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Key Agreement Against Quantum Adversaries

par
Kassem Kalach
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RÉSUMÉ

Un protocole d’échange de clés est un scénario cryptographique entre deux partis

légitimes ayant besoin de se mettre d’accord sur une clé commune secrète via un

canal public authentifié où tous les messages sont interceptés par un espion voulant

connâıtre leur secret. Nous considérons un canal classique et mesurons la complexité

de calcul en termes du nombre d’évaluations (requêtes) d’une fonction donnée par

une bôıte noire.

Ralph Merkle fut le premier à proposer un schéma non classifié permettant de

réaliser des échanges securisés avec des canaux non securisés. Lorsque les partis

légitimes sont capables de faire O(N) requêtes pour un certain paramètre N , tout

espion classique doit faire Ω(N2) requêtes avant de pouvoir apprendre leur secret,

ce qui est optimal. Cependant, un espion quantique peut briser ce schéma avec

O(N) requêtes. D’ailleurs, il a été conjecturé que tout protocole, dont les partis

légitimes sont classiques, pourrait être brisé avec O(N) requêtes quantiques.

Dans cette thèse, nous introduisons deux catégories des protocoles à la Merkle.

Lorsque les partis légitimes sont restreints à l’utilisation des ordinateurs classiques,

nous offrons le premier schéma classique sûr. Il oblige tout adversaire quantique à

faire Ω(N13/12) requêtes avant d’apprendre le secret. Nous offrons aussi un protocole

ayant une sécurité de Ω(N7/6) requêtes. En outre, pour tout k > 2, nous donnons

un protocole classique pour lequel les partis légitimes établissent un secret avec

O(N) requêtes alors que la stratégie optimale d’espionnage quantique nécessite

Θ
(
N

1
2

+ k
k+1

)
requêtes, se rapprochant de Θ(N3/2) lorsque k crôıt.

Lors les partis légitimes sont équipés d’ordinateurs quantiques, nous présentons

deux protocoles supérieurs au meilleur schéma connu avant ce travail. En outre,

pour tout k > 2, nous offrons un protocole quantique pour lequel les partis légitimes

établissent un secret avec O(N) requêtes alors que l’espionnage quantique optimale

nécessite Θ
(
N1+ k

k+1

)
requêtes, se rapprochant de Θ(N2) lorsque k crôıt.

Mots clés : Cryptographie, Algorithmes quantiques, Bornes inférieures

quantiques, Oracle aléatoire.



ABSTRACT

Key agreement is a cryptographic scenario between two legitimate parties, who

need to establish a common secret key over a public authenticated channel, and

an eavesdropper who intercepts all their messages in order to learn the secret.

We consider query complexity in which we count only the number of evaluations

(queries) of a given black-box function, and classical communication channels.

Ralph Merkle provided the first unclassified scheme for secure communications

over insecure channels. When legitimate parties are willing to ask O(N) queries for

some parameter N , any classical eavesdropper needs Ω(N2) queries before being

able to learn their secret, which is is optimal. However, a quantum eavesdropper

can break this scheme in O(N) queries. Furthermore, it was conjectured that any

scheme, in which legitimate parties are classical, could be broken in O(N) quantum

queries.

In this thesis, we introduce protocols à la Merkle that fall into two categories.

When legitimate parties are restricted to use classical computers, we offer the first

secure classical scheme. It requires Ω(N13/12) queries of a quantum eavesdropper

to learn the secret. We give another protocol having security of Ω(N7/6) queries.

Furthermore, for any k > 2, we introduce a classical protocol in which legitimate

parties establish a secret in O(N) queries while the optimal quantum eavesdropping

strategy requires Θ
(
N

1
2

+ k
k+1

)
queries, approaching Θ(N3/2) when k increases.

When legitimate parties are provided with quantum computers, we present

two quantum protocols improving on the best known scheme before this work.

Furthermore, for any k > 2, we give a quantum protocol in which legitimate

parties establish a secret in O(N) queries while the optimal quantum eavesdropping

strategy requires Θ
(
N1+ k

k+1

)
queries, approaching Θ(N2) when k increases.

Keywords: Cryptography, Quantum Algorithms, Quantum Lower Bounds,

Random Oracle.
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Yara Elias, Heinz Fiedler, Sébastien Gambs, Charles Hélou, Philippe Lamontagne,
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Secrecy is a characteristic of mankind. People have always been concerned about

protecting valuable or private information from unauthorized access. One common

example is that of military commanders communicating with the troops or their

superiors. Other examples include financial and medical information.

On top of that, the exchange of a massive amount of confidential information,

such as electronic commerce and financial transactions, is taking place over the

Internet. As a consequence, secrecy has become in peril and tools to maintain

it become necessary. Techniques to remedy or at least to solve satisfactorily this

problem belong to cryptography, which is nowadays the science of all aspects of

privacy and information security, particularly secret communication and secret key

establishment.

Following closely Stinson’s classification [74], key establishment consists of any

approach or technique that allows legitimate parties to establish a common secret

key used to provide secure communication. Accordingly, we mainly distinguish

three approaches: key pre-distribution, session-key distribution and key agreement.

We describe these approaches later in a setting where there is a network of n users

and possibly a trusted authority who is responsible for verifying the identities of

users, transmitting keys, issuing certificates, etc.

In the next paragraph, we consider a cryptographic scenario that will be of

multipurpose pedagogical benefits. More precisely, it illustrates how to establish

secure communications over insecure channels despite efforts of any eavesdropper

(or adversary), and shows the root of the problem of establishing secret keys. It

also introduces the key agreement scenario that will be encountered from beginning

to end of this thesis.
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A typical cryptographic scenario is an everlasting story about three traditional

parties to which we refer as machines or persons. Alice and Bob, also called the

legitimate parties, want to communicate with each other over a public channel.

However, they suspect that a third party Eave (for gender-neutral eavesdropper)

is able to intercept their messages and for some reason determined to be privy to

their communications. Therefore, they have decided to use the following standard

cryptographic approach to preserve the confidentiality of their conversion.

When Alice wants to communicate with Bob, she does not send a message in

plaintext that is readable by anyone. Instead, she transforms it by some means

into a totally unreadable message called ciphertext (or cryptogram) in such a way

that Bob can recover it but Eave cannot. Bob proceeds similarly to reply. The

process of transforming plaintext into ciphertext is called encryption while the

process of transforming ciphertext back into plaintext is called decryption. Both

encryption and decryption are defined by a cipher (algorithm) and controlled by

a cryptographic ingredient called the secret key, which Alice and Bob establish

somehow. Devising such a “somehow” technique has been a major problem in

cryptography: How can Alice and Bob acquire this necessary random secret key?

For centuries, people have solved this problem using the key predistribution

paradigm requiring that (1) the channel is authenticated, meaning that legitimate

parties are sure they are talking to each other; and (2) legitimate parties must agree

on keys using secure channels prior to any secure communication. A secure channel

might be a clandestine place or a trusted courier for instance. This approach has

mainly been used in military and diplomacy applications in which communicants

could meet occasionally in secret places to agree upon keys compiled into special

books known as codebooks. Considering the Internet and wide use of electronic

commerce, the second requirement has become a major limitation for the large-

scale deployment of cryptography, and originated what is known historically as

the key “distribution” problem. Nowadays, the key establishment problem is more

accurate. We give a closer view on this problem by an example: if n entities want

to communicate securely with each other, then there are
(
n
2

)
= n(n−1)

2
≈ n2

2
secret
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keys that must be generated, distributed, stored, and destroyed in a highly secure

way. Even for moderately large n, the management of so many keys is infeasible

in practice. This paradigm also suffers from another problem when keys are used

in dynamic environments where new users join and others leave, which is usually

impractical or simply too expensive to transmit keys over secure channels [67].

In a session-key distribution paradigm, an online trusted third authority (or

key distribution centre) chooses session keys and distributes them to users who

requested them via an interactive protocol. Session keys are secret keys used to

encrypt information for a short period of time. These keys are sent encrypted by

the trusted authority using the key predistribution paradigm, that is, the previously

distributed secret keys to users. However, each entity must unconditionally trust

the authority and it would be possible to compromise any communication via the

centre. This approach is still typically used inside companies where each employee

can get his “master secret key”, which is used to derive session keys, in person

when hired.

Finally, the key agreement approach refers to an interactive protocol between

two parties that have no secret information in common and need to establish a

secret key over a public authenticated channel. The major difference with key

predistribution and session-key distribution is that the trusted authority is not

needed any more.

The first unclassified document ever written to solve the secret key agreement

problem and propose the notion of public key cryptography was a project proposal

written by Merkle in 1974 [63]. Merkle demonstrated that the key pre-agreement

requirement is not necessary by exhibiting a simple solution in such a fashion that

when legitimate parties are willing to spend an amount of computation proportional

to some parameter N , any classical eavesdropper needs to spend an amount of

computation proportional to N2 in order to obtain their established secret from

the classical communicated messages. He only assumed the existence of a “one-way

encryption function” [63], which can be formalized in the random oracle model that

we explain after the following paragraph.
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Shortly thereafter, Diffie and Hellman discovered a key agreement method that

makes the cryptanalytic complexity “apparently exponentially” harder than the

legitimate complexity [38]. However, even today, there is no formal security proof

for their method. All relies on the assumed difficulty of a mathematical problem,

namely on the conjectured difficulty of the discrete logarithm problem, which can

be solved efficiently using a quantum computer thanks to Shor’s algorithm [72]. In

fact, no public-key scheme in the literature has any formal security proof, including

RSA. In contrast, Merkle’s scheme offers provable quadratic security against any

possible classical attack under the assumption that the encryption function under

consideration can be inverted only by exhaustive search.

Now, we identify our security framework. First of all, we consider the random

oracle model, in which all parties have access to a public function f chosen uniformly

at random from the set of all possible functions from a domain D into a range R.

On any (new) input i ∈ D, this black-box (or oracle) function is evaluated in unit

time by asking a question to a magic black-box that outputs (randomly) f(i) ∈ R.

This interaction is called a query. It is very practical to think of such a function

as a string (or table) of symbols y where each symbol was chosen independently

and uniformly at random. If the domain size is S, then for all 1 6 i 6 S, this box

outputs yi on input i where yi ∈ R is a random value. Note that we can use binary

oracles provided we disregard logarithmic factors. For the key agreement scenario,

we assume that (1) the legitimate parties communicate through an authenticated

classical channel on which eavesdropping is unrestricted; (2) all parties have access

to the same oracle function and (3) a protocol is said to be secure whenever there

is a super-linear computational gap between the complexities of legitimate parties

and adversaries. In other words, for a fixed parameter N , legitimate parties make

O(N) queries while no adversary making O(N) queries can learn the secret, except

with o(1) probability over the views of the protocol. A view determines a random

run of the protocol in which Alice and Bob establish an n-bit secret using a random

oracle. We vary over runs of any involved party: randomness of Alice, randomness

of Bob, randomness of Eave, all possible choices of the n-bit secret and oracles.
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It was a major open question in classical cryptography whether Merkle’s method

is optimal in the black-box model. In other words, is it possible to have a larger

gap between the legitimate and eavesdropping complexities? In 1989, Impagliazzo

and Rudich showed that any adversary making O(N6 logN) queries can learn the

key of every key agreement protocol in the random oracle model in which Alice

and Bob make O(N) queries [49]. In 2008, Barak and Mahmoody-Ghidary proved

that a quadratic gap between the legitimate and eavesdropping efforts is the best

possible in a classical world [8]. Sotakova [73] independently found a weaker result,

showing that protocols with only one round of interaction (each party sends one

message after querying the oracle) can achieve at most O(N2) security.

However, the situation is different in a world ruled by the quantum theory.

Using Grover’s algorithm [46], there is an obvious quantum attack that makes

Merkle’s scheme useless from a security point of view; the cryptanalytic task is as

easy (up to constant factors) as the key agreement process.

Grover’s algorithm (or its BBHT generalization [20]) is an extremely useful

quantum algorithm since it can solve the following unstructured common search

problem. For any integer K, we denote by [K] the set of integers from 1 to K.

Consider a black-box function f : [N ]→ {0, 1} with the promise that there exists

one and only one w ∈ [N ] such that f(w) = 1. The (OR) problem is to find this

w, which is then called a solution. Grover’s algorithm solves this problem with

bounded-error probability after O(
√
N ) quantum queries. Now, consider the same

problem, however, with t solutions. In this case, it is crucial to use a generalization

of Grover’s algorithm, which can find a solution in O(
√
N/t ) quantum queries.

Be aware that running (generalized) Grover’s algorithm more than necessary may

reduce the success probability down to zero!

It was commonly conjectured that secure key agreement in the random oracle

model is impossible. Therefore, it is natural to examine the following question: Can

Merkle’s scheme be made secure again if legitimate parties make use of quantum

computations?
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A first solution was proposed by Brassard and Salvail in 2008 [23]. Their idea is

essentially to consider Merkle’s scheme, allow Bob to use a quantum computer and

increase the function’s domain size from N2 to N3 in such a way that any quantum

eavesdropper needs Ω(
√
N3 ) = Ω(N3/2) queries [19]. Besides, it was conjectured

that their scheme is optimal in this setting. A number of questions come to light:

1. Is there a protocol that requires more than Ω(N3/2) queries of any quantum

eavesdropper if legitimate parties make use of quantum computations as well?

2. When legitimate parties only use classical computers, can any key agreement

protocol in the random oracle model be broken with O(N) quantum queries?

3. If the answer to Question 2 is no, then what is the optimal gap in this

restrictive scenario?

4. Can the quadratic security of Merkle’s scheme be restored if all parties make

use of quantum powers?

5. When legitimate parties are empowered with quantum computers, can every

key agreement protocol in the random oracle model be broken with O(N2)

quantum queries?

The main challenge in this framework is that communications are taking place

over a classical channel. Keep in mind that transmission of quantum information

is forbidden. Another challenge is when legitimate parties are classical while the

eavesdropper is allowed to use unrestricted quantum computations. Besides, the

computation resource to which all parties have access is the same random oracle

function. Therefore, throughout this study we will also be exploring the capabilities

and limitations of all these resources, guided by the following questions.

6. How strong is the random oracle model in a quantum world?

7. Are quantum computers advantageous for cryptographers or eavesdroppers,

considering key agreement in the oracle model?

8. Do quantum computers outperform their classical counterparts, considering

the new problems raised in this work?
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1.2 Contributions

We give in this thesis several novel key agreement protocols, answering some of the

above open questions and making progress on others.

When Alice and Bob are empowered with quantum computers, we present two

secure (quantum) protocols that improve on the scheme of Brassard and Salvail

from Ω(N3/2) to Ω(N5/3) quantum queries, thus answering Question 1 positively.

The first protocol is based on the element distinctness problem while the second is

based on 2XOR. Without delay, we introduce these two problems.

Consider two positive integers N 6M and a black-box function f : [N ]→ [M ].

The element distinctness problem is to find a pair (i, j), 1 6 i < j 6 N , for which

f(i) = f(j), or return @ if they don’t exist. Consider now a black-box function

g : [N ]→ [M ] and some w ∈ [M ]. The 2XOR problem is to find a pair (i, j),

1 6 i < j 6 N , for which g(i)⊕ g(j) = w, or return @ otherwise. The operator

⊕ denotes the bitwise exclusive-or. Note that the decision versions of the search

problems are usually considered in complexity theory when proving lower bounds.

When Alice and Bob are restricted to use classical computers, we present the

first classical protocol secure against any quantum adversary. Indeed, this scheme

forces any quantum eavesdropper to ask Ω(N13/12) quantum queries before being

able to learn the secret key, which answers Question 2 negatively. Furthermore, we

present an improved secure scheme providing security of Ω(N7/6) quantum queries.

As was the case in our quantum protocols, the Ω(N13/12) scheme is based on element

distinctness while the Ω(N7/6) scheme is based on 2XOR.

Furthermore, we made progress on Questions 3 and 4. We have discovered two

sequences of protocols denoted by Qk and Ck, for any fixed integer k > 2, with the

following properties.

In protocol Qk, a classical Alice establishes a secret with a quantum Bob after

O(N) accesses to a random oracle in such a way that the optimal quantum eaves-

dropping strategy requires of the eavesdropper to query the same random oracle

Θ
(
N1+ k

k+1

)
times, thus approaching Θ(N2) in the limit. Therefore, key agreement
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protocols in the random oracle model can be arbitrarily as secure in our quantum

world as they were known to Merkle in 1974. Thus, almost quadratic security can

be restored in a quantum world.

In protocol Ck, classical Alice and Bob establish a secret after O(N) queries to

a random oracle in such a way that the optimal quantum eavesdropping strategy

requires Θ
(
N

1
2

+ k
k+1

)
queries, which tends to Θ(N3/2) when k increases. Hence,

classical Alice and Bob can agree on a secret key against any quantum eavesdropper

with as good a security (in the limit) as it was known to be possible before when

Alice and Bob are enabled with quantum computers [23].

1.3 Related Work

We mention in this section selected work, directly useful or related somehow to our

research topic, grouped into several categories. We also define several problems of

particular importance not only in this work but in classical and quantum computer

science in general. The search versions of these problems characterize better our

cryptographic scenario. However, their decision versions are often considered in

complexity theory since a lower bound for a decision problem is simpler to prove

and implies directly a lower bound for its search version.

Collision and Element Distinctness Problems. A collision for a function

f is a pair of distinct elements i, j such that f(i) = f(j). Deciding whether a

collision occurs in a function f is equivalent to deciding whether f is injective,

that is, whether f is one-to-one, which is the element distinctness problem. The

problem is important in cryptography, because it enables modelling fundamental

primitives (hash functions), and of general importance in classical and quantum

computer science. A function f : [N ]→ [M ] is said to be r-to-one, for an integer r

dividing N , if every element in its image has exactly r pre-images.

The first quantum algorithm that finds collisions in r-to-one functions was

given by Brassard, Høyer and Tapp [25], providing novel applications of Grover’s

algorithm. When f is r-to-one, their algorithm finds a collision after O( 3
√
N/r )
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expected function evaluations. In particular, when f is two-to-one, this algorithm

finds a collision after O( 3
√
N ) evaluations. In contrast, Θ(

√
N ) evaluations are

necessary and sufficient for a classical algorithm to find a collision even allowing

randomization. They also presented a quantum algorithm for claw-finding. A claw

in functions f and g having the same range is a pair of elements i, j such that

f(i) = g(j), which is closely related to the notion of collisions.

Inspired by these algorithms, Buhrman, Dürr, Heiligman, Høyer, Magniez,

Sántha and de Wolf [32] gave several applications of amplitude amplification [26]

to find collisions and claws in unrestricted functions, yielding an O(N3/4 logN)

collision-finding quantum algorithm, which implies an O(N3/4 logN) upper bound

for element distinctness. They also gave an Ω(
√
N ) quantum lower bound for

element distinctness, using a reduction from the OR problem. The complexity mea-

sure they used is the number of comparisons between elements. However, all their

bounds remain the same up to logarithmic factors if they want to count the num-

ber of function evaluations instead. In the comparison-based oracle model, when

we query a given black-box function f on (i, j), the oracle outputs the truth-value

(0 or 1) of the statement “f(i) 6 f(j)”.

Using the polynomial method [10], Aaronson and Shi [2] proved that any quan-

tum algorithm for finding collisions in r-to-one functions must evaluate the function

Ω( 3
√
N/r ) times, matching the upper bound of Brassard, Høyer and Tapp [25].

Thus, this is optimal – even for the decision version of this problem. Furthermore,

they derived a lower bound of Ω(N2/3) queries for element distinctness, using a

reduction from a variant of the collision problem. Their paper is in fact the fruit

of two separate closely related earlier publications [1, 71].

In the other direction, Ambainis gave an O(N2/3) quantum query algorithm [4]

for element distinctness, which proceeds by quantum walks on Johnson graphs,

improving on theO(N3/4) algorithm [32] and matching the Ω(N2/3) lower bound [2].

The proof of Aaronson and Shi [2] is applicable only when the range size M of

the function is such that M > 3N/2. If M = N , the lower bound becomes Ω( 4
√
N).

Fortunately, Ambainis [6] and Kutin [53] independently removed this constraint.
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In fact, Ambainis gave a general method to prove lower bounds for problems with

small range. He proved that for any symmetric property (or problem) defined on

some function f : [N ] → [M ] the polynomial degree is the same for any M > N .

In other words, for any function of range size M , the quantum query lower bound

proved using the polynomial method implies immediately the same lower bound

for any M > N . A property f is symmetric if it remains the same if we permute

the inputs before applying f or permute the outputs after applying f . Therefore,

the lower bounds for collision and element distinctness remain valid even with

small range, since both problems are symmetric. Hence, element distinctness is

solved optimally in Θ(N2/3) quantum queries without restrictions on the range.

Eventually, Belovs proved the lower bound for element distinctness [13] using the

negative (or generalized) adversary method [80, 81]. Notice that classical lower

bounds for element distinctness have been known since decades [45, 57, 65].

In the aforementioned paper [4], Ambainis also gave an O(N
k

k+1 ) quantum algo-

rithm for element k-distinctness problem, which is to decide whether or not there

exist k pre-images mapped to the same image under a given function f . It is

a generalization of his element distinctness algorithm and related to the optimal

quantum attacks against our generalized protocols described in Chapter 6. He left

open whether his algorithm for k-element distinctness is optimal. Answering this

question negatively, Belovs provided a more efficient algorithm [14] having query

complexity O(N1−2k−2/2k−1) or more compactly o(N3/4).

Shortly after Ambainis’s paper, Childs and Eisenberg observed that Ambainis’s

quantum algorithm for k-element distinctness is much more general than what it

was designed to resolve. More precisely, this algorithm gives the means to solve

any problem that can be modelled as the subset-finding problem having any given

property. Indeed, they mentioned several related applications, for instance finding

a set of k consecutive function values, relatively prime function values, k-clique in

an N -vertex graph, and variants of the kSUM problem. They also provided a much

simpler query-complexity analysis than that of the original paper [4]. On the other

hand, they left open which of their algorithms for subset finding is or are optimal.
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kSUM. In addition to element distinctness and 2XOR, the kSUM problem is

essential in this thesis. Let s be an arbitrary element of a finite abelian group

G and consider a positive integer k. Given elements x1, . . . , xN of G, the kSUM

problem is to find a subset of k elements that sum to s, or return @ if such subset

does not exist. Actually, any problem based on the ⊕ is special case of kSUM,

which is in turn related to element k-distinctness.

Belovs and Špalek [15] proved that the subset-finding quantum algorithm for

kSUM [36] is optimal, using the generalized adversary method (or bound). Except

for this work, we don’t know of any other cryptographic application considering the

kSUM problem in the random oracle model. However, 3SUM has been well studied

and a long-standing problem in the classical time-complexity literature. The best

known algorithm takes Θ(N2) time [42], commonly believed to be optimal.

Oblivious Transfer à la Merkle. The notion of oblivious transfer was orig-

inally introduced in Wiesner’s paper [77], which served as inspiration for the in-

vention of quantum key distribution [16]. Unfortunately, it was only published in

1983, making a more pathetic story than that of Merkle’s scheme [63]! However,

in 1981 Rabin was the first to publish it [68]. The original version of oblivious

transfer (OT) is a formalization of an erasure channel with probability 1/2 and can

be described as follows. Alice (the sender) sends a bit b to Bob (the receiver) via

an OT machine. With probability 1/2, Bob receives b and with complementary

probability he receives the symbol ⊥ (nothing), which is just an evidence that a

bit was sent but the information was lost during the communication. Note that

Alice does not know whether or not her bit was received. An equivalent primitive is

1-out-of-2 oblivious transfer, which was invented in 1985 by Even, Goldreich, and

Lempel [41]. In this variant, Alice has two secret messages (instead of one bit) and

Bob receives one of them at random without gaining any information about the

other message. Again Alice should not know which message Bob received. More

formally, Alice inputs two secret messages m0 and m1 into the OT machine that

flips a coin and sends one of the messages with equal probabilities.

Be aware that the 1-out-of-2 oblivious transfer has been used in the litera-
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ture slightly differently: Alice inputs two secret messages m0 and m1 into the OT

machine to which Bob inputs one bit b to indicate which input he would like to

receive. The machine outputs mb and discards m1−b. Summing up, at the end of

the protocol, Alice cannot learn any information about b and Bob learns mb but

nothing about the other message.

Shown to be a universal primitive for two-party computation by Kilian [52],

oblivious transfer is fundamental in cryptography. A box that implements a perfect

oblivious transfer between two participants would give them means to achieve an

arbitrary two-input computations with information-theoretic security.

Merkle’s idea was used beyond key agreement by Brassard, Salvail and Tapp [28].

Considering the birthday problem (“paradox”) and one-way permutations, they in-

troduced a classical oblivious transfer scheme and proved that a classical cheater

requires Θ(t3/2) permutation queries, where t is the legitimate amount of queries

needed to implement it. A quantum adversary, however, breaks this scheme after

O(t5/6) queries, which is more efficient than running the legitimate protocol! Al-

lowing honest parties to use quantum computers, they also present another scheme

against which their best quantum attack makes O(t4/3) queries. It is still an open

question whether this attack is optimal.

Bounded-Memory Model. The bounded-storage (or bounded-memory) model

was proposed by Maurer [61] to achieve provable cryptographic schemes even

against adversaries with unlimited computational resources. There is no computa-

tional hardness assumption like the prime factoring or discrete logarithm problems.

The only assumption is that the adversary’s memory size is bounded by a value s.

