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RÉSUMÉ

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le

maximum de vraisemblance est une des techniques les plus populaires, comme, sous des

conditions légères, les estimateurs ainsi produits sont consistants et asymptotiquement

efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme

des problèmes de programmation non linéaires, éventuellement non convexe, pour les-

quels deux grandes classes de méthodes de résolution sont les techniques de région de

confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la

structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous

certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou

récemment développées en optimisation non linéaire, dans le contexte particulier de l’es-

timation de maximum de vraisemblance. Nous développons également de nouveaux al-

gorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approxi-

mation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier

dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes

nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas

dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique

des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en

particulier les modèles logit mélangés.

Mots clés : optimization, région de confiance, recherche linéaire, estimation,

maximum de vraisemblance, approximation de hessien, basculement entre modèles,

choix discrets, logit mélangé.



ABSTRACT

Maximum likelihood is one of the most popular techniques to estimate the param-

eters of some given distributions. Under slight conditions, the produced estimators are

consistent and asymptotically efficient. Maximum likelihood problems can be handled

as non-linear programming problems, possibly non convex, that can be solved for in-

stance using line-search methods and trust-region algorithms. Moreover, under some

conditions, it is possible to exploit the structures of such problems in order to speed-

up convergence. In this work, we consider various non-linear programming techniques,

either standard or recently developed, within the maximum likelihood estimation per-

spective. We also propose new algorithms to solve this estimation problem, capitalizing

on Hessian approximation techniques and developing new methods to compute steps,

in particular in the context of line-search approaches. More specifically, we investigate

methods that allow us switching between Hessian approximations and adapting the step

length along the search direction. We finally assess the numerical efficiency of the pro-

posed methods for the estimation of discrete choice models, more precisely mixed logit

models.

Keywords: Optimization, trust-region, line-search, estimation, maximum like-

lihood, Hessian approximation, model switching, discrete choice, mixed logit.
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CHAPTER 1

INTRODUCTION

This research relates to non-linear, non-convex and non-constrained programming,

which is part of mathematical programming. Mathematical programming studies prob-

lems where the aim is to find the optimal value of a given mathematical function (ob-

jective function or cost function) in a defined domain. In the present work, we consider

twice-continuously differentiable non-linear functions, possibly non-convex, we aim to

find their minimum over an unconstrained domain. It is usual to search such minimums

using iterative algorithms, starting from arbitrary initial point and then performing itera-

tive steps that aim at finding a locally optimal value, which could be a minimal solution

under mild conditions. To date, trust-region and line-search techniques are among the

most commonly applied iterative techniques to address the type of functions we con-

sider in this thesis. These techniques were originally introduced as a globalization of the

locally-converging Newton technique. In this setting, they often rely on a second-order

Taylor-development of the objective function, therefore requiring the Hessian of the ob-

jective function to be available. The associated numerical cost associated to Hessian

evaluation is however usually not affordable, and one prefers to construct some approxi-

mation of this Hessian, leading to so-called quasi-Newton techniques. The most popular

approximations are BFGS (rank-2 update) and the symmetric rank-1 (SR1) update, both

of them maintaining symmetry of the matrix and satisfying the secant condition. How-

ever, they may require a significant number of iterations before the approximation is

good enough for the algorithm to converge.

In this thesis, we focus more specifically on maximum likelihood estimation (MLE)

problem, aiming to investigate more efficient optimization algorithms for solving this

problem. An alternative Hessian approximation has been proposed in this context by

Berndt, Hall, Hall, and Hausman [6]. This approximation relies on the information iden-

tity property, and appears not expensive to compute, while reflecting better the problem

structure. This explains the popularity of the approach, up to this date (see for instance
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Train [27], Chapter 8). Unfortunately, the conditions needed to ensure validity of the

information identity are difficult to satisfy, especially as they require a correctly formu-

lated model. In practice, these conditions are often violated, and the estimation can fail

to converge. This has led Bunch [8], who considered the log-likelihood problem as a

particular case of generalized regression, to propose a technique relying on more than

one quadratic model to approximate the objective function. Following Bunch’s idea, our

work also propose to use a set of Hessian approximations at each iteration. However,

we develop more complex criteria for switching between quadratic models. We propose

criteria that help to select specific matrices either to build a sub-problem in trust-region

methods or to compute the search-direction in line-search methods. More specifically,

we propose new algorithms that differ in the way the Hessian approximation is selected

at each iteration. For testing the efficiency of our algorithm, we focus on parameter

estimation for mixed logit model in the context of discrete choice theory.

