibrosis as well as an indirect role through the creation of a 

favorable environment [88] for other factors that induce the fibrosis in fibrotic disorders. CTGF 

is a promoting factor for the adhesion of fibroblasts to fibronectin [84, 89]; it also helps TGF-β  to  

induce cell adhesion to fibronectin and other ECM components [90]. Moreover, CTGF increases 

the effect of the ET-1 and TGF-β  signaling  pathway  and   indirectly   increases   the  fibrosis  effect  

[91]. Studies by Sato et al [92] show that serum CTGF is higher in SSc patients as compared to 

control samples. Furthermore, CTGF has a positive correlation with skin fibrosis and pulmonary 

fibrosis in SSc patients. CTGF seems to be involved in maintaining the fibrotic phase of SSc 

[92]. 

 

 

Table 2: Pathways and signaling molecules dysregulated in SSc [15] 

Molecule  Changes in SSc fibroblasts 

Cofactors and transcription 

factors 

 

SMAD2/3 Accumulates in the nucleus and becomes phosphorylated 

constitutively  

SMAD7 Expression is reduced 
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PPARγ Expression is reduced 

SP1 Becomes phosphorylated constitutively  

P300/CBP Expression is increased, binds constitutively to SMAD2/3 

FLI-1 Expression is reduced 

Kinases   

FAK1 Activated in a constitutive manner 

PKC-δ Expression is increased 

ERK Activated in a constitutive manner 

Surface receptors  

TGFβ  receptors Expression  of  TGFβR1  and  TGFβR11  is  elevated   

Integrin  αγβ3 Expression is increased 

Integrin  αγβ5 Expression is increased 

PDGFRα Expression is increased 

PDGFRβ Expression is increased 

 

Current treatment, drugs in market and drugs in clinical trials for SSc disease 

 Treatment options for SSc remain a challenge because of the unclear pathogenesis of this 

autoimmune disease. However, those immune-modulators which target blood vessels and aid in 

recognition, management of end-organ damage, adjunctive therapies like light, physical and 

psychotherapy are considered most effective to treat this multi-factorial disease. The search for 

new drugs that work as anti-fibrotic agents is probably one of the most active areas of research in 

this field. Open label studies with Revimmune drug therapy have shown a desirable effect on the 

immune system of patients suffering from SSc but the trials are ongoing for more data to confirm 

efficacy of the drug[93]. Controlled clinical trials with Imatinib mesylate (Gleevec) have been 

carried out to determine the safety and tolerability in patients. Proven effectiveness (anti-fibrotic 

effect) and low incidence of side effects was observed as a result [94]. A platelet gel for treating 

digital ulcers is currently in clinical trials along with others (anti-fibrotic agents like interferon 

gamma, D-penicillamine, kolchichicine, calcitriol) which reduce excessive production of 

collagens and other connective tissue proteins to prevent and control symptoms like skin 

fibrosis[95]. Clinical trials are ongoing with drugs like Orencia, and MQX-503 whereas efficacy 

of D-penicillamine is supported by retrospective, prospective and double-blind controlled trial 
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even though these studies could not differentiate more efficacious form of drug in terms of 

dose[96]. Drugs like methotrexate, cyclosporine, nifedine, iloprost have all been studied in 

controlled trials with variable outcomes and a considerable number of trials have proved 

nifedipine, a calcium channel blocker as a gold standard. Randomized trials on the drug - 

cyclophosphamide confirm the moderate clinical benefits seen in patients with early, 

symptomatic disease[97]. Many studies are ongoing on finding an appropriate treatment for SSc; 

however there is not any approved treatment, which can stop this disorder completely. I 

anticipate that targeting inflammation during early phases of SSc disease could be a better 
therapeutic option. Therefore it’s essential to identify mediators, which are responsible for 
initiating inflammatory response during early phases of SSc disease. Another option is to 
identify endogenous mediators, which initiate the differentiation of fibroblasts to 
myofibroblasts and promote adhesive and fibrotic signaling.  For instance, a variety of in 

vitro and in vivo studies using murine models of fibrotic diseases suggest that FAK inhibitors 

exhibit potent antifibrotic effects, thus making them attractive drugs for fibrotic disorders seen in 

the clinic. In recent years, several orally bioavailable ATP-competitive FAK inhibitors have been 

developed by pharmaceutical companies and have entered early into human clinical trials [98]. 

One of the first clinically available specific FAK inhibitors was PF-562, 271, which inhibited 

FAK phosphorylation in vivo in a dose-dependent fashion in several human s.c. xenograft models 

[99]. Recently the present authors showed that PF-562, 271 also prevented bleomycin-induced 

lung fibrosis in a mouse model. The Phase I study using PF-562, 271 was performed in patients 

with head and neck, prostatic and pancreatic cancer (clinical trial #NCT00666926, 

http://clinicaltrials.gov/). Clinically, PF-562, 271 prolonged disease stabilization in a subgroup of 

patients. Due to the low toxicity of this drug, combination therapies with blocking antibodies or 

antagonists/inhibitors of profibrotic factor receptors seem possible. However, to our knowledge, 

there are no clinical studies that have reported the effects of FAK inhibitors in any fibrotic 

diseases.   

Arachidonic Acid Pathway 

Arachidonic acid plays an important role in many physiological processes. The pathway has an 

important role on generation of pain and inflammation as well as for maintenance of homeostasis. 

Arachidonic acid is formed by the activity of phospholipase A2 on cell membrane phospholipids. 
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There are 2 main pathways for the metabolism of arachidonic acid and these are the 5-

lipoxygenase (5-LO) and the cyclooxygenase (COX) pathways. In the 5-LO pathway, 5-HPETE 

is formed by the activity of 5-lipooxygenase enzymes on arachidonic acid and this is the 

precursor for several leukotrienes such as LTB4, LTC4, LTD4, and LTE4.  In the COX pathway, 

the cyclo-endoperoxide PGG2 is formed in reactions catalyzed by the cyclooxygenase enzymes 

[100].  

There are many different types of cyclooxygenases including COX-1, COX-2, and COX-3. The 

PGG2 is then catalyzed to PGH2, which is then converted into prostanoids such as 

thrombooxanes (TXA2), prostaglandins such as PGD2, PGE2  and  PGF2α,  and  prostacyclins  such  

as PGI2. Prostaglandins catalyze the modulation of immune function; leukotrienes add molecular 

oxygen to particular double bonds in polyunsaturated fatty acids and thrombooxanes are potent 

vasoconstrictors and enhance the aggregation of platelets[100] . PGE2 is the commonest 

prostanoid as it is produced by many cell and tissue types and its spectrum of activity is wide. It 

acts on the G-coupled EP1, EP2, EP3, and EP4 receptors and together with PGI2, it is the main 

prostanoid involved in inflammation and pain [101], [102] . Formation of PGE2 from PGH2 is 

catalyzed by the microsomal prostaglandin E synthase-1 (mPGES-1) and this is depicted in the 

diagram below [103].  
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Diagram 1:  Illustration of the pathway involved in biosynthesis of prostaglandin E2 (PGE2).  

In the diagram above, mPGES=microsomal prostaglandin E synthase, PG=prostaglandin, 

TPX=thromooxane A2 receptor, TXA2=thrombooxane A2.  As shown, conversion of arachidonic acid to 

PGH2 is mediated by the cycloxgenases COX-1 and COX-2. TXA2, PGE2, PGD2, and PGI2 are 

synthesized in reactions mediated by TXA2 synthases and PGI2 synthases respectively[103]  

(Major 

Pro-inflammatory mediator) 
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Microsomal Prostaglandin E Synthase-1 (mPGES-1)  

Microsomal prostaglandin E2 synthases (mPGES) are enzymes that catalyze the conversion of 

PGH2 to PGE2 [104].  Thus far, three PGE synthases, namely cytosolic PGE synthase (cPGES), 

mPGES-1 and mPGES-2, have been characterized [104-106]. cPGES is localized in the cytosolic 

region of cells and tissues under basal conditions and is most likely to be involved in the 

homeostatic production of PGE2 [106]. mPGES-2 is also constitutively expressed in wide variety 

of tissues and cell types and is synthesized as a Golgi membrane associated protein [107].  In 

contrast, mPGES-1 is induced in response to inflammation, and acts downstream of 

cyclooxygenases (COX) [108, 109]. PGE2, the final metabolite of cyclooxygenase pathway, has 

a variety of endogenous functional effects [110].  Besides its role in the initiation and 

perpetuation of inflammatory processes, PGE-2 helps the blood clot formation, protect the 

gastrointestinal tract by increasing the mucus formation and also takes part in labor by 

constricting the uterine[111]. 

mPGES-1 and its derived PGE2 in inflammation and fibrosis 

mPGES-1 has been shown to be a critical mediator of inflammation, pain, angiogenesis, fever, 

bone metabolism and tumorgenesis [102, 112-114]. Previous studies have shown that mPGES-1 

expression is elevated in tissues and cells of various inflammatory diseases including rheumatoid 

arthritis (RA) and osteoarthritis (OA) [108, 109, 115, 116]. mPGES-1 null mice are resistant to 

chronic inflammation of joints in the models of collagen induced arthritis (CIA) and collagen 

antibody induced arthritis (CAIA) [102, 112]. We have also shown that mPGES-1 is induced 

during skin wound healing process in mice [117].  

My laboratory is the first to investigate the role of mPGES-1 in fibrosis using animal models. In 

our recent study, [118] we investigated the effect of mPGES-1 genetic deletion in mice model of 

bleomycin-induced skin fibrosis. Our study revealed that mPGES-1-null mice were resistant to 
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bleomycin-induced skin fibrosis associated with reduced inflammation, myofibroblast formation, 

cutaneous thickening, and collagen production in the mouse dermis [118].  Bleomycin-induced 

fibrosis is an inflammation-driven mice model and inflammation is involved with the onset of 

fibrosis including SSc disease [23, 119, 120]. It is well established that PGE2 the product of 

mPGES-1, is one of the major pro-inflammatory mediator upregulated during inflammation. 

Given the known role of mPGES-1 in driving inflammatory responses, this study strongly 

suggested that mPGES-1 may play a key role in the initial, inflammatory stages of SSc disease.  