The main idea is the following. A random t-bit string R is available temporarily

to all parties, and can be broadcast by a satellite, transmitted over a network

or stored on a public high-density storage media. The string R is much larger

than the adversary’s memory capacity, meaning that he can store only partial

information about R. However, he can use unlimited computing power to calculate

any probabilistic function f : {0, 1}t → {0, 1}s. As long as the function’s output

size does not exceed the available memory, security in the above sense is maintained.
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More precisely, Alice and Bob randomly select a small subset of R and each

stores these values, afterwards R disappears. In this model, legitimate parties

initially share a random short secret key that determines which bits of R they

need to access and how they must process these bits in order to derive a longer

secret key. Because of the random selection of the subset and Eave’s memory

size, he may have at most partial knowledge about this fraction of R. Therefore,

legitimate parties can apply privacy amplification [18] in order to distill a perfectly

secret key, that is, generate a key about which Eave has essentially no information

even using unlimited computing power. Note that even after privacy amplification,

which reduces the input key, the final secret key is much longer than the initial

key. Summing up, the goal in this model is key expansion rather than establishing

secret keys.

The bare bounded-storage model is another framework that was proposed by

Cachin and Maurer [33]. In this model, legitimate parties who share no initial key

proceed as follows. Each stores a random subset of O(
√
t ) bits of a random t-bit

string R, which is much more than the selected subset in the previous model. After

R disappears, they agree on the commonly chosen bits, which exist considering

the birthday problem. On the other hand, with overwhelming probability, Eave

has only partial information about these bits so that legitimate parties can apply

privacy amplification [18] to distill a perfectly secret key.

Dziembowski and Maurer [40] proved that secure key agreement in the bare

bounded-memory model is impossible unless legitimate parties have memory size

in O(
√
s ), which is so large that the practicality of this approach (without an

initially shared short key) is inherently limited. This is the same optimal quadratic

gap between the number of queries of legitimate parties and that of eavesdroppers in

the random oracle model. Cryptography in the bounded quantum-memory model

was considered by Damg̊ard, Fehr, Salvail and Schaffner [37].

Quantum Computation. Our proposed protocols and the related problems

may entail understanding the capabilities and limitations of quantum computers.

Indeed, it is widely believed that quantum computing is promising. However,



14

building a quantum computer faces theoretical as well as technological challenging

obstacles, in particular providing convincing arguments that a quantum computer

is much more useful than a classical counterpart. These arguments mainly are

(1) designing quantum algorithms significantly more efficient than their classical

counterparts; (2) identifying old and/or new problems that give the means to un-

derstand the power and limitations of the quantum computing theory such as

pseudo-telepathy [27, 30]; and (3) discover ideas that have no classical counterpart

such as entanglement, teleportation and quantum key distribution. Our schemes

are useful in the sense of the first two motivations because they provide problems

for which quantum algorithms are provably better than their classical equivalents.

Shor’s and Grover’s algorithms are the most important quantum algorithms at

the time of writing. The first one has at least two major known applications: solving

the prime factoring and discrete logarithm problems in polynomial time. However,

Grover’s algorithm and its generalization have many applications since plenty of

important problems in computer science can be reduced to search problems. Such

problems range from sorting to graph colouring to attacking cryptographic proto-

cols. Merkle’s schemes, their quantum variant and our new protocols can also be

reduced to search problems.

1.4 Outline

The remaining material of this thesis is organized as follows. Preliminaries are given

in Chapter 2, and Merkle’s scheme as well as its quantum variant are discussed in

Chapter 3. Our contributions are divided into Chapters 4, 5 and 6. The first

consists of two protocols in the quantum setting while the second contains two

protocols in which the legitimate parties are restricted to classical computation.

Chapter 6 contains our two families of improved generalized protocols. Finally, we

conclude and raise some open questions in Chapter 7.



CHAPTER 2

PRELIMINARIES

2.1 Notations and Notions

For any positive integer K, the set [K] consists of all integers from 1 to K and

[K]′ denotes [K] ∪ {0}. The set {0, 1}n denotes the set of all possible n-bit stings.

Generally, given a non-empty set S, we denote by Sn the set of all possible strings

of exactly n elements of S. We denote by {0, 1}∗ the set of all finite binary strings

and {0, 1}∞ the set of all infinite ones. The set of natural numbers is denoted by

N while R+ denotes the set of non-negative real numbers. The notation | · | is used

to denote the length of a string or the size of a set, depending on the context.

A probabilistic algorithm has access to uniform random bits (unbiased coin flips).

Equivalently, a randomized or probabilistic algorithm is given, in addition to its

input, a uniformly distributed bit-string of sufficient length (see Section 2.10).

An algorithm A is said to run in polynomial time if there is a polynomial p(·)
such that for every input x, its output A(x) terminates within at most p(|x|) steps.

Definition 2.1.1 (Negligible Function). A function f : N→ R+ is negligible in n

if for every real constant c > 0 there exists nc such that f(n) < 1
nc for all n > nc.

In other words, negligible describes any function that decreases faster than

the inverse of any positive polynomial. This definition is meaningful in standard

cryptography (without oracle), in which the required level of security is at least

super-polynomial. However, the security level in our context (oracle model) is

polynomial. Therefore, what we need is the notion of vanishing probability instead.

Definition 2.1.2 (Vanishing Function). A function f : N→ R+ is vanishing in n

if for every real constant c > 0 there exists nc such that f(n) < c for all n > nc.

Equivalently, a vanishing function is in o(1). We might also specify how fast a

function tends to zero. For instance, the function 1/N2 is quadratically vanishing.
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2.2 Random Function

We consider throughout this thesis the set (or family) of all functions from D to R,

denoted by Func(D,R) or Func(`, L) for convenience. Specifically, we are interested

only in functions whose domain D and range R are finite. Formally, we consider

D = {0, 1}` and R = {0, 1}L for some integers `, L > 1 representing the input

length and the output length, respectively.

In this framework, the two notions “random function” and “choose a function at

random” are equivalent [11], which we explain immediately and differently. Assume

that each element f ∈ Func(D,R) is uniquely identified by an index i ∈ I, where I

is the finite set of all possible indices. There is a (uniform) probability distribution

on the set of indices, thus inducing the same probability distribution on Func(D,R).

To choose a function at random, we choose an index i ∈ I at random and then

consider the element (instance) fi. The equivalence of the two notions is so crucial

to understand that we encapsulate them in the following definition.

Definition 2.2.1 (Random functions). Let D = {0, 1}` and R = {0, 1}L be two

non-empty sets, where `, L > 1 are two positive integers. Consider the set of all

functions from D to R, denoted by Func(D,R) or Func(`, L). A random function

mapping `-bits to L-bits is an element of Func(`, L) chosen uniformly at random.

Classically, a good way to think about a random function may be the following:

the value assigned to any new point in the domain is randomly and independently

selected from the range. However, this might be misleading or a bad viewpoint in

the quantum framework as we will explain later.

It will be useful to compute the size of the set Func(`, L). To specify a function

it is necessary and sufficient to provide its value on any element in its domain. More

precisely, think about a function f ∈ Func(`, L) as a huge look-up table such that

each row contains one possible input x coupled with its image f(x). Since there

are 2` possible inputs and each input needs L bits to specify the output value, any

function can be represented by 2` ·L bits. Hence, there are 22`·L possible functions

in total.
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2.3 Random Oracle

Oracles are a very useful tool to provide an idealized implementation of a function.

Although defined and used differently in complexity theory and cryptography, they

share the following properties in both fields:

1. Abstraction: think about an oracle as a magic box that answers well defined

questions.

2. Efficiency : the oracle’s answer to any point in the domain is computed in

unit time (or perhaps in polynomial time in computational complexity).

Informally, a random oracle is an oracle incorporating randomness in its outputs.

There are two main formal definitions for random oracles, one in computational

complexity by Bennett and Gill [17] and other in complexity-based cryptography.

Definition 2.3.1 (Random oracles in complexity theory). A random oracle asso-

ciates the result of a coin toss to each string, that is a map O : {0, 1}∗ → {0, 1}.

Oracles in cryptography were first used by Brassard [21], as pointed out by

Impagliazzo and Rudich [49]. However, the random oracle paradigm was formalized

and defended by Bellare and Rogaway [12], who defined a random oracle as a map

O : {0, 1}∗ → {0, 1}∞ to avoid fixing its output length. Inspired by [12, 49], we

give the following definition, capturing the integer random oracles.

Definition 2.3.2 (Random oracles in cryptography). A random oracle is a map

O : {0, 1}` → {0, 1}L(`) that assigns, to each (new) input, an integer (chosen

uniformly at random) from a finite range whose size is a function L of an ` > 1.

2.4 Black-Box Function (Random Function Oracle)

With each random oracle we associate a function from `-bit strings to L-bits strings.

As we vary over all possible oracles O, we get all corresponding functions, “each

with the same frequency” [49], thus we get the family of functions Func(`, L). The

notions of random oracles and random function oracles will be used interchangeably.
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We treat any random instance f ∈ Func(D,R) intuitively in the following sense.

The function f is placed in a box impossible to look inside, and evaluated on any

input only by asking questions to this box, which returns f(x) on an input x. This

access or interaction is referred to as querying the box (or f) on x, which is itself

called the query x to the function. In cryptography, any query is assumed to be

computed in a unit time.

It might be useful to think of the function f as black-box that contains a tuple

y = (y1 . . . y2`) and outputs yi on input i where yi is chosen randomly in R.

Needless to say, although we consider integer oracles, our analyses also remain

valid for binary oracles, provided we disregard logarithmic factors. An oracle may

be classical or quantum. Queries in the quantum setting must be reversible and

are often done in superposition.

Choosing a function f at random implies that the box is programmed to output

answers according to f . More precisely, we assume that the full specification of this

function is available in the box once it is chosen. This view is always considered in

the quantum computation context, where queries are often done in superposition.

Though, there is another classical dynamic view: queries are evaluated one by one.

2.5 Random Oracle Model

The random oracle model in cryptography was introduced to be a bridge between

theoretical cryptography and practical one for the sake of designing secure schemes.

This methodology mainly consists of two steps.

First, one designs and proves the security of an ideal system in which all parties

(including adversaries) have access to an oracle, that is, a public uniformly-chosen

function in a particular family of functions. Second, once the first step is fulfilled,

one replaces the random oracle by a public “secure cryptographic hash function”.

For more details refer to the paper of Bellare and Rogaway [12], who explicitly

formulated and defended this popular methodology. Another reference that covers

well this topic is the class notes of Bellare and Rogaway [11].
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2.6 Key Agreement

The task we will study in this thesis is the secret-key agreement in the random

oracle model, which we define here for our convenience. Notice that key agreement

is one of the key establishment approaches reviewed in the introduction.

A key agreement protocol is an interactive protocol between a pair of two prob-

abilistic linear query algorithms (or machines) Alice and Bob, having no-secret

information in common, to establish a secret over a public authenticated channel.

Each party has a set of private tapes: a random-bit tape, an input tape, a work

tape and a secret tape. In addition, they have a common communication channel,

which both can read and write. We consider only protocols restricted to one round

of interaction, meaning that each legitimate party queries the oracle a number of

times proportional to some fixed parameter, makes some computations, and sends

a message to the other party.

A typical run of the protocol can be viewed as follows: Alice and Bob receive

a security parameter n and are given access to a black-box function. Next, Alice

queries the oracle on random distinct points, communicates via the channel and

writes an n-bit string on her secret tape. Bob does similarly. If the secret strings

are the same, then Alice and Bob are said to agree. The entire history of their

writings on the channel is known as the conversation or the transcript.

On the opposite side, a probabilistic linear query algorithm Eave (eavesdropper)

is determined to learn the secret, having full knowledge of the conversation (between

Alice and Bob) and access to the same black-box function.

For convenience, we refer to Alice and Bob as persons occasionally. However,

Eave, which replaces the traditional Eve, is gender-neutral (or a daemon).

Note that the assumption “authenticated channel” is unavoidable in any key

agreement scenario. It ensures that any adversarial attempt to modify a message

or inject a new one into the conversion can be detected by legitimate parties.

Establishing secret keys over a public unauthenticated channel is impossible! This

section and the next one is closely based on Impagliazzo and Rudich’s work [49].
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2.6.1 View of Protocol

We investigate a random world where Alice and Bob try to establish an n-bit secret.

More precisely, we vary over runs of Alice, Bob, Eave, and oracles. Formally, a

“world situation” or view is 5-tuple (n, ra, rb, re,O). The first entry n is the input,

and O is a random oracle. The secret random-bit tapes ra, rb, re are assigned to

Alice, Bob and Eave, respectively. Let Vn be the set of all views where Alice and

Bob attempt to agree on an n-bit secret. One might think of Vn as a probability

space with the uniform distribution. A view determines a random run of the

protocol using a random oracle.

2.7 Security Model

Security definition of a cryptographic scheme may consist of three parts: 1) define

the notion “secure” or equivalently its negation “break”; 2) specify the computation

power of all involved parties as well as the computation resources (e.g., oracle) to

which they have access; and 3) identify the type or level of required security.

In this section we decide on the security framework of secret-key agreement

protocols in the random oracle model, which is different from that of standard

cryptography. To understand better the former, it is useful to introduce first the

well-known framework of standard cryptography, picking out the key agreement

task as our running example for this purpose.

2.7.1 Computational Complexity Model

Current standard cryptography is based on the fundamental assumption P 6= NP

in computational complexity [44], thus it is called complexity-based cryptography.

More precisely, a legitimate cryptographic algorithm runs efficiently (polynomial

time). Nevertheless, an adversary is not able to break this scheme unless given at

least a super-polynomial time. A scheme is said to be “broken” if an adversary can

know a part of the established secret key or even distinguish it from a randomly

selected key.
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Rooted in complexity theory, this framework inherits three essential notions:

the asymptotic approach, efficient or feasible algorithms, and negligible functions.

In complexity-based cryptography any scheme has a security parameter n so that

the running time of the honest parties, the running time of the adversary, and

the adversary’s success probability are all measured asymptotically in terms of n.

This important property is useful to make formal and rigorous security proofs. An

efficient algorithm is a deterministic or probabilistic polynomial algorithm whose

time complexity is polynomial in n. A negligible function in n is smaller than the

inverse of any positive polynomial (Definition 2.1.1).

Having clarified all the important notions, we specify the framework of the

contemporary applied cryptography:

1. Legitimate parties initialize the cryptographic scheme after fixing a value for

its security parameter n whose value is assumed to be known by the adversary.

2. Legitimate parties run efficiently.

3. Security is maintained only against efficient adversaries. Clearly, any scheme

can be broken by a super-polynomial time strategy, which is so unfeasible

that such threats are not considered. That is why this approach provides

only computational security, contrasting with information-theoretic security

based on the fact that adversaries do not have enough information regardless

of their computational resources power (see more in Stinson’s textbook [74]).

4. An efficient adversary succeeds in breaking any scheme only with negligible

probability.

5. A scheme must be secure in most cases or have “average-case hardness”.

6. An adversary should not be able even to distinguish the established secret

key from a truly random key except with negligible probability.

Modern cryptography is well covered in the textbooks [44, 60, 62, 74]. Now, we

give a formal definition of the standard notion of security.

Definition 2.7.1 (Asymptotic security). A scheme is secure if no probabilistic

polynomial-time adversary can break the scheme except with negligible probability.
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2.7.2 Random Oracle Model

Here is the security framework in the random oracle paradigm, after making two

essential relaxations of the notions of standard cryptography, namely efficient and

negligible.

1. Legitimate parties decide on the security parameter and a random function

oracle (chosen as in Section 2.2) whose domain size is a function of some

parameter N . Related to the oracle, the value of N is assumed to be public

and the function is accessible to all parties.

2. Legitimate algorithms are linear query ones, meaning that each party asks

O(N) queries.

3. Security is maintained only against linear query eavesdroppers : any scheme

can be broken by an adversary asking the oracle a super-linear in N queries.

Comparing with standard cryptography, an “efficient” algorithm is one whose

query complexity is linear rather than polynomial. It is crucial to keep this

in mind. A protocol is secure if no probabilistic linear query algorithm Eave

can break it (guess the secret) except with o(1) probability (this is vanishing).

This notion is meaningful since any classical protocol in the oracle model can

be broken in O(N2) queries [8]. In the quantum case it is even worse.

4. A linear query adversary A can succeed in breaking any scheme only with

o(1) probability. Thus, repeating A a constant number of times does not

harm the security. However, repeating it a sub-linear or even logarithmic

number of times can amplify the success probability as close to 1 as desired.

5. We require a scheme to be hard to break in most cases or on the average

(“average-case hardness”), similarly to standard cryptography.

6. In contrast with standard cryptography, the security concern here is that no

adversary can find the secret or even a part of it.

Definition 2.7.2 (Security in the random oracle model). A scheme is secure if no

probabilistic linear query algorithm is able to break it except with o(1) probability

over all the possible random oracles under consideration.
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2.8 Common Problems and Their Query Complexities

We review in this section several problems inherently related to our protocols.

Although we consider the search versions in the cryptographic context, decision

versions are examined to prove lower bounds. In the following material, N and M

are positive integers.

2.8.1 The Collision Problem and Its Generalization

Consider a function f : [N ]→ [M ] and an integer r > 1 with r dividing N . We say

that f is r-to-one if every element in its image has exactly r preimages. A collision

for f consists of two distinct elements i, j ∈ [N ] such that f(i) = f(j).

Definition 2.8.1 (The r-to-one collision problem). Let f be a black-box function

with the promise that it is either one-to-one or r-to-one. The r-to-one collision

problem is to distinguish between these two cases. In particular, the collision prob-

lem is to decide whether f is two-to-one or one-to-one.

Importantly, the collision problem reduces to element distinctness [1, 2]. Briefly,

if the first problem requires T queries, then element distinctness requires T 2 queries.

Theorem 2.8.2 (Lower bound [2]). Let n > 0 and r > 2 be integers with r|n,

and let a function of domain size n be given as an oracle with the promise that it

is either one-to-one or r-to-one. Then any error-bounded quantum algorithm for

distinguishing these two cases must query the function Ω((n/r)1/3) times. Thus,

finding a collision in an r-to-one function of domain size n requires Ω((n/r)1/3)

queries.

2.8.2 The Element Distinctness Problem and Its Generalization

Definition 2.8.3 (Element distinctness). Given a black-box function ξ : [N ]→ [M ],

the element distinctness problem (ED) is to decide whether there exists a pair (i, j),

1 6 i < j 6 N , for which ξ(i) = ξ(j).
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This problem can be generalized to what is known as the element k-distinctness

or k-element distinctness.

Definition 2.8.4 (k-Element distinctness). Given as input a black-box function

ξ : [N ]→ [M ], the k-element distinctness problem is to decide whether or not there

exists k indices i1, . . . , ik for which ξ(i1) = ξ(i2) = · · · = ξ(ik).

Theorem 2.8.5 (Upper bound [4]). Element k-distinctness can be solved by a

quantum algorithm with O(Nk/(k+1)) queries. In particular, element distinctness

can be solved in O(N2/3) quantum queries.

Belovs designed a more efficient algorithm for element k-distinctness as stated

by the following theorem.

Theorem 2.8.6 (Upper bound [14]). For an arbitrary fixed integer k > 2, the

element k-distinctness problem can be solved by a bounded-error quantum algorithm

in O(N1−2k−2/2k−1) quantum queries.

2.8.3 The Subset-Finding Problem

Childs and Eisenberg [36] proved that Ambainis’s quantum algorithm for k-element

distinctness [4] actually solves the subset-finding problem (SF), which is very useful.

Suppose that we are given as input a black-box function f : D → R and a

property P ⊂ (D×R)k where D and R are finite and |D| = N . The problem is to

output some k-subset {x1, . . . , xk} ⊂ D such that ((x1, f(x1), . . . , (xk, f(xk))) ∈ P .

Theorem 2.8.7 (Upper bound [36]). The quantum query complexity of k-subset

finding is O(Nk/(k+1)).

2.8.4 The kXOR Problem

Definition 2.8.8 (kXOR problem). We are given as input a black-box function

ξ : [N ]→ [M ] and some w ∈ [M ]. The kXOR problem is to decide whether or not

there exists k indices i1, . . . , ik for which ξ(i1)⊕ ξ(i2)⊕ . . . ξ(ik) = w.
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The case k = 2 is specially important since we use it in two of our protocols

and reduce element distinctness to it in Section 4.2.3. Therefore, it is worth having

a separate definition.

Definition 2.8.9 (2XOR problem). We are given as input a black-box function

ξ : [N ]→ [M ] and some w ∈ [M ]. The 2XOR problem is to decide whether or not

there exists a pair (i, j), 1 6 i < j 6 N , for which ξ(i)⊕ ξ(j) = w.

2.8.5 The kSUM Problem

We first give the definition to which the lower bound theorem [15] is applied. The

general definition follows.

Definition 2.8.10 (kSUM). Consider an arbitrary element t of a finite abelian

group G. For any given positive integer k, the kSUM problem is to decide whether

the elements x1, . . . , xN ∈ G contains a subset of k distinct elements that sum to t.

Theorem 2.8.11 (Lower bound for kSUM [15]). For a fixed positive integer k,

the quantum query complexity of the kSUM problem is Ω(Nk/k+1) provided that

|G| > Nk.

Here is another definition that we might encounter in the literature.

Definition 2.8.12 (kSUM’s another definition). We are given as input a black-box

function ξ : [N ]→ [M ] and some w ∈ [M ]. The kSUM problem is to find k indices,

i1, . . . , ik, for which ξ(i1) + ξ(i2) + · · ·+ ξ(ik) = w, or return @ if they don’t exist.

2.8.6 The Birthday Problem (or “Paradox”)

Consider any set X containing N elements such that Pr(x) = 1/N for all x ∈ X.

Pick randomly and with replacement n elements of X. What is the probability

that at least two of these n elements will be the same? This event is commonly

referred to as collision [74] and denoted by Coll.

This problem is solved using a probability argument analogous to the “birthday

paradox”, which says that in a group of 23 randomly chosen persons, at least two
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will have the same birthday with probability greater than 1/2. Although it probably

seems counter-intuitive, it is not a paradox at all after calculations. Therefore, we

will refer to it as the birthday problem.

The upper bound on this probability will be invoked frequently. Therefore, we

write it explicitly:

Pr[Coll] 6
n · (n− 1)

2N
<

n2

2N
.

This inequality can be obtained taking into account the n · (n− 1)/2 possible pairs

(count only pairs of distinct elements) and using the union-bound.

We equally need to have an expression that relates all the involved parameters.

The probability of finding at least one collision is estimated to be at least

1− e
−1
2

(n−1)n/N ≈ 1− e
−n2

2N .

Denoting this probability by ε, we can find a good approximation that relates

ε, n and N , which is formulated as follows:

n ≈
√

2N ln
1

1− ε
.

Therefore, for

n >
√

2 ln 2
√
N ≈ 1.17

√
N,

at least two outcomes will be the same with probability at least 1/2. This problem

is well proved and presented from a cryptographic viewpoint by Stinson [74].

Being frequently interested in avoiding collisions in functions, we need to set

a lower bound on the range size. We achieve this task in detail in Section 5.3.4.

Finally, observe that there are several manifestations of this important problem.

For instance, the study of collisions between two subsets is discussed by Joux [50].
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2.9 Computing Partial Boolean Function

We consider partial functions or promise problems, which are decision problems for

which the input is promised to be drawn from a subset of the function domain.

Partial functions are useful and general enough to achieve our computation goals.

Usually lower bounds for partial functions are easier to find and imply directly

lower bounds for general functions.

Let f ∈ Func(D,R) be an oracle function, and let D = [N ] and R = [M ] for

convenience. The objective is to determine whether or not f has a specific property.

For example, “Is f one-to-one or two-to-one?” or “Are there k pre-images under

f that sum to some given integer w?”. More formally, we would like to compute a

partial Boolean function F : F → {0, 1}, where F ⊆ [M ]N . For example, F(f) = 1

if the input function f is one-to-one and F(f) = 0 if f is two-to-one. Clearly, F can

take binary oracles as input by restricting M to {0, 1}.

2.10 Classical Algorithmic Review

Here is a reminder of some classical algorithmic concepts, which may be helpful

to understand their quantum counterparts. Before starting, recall that our goal is

to compute some partial Boolean function F : [M ]N → {0, 1} where the input is

a finite tuple x = x1x2 . . . xN given as a black-box. The material of this section

is mainly based on references [22, 31, 78]. Throughout this section, we consider

algorithms in the random access model. We will assume analogous quantum model,

in particular the quantum random access memory (see Section 2.11.3).

2.10.1 Bounded-Error Probabilistic Algorithm

Most of problems have unknown efficient algorithms (deterministic or probabilistic)

that are able to return the correct and exact solution every time. Here probabilistic

means that an algorithm is able to make random choices (coin flips) that hope-

fully guide it to the correct solution more quickly. Probabilistic or randomized



28

algorithms might be divided into two categories: bounded-error (Monte Carlo)

algorithms and zero-error (Las Vegas) algorithms. We deal with the first category.

While the answer returned by a deterministic algorithm is always correct, if no

hardware error occurs, a Monte Carlo algorithm occasionally makes mistakes, but

it finds solutions with high probability whatever the instance under consideration.

There must be no instance on which the probability of error is high. A Monte Carlo

Algorithm A is called p-correct, for 0 < p < 1, if it returns the correct answer with

probability at least p whatever the instance considered [22].

An algorithm A computes F with bounded-error ε if its output equals F(x) with

probability at least p = 1− ε for every x in the domain. The complexity of F is the

minimum integer T over all A computing F in time T .

A Monte Carlo algorithm may be one-sided or two-sided errors. For decision

problems, one-sided algorithms are classified as either false-biased or true-biased. A

true-biased algorithm is always correct when it returns true; a false-biased behaves

likewise. Two-sided errors algorithm has no bias: the answer (either true or false)

will be incorrect, or correct, with some bounded probability. This property (biased

algorithms) could be useful to reduce the error probability arbitrarily at the cost

of slight increase in running time (see Section 2.10.2).

For example, Grover’s algorithm always returns 0 when there is no x such that

F(x) = 1 whereas it returns 1 with probability better than (1 − 1/N) otherwise.

Simply put, “true” answers from the algorithm are certain to be correct whereas

“false” answers remain uncertain. This is said to be a (1−1/N)-correct true-biased

algorithm for unstructured search problems.

A randomized algorithm has worst-case success probability p if, for every prob-

lem instance, the algorithm returns a correct answer with probability at least p.