Considering the interdisciplinary nature of this research, some background material

is provided to facilitate the discussion. Therefore, the next chapter presents a relatively

large introduction to maximum likelihood estimation. Some important properties of

likelihood estimation are described, the Fisher information matrix is introduced which

leads to the description of the BHHH approach. Optimization methods for computing

maximum likelihood estimates such as the trust-region and line-search methods are in-

troduced as well. Methods for approximating the Hessian matrix are described.

The two next chapters, Chapter 3 and Chapter 4, contain our main research contribu-

tions. In Chapter 3 we propose four new algorithms which are based on the general idea

of model switching adapted to both trust-region and line-search methods: The predic-

tive and retrospective algorithms select an Hessian approximation by considering avail-

able information at the current and previous iteration of the trust-region and line-search

iterative optimization methods. Multi sub-problems is an algorithm designed only for

the trust region methods, where sub-problems have to be considered and solved approx-

imately. This algorithm has proved its efficiency in some difficult cases. We also present

an improvement of Multi sub-problems, called Multi sub-problems with BHHH. This

algorithm is designed based on the characteristics of the Multi sub-problems algorithm
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and the classical trust-region algorithm with BHHH update. In Chapter 4, we introduce

a new algorithm called adaptive line-search which improves the line-search method by

controlling the length of the search direction.

As pointed out earlier, we consider Mixed-logit model in discrete choice theory as a

good framework for testing our new algorithms. Chapter 5 describes important concepts

in discrete choice theory such as discrete choice model and random utility model.

Chapter 6 measures the efficiency of each algorithm using real complex data from

discrete choice problems. Our numerical results are compared with existing methods,

which is then followed by discussions. The test results prove the numerical efficiency of

our approach in many cases. Note that all the tests are performed with real data in dis-

crete choice. Finally, Chapter 7 contains discussions and comments on future research.



CHAPTER 2

BACKGROUND

This chapter introduces well-know methods in optimization such as trust-region

method, line-search method and Hessian approximation. These methods are described

as steps to solve the maximum likelihood estimation, a very important problem in fields

like economics. Thus, we first give the definition and the principle of the maximum

likelihood estimation. Background on trust-region and line-search methods is given in

the next section, as well as recent results in optimization. The last section describes the

classical methods to approximate the Hessian matrix, which is one of the most important

factors for the optimization algorithms.

2.1 Maximum likelihood estimation

Maximum likelihood is one the most popular techniques in statistics to estimate the

parameters of a model, given some observations that are assumed to be the realizations

of some random vector. More precisely, consider a random vector Y , and assume we

have N observations independently drawn from this vector. Let assume for now that

Y is continuous (the discrete case can be treated in a similar way). Denote by f (Y |θ)
the probability density function (pdf) of Y , conditioned on a set of parameters θ . The

distribution would be completely characterized if we knew the particular value of θ ,

say θ0, corresponding to the population under interest. In the discrete case, we would

consider the probability mass function instead of the density. Since the observations are

assumed to be independent, the joint density is the product of the individual densities:

f (y1,y2, . . . ,yN |θ) =
N

∏
i=1

f (yi|θ) = L(θ |y).

However, we are not interested in the observations, that are known, but rather in θ , so it

is convenient to consider a function of θ that would follow the value of the joint density,
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given the observation y1, . . . ,yN :

L(θ |y1,y2, . . . ,yN) = f (y1,y2, . . . ,yN |θ).

Since we do not know θ0, we will approximate it by computing an estimator θ̂N of it,

that can be judged as the most likely value for θ , given our observations. This is simply

done by maximizing the function L(θ |y1, . . . ,yN) with respect to θ :

θ̂N = argmax
θ∈Θ

L(θ |y1,y2, . . . ,yN),

where we confine the search to the parameter space Θ, and we assume that θ0 belongs

to Θ. The function L(θ |y1,y2, . . . ,yN) is called the likelihood function, and θ̂N the

maximum likelihood estimator.