Studies on PGE2 further demonstrate its role in fibrosis. Studies by Harding et al showed that 

treatment of neonatal rat ventricular with PGE2 increases the phosphorylation of AKT and 

fibroblast proliferation that can initially lead to cardiac fibrosis [121]. Another study by khozani 

et al showed a considerable increase in the   thickness of the vessels of full skin draft treated with 

PGE2 compared to control skin draft. This study also confirms the possible effect of PGE2 on 

fibroblast proliferation and fibrosis [122]. Although it is presumed to be a pro-inflammatory 

mediator in inflammation process, and pro-fibrotic mediator in skin fibroblasts and some other 

fibrotic disorder, PGE2 has an anti-inflammatory and antifibrotic activity too [123]. As we know, 

uncontrolled activity of fibroblasts contributes significantly in the development of fibrotic lung 

diseases. For instance, collagen synthesis by fibroblasts results in scarring and fibrosis [124]. 

During the development of lung fibrosis, the production, and signaling of PGE2 is often 

diminished [125]. cAMP-activated protein kinase A (PKA) underpins the inhibition of fibroblast 

activation. In this view, PGE2 exerts its anti-fibrotic activity through similar cAMP signaling 

pathway, thus impaired production of PGE2 in fibroblasts has been associated with fibrosis of the 

lower airway [124], [126]. Therefore, in lung cells PGE2 is observed to inhibit multiple fibroblast 

functions especially fibroblast proliferation, migration, collagen synthesis, and differentiation of 

myofibroblast. PGE2 also reduces the cross-linking of collagen by enhancing the degradation of 
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fibroblast collagen and reducing production of lysyl oxidase. Therefore, understanding the 

mechanism of these PGE2 inhibition activities may provide useful insights into the pathogenesis 

of lung fibrosis [123]. PGE2 has a direct influence in the survival of lung fibroblasts. Lung cells 

treated with PGE2 exhibited a dose-dependent increase in fibroblast apoptosis (fibroblast death) 

therefore, inhibiting fibrogenesis. In this case, PGE2 induces apoptotic fibroblast death through E 

prostanoid-2 and 4 (EP2-EP4) receptor signaling pathway [127]. An animal model study, [128] 

established that PGE2 protects the lungs of rodents from fibrotic lung diseases including 

bleomycin-induced lung dysfunction as described by Oury et al.[129]. However, following 

bleomycin-induced lung dysfunction administration of PGE2 does not provide therapeutic benefit 

against lung fibrosis and dysfunction [128].  Similarly, fibrotic lung fibroblasts extracted from 

mice with bleomycin-induced fibrosis or patients with idiopathic pulmonary fibrosis are resistant 

to the collagen inhibitory action of PGE2.  In individuals with pulmonary fibrosis, plasminogen 

activation system is observed to be dysregulated. On the other hand, PGE2 inhibits the expression 

of plasminogen activator inhibitor-1 (PAI-1), which is a key profibrotic molecule [123].  

However, reactivation of plasminogen to plasmin restores the antifribrotic activity of PGE2 in 

bleomycin-induced and idiopathic pulmonary fibrosis [124]. Down-regulation of PGE2 synthesis 

in interstitial lung fibrosis is the underpinning mechanism of the pathogenesis of lung fibrosis. 

According to Bauman et al [130], activation of plasminogen induces the synthesis and release of 

PGE2 in fibroblasts. For instance, induction of plasminogen in lungs extracted from mice with 

bleomycin-induced fibrosis results in upregulation of PGE2 synthesis in the epithelial cells of 

alveolar, lung fibroblasts, and fibrocytes. This results in enhanced anti-fibrotic activity.  

Given these considerations, it is likely that mPGES-1 and its derived PGE2 may play a complex 

dual role during SSc disease. It may contribute to the initiation of fibrogenesis through its ability 

to promote inflammation, mPGES-1 may actually act to control the overexpression of profibrotic 
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genes in established lesions [131]. Further, mPGES-1 derived PGE2 could exhibit differential 

effects i.e. anti- or pro-fibrotic depending on the tissue such as skin (pro-fibrotic) and lungs (anti-

fibrotic). Therefore, it is critical to understand the exact role of mPGES-1 and its derived PGE2 

in the pathophysiology of SSc disease.  

Ephrins 

 The ephrins and ephrin (Eph) receptors belong to the subfamily of protein tyrosine kinases. Eph 

receptors have glycosylated extracellular domains with ligand-biding sites similar to 

immunoglobulin. The ligand-binding sites are adjacent to a cysteine-rich region and two repeats 

of fibronectin type III [132]. Their glycosylated extracellular domains interact with appropriate 

ephrin ligands in the neighboring cells. Such interactions generate bi-directional signaling 

pathways. Therefore, ephrins and Eph receptors play significant roles in various key biological 

processes such as cell morphology, intercellular interactions (communication), cell boundaries 

formation, cell migration, insulin regulation, immune function, angiogenesis including various 

aspects of cancer[133].  Expression patterns of Eph receptors and their corresponding ephrin 

ligands have been observed in cancerous cells and tumorous blood vessels. These strongly 

suggest that Eph receptors play substantial role in tumorigeneses and cancer development. 

Therefore, the use of Eph receptors as new therapeutic targets is promising approach to cancer 

treatment [134] . In the current human genomics, 8 ephrin ligands and 14 Eph receptors have 

been identified and characterized [135]. There are two subgroups; A or B, of both Eph receptors 

and their corresponding ligands. The subgroups of Eph receptors is based on the nature of their 

interaction with their corresponding ephrin ligands. On the contary the subgroups of ephrin 

ligands are based on their structure [136]. 
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The Ephrin signaling pathway starts with the binding of EphB receptor tyrosine kinases (RTKs) 

to transmembrane ephrinB ligands followed by the activation of both Ephrin receptors [137]. The 

critical role of Ephrins has been shown on central nervous system development as Ephrins act as 

a mediator of adjacent cell migration on the axonal part of neurons to their specific destination 

[138, 139]. Furthermore, Ephrin receptors have the ability to conduct the reverse signaling 

pathway [140]. The exact mechanism of how the reverse signaling pathway occurs is not well 

recognized. However, studies show that these responses are distinguishable from the intracellular 

signal activated in Ephrin receptor-expressing cells [141].  

Ephrin B2 in extra-cellular matrix remodelling and adhesive signalling 

Role of ephrin B2 in fibroblast biology and SSc disease is unknown. Majority of the studies 

performed in cancer and endothelial cells suggest a critical role of ephrin B2 and its receptor 

ephB4 in cell migration, adhesion and ECM remodelling. In mouse malignant melanoma cells it 

has been shown that overexpression of ephrin-B2 leads to the formation of multiple lamellipodia, 

enhanced polymerisation of actin fibers, and induction of focal adhesion complexes with 

activation of FAK[142]. Furthermore, ephrin-B2-overexpressing B16 cells display a significant 

increase   of   β1-integrin-mediated attachment to matrix components such as laminin and 

fibronectin and enhanced cell migration in both Boyden chamber invasion experiments as well as 

in in vitro scratch-wound assays[142]. Ephrin-B2 and its receptor EphB4 have also been shown 

to mediate cell adhesion and migration functions between arterial and venous endothelial cells 

[143, 144]. Ephrin-B2 deficient smooth muscle cells display impaired cell adhesion, spreading, 

polarized migration, and the induction of FAK. Furthermore, another study shows that mice cells 

overexpressing ephrin B2 exhibit increased adhesion and antibody against ephrin B2 results in 

loss of adhesion[145]. Further, antibody against ephB4 receptor also results in loss of cell 

adhesion [145]. In an isolated report, it was shown that expression of ephrin B2 and its receptor 
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eph B4 was enhanced in skin of patients with early diffuse SSc[146]. However, this study did not 

explore the role of ephrin B2 and ephB4 in fibroblast biology and fibroblast functions including 

fibroblast-myofibroblast differentiation, migration, adhesion and fibrosis associated with SSc 

disease.  

PURPOSE OF THE STUDY 

 Scleroderma (Systemic sclerosis, SSc) is a prototypic multisystem fibrotic disease, and is 

considered to be initiated by a combination of microvascular injury, inflammation and 

autoimmunity culminating in fibroblast activation and fibrosis. Histological analysis of the initial 

stage of scleroderma reveals perivascular infiltrates of mononuclear cells in the dermis, which is 

associated with increased collagen synthesis in the surrounding fibroblasts. Thus understanding 

how to control the inflammatory stage of SSc may be of benefit in controlling the progression of 

early onset disease. mPGES-1 is an inducible enzyme that acts downstream of cyclooxygenase 

(COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 

plays a key role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrotic 

mechanisms especially with respect to human SSc is unknown. Our recent study using mPGES-1 

KO mice showed that compared to WT mice, mPGES-1-null mice were resistant to bleomycin-

induced fibrosis, inflammation, cutaneous thickening, collagen production and myofibroblast 

formation as mentioned [118]. These results suggested that inhibition of mPGES-1 may be a 

viable therapeutic strategy to alleviate the development of inflammation and fibrosis associated 

with the pathophysiology of SSc disease. 

Another key step in the development of fibrosis is the differentiation of fibroblasts to 

myofibroblasts responsible for production of excessive amount of ECM and fibrosis. Previous 

studies in cancer biology have suggested that ephrin B2, a transmembrane protein belonging to 
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ephrin family, is a mediator of adhesive signaling and extracellular remodeling. However its role 

in fibrosis has never been explored. Till date only one report has demonstrated that the expression 

of ephrin B2 is enhanced in SSc skin fibroblasts of early diffused SSc [146]. Our purpose of 

study is to define role of ephrin B2 in fibroblast to myofibroblast differentiation and its role in 

fibrosis associated with SSc disease.  

 

HYPOTHESIS, AIMS AND OBJECTIVES  

Part 1: 

mPGES-1 expression is significantly elevated in human SSc skin compared to normal human 

skin. Also, mPGES-1 deficient mice are resistant to bleomycin induced fibrosis. Therefore, I 

hypothesize that pharmacological inhibition of mPGES-1 will result in downregulating the 

production of pro-inflammatory and pro-fibrotic mediators during SSc disease. To test this 

hypothesis, I isolated fibroblasts from skin biopsies obtained from patients with SSc disease and 

normal subjects and determine: 

Aim#1:  

A) To determine the expression of pro-fibrotic markers in the presence/absence of mPGES-1 

inhibitor in SSc versus control skin fibroblasts.  

(B) To determine the production of Pro-inflammatory cytokines in the presence/absence of 

mPGES-1inhibitor.  

(C) To study the Expression of p-FAK and p-AKT in the presence/absence of mPGES-

1inhibitor in SSc versus normal skin fibroblasts. 

See manuscript #1 for results. 
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Part 2: 

Previous studies in cancer biology have suggested that ephrin B2 is involved in adhesive 

signaling and extracellular remodeling. However its role in fibrosis has never been explored. 