A randomized algorithm has average-case success probability p if, averaged over

all problem instances of a specified size, the probability that the algorithm returns

a correct answer is at least p [74].
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2.10.2 Probability Amplification

Monte Carlo algorithms are biased, which is a property that allows us to reduce the

error probability (for decision problems). This technique was called “amplification

of the stochastic advantage” [22]. However, we called it probability amplification to

make analogy with the quantum “amplitude amplification” (Section 2.12.3).

For a one-sided error algorithm, the failure probability can be reduced arbitrary

at slight increase of computing complexity by running the algorithm k times, thus

amplifying the success probability up to a desired constant that depends on k.

For a two-sided error and p-correct algorithm, provided that p > 1/2, the failure

probability may be reduced by running the algorithm k times and returning the

majority function of the answers.

2.10.3 Probabilistic Query Algorithm

A query algorithm computing a function F is one whose input x is given as an

oracle. A query typically sends an index i at a time and receives the element xi. An

algorithm computing in this model is adaptive, meaning that the kth query depends

on its total history (answers to k−1 previous queries). A query algorithm, which is

measured in query complexity, may be deterministic or probabilistic (randomized).

The query complexity of a function F is the minimum integer T over all algorithms

computing F with T queries.

A deterministic algorithm is one whose input deterministically controls its out-

put. We say that it computes F if its output equals F(x) for every x in the domain.

The complexity of F is taken over all algorithms computing F exactly.

A probabilistic (query) algorithm uses (typically uniformly-distributed) random

bits as a guide to its behaviour in the hope of achieving a better performance

than the deterministic one. An input x no longer determines the algorithm result

with certainty, which now becomes 0 or 1 with a certain probability. A randomized

algorithm computes F with bounded-error probability at most ε whenever its output

equals F(x) with probability at least 1− ε for every input x in the domain.
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2.11 Quantum Algorithmic Review

Based on several references [10, 31, 78], we specify the framework of quantum

algorithms, which differ form their classical counterparts. For quantum computing

in general, the reader is referred to textbooks of Kaye and Laflamme and Mosca [51],

and Nakahara and Ohmi [66]. As in the classical framework, our goal is to compute

some partial Boolean function F : RN → {0, 1} where the input is a finite N -tuple

x = x1x2 . . . xN given as a black-box. We take R = {0, 1} just for convenience.

2.11.1 Quantum Query Algorithm

A quantum query algorithm A that makes T queries is the quantum analogue to a

classical query algorithm with T queries, but now queries can be in superposition.

A T -query quantum algorithm A starts with the all-zero state |0 · · · 0〉, evolves

by applying a sequence of arbitrary unitary transformations U0, . . . , UT , alternated

with T queries Ox to the oracle x, followed by a measurement of the final state,

producing some classical outcome as a result of the computation. More formally,

for any T > 0 and an oracle x, the final state of a T -query A is denoted by

|ΦT
x 〉 = UTOxUT−1Ox . . . U1OxU0|0 · · · 0〉,

which is then measured. The Ui’s are arbitrary unitary transformations that do not

depend on the input x while the oracle unitary transformations Ox are all equal

and depend on x.

To compute a function F, a quantum computer mainly uses three registers

|i〉|a〉|z〉. The register |i〉 is for the query index, the register |a〉 holds the query

answer, and |z〉 denotes an arbitrary fixed number of working qubits. The algo-

rithm A is working in the vector space H spanned by the basis vectors {|i〉|a〉|z〉}.
Assuming that m is the total number of qubits, each transformation acts on the m

qubits and there are 2m basis states for each stage of computation. For convenience,

the basis states are usually specified using natural numbers |0〉, |1〉, · · · , |2m − 1〉
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corresponding to their binary representations. Notice that |z〉 may consists of two

parts: qubits for reversible computation that are returned to their original state at

the end of the computation, and qubits holding the result of computation.

Any state |Φ〉 can be uniquely written as |Φ〉 = Σkαk|k〉 where k varies over all

basis states and the αk’s are complex numbers such that Σk|αk|2 = 1. Measuring

|Φ〉 in the above basis produces a classical result k with probability |αk|2. The

measurement operation is not reversible as opposed to unitary transformations.

Considering a binary oracle x, the index i has length dlogNe bits and the answer

a is one bit. By convention, the rightmost bit of the final state |ΦT
x 〉 denotes the

output of computation after measurement. For computing non-Boolean functions,

the reader is referred to Ref. [2].

An algorithm A computes F with bounded-error probability at most ε if its

result equals F(x) with probability at least 1 − ε for every input x. The query

complexity of F is the minimum integer T over all (bounded-error) algorithms

computing F with T queries and error ε. Accordingly, the transformations Ui’s are

costless in terms of query complexity since they do not depend on the oracle.

2.11.2 Quantum Query Implementation

There are two natural ways of modelling a reversible query to an arbitrary Boolean

function f : {0, 1}N → {0, 1}. The first way is

Ox|i, a, z〉 −→ |i, a⊕ xi, z〉

where ⊕ denotes the bitwise exclusive-or. Recall that |i〉 is an n-qubit register

while a is a 1-qubit register. We can extend this definition to allow a non-query

which can be obtained by setting either i = 0 or xi = 0.

The second way to implement a query is

Ox|i, z〉 −→ (−1)xi |i, z〉
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and we usually say that the oracle is “computed in the phases” by Ox. It is very

simple to invert the amplitude of exactly those states with f(i) = 1.

The two models are equivalent, but one may be more convenient depending

on the context. For instance, the second one is more convenient to prove lower

bounds [78]. For completeness, there is a reformulation of the first quantum

query, which is the key idea to establish the relation between quantum algorithms

and degrees of polynomials, allowing to prove lower bounds using the polynomial

method [10]. Formally, the third query implementation can be written as

Ox|i, a〉 −→ (1− xi)|i, a〉+ xi|i, a⊕ 1〉.

2.11.3 Quantum Random Access Memory

Nowadays, a quantum computer is imagined to be analogous to the successful

classical architecture, in the sense that it consists of two fundamental components:

a central processing unit (CPU) and a quantum random access memory (qRAM).

A simple qRAM may contain 2n memory cells (classical or quantum). Each cell is

uniquely identified by an integer 0 6 x 6 2n − 1, which is then called the address.

To access a cell x, its address is loaded into the address (or index) register, then the

content of the corresponding memory cell cx is provided in the data register. Unlike

a classical memory, if the index register is in a superposition of addresses, a qRAM

provides a superposition of pairs: (address, correlated data). We explain differently.

Let |0〉a and |0〉d denote, respectively, the address and data registers, set to zero

initially. If the input in a superposition of states
∑2n−1

x=0 αx|x〉a|0〉d , we obtain the

entangled output state
∑2n−1

x=0 αx|x〉a|cx〉d. Therefore, with one addressing process

we have access to an exponential amount of data, contrasting with the classical

memory that returns the content of only one memory cell at a time.

Such a memory is the main factor of improvements (in query complexity) of

several important quantum algorithms [4, 20, 25] over their classical counterparts.

Actually, these algorithms presume that this huge amount of memory contents can

be loaded in at most linear time.
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Unfortunately, there are still technological issues regarding the implementation

of such architecture. More precisely, in a classical memory, one addressing process

allows to load the content of a single memory cell, activating only a linear number of

gates (that determine a single path). However, in a quantum computer, an address

register in a superposition entails activating an exponential number of gates (the

all possible paths), creating amongst others the coherence problem, which is a

serious technological challenge for quantum information processing. In fact, even

theoretical proposals are still unclear if they really solve the problem. This topic

is beyond the scope of our research. Readers are referred to papers of Giovannetti,

Lloyd and Maccone [43] or the recent paper of Hong, Xiang, Zhu, Jiang and Wu [47].

For this theoretical thesis, we assume that a qRAM as we defined is available.

In particular, we take into account the query complexity only.

2.12 Quantum Search Tools

A large number of problems can be reduced to search problems of the form “find

some value v in a set of possible inputs such that the statement f(v) is true”. Such

problems includes database search, sorting and attacking an encryption scheme.

For example, consider a cryptographic scenario where an eavesdropper has in-

tercepted matching pairs of plaintext and ciphertexts, and the goal is to find the

key that maps one into the other. This problem can be easily viewed as a search for

the secret key k for which the statement “k can decrypt all the given ciphertexts”

is true. This section is dedicated to briefly review fundamental quantum search

methods for structured and unstructured search problems.

An unstructured search problem is one where nothing is known about the struc-

ture of the search space or the statement f(v). Randomly testing the truth of f(v)

one by one is the optimal method. For instance, if f is a black-box function, then

inverting f(v) is an unstructured search problem.

However, in a structured search problem (e.g., searching an alphabetized list),

information about the search space or f can be exploited to provide faster search [69].
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2.12.1 Grover’s Algorithm

Consider an oracle function f : D → R and an image y ∈ R with the promise that

there exists one and only one x ∈ D such that f(x) = y. The problem is to find x,

which is then called a solution.

Classically (deterministically or probabilistically), there is no better strategy

than trying distinct inputs at random until an x is found such that f(x) = y. This

requires trying N/2 inputs on the average and N − 1 on the worst case. However,

Grover’s algorithm [46] solves this problem in

O(
√
N)

quantum queries to f with bounded-error probability 1/N . Actually, this error

probability can be reduced to zero [24]. Besides, Grover’s algorithm is not only

optimal [19, 20] but exactly optimal [39]. Therefore, it is provably more efficient

than any algorithm running on a classical computer for problems that can be

modelled as a black-box. Readers interested in more description and analysis of

this algorithm are refereed to references [20, 51, 55, 69].

2.12.2 Generalized Grover’s Algorithm

Here we review the algorithm for the generalized unstructured search problem. Let

f : D → R be a black-box function and Y ⊂ R be such that |Y | = t with t� |R|.
The problem is to find any x such that f(x) ∈ Y , which is then called a solution.

Whether or not t is known, Boyer, Brassard, Høyer, and Tapp [20] solved this

problem by generalizing Grover’s algorithm. We are interested in problems where

the number of solutions is known; for convenience we refer to this algorithm as

BBHT’s algorithm (generalization) or simply BBHT.

All remain similar to Grover’s algorithm except for few necessary modifications.

Let t be the number of solutions, assumed to be known, and let θ be such that



35

sin2 θ = t/N with |D| = N . Generalized Grover’s search provides a solution in

O(
√
N/t)

quantum evaluations of f with bounded-error probability at most t/N . This error

probability is vanishing whenever t � N , which is usually the case in practice.

Note that a variant of this algorithm allows us to find the correct answer with

certainty [24].

2.12.3 Amplitude Amplification

Consider a Boolean function f : X → {0, 1} that partitions a set X into two

sets of good and bad elements, where x is good if f(x) = 1 and bad otherwise.

Assume also that a quantum algorithmA such thatA|0〉 = Σx∈Xαx|x〉 is a quantum

superposition of all elements of X. Let p denote the probability that a good element

is produced if A|0〉 is measured.

If we repeat the process of running A, measuring the output, and using f

to check the validity of the result, we shall expect to repeat 1/p times on the

average before a solution is found. However, assuming algorithm A makes no

measurements, amplitude amplification is a process that allows to find a good x

after an expected number of applications of A, and its inverse A−1 in O(1/
√
p).

This process works whether or not the value of p is known ahead of time. The

value of p in the problems we consider is always known. Formally, we state the

following theorem due to Brassard, Høyer, Mosca, and Tapp [26].

Theorem 2.12.1 (Quadratic speedup with known p). Let A be any quantum algo-

rithm that uses no measurements, and let f : Z → {0, 1} be any Boolean function.

Given the initial success probability p > 0 of A, there exists a quantum algorithm

that finds a good solution with certainty using a number of applications of A and

A−1 which is in Θ(1/
√
p) in the worst case.
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2.12.4 Quantum Walks on Johnson Graphs

Our optimal quantum attacks are modelled as quantum walks on different graphs.

We review in this section quantum walks on Johnson graphs, which was devised for

element distinctness by Ambainis [4], and in Section 2.12.5 the general framework.

Most of quantum walks material are closely based on Santha’s excellent survey [70].

A Johnson graph J(N, r) is an undirected graph whose vertices are the r-subsets

(of distinct elements) of [N ] and there is an edge between two nodes if and only

if they differ by exactly one element. Intuitively, we may think of “walking” from

one node to an adjacent node by dropping one element and replacing it by another.

The task is to find a specific k-subset of [N ]. The nodes that contain this subset

are called marked.

A random walk P on a Johnson graph can be quantized and the cost of the

resulting quantum algorithm can be written as a function of S, U and C. These are

the costs of preparing the state related to the stationary distribution (setup phase),

moving unitarily from one vertex to an adjacent vertex (update phase) defined by

the chain, and checking whether a vertex is marked (checking phase), respectively.

Theorem 2.12.2. [4] Let M be either empty, or the set of vertices that contain a

fixed subset of constant size k 6 r. Then there is a quantum algorithm that finds,

with high probability, the k-subset if M is not empty at an expected cost in the order

of

S +
1√
ε

(
1√
δ
U + C

)
,

where δ ∈ Θ(1
r
) is the eigenvalue gap of the symmetric walk on J(N, r) and

ε ∈ Ω( r
k

Nk ) is the probability that a random node is marked.

Childs and Eisenberg [36] proved that this algorithm can be used beyond ele-

ment distinctness, and provided a much simpler analysis than that of Ambainis. It

can be used in any application that can be reduced to the subset-finding problem.
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2.12.5 Quantum Walks on Markov Chains

Szegedy [75] then Magniez, Nayak, Roland and Santha (MNRS) [59] gave a general

framework to derive quantum search algorithms from a large class of Markov chains.

Given a Markov chain P on a discrete space X, with |X| = N , and a subset of

marked elements M ⊆ X, the problem is to provide an upper bound on the number

of iterations to encounter an element from M for the first time. We identify a

Markov chain over state space X with its transition matrix P = (pxy) where pxy is

the probability of transition from state x to state y.

Random walks on a directed weighted graph G(V,E) can be modelled by a

Markov chain defined by the sequence of moves taken by a robot between vertices

of G. The vertices are the states of the chain, the place of the robot at a given

time step is the state of the process, and there is an edge (x, y) ∈ E if and only if

pxy > 0, in which case the weight of the edge (x, y) is defined by pxy. In a d-regular

graphs, the probability that the robot follows edge (x, y) is 1/d.

Thanks to Szegedy’s theorem [75], a random walk P on some graphs can be

quantized and the cost of the resulting quantum algorithm can be written as a

function of S, U and C defined in the previous section. Szegedy’s algorithm [75]

is the quantum analogue for the class of ergodic and symmetric Markov chains.

More precisely, it provides a framework for “constructing and characterizing the

behaviour of a quantum walk algorithm by specifying a classical random walk, and

analyzing its spectral gap and stationary distribution [58]”.

Theorem 2.12.3 (Szegedy [75]). Let P be an ergodic and symmetric Markov chain,

and let ε be a lower bound on |M |
|X| whenever M is non-empty. Then there is a

quantum algorithm that determines with high probability if M is non-empty at a

cost in the order of

S +
1√
δε

(
U + C

)
,

where δ is the eigenvalue gap of the chain P .

Based on Szegedy’s result [75], Magniez, Nayak, Roland and Santha provided

a quantum algorithm (MNRS) [59] for ergodic and reversible Markov chains.
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Theorem 2.12.4 (MNRS [59]). Let P be an ergodic and reversible Markov chain,

and let ε > 0 be a lower bound on the probability that an element chosen from

the stationary distribution of P is marked whenever M is non-empty. Then, there

exists a quantum algorithm that finds, with high probability, an element of M , if

there is any, at a cost in the of order

S +
1√
ε

(
1√
δ
U + C

)
.

2.12.6 Random Walks for Testing Group Commutativity

Some of our cryptanalysis algorithms are modelled as quantum walks, inspired by

Magniez and Nayak’s algorithm for testing group commutativity [58], also analysed

using Szegedy’s or MNRS’s theorem [59, 75].

Consider a set X of N elements. The random walk takes place on an undirected

graph G(V,E) whose vertices are the r-tuples of distinct elements of X. Two

vertices u = (u1, . . . , ur) and v = (v1, . . . , vr) are connected if and only if v is

obtained from u by permuting two of its components (not necessarily distinct); or

replacing one of its components by an element from X (not in the node). The

stationary distribution is the uniform distribution since the graph is symmetric.

The eigenvalue gap δ ∈ Ω(1/(r log r)) while the probability ε ∈ Ω(r2/N2). From a

vertex u = (u1, . . . , ur), we define the following transitions:

– with probability 1/2, stay at u,

– with probability 1/2, pick i ∈ [r] and j ∈ X; if j = uk for some k ∈ [r], then

exchange ui and uk; otherwise, set ui = j.

2.12.7 Random Walks on Hamming Graphs

We will also provide quantum attacks based on quantum walks on Hamming graphs

due to Childs and Kothari [35] (see Section 6.3). A hamming graph H(X, r) has

vertex set Xr and there is an edge between two r-tuples if and only if they differ

only on one coordinate. The eigenvalue gap of this random walk is δ = Ω(1/r).
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2.13 Lower Bound Methods

The most successful techniques for proving lower bounds on quantum query com-

plexity are the polynomial method [10], the adversary method [3] and the general-

ized adversary method [81].

The polynomial method was given by Beals, Buhrman, Cleve, Mosca and de

Wolf [10]. The main idea is that any quantum algorithm computing some Boolean

function F produces a corresponding polynomial. In particular, if the algorithm

computes F with probability at least 1− ε, the polynomial approximates the func-

tion F to within ε at all points in the domain. Therefore, by proving a lower bound

on the degree of polynomials approximating F, we can derive a lower bound on the

number of queries the quantum algorithm needs to make.

The first quantum lower bound was given by Bennett, Bernstein, Brassard, and

Vazirani [19], which is known as the hybrid method. Using classical adversary

argument, this method and all its subsequent variants are based on one principle:

we transform the problem to distiguishing inputs instead of computing the function.

Consider an algorithm A that computes successfully some Boolean function F in

the oracle model, and two inputs x, y such that F(x) 6= F(y). Then A must be

able to distinguish between oracles x and y. More precisely, for a given problem an

adversary runs A on one input, then changes the input slightly so that the function

value changes but the algorithm cannot recognize this change unless it makes a large

number of queries. Therefore, deriving a good lower bound is reduced to identify

two inputs that are hard to distinguish.

The measure of distinguishability is the inner product. Initially, the inner prod-

uct is one since the computation starts in a fixed state, and the output quantum

states of A on x and y must be almost orthogonal. Therefore, upper-bounding the

change of the inner product (the reduced uncertainty) after a single query implies

a lower bound on the required number of queries.

Ambainis [3] generalized this method, which is known today as the unweighted

adversary method. It became a very successful technique, having provided tight
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lower bounds for several interesting problems. It starts with choosing a set of pairs,

as opposed to one single pair in the first method, that maps F to different values.

Then the lower bound is brought to some combinatorial properties of these pairs.

However, considering only the hardest inputs does not produce good lower

bounds for some problems, such as sorting and searching an ordered list for instance.

Høyer, Neerbek and Shi introduced the weighted adversary arguments to prove

tight bounds for these problems [79]. The idea is to assign weights that represent

the hardness (in terms of queries) of distinguishing each pair of inputs. For this

purpose, one defines the spectral adversary matrix.

Definition 2.13.1. A spectral adversary matrix for a fixed function F : S → T is

a real symmetric matrix Γ : S×S → R such that Γ[x, y] = 0 whenever F(x) = F(y).

There are different means to determine the progress an algorithm makes in or-

der to distinguish inputs, which led to formulations in terms of weight schemes

due to Ambainis and Zhang [7, 82], Kolmogorov complexity due to Laplante and

Magniez [54] and in terms of eigenvalues due to Barnum, Saks and Szegedy [9]. All

these formulations are based on the same technique: bound the difficulty of dis-

tinguishing inputs. Using the duality theory of semidefinite programming, Špalek

and Szegedy [76] showed that all these formulations are equivalent.

The adversary method and all its versions have several inherent limitations. One

limitation in our context is that they are incapable to derive good lower bounds for

any problem subject to the certificate complexity barrier. This limitation states that

ADV(F) 6
√
C0(F)C1(F) for total functions [76, 82], where Cb(F ) is the b-certificate

complexity of F. However, ADV(F) 6 2
√
C1(F)N if the function is partial [76],

where N is the input size. The same shortcoming for the Kolmogorov complexity

method was proved by Laplante and Magniez [54]. Consequently, for a problem like

element distinctness, where one of the certificate complexities is constant, the best

bound which can be proven by the adversary method is Ω(
√
N). This contrasts

with the polynomial method, which enabled to prove a tight lower bound of Ω(N2/3)

for this problem [2].
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Informally, certificate complexity measures how many of the N boolean vari-

ables should be given values so that the function’s value is fixed.

Definition 2.13.2 (Certificate complexity). Let f : {0, 1}N → {0, 1} be a function

and C : S → {0, 1} be an assignment of values to some subset S of the N indices.

We say that C is consistent with x ∈ {0, 1}N whenever xi = C(i) for all i ∈ S. A

1-certificate for f is an assignment C such that f(x) = 1 whenever x is consistent

with C. The size of C is the cardinality of S. We similarly define a 0-certificate.

The certificate complexity Cx(f) of f on x is the size of the smallest f(x)-certificate

that is consistent with x. The certificate complexity C(f) of f is the maximum of

Cx(f) over all x. The 1-certificate complexity of f is the maximum of Cx(f) over

all x for which f(x) = 1.

For example, the certificate complexity of the OR function on (1, . . . , 0) is 1,

because the assignment x0 = 1 forces the OR to 1. The same holds for the other

x for which OR(x) = 1, so the 1-certificate is 1. On the other hand, the certificate

complexity on (0, . . . , 0) is N . Therefore, C(OR) = N .

A stronger version of the adversary method was given by Høyer, Lee and Špalek.

Called negative (or generalized) adversary method, it is also known as ADV± [81].

This new method is always at least as good as the adversary method and can

break the certificate complexity barrier. Indeed, there is a monotone function f

for which ADV±(f) = Ω(ADV(f)1.098) [81] and Belovs [14] constructed an explicit

optimal (negative-weight) adversary matrix for element distinctness. On top of

that, the generalized adversary bound is tight for partial and total functions as

shown by Lee, Mittal, Reichardt, Špalek and Szegedy showed [56]. We will see in

Chapter 4 how these results [56, 81] enable us to provide a security proof of our

protocols, after trying in vain several lower-bound techniques. Moreover, the new

method ADV± has all the advantages of the adversary method ADV, particularly:

it is a lower bound on the bounded-error quantum query complexity, and has a

very useful property with respect to function composition, which is actually the

corner stone of all our lower bound proofs.
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We now present a closer look at this new method and compare it with previous

adversary methods, using the setting of the spectral formulation of the adversary

method [9]. Before proceeding, following Refs. [80, 81], we recall briefly this spectral

formulation.

Let Q2(F) denote the two-sided bounded-error quantum query complexity of a

function F. For a real matrix M we use M > 0 to say its entries are nonnegative,

and ‖A‖ denotes the spectral norm of A (which is equal to its largest eigenvalue).

In the following, Di is the zero-one valued matrix defined by Di[x, y] = 1 if and only

if the bitsrings x and y differ in the i-th bit or, equivalently, Di[x, y] = 1 if xi 6= yi.

For two matrices A,B of the same size, the entrywise (or Hadamard) product is

the matrix denoted by A ◦B and defined by (A ◦B)[x, y] = A[x, y]B[x, y].

Suppose we want to determine the quantum query complexity of a function F.

First, we assign weights to pairs of inputs in order to bring out how hard it is (in

terms of number of queries) to distinguish these inputs apart from one another.

The adversary lower bound is the worst ratio of the spectral norm of this matrix,

which measures the overall progress necessary in order for the algorithm to be

correct, to the spectral norms of associated matrices, which measure the maximum

amount of progress that can be achieved by making a single query.

The spectral adversary method states that, for any F, the bounded-error query

complexity Q2(F) is lower-bounded by a quantity ADV(F) defined in terms of Γ.

Definition 2.13.3. Let Γ be an adversary matrix for a fixed function F : S → T .

The adversary bound of F using Γ is

ADV(F; Γ) = min
i

‖Γ‖
‖Γ ◦Di‖

.

The adversary bound of F is

ADV(F) = max
Γ>0
Γ6=0

ADV(F; Γ).

Theorem 2.13.4 (BSS03 [9]). For any function F, Q2(F) = Ω(ADV(F)).
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Definition 2.13.5. Let Γ be an adversary matrix for a fixed function F : S → T .

The adversary bound of F using Γ is

ADV±(F; Γ) = min
i

‖Γ‖
‖Γ ◦Di‖

.

The adversary bound of F is

ADV±(F) = max
Γ6=0

ADV±(F; Γ).

Theorem 2.13.6 (HLS07 [81]). For any function F, Q2(F) = Ω(ADV±(F)).

We can see from the definitions that ADV±(F) > ADV(F) for any function F.

Indeed, while the definition of ADV restricts the maximization to matrices Γ whose

entries are nonnegative and real, the new bound ADV± removes this restriction.

The key idea to transmit is that finding a good lower bound is simply reduced to

picking a good adversary matrix Γ. However, finding such a good Γ is not obvious.

2.13.1 New Lower Bound Composition Theorem

The central technical part of our lower bounds consists in analyzing the complexity

of a function closely related to the hardness of breaking our key agreement pro-

tocols. Recall that X ′ denotes X ∪ {0}, where X is an arbitrary set of integers.

This function is obtained when composing a general problem (subset-finding) with

κ instances of a variant of the unstructured search problem.

Consider three integer parameters κ, η and k, and three functions f : [κ]→ [κ],

g : [κ]→ [η] and h : [κ]× [η]→ [κ]′ so that

h(i, j) =

 f(i) if j = g(i),

0 otherwise .