In practice, due to numerical stability issues, it is often more convenient to work with

the logarithm of the likelihood function, called the log-likelihood:

LLN(θ) = lnL(θ |y1, . . . ,yN) =
N

∑
i=1

ln f (yi|θ) (2.1)

or the average log-likelihood
1
N

N

∑
i=1

ln f (yi|θ). (2.2)

The likelihood function can be denoted simply by L(θ) or by its logarithm LLN(θ).

Maximizing the log-likelihood is equivalent to maximize the likelihood since the loga-

rithm operator is concave:

θ̂N = argmax
θ∈Θ

LLN(θ).
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For the maximum likelihood estimation (MLE) problem, we have to consider the

identifiability condition. Identifiability is a necessary condition for the limiting objec-

tive function to have a unique maximum. In the context of maximum likelihood estima-

tion, identification is defined as:

The parameter vector θ0 is identifiable (or estimable) if for any other parameter

vector θ ′ and for some data y we have: f (y|θ ′) 6= f (y|θ0).

MLE is also attractive because of its asymptotic properties. First, it is consistent as

θ̂N almost surely converges to θ0 as N grows to infinity. While almost sure convergence

is the strongest type of convergence in statistics, it only expresses that the estimator is

close to the true parameter when the number of observations is high. Another important

property, called asymptotic normality, shows that the distribution function of
√

N(θ̂N −
θ0) converges to the multinormal distribution function with mean zero and variance-

covariance matrix V , i.e,
√

N(θ̂N −θ0)
d−→ N(0,V ). The variance-covariance matrix V

of the limiting distribution is referred to as the asymptotic variance-covariance matrix of

θ̂N . In the section below we describe in more details these properties. We will denote by

E0[·] or E[·|θ0] the expectation based on the true parameter θ0.

2.1.1 Consistency of MLE

If the function LLN(θ) converges in probability to E0[ln f (y|θ)] for each θ when N

goes to infinity, and if E0[ln f (y|θ)] reaches its maximum for θ = θ0, then the limit of

the sequence θ̂N , N ≥ 1, should be θ0, under conditions allowing interchanging the maxi-

mization and limit operations. The point wise convergence of LLN(θ)=
1
N ∑

N
i=1 ln f (yi|θ)

to E0[LLN(θ)] is given by the law of large numbers. Moreover, E0[ln f (y|θ)] has a unique

maximum at the true parameter under the information inequality below:

If θ0 is identifiable and E0[| ln f (y|θ)|]< ∞∀θ ∈Θ, then E0[ln f (y|θ)] has a unique

maximum at θ0.
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Sufficient conditions for the maximum of the limit to be the limit of the maximum

are that the convergence of the log-likelihood converges in probability uniformly on the

parameters set Θ, i.e.

sup
θ∈Θ

|LLN(θ)−E0[ln f (y|θ)]| P→ 0.

and that Θ is compact. For more details, see Newey and McFadden, Section 2 [22].

The consistency result for the MLE problem can be formulated as follows:

Suppose that:

C1. (Identification) θ0 is identifiable ( f (y|θ) 6= f (y|θ0), ∀θ 6= θ0).

C2. (Compactness of parameter space) θ0 ∈ Θ, which is an compact subset of

RK, K < N.

C3. (Continuity of the log-likelihood) ln f (yi|θ) is continuous in Θ with prob-

ability one, i = 1, . . . ,N.

C4. (Dominance condition) E0[supθ∈Θ | ln f (y|θ)|]< ∞.

Then θ̂N
p−→ θ0.

That is, if the four conditions above are satisfied then the MLE has the consistency

property. Since f (y|θ0) is a density function, we have
∫

f (y|θ0)dy = 1, implying that

∇θ

∫
f (y|θ0)dy = 0.

Moreover, if the function ln f (y|θ) is continuously differentiable in a neighbourhood

N of θ0, then
∫

ln f (y|θ) f (y|θ0)dy is continuously differentiable and one may inter-

change the integral and gradient operators:

∇θ

∫
ln f (y|θ) f (y|θ0)dy =

∫
∇θ [ln f (y|θ) f (y|θ0)]dy.
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Therefore, the score function g(y,θ) = ∇θ ln f (y|θ) has a mean equal to zero when eval-

uated at θ0 because

E0[g(y,θ0)] = E0[∇θ ln f (y|θ0)] = E0[
∇θ f (y|θ0)

f (y|θ0)
]

⇒ E0[g(y,θ0)] =
∫

∇θ f (y|θ0)dy = ∇θ

∫
f (y|θ0)dy = 0.