Therefore, in second part of my study, I investigated the role of ephrin B2 in fibrosis using   

fibroblasts from skin biopsies obtained from patients with SSc disease and normal subjects. 

Further, I assessed the role of ephrin B2 in fibrosis by treating mice with recombinant ephrin B2. 

I hypothesize that ephrin B2 is involved in promoting the fibroblast to myofibroblast 

differentiation and fibrosis associated with SSc disease. To test this hypothesis, I determined: 

Aim#2: 

(A) The expression of ephrin B2 in SSc versus normal skin fibroblasts. 

(B) Role of ephrin B2 in the differentiation of fibroblast to myofibrolasts. 

(C) Role of ephrin B2 in fibroblast migration and adhesion. 

(D) The effect of recombinant Ephrin B2/Fc treatment on mouse skin. 

See manuscript #2 for results. 
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Abstract 

Objective. To determine the specific role of microsomal prostaglandin E synthase-1 (mPGES-1) 

in scleroderma (SSc) disease using skin fibroblasts isolated from normal and SSc patients. 

Methods: Skin fibroblasts were isolated by punch biopsies from the forearm of healthy 

individuals and those with diffuse cutaneous scleroderma in DMEM containing 10% fetal bovine 

serum. Donors were age-, site- and sex-matched. Experimental protocols were approved by the 

Ethics Committee. Cells were cultured in the presence/absence of mPGES-1 inhibitor (provided 

by Merck Frosst Canada) for 18 hours and then the expression of pro-fibrotic and pro-

inflammatory cytokines were determined. 

Results: The immunohistochemical and western blotting findings showed that the expression 

levels of mPGES-1 were higher in SSc patients versus Normal Patients (NP). Therefore, we 

further determined if by pharmacological inhibition of mPGES-1, we could alter the gene 

expression profile of pro-fibrotic mediators and pro-inflammatory cytokines implicated in SSc 

disease. Our studies showed that the expression of both pro-fibrotic   mediators   (α-SMA, 

endothelin-1, collagen type 1 and connective tissue growth factor) and pro-inflammatory 

cytokines (IL-6, IL-8 and MCP-1) were significantly higher in SSc skin fibroblasts compared to 

(NP) fibroblasts. Treatment with mPGES-1 inhibitor significantly decreased the expression of 

pro-fibrotic mediators with only a numeric reduction in CTGF. Moreover, treatment with 

mPGES-1 inhibitor reduced the expression of pro-inflammatory cytokines in both normal as well 

as SSc fibroblasts with significant decrease in the latter. In addition, SSc patients exhibited higher 

levels of p-AKT, p-FAK and p-SMAD3. mPGES-1 inhibitor was able to down regulate this 

increased expression of p-AKT, p-FAK but not p-SMAD3 in SSc fibroblasts.  
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Conclusions:  

These results indicated that elevation of mPGES-1 during SSc could be a contributing factor in 

the pathology of SSc and blocking mPGES-1 could be beneficial.     

  

Introduction 

Scleroderma (Systemic sclerosis, SSc) is an autoimmune disease of the connective tissue 

featuring skin thickening, spontaneous scarring, blood vessel disease, varying degrees of 

inflammation, associated with an overactive immune system. There is currently no approved 

treatment for this fibrotic disorder and all the treatments are symptomatic. [147]. Even though the 

pathogenesis of SSc is complex and heterogeneous, the large number of studies carried out in the 

recent past has helped to shed more light on the pathogenesis of the condition. Analysis of the 

initial stage of SSc reveals perivascular infiltrates of mononuclear cells in the dermis, leukocyte 

adhesion, vascular obliteration, and tissue hypoxia which triggers inflammation and 

autoimmunity resulting in production of growth factors, cytokine and chemokine synthesis in the 

surrounding fibroblasts [148] ,[149].  MCP-1(Monocyte chemotactic protein-1), also called 

CCL2, is a human protein encoded in the CCL2 gene [150] . It belongs to the Cysteine-Cysteine 

motif chemokine family and exists as a small cytokine. It largely recruits memory T cells, 

monocytes and dendritic cells to area with inflamed or injured tissues [151].  Its mode of action is 

through chemotactic activity and mostly for basophils and monocytes [152] .  It also contributes 

to pro-inflammatory effect by catalyzing synthesis of proteins in SSc fibroblasts. During 

inflammation, the principal chemokine (MCP-1) recruits monocytes, macrophages and activated 

lymphocytes. This is aided by a potent inducer of CXCR1 and CXCR2, a chemical signal, which 



 
 

 35 

attracts neutrophils to the site of inflammation. The overall event is eased by the pro-

inflammatory activity of IL-6 by inhibiting TNF-α   [47].  IL-8 acts through its chemoattractant 

activity where it induces chemostasis on neutrophils [153]. Similarly, as a pro-inflammatory 

cytokine IL-6 signals for cell recruitment through cell surface receptor type 1 complex that is 

composed of ligand binding IL-6Rα  and  signal  transducers  gp130[154].  

TGFβ  is  also  an  important  molecular  determinant  of  fibrosis  in  SSc[155]. It is not only the major 

regulator of both pathological and physiological fibrogenesis but also plays critical roles in the 

repair of tissues, cell differentiation and proliferation, regulation of immune function, and 

angiogenesis[156] . When TGF-β  binds  to  the  receptors,  the  aggregation  of  both  receptors  occurs  

consequently   and   TβRII   activates   TβRI   and   the   signaling   cascade   occurs   through   the  

phosphorylation of the SMAD proteins [157]. However, the SMAD pathway is the main pathway 

used   to   transmit   signals   from   the   TGFβ   receptors.   The   dormancy   of   the   latent   TGFβ is 

maintained   by   the   latent   TGFβ   binding   proteins   (LTBPs)   [158]. An intracellular signal 

transduction  cascade  is  triggered  due  to  the  binding  of  the  TGFβ  to  the receptors and this leads to 

activation of the target genes [159]. When TGF-β   is   stimulated,   it   utilizes   p-FAK 

(Phosphorylated Focal adhesion kinase) on Tyr-397 site, which is abnormally elevated in SSc 

[80]. 

Through the promotion of adhesion of fibroblasts to fibronectin, connective tissue growth factor 

(CTGF) provides favorable environment for other factors to induce fibrosis in SSc[160]. TGF-β  

also helps in inducing adhesion to fibronectin and ECM components. Besides all factors 

mentioned above, increased Endothelin-1 (ET-1) in the plasma and biopsies of forearm of SSc 

patients has been identified. Some studies have shown that patients with Idiopathic lung fibrosis 

have higher level of ET-1 in their Bronchoalveolar lavage [33]. 
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Our focus is on Microsomal prostaglandin synthase-1( mPGES-1) an inducible enzyme that 

acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion of 

prostaglandin (PG) H2 to PGE2 [104],[105]. mPGES-1 plays a key role in inflammation, pain 

and arthritis [112]; However, the role of mPGES-1 in fibrotic mechanisms especially with respect 

to human SSc is unknown. Our recent study using mPGES-1 knockout mice showed that 

compared to WT mice, mPGES-1-null mice were resistant to bleomycin-induced fibrosis, 

inflammation, cutaneous thickening, collagen production and myofibroblast formation [161]. 

These results suggested that inhibition of mPGES-1 may be a viable approach to alleviate the 

development of cutaneous sclerosis and is a potential therapeutic target to control fibrotic and 

inflammatory mechanisms associated with the pathophysiology of SSc disease. Therefore, in our 

studies, we used the mPGES-1 Inhibitor, provided by Merk Frosst Canada to investigate the 

power of this inhibitor on decreasing the inflammatory stage of the SSc patients.  

Materials and methods 

Materials 

Human Fibroblast Culture: Dermal fibroblasts were isolated from explant culture of 4 mm 

punch biopsies from the forearm of healthy individuals and those with diffuse cutaneous 

scleroderma and cultured in DMEM containing 10% fetal bovine serum (Invitrogen). Donors 

were age-, site- and sex-matched. The Ethics Committee approved experimental protocols. All 

participants were recruited, under informed written consent. Cells were cultured and after 

reaching confluence were starved overnight and for 18 hours in the presence or absence of 

mPGES-1 inhibitor (1 mmol) provided by Merck Frosst Canada. 
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Western blotting 

       Protein from Normal as well as SSc fibroblasts was extracted. Cells were lysed in Tris-

buffered saline (TBS) containing 0.1% sodium dodecyl sulfate (SDS), and the protein content of 

the lysates was determined using bicinchoninic acid protein assay reagent (Pierce Rockford) with 

bovine serum albumin (BSA) as the standard. Cell lysates were adjusted to equal amounts of 

protein and then were applied to SDS-polyacrylamide gels (10–20%) for electrophoresis. Next, 

the proteins were electroblotted onto polyvinylidene fluoride membranes. After the membranes 

were blocked in 10 mM TBS containing 0.1% tween- 20 (TBS-T) and 5% skim milk, the 

membranes were probed for 1.5 hours with the respective antibodies in TBS-T. After washing the 

membranes with TBS-T, the membranes were incubated overnight with horseradish peroxidase-

conjugated anti-rabbit or horseradish peroxidase-conjugated anti-mouse immunoglobulin G (IgG) 

(1:10,000 dilution in TBS-T containing 5% skim milk) at 4°C. After further washing with TBS-

T, protein bands were visualized with an enhanced chemiluminescence system using a Bio-Rad 

Chemidoc Apparatus. 

 

Histological and IHC studies 

          4 mm punch biopsies from the forearm of healthy individuals and those with diffuse 

cutaneous scleroderma were isolated  and  embedded  in  paraffin  wax.  Sections  (0.5  μm)  were cut 

using a microtome (Leica) and collected on Superfrost Plus slides (Fisher Scientific). Sections 

were then de-waxed in xylene and rehydrated by successive immersion in descending 

concentrations of alcohol. Immunolabeling of mPGES-1 was performed using the 

DakoCytomation LSAB+ System-HRP kit (Carpinteria, CA). Immunohistochemical procedures 
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were performed  according  to  the  manufacturer’s  recommendations.  Briefly,  endogenous  peroxide  

was blocked using 0.5% H2O2 in methanol for 5 minutes. Non-specific IgG binding was blocked 

by incubating sections with bovine serum albumin (0.1%) in PBS for 1 hour and then incubated 

with primary antibody for mPGES-1 (1:1000) in a humidified chamber and left overnight at 4°C. 