The task is to find a unique k-subset of distinct non-zero elements which satisfy

some property (equality for instance), having access to a black-box function h only.
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More precisely, find non-zero elements i1, . . . , ik ∈ [κ] that would provide a solution

to the outer poblem if we were given direct access to f . This can be viewed as

searching among η possibilities for the sole nonzero h(i, ·) for each i and then

solving f on those elements.

It is more convenient to prove this lower bound for the related decision problem:

we are given a function h of the type above, but it is based on a function f that

either has a single k-subset, or none. The task is to decide which is the case.

Obviously, any algorithm that can solve the search problem with probability of

success at least p > 0 can be used to solve the decision problem with error bounded

by 1
2
− p

2
: run the search algorithm; if a k-tuple is found (and verified), output

“yes”, otherwise output either “yes” or “no” with equal probability after flipping

a fair coin. It follows that any lower bound on the bounded-error decision problem

applies equally well to the search problem.

We change the notation to adapt it to the standard usage in the field of quantum

query complexity. The function f : [κ]→ [κ] is represented by an element of [κ]κ.

This makes it possible to think of the decision version of this problem as a Boolean

function F : [κ]κ → {0, 1}. Given κ integers (z1, . . . , zκ) ∈ [κ]κ, or equivalently on

input f , the goal is to decide whether or not there is a k-subset providing a solution

to f by making as few queries as possible.

We compose F with κ instances of a promise version of a search problem, which

we call pSEARCH.

Definition 2.13.7. pSEARCH : P → A with P ⊆ (A′)η is a promise problem. On

input (a1, . . . , aη), the promise P is that all but one of the values are zero. The goal

is to find and output this nonzero value by making queries that take i as input and

return ai.

The composed function, with A = [κ], is denoted H. On input x ∈ P κ,

H(x) = F(pSEARCH(x1), . . . , pSEARCH(xκ)).

We can think of H as a two-level tree: the root being labelled by F and each
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of the κ leaves being labeled by pSEARCH. An input x to H can be thought of as

being comprised of κ parts, x = (x1, . . . , xκ). We evaluate H on x by first finding

the κ non-zero values, and then computing F on these κ values.

Since H is defined as the composition of F and pSEARCH, we would like to

apply a new composition theorem for the generalized adversary method [81], which

would say that if a function H = F ◦ Gκ, then ADV±(H) > ADV±(F) · ADV±(G).

Unfortunately, the composition theorems of Refs. [56, 81] require the inner (and

outer [81]) functions to be Boolean, which is not the case here for the inner function

pSEARCH. Since counter-examples can be found, we cannot hope to have a fully

general composition theorem in which the inner function would be an arbitrary

function. Nevertheless, we proved a new composition theorem with pSEARCH as

the inner function [29].

Theorem 2.13.8 (BHKKLS11 [29]). Let F : Aκ → B, pSEARCH : P → A with

P ⊆ (A′)η as described above, and H = F ◦ pSEARCHκ. Then

ADV±(H) >
2

π
ADV±(F) · ADV±(pSEARCH).

The quantum query complexity of H is in Ω(κcη1/2) where c is a positive con-

stant.

Now the necessary condition on F can be easily seen. Indeed, the adversary

bounds of each of the involved functions are needed before invoking the theorem.

2.14 Proving Cryptographic Lower Bounds

While we always assume that security is maintained only against linear query Eave,

which has full access to any communicated message over a public authenticated

channel, we make no assumption on Eave’s strategy. Therefore, to prove that a

given protocol Π is secure requires proving a lower bound on the number of queries

needed by any eavesdropper attempting to break Π. In other word, we have to prove

that no linear query algorithm can break Π, except with vanishing probability.
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However, the current state of complexity theory does not allow to solve such

cryptographic problem straightforwardly. The alternative strategy is to first prove

a lower bound on the difficulty to solve a related problem X, then prove that

the scheme Π is secure as long as X preserve the proven difficulty. This strategy

proceeds by devising a reduction (an argument by contradiction) which converts

any probabilistic linear query algorithm A able to break Π (with non-vanishing

probability) into an algorithm A′ able to solve the problem X more quickly than

what was proven. For a detailed application of this strategy, see Section 4.2.2.

Actually, we use this approach to prove the security of all our protocols.

For more detail about this approach can be found in the textbooks [44, 60, 74]

or papers [48, 49].



CHAPTER 3

MERKLE SCHEMES

In 1974, Merkle proposed the first solution [63] for the key agreement problem,

where the third party is not needed, and the notion of public-key cryptography [38]

as a project proposal in a graduate course on Computer Security (CS244) at the

University of California, Berkely.

He proved that the key pre-agreement requirement is unnecessary, by a method

which allows legitimate parties to establish a secret over a public authenticated

classical channel after a number of queries proportional to some parameter N ,

while any classical eavesdropper needs a number of queries proportional to N2 in

order to obtain their secret from the communicated messages. The only assumption

is the existence of “one-way encryption function” [63] of domain size N2.

The proposal was rejected by the professor but Merkle “kept working on the

idea”. Initially rejected, it was eventually published in 1978 by Communications of

the ACM [64]. Based on a concept called “puzzle”, Merkle’s published scheme [64]

was different from his original scheme in the unclassified document [63], which is

based on a variant of the birthday problem (see Section 2.8.6).

In the forthcoming sections, we describe Merkle’s (original) scheme [63], its

security analysis against a classical eavesdropper, and a quantum attack that makes

it useless from a security viewpoint. Although unconsidered in this work, Merkle’s

published scheme [64] is described for completeness later. We finish the chapter

by “Quantum Merkle Puzzles”, which was introduced by Brassard and Salvail as

a first attempt to recover Merkle’s scheme which collapses in a quantum world.

While Merkle puzzles is known to mean Merkle’s published scheme, unfortu-

nately, it has been used [8, 29] to indicate the original one. In this thesis, we will

consider only Merkle’s original scheme [63], referring to it simply Merkle’s scheme.

It is worth comparing these two schemes since they have several interesting

differences: (1) at the time of writing, there are no lower bound methods in the
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literature to find the complexity of the published scheme; (2) it is an open problem

whether this latter is optimal, in contrast with the original scheme [63], which is

provably optimal in the black-box model [8]; and (3) there is no known reduction

between them. On the other hand, these schemes also have similarities: (1) any

classical eavesdropper needs an amount of queries which increases quadratically in

the legitimate one before obtaining the secret; and (2) a quantum eavesdropper

can find the secret as easy as the key agreement process (up to constant factors).

3.1 In a Classical World

All parties in this section are restricted to use classical computers, the 1970’s world.

We first describe Merkle’s (original) scheme [63], afterwards the published one [64].

3.1.1 Merkle’s Original Scheme

We emphasize that Merkle’s unpublished scheme [63] is the only one we consider

in this work and refer to it simply Merkle’s scheme. Before the formal description,

we first present the scheme according to Merkle’s typewritten words [63].

Method: Guessing. Both sites guess at keywords. These guesses

are one-way encrypted, and transmitted to the other site. If

both sites should chance to guess at the same keyword, this

fact will be discovered when the encrypted versions are compared,

and this keyword will then be used to establish a communications

link.

Discussion: No, I am not joking. If the keyword space is of

size N, then the probability that both sites will guess at

a common keyword rapidly approaches one after the number of

guesses exceeds sqrt(N). Anyone listening in on the line must

examine all N possibilities.



49

More formally, assume the existence of a random oracle function f : [N2]→ [Nk],

where the constant k is chosen large enough so that there is no collision in the image

of f , except with vanishing probability (see Section 5.3.4).

The “keywords” guessed at by “both sites” are random distinct points in the

domain of f. For more precision, let us describe the protocol at step i > 2, assuming

it is Alice’s turn to respond. Alice picks randomly a point ai ∈ [N2] and transmits

it encrypted, by the application of f , to Bob. Next, Bob picks a random point

bj ∈ [N2] and checks whether or not f(bi) ∈ Ya where Ya consists of the images

sent from Alice. If the answer is ‘yes’, then Bob sends back f(bi) to Alice, who

can learn bi using elementary search in her table containing all her random points

coupled with the corresponding images, and the value of bi will be their secret.

However, if the answer is ‘no’, then Bob proceeds exactly as Alice. Both sites

continue comparing and transmitting encrypted random points to each other until

they chance to guess on the same point.

Now, we ensure that the protocol is correct, that is, at the end of the execution

of the protocol, Alice and Bob would have a common secret key after O(N) queries.

Indeed, since there are N2 points in the domain of f, it is sufficient to do O(N)

random guesses at each site after which “both sites should chance to guess” at the

same point, which becomes their common secret key. Note that the probability

that both parties establish a secret after O(N) queries approaches one, which can

be proved using a simple probabilistic argument.

As for the security analysis, a classical eavesdropper who listens to the entire

conversation has no way to obtain the secret key than to invert f on that common

encrypted point, since f is given as a black-box. However, inverting f on any point

in the domain requires an expected Ω(N2) queries, since it requires trying on the

average half the points in the domain.

It was a major open question in classical cryptography to determine whether

this quadratic relation between the legitimate complexity and the eavesdropping

one is the best possible in the black-box model. In 1989, Impagliazzo and Rudich

showed that every key agreement protocol in the random oracle model in which
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Alice and Bob ask O(N) queries can be broken by an adversary asking O(N6 logN)

queries [49]. It took 35 years after Merkle’s invention before Barak and Mahmoody-

Ghidary proved that Merkle’s scheme is indeed optimal in a classical world [8].

They designed an O(N2)-query algorithm which can find the secret established by

any key agreement protocol in the random oracle model in which Alice and Bob

make O(N) queries.

3.1.2 Merkle’s Published Scheme

Eventually published in 1978 [64], this scheme has been known as Merkle Puzzles.

Be aware that this name is also assigned to the original scheme [8, 29]. The idea

is simple, and we describe it immediately following Ref. [23].

We asssume the existence of an encryption function f given as a black-box.

Formally, let f : K × M → C where K is the encryption keyspace, M is the

message space, and C is the ciphertext space. If k is a key and m is a message,

then c = fk(m) is the ciphertext. Decryption is the inverse of f on c, given k.

Symbolically, m = f−1
k (c). We assume that both f and f−1 can be computed in

unit time provided k is available. However, guessing the key k, given c and arbitrary

information about m, is only possible by exhaustive search on the keyspace. The

size of K is assumed to be N in order to solve any puzzle in O(N), but not faster.

Assume also that Alice and Bob agree on an arbitrary public value v, which is used

to verify whether or not a puzzle is solved, and should be of adequate size.

To create a puzzle Pi, for 1 6 i 6 N , choose randomly an encryption key ki, a

unique identifier IDi, and a secret value xi, then compute

Pi = fki(IDi, xi, v).

However, to solve a puzzle Pi, the optimal way is to try random distinct keys

k ∈ K until the finding of f−1
k (Pi) = (IDi, xi, v) for the right value of v, since f is a

black-box encryption function. Note that identifying v is the only way to recognize

that a puzzle is solved.
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It is worth comparing with a cryptogram. A puzzle is simply a cryptogram

which is meant to be solved efficiently (in linear number of queries here) while

a cryptogram ideally cannot be decrypted efficiently. To achieve this objective

(prepare solvable puzzles), it is sufficient to restrict the keyspace to an adequate

size. The scheme might be described as follows:

1. Alice prepares, saves, and sends Bob N puzzles P1, P2, . . . , PN .

2. Bob selects one puzzle Pi for a randomly chosen i ∈ [N ], and solves it. The

solution allows him to get IDi and xi. Bob transmits back to Alice the value

of IDi to inform her of the puzzle he has solved.

3. Alice, having received IDi and using her saved puzzles, can know the puzzle

that was solved by Bob using an elementary search. Hence, she can find

efficiently the value xi, which becomes their common secret key.

3.1.3 Advantages and Disadvantages of Merkle Schemes

Shortly after Merkle’s original scheme [63], Diffie and Hellman [38] have discov-

ered a method that makes the cryptanalytic computational complexity apparently

exponentially harder than the legitimate complexity. However, there is no proof

that the Diffie-Hellman public-key system is secure at all since it relies on the

conjectured difficulty of extracting discrete logarithms, an assumption doomed to

fail in a world ruled by the quantum theory. In contrast, Merkle’s approach offers

provable quadratic security against any possible classical attack in the black-box

model, that is, f cannot be inverted by any other means than exhaustive search.

The major disadvantage of Merkle’s scheme is that it provides no-better than

polynomial security. Even worse, quadratic security is the best possible in a clas-

sical world [8]. In a quantum world, it is the objective of this thesis to know the

extend to which we can push the security level, which is clarified in next chapters.

Next, we describe how Merkle’s method collapses completely if the eavesdrop-

per is equipped with a quantum computer, and review a partial solution to this

problem [23] by granting similar powers to legitimate communicating parties.
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3.2 In a Quantum World

From now on, we assume that the eavesdropper is always quantum, but legitimate

parties might make use of quantum computing features depending on the context.

3.2.1 Collapse of Merkle’s Scheme

While Merkle’s scheme provides provable quadratic security in the random oracle

model against any classical eavesdropper, it is broken in O(N) queries against a

quantum eavesdropper.

Indeed, here is a quantum attack applying directly Grover’s algorithm [46].

Assume that f(x) is the common encrypted point between Alice and Bob, and

that the random oracle function f can be computed in a superposition of inputs.

The eavesdropper would like to know the secret x.

The problem is reduced to an unstructured search problem where the search

space is of size N2 and there exists one and only one solution. The eavesdropping

strategy is to resort to Grover’s algorithm which can solve this problem after a

number of queries proportional to the square root of the domain size, which is

O(N) quantum queries, and this is optimal [19, 20]. Grover’s algorithm is reviewed

in Section 2.12. The same attack can be used to collapse the published scheme too.

3.2.2 Quantum Merkle Puzzles

“Quantum Merkle Puzzles” were introduced in 2008 by Brassard and Salvail [23]

as a first attempt to recover the security of Merkle’s scheme.

Their protocol, in which a quantum eavesdropper has query complexity Θ(N3/2),

is very similar to Merkle’s scheme except for the following modifications: 1) allow

Bob to make use of quantum computing; 2) increase the function domain size from

N2 to N3; and 3) use the BBHT generalisation of Grover’s algorithm.

1. Alice picks at random N distinct points, x1, x2, . . . , xN , in the domain of f

and transmits them encrypted, by the application of the function f , to Bob.

Let X = {xi | 1 6 i 6 N} and Y = {f(xi) | 1 6 i 6 N}.
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2. Bob’s task is to invert f on an arbitrary element in the set Y . He sorts the

elements of Y so that he can quickly determine, given any y, whether y ∈ Y .

Then, he defines the Boolean function φ : N3 → {0, 1} as follows:

φ(x) =

 1 if f(x) ∈ Y
0 otherwise

The problem is then reduced to finding x for which φ(x) = 1. There are

exactly N solutions satisfying this condition, out of N3 points in the domain.

Using BBHT, he can find a solution in O(
√
N3/N) = O(N) quantum queries.

3. Bob sends back f(x) to Alice.

4. Alice, having kept her randomly chosen points, can efficiently find the value

of x using elementary classical search. This x will be their secret key.

We calculate the legitimate complexity. Alice asks exactly N classical queries

while Bob asks O(N) quantum queries, neglecting the running time for sorting and

binary search. Therefore, the legitimate query complexity is in O(N).

The quantum eavesdropper, however, is faced to invert f on a specific point,

which provably requires a number of queries proportional to the square root of

the number of points in its domain [20, 24]. Therefore, the quantum eavesdropper

needs

Ω(
√
N3 ) = Ω(N3/2)

quantum queries, which is more than what is required of the legitimate parties, yet

less than what was required of the classical eavesdropper.

The introduction of quantum computers seems to be for the advantage of the

eavesdroppers. Can we remedy this situation? Is any security possible at all

against a quantum eavesdropper if both legitimate parties are restricted to use

classical computers? The next chapters, in which we study these and other related

questions, will reveal counter-intuitive answers.



CHAPTER 4

QUANTUM PROTOCOLS AGAINST QUANTUM ADVERSARIES

Merkle’s scheme, which provides provably quadratic security against classical eaves-

droppers [8], has no security at all in a quantum world. Our notion of “security”

is defined in Section 2.7. Allowing Bob to be quantum, Brassard and Salvail [23]

provided a scheme in which a quantum eavesdropper needs Ω(
√
N3 ) = Ω(N3/2)

quantum queries [19, 20]. Subsequently, it remained open the following question:

Is Ω(N3/2) the optimal key agreement security in the random oracle model, when

legitimate parties make use of quantum computations?

Part of our contributions, this chapter consists of two novel provably secure

protocols that answer positively this question. Both protocols provide security of

Ω(N5/3), though they are based on two different but equivalent search problems.

Before presenting any of the protocols, we remind of the setting in this chapter.

Legitimate parties, Alice and Bob, are allowed to make quantum computations. In

the first protocol both parties are quantum while in the second one only Bob needs

to be quantum. In both cases, the eavesdropper is assumed to have unrestricted

quantum resources in addition to having full knowledge of any communicated mes-

sage on the unique classical authenticated channel. All parties have access to the

same random oracle and our measure of complexity is the query complexity. Note

finally that all our results are implicitly stated “up to logarithmic factors”.

4.1 The First Θ(N5/3) Quantum Protocol

We describe this novel protocol assuming the existence of two black-box functions

f : [N3]→ [Nk] and g : [N3]× [N3]→ [Nk′ ] that can be accessed in superposition

of inputs.

The constants k and k′ are chosen large enough so that neither f nor g has a

collision in their images (both functions are one-to-one), except with polynomially
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vanishing probability, or equivalently, with probability in o(1). This assumption

is satisfied whenever the range size is quadratically larger than the domain size,

taking into account the birthday problem (Section 2.8.6). Specifically, we take

k > 6 and k′ > 12, based on our calculations in Section 5.3.4. For simplicity, we

shall systematically disregard the possibility that such collisions might exist.

The reason for which we left the notion negligible, which is necessary in standard

cryptography, in favour of vanishing is explained in Section 5.3.1. In Section 2.2,

we explain the meaning of the notions random function or how to choose a function

at random. In Section 2.3, we define the (random) oracles.

The notion of black-box functions, which is fundamental to understand in this

work, is defined and explained in Section 2.4. For instance, the black-box function

f is selected at random from the set of all mappings from D = N3 into R = Nk.

It might be useful to think of it as a tuple y = (y1, · · · , yN3) of integers where each

integer was chosen independently and uniformly at random, that is, y ∈ [Nk]N
3
.

In addition, for all 1 6 i 6 N3, this box outputs yi ∈ Nk on an input i ∈ [N3].

Note that a single binary random oracle (which “implements” a random func-

tion from the integers to {0, 1}) could be used to define both functions f and g

provided we disregard logarithmic factors in our analyses since O(logN) queries to

the random oracle would suffice to compute f or g on any single input. Indeed, to

specify function f for instance one needs N3 logNk bits. Think of the N3 points as

embedded in the oracle in a canonical form. Each image is represented by logNk

bits, and each query i ∈ [N3] for f requires logNk queries to its corresponding

binary oracle to construct the integer f(i) ∈ [Nk]. It is understood hereinafter

that all our results are implicitly stated “up to logarithmic factors”.

On the other hand, multiple oracles can be represented using a single oracle by

pre-pending a fixed bit-string to the beginning of each query. For instance queries

of the form “0i” and “1i” can be considered queries to two separate functions f

and g respectively.
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Protocol 1 (Quantum parties vs quantum adversaries).

1. Alice picks at random N distinct points, x1, x2, . . . , xN , in the domain of f

and transmits them encrypted, by querying the black-box function f , to Bob.

Let X = {xi | 1 6 i 6 N} be the set of random points, which is kept secret

by Alice, and let Y = {f(xi) | 1 6 i 6 N} be the set of encrypted points sent

from Alice to Bob. Keep in mind that Alice knows both X and Y whereas Bob

and the eavesdropper have knowledge of Y only without querying the oracle f .

2. Bob finds the pre-images x and x′ of two distinct random elements in Y,

according to the following procedure. He sorts the elements of Y so that,

given any y, he can efficiently determine whether or not y ∈ Y . Then, he

defines the Boolean function φ : [N3]→ {0, 1} as follows:

φ(x) =

 1 if f(x) ∈ Y
0 otherwise .

The problem is then reduced to finding a pre-image x for which φ(x) = 1.

There are exactly N solutions satisfying this condition, out of N3 points in

the domain of φ. Using generalized Grover’s algorithm (BBHT), Bob can

find a solution in O(
√
N3/N ) = O(N) quantum queries to function φ, or

equivalently to f , since each query to φ implies one and only one query to f .

He needs to repeat this procedure twice in order to get both x and x′. (A small

variation in function φ can be used the second time to make sure that x′ 6= x).

3. Bob sends back w = g(x, x′) to Alice such that x < x′.

4. Since Alice had kept her random secret set X, there are only N2 candidate

pairs (xi, xj) ∈ X ×X such that g(xi, xj) could equal w. Using Grover’s

algorithm, she can find Bob’s pair (x, x′) with O(
√
N2 ) = O(N) queries to

function g. The secret established by Alice and Bob is the pair (x, x′).

We first verify that the protocol is valid, in the sense that at the end of its

execution, Alice and Bob agree on a secret after a number of queries linear in N .
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Indeed, Alice makes N classical queries to f in Step 1 and O(N) quantum queries

to g in Step 4, whereas Bob makes O(N) quantum queries to f in Step 2 and a

single classical query to g in Step 3. If the protocol is constructed over a binary

random oracle, it will have to be called O(N logN) times since it takes O(logN)

binary queries to compute either function on any given input.

It is crucial to know that Bob, to find x ∈ X, does not choose y ∈ Y randomly

and inverts it afterwards, which would require Ω(
√
N3 ) and consequently make the

protocol invalid. Instead, he applies BBHT generalisation an appropriate number

of times in order to evolve the initial state, superposition of all possible inputs,

to a final state, very close to a superposition of all possible solutions. Then, he

measures the final state, producing a purely random image, according to the axioms

of quantum mechanics, coupled with its corresponding pre-image.

4.1.1 Quantum Attack

All the cryptanalytic attacks against this scheme, such as direct application of

Grover’s algorithm, generalized Grover’s algorithm, or even more sophisticated

attacks based on amplitude amplification [26], require of the eavesdropper Ω(N2)

quantum queries to functions f and/or g. These quantum search algorithms are

reviewed in Section 2.12.

However, a more powerful attack based on the recent paradigm of quantum

walks [5, 36, 59, 70, 75] allows the eavesdropper to learn Alice and Bob’s key (x, x′)

with an expected O(N5/3
√

logN) queries to f and O(N) queries to g. Actually,

our attack combines Ambainis’ algorithm for element distinctness [4] with Magniez

and Nayak’s quantum walk algorithm for testing group commutativity [58].

To analyse the cost of our quantum algorithms, we will always apply the theorem

of Magniez, Nayak, Roland and Santha (MNRS) [59]. Actually, the same upper

bounds can also be obtained using Szegedy’s theorem [75]. Both theorems are

reviewed in Section 2.12.5.
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Theorem 4.1.1. There exists an eavesdropping strategy that outputs the pair (x, x′)

in Protocol 1 with O(N5/3
√

logN) expected quantum queries to functions f and g.

Proof. The attack was originally inspired by Ambainis’ quantum algorithm for

element distinctness [4], which can find the (single) pair (i, j) such that ξ(i) = ξ(j)

with O(N2/3) expected queries to a function ξ whose domain consists of N elements.

In a nutshell, we apply Ambainis’ algorithm for element distinctness with two

modifications: (1) instead of looking for i and j such that ξ(i) = ξ(j), we are

looking for x and x′ such that g(x, x′) = w; and (2) instead of being able to get

randomly chosen values in the image of ξ with a single query to oracle ξ per

value, we need to get random elements of X by applying BBHT on the list Y,

which requires O(
√
N3/N) = O(N) queries to oracle f per element. From the first

modification, it might be clear that this problem is a special case of the subset

finding problem [36] (see Section 2.8.3). The second modification explains why the

number of queries to f , compared to O(N2/3) queries to ξ for element distinctness,

will be multiplied by O(N). To determine the query complexity of our quantum

attack, we need to introduce few ingredients.

It turns out that the special structure of our problem (composition of functions)

prevents from implementing a quantum walk on Johnson graphs, which is used in

element distinctness algorithm or its generalization [4, 36]. Therefore, our eaves-

dropping algorithm is combined with a quantum walk algorithm for testing group

commutativity due to Magniez and Nayak [58].

We briefly introduce the random as well as the quantum walk on this graph.

Let X denote the set of elements whose images are sent by Alice. The random

walk takes place over a graph G(V,E) whose vertices are the r-tuples of distinct

elements of X and eigenvalue gap is δ ∈ Ω(1/r log r)—see Section 2.12.6 for a

review of the random walk on this graph. More precisely, each vertex u has the

form |u1u2 . . . ur〉 where ui ∈ X and ui 6= uj for all 1 6 i 6= j 6 r. The value of the

parameter r will be determined during the analysis of the algorithm. Two vertices,

u and v, are connected if and only if v is obtained from u by permuting two of its

components or replacing one of them by an element of X not in the node.
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The algorithm initially starts with a superposition state of all vertices u ∈ V ,

which can be done by preparing each ui in superposition. We are looking for a

vertex that contains the two elements x and x′ of X such that g(x, x′) = w, where

w is the value announced by Bob in Step 3 of the protocol.

To define the quantum walk on this graph, let HV be the Hilbert space whose

orthonormal basis states are the elements of V . We define a basis state |u〉 for

each u ∈ V . Since the walk takes place on the edges instead of vertices, the full

quantum state of the algorithm has the form |u〉⊗ |v〉 where u, v ∈ V . One step of

the quantum walk (which is actually two steps on the graph) is a product of two

unitary transformations on the space HV ⊗HV , which is in fact a subspace of the

algorithm’s space (as it might be clear in the setup phase later).