Consequently, the expectation of the gradient of the log-likelihood, evaluated at the true

parameters, is also equal to zero:

E0[∇θ LLN(θ0)] = E0

[
1
N

N

∑
i=1

∇θ ln f (yi|θ0)

]
= 0.

The equation E0[∇θ LLN(θ0)] = 0 is called the likelihood equation.

2.1.2 Asymptotic normality for MLE

We add the following conditions in order to establish the asymptotic normality of the

MLE.

Suppose that the condition C1 through C4 are satisfied and

C5. θ0 and θ̂N = argmaxθ∈Θ LLN(θ) belongs to some open subset of Θ almost

surely, for N large enough.

C6. f (y|θ) is twice continuously differentiable and f (y|θ)> 0 in a neighbour-

hood N of θ0.

C7.
∫

supθ∈N ||∇θ f (y|θ)||dy < ∞,
∫

supθ∈N ||∇2
θθ

f (y|θ)||dy < ∞.

C8. The Fisher information matrix I(θ0) = E0[g(y,θ0)gT (y,θ0)] exists and is

non-singular.

C9. E0[supθ∈N ||∇2
θθ

ln f (y|θ)||]< ∞.



9

Then the log-likelihood is differentiable and θ̂N is in the interior of the parameter set

Θ, C5 implies that

∇θ LLN(θ̂N) = 0.

Assuming twice continuous differentiability of the log-likelihood, the first term of the

Taylor-series expansion of ∇θ LLN(θ̂N) around θ̂N gives

0 = ∇θ LLN(θ̂N) = ∇θ LLN(θ0)+∇
2
θθ LLN(θ̄)(θ̂N−θ0),

where θ̄ is a mean value on the line joining θ̂N and θ0 and ∇2
θθ

denotes the Hessian

matrix of the second derivative. Multiplying through by
√

N and solving for
√

N(θ̂N −
θ0), we have

√
N(θ̂N−θ0) =−[∇2

θθ LLN(θ̄)]
−1
√

N∇θ LLN(θ0).

By the zero mean of score (mentioned above) and the central limit theorem,

the term
√

N∇θ LLN(θ0) = 1√
N ∑

N
i=1 g(yi,θ0) converges in distribution to

N(0, I(θ0)), where I(θ0) = E0[g(y,θ0)gT (y,θ0)], the second moment of the score, also

known as the Fisher information matrix. Also, since θ̄ is between θ̂N and θ0, it will

be consistent if θ̂N is, so that by the law of the large numbers, the term ∇2
θθ

LLN(θ̄) =

1
N ∑

N
i=1 ∇2

θθ
ln f (yi|θ0) converges in probability to H0 = E0[∇

2
θθ

ln f (y|θ0)]. Then the in-

verse of ∇2
θθ

LLN(θ̄) converges in probability to H−1
0 by continuity of the inverse at a

non-singular matrix.

It then follows from the Slutzky theorem that

√
N(θ̂N−θ0)

d−→ N(0,H−1
0 I(θ0)H−1

0 ).

From the conditions above, we can interchange the order of differentiation and in-

tegration for the first and second derivatives operations, and using similar arguments as

before, we obtain the well-known information matrix equality:

H0 = E0[∇
2
θθ ln f (y|θ0)] =−I(θ0).
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So, in the context of MLE, if the conditions from C1 to C9 hold, the asymptotic normality

becomes
√

N(θ̂N−θ0)
d−→ N(0, I(θ0)

−1).

This expansion shows that the maximum likelihood estimator is approximately equal

to a linear combination of the average score in large samples, so that asymptotic normal-

ity follows by the central limit theorem applied to the score. This result is the prototype

for many other asymptotic normality results. It has several components, including a first-

order condition that is expanded around the true parameter, convergence of an inverse

Hessian, and a score that follows the central limit theorem. For more details, see Newey

and McFadden, Section 3 [22].