Next, sections were incubated with biotinylated link for 30 minutes followed by incubation with 

streptavidin for 30 minutes. The chromogen diaminobenzidine tetrahydrochloride (DAB), was 

added  till  sufficient  color  development  and  sections  counterstained  with  Harris’s  hematoxylin.   

RNA isolation and Real-Time PCR 

        Skin fibroblasts from SSc and Normal patients were cultured as above. Total RNA was 

isolated from control Fibroblasts, and SSc Fibroblasts using TRIzol (Invitrogen) (RNeasy; 

QIAGEN), reverse transcribed and amplified using TaqMan Assays-on-Demand (Applied 

Biosystems) in a reaction solution containing two unlabeled primers and 6-carboxyfluoroscein-

labelled TaqMan MGB probe   Samples were combined with One-Step MasterMix (Eurogentec). 

Amplified sequences were detected using the ABI Prism 7900HT sequence detector (Applied 

Biosystems). The expression values were standardized to values obtained with control 

Polymerase  RNA  primers  using  the  ΔCt  method.  All  primers  for  each  target  gene  are  available  

from Applied Biosystems Assay on demand. Data was normalized to Polymerase mRNA levels 

and represent averages and standard error of the mean (SEM) from direct comparison of SSc and 

control Skin fibroblasts. Statistical significance of Real-Time PCR results was determined by 

one-way analysis of variance. 

 

ELISA 



 
 

 39 

       The Fluorokine® MAP Multiplex Assay System with Luminex 200 detection equipment 

(R&D Systems Minneapolis, MN, USA) were used for the determination of IL6 (sensitivity of     

0.36 pg/ml), IL8 (sensitivity of 0.39 pg/ml), IL17 (sensitivity of 0.39 pg/ml), IL4 (sensitivity of 

1.75 pg/ml), MCP-1 (sensitivity of 0.16 pg/ml), TNF-α   (sensitivity of 0. 60 pg/ml). Diluted 

microparticles were prepared. The microparticles were equipped with analyte-specific antibodies 

and were added to a sample of interest where the antibodies bind to their respective substrates. 

Biotinylated antibodies were subsequently added to the sample and bind the microparticle-

affiliated analytes. Finally, a streptavidin–phycoerythrin conjugate was added to the sample, 

which binds the biotinylated antibodies. The Data from Fluorokine® MAP was analyzed with 

QIAGEN LiquiChip System Software Version 2.3. 

Statistical analysis 

Statistical significance of qPCR results was determined by two-way analysis of variance with the 

Bonferroni post-test using GraphPad Prism 3.00 for Windows. For other assays, statistical 

analysis was evaluated by the two-tailed  Student’s   t-test. P < 0.05 was considered statistically 

significant. 

Results 

 Increased expression of mPGES-1 and PGE2 production in SSc patient fibroblasts versus    

normal patient fibroblasts 

 Immunohistochemical findings using the antibody recognised mPGES-1 protein showed higher 

amount of   mPGES-1 protein in SSc fibroblasts compared to Normal fibroblasts (Figure 1A). In 

addition, the level of prostaglandin E2 (specific metabolic of mPGES-1) are significantly 

elevated in SSc fibroblasts compared to normal human skin fibroblasts (Figure 1B). These results 
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indicated that elevation of mPGES-1 could be a contributing factor in pathology of SSc and 

blocking mPGES-1 could be beneficial in counteracting fibrosis relate to SSc.  

Effect of mPGES-1 pharmacological inhibition on gene expression of pro- fibrotic markers 

in SSc fibroblasts versus normal human fibroblasts   

The expression of pro-fibrotic markers (α- SMA, Collagen type 1, EN -1 and CTGF has been 

determined. The expression of α- SMA increased in SSc patients versus normal patients. 

Treatment with mPGES-1   inhibitor   significantly   decreased   the   expression   of   α- SMA in SSc 

fibroblasts (Figure 2A). Moreover, the expression of Collagen type 1 also increased in SSc 

patients versus normal patients. Treatment with mPGES-1 inhibitor significantly decreased the 

expression of Collagen type 1 in SSc fibroblasts (Figure 2B). As described in ( Figure 2C), EN-1 

which is our third profibrotic markers detected in the experiment was higher in SSc patients 

versus normal patients and again out treatment with mPGES-1 inhibitor significantly declined the 

expression of SSc skin fibroblasts. Furthermore, the expression of CTGF was higher in SSc 

patients versus normal patients; However, There was only a partial reduction in the expression of 

SSc fibroblasts in the presence of mPGES-1 inhibitor treatment (Figure 2D). 

Effect of mPGES-1 pharmacological inhibition on gene expression of pro-inflammatory 

markers in SSc fibroblasts versus normal human fibroblasts   

The production of pro-inflammatory cytokines (IL6, IL8, and MCP-1) has been determined. The 

production of MCP-1 was higher in SSc fibroblasts compared to normal fibroblasts and treatment 

with mPGES-1 inhibitor significantly decreased the level of MCP-1 in normal and SSc 

fibroblasts (Figure 3A). Also, the level of IL6 was higher in SSc fibroblasts as expected and 

treatment with mPGES-1 inhibitor significantly declined the expression of IL8 in SSc fibroblasts. 
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However in normal fibroblasts we had a numeric reduction in expression of IL6 (Figure 3B). IL8 

production was higher in SSc fibroblasts and treatment with mPGES-1 inhibitor reduced the 

expression of IL8 significantly (Figure 3C). SSc patients exhibited higher levels of p-AKT and p-

FAK.  mPGES-1 inhibitor was able to down regulate this increased expression of p-AKT, p-FAK 

(Figure 3D). 

Discussion 

In recent years, a significant effort has been made toward an appropriate treatment for fibrotic 

disorders. mPGES-1 in cyclooxygenase pathway and its key role in inflammation responses made 

it an attractive target for anti- inflammatory therapies. Although its role in fibrosis has not been 

well recognized, many studies on human cells and mice are ongoing. In one study on human lung 

fibrosis, the role of prostaglandin E2 (PGE2) which is the metabolite of mPGES-1 has been 

monitored and implicated that PGE2 has an important role in interstitial fibrosis due to the ability 

of PGE2 to prevent from fibroblast proliferation, migration, and collagen secretion [162] . 

Therefore down regulation of the PGE2 in interstitial lung fibrosis is an important factor in the 

pathogenesis of this disorder.  

 Our studies have shown that mPGES-1 is over expressed in human dermal SSc fibroblasts and in 

bleomycin-induced skin sclerosis in mice. Moreover, mPGES-1 null mice were resistant to 

bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast 

formation compared to WT mice. In addition our studies demonstrated that, the level of PGE2 

which is the metabolite of mPGES-1 is higher in SSc skin fibroblast[118]. Considering the 

pivotal role of mPGES-1 as a major pro-inflammatory enzyme upregulated in inflammatory 

cascade and as study on interstitial lung fibrosis implicated lower level of PGE2, it is 
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understandable that inflammation plays a biphasic role in fibrosis. In fact, prostacyclins restrict 

the activation of fibroblasts after tissue injury but, in response to the original injury, may promote 

recruitment of inflammatory cells and lead to secondary activation of fibroblasts [163]. 

Therefore, in our studies on human skin cell fibroblasts, we investigated the role of mPGES-1 on 

human SSc fibroblasts by using mPGES-1 inhibitor, a synthetic inhibitor, provided by Merck 

Frosst Canada) to study the expression of pro-fibrotic markers and the production of pro –

inflammatory cytokines  in the presence/absence of mentioned treatment. Our analysis on pro-

inflammatory cytokines (IL-6, IL-8, MCP-1) demonstrated that mPGES-1 inhibitor is not only 

able to downregulate the production of pro-inflammatory cytokines significantly in SSc skin 

fibroblasts but also may cause a numeric reduction in normal skin fibroblasts too; furthermore, 

the reduction in expression of pro-fibrotic markers has been determined in SSc skin fibroblasts 

.In one study on human lung fibroblasts researchers found  that  α-SMA, the pro- fibrotic marker 

which is high in SSc, is induced by transforming growth factor-beta (TGF-β),  which   requires  

focal adhesion kinase (FAK) phosphorylation on its Tyr-397 site . Therefore, FAK 

phosphorylation is high in SSc and treatment with TGF-β   antisense can decrease the 

phosphorylation of FAK [80]. Moreover, acutely transforming retrovirus (AKT) is a 

serine/threonine kinase that plays important roles in survival, cell regulation and collagen 

deposition. Studies demonstrated that blocking AKT using pharmacological inhibitors, small 

interfering RNA (siRNA), and a dominant-negative AKT mutant led to inhibition of the basal 

type I collagen production. Furthermore, inhibition of AKT increased the basal matrix 

metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of TGF- β  on  MMP1  

gene expression. SSc fibroblasts were more sensitive to AKT inhibition, with respect to collagen 

and MMP1 production. These findings suggest that in SSc skin fibroblasts, AKT can directly 

contribute to elevated collagen and it may represent an attractive target for therapy of SSc fibrosis 
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[78]. These results are of considerable interest, give a clue to find an appropriate treatment for 

SSc patients; Moreover, the observation that mPGES-1 inhibitor reduces the pro-inflammatory 

and pro-fibrotic cytokines in SSc has important implications in understanding of pathophysiology 

of SSc. Indeed, our research and the study on mPGES-1 null mice certainly may lead to the 

development of new therapeutic strategies in the treatment of SSc and possibly other fibrotic 

disorders. 
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Abstract 

Objectives 

The role of ephrin B2, a member of ephrin family belonging to the largest sub-family of 

membranous receptor protein-tyrosine kinases, in the pathophysiology of scleroderma (SSc) 

disease is unknown. In the present study we explored the potential of ephrin B2 in mediating 

fibrotic and adhesive signalling associated with the pathophysiology of SSc disease.   

Methods 

Skin sections were obtained by punch biopsies from the forearm of healthy individuals and those 

with cutaneous SSc. Extracted biopsies were then used immunohistochemistry, western blotting, 
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Real-Time PCR and isolation of dermal fibroblast for cell culture based assays. Cultured 

fibroblasts were treated with recombinant human ephrin B2/Fc and subjected to fibroblast 

function assays such as migration, adhesion and stress fibre formation. Mice were daily injected 

subcutaneously with   recombinant   human   ephrin   B2/Fc   (100μg/Kg/mouse)   for   two   weeks   and  

degree of fibrosis was determined. 