Thanks to the theorem of Szegedy [75] or MNRS [59], the random walk P on

this graph can be quantized. We need to know the eigenvalue gap δ = δ(P ) of the

random walk, and the fraction of marked vertices under the stationary distribution

denoted by ε. Afterwards, the cost of the resulting quantum algorithm can be

written as a function of the quantum costs S, U and C:

Setup cost S: corresponds to prepare the state

∑
u∈V

√
πu|u〉 ⊗ |0〉

where π is the uniform distribution of P , and the all-zero state |0〉 belongs to V .

Equivalently, the cost S corresponds to finding r random distinct elements of X.

To find one such element, we apply BBHT’s algorithm, which takes O(N) queries

to f even to find an element of X guaranteed to be different from those already

in the initial vertex (provided k � N , which it will be). Therefore, S = O(rN)

quantum queries to f . Here are more details.

1. Prepare the following state:

|ψ1〉 =

 1√
N3

∑
u1∈[N3]

|u1〉

⊗
 1√

N3

∑
u2∈[N3]

|u2〉

⊗· · ·⊗
 1√

N3

∑
ur∈[N3]

|ur〉

 .
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It consists of r independent registers. Each register is prepared initially in

superposition state of all possible integers in [N3] without involving oracle

queries, which can be done by applying Hadamard gates on the all-zero state.

2. Produce the superposition state of the r!
(
N
r

)
possible vertices of the graph:

|ψ2〉 =
1√
N

∑
u1∈X

|u1〉⊗

(
1√

N − 1

u2 6=u1∑
u2∈X

|u2〉 · · · ⊗

(
1√
N − r

ur 6=ui;16i<r∑
ur∈X

|ur〉

))
.

To construct |ψ2〉, we proceed as follows. First, we produce a uniform superposition

of all elements u1 ∈ X by applying BBHT on the first register of |ψ1〉. Since we

know the exact number of solutions, which is N at this step, this state can be

produced with certainty in O(
√
N3/N = N) queries even in the worst case, thanks

to Theorem 2.12.1. Second, for each u1 being in superposition state, we produce

a superposition state of all u2 ∈ X such that u2 6= u1, by applying BBHT on

the second register with N − 1 as the number of solutions this time. We continue

similarly until the rth step in which, for each (r − 1)-tuple |u1u2 . . . ur−1〉, we

produce a uniform superposition state of elements ur ∈ X such that ur 6= ui for

1 6 i < r. This step can be achieved in O(
√
N3/N − r) = O(N) queries, since the

number of solutions is now N − r ≈ N .

Update cost U: corresponds to realize any of the following unitary transfor-

mations and their inverses:

U1 : |u〉 ⊗ |0〉 → |u〉 ⊗
(∑
v∈V

√
puv|v〉

)
,

U2 : |0〉 ⊗ |v〉 →
(∑
u∈V

√
pvu|u〉

)
⊗ |v〉.

The graph is symmetric, meaning that puv = pvu for all u, v ∈ V . Besides, the

distribution of the random walk is uniform: the probability of moving from |u, v〉
to |u, v′〉 is the same, for all u ∈ V and for all neighbouring vertices v′ 6= v.

Besides, the result of BBHT’s algorithm is a state of the N possible elements

of X with the same amplitude (uniform superposition), which is exactly what is
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needed to realize U1 and U2 (see definition of the random walk in Section 2.12.6).

Therefore, each application of either U1 or U2 invokes BBHT only once, thus taking

O(N) queries.

Checking cost C: corresponds (in this protocol) to the phase flip operation,

which is necessary to distinguish the marked r-tuple, that is, the unique vertex

containing the pair (x, x′) such that g(x, x′) = w. This unitary is defined as follows:

F |u〉 =

−|u〉 if x, x′ ∈ u,

|u〉 otherwise.

This phase can be achieved using Grover’s algorithm. Since there are r2 possible

pairs of elements in the vertex, it can be done in O(
√
r2 ) = O(r) quantum queries

to g.

To analyse the cost of our quantum algorithm on this graph, we can apply

either Szegedy’s or MNRS’ theorem, since the chain is symmetric and reversible in

addition to be ergodic—see Section 2.12.5 for a review of this topic.

Be aware that our cryptanalysis algorithm runs over only one copy of the (basic)

quantum. Maniez and Nayak [58] used two independent simultaneous copies in

their original algorithm. However, the graph maintains the same mathematical

properties, specially δ ∈ Ω(1/r log r) and ε ∈ Ω(r2/N2).

It is worth mentioning how to calculate ε, which is the probability that a random

vertex is marked (contains a solution). A vertex is marked in this case if it contains

elements x, x′ such that g(x, x′) = w. Assume that such a pair exists and consider

a random r-tuple vertex u ∈ V . Then, the probability of u being marked is

Pr[x, x′ ∈ u] = Pr[x ∈ u] · Pr[x′ ∈ u|x ∈ u]

=
r

N
· r − 1

N − 1

≈ r2

N2

Note that this result can also be obtained using the usual combinatorial method.
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Putting all the necessary ingredients together and using the MNRS theorem,

the expected cryptanalytic cost is in the order of:

S +
1√
ε

(
1√
δ
U + C

)
= S + N

r

(√
r log rU + C

)
=

(
rN queries to f

)
+ N

r

(√
r log r(N queries to f) + (r queries to g)

)
=

(
rN +

N2

√
r

√
log r

)
queries to f and N queries to g .

To minimize the number of queries to f , we choose r so that rN = N2/
√
r,

which is r = N2/3. It follows that a quantum eavesdropper can find the key (x, x′)

with an expected O(N
2
√
r

√
log r ) = O(N5/3

√
logN) queries to f and O(N) queries

to g.

Note that the use of Grover’s algorithm in the checking phase was not necessary

to prove Theorem 4.1.1. Should this step be carried out classically, this would result

in C = O(r2) queries to g. Consequently, the expected cost to find the key would

become O(N5/3
√

logN) queries to f and O(N · r) = O(N5/3) queries to g.

However, if we apply Szegedy’s theorem, then the cost becomes in the order of:

S +
1√
δε

(
U + C

)
=

(
rN queries to f

)
+
N

r

√
r log r

(
N queries to f + r call to g

)
=

(
rN +

N2

√
r

√
log r

)
queries to f and

(
N
√
r log r

)
queries to g .

To minimize the number of queries to f and g, we choose r = N2/3. It follows

that the total cost is O(N5/3
√

logN) queries to f and O(N4/3
√

logN) queries to g.

Clearly, this algorithm requires more queries to function g. Note also that Szegedy’s

algorithm can determine rather than find a solution.
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4.1.2 Lower Bound

We prove in this section that the preceding quantum attack against our quantum

protocol is optimal, (up to the square-root of a logarithmic factor), by this theorem.

Theorem 4.1.2 (Eavesdropping lower bound). Any eavesdropping strategy A that

learns the key (x, x′) in Protocol 1 requires a total of Ω(N5/3) quantum queries to

functions f and g. Any strategy A asking o(N5/3) queries can find the key only

with o(1) probability over the random views of the protocol.

The proof of Theorem 4.1.2 consists of four steps:

1. We define a composed search problem H related to the hardness of breaking

our protocol;

2. We prove a lower bound on the difficulty to solve H (Lemma 1), using a

new composition theorem for the generalized adversary method [29], which

is reviewed in Section 2.13.1;

3. We reduce H to a less structured problem H′ (Lemma 2), giving the same

desired lower bound; and

4. We reduce the problem H′ to the eavesdropping problem against our protocol.

More precisely, we show that any attack on our key agreement scheme that

would have a non-vanishing probability of success after o(N5/3) queries to

functions f and/or g could be turned into an algorithm capable of solving H′

more efficiently than possible.

In Step 1, we compose the element distinctness problem (ED) with N instances

of a search problem with a promise (pSEARCH), which results in the starting search

problem H = ED ◦ pSEARCHN . We first recall of these problems or their variants.

Consider an oracle function ξ : [N ]→ [M ] such that there exists a pair (i, j),

1 6 i < j 6 N , for which ξ(i) = ξ(j). Ambainis’ quantum algorithm for element

distinctness [4] or its generalization [36] (Section 2.12.4) can find this pair with

O(N2/3) queries to function ξ and Aaronson and Shi proved that this is optimal

even for the decision version of this problem [2].
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Consider the promise problem pSEARCH : P → [M ] with P ⊆ ([M ]′)N
2

. Recall

that [M ]′ denotes {0} ∪ [M ]. On input (a1, . . . , aN2), the promise P is that all but

one of the values are zero. The goal is to find and output this nonzero value by

making queries that return ai on input i.

The structure of problem H allows us to think of it as a two-level tree: the root

being labelled by ED (or SF) and each of the κ leaves being labeled by pSEARCH.

An input x ∈ PN to H can be thought of as being N parts, x = (x1, . . . , xN). We

evaluate H on x by first finding the N non-zero values, and then computing ED on

those values. More formally, on input x ∈ PN ,

H(x) = ED(pSEARCH(x1), . . . , pSEARCH(xN)).

Consider now a function h : [N ]× [N2]→ [M ]′. The domain of this function is

composed of N “buckets” of size N2, where h(i, ·) corresponds to the ith bucket

for 1 6 i 6 N . In bucket i, all values of the function are 0 except for one single

random xi ∈ [N2] for which h(i, xi) = ξ(i). Symbolically,

h(i, j) =

 ξ(i) if j = xi

0 otherwise .

It follows from the definitions of ξ and h that there is a single pair of distinct

elements a and b in the domain of h such that h(a) = h(b) 6= 0. How difficult is

it to find this pair given an oracle access for function h but no direct access to ξ?

We answer this question by the following lemma, achieving the second step of the

proof.

Lemma 1 (Lower bound for h). Given h structured as above, finding the pair of

distinct elements a and b in the domain of h such that h(a) = h(b) 6= 0 requires

Ω(N5/3) quantum queries to h. Any algorithm A making o(N5/3) queries solves

this problem only with o(1) probability over the randomness of considered oracles.



65

Proof. The search problem can be modelled as the composition of element distinct-

ness across buckets, the outer function, with finding the single non-zero entry in

each bucket, the inner function. In other words, it is a problem of searching among

N2 possibilities for the unique non-zero h(i, ·) for each i, and then finding two of

those N elements that are equal.

One would like to apply a composition theorem for the generalized adversary

method, which would give that the quantum query complexity of h is the product

of the quantum query complexities of the outer function and the inner function, or

symbolically, Q2(h) = Ω(N2/3
√
N2 ). Høyer, Lee, and Špalek [81] proved the first

composition theorem, which requires not only the inner function to be Boolean but

also the outer one. This limitation was partially removed by Lee, Mittal, Reichard,

Špalek, and Szegedy [56] whose theorem requires only the inner function to be

Boolean. Unfortunately, both composition theorems require the inner function to

be Boolean, which is not the case here for pSEARCH. Trying to make the inner

function Boolean violates some conditions of these theorems. Therefore, we use a

new composition theorem [29] based on similar techniques (see Section 2.13.1). In

particular, the problem becomes a special case of technical Theorem 2.13.8 with

parameters κ = N (the number of buckets) and η = N2 (the size of the buckets).

Using Theorem 2.13.6 along with the quantum query complexities for element

distinctness and pSEARCH, it follows that finding the desired pair (a, b) requires

Ω(κ2/3η1/2) = Ω(N2/3
√
N2 ) = Ω(N5/3)

quantum queries to h.

Be aware that, in order to apply the composition theorem, it is necessary to

know the adversary bounds of problems under consideration. However, this is not

the case for element distinctness whose lower bound was found by the polynomial

method [10]. A recent theorem of Ref. [56] shows that the generalized adversary

bound is tight for total and partial functions. Therefore, we may conclude that

there exists an Ω(κ2/3) adversary bound for element distinctness.
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For Step 3, consider a slightly less structured search problem in which there are

no longer buckets, but there is an added coordinate in the image of the function:

h′ : [N3]→ [N ]′ × [M ]′

We justify the added coordinate [N ]′ in the last step of the proof where it

turns out to be necessary. Define this function such that h′(a) = (0, 0) on all

but N randomly chosen points denoted by w1, w2,. . . , wN . On these N points,

h′(wi) = (i, ξ(i)), where ξ is the function for element distinctness considered at the

beginning of Step 1. We are required to find the unique pair of distinct a and b in

[N3] such that π2(h′(a)) = π2(h′(b)) 6= 0, where “π2 ” denotes the projection on the

second coordinate. Similarly, “π1 ” denotes the projection on the first coordinate.

The lower bound on the earlier search problem concerning h implies directly the

same lower bound on the new search problem concerning h′ since any algorithm

capable of solving the new problem can be used at the same cost to solve the

earlier problem through randomization and some technical adjustment. In other

words, the more structured version of the problem cannot be harder than the less

structured one. The next lemma formalizes this argument.

Lemma 2 (Lower bound for h′). Given h′ structured as above, finding the pair of

distinct preimages a and b of h′ such that π2(h′(a)) = π2(h′(b)) 6= 0 requires Ω(N5/3)

quantum queries to h′.

Proof. Define intermediary function h̃ : [N ]× [N2]→ [M ]′ × [M ]′ by

h̃(i, j) =

 (i, h(i, j)) = (i, ξ(i)) if h(i, j) 6= 0

(0, h(i, j)) = (0, 0) otherwise .

It is elementary to reduce the search problem concerning h to the one concerning h̃

as well as the search problem concerning h̃ to the one concerning h′. (However,

we describe it briefly for completeness when presenting Protocol 2.) Therefore, the

lower bound concerning h given by Lemma 1 applies mutatis mutandis to h′.
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Finally, it remains to finish the last step of Theorem 4.1.2, which is to reduce the

search problem concerning h′ to the cryptanalytic difficulty against our protocol.

Proof of Theorem 4.1.2. Consider any eavesdropping strategy A that listens to the

communication between Alice and Bob and tries to determine the key (x, x′) by

querying black-box functions f and g. In fact, there are no Alice and Bob here.

Instead, there is an oracle function h′ : [N3]→ [N ]′ × [M ]′ as described before, for

which we want to solve the search problem by using unsuspecting A as a resource.

In other words, given access to h′ only, we have to simulate for A an environment

identical to a random view of the protocol, except with vanishing probability. The

main idea is to supply A with a completely fake “conversation” between “Alice”

and “Bob” as follows.

For sufficiently large k and k′, we choose at random N points y1, y2,. . . , yN

in [Nk] and one point w ∈ [Nk′ ], and we pretend that Alice has sent the yi’s to

Bob and that Bob has responded with w. Let Ŷ denote the subset containing the

points y1, y2,. . . , yN . In addition, we choose random functions f̂ : [N3]→ [Nk]

and ĝ : [N3]× [N3]→ [Nk′ ]. Note that the selection of f̂ and ĝ may take a lot of

time, but this does not count towards the number of queries that will be made to

function h′, and our lower bound on the search problem concerns only this number

of queries. We may prefer to choose randomly values of f̂ and ĝ one by one (dynamic

viewpoint that is usually used in the case of classical cryptography), which is not

possible for the following reason. In quantum algorithms, queries are usually asked

in superposition of all possible inputs; in order to create interference. Therefore,

the function specification must be available before starting the reduction. The final

thing that we need to make the reduction is a random Boolean s ∈ {true, false}.
The Boolean s indicates, when true (resp. false), that the fake “execution” is such

that “Bob” has first picked x and then x′ such that x < x′ (resp. x′ > x). Both cases

happen with probability 1/2 in any real execution and for any public announcements

Y and w. The value s will be used in the reduction to distinguish between g(x, x′)

and g(x′, x) so that only g(x, x′) will be set to w.
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The reduction A′, which uses A as a subroutine, is derived as follows

We wait for A’s queries to f and g.

– When A asks for f(i) for some i ∈ [N3], there are two possibilities:

– If h′(i) = (0, 0), return f̂(i) to A as value for f(i).

– Otherwise, return yπ1(h′(i)) .

– When A asks for g(i, j) for some i, j ∈ [N3], there are again two possibilities:

– If π2(h′(i)) = π2(h′(j)) 6= 0 and either s is true and i < j or s is false and

i > j, return w as value for g(i, j).

– Otherwise, return ĝ(i, j).

At this stage, it is convenient to explain the utility of the left-hand component

in the image of h′. For each h′(i) 6= (0, 0), the algorithm A should get one of

the points of Ŷ ; generated at the beginning of this “artificial” cryptanalytic task.

There is a one-to-one correspondence between the yi’s and the non-zero values in

the image of h. Without the added coordinate, we would use the value h′(i) = ξ(i)

as index to return the corresponding point yξ(i), and concequently, A would get at

some time the same point yξ(i) for two distinct elements i, j whenever ξ(i) = ξ(j).

The reduction becomes inconsistent with the real-world execution of the protocol.

In contrast, adding this component, which takes values in [N ]′, guarantees to have

N indices form 1 to N in addition to the 0 value, which enables us to access any yi

consistently with the real world. This solves this problem as shown in the reduction.

If A was classical, one would simply solve this problem using a table that keeps

track of any h′(i) 6= (0, 0). However, maintaining such a process in the quantum

case seems to be difficult or probably impossible.

When selecting Ŷ = {y1, . . . , yN} from [Nk] and f̂ : [N3]→ [Nk], it may happen

that there is a specific yi that is also an image of f̂ on some input, making the reduc-

tion inconsistent with the real world execution. However, this event happens with

probability smaller than N ·N3/Nk = N4/Nk, which vanishes super-quadratically

since k > 6. Provided that there is neither collision in Ŷ nor in f̂ , this bound can

be easily obtained when we think of this event as a birthday problem between two

subsets: Ŷ and N3 random points in Nk (see Section 5.3.4).
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Suppose now that A correctly returns the pair (i, j) for which it was told that

g(i, j) = w, which is what a successful eavesdropper is supposed to accomplish.

This pair is in fact the answer to the search problem concerning h′ since g(i, j) = w

implies that π2(h′(i)) = π2(h′(j)) 6= 0, except with the vanishing probability that

ĝ(i′, j′) = w for some query (i′, j′) that A asks about g. This event happens with

vanishing probability N6/Nk′ since k′ > 12, considering the birthday problem

between two subsets having cardinalities 1 and N6. In fact, we always assume that

the function range size is at least quadratically larger than the domain size.

Queries asked by A concerning f and g are answered in the same way as they

would be if f and g were two random functions consistent with the Y and w

announced by Alice and Bob during the execution of a real protocol. Indeed,

remember that Y (subset of [Nk]) and w (element of [Nk′ ]) are uniformly picked

at random in both the simulated and the real worlds. Moreover, the simulated

function f is such that f(i) is random when h′(i) = (0, 0). The remaining N

output values are in Y, as expected by A. On the other hand, the simulated

function g is random everywhere except for one single input pair (i, j), i 6= j for

which g(i, j) = w, as it is also expected by A. Therefore, A will behave in the

environment provided by the simulation exactly as in the real world. Since we

disregard the vanishing possibility that g might not be one-to-one, the reduction

solves the search problem concerning h′ whenever A succeeds in finding the key.

Notice that each (new) question asked by A to either f or g translates to one or

two questions actually asked to h′. This mainly happens when querying g(i, j) for

some positive integers i 6= j, which requires querying h(i) and h(j).

It follows that any successful cryptanalytic strategy that makes o(N5/3) total

queries to f and g would solve the search problem with only o(N5/3) queries to

function h′, which is impossible, except with vanishing probability. This establishes

the Ω(N5/3) lower bound on the cryptanalytic difficulty of breaking our protocol,

again except with vanishing probability over the random views of the protocol,

matching the upper bound (up to a logarithmic factor) provided in Section 4.1.1.



70

4.2 The Second Θ(N5/3) Quantum Protocol

As the title indicates, the second quantum protocol is as secure as Protocol 1.

However, it has several new features that stem from using the ⊕ operation instead

of a random oracle at the third step, where “⊕ ” is the bitwise exclusive-or. We

mention here briefly these features but their interest will be clarified as we advance.

Using ⊕ will allow us to design more secure protocols than those based on

element distinctness (or subset-finding). More precisely, this will enable us to

generalize the classical as well as the quantum protocols, providing further more

improvements. Second, the security proof of those protocols will be exactly the

same as the one in this section. Third, in the quantum setting, Alice can remain

classical while preserving the same security level. It also results in the complexity

relationship between element distinctness and 2XOR, which is important in its own.

We now proceed with the second scheme.

Similarly to Protocol 1, we assume the existence of two random oracle functions

f : [N3]→ [Nk] and t : [N3]→ [Nk′ ] that can be accessed in quantum superposition

of inputs.

The constant k is chosen large enough so that f is one-to-one, except with

polynomially vanishing probability. But, the condition on k′ is slightly different.

It is chosen so large that t is one-to-one, and that t(a)⊕ t(b)⊕ t(c)⊕ t(d) 6= 0

whenever {a, b, c, d} contains at least three distinct elements in the domain of t,

except with vanishing probability. In other words, for any integer w, the event

t(a)⊕ t(b) = w and t(c)⊕ t(d) = w should only happen with vanishing probability.

Finding such a collision is equivalent to finding one in a function h : [N6]→ [Nk′ ].

Hence, the problem becomes a special case of Theorem 6.1.1. The probability of

this event is at most N12/Nk′ , which vanishes for any k′ > 12. For simplicity,

we shall systematically disregard the possibility that such exceptions might occur.

Without delay, we describe our second protocol; the first two steps remain exactly

the same as in Protocol 1.
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Protocol 2 (Quantum parties vs quantum adversaries).

1. Alice picks at random N distinct points, x1, x2, . . . , xN , in the domain of f

and transmits them encrypted, by querying the black-box function f , to Bob.

Let X = {xi | 1 6 i 6 N} and Y = {f(xi) | 1 6 i 6 N}.

2. Bob finds the pre-images x and x′ of two distinct random elements in Y.

To find each one of them, he uses generalized Grover’s algorithm, which finds

a solution in O(
√
N3/N ) = O(N) quantum queries to f .

3. Bob sends back w = t(x)⊕ t(x′) to Alice.

4. Alice queries the oracle t on her randomly chosen set X that she has kept.

There are only N2 candidate pairs (xi, xj) ∈ X ×X such that t(xi)⊕ t(xj)
could equal w. Therefore, she can find the unique pair (xi, xj) without any

additional queries. Alice and Bob’s secret is the pair (x, x′), assuming x < x′.

All counted, Alice makes exactly N classical queries to f in Step 1 and N

classical queries to t in Step 4, whereas Bob makes O(N) quantum queries to f in

Step 2 and two classical queries to t in Step 3. Therefore, legitimate parties make

a total of O(N) quantum and/or classical queries, thus the protocol is valid.

Note that our measure of complexity is the query complexity. However, if we

also care about time complexity, it seems at first that Alice needs to try about half

the N2 pairs. But, this can easily be done in linear time (see Section 6.4).

4.2.1 Quantum Attack

The same previous attack enables Eave to recover Alice and Bob’s key (x, x′) with

an expected O(N5/3
√

logN) queries to f and O(N2/3
√

logN) queries to t, although

the property for which we are looking is different. This is the second manifestation

showing that Ambainis’ algorithm can indeed be used beyond element distinctness.

Theorem 4.2.1. There exists an eavesdropping strategy that outputs the pair (x, x′)

in Protocol 2 with O(N5/3
√

logN) expected quantum queries to functions f and t.
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Proof. An eavesdropper can set up a quantum walk similar to that in Section 4.1.1,

except that now (1) instead of looking for x and x′ such that g(x, x′) = w, we are

looking for x and x′ such that t(x)⊕ t(x′) = w where w is the value announced by

Bob in Step 3 of the protocol; and (2) instead of being able to get randomly chosen

values in the image of ξ with a single query per value, we need to get random

elements of X by applying BBHT on the list Y and queries the oracle t on them;

and (3) the algorithm maintains a data structure to store the values under t along

with the r-tuples.

We apply Theorem 2.12.4 to analyse the cost of quantum walk algorithm on

this graph. The set up cost S corresponds to finding r random elements of X using

BBHT, and querying t on them. Therefore, the setup cost is S = O(rN) queries

to f and r queries to t. The update cost corresponds to finding one random element

of X not already in the node and querying t on it, which is U = O(N) queries to f

and one query to t. The checking cost C requires us to decide if there is a pair

(x, x′) of elements in the node such that t(x)⊕ t(x′) = w, which is done without

any additional queries because the values under t are already in the vertex (data

structure) and ⊕ is used instead of an oracle. Therefore, the checking cost C = 0,

contrasting with that of Section 4.1.1, which requires O(r) queries.

Putting all necessary ingredients together and applying the MNRS’s theorem,

the expected cryptanalytic cost is in the order of:

S +
1√
ε

(
1√
δ
U + C

)
= S + N

r

(√
r log rU

)
=

(
rN +

N2

√
r

√
log r

)
queries to f and

(
r +

N√
r

√
log r

)
queries to t .

To optimize the number of queries to f and t, we choose r so that rN = N2/
√
r,

implying r = N2/3. It follows that a quantum eavesdropper can find the key (x, x′)

with an expected O(N5/3
√

logN) queries to f and O(N2/3
√

logN) queries to t.
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4.2.2 Lower Bound

The impossibility of finding the key (x, x′) with fewer than Ω(N5/3) queries to f

and/or g, except with vanishing probability, is formalized by the following theorem.

Theorem 4.2.2 (Eavesdropping lower bound). Any eavesdropping strategy A that

knows of the secret key (x, x′) in Protocol 2 requires a total of Ω(N5/3) quantum

queries to functions f and t. Besides, any strategy A asking o(N5/3) queries can

find this secret key only with o(1) probability over the random views of the protocol.

The proof of this theorem is also a four-step procedure that follows the same

lines as the lower-bound proof in Section 4.1.2 with several modifications. The main

change is that in the first step we compose the 2XOR problem, instead of element

distinctness, with N instances of problem pSEARCH, thus defining a search problem

H = 2XOR◦pSEARCHN related to the hardness of breaking our protocol. The other

three steps remain the same, except for technical adjustments taking into account

2XOR. However, there is only one new ingredient. We prove the optimal lower

bound of 2XOR, see Section 4.2.3. This step is necessary to invoke the composition

theorem as explained in Section 5.3.3.