One condition that is not essential to asymptotic normality is the information ma-

trix equality. If the distribution is misspecified (i.e we use an approximation instead

of f (y|θ)) then the MLE may still be consistent and asymptotically normal. How-

ever, if the distribution is misspecified, this will result in the more complicated form

N(0,H−1
0 I(θ0)H−1

0 ). This more complicated form must be allowed to construct a con-

sistent asymptotic variance estimator under misspecification. Moreover, it is often stated

that the Fisher information matrix is defined as the opposite of H0, the Hessian of the

log-likelihood. But many popular models do not meet the requirement needed for the

information matrix equality. Therefore it is more correct and safer to keep the second

moment of the score as the definition of the Fisher information matrix.

2.1.3 Asymptotic covariance estimation for MLE

As we discussed above, the distribution of maximum likelihood estimator θ̂N tends

to a normal distribution

θ̂N
d−→ N[θ0,{I(θ0)}−1].

The asymptotic variance of the maximum likelihood estimator is {I(θ0)}−1, which is

the inverse of the Fisher information matrix. It can be consistently estimated from Î−1,

where Î is a consistent estimator of the information matrix. Recall that the Fisher infor-

mation matrix has the form I(θ0)=E0[g(y,θ0)g(y,θ0)
T ]. That is, I(θ0) is the expectation
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of the outer product of the score. This form suggests that I(θ0) might be estimated by the

method of moments, replacing expectations by sample averages and unknown parameter

values by estimates

Î1 =
1
N

N

∑
i=1

g(yi|θ̂N)g(yi|θ̂N)
T . (2.3)

The consistency of this estimator can be proved by considering the law of large numbers

and the consistency of estimator θ̂N . Moreover, by the information matrix equality,

I(θ0) =−E0[∇
2
θθ

ln f (y|θ)], the estimator might be estimated by the formula

Î2 =−
1
N

N

∑
i=1

∇
2
θθ ln f (yi|θ̂N).

The second estimator is just the negative of the Hessian and it will be consistent under

the law of large numbers and the consistency of Hessian matrix.

In many cases, the second estimator is rarely available because the second derivatives

of the log-likelihood function are complicated or even impossible to calculate. Otherwise

the first estimator is just the reciprocal of the sum of squares of the first derivatives.

This estimator is extremely convenient in most cases because it does not require any

computation beyond the one required to solve the likelihood equation. It has the added

virtue that it is always non-negative definite. The estimator in (2.3) is known as the

BHHH estimator. It is also the estimator that we consider in our work. This estimator

gives us a formula to approximate the Hessian matrix and it can be applied for both the

trust-region and line-search methods which will be discussed in the next section.

2.2 Optimization algorithms

In the previous section, we have considered the maximum likelihood (or log-likelihood)

estimation problem. The purpose of our work is to propose some effective algorithms

to compute the value of MLE. In the context of mathematical programming, we want to

maximize the likelihood or log-likelihood function which is non-linear and often non-

convex, and in many cases, very complex. The MLE can be expressed as a uncon-
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strained, non-convex, non-linear problem as follows

min
x∈Rn

f (x)

where f (θ) = L(θ) or LLN(θ) is a general notation of the likelihood or log-likelihood

function. For solving this problem, we would like the optimization algorithms to behave

in the following manner:

1. They should reliably converge to a local minimizer from an arbitrary starting

point.

2. They should do so as quickly as possible.

We note that these optimization algorithms are iterative. They begin with an initial

guess of the optimal values of the variables and generate a sequence of improved esti-

mations until they reach a solution. Algorithms which satisfy the first above requirement

are called globally convergent, and we say that they use a global strategy (which is dif-

ferent from saying that the algorithm will find a global minimizer). Most strategies make

use of the values of the objective function f and possibly the first and second derivatives

(Hessian) of these functions. Some effective algorithms require the exact Hessian, which

in general is computationally expensive and difficult to program. It is therefore common

practice to use an approximation to the Hessian, with the hope of retaining fast local

convergence at a lower cost. Selection of a particular Hessian approximation method

defines a local strategy. We present in the section below a review of some candidate

methods. In this section, assuming that the Hessian or the approximation of Hessian

matrix is available, we present two strategies in which the Hessian or its approximation

is used as an important factor: line-search method and trust-region method.