Results  

Our IHC, Real-Time PCR and western blot analysis confirmed that Ephrin B2 expression was 

elevated in SSc skin compared to normal skin. Treatment of normal and SSc fibroblasts with 

recombinant human ephrin B2/Fc resulted in enhanced cell migration, adhesion to fibronectin, 

cell spreading, cell-cell contact, stress fiber formation and increased expression of p-FAK  and  α-

SMA (myofibroblast formation) compared to untreated fibroblasts. Furthermore, mice treated 

with recombinant mouse ephrin B2/Fc induced significant skin fibrosis in mice associated with 

enhanced collagen deposition,   dermal   thickness,   hydroxyproline   content,   α-SMA-expressing 

fibroblasts and increased expression of p-FAK, type I collagen and CTGF.  

Conclusion 

We for the first time show that ephrin B2 is a key mediator of fibrosis and targeting ephrin B2 

could be a new therapeutic option to counteract SSc disease manifestations. 
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Introduction 

Scleroderma (Systemic sclerosis, SSc) is an autoimmune disease for which there is currently no 

appropriate treatment. While the eitology of this debilitating disease is unknown, SSc disease is 

associated with production and accumulation of excessive fibrous connective tissue [2]. It is 

believed that elevated and activated adhesive signaling is involved in promoting fibrogenesis and 

is a key phenotypic hallmark of fibrotic cells [164].  

The Eph receptors and their ephrin ligands belong to the largest sub-family of membranous 

receptor protein-tyrosine kinases. Based on their structures and sequence relationships, ephrins 

are divided into the ephrin-A class (anchored to the membrane by a glycosyl-phosphatidylinositol 

linkage) and ephrin-B class (transmembrane proteins) [136]. Binding of EphB receptor tyrosine 

kinases (RTKs) to transmembrane ephrin B ligands at the surface of adjacent cells initiates a 

cascade of signaling events in both the receptor- and the ligand-expressing cells [165]. Ephrins, 

first identified as axon guidance molecules, have since been shown to regulate several biological 

functions including animal development, control of extracellular matrix remodelling, adhesive 

signalling and cell migration [165-169]. They have been shown to mediate cell migration and cell 

positioning during tissue modelling programs including gastrulation and patterning of vascular, 

skeletal and nervous systems during the development of invertebrate and vertebrate embryos 

[137, 170-172].  In mouse malignant melanomas cells it has been shown that overexpression of 

ephrin-B2 leads to the formation of multiple lamellipodia, enhanced polymerisation of actin 

fibers, and induction of focal adhesion complexes with constitutive activation of focal adhesion 

kinase (FAK) [142]. Furthermore, ephrin-B2-overexpressing B16 cells display a significant 

increase   of   β1-integrin-mediated attachment to matrix components such as laminin and 

fibronectin and enhanced cell migration in both Boyden chamber invasion experiments as well as 
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in in vitro scratch-wound assays [142]. Ephrin-B2 and its receptor EphB4 have also been shown 

to mediate cell adhesion and migration functions between arterial and venous endothelial cells 

[143, 144].  

In a recent report, it was shown that expression of ephrin B2 and its receptor eph B4 was 

enhanced in skin of patients with early diffuse systemic sclerosis [146]. However, the role of 

ephrins in fibroblast function in SSc disease is still unknown. In the present study we first 

determined the expression of ephrin B2 in SSc skin versus normal human skin and further 

determined the role of ephrin B2 in fibroblast functions including migration, adhesion, spreading 

and adhesive signalling using fibroblasts isolated from normal donors and SSc patients with 

cutaneous involvement. In addition, we treated mice (intradermal injections) with recombinant 

mouse ephrin B2/Fc and determined its potential to cause fibrosis in mice. 

Materials and Methods 

Normal Human and SSc skin biopsies  

6 mm punch biopsies from the forearm of healthy individuals and SSc patients with clinical 

cutaneous involvement were performed. The biopsies were cut into 2 sections, one was used for 

isolation and culture of skin fibroblasts and the other for the whole tissue studies. The biopsies 

were extracted from 9 normal female donors (Age range between 49-65 years old) and 7 female 

SSc patients with clinical cutaneous involvement of the biopsied site (Patient ages ranged 

between 45-63 years old). All experimental protocols were approved by the Institutional Ethics 

Committee. All SSc subjects were part of the registry of the Canadian Scleroderma Research 

Group and provided informed written consent. Skin biopsies were then: (1) Processed for 

immunohistochemistry; (2) Homogenized and processed for western blotting or Real-Time PCR; 
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or (3) Used for isolation of dermal fibroblast which were cultured in DMEM containing 10% 

fetal bovine serum (Invitrogen) and cell culture based assays were performed.  

Immunohistochemistry 

Biopsies from the forearm of healthy individuals and those with SSc were embedded in paraffin 

wax.   Sections   (0.5   μm)  were   cut   using   a  microtome   (Leica)   and   collected   on   Superfrost   Plus  

slides (Fisher Scientific). Sections were then de-waxed in xylene and rehydrated by successive 

immersion in descending concentrations of alcohol. Immunolabeling of ephrin B2 was performed 

using the DakoCytomation LSAB+ System-HRP kit (Carpinteria, CA). Immunohistochemical 

procedures were performed according to the manufacturer’s   recommendations.   Briefly,  

endogenous peroxide was blocked using 0.5% H2O2 in methanol for 5 minutes. Non-specific 

IgG binding was blocked by incubating sections with bovine serum albumin (0.1%) in PBS for 1 

hour and then incubated with primary antibody for ephrin B2 (Sigma-Aldrich; 1:1000 dilution) in 

a humidified chamber and left overnight at 4°C. Next, sections were incubated with the 

biotinylated link for 30 minutes followed by incubation with streptavidin for 30 minutes. The 

chromogen diaminobenzidine tetrahydrochloride (DAB) was then added till sufficient color 

development. 

Western blotting 

Normal and SSc skin explants were homogenized in 50 mM Tris-buffered saline (TBS) 

containing 0.1% sodium dodecyl sulfate (SDS) and protease inhibitors (leupeptin, pepstatin A) 

and the protein content was determined using bicinchoninic acid (BCA) protein assay reagent 

(Pierce, Rockford, IL) with bovine serum albumin as the standard. Homogenates were adjusted to 

equal equivalents of protein and then were applied to SDS–polyacrylamide gels (10%) for 
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electrophoresis as described before [173]. The proteins were electroblotted onto polyvinylidene 

fluoride membranes. After the membranes were blocked in 10 mM TBS containing 0.1% tween- 

20 (TBS-T) and 5% skim milk, the membranes were probed for 1.5 hours with primary antibody 

for ephrin B2 (Sigma-Aldrich,  USA;;  1:1000  dilution)  or  β-actin (Sigma-Aldrich, USA; 1:1000 

dilution) in TBS-T. After washing the membranes with TBS-T, the membranes were incubated 

overnight with horseradish peroxidase-conjugated anti-rabbit or horseradish peroxidase-

conjugated anti-mouse immunoglobulin G (IgG) (1:10,000 dilution in TBS-T containing 5% 

skim milk) at 4°C. After further washing with TBS-T, protein bands were visualized with an 

enhanced chemiluminescence system using a Bio-Rad Chemidoc Apparatus. 

Additionally, normal patient fibroblasts were cultured to confluence and treated with/without 

ephrin B2/Fc (Recombinant  human  ephrin  B2/Fc;;  Creative  BioMart,  USA,  4μg/ml;;  concentration  

of   4μg/ml  was   chosen   for   actual   experiments   based   on   our   pilot   experiments   in  which   4μg/ml  

was   the   most   effective   concentration   in   inducing   α-SMA expression without affecting cell 

viability) for 24 hours and protein was extracted and western blotting for p-FAK (Cell Signalling, 

USA; 1:1000 dilution), Total-FAK   (Cell   Signalling,   USA;;   1:1000   dilution),   α-SMA (Sigma-

Aldrich,  USA;;  1:1000  dilution)  and  β-actin (Sigma-Aldrich; 1:1000 dilution) was performed as 

described above.  

RNA isolation and Real-Time PCR 

Total RNA was isolated from normal human and SSc skin explants using TRIzol (Invitrogen) 

(RNeasy; QIAGEN), reverse transcribed and amplified using TaqMan Assays-on-Demand 

(Applied Biosystems) in a reaction solution containing two unlabeled primers and 6-

carboxyfluoroscein-labelled TaqMan MGB probe. Samples were combined with One-Step 
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MasterMix (Eurogentec). Amplified sequences were detected using the ABI Prism 7900HT 

sequence detector (Applied Biosystems). The expression values were standardized to values 

obtained  with  GAPDH  primers   using   the  ΔCt  method   and   presented   as   averages   and   standard  

error of the mean (SEM) from direct comparison of SSc and normal human skin.  

Adhesion, migration and cell spreading assay 

Normal and SSc skin fibroblasts were isolated and cultured as described above. Following 

confluence, cells were pre-treated for 24 hours in the absence/presence of recombinant human 

ephrin   B2/Fc   (4μg/ml).   Cells   were   then   lifted   using 2 mmol/L EDTA in PBS and seeded at 

1x105/ml   for   30  min   at   37°C   in   Dulbecco’s  Modified   Eagle’s  Medium   containing   2%   bovine  

serum albumin on glass Lab-Tek chamber slides in 24-well  plates  (Nunc)  coated  with  10  μg/ml  

fibronectin (Sigma). Background adhesion was measured using BSA-coated plates. After 

washing, adhered cells were trypsinized and counted to account for adhesive ability of the cells 

pre-treated with/without recombinant human ephrin B2/Fc.  

For in vitro migration assay, cultured normal human skin fibroblasts were grown in 12-well 

plates. Medium was removed and cells were once rinsed with serum-free medium + 0.1% BSA 

and were cultured for 24 hours in serum-free medium + 0.1% BSA. The monolayer was 

artificially injured by scratching across the plate with a blue pipette tip (approximately 1.3-mm 

width). The wells were washed two times to remove detached cells or cell debris. The cells were 

then cultured in serum-free medium in the presence/absence of recombinant human ephrin B2/Fc 

(4μg/ml).   Mitomycin   C (10   μg/ml,   Sigma)   was   always   included   in   the   media   to   prevent   cell  

proliferation. Images of the scratched areas under each condition were photographed at 0 and 18 

hours post-injury. 
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To  account  for  stress  fibre  formation,  cell  spreading  and  expression  of  α-SMA and F-FAK, cells 

were allowed to adhere in the presence/absence of recombinant human ephrin B2/Fc for 12 hours 

on fibronectin-coated plates and immunofluorescence using anti-vinculin antibody, rhodamine-

phalloidin  staining,  and  α-SMA antibody was performed.   