For the first step, consider a function ξ : [N ]→ [M ] such that there exists a

(single) pair (i, j) with ξ(i)⊕ ξ(j) = w and 1 6 i < j 6 N . The problem is to find

this pair, which is a variant of 2XOR (see Definition 2.8.9).

Ambainis’ algorithm for element distinctness [4] can find this pair with O(N2/3)

queries to function ξ. Besides, we reduce element distinctness to 2XOR. Therefore,

finding such pair (i, j) requires Θ(N2/3) quantum queries. The full proof of the

quantum query complexity of 2XOR is explained in Section 4.2.3.

Consider now a function h : [N ]× [N2]→ [M ]′. The domain of this function is

composed of N “buckets” of size N2, where h(i, ·) corresponds to the ith bucket,

1 6 i 6 N . In bucket i, all values of the function are 0 except for one single random
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xi ∈ [N2] for which h(i, xi) = ξ(i):

h(i, j) =

 ξ(i) if j = xi

0 otherwise .

It follows from the definitions of ξ and h that there is a single pair of distinct a

and b in the domain of h such that h(a)⊕ h(b) = w and h(a) 6= 0 and h(b) 6= 0.

How difficult is it to find this pair given a black-box function h but no direct access

to ξ?

Lemma 3 (Lower bound for h). Given h structured as above, finding the pair of

distinct elements a and b in the domain of h such that h(a)⊕ h(b) = w and h(a) 6= 0

and h(b) 6= 0 requires Ω(N5/3) quantum queries to h. Any strategy making o(N5/3)

queries solves this problem only with o(1) probability over the randomness of the

considered oracles.

Proof. The problem can be modelled as the composition of 2XOR across buckets

with finding the single non-zero entry in each bucket. More precisely, it is a problem

of searching among N2 possibilities for the single non-zero h(i, ·) for each i and then

finding two of those elements, among N possibilities, whose exclusive-or equals w.

For the same reason mentioned in the previous protocol, both composition

theorem [56, 81] are equally not applicable in our case because the inner function

is not Boolean. Therefore, we use the more general composition theorem [29] again.

In particular, this problem becomes a special case of technical Theorem 2.13.8 with

parameters κ = N (the number of buckets) and η = N2 (the size of the buckets).

Using Theorem 2.13.6, it follows that finding the desired pair (a, b) requires

Ω(κ2/3η1/2) = Ω(N2/3
√
N2 ) = Ω(N5/3)

quantum queries to h, except with vanishing probability.
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For Step 3, consider a slightly less structured search problem in which there are

no longer buckets, but again with an added coordinate in the image of the function:

h′ : [N3]→ [N ]′ × [M ]′

There is also another justification of the added coordinate [N ]′ that we discuss in

the last step of the proof where it turns out to be necessary. This function is defined

such that h′(a) = (0, 0) on all but N randomly chosen points in its domain, namely

w1, w2,. . . , wN . On these N points, h′(wi) = (i, ξ(i)), where ξ is the function for

2XOR considered at the beginning of the first step. We are required to find the

unique pair of distinct a and b in [N3] such that π2(h′(a))⊕ π2(h′(b)) = w and

π2(h′(a)) 6= 0 and π2(h′(b)) 6= 0.

Similarly to the argument in Section 4.1.2, the lower bound on the earlier search

problem concerning h implies directly the same lower bound on the new search

problem concerning h′. The next Lemma formalizes this argument.

Lemma 4 (Lower bound for h′). Given h′ structured as above, finding the pair of

distinct elements a and b in the domain of h′ such that π2(h′(a))⊕ π2(h′(b)) = w

and π2(h′(a)) 6= 0 and π2(h′(b)) 6= 0 requires Ω(N5/3) quantum queries to h′, except

with vanishing probability over the considered oracles.

Proof. Define intermediary function h̃ : [N ]× [N2]→ [M ]′ × [M ]′ by

h̃(i, j) =

 (i, h(i, j)) = (i, ξ(i)) if h(i, j) 6= 0

(0, h(i, j)) = (0, 0) otherwise .

As mentioned in Section 4.1.2 at this stage, we discuss now how to reduce the

search problem concerning h to the one concerning h̃ as well as the search problem

concerning h̃ to the one concerning h′.

For the first reduction let B be an algorithm that solves h̃ and derive an algo-

rithm B′ to compute h using B as subroutine, and oracle access to h but not h̃.

When B queries h̃(i, j) then algorithm B′ transforms an instance of h to an instance
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of h̃ as follows:

– queries h(i, j)

– If h(i, j) = 0, return (0, 0) as value of h̃(i, j).

– Otherwise, return (i, h(i, j))) as value of h̃(i, j).

For the second reduction, we define algorithms B for h′ and B′ for h̃ similarly.

When B queries h′(k), then algorithm B′ is derived using oracle h̃ as follows:

– transforms k into (i, j) ∈ [N ]× [N2] using any canonical pairing function;

– If h̃(i, j) = (0, 0), return (0, 0) as value of h(k).

– Otherwise, return (i, h̃(i, j)) as value of h(k).

Therefore, the lower bound concerning h given by Lemma 9 applies mutatis

mutandis to h′.

Finally, it remains to achieve Step 4 of Theorem 4.2.2.

Proof of Theorem 4.2.2. Consider any eavesdropping strategy A that listens to the

communication between Alice and Bob and tries to determine the key (x, x′) by

querying black-box functions f and t. Using a function h′ : [N3]→ [N ]′ × [M ]′ as

described before, we want to simulate a random run of the protocol. Equivalently,

we want to solve the search problem by using unsuspecting A as a resource.

We supply A with a fake “conversation” between “Alice” and “Bob” as follows.

For sufficiently large k and k′, we choose randomly N points y1, y2,. . . , yN in [Nk]

and one point w ∈ [Nk′ ] and we pretend that Alice has sent the y’s to Bob and

that Bob has responded with w. We also choose random functions f̂ : [N3]→ [Nk]

and t̂ : [N3]→ [Nk′ ]. The selection of f̂ and t̂ may take a lot of time, but this does

not matter in query complexity (see Section 4.1.2).

Now, we wait for A’s queries to f and t. When A asks for some query i ∈ [N3],

there are two possibilities.

– If h′(i) = (0, 0), return f̂(i) and t̂(i) as values for f(i) and t(i), respectively.

– Otherwise, return yπ1(h′(i)) and π2(h′(i)) to A as values for f(i) and t(i),

respectively.
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Now, it is convenient to explain the utility of the left-hand coordinate in the

image of h′. Whenever h′(i) 6= (0, 0), the algorithm A should get one of the points

y1, y2,. . . , yN . Without the added coordinate, one would have a value ξ(i) in [M ]

which is usually bigger than N , and we don’t see for the time of writing how to

map it one-to-one to a value in [N ], which can be used as index for some y. If A
was classical, one would simply solve this problem using a table that keeps track

of any h′(i) 6= (0, 0).

Continuing the last step, suppose A returns correctly the pair (i, j) for which

it was told that t(i)⊕ t(j) = w. This pair is in fact the answer to the search

problem concerning h′ since t(i)⊕ t(j) = w implies that π2(h′(a))⊕ π2(h′(b)) = w

and π2(h′(a)) 6= 0 and π2(h′(b)) 6= 0, except with the vanishing probability that

t̂(i′)⊕ t̂(j′) = w for some queries i′, j′ that A asks about t.

Queries asked by A concerning f and t are answered in the same way as they

would be if f and t were two random functions consistent with the Y and w

announced by Alice and Bob during the execution of a real protocol. Indeed, Y

(subset of [Nk]) and w (element of [Nk′ ]) are uniformly picked at random in both

the simulated and the real worlds. Moreover, the simulated function f is such that

f(i) is random when h′(i) = (0, 0). The remaining N values are in Y, as expected

by A. On the other hand, the simulated function t is random everywhere except for

one single input pair (i, j), i < j, for which t̂(i)⊕ t̂(j) = w, as also expected by A.

Therefore, A will behave in the environment provided by the simulation exactly

as in the real world. Since we disregard the vanishing possibility that t might not

be one-to-one, the reduction solves the search problem concerning h′ whenever A
succeeds in finding the key.

It follows that any successful cryptanalytic strategy that makes o(N5/3) total

queries to f and t would solve the search problem with only o(N5/3) queries to

function h′, which is impossible, except with vanishing probability.
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4.2.3 Quantum Query Complexity of 2XOR

We prove in this section the quantum query complexity of 2XOR, using the optimal

bound of element distinctness and some probabilistic reduction. The lower bound

of 2XOR is necessary to prove the security of our protocols. This result is important

in its own. To the best of our knowledge it was not known before.

Theorem 4.2.3. Consider a black-box function ξ : [N ]→ [M ] and some w ∈ [M ].

The problem is to find a pair (i, j), 1 6 i < j 6 N , for which ξ(i)⊕ ξ(j) = w, or

return @ otherwise. Then, any bounded-error quantum query algorithm for the

(search variant of the) 2XOR problem must query the oracle function Θ(N2/3) times.

We proceed with the proof by first proving the upper bound, then its match-

ing lower bound, using two separate lemmas. For the purpose of these lemmas,

consider e : [N ]→ [M ] so that there (might) exist a pair (i, j), 1 6 i < j 6 N , for

which e(i) = e(j). Ambainis’ quantum algorithm for element distinctness [4] or

its generalization [36] can find such pair with O(N2/3) queries to function e and

Aaronson and Shi proved that this is optimal even for the decision version of this

problem [2]. In 2012, Belovs [13] proved the same lower bound using the negative

adversary method, giving explicitly the adversary matrix.

Lemma 5 (Upper bound). The element distinctness algorithm [4] or subset-finding

algorithm [36] solves the 2XOR problem in O(N2/3) queries to the input of size N .

Proof. We apply Ambainis’ algorithm [4] with one modification: instead of looking

for i and j such that e(i) = e(j), we are looking for i and j such that ξ(i)⊕ ξ(j) = w,

which is the property when viewed as subset finding problem (see Section 2.8.3).

The algorithm uses quantum walks on a Johnson graph—see Sect. 2.12.4 for

a review of this topic. Each node of the graph contains some number r (to be

determined later) of distinct elements of [N ], in addition to their corresponding

images under ξ. We are looking for a vertex that contains the pair (i, j) such that

ξ(i)⊕ ξ(j) = w.
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We apply Theorem 2.12.2 to analyse the cost of a quantum walk on this graph.

The set up cost S corresponds to querying ξ on r random elements in [N ], which is

S = r queries, since we get each random value in the image of ξ with a single query.

The update cost U corresponds to adding one random image of ξ not already in

the node, thus U = 1 query. The checking cost C requires us to check if there is

a pair (i, j) of elements in the node such that ξ(i)⊕ ξ(j) = w, which can be done

without any additional queries, since all necessary information are already in the

node, thus C = 0.

Putting it all together, the expected cryptanalytic cost is in the order of

S +
(
N
r

(
√
rU + C)

)
= S +

(
N
r

(
√
rU)

)
=

(
r + N√

r

)
queries to ξ

To minimize the number of queries to ξ, we choose r so that r = N/
√
r, which

is r = N2/3. It follows that a quantum algorithm is able to find the pair (i, j) with

an expected O(N2/3) queries to ξ.

Lemma 6 (Lower bound). There exists a probabilistic reduction from element

distinctness to 2XOR.

Before proceeding with the lemma, we make the following important reminder.

Aaronson and Shi proved the optimal lower bound of element distinctness using

the polynomial method, specifically when the range M of function e is such that

M > 3N/2. However, the lower bound becomes Ω(N1/2) queries whenever M = N .

Fortunately, Ambainis [6] proved that any symmetric problem defined on some

function e : [N ]→ [M ], its polynomial degree is the same for any M > N . More

precisley, the quantum query lower bound of a symmetric function of a large range

M , which is proved using the polynomial method, implies immediately the same

lower bound for any M > N . A function is symmetric if the output of the algorithm

computing it remains the same even if we permute its input and/or its output.
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Fortunately, element distinctness and 2XOR are symmetric. Therefore, their query

complexities remain the same for any M satisfying M > N . Now, it is time to

reduce element distinctness to 2XOR.

Proof. We prove that any algorithm that would solve 2XOR could be turned into

one to solve element distinctness. For this purpose, let A be an algorithm for 2XOR

and derive an algorithm A′ for element distinctness.

Given a uniformly w ∈ [M ] and an oracle e for element distinctness; we may

assume that w is always at position 0 of the oracle. The reduction A′ will proceed

as follows:

– choose randomly N/2 inputs of function e.

– on query i ∈ [N ], return e(i)⊕w if i belongs to those inputs and e(i) otherwise.

– when running A on the modified oracle, output the pair (i, j) if it is found

and verified, otherwise ⊥ .

Each run of algorithm A would output the correct result with probability 1/2

since w will be added to either e(i) or e(j) with probability 1/2. However, the

error probability can be made arbitrarily small by running A a constant number of

times. More precisely, run the algorithm m times. If a pair (i, j) is found, then the

answer is always correct, otherwise the answer is correct with probability at least

1− 1/2m; classical probabilistic algorithms are reviewed in Section 2.10.

Therefore, 2XOR requires Θ(N2/3) quantum queries because we have just proved

an Ω(N2/3) lower bound matching the previous upper bound.

Note that the same proof goes through for the decision version of this problem.



CHAPTER 5

CLASSICAL PROTOCOLS AGAINST QUANTUM ADVERSARIES

We revert in this chapter to the original setting considered by Merkle in the sense

that Alice and Bob are now restricted to use classical computers. Keep in mind

that their unique channel of communication is classical, thus ruling out the benefit

of any quantum communication. On the opposite side, an eavesdropper Eave is

assumed to know of all the communicated messages on the public authenticated

channel, and have access to unrestricted quantum computation resources. We refer

to this adversarial scenario as the classical setting.

In a classical world where no quantum theory is mindful of, it is necessary

and sufficient for any eavesdropper to ask Θ(N2) queries in order to know the key

established using Merkle’s scheme while legitimate parties make O(N) queries. In

a quantum world, however, there is a quantum attack resorting directly to Grover’s

algorithm [46] that enables to learn the secret key in O(N) queries, hence making

this scheme useless from security standpoint. This naturally raises the following

question: Is any security possible at all in the classical setting?

The most difficult part of this question was to decide which direction to take. In

addition, the intuition inspired from classical results was misleading after Barak and

Mahmoudy-Ghidari [8] proved that every key agreement protocol in the random

oracle model in which legitimate parties make O(N) queries can be broken in O(N2)

queries. Indeed, considering this latter and the quadratic speed-up provided by

Grover’s algorithm in several problems, it becomes tempting to think that every key

agreement protocol in the random oracle model can be broken in O(N) quantum

queries. We prove in this chapter that this intuition is wrong by exhibiting the

first classical protocol provably secure against quantum adversaries, thus closing

the above open problem and opening the question: Can we do better? Besides, we

answer positively this latter question by giving a more secure protocol.
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5.1 The Θ(N13/12) Classical Protocol

Compare with our quantum protocol described in Chapter 4. First, the considered

random functions f and g are now defined on a smaller domain to compensate

for the fact that classical Alice and Bob cannot use Grover’s algorithm anymore.

Specifically, we choose f : [N2]→ [Nk] and g : [N2] × [N2] → [Nk′ ] again with

sufficiently large k and k′ so that they are one-to-one (no collisions in their images),

except with polynomially vanishing probability. Taking into account the birthday

problem (see Section 2.8.6), this condition is satisfied whenever the range size is

quadratically more than the domain size, that is, for any k > 4 and any k′ > 8

as calculated in Section 5.3.4. Unambiguously, k and k′ are independent from

those in the previous chapter. Please refer to Section 5.3.1 to see why we use

the notion vanishing instead of negligible. The second difference is that Bob finds

the elements using a classical probabilistic algorithm stemmed from the birthday

problem instead of using Grover’s search, which cannot be used in this setting.

Third, only the first step remains the same. In fact, this step is unchanged in all

protocols throughout this work.

As mentioned in the previous chapters, we consider the query complexity : In

our analyses of efficiency and lower bounds, we count only the number of queries

to black-box functions or, equivalently, to the underlying binary random oracle.

From the latter, all our results are implicitly stated up to logarithmic factors.

Protocol 3 (Classical parties vs quantum adversaries).

1. Alice picks at random N distinct points, x1, x2, . . . , xN , in the domain of f

and transmits them encrypted, by querying the black-box function f , to Bob.

Let X = {xi | 1 6 i 6 N} be Alice’s secret, and Y = {f(xi) | 1 6 i 6 N} be

the corresponding set of encrypted points.

2. Bob finds the pre-images x and x′ of two distinct random elements in Y.

To find each one of them, he chooses random distinct values in [N2] and

queries f on them until one is found whose image is in Y. He is expected to

succeed with probability almost one in O(N2/N ) = O(N) queries to oracle f .
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3. Bob sends back w = g(x, x′) to Alice such that x < x′. In addition, he chooses
√
N − 2 random elements from Y \ {f(x), f(x′)} and he forms a set Y ′ of

cardinality
√
N by adding f(x) and f(x′) to those elements. He sends the

elements of Y ′ to Alice in increasing order of values.

4. Because Alice had kept her randomly chosen set X, she knows the preimages

of each element of Y ′. Let X ′ denote {x ∈ X | f(x) ∈ Y ′}. By exhaustive

search over all pairs of elements of X ′, Alice can find the unique pair (x, x′)

such that g(x, x′) = w. The key established by Alice and Bob is the pair (x, x′).

We analyze the query complexity of Alice and Bob to agree on a secret key.

Alice makes N queries to f in Step 1 and at most N queries to g in Step 4 because

there are
√
N
√
N = N pairs of elements of X ′ and one of them is the correct one.

As for Bob, he makes an expected O(N) queries to f in Step 2 and a singe query

to g in Step 3. Indeed, since the domain of f contains N2 elements, he can invert

an element in Y with probability (close to 1) after O(N) = O(
√
N2 ) queries using

probabilistic arguments. His time for sorting and binary search is neglected since

the oracle is not involved.

Therefore, the total expected number of queries to f and g is therefore in O(N)

for both legitimate parties. If the protocol is constructed over a binary random

oracle, it will have to be called O(N logN) times since it takes O(logN) binary

queries to compute either function on any given input (see Section 4.1).

5.1.1 Quantum Attack

Again all the cryptanalytic attacks against this scheme such as direct use of Grover’s

algorithm, generalized Grover’s algorithm, or amplitude amplification [26] require

of the eavesdropper Ω(N5/4) queries to functions f and/or g. For a review of these

essential search tools, we refer the reader to Section 2.12.

However, the same powerful attack used in Section 4.1.1 allows the eavesdropper

to learn Alice and Bob’s key (x, x′) with an expected O(N13/12
√

logN) quantum

queries to f and O(
√
N) quantum queries to g.



84

Theorem 5.1.1. There exists an eavesdropping strategy that outputs the pair (x, x′)

in Protocol 3 with O(N13/12
√

logN) expected quantum queries to functions f and g.

Proof. An eavesdropper proceeds with quantum walks in a graph very similar to the

one explained in Section 4.1.1, except that now the vertices in the graph contain r

distinct elements of X ′ (rather than of X) and the function’s domain size is N2

rather than N3. In this case, the eavesdropper can find random elements of X ′

from his knowledge of Y ′ with an expected

O

(√
N2/
√
N

)
= O

(
N3/4

)
queries to f per element of X ′, using generalized Grover’s algorithm. Therefore,

the set up cost is S = O(rN3/4) queries to f , which corresponds to find r elements

in X ′. The update cost is U = O(N3/4) queries to f , which corresponds to find one

element in X ′ not already in the node. The checking cost is C = O(r) queries to g

using Grover’s algorithm, which requires to decide if there is a pair (x, x′) in the

node such that g(x, x′) = w, which is the value sent from Bob to Alice. Finally,

the eigenvalue gap δ remains in Ω(1/r log r) but ε changes into Ω(r2/N).

Putting all necessary ingredients together, and using the MNRS theorem, the

expected cryptanalytic cost is in the order of:

S +
1√
ε

(
1√
δ
U + C

)
= S +

√
N
r

(√
r log rU + C

)
=

(
rN3/4 queries to f

)
+
√
N
r

(√
r log r(N3/4 queries to f) + (r queries to g)

)
=

(
rN3/4 +

N5/4

√
r

√
log r

)
queries to f and

√
N queries to g .

To minimize the number of queries to f , we choose r so that rN3/4 = N5/4/
√
r,

which is r = N1/3. It follows that a quantum eavesdropper finds the key (x, x′)

with an expected O(N13/12
√

logN) queries to f and O(
√
N ) queries to g.
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Note that the use of Grover’s algorithm in the checking phase was not necessary

to prove the theorem. Should this step be carried out classically, this would result

in C = O(r2) queries to g or O(N5/6) queries to g in total.

5.1.2 Lower Bound

The proof that it is impossible to find the key (x, x′) with fewer than Ω(N13/12)

quantum queries to f and/or g, except with vanishing probability, follows the same

lines as the lower bound proofs in Chapter 4 with one main difference in the fourth

step.

Theorem 5.1.2 (Eavesdropping lower bound). Any eavesdropping strategy A that

knows of the key (x, x′) in Protocol 3 requires a total of Ω(N13/12) quantum queries

to functions f and g. Besides, any strategy A asking o(N13/12) queries can find the

key only with o(1) probability over the random views of the protocol.

Views are described in Section 2.6.1 and finding cryptographic lower bounds

using reduction approach is reviewed in Section 2.14. For the reader’s convenience,

we start with a brief recall of the proof steps of this theorem.

1. We compose the element distinctness problem (ED) with N instances of

pSEARCH to obtain a search problem H = ED ◦ pSEARCHN .

2. We prove a lower bound on the difficulty to solve H (Lemma 7);

3. We reduce H to a less structured problem H′ (Lemma 8); and

4. We reduce H′ to the eavesdropping problem against our protocol.

For the first step, consider a function ξ : [
√
N ] → [

√
N ] such that there is a

single pair (i, j), 1 6 i < j 6
√
N , for which ξ(i) = ξ(j), which is (a variant) of the

element distinctness problem defined on a smaller domain. Ambainis’ algorithm [4]

can find this pair with Ω((
√
N )2/3) = Ω(N1/3) queries to function ξ and Aaronson

and Shi proved that this is optimal even for the decision version of this problem [2].

Before proceeding, recall that [K]′ denotes {0} ∪ [K] for any natural number K.
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Now, consider a function h : [
√
N ]× [N3/2]→ [

√
N ]′ where h(i, ·) denotes the

ith bucket, 1 6 i 6
√
N . In bucket i, all values of the function are 0 except for one.

There is a single random xi ∈ [N3/2] such that h(i, xi) = ξ(i). Symbolically,

h(i, j) =

 ξ(i) if j = xi

0 otherwise .

From the definitions of ξ and h follows that there is a single pair of distinct a and b

in the domain of h such that h(a) = h(b) 6= 0. Given an oracle access for h but no

direct access to ξ, the query complexity of this problem is given by the following

lemma.

Lemma 7. Given h structured as above, finding the pair of distinct elements a and

b in the domain of h such that h(a) = h(b) 6= 0 requires Ω(N13/12) quantum queries

to h. Besides, any algorithm A making o(N13/12) queries can solve this problem

only with o(1) probability over the coin tosses of A and the random oracles.

Proof. The proof is similar to the one for Lemma 1, mutatis mutandis. The search

problem is a composition of element distinctness across buckets with finding the

single non-zero entry in each bucket. More precisely, it is a problem of searching

among N3/2 possibilities for the unique non-zero h(i, ·) for each i, and then finding

two of those
√
N elements that are equal. It is a special case of Theorem 2.13.8,

but with parameters κ =
√
N (the number of buckets) and η = N3/2 (the size of

the buckets). It follows that finding the desired pair (a, b) requires

Ω(κ2/3η1/2) = Ω
(√

N
2/3√

N3/2
)

= Ω(N13/12)

quantum queries to h, except with vanishing probability.

Let h′ : [N2]→ [
√
N ]′ × [

√
N ]′ denote the less structured version of the same

search problem for h, defined the same way as in Section 4.1.2, mutatis mutandis.

There is a single pair of distinct elements a and b such that π2(h′(a)) = π2(h′(b)) 6= 0.
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Finding this pair is at least as difficult as finding the collision in h. This argument is

formalized by the following lemma whose proof is the same as that in Section 4.1.2.

Lemma 8. Given h′ structured as above, finding the pair of distinct elements a

and b in the domain of h′ such that π2(h′(a)) = π2(h′(b)) 6= 0 requires Ω(N13/12)

quantum queries to h′, except with vanishing probability.

Finally, it remains to show that the search problem concerning h′ reduces to

the cryptanalytic difficulty for the eavesdropper against the running protocol.

Proof. Consider any eavesdropping strategy A that listens to the communication

between Alice and Bob and tries to learn the key (x, x′) by querying f and g.

The reduction does not have direct access to machines Alice and Bob, but rather

to h′ : [N2]→ [
√
N ]′ × [

√
N ]′ as described above for which we want to solve the

search problem using A as a subroutine.

We choose random functions f̂ : [N2]→ [Nk] and ĝ : [N2]×[N2]→ [Nk′ ] as well

as a random Boolean s ∈ {true, false} which has the same purpose as in the proof of

Theorem 4.1.2. Let Im(f̂) denote the image of function f̂ . We then supply A with

a fake “conversation” between “Alice” and “Bob” as follows. We choose randomly
√
N points y′1, y′2,. . . , y′√

N
in [Nk], denoted by the subset Y ′ say, N −

√
N points

y1, y2, . . . , yN−
√
N in Im(f̂), denoted by Y ′′, and one point w ∈ [Nk′ ]. We pretend

that Alice has sent the list Y ′ ∪ Y ′′ to Bob (in random order) and that Bob has

responded with Y ′ in increasing order, and w.