2.2.1 Trust region method

Trust-region method defines a region around the current iterate xk within which they

trust the model to be an adequate representation of the objective function. This region is

defined as

Bk = {x ∈ Rn| ||x− xk||k ≤ ∆k} (2.4)
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where ∆k is called the trust-region radius and ‖ · ‖k is an iteration-dependent norm. A

classical choice is the 2-norm. After defining the trust-region, the trust-region method

chooses the step to be the approximate minimizer of the model in this trust-region. Trust-

region methods choose the direction and length of the step simultaneously. If a step is

not acceptable, they reduce the size of the region and find a new minimizer. In general,

the step direction changes whenever the size of the trust-region is altered.

For the trust-region method, we describe a model function mk(p) at each iteration

which is identical to the first two terms of the Taylor-series expansion of f around xk

f (xk + p)≈ mk(p) = f (xk)+∇ f T
k p+

1
2

pT Hk p (2.5)

where ∇ f T
k is the first derivative and Hk is the second derivative of the objective function

at point xk. We also have, from the mean value theorem, that

f (xk + p) = f (xk)+∇ fk
T p+

1
2

pT
∇

2 f (xk + t p)p

for some scalar t ∈ (0,1), and since mk(p) = f (xk)+∇ f T
k p+O(||p||2) and f (xk + p) =

f (xk)+∇ fk
T p+O(||p||2), the difference between two values of mk(p) and f (xk + p) is

O(||p||2). Therefore the approximation error is also small when p is small. The trust-

region algorithm is described in Algorithm 2.1 below using this approximation.

In this description, reasonable parameters of (2.6) are for instance,

η1 = 0.9, η2 = 0.01, and γ = 0.5

but other values can be selected. In our implementation of this algorithm we have set

η1 = 0.75, η2 = 0.01 and γ = 0.5. The quadratic model mk has the form mk(p) =

f (xk)+∇ f T
k p+ 1

2 pT Hk p where Hk is either the Hessian or some approximation of it.

For the MLE problem, the evaluation of the true Hessian is an expensive task, very dif-

ficult to compute and to program, so we use an approximation instead. The methods for

approximating the Hessian give rise to many approaches for solving the MLE problem

that we will discuss in the next section.
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Algorithm 2.1 : Basic trust-region (BTR) algorithm

Step 0. Initialization Given an initial point x0 and an initial trust-region with
radius ∆0. The constants η1, η2, γ are also given which satisfy:

1 > η1 > η2 > 0 and 0 < γ < 1 (2.6)

Choose an initial matrix H0 and set k = 0,

Step 1. Step calculation Calculate step pk ∈ Rn by solving approximately the
problem:

min
p∈Rn
{mk(p)|xk + p ∈Bk}

Evaluate ρk

ρk =
f (xk)− f (xk + pk)

f (xk)−mk(pk)
. (2.7)

If ρk > η2 then define: xk+1 = xk + pk, otherwise we set xk+1 = xk.

Step 2. Trust-region radius update We update the trust-region radius as fol-
low:

∆k+1 =


max{2||pk||,∆k} If ∆k ≥ η1

∆k If η1 > ∆k ≥ η2
γ∆k If ∆k ≤ η2

Set k← k+1 and go to step 1.

The main idea of the trust-region method is to compare the decrease of the pre-

dicted value mk(pk) with the actual value of the objective function f (xk + pk). If the

agreement is sufficiently good, the trial point becomes the new iterate and the trust-

region is maintained or enlarged. If this agreement is poor, the trust-region is shrunk in

order to improve the quality of the model. The problem

min
p∈Rn
{mk(p)|xk + p ∈Bk} (2.8)

is also called the trust-region sub-problem. At each iteration we have to solve (2.8) to

obtain the step pk. The exact minimization of the sub-problem is expensive and often

unnecessary, so instead of solving this problem exactly, it is more efficient to solve

(2.8) approximately. Many methods have been proposed to compute a pk. One popular
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approach is the Steihaug-Toint method (see Conn, Gould, and Toint [10] Section 7.5.1

or Nocedal and Wright [23], page 75).