 

Subcutaneous treatment of mice with ephrin B2 

Subcutaneous injections using mice recombinant ephrin B2/Fc were performed using the 

methodology previously reported for bleomycin-induced model of fibrosis [174, 175]. 6 weeks 

old  C57/BL6  mice   received   100μl   subcutaneous   injections   of   ephrin  B2/Fc   (100μg/Kg/mouse)  

into a single location on the shaved back of mice once daily for 2 weeks. Control mice received 

sunbcutaneous injections of PBS for 2 weeks. Following two-week treatment with either PBS or 

ephrin B2/Fc, mice were further housed for 2 weeks and killed by CO2 euthanasia and skin 

samples were collected for histology, immunohistochemistry, hydroxyproline assay and western 

blotting. Institutional animal ethics committee approved all experimental protocols. 

Histological Assessment of Collagen content 

Sections (0.5 µm) were cut using a microtome (Leica) and collected on Superfrost Plus slides 

(Fisher Scientific). Sections were then de-waxed in xylene and rehydrated by successive 

immersion in descending concentrations of alcohol. To assess the effects of ephrin B2 treatment 

on collagen synthesis, trichrome collagen stain was employed as previously described [174, 175]. 

Briefly, collagen content in each section was assessed by three blinded observers using the 

following assessment criteria: 0 signifies: No collagen fibres; 1 signifies: Few collagen fibres; 2 

signifies: Moderate amount of collagen fibres; 3 signifies: Excessive amount of collagen fibres.  
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Assessment of Inflammation  

To assess inflammation, the sections were stained with hematoxylin and Eosin (H&E; Fisher 

Scientific).   H&E   stain   was   performed   according   to   the   manufacturer’s   recommendation.   The  

effect of ephrin B2 treatment on inflammation (degree of mononuclear cell influx) was graded on 

a scale of 0-3 by three separate blinded observers. 0 signifies: No mononuclear cells; 1 signifies: 

Few mononuclear cells; 2 signifies: Moderate mononuclear cells; 3 signifies: Extensive 

mononuclear cells.  

 

 

Hydroxyproline assay 

Hydroxyproline assay was performed as a marker of collagen content in PBS-treated and ephrin 

B2/Fc-treated skin using the method previously described [176]. Skin tissues were homogenized 

in saline, hydrolyzed with 2N NaOH for 30 min at 120 °C, followed by the determination of 

hydroxyproline by modification of the Neumann and Logan's reaction using Chloramine T and 

Ehrlich’s  reagent  using  a  hydroxyproline  standard  curve  and  measuring  at  550  nm.  Values  were  

expressed  as  μg  of  hydroxyproline  per  mg  of  protein. 

α-SMA Immunohistochemistry  

Sections were cut and processed as described above. Immunolabeling of α-SMA was performed 

using the DakoCytomation LSAB+ System-HRP kit (Carpinteria, CA). Immunohistochemical 

procedures   were   performed   according   to   the   manufacturer’s   recommendations.   Briefly,  
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endogenous peroxide was blocked using 0.5% H2O2 in methanol for 5 minutes. Non-specific IgG 

binding was blocked by incubating sections with bovine serum albumin (0.1%) in PBS for 1 hour 

and then incubated with primary  antibody  for  α-SMA (1:1000)  in a humidified chamber and left 

overnight at 4°C. Next, sections were incubated with biotinylated link for 30 minutes followed by 

incubation with streptavidin for 30 minutes. The chromogen diaminobenzidine tetrahydrochloride 

(DAB), was then added till sufficient color development and sections counterstained with 

Harris’s  hematoxylin. 

Statistical analysis 

Statistical significance of qPCR results was determined by two-way analysis of variance with the 

Bonferroni post-test using GraphPad Prism 3.00 for Windows. For other assays, statistical 

analysis was evaluated by the two-tailed  Student’s   t-test. P < 0.05 was considered statistically 

significant. 

 

Results 

Ephrin B2 is overexpressed in human SSc skin 

We first determined the expression of ephrin B2 in normal human skin versus SSc skin by 

immunohistochemistry. Low expression of Ephrin B2 was observed in both epidermis and 

dermal regions of the normal skin. However, Ephrin B2 was strongly expressed in both epidermis 

and dermis of SSc skin (Figure 1a). Next, we determined the expression of ephrin B2 in normal 

human skin versus SSc skin via western blotting and real-time PCR. Our data further confirmed 
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that ephrin B2 protein expression (Figure 1b) and mRNA expression (Figure 1c) was 

significantly elevated in SSc skin compared to normal human skin. 

Ephrin B2 treated fibroblasts exhibit enhanced actin stress fibre formation, cell spreading, 

and  increased  phosphorylation  of  FAK  and  α-SMA expression 

We next determined if treatment of normal and SSc skin fibroblasts with recombinant human 

ephrin B2/Fc can affect stress fibre formation and cell spreading. As expected, our results first 

showed that untreated SSc fibroblasts exhibited greater actin stress fibre formation and cell 

spreading on fibronectin compared to untreated normal skin fibroblasts, as revealed with 

rhodamine-phalloidin (red) staining and anti-vinculin antibody (green) (Figure 2A and B). 

Treatment of normal and SSc skin fibroblasts with ephrin B2/Fc resulted in enhanced stress fibre 

formation and cell spreading on fibronectin compared to untreated normal and untreated SSc 

fibroblasts respectively. It should be noted that Ephrin B2/Fc-treated normal fibroblasts exhibited 

phenotypic characteristics of SSc-like myofibroblasts with increased stress fibres and cell 

spreading. Further, we also consistently noticed that treatment of both normal as well as SSc 

fibroblasts with ephrin B2/Fc resulted in increased cell-cell contact with a mesh-like appearance.  

Since recombinant human ephrin B2/Fc treatment produced enhanced cell migration, adhesion 

and spreading, we next determined if treatment of normal and SSc skin fibroblasts with 

recombinant human ephrin B2/Fc can affect the phopsphorylation of FAK, a key player in 

adhesive signalling. As expected, our results first showed that untreated SSc fibroblasts exhibited 

greater phosphorylation of FAK compared to untreated normal skin fibroblasts (Figure 2C). 

Treatment of normal and SSc fibroblasts with ephrin B2/Fc resulted in increased phosphorylation 

of FAK compared to untreated normal and untreated SSc fibroblasts respectively.  
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We further determined if recombinant human ephrin B2/Fc treatment showed any effect on 

myofibroblast formation, we used indirect immunofluorescence analysis with an anti–α-SMA 

antibody.  Our results first showed that untreated SSc fibroblasts exhibited greater expression of 

α-SMA–containing stress fibers compared to untreated normal skin fibroblasts (Figure 2D). 

Treatment of normal and SSc skin fibroblasts with ephrin B2/Fc resulted in increased expression 

of  α-SMA–containing stress fibers compared to untreated normal and untreated SSc fibroblasts 

respectively.   α-SMA staining further confirmed that ephrin B2/Fc-treated normal fibroblasts 

exhibited phenotypic characteristics of SSc-like myofibroblasts. 

Ephrin B2-treated normal fibroblasts exhibit enhanced protein expression of p-FAK  and  α-

SMASince our immunofluorescence study showed that ephrin B2/Fc treatment resulted in 

increased   phosphorylation   of   FAK   and   α-SMA expression in skin fibroblasts, we further 

confirmed this observation in normal human fibroblasts by western blotting. Our results 

confirmed that normal human skin fibroblasts treated with ephrin B2/Fc exhibited enhanced 

phosphorylation  of  FAK  and   increased  expression  of  α-SMA compared to untreated fibroblasts 

(Figure 2E) 

Ephrin B2 treated fibroblasts exhibit enhanced migration and adhesion to fibronectin 

We next determined if treatment of normal and SSc skin fibroblasts with recombinant human 

ephrin B2/Fc can affect fibroblast migration and adhesion to fibronectin. Using an in vitro scratch 

assay, we first observed that untreated SSc skin fibroblasts exhibited greater migration rate 

compared to untreated normal human skin fibroblasts. Treatment with ephrin B2/Fc significantly 

(P<0.05) enhanced the rate of fibroblast migration in both normal as well as SSc fibroblasts 

compared to untreated normal and untreated SSc fibroblasts respectively (Figure 3A, B). Next, 
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our results showed that untreated SSc skin fibroblasts exhibited significantly (P<0.05) increased 

number of fibroblasts adhering to fibronectin compared to untreated normal human skin 

fibroblasts. Treatment with ephrin B2/Fc significantly (P<0.05) enhanced the number of cells 

adhering to fibronectin in both normal as well as SSc fibroblasts compared to untreated normal 

and untreated SSc fibroblasts respectively (Figure 3C).  

 

Mice treated with mice recombinant Ephrin B2/ Fc exhibit dermal fibrosis 

Mice recombinant ephrin B2/Fc (or PBS as a control) was injected subcutaneously once daily for 

two weeks followed by 2 weeks of further housing of mice without any treatment. At 4 weeks, 

tissue biopsies from the back of the mouse were extracted and subjected to histological and 

biochemical analyses. Trichrome staining showed that treatment with ephrin B2 resulted in 

significant development of dermal fibrosis in mice associated with increased dermal thickness 

and collagen score (Figure 4A-C) compared to PBS-treated mice. It was interesting to observe 

that fibrosis associated with 2-week treatment with ephrin B2 was comparable to what we usually 

observe with established model of bleomycin-induced skin fibrosis.  

We further assessed the effect of ephrin B2 treatment on any degree of inflammation 

(mononuclear cell influx) induced by ephrin B2 treatment. Blinded histological analysis using 

H&E staining showed presence of very few mononuclear cells within the dermis of both PBS-

treated and ephrin B2-treated mice with no significant differences between both treatments (4D), 

suggesting a minimal contribution of inflammation towards development of fibrosis in ephrin-

B2-treated mice.  
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Mice treated with mice recombinant Ephrin B2/Fc exhibit enhanced collagen content and 

α-SMA-expressing myofibroblasts 

Hydroxyproline analysis was performed to determine the collagen content. Our results showed a 

significant increase in collagen content in ephrin B2-treated skin versus PBS-treated skin. 

(Figures 5A), confirming the results obtained from histological analysis of collagen staining.  

As   α-SMA-expressing myofibroblasts are a hallmark of SSc disease [174, 175], we further 

assessed  the  effect  of  ephrin  B2  treatment  on  the  induction  of  α-SMA-expressing myofibroblasts. 