We explain why Y ′ and Y ′′ should be sent in two different orders. If Bob sends

Y ′ to Alice in the same order she received, then this would imply that (at least)

the last element in Y ′, that is y′√
N

, contains the first half of the secret, say. If this

is the occurrence, a quantum eavesdropper proceeds as follows. Using Grover’s

algorithm, he first inverts y′√
N

, which can be done in O(N) queries. Let x denote

this part of the secret. Using x, he can invert g(x, x′) also using Grover’s algorithm,

which can be done again in O(N) queries. Note that Grover’s search space is [N2]

in both steps. Continuing Step 4, the reduction using A as a subroutine is derived

as follows.
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We wait for A’s queries to f and g.

– When A asks for f(i) for some i ∈ [N2], there are two possibilities:

– If h′(i) = (0, 0), return f̂(i) to A as value for f(i).

– Otherwise, return y′π1(h′(i)) .

– When A asks for g(i, j) for some i, j ∈ [N2], there are two possibilities:

– If π2(h′(i)) = π2(h′(j)) 6= 0 and either s is true and i < j or s is false and

i > j, return w as value for g(i, j).

– Otherwise, return ĝ(i, j).

Suppose A correctly returns the pair (i, j) for which it was told that g(i, j) = w,

which is what a successful eavesdropper is supposed to do. This pair is in fact the

answer to the search problem concerning function h′. Indeed g(i, j) = w only for

the pair (i, j) for which π2(h′(i)) = π2(h′(j)) 6= 0, except with the polynomially

vanishing probability that ĝ(i′, j′) = w for some query (i′, j′) that A asks about g.

Actually, this event happens with a vanishing probability N4/Nk′ (Section 5.3.4).

To create an environment identical to the real one we need an additional con-

dition: if y ∈ Y ′′ then h′(f−1(y)) = (0, 0). This is required for all elements in Y ′′

to be accessible when A is querying f in the reduction. Except with vanishing

probability, this condition is easily satisfied when k is large enough, which is the

case here.

Provided the condition under discussion on Y ′′ is satisfied, queries asked by A
concerning f and g are answered in the same way as they would be if both f and

g were random functions consistent with the Y ′, Y ′′ and w announced by Alice

and Bob during the execution of the protocol. Indeed, remember that Y ′ and Y ′′

(subsets of [Nk]) and w (element of [Nk′ ]) are uniformly picked at random in both

the simulated and the real worlds. Moreover, the simulated function f is such that

f(i) is random when h′(i) = (0, 0). Among these N2−
√
N input values, there are

exactly N −
√
N output values in Y ′′ as expected by A. The remaining

√
N input

values 1 6 i 6
√
N , also satisfy f(i) ∈ Y ′ as it should be. On the other hand, the

simulated function g is random everywhere except for one single pair (i, j), i 6= j,

for which g(i, j) = w, as it is also expected by A. Therefore, A will behave in
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the environment provided by the simulation exactly as in the real case. Since we

disregard the vanishing possibility that g might not be one-to-one, the reduction

solves the search problem concerning h′ whenever A succeeds in finding the secret.

It follows that any successful cryptanalytic strategy that makes o(N13/12) total

queries to f and/or g would solve the search problem with only o(N13/12) queries

to function h′, which is impossible by Lemma 8, except with vanishing probabil-

ity. This demonstrates the Ω(N13/12) lower bound on the quantum eavesdropping

difficulty against our classical protocol, which matches the upper bound provided

explicitly in Section 5.1.1. Therefore, it is possible for classical Alice and Bob to

agree on a secret after an expected number of queries in the order of N whereas it

is not possible, even for a quantum eavesdropper, to be privy of their secret with

the same query complexity, except with vanishing probability.

For pedagogical reason we mention briefly another method to prove Step 4. The

key observation is to prove that only X ′ provides useful information. Equivalently,

the remaining part X \ X ′, provides no more than purely random information.

Consequently, the reduction becomes exactly as in the last step of Theorem 4.1.2.

In fact, we proved this reduction, but we don’t mention it here to maintain the flow

of writing. This method provides us with the following general useful observation:

in such context, providing the adversary with information independent of the secret

key is not helpful at all.

In the upcoming protocol we present not only a more interesting result but also

a simpler lower-bound proof.

5.2 The Θ(N7/6) Classical Protocol

Similarly to Protocol 2 in Chapter 4 , we assume the existence of two black-box

functions f : [N2]→ [Nk] and t : [N2]→ [Nk′ ] that can be accessed in quantum

superposition of inputs. Take k > 4 so that the function f is one-to-one, except

with polynomially vanishing probability.

The constant k′ is chosen large enough to ensure that t is one-to-one, and
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for any integer w, there are no distinct elements {a, b, c, d} such t(a)⊕ t(b) = w

and t(c)⊕ t(d) = w, except with vanishing probability. The problem becomes a

special case of Theorem 6.1.1. Therefore, the probability of this event is at most

N8/Nk′ , which vanishes quickly for any k′ > 8. Actually, this probability is at

most N4/Nk′ , vanishing for any k′ > 4; however, we don’t bother with this issue.

For simplicity, we shall systematically disregard the possibility that such exceptions

might occur. We give now the protocol, whose first two steps are exactly the same

as in Protocol 3.

Protocol 4 (Classical parties vs quantum adversaries).

1. Alice picks at random N distinct points, x1, x2, . . . , xN , with xi ∈ [N2] and

transmits their encrypted values yi = f(xi) to Bob. Let X = {xi | 1 6 i 6 N}
be the secret set of Alice and Y = {f(xi) | 1 6 i 6 N} be the set sent to Bob.

2. Bob finds the pre-images x and x′ of two distinct random elements in Y.

To find each one of them, he chooses random distinct values in [N2] and

applies f to them until one is found whose image is in Y. He is expected to

succeed after O(N) queries to function f .

3. Bob sends back w = t(x)⊕ t(x′) to Alice.

4. Alice queries the oracle t on her randomly chosen set X she has kept secret.

There are only N2 candidate pairs (xi, xj) ∈ X ×X such that t(xi)⊕ t(xj)
could equal w. Therefore, she can find the unique pair (xi, xj) without any

additional queries. The key established by Alice and Bob is (x, x′) with x < x′.

Clearly, the expected classical queries to f and t is in O(N) for legitimate

parties.

5.2.1 Quantum Attack

The same quantum attack used in Section 4.2.1, which combines the subset-finding

algorithm [4, 36] with the quantum algorithm for testing group commutativity [58],

allows the eavesdropper Eave to recover Alice and Bob’s key (x, x′) with an expected

O(N7/6
√

logN) queries to f and O(N2/3
√

logN) queries to g.
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Theorem 5.2.1. There exists an eavesdropping strategy that outputs the pair (x, x′)

in Protocol 4 with O(N7/6
√

logN) expected quantum queries to functions f and t.

Proof. A quantum eavesdropper can set up a quantum attack very similar to the

one explained in Section 4.2.1, except that now the functions domain size is N2

instead of N3. Compared with Protocol 3, the set X ′ doesn’t exist any more. Since

Y is known, the eavesdropper can find random elements of X with an expected

O

(√
N2/N

)
= O

(√
N
)

queries to f per element of X. Therefore, the setup cost S = O(r
√
N) queries to f

and r queries to t, the update cost U = O(
√
N) queries to f and one query to t,

and the checking cost C = 0. Note that ε becomes in Ω(r2/N2) in this graph.

Putting it all together, the expected quantum cryptanalytic cost is

S + N
r

(√
r log rU

)
=

(
r
√
N +

N3/2

√
r

√
log r

)
queries to f and

(
r +

N√
r

√
log r

)
queries to t .

To minimize the number of queries to f , we choose r so that rN1/2 = N3/2/
√
r,

which is r = N2/3. It follows that a quantum eavesdropper can find the key (x, x′)

with an expected O(N7/6
√

logN) queries to f and O(N2/3
√

logN) queries to t.

5.2.2 Lower Bound

To prove the hereunder theorem, we follow the same lines as the lower bound proof

in Section 4.2.2.

Theorem 5.2.2 (Eavesdropping lower bound). Any eavesdropping strategy that

learns the key (x, x′) in Protocol 4 requires a total of Ω(N7/6) quantum queries to

functions f and t. Besides, any strategy A making o(N7/6) queries can find this

secret key only with o(1) probability over the random views of the protocol.
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5.3 Technical Discussions

In this section we discuss in more details some relevant issues we put then here for

the readers’s convenience.

5.3.1 Negligible vs Vanishing Probability of Collisions

We discuss why we are satisfied with vanishing probability of collisions in functions

rather than negligible probability. The are two reasons.

First of all requiring the stronger assumption does not provide any security

advantage since any quantum adversary making O(N2) queries is able to break any

key agreement protocol in random oracle model up to some logarithmic factor, at

the time of writing. Classically, this upper bound is optimal and super-polynomial

security against quantum adversaries is impossible in this model.

The second reason is problematic in some cases, in particular, when considering

binary oracle which implements a random function from integers to {0, 1}. Consider

for instance a black-box function f : [N3]→ [Nk]. The domain size of this function

is the maximum possible such that Alice and Bob can agree on a secret even using

a quantum computer. Classically, this domain must be reduced to N2 points.

Anyway, for the purpose of our argument, it does not matter as long as the domain

size is polynomial in N . In order to avoid collisions in the image of f except with

negligible probability, it is necessary to have a range of exponential size, taking into

account the definition of negligible functions (see Definition 2.1.1). Accordingly,

each image requires poly(N) bits to be represented and each query i ∈ [N3] for f

requires poly(N) queries to its corresponding binary oracle to construct the integer

f(i). We could no longer disregard this polynomial factor in our analyses, should we

have considered functions with exponential range as we could do with logarithmic

factors. Therefore, it is necessary that the range size to be polynomially upper-

bounded, otherwise all the lower-bound proofs fail.
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5.3.2 Negligible vs Vanishing Adversarial Success Probability

In standard cryptography an efficient adversary can succeed in breaking any scheme

only with negligible probability, which is a necessary condition to satisfy. For this,

consider an efficient algorithm A who succeeds in breaking a scheme with non-

negligible probability, that is, with probability 1/poly(N) for some polynomial poly.

By repeating A a polynomial number of times, this probability could be amplified

significantly while preserving the overall polynomial running time, since polynomi-

als are closed under composition or multiplication. However, if the probability of

success is negligible then it remains so even after running A as a subroutine a poly-

nomial number of times. Therefore, in our security framework it doesn’t worth to

require negligible adversarial success probability because all known protocols can

be broken by a polynomial adversary. In other words, such requirement does not

have any security advantage.

5.3.3 Needed Optimal Bounds in Composition Theorem

In this section we explain why the lower bound of 2XOR must be optimal before

using it in the composition theorem.

Since our proof of the lower bound is derived using the generalized adversary

method [81], the considered problems must have adversary bounds in order to

apply the composition theorem. In our context, the adversary bound of the inner

function pSEARCH is proven [29], however, we do not know that of 2XOR. Here is

the key idea to get around this matter.

We already know that the quantum algorithm for element distinctness [4] makes

O(N2/3) queries and this is optimal [2]. In Section 4.2.3 we proved an Ω(N2/3)

lower bound for 2XOR using a probabilistic reduction from element distinctness.

However, we cannot use it immediately as an adversary bound. Now, the quantum

algorithms for element distinctness [4, 36] solve 2XOR in O(N2/3) quantum queries.

Therefore, the 2XOR problem has query complexity Θ(N2/3). We need one more

step.
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A recent theorem of Ref. [56] shows that the generalized adversary bound is

tight for total and partial functions. Since we know the tight bounds of 2XOR, we

conclude that there exist an Ω(N2/3) adversary bound for it. There is no need to

find it explicitly!

5.3.4 Probability of Collisions in Oracle Functions

In this section we compute the probability that two elements are mapped to the

same image under a given function f : [D] → [R] for two integers D and R. This

event is known as collision of the function denoted by Coll. We consider two cases:

the classical case and the quantum one, although the latter equally deals with the

former.

First, we examine the quantum case that may be easier to understand. Since

quantum queries are usually made in superposition of all possible inputs, it is

mandatory to calculate the probability of a collision as if the running quantum

algorithm evaluates f on all the points in the domain at once, that is, D queries.

Therefore, the problem can be thought of as a variant of the birthday problem

(Section 2.8.6), that we reformulate it here for our convenience.

Denoted by ε, the probability of finding at least one collision after D evaluations

is estimated to be 1− e−D2

2R . In our situation we always need to learn the minimal

size of the range R for which a collision occurs only with vanishing probability.

Therefore, we solve R as a function of M and ε:

R >
D2

2 ln 1
1−ε
·

In the black-box model, we can simply consider R� D2 so that ε vanishes quickly.

For example, the probability of a collision in f : [N2]→ [Nk] vanishes if k > 4.

Equivalently, the probability is in o(1).

Actually, we can simply take other values making the probability of collisions

vanish quadratically or even faster. For k = 6, the probability of collision vanishes

super-quadratically.
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In classical computations, the shortest answer is that the previous probability

estimation holds as well. For more accurate probability estimation, things require

little more work because we should consider the maximum number of queries that

may be made to the oracle by a classical algorithm.

For exemplification, consider a T -query classical algorithm A making at most T

queries to f . The answer to any new (or previously unasked query) i, for 1 6 i 6 T ,

is a random number independent of all the answers to the i − 1 previously asked

queries. More formally, we fix distinct elements x1, x2 ∈ [N3] and some y ∈ [Nk].

Since f is a random oralce function, then

Pr[f(x1) = f(x2) = y] = 1/Nk.

We are interested in upper-bounding this probability rather than computing it

exactly. For each query i with 1 6 i 6 T , the probability that it gets the same

value as a previously asked query is less than T/Nk. We refer to this event by CollTi

while Coll is the event of a collision after T queries. Then,

Pr[Coll] = Pr[
⋃

16i6T

CollTi ] 6
T 2

Nk
.

Thus, the probability of Coll is less than T 2/Nk.



CHAPTER 6

GENERALIZED PROTOCOLS

We presented in Chapter 4 two original protocols for secret-key agreement over a

classical channel, in which legitimate parties are allowed to use quantum computers.

Furthermore, we gave in Chapter 5 the first two protocols secure against quantum

adversaries even when legitimate parties are restricted to use classical computing.

We wonder whether the protocols in these chapters are optimal. In this chapter,

we answer this question by generalizing our protocols, both classical and quantum.

In Sections 4.2 and 5.2, we described these protocols, in which Bob finds a pair of

preimages (x, x′) in Alice’s randomly selected set X, then sends back t(x)⊕ t(x′)
where t is some black-box (or oracle) function and ⊕ is the bitwise exclusive-or.

These protocols can be extended straightforwardly as follows. Bob finds k elements

of X, for some constant k > 2, and sends the ⊕ of their images under t to Alice.

Accordingly, we obtain sequences of classical and quantum protocols, denoted

by Ck and Qk, respectively, with the following properties. In protocol Ck, a classical

Alice establishes a key with a classical Bob in O(N) queries to a random oracle

in such a way that the optimal quantum eavesdropping strategy requires of the

eavesdropper to query the same oracle Θ
(
N

1
2

+ k
k+1

)
expected times.

In protocol Qk, a classical Alice establishes a key with a quantum Bob in O(N)

queries to a random oracle in such a way that the optimal quantum eavesdropping

strategy requires of the eavesdropper to query the same random oracle Θ
(
N1+ k

k+1

)
expected times. Note that only Bob needs to be quantum in this setting, and our

attacks against both sequences are similar to those exploited in Chapters 4 and 5,

but they are supplemented by new ones.

The protocols presented in Section 4.2 and Section 5.2 are particular cases of

these sequences, and therefore we refer to them as C2 and Q2, respectively. The

two sequences are based on the kXOR problem (see Section 2.8.4), which is a special

case of the kSUM problem (see Section 2.8.5).
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Besides, the kXOR problem is related to another family of problems known as

the k-element distinctness or element k-distinctness problem, which is well studied

in terms of quantum as well as classical query complexity [45, 57, 65]. For instance,

element distinctness is exactly 2XOR with w = 0.

Using quantum walks on Johnson graphs, Ambainis’s k-element distinctness

algorithm [4] is done in O(N
k

k+1 ) queries. As proved by Childs and Eisenberg [36],

this algorithm can be applied to any problem that can be reduced to subset-finding

(see Section 2.8.3), in particular kXOR and kSUM.

Given a black-box function of domain sizeN , the subset-finding algorithm [4, 36]

can find a subset of k elements having some given property with an expected

O(Nk/k+1) quantum queries (see Section 2.12.4).

Recalling Definition 2.8.10, let G be a finite Abelian group and w be an arbitrary

element of G. Given a positive integer k, the kSUM problem is to decide whether

an input x = x1 . . . xN ∈ GN contains a subset of k elements that sum to w. Belovs

and Špalek [15] proved that the quantum query complexity of kSUM is Ω(Nk/k+1)

provided |G| > Nk where |G| denotes the size of the group. Actually, this lower

bound matches the upper bound that can be obtained by applying the subset

finding algorithm [36]. Therefore, this latter is optimal for this problem as was

expected in the paper [36].

We prove in this chapter that our generalized protocols have the aforementioned

level of security, however, after modifying them slightly by switching back to kSUM,

which we had already considered in our research and tried to prove its lower bound.

As we did in the previous chapters, it suffices to consider the abelian group

G = Z`2 with ⊕ as addition modulo 2 and ` an integer. We also take the range of

the black-box function large enough to ensure that the legitimate parties can agree

on the same key. This is possible thanks to Theorem 6.1.1. It turns out that this

condition on the range is also sufficient for the lower bound for kSUM [15] to hold.

Be aware that it is understood hereinafter that all the addition operations in the

upcoming protocols are done modulo 2, whether we use + or ⊕.
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6.1 Generalized Classical Protocols

Before proceeding with the protocols, we prove a theorem that is needed to prove

the correctness of protocols as well as to invoke the lower bound theorem for kSUM.

Theorem 6.1.1. Consider a black-box function g : [Nn]→ [Nm], positive integers

m,n, k and N , and select uniformly at random a1, . . . , ak and b1, . . . , bk from [Nn].

Then, for m > 2kn, the probability that g(a1)⊕ · · · ⊕ g(ak) = g(b1)⊕ · · · ⊕ g(bk) is

vanishing. Furthermore, g is also one-to-one, except with vanishing probability.

Proof. Let Coll denotes the event that g(a1)⊕· · ·⊕g(ak) = g(b1)⊕· · ·⊕g(bk) when

a1, . . . , ak and b1, . . . , bk are randomly chosen from [Nn]. The key observation is

that the event Coll requiring 2k elements in [Nn] happens with the same probability

as a collision requiring two k-tuples in a function h : [Nn]k → [Nm]. More precisely,

the probability of Coll is the same as finding two elements x, y ∈ [Nn]k such that

h(x) = h(y) = w, where h(z) = g(c1)⊕· · ·⊕ g(ck) for some z = (c1, . . . , ck) ∈ [Nn].

Hence, we come back to the birthday problem (reviewed in Section 2.8.6), which

would say that this event happens with probability upper-bounded by the square

of the domain size divided by the range size. Equivalently, the probability of Coll is

bounded above by N2kn/Nm, which is in o(1).

The second part is a direct consequence. For any k > 1, which is always the case

in our context, the function g is one-to-one except with vanishing probability.

For the purpose of classical schemes, assume the existence of two black-box

functions f : [N2]→ [N c] and g : [N2]→ [N c′ ]. The constant c is chosen exactly as

in Sections 4.2 and 5.2, except that we changed its name to avoid confusion with

the constant k that is used to identify sequences. Hence, we consider c > 4 to

ensure that f is one-to-one, except with vanishing probability.

The constant c′ should satisfy two requirements: it is chosen so large that the

lower bound theorem for kSUM requiring |G| > Nk can be applied; and there is a

unique solution for the kSUM problem, allowing legitimate parties to agree on the

same key, except with vanishing probability. Fortunately, these two requirements
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can easily be met in our case. The first condition is satisfied by letting c′ > k.

To meet the second one, we choose c′ such that for any 2k elements a1, . . . , ak and

b1, . . . , bk, the probability that g(a1)⊕· · ·⊕ g(ak) = g(b1)⊕· · ·⊕ g(bk) is vanishing.

Therefore, using Theorem 6.1.1, we choose c′ > 4k to satisfy the two requirements.

Now, we are ready to present the classical protocol Ck, for any k > 2. Only the

first step remains the same, compared with our earlier discussed protocols.

Protocol 5 (Classical parties vs quantum adversaries).

1. Alice chooses at random N distinct points, x1, x2, . . . , xN , in the domain of

function f , and transmits the encrypted set, Y = {f(xi) | 1 6 i 6 N}, to Bob.

Let X = {xi | 1 6 i 6 N}.

2. Bob finds k distinct elements in X, denoted by b1, b2, . . . , bk. To find each

one of them, he chooses random distinct values in [N2] and queries f on

them until one is found whose image is in Y . He is expected to succeed with

probability arbitrary close to one in O(N2/N) = O(N) queries to function f .

3. Bob sends back w = g(b1)⊕ · · · ⊕ g(bk) to Alice.

4. Alice queries the oracle g on her set X. Although there are Nk candidate

k-tuples such that g(a1)⊕ · · · ⊕ g(ak) could equal w, she can find the unique

tuple without any additional queries. The common secret between Alice and

Bob is (b1, . . . , bk) where the components of this tuple are in some public order.

Calculating the legitimate complexities, each legitimate party asks a total of

O(N) classical queries. Indeed, Alice asks exactly N queries to f in Step 1 and

N queries to g in Step 4. Bob asks O(N) queries to f in Step 2 (use probabilistic

arguments to calculate this bound) and k queries to g in Step 3.

6.1.1 Quantum Attack

An eavesdropper attacking the protocol proceeds by a quantum walk algorithm,

similar to that exploited in Section 4.2.1, and whose query complexity is formulated

by the following theorem.
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Theorem 6.1.2. There exists a eavesdropping strategy that outputs the k-tuple

(b1, . . . , bk) in Protocol 5 with an expected O(N
1
2

+ k
k+1
√

logN) quantum queries to f

and O(N
k

k+1
√

logN) quantum queries to g.

Proof. The eavesdropping strategy is very similar to the subset-finding algorithm.

Indeed, it is necessary and sufficient for the adversary to find k elements of X that

sum to w, which is the value sent from Bob in the last step of Protocol 5. Hence,

it is exactly the kSUM problem, except that the set X is not accessible directly.

Instead of being able to get randomly chosen values in the image of g with a single

query per value, Eave has to get random elements of X by applying BBHT on the

list Y and query g on them, which requires O(
√
N2/N) = O(

√
N ) queries to f and

one query to g per element. Therefore, the number of queries to f , compared to

O(Nk/k+1) queries to g, will be multiplied by O(
√
N) at least. The algorithm also

maintains a data structure to stores the values under g along with the r-tuples.

To analyse the query complexity of our quantum walk algorithm, we apply

Theorem 2.12.4. The set up cost is S = O(r
√
N) queries to f and r queries to g.

The update cost is U = O(
√
N) queries to f and one query to g. The checking

cost C requires us to decide whether there are k elements in the vertex such that

w = g(b1)⊕ · · · ⊕ g(bk), which can be done without oracle queries, making C = 0.

The eigenvalue gap δ remains in Ω(1/r log r) but ε changes into Ω(rk/Nk). We can

calculate ε the same way as in Section 4.2.1.

Putting it all together, the expected eavesdropping cost is in the order of

S +
(
Nk/2

rk/2
(
√
r log rU + C)

)
=

(
r
√
N calls to f + r calls to g

)
+ Nk/2

rk/2

√
r log r

(√
N calls to f + 1 call to g

)
=

(
r
√
N +

√
NNk/2

r(k−1)/2

√
log r

)
calls to f and

(
r +

Nk/2

r(k−1)/2

√
log r

)
calls to g .

Neglecting the log factor, we choose r so that r
√
N =

√
NNk/2/r(k−1)/2 to optimize

the number of queries to f and g. This implies r = Nk/k+1 and the theorem follows.
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6.1.2 Lower Bound

The lower bound on the eavesdropper’s query complexity is formalized as follows.

Theorem 6.1.3 (Eavesdropping lower bound). Any eavesdropping strategy A that

learns the key (b1, . . . , bk) in Protocol 5 requires a total of Ω(N
1
2

+ k
k+1 ) quantum

queries to functions f and/or g. Any strategy A asking o(N
1
2

+ k
k+1 ) queries can find

the secret key only with vanishing probability over the random views of the protocol.

The proof of this theorem follows the same lines as the lower-bound proof in

Section 4.1.2. The main change is that in the first step we compose the kSUM prob-

lem, instead of element distinctness as in Protocol 1 or kXOR as in Protocol 2, with

N instances of pSEARCH. This defines the search problem H = kSUM◦pSEARCHN .

Consider a black-box function ξ : [N ]→ [M ] and some w ∈ [M ] such that

there exists k elements b1, . . . , bk with w = ξ(b1)⊕ · · · ⊕ ξ(bk) where bi ∈ [N ] for

1 6 i 6 N . The problem is to find this k-subset; a variant of kSUM (Section 2.8.5).

By the negative adversary method [80], Belovs and Špalek [15] proved an Ω(Nk/k+1)

quantum lower bound even for the decision version this problem. Conditions on

the range size are already discussed in Chapter 4 and 5.

Consider now a function h : [N ]× [N ]→ [M ]′. The domain of this function

is composed of N “buckets” of size N , where h(i, ·) corresponds to the ith bucket,

1 6 i 6 N . In bucket i, all values of the function are 0 except for one single random

xi ∈ [N ] for which h(i, xi) = ξ(i):

h(i, j) =

 ξ(i) if j = xi

0 otherwise .

The definitions of kSUM and h implies that there is a k-subset of distinct elements

in the domain of h such that w = h(b1)⊕ · · · ⊕ h(bk). How difficult is it to find

this k-subset given an oracle access for function h but no direct access to ξ?
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Lemma 9 (Lower bound for h). Given h structured as above, finding a k-subset of

distinct elements {b1, . . . , bk} in the domain of h such that w = h(b1)⊕ · · · ⊕ h(bk)

and h(bi) 6= 0, for 1 6 i 6 k, requires Ω(N
1
2

+ k
k+1 ) quantum queries to oracle h. Any

strategy asking o(N
1
2

+ k
k+1 ) queries solves this problem only with o(1) probability.

Proof. The problem is then reduced to searching among N possibilities for the

unique non-zero h(i, ·) for each i and then finding k of those elements, among N

possibilities, whose sum equals w. It is the composition of kSUM with pSEARCH.

Since the lower bounds of pSEARCH and kSUM were proven [15, 29] using the

generalized adversary method, we obtain the lower bound of the composed function

h directly using the composition theorem with pSEARCH as inner function [29]. In

particular, this problem becomes a special case of technical Theorem 2.13.8 with

parameters κ = N (the number of buckets) and η = N (the size of the buckets).

Using Theorem 2.13.6 along with the quantum query complexities for kSUM and

pSEARCH, it follows that finding the desired secret requires

Ω(κk/k+1η1/2) = Ω(Nk/k+1
√
N ) = Ω(N

1
2

+ k
k+1 )

quantum queries to h, except with vanishing probability. The remaining part of

the proof is already explained in Section 4.1.2.

6.2 Generalized Quantum Protocols

Similarly to classical protocols, we can generalize the quantum protocols and obtain

a sequence, denoted by Qk for k > 2, with the following properties. In protocol

Qk, classical (or quantum) Alice agrees on a key with a quantum Bob after O(N)

queries to a random oracle in such a way that the optimal quantum eavesdropping

strategy requires of the eavesdropper to access the oracle Θ
(
N1+ k

k+1

)
expected

times. This optimal quantum query complexity can be proven entirely the same

way that we used in Section 6.1. A quantum protocol Qk is similar to classical

protocol Ck except for Step 2, which invokes BBHT, and the function domain size.
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6.3 Quantum Attacks Without Logarithmic Factors

It turns out that all our quantum attacks discussed till now can be done without the

square-root logarithmic factors, thanks to a recent work of Childs and Kothari [35].

Although we don’t care about logarithmic factors, we describe this new attack for

completeness and pedagogical purposes.

In a nutshell, consider any of the preceding attacks that we discussed. If we

could have δ = 1/r instead of 1/r log r, then applying the same formula would give

the desired result. We will describe only the attack against the classical sequence.

For the quantum case, we only state the theorem since the proof is similar.

Theorem 6.3.1. There exists an eavesdropping strategy that outputs the k-tuple

in Protocol Ck with an expected O(N
1
2

+ k
k+1 ) quantum queries to functions f and g.

Proof. This new attack combines the subset-finding quantum algorithm [4, 36]

with quantum walks on a Hamming graph H(X, r) whose vertex set is Xr and

there is an edge between two r-tuples (vertices) if and only if they only differ on

one coordinate. Here X is Alice’s secret set and r is a parameter to be determined

optimally later. The eigenvalue gap of this graph is δ ∈ Ω(1/r) [35], which is the

feature behind the removal of the logarithmic factor. As usually, the algorithm

maintains a data structure. Each vertex consists of an r-tuple |u1u2 . . . ur〉 and the

corresponding images under g, where ui ∈ X for 1 6 i 6 r. We are looking for a

(marked) vertex that contains k elements of X such that their sum equals w, which

is the value announced by Bob in Step 3 of the protocol.

The random walk on this graph, identified by a transition matrix P , can be

quantized [59, 75]. We need to know the fraction of marked vertices under the

stationary distribution denoted by ε and the eigenvalue gap denoted by δ = δ(P ).

Afterwards, using Theorem 2.12.4, the complexity of the resulting quantum walk

algorithm is a function of three quantum costs S, U and C.

The set up cost is S = O(r
√
N) queries to f and r queries to g. The update

cost is U = O(
√
N) queries to f and one query to g. The checking cost C = 0.

Following the same method in Section 4.1.1, we get ε ≈ rk/Nk.
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Putting it all together, the expected eavesdropping cost is in the order of

S +
(
Nk/2

rk/2
(
√
rU + C)

)
=

(
r
√
N +

√
NNk/2

r(k−1)/2

)
calls to f and

(
r +

Nk/2

r(k−1)/2

)
calls to g .

We choose r so that r
√
N =

√
NNk/2/r(k−1)/2 to optimize the number of queries

to f and g. This implies r = Nk/k+1 and the theorem follows.

Compared with the attack in Section 4.1.1, the setup phase is much simpler,

being just the direct result of r independent applications of BBHT. Recall that

the setup phase consists in the following two step. The changes only occur in the

second step as we explain below.

1. Prepare the following state as described in Section 4.1 with domain size N2:

|ψ1〉 =

 1√
N2

∑
u1∈[N2]

|u1〉

⊗ · · · ⊗
 1√

N2

∑
ur∈[N2]

|ur〉


2. Produce the superposition state of all possible vertices of the graph:

|ψ2〉 =

(
1√
N

∑
u1∈X

|u1〉

)
⊗ · · · ⊗

(
1√
N

∑
ur∈X

|ur〉

)

To construct |ψ2〉 here, we proceed as follows for each register |ui〉 for 1 6 i 6 r.

We produce a uniform superposition of all elements ui ∈ X by applying BBHT on

the ith register of |ψ1〉. Since we know the exact number of solutions, N , this

state can be produced with certainty in O(
√
N2/N) = O(

√
N) queries even in the

worst case thanks to Theorem 2.12.1. Although we applied Generalized Grover’s

algorithm k times, the total cost remains in O(
√
N ) queries since k is constant.

This attack also holds for any defined quantum protocol Qk as stated formally:

Theorem 6.3.2. There exists an eavesdropping strategy that outputs the k-tuple

in Protocol Qk with an expected O(N1+ k
k+1 ) quantum queries to functions f and g.
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It is worth mentioning that the comparison between Johnson and Hamming

graphs, based on the calculations obtained from Theorem 2.12.4, reveal that the

order of the coordinates has no significance on the asymptotic behaviour of the

algorithm. As a result, it might be possible to transform one graph into the other.

Using the expressions of Sántha and neglecting normalization, the problem can be

reduced to how to get |φ〉 from |ψ〉 where

|φ〉 =
∑

A⊆X, |X|=r

|A〉

and

|ψ〉 =

(∑
x∈X

|x〉
)⊗r

.

The setup phase in a Johnson graph J(X, r) is to construct |φ〉, or equivalently, to

find r random elements of X. However, considering the structure of our problem,

we can construct |ψ〉, which is exactly the setup phase in a Hamming graph.

Notice finally that upper bounds can be proved using composition theorems for

upper bounds [80]. In fact, we could have derived our upper bounds easily if we had

sacrifice the simplicity of the protocols, which is not a good choice in cryptography.

6.4 Time Complexity

The quantum query complexity has been our measure of complexity throughout

this thesis. However, this section was specifically written for those who equally care

about time complexity. Needless to say, a lower bound on the query complexity of

any problem is a lower bound on the time complexity of the same problem.

Even though our protocols Qk and Ck require classical Alice to ask the oracle

functions only O(N) queries, she has to spend a time in O(N dk/2e) to complete

the protocol using the best algorithm currently known, which is more than linear

when k > 3. However, for k = 2 in the classical setting, and k = 3 in the quantum

setting, we present procedures that achieve Alice’s task in linear time. Depending

on whether or not Alice is quantum, we consider two cases.



106

For these procedures, recall that Alice’s set X consists of N distinct random

points, x1, x2, . . . , xN , in the domain of f , and Z = {zi = g(xi) | 1 6 i 6 N} is the

set that Alice obtains by querying the other function on X. Let w denote the value

sent at the last step of the protocol. More precisely, let w = zi1 · · ·+zik with distinct

zij ∈ Z for 1 6 j 6 k. We assume available a quantum random access memory that

can be accessed in superpositions (see Section 2.11.3), otherwise several important

quantum algorithms [4, 20, 25, 32] won’t work any more. Note that, consequently,

Eave could be even less efficient against our protocols!

6.4.1 Classical Alice

When Alice is classical, a direct search approach requires time in O(Nk). However,

she can reduce this time to O(N dk/2e). We first start with the case k = 2, which is

of special importance, then we treat the general case.

Theorem 6.4.1. Given w = g(x) ⊕ g(x′) for random elements x and x′ in X,

classical Alice can find this pair in time O(N logN).

Proof. Assume that w = z⊕ z′ with z, z′ ∈ Z = {g(x) | x ∈ X} and the pair (z, z′)

is unique, except with vanishing probability. After receiving w, Alice builds the set

Dw = {w ⊕ g(x) | x ∈ X}, sorts it and searches two equal elements between D and

Z. Actually, there are two solutions, whether she finds w ⊕ z = z′ or w ⊕ z′ = z.

Either solutions implies z⊕ z′ = w, or equivalently, g(x)⊕ g(x′) = w for x, x′ ∈ X.

It is not difficult to analyse the time complexity: there is nothing more than

searching in sets of size N after sorting them. Therefore, the overall running time

remains in O(N logN).

Now when k > 2, classical Alice can reduce the time complexity to O(N dk/2e)

by a generalization of the previous algorithm, with which we proceed immediately.

Theorem 6.4.2. Given w = g(x1) ⊕ · · · ⊕ g(xk) for random x1, . . . , xk in X,

classical Alice can find these elements in time O(N dk/2e logN).
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Proof. For clarity purposes, we start with the case where k is even; let k = 2m for

some integer m.

1. Assume that w = zi1⊕· · ·⊕zim⊕zim+1⊕· · ·⊕zi2m for z` ∈ Z and 1 6 ` 6 2m.

2. Construct the table Sm containing the sums of all possible m-tuples of distinct

elements of Z. Symbolically,

Sm = {sj = zj1 ⊕ zj2 · · · ⊕ zjm | zp ∈ Z; zp 6= zq; 1 6 p, q 6 m}.

The fact that Sm is of size less than Nm has no significance on the time

complexity. Note that Sm implicitly keeps track of the tuple (zj1 , . . . , zjm)

that corresponds to the sum sj for 1 6 j 6 Nm.

3. Compute a corresponding table Dw = {w ⊕ sj | 1 6 j 6 Nm} where sj ∈ Sm.

Assuming Z contains a unique k-subset {zi1 , . . . , zik} satisfying w, except with

vanishing probability, this implies that w⊕(zim+1⊕· · ·⊕zi2m) = zi1⊕· · ·⊕zim
and there is at least one common m-tuple between Dw and Sm. In fact, there

are k(k − 1) · · · (k −m+ 1) solutions. Sort Dw for the next step.

4. Search an m-subset in Sm that has a match in Dw. It takes O(Nm logN) to

solve this problem; apply any classical search algorithm that finds a match

between two sets. This problem can be solved even faster, having many

solutions. However, it does not change the asymptotic behaviour since k is a

constant.

Note that Alice does not need to store the two tables. We choose this straightfor-

ward method for simple explanation.

We analyse the time complexity of this algorithm. Step 2 takes O(Nm) time

to compute Sm. Step 3 takes O(Nm logN) time to prepare and sort Dw, and

Step 4 is also done in O(Nm logN). Therefore, the overall running time remains

in O(Nk/2 logN).

When k = 2m+ 1, we proceed exactly the same way, except that instead of Sm

we consider Sm+1, which is the set of all sums of m+ 1 elements of Z.
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Unfortunately, for k = 3, the problem become 3SUM, which is long-standing

in classical time complexity. The best known algorithm takes Θ(N2) time [42].

However, we can avoid this problem by providing Alice with quantum computers

(see Section 6.4.2). Recapitulating, our best protocol in the classical setting is C2,

which can be completed legitimately in linear time and query complexity while any

quantum eavesdropper requires Ω(N7/6) quantum queries to learn the secret key.

6.4.2 Quantum Alice

Quantum Alice can achieve the last step of protocol Qk in O(N dk/2e) time using

Grover’s search, which is perhaps the most straightforward quantum approach.

However, she can do much better. We first start with the case k = 3, where Alice’s

time complexity is linear, then we treat the general case.

Theorem 6.4.3. Given w = g(x) ⊕ g(x′) ⊕ g(x′′) for random x, x′ and x′′ in X,

quantum Alice can find these elements in time O(N logN).

Proof. To search three elements in Z, which sum to w, Alice proceeds as follows:

1. Compute the table Dw = {w ⊕ zp | 1 6 p 6 N ; zp ∈ Z}. We will also need

S2 = {zi ⊕ zj | 1 6 i, j 6 N ; i 6= j}, which is the set of all possible sums of

pairs (zi, zj) ∈ Z × Z with zi 6= zj. Assuming Z contains a unique triplet

(z, z′, z′′) such that w = z⊕z′⊕z′′, except with vanishing probability, implies

that w⊕z′′ = z⊕z′ and there are exactly three sums in Dw that corresponds

to six possible pairs in S2. Sort the table Dw so that one can find any of

its elements in logN time, as a preparation for the next step. Then, load

Dw into a quantum memory (QRAM or QROM) whose model is described

in Section 2.11.3.

2. Apply BBHT to search one out of the six possible pairs (z, z′) in S2 such that

z ⊕ z′ ∈ Dw. Since the search space is N2, this takes O(
√
N2/6) = O(N)

Grover iterations. This step illustrates the fact that a quantum memory

randomly accessible in superpositions is indispensable.
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3. Once a pair (z, z′) is found, there is d ∈ Dw such that z⊕z′ = d, implying that

there exists z′′ ∈ Z such that z⊕ z′ = w⊕ z′′ or equivalently z⊕ z′⊕ z′′ = w.

The overall running time is in O(N logN). Recapitulating, when k = 3 in the

quantum setting, we get our best protocol that can be completed by legitimate

parties in linear time and linear query complexity. Nevertheless, an adversary

needs Ω(N7/4) quantum queries to learn the key, except with vanishing probability

over the random views of the protocol.

Consider now the general case, where k = 2m for some positive integer m > 2.

The case for odd k is slightly different and we address it afterwards.

Theorem 6.4.4. Given w = g(x1) ⊕ · · · ⊕ g(xk) for random x1, . . . , xk of X,

quantum Alice can find this k-subset in time O(Nk/3 logN) when k is even.

Proof. Recall that, given two functions F : A→ R and G : B → R defined on the

same range, a claw is a pair (a, b) ∈ A×B such that F (a) = G(b).

Alice defines two functions f and g having domain size Nm and the same range

as follows:

f, g : Z × Z · · ·Z︸ ︷︷ ︸
m times

→ R

such that f(u1, · · · , um) = u1 ⊕ · · · ⊕ um and g(v1, · · · , vm) = w ⊕ (v1 ⊕ · · · ⊕ vm)

where ui ∈ Z and vi ∈ Z for 1 6 i 6 N . The problem is to find 2m elements of

Z that sum to w. Thus, the problem is reduced to finding a claw in the functions,

that is, two distinct m-tuples, u and v, such that f(u) = g(v).

At this stage, Alice uses the subset-finding algorithm [36] (see Section 2.12.4).

This process takes S2/3 time, where S = Nm is the domain size of f and g, implying

S = N2m/3 = Nk/3. As already mentioned, there are k(k − 1) · · · (k − m + 1)

possible solutions, reducing the time complexity even further but by a constant

factor. Unfortunately, this algorithm has time complexity in O(N4/3) when k = 4,

which is still more than linear.
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When k = 2m + 1, we can do the following step before applying the earlier

procedure. Choose a random element z ∈ Z and set w′ = w⊕ z, thus transforming

the current problem into the earlier one with k′ = 2m′ and m′ = m + 1. We can

certainly use a faster algorithm avoiding this extra element. However, it is just a

slight time overhead for the sake of simplicity.

Note finally that, for any k = 3m, there is an easy approach based on Grover’s

algorithm.

1. Assume that w = zi1 ⊕ · · · ⊕ zim ⊕ zim+1 ⊕ · · · ⊕ zi3m for zij ∈ Z.

2. Construct the table Sm containing the sums of all possible m-tuples of distinct

elements in Z. It has dimension Nm = Nk/3.

3. Prepare the corresponding table Dw = {w ⊕ sj | 1 6 i 6 Nm} where sj ∈ Sm.

Assuming Z contains a unique k-subset {zi1 , . . . , zik} satisfying w, this implies

that w ⊕ sj = zim+1 ⊕ zim+2 · · · ⊕ zi2m .

4. Define as before the subset S2m having size N2m. For each specific α ∈ S2m,

we can find a matching element β ∈ Dw using a classical search algorithm in

the sorted table Dw. Indeed, combine this binary search in Dw with Grover’s

search in S2m.

We analyse the time complexity of this algorithm. Step 2 takes time Nm to

compute and keep the table in memory. In Step 3, we apply the addition operation

and sorting on Dw, which can be done in at most O(Nm logN) time. Finally, Step

4 can be done in O(
√
N2m logN) or equivalently O(Nm logN) time. Therefore,

the overall running time is in O(Nk/3), when neglecting the logarithmic factor.



CHAPTER 7

CONCLUSIONS AND OPEN QUESTIONS

We studied in this thesis the problem of secret-key agreement over a classical com-

munication channel in the random oracle model against quantum eavesdroppers.

The major limitation was the classical channel. This exclude the benefit of trans-

mitting quantum information, which makes quantum key distribution [16] possible.

The other severe restriction emerges when legitimate parties are not allowed to use

any computing resource beyond the classical theory.

Depending on computing resources with which legitimate parties are equipped,

we considered two different settings. In the first one, which we called the classical

setting, legitimate parties are restricted to using classical computers. In the second

one, the quantum setting, legitimate parties have the means to make quantum

computations. In both settings, the eavesdropper trying to learn the established

secret key is assumed to have access to all the communicated messages and any

computing strategy allowed by quantum mechanics. In all our protocols, legitimate

parties query the oracle a number of times proportional to some parameter N . Our

conclusions are divided into three categories: quantum setting, classical setting, and

quantum computing and random oracle model.

7.1 Classical Setting

In the classical setting, which is considered in Chapter 5, we contributed the first

protocol that is secure against any quantum adversary. More precisely, there is

no quantum eavesdropping strategy able to learn the key before asking Ω(N13/12)

quantum queries, in contrast with the common conjecture that “any key agreement

protocol in the random oracle model can be broken with O(N) quantum queries”.

Improving on the first protocol, we gave a scheme requiring Ω(N7/6) quantum

queries of the eavesdropper (Eave).
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Furthermore, for any integer k > 2, we provided a classical protocol Ck with

the following characteristics: a classical Alice establishes a key with a classical Bob

after O(N) queries to random oracles in such a way that the optimal quantum

eavesdropper requires an expected Θ
(
N

1
2

+ k
k+1

)
queries, which tends to Θ(N3/2)

when k increases.

As a result, classical Alice and Bob can establish a secret key against any

quantum eavesdropper with as good a security (in the limit) as it was known to be

possible for quantum Alice and Bob before this work [23].

The main open question would be to break the Ω(N3/2) barrier or prove that

this is not possible. More precisely, the following questions come to light.

1. Is it possible to devise a classical protocol that provides exactly Ω(N3/2)

security. . . or better?!

2. Can every key agreement protocol in the random oracle model be broken with

O(N3/2) quantum queries if legitimate parties remain classical?

3. What is the best possible security gap in the this restrictive setting?

For the first question, we believe that a classical protocol providing exactly Ω(N3/2)

security does exist. Actually, we already have a promising one.

However, concerning the second question, we believe that every key agreement

protocol in the random oracle model in which legitimate parties are classical and

ask O(N) queries can be broken with O(N3/2) quantum queries, thus contrasting

our point of view in the upcoming quantum case. Following our believes, the answer

to Question 3 would be Θ(N3/2) quantum queries.

The following table compares our results with the previous ones in the classical

setting (Alice and Bob are classical while Eave is always quantum).

Previous/Our schemes Problem involved Eave’s lower bound

Merkle’s scheme OR Θ(N)

The first secure protocol ED/SF Θ(N13/12)

The second secure protocol 2XOR Θ(N7/6)

The kth secure protocol Ck, for k > 2 kSUM Θ(N
1
2

+ k
k+1 )
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7.2 Quantum Setting

In the quantum setting (see Chapter 4), we presented two (quantum) protocols

improving on the first attempt [23] to repair Merkle’s scheme. This latter provides

optimal quadratic security in the classical world [8], however, has no security at

all against a quantum eavesdropper applying Grover’s algorithm straightforwardly.

Both protocols require Ω(N5/3) quantum queries of Eave in order to learn the secret.

They are not only better than the earlier Ω(N3/2) scheme [23], but again disagree

with the conjecture that “any key agreement protocol in the random oracle model

can be broken with O(N3/2) quantum queries, when Alice and Bob are quantum”.

Furthermore, for any integer k > 2, we provided a quantum protocolQk with the

following properties: a classical Alice establishes a key with a quantum Bob after

O(N) queries to a random oracle in such a way that any quantum eavesdropper

requires an expected Θ
(
N1+ k

k+1

)
queries, thus approaching Θ(N2) when k increases.

Notice that only Bob needs to be quantum in this setting unless we equally care

about time complexity, which is discussed in Section 6.4.

Consequently, key agreement protocols inspired by Merkle can be arbitrarily as

secure in our quantum world as they were in the classical computer world in 1974.

More precisely, they can be arbitrarily close to quadratic security. Considering our

results, we raise several open questions:

1. Can the quadratic security of Merkle’s scheme be restored exactly rather than

in the limit if all parties make use of quantum computers?

2. Can every key agreement protocol in the random oracle model be broken

with O(N2) quantum queries when legitimate parties are quantum?

3. Is it possible to find a quantum protocol that provides better than quadratic

security. . . ?!

While we believe that a quantum protocol providing exact quadratic security does

exist, it is difficult to speculate on the other two questions. Indeed, even though it

was proven in the classical case that the optimal security is quadratic [8], there is

no compelling evidence that such a limitation exists in a quantum world.
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The following table compares our results with the previous ones in the quantum

setting (Alice might be quantum, Bob and Eave are always quantum).

Previous/Our schemes Problem involved Eave’s lower bound

Brassard-Salvail scheme OR Θ(N3/2)

Our first scheme ED/SF Θ(N5/3)

Our second sceme 2XOR Θ(N5/3)

Our kth protocol Qk, for k > 2 kSUM Θ(N1+ k
k+1 )

Since we highlight our contributions in this section, it is worth mentioning that our

paper at Crypto 2011 [29] was considered for a “Best Paper Award”, according to

an email from the Program Chair.

7.3 Quantum Computing and the Random Oracle Model

In addition to our cryptographic research topic in this thesis, we have explored some

questions related to capabilities and limitations of quantum computing and the

random oracle model. Considering our results, we would like to add the following

observations:

The random oracle model in a quantum world is almost as strong as it is in a

classical world for secret-key agreement, and may be even stronger since the door

is still open for further improved protocols as pointed out in the open questions.

Before this work, quantum computers were a big advantage for eavesdroppers:

Merkle’s scheme collapsed, secure classical key agreement in the random oracle

model was strongly believed to be impossible, and Ω(N3/2) was also conjectured to

be the best possible security level even when Alice and Bob are allowed to use any

quantum strategy. However, in light of our protocols, the situation has changed:

eavesdroppers have essentially no longer any advantage in the quantum setting.

Besides, there is still hope for more improvements, making quantum mechanics

even more useful for cryptographers than adversaries. Furthermore, even when

legitimate parties are classical, the eavesdropper’s task has become much more

difficult after having been as easy as the key agreement process.
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As for quantum power, it is not uncommon to conclude that quantum com-

puters outperform their classical counterparts on some given problem. However,

this work demonstrated the useful property with respect to function composition.

The composition theorems [56, 81] prove that the speedup provided by quantum

computations on two sub-problems making up a composed one is preserved. In our

case, for instance, we introduced a problem that is the composition of kSUM with

the unstructured search problem pSEARCH.

7.4 Life-Style/Cultural Contribution

Yes, the following deserves a section. We want to communicate a profound message!

We introduced the term Eave (for a neutral-gender eavesdropper) instead of

the traditional Eve, which has been used (even by myself in the past) for irrelevant

or ridiculous reasons at the expense of moral values. The major problem is that

people, even scientific ones, often surrender to facts or habits, which may be unfair

or even wrong. Unfortunately, “Eave” is not close to the french word “espion”.

However, this should not be an obstacle to adopting this new term, considering the

good goal.
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[32] Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric Mag-

niez, Miklós Sántha, and Ronald de Wolf. Quantum Algorithms for Element

Distinctness. SIAM Journal of Computing, 34(6):1324–1330, 2005.

[33] Christian Cachin and Ueli Maurer. Unconditional Security Against Memory-

Bounded Adversaries. In Advances in Cryptology — CRYPTO’97, pages 292–

306, 1997.

[34] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[35] Andrew Childs and Robin Kothari. Quantum Query Complexity of Minor-

Closed Graph Properties. SIAM Journal on Computing, 41(6):1426–1450,

2012.

[36] Andrew M. Childs and Jason M. Eisenberg. Quantum algorithms for subset

finding. Quantum Information and Computation, 5:593–604, 2005.

[37] Ivan Damg̊ard, Serge Fehr, Louis Salvail, and Christian Schaffner. Cryptogra-

phy In the Bounded Quantum-Storage Model. In Proceedings of the 46th an-

nual IEEE Symposium on Foundations of Computer Science, FOCS’05, pages

449–458, 2005.

[38] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, 22(6):644 –654, 1976.



120
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[80] Peter Høyer, Troy Lee, and Robert Špalek. Tight adversary bounds for com-

posite functions, 2005. arXiv:quant-ph/0509067v3.

[81] Peter Høyer, Troy Lee, and Robert Špalek. Negative Weights Make Adver-
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