We first subjected skin sections of ephrin B2- or PBS-treated mice to immunohistochemical 

analysis with an anti-α-SMA antibody. Compared to PBS-treated skin, a markedly elevated 

numbers of myofibroblasts were detected in ephrin B2-treated skin (Figure 5C). These data were 

further confirmed by western blot analysis, which confirmed increased  protein  expression  of  α-

SMA in ephrin B2-treated skin compared to PBS-treated skin (Figure 5B).  

Mice treated with mouse recombinant Ephrin B2/Fc exhibit enhanced expression of p-FAK, 

type-I collagen and CTGF 

We further assessed if treatment with ephrin B2 had any effect on the phosphorylation of FAK in 

vivo. Skin sections isolated from ephrin B2-treated mice exhibited significant phosphorylation of 

FAK compared to low expression observed in PBS-treated sections in western blot. (Figure 6A). 

In addition, skin biopsies isolated from ephrin B2-treated mice exhibited significant increase in 

the mRNA expression of type I collagen and CTGF compared to PBS-treated sections (Figure 6B 

and C). 
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Discussion 

Fibrosis associated with SSc disease is characterized by excess deposition of extracellular matrix 

components. Myofibroblast are the activated fibroblasts that produce large amount of collagen 

and are primarily the major cell types among others contributing towards the pathology of SSc 

disease [177]. It is now widely accepted that in fibrotic disorders, excessive adhesive signalling 

plays an active role. Excessive adhesive signalling results in execrated cell-cell and cell-ECM 

interactions and contributes to activation and promotion of fibrotic signalling mechanisms. Thus, 

targeting factors which control adhesive signalling such as cell-cell and cell-ECM interactions 

could present us with new and promising therapeutic targets to counteract fibrotic mechanisms 

associated with SSc and related disorders. 

In cancer studies, members of ephrins family, especially ephrin B2 has been shown to control 

extracellular matrix remodelling and adhesive signalling [142]. In early diffuse systemic sclerosis 

skin, a recently published study reported that ephrin B2 and its receptor eph B4 were elevated 

compared to normal human skin [146]. However, the role of ephrin B2 associated with SSc 

disease remains unknown.  

In the present study we first show that ephrin B2 is elevated in SSc skin from patients with 

cutaneous involvement compared to normal human skin. We next show that treatment of normal 

and SSc skin fibroblasts with recombinant human ephrin B2/Fc enhanced several key fibroblast 

functions  including  migration,  adhesion  to  fibronectin,  stress  fibre  formation,  α-SMA expression 

(myofibroblast formation) and enhanced adhesive signalling implicated in the pathophysiology of 

SSc disease. Our results further showed that ephrin B2/Fc treatment resulted in the increased 

phosphorylation of FAK in normal human fibroblasts. It is now well established that FAK is a 
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key regulator of cell adhesion, proliferation, survival, migration and myofibroblast differentiation 

of scleroderma fibroblasts [80, 178, 179]. Indeed, the basis of the myofibroblast phenotype is an 

increased ability to adhere to and contract ECM. FAK-deficient fibroblasts show significantly 

decreased cell migration, and re-expression of FAK in FAK-deficient cells restores their 

migratory ability [180]. Further, pharmacologic inhibition of FAK inhibits TGF-β1-induced 

expression  of  α-SMA (a myofibroblast marker) [80, 181]. It has  also  been  reported  that  α-SMA 

expression was increased through the interaction between integrins and ECM, especially 

fibronectin, via phosphorylation of FAK [179]. Thus the ability of ephrin B2 to induce 

phosphorylation of FAK may in part be driving the fibroblast functions such as increased 

migration,   adhesion   to   fibronectin,   stress   fibre   formation,   α-SMA expression (myofibroblast 

formation) (Figure 6C). 

Since ephrin B2 treatment of normal human and SSc fibroblasts promoted several fibrotic 

functions, we next determined if treatment of mice with subcutaneous injections of recombinant 

ephrin B2/Fc can induce fibrosis in mice. Out of 5 mice treated with ephrin B2/Fc, all mice 

consistently developed significant dermal fibrosis associated with increased dermal thickness, 

collagen deposition, and hydroxyproline content   and   α-SMA-expressing fibroblasts. 

Interestingly, we did not observe any differences in the degree of mononuclear cell influx 

(inflammation) with or without ephrin-B2 treatment, suggesting that inflammation may play a 

minimal role in the development of fibrosis upon treatment with ephrin B2.  

We further observed that ephrin B2/Fc-treatment was able to significantly induce the 

phosphorylation of FAK in vivo, consistent to what we observed in vitro with normal human and 

SSc fibroblasts treated with ephrin B2. In addition to FAK phosphorylation, treatment of mice 

with ephrin B2/Fc also upregulated the expression of collagen type I, a major component of ECM 
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as well as CTGF, a key profibrotic marker associated with fibrosis. Thus induction of 

phosphorylation of FAK and subsequent increase in adhesive signalling could be contributing 

factor development of fibrosis in ephrin B2-treated mice. 

Currently there is no perfect mouse model that mimics each aspect of SSc pathology. Most often 

used model of skin fibrosis, bleomycin-induced model of skin scleroderma, utilizes repeated 

application of bleomycin, an anti-tumor antibiotic originally isolated from the fungus 

Streptomyces verticillus [182], to induce inflammation and subsequent fibrosis in skin [118, 183]. 

The results presented in this study show that ephrin B2-induced dermal fibrosis could be used as 

another suitable model of skin fibrosis with minimal involvement of inflammation.    

Overall, these data suggest that targeting ephrin B2 could be beneficial in counteracting the 

profibrotic and abnormal adhesive signalling in SSc and related diseases. Although beyond the 

scope of the present study, future studies should be directed towards understanding more in depth 

role of ephrin B2 in SSc disease using pharmacological as well as genetic approach. It would be 

interesting to see if pharmacological inhibition of ephrin B2 or/and fibroblast-specific ephrin B2 

knockout mice resist excessive adhesive signalling and are protected from fibrosis in animals 

models of skin fibrosis. 
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Figure Legends: 

Figure 1: Expression of ephrin B2 is elevated in SSc skin versus normal human skin: (A) 

Immunohistochemistry for ephrin B2 showed increased expression of ephrin B2 in SSc skin 

versus normal human skin. Representative data from n=4/group is shown. (B and C) Western 

blot and real-time PCR results showed increased protein and mRNA expression of ephrin B2 in 

SSc skin versus normal skin. Data from n=6 per group is shown.  

 

Figure 2. Ephrin B2 treated normal and SSc fibroblasts exhibit enhanced actin stress fibre 

formation, cell spreading, increased   phosphorylation   of   FAK   and   α-SMA expression 

(myofibroblast formation). (A and B) Untreated SSc fibroblasts exhibited greater actin stress 

fibre formation and cell spreading on fibronectin compared to untreated normal skin fibroblasts, 

as revealed with rhodamine-phalloidin (red) staining (A) and anti-vinculin antibody (green) (B). 

Treatment of normal and SSc skin fibroblasts with ephrin B2/Fc resulted in enhanced stress fibre 

formation and cell spreading on fibronectin compared to untreated normal and untreated SSc 

fibroblasts respectively. (C) Untreated SSc fibroblasts exhibited greater phosphorylation of FAK 

compared to untreated normal human skin fibroblasts. Treatment of normal and SSc fibroblasts 

with ephrin B2/Fc resulted in increased phosphorylation of FAK compared to untreated normal 

and untreated SSc fibroblasts respectively. (D) Untreated SSc fibroblasts exhibited greater 

expression   of   α-SMA–containing stress fibers compared to untreated normal skin fibroblasts. 

Treatment of normal and SSc skin fibroblasts with ephrin B2/Fc resulted in increased expression 

of  α-SMA–containing stress fibers compared to untreated normal and untreated SSc fibroblasts 

respectively. Representative photo from n=5 separate observations/group is shown. (E) Western 
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blot   results   show   increased   phosphorylation   of   FAK   and   increased   expression   of   α-SMA in 

ephrin B2/Fc treated normal human fibroblasts compared to untreated normal human fibroblasts. 

Data from at least n=4 per group is shown.  

Figure 3. Ephrin B2 treated normal and SSc fibroblasts exhibit enhanced migration and 

adhesion to fibronectin: (A and B). Normal and SSc skin fibroblasts were subjected to in vitro 

migration (scratch assay) in the presence/absence of recombinant human ephrin B2/Fc and rate of 

migration of fibroblasts was calculated at 0 and 18 hours post scratch. Untreated SSc skin 

fibroblasts exhibited significantly greater (P<0.05) migration rate compared to untreated normal 

human skin fibroblasts. Treatment with ephrin B2/Fc significantly (P<0.05) enhanced the rate of 

fibroblast migration in both normal as well as SSc fibroblasts compared to untreated normal and 

untreated SSc fibroblasts respectively. Data from n=4 per group is shown. (C) Normal and SSc 

skin fibroblasts were subjected to adhesion assay as detailed in methods section. Untreated SSc 

skin fibroblasts exhibited significantly (P<0.05) increased number of fibroblasts adhering to 

fibronectin compared to untreated normal human skin fibroblasts. Treatment with ephrin B2/Fc 

significantly (P<0.05) enhanced the number of cells adhering to fibronectin in both normal as 

well as SSc fibroblasts compared to untreated normal and untreated SSc fibroblasts respectively. 

Data from n=6 per group is shown. (+) Refers to statistical significance of P<0.05 between 

untreated normal human fibroblasts versus untreated SSc fibroblasts. (*) Refers to statistical 

significance of P<0.05 between ephrin B2/Fc-treated normal human fibroblasts or ephrin B2/Fc-

treated SSc fibroblasts versus untreated normal human fibroblasts or untreated SSc fibroblasts 

respectively.  
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Figure 4. Mice treated with mouse recombinant Ephrin B2 Fc exhibit dermal fibrosis 

(A) Trichrome staining was performed to account for collagen content (degree of fibrosis) and 

dermal thickness in response to treatment with mouse recombinant Ephrin B2 Fc (2 week 

treatment; dose 100ug/Kg/mouse once daily subcutaneously). (B) Blind histological analysis in 

trichrome stained sections showed that ephrin B2-tretated mice exhibited enhanced collagen 

score compared to PBS-treated mice. (C)Ephrin B2-treated mice exhibited significantly increased 

dermal thickness compared to PBS-treated mice (D) Blind histological analysis in H&E stained 

sections showed that ephrin B2-treated mice did not exhibit any differences in the degree of 

monocluear cell influx (inflammation score) compared to PBS-treated mice. *, p<0.05; ephrin 

B2-treated mice compared to PBS-treated mice. Representative data from n=5 separate 

animals/treatment group is shown. 

 

Figure 5. Mice treated with mouse recombinant Ephrin B2 Fc exhibit increased collagen 

content and myofibroblast formation in vivo. 

(A) Hydroxyproline analysis showed increased collagen content in ephrin-B2-treated mice 

compared to PBS-treated mice. (B). Western blot analysis with an anti-α-SMA antibody showed 

enhanced  α-SMA expression ephrin B2-treated skin versus PBS-treated skin. *, p<0.05; ephrin 

B2-treated mice compared to PBS-treated mice. Representative data from n=5 separate 

animals/treatment group is shown. (C) Immunohistochemistry using anti-α-SMA antibody 

showed  increased  number  of  α-SMA expressing myofibroblasts in ephrin B2-treated skin versus 

PBS-treated skin.  
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Figure 6. Mice treated with mouse recombinant Ephrin B2/Fc exhibit increased 

phosphorylation of FAK and increased expression of type-I collagen and CTGF in vivo. 

(A) Western blot analysis show increased phosphorylation of FAK in ephrin B2-treated skin 

versus PBS-treated skin. (B) qPCR data show increased mRNA expression of Collagen type 

CTGF and I in ephrin B2-treated skin versus PBS-treated skin. *, p<0.05; ephrin B2-treated mice 

compared to PBS-treated mice. Representative data from n=5 separate animals/treatment group is 

shown. (C) Schematic representation of the role of ephrin B2 in fibroblast differentiation, 

migration, adhesion, extracellular matrix production and fibrosis. 

 

 

 

 

 

 

 

 

General Discussion 

My research so far has demonstrated the role of two key endogenous mediators involved in the 

pathophysiology of SSc disease. Firstly, I explored the role of pro-inflammatory enzyme 
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(mPGES-1) in SSc disease by determining the effect of pharmacological inhibition of mPGES-1 

on the expression of pro-fibrotic and pro-inflammatory markers using skin fibroblasts isolated 

from normal and SSc patients. Secondly, I explored the role of adhesive factor (ephrin B2) in 

fibroblast to myofibroblast differentiation and subsequently its role in fibrosis using skin 

fibroblasts isolated from normal and SSc patients as well as treating mice with recombinant 

ephrin B2.   

Targetting mPGES-1 in SSc disease 

Previous studies in my laboratory investigated the role of mPGES-1 in skin fibrosis using 

bleomycin-induced mice model. In this study, mPGES-1 null mice were used and results showed 

that mPGES-1-null mice were resistant to bleomycin-induced skin fibrosis associated with 

reduced inflammation, myofibroblast formation, cutaneous thickening, and collagen production 

in the mouse dermis [118].  Bleomycin-induced fibrosis is an inflammation-driven mice model 

and inflammation is involved with the onset of fibrosis including SSc disease [23, 119, 120]. 

Given the known role of mPGES-1 in driving inflammatory responses, this study strongly 

suggested that mPGES-1 might play a key role in the initial, inflammatory stages of SSc disease.  

To further explore the role of mPGES-1 in inflammation and fibrosis associated with SSc 

disease, I first investigated the expression of mPGES-1 in normal skin compared to skin biopsies 

extracted from SSc patients. My results showed that mPGES-1 is markedly elevated in SSc skin 

compared to normal human skin. In addition, the levels of mPGES-1-derived PGE2 were also 

significantly higher in skin fibroblasts isolated from SSc patients compared to fibroblasts isolated 

from healthy controls. I further investigated the effect of pharmacological inhibition of mPGES-1 

on the expression of pro-fibrotic markers. My studies showed the expression of key pro-fibrotic 

mediators   (α-SMA, endothelin-1, collagen type 1 and connective tissue growth factor) are 

elevated in SSc skin fibroblasts compared to normal skin fibroblasts, in line with previous reports  
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[83, 92, 184].  Treatment with mPGES-1 inhibitor resulted in significant reduction in the 

expression of α-SMA, endothelin-1, collagen type 1 but not CTGF in SSc fibroblasts, with no 

significant effect on normal fibroblasts. Further I investigated the effect of mPGES-1 inhibition 

on key pro-inflammatory cytokines implicated in SSc pathology including IL-6, IL-8 and MCP-1  

[46], [185], [186]. Pharmacological inhibition of mPGES-1 resulted in significant reduction in 

the production levels of pro-inflammatory cytokines, IL6, IL8 and MCP-1 in SSc-lesioned 

fibroblasts compared to untreated fibroblasts. In addition, SSc patients exhibited higher levels of 

p-AKT, p-FAK and p-SMAD3 compared to normal skin fibroblasts. mPGES-1 inhibitor was able 

to down regulate this increased expression of p-AKT, p-FAK but not p-SMAD3 in SSc 

fibroblasts.  

Overall, the first part of my thesis shows that pharmacological inhibition of mPGES-1 could be 

beneficial in counteracting both pro-fibrotic and pro-inflammatory components of SSc disease. 

Further pre-clinical studies are required to test the efficacy and safety of mPGES-1 

pharmacological inhibition in vivo in mice before these inhibitors can be deemed safe for clinical 

trials. 

 

 

Targeting ephrin B2 in SSc disease 

One of the critical processes associated with the evolution of fibrotic response associated with 

SSc disease is considered to arise from a dysregulated wound healing response where fibroblasts 

differentiate into specialized activated cells called myofibroblasts. Accumulation of large amount 

of myofibroblasts is responsible for triggering excessive adhesive signaling and deposition of 

excessive extracellular matrix (ECM) leading to the destruction of organ architecture[187, 188]. 

Thus identifying endogenous factors which initiate/promote fibroblast-myofibroblast 
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differentiation can lead to promising therapeutic strategies to control excessive adhesive signaling 

and fibrosis associated with SSc disease. Prior to my study, the role of ephrin B2 in fibrosis 

associated with SSc disease was unknown. My studies show that that ephrin B2 expression is 

significantly enhanced in human SSc skin versus normal skin.  Most importantly, in vitro 

treatment of normal human skin fibroblasts with recombinant ephrin B2 is able to transform 

fibroblasts into myofibroblastic cells exhibiting all typical myofibroblastic-characteristics 

including increased stress fibre formation, focal adhesions, increased activation of FAK and 

enhanced fibroblast migration and adhesion to fibronectin in both normal and SSc skin 

fibroblasts. Further, I treated mice with recombinant ephrin B2 and showed that these mice 

developed significant skin fibrosis associated with enhanced dermal thickness and collagen 

synthesis, increased hydroxyproline content (collagen content)  and  increased  number  of  α-SMA-

expressing myofibroblasts, enhanced activation of FAK and pro-fibrotic markers including type-I 

collagen and CTGF. These results provide compelling evidence that ephrin B2 is a key mediator 

of fibroblast-myofibroblast differentiation and promotes fibrotic and adhesive signaling 

associated with SSc disease. 

 

 

 

 

Conclusion 

 SSc disease is multifactorial and multistage disease. My studies have identified two 

crucial endogenous mediators involved in propagating inflammation and fibrosis associated with 

SSc disease. mPGES-1 inhibition may present a good alternative strategy to counteract 
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inflammation and fibrosis at least during early stages of SSc disease. Further, excessive ephrin 

B2 signaling promotes adhesive and fibrotic signaling by triggering fibroblast to myofibroblast 

differentiation via activation of the FAK signaling pathway. Thus, inhibition of ephrin B2 will 

block fibroblast-myofibroblast formation and downregulate fibrosis associated with SSc disease. 

Overall, both mPGES-1 and ephrin B2 seems to be attractive targets for treatment of SSc and 

related fibrotic disorders.   
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Figure  2.  (A)  Increased  mRNA    expression  of  α-­SMA    in  SSc  patient    fibroblasts  versus  Normal  
  patient  (Np)  fibroblasts  .  Treatment    with  mPGES-­1  inhibitor  significantely    decreased  the  expression  of    
α-­SMA    in  SSc  fibroblasts  .  (B)  Increased  mRNA    expression  of  Collagen  type  1  in  SSc  patient    fibroblasts  
versus    Np  fibroblasts  .    Treatement    with  mPGES-­1  inhibitor  significantely    decreased  the    expression  of      
α-­SMA    in  SSc  fibroblasts  .  (C)  Increased  mRNA    expression  of  Endothelin-­1  (ET-­1)  in  SSc  patient    
fibfibroblasts  versus    Np  .  Treatment  with  mPGES-­1  inhibitor  significantely  increased  the  expression  of    
ET-­1  in  SSc  fibroblasts  .  (D)  Increased  mRNA    expression  of    Connective  tissue  growth  factor    (CTGF)    in  
SSc  patient    fibroblasts  versus    Np  .     Treatment  with  mPGES-­1  inhibitor      decreased  the    expression  of    
CTGF    in  SSc  fibroblasts  .  *    =  pvalue  <0.05  .  n=7  forearm  skin    fibroblasts  from  each  group.
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Figure  (3).  Monocyte  chemotactic  protein  -­1  (MCP-­1)  secretion  of  dermal  fibroblasts  isolated  from  forarm  of  SSc  
donors  and  normal  donors  in  the  presence/absence  of  mPGES-­1  inhibitor.  MCP-­1  was  analysed  by  Elisa  in  the
supernatent  of  fibroblasts  after  18  hours  of  starvation.  (B)  Interleukin-­6  (IL-­6)  secretion  of  dermal  fibroblasts  
isolated  from  forearm  of  SSc  and  normal  donors  in  the  presence/absence  of  mPGES-­1  inhibitor.  IL-­6  was  analysed
by  Elisa  in  the  supernatent  of  fibroblasts  after  18  hours  of  starvation.  (C)  Interleukin-­8  (IL-­8)  secretion  of  dermal
fibroblasts  isolatedfrom  forearm  of  SSc  and  normal  donors  in  the  presence/absence  of  mPGES-­1  inhibitor.  
IL-­8  was  analysed  by  Elisa  in  the  supernatant  of  fibIL-­8  was  analysed  by  Elisa  in  the  supernatant  of  fibroblasts  after  18  hours  of  starvation.  (D)  SSc  patients  
exhibited  higher  level  of  p-­AKT  and  p-­FAK.  mPGES-­1  inhibitor  was  able  to  downregulate    p-­AKT  and  p-­FAK
in  SSc  patients.
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