2.2.2 Line search method

Another broad class of global approaches for solving non-linear unconstrained math-

ematical problems is the line-search methods. In the line search strategy, the algorithm

chooses a direction dk and searches along this direction from the current iterate xk for

a new iterate with a lower function value. The distance to move along dk can be found

by approximately solving the following one-dimensional minimization problem which

finds a step length α .

min
α>0

f ((xk +αdk)) (2.9)

By solving this problem exactly, we would derive the maximum benefit from the direc-

tion dk, but an exact minimization is also expensive and unnecessary. Instead, in a line

search method, a limited number of trial step lengths is generated until one is found that

loosely approximates the minimum of (2.9). At the new point, a new search direction

and step length are computed, and the process is repeated. Each iteration of the line

search method computes a search direction dk and then decides how far to move along

that direction. The iteration is given by

xk+1 = xk +αkdk

where the positive scalar αk is called the step length. The success of the line search

method depends on effective choices of both the direction dk and the step length αk. One

effective strategy consists to perform an inexact line search such to identify a step length

that achieves adequate reductions in f at minimal cost. Typically, inexact linear search

compute step length αk that satisfies some conditions. The algorithm tries out a sequence

of candidate values for α , accepting one of these values when certain conditions are sat-

isfied such as the Wolfe condition or the Goldstein conditions (Nocedal and Wright [23],

p.41).
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With line-search, a simple condition that we could impose on αk is that it provides a

reduction in f but in many cases, it is not enough. A popular inexact line search condition

stipulates that αk should first give a sufficient decrease in the objective function f , as

measured by the following inequality:

f (xk +αkdk)≤ f (xk)+ c1αk∇ f T
k dk (2.10)

for some constant c1. This condition is also the first condition of the Wolfe conditions,

sometimes called the Armijo condition. The sufficient decrease condition is not enough

by itself to ensure that the algorithm makes reasonable progress, because if it is satisfied

for all sufficiently small values of α , it will make the algorithm slow or will never con-

verge. To rule out unacceptably short steps, we introduce a second requirement, called

the curvature condition, which requires αk to satisfy the condition

∇ f (xk +αkdk)
T dk ≥ c2∇ f T

k dk (2.11)

for some constant c2 ∈ (c1,1). We note that this requirement makes sense because if the

slope of φ ′(α) = ∇α f (xk +αdk) is strongly negative, we have an indication that we can

reduce f significantly by moving further along the chosen direction. On the other hand,

if the slope is only slightly negative or even positive, it is a sign that we cannot expect

much more decrease in f in this direction, so it might make sense to terminate the line

search.

The sufficient decrease and curvature conditions are known collectively as the Wolfe

conditions. Beside the Wolfe conditions, the strong Wolfe conditions can be written as:

f (xk +αkdk)≤ f (xk)+ c1αk∇ f T
k dk.

|∇ f (xk +αkdk)
T dk| ≥ c2|∇ f T

k dk|.
(2.12)

where c1, c2 are two constant satisfying 1 > c2 > c1 > 0. In practice, c1 is chosen to

be quite small, say c1 = 10−4. c2 = 0.9 if dk is chosen by a Newton or quasi-Newton

method, and equal 0.1 if dk is obtained from a non-linear conjugate gradient (Nocedal
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and Wright p.39 [23]).

Most line search algorithms require dk to be a descent direction, one for which

dT
k ∆ fk < 0, because this property guarantees that the function f can be reduced along

this direction. Moreover, the search direction often has the form:

dk =−H−1
k ∇ fk

where Hk is a Hessian or an approximation of the Hessian matrix, and has to be a sym-

metric and non-singular matrix. In many cases, if computing the Hessian is an expensive

task, an approximation of Hessian Hk is used in place of the true Hessian. The approx-

imate Hessian has to be updated at each iteration using a secant approximation such as

BFGS. Methods for approximating the Hessian matrix will be discussed in next sec-

tion. We also remark that in the context of line-search method, the matrix Hk has to

be positive-definite. The numerical optimization algorithm based on linear search is

described in algorithm 2.2.

Algorithm 2.2:Line-search algorithm

Step 0. Initialization: Given an initial point x0, an initial Hessian or approxi-
mation Hessian matrix H0 and k = 0,

Step 1. Search direction calculation: Compute search direction dk which sat-
isfies the equation:

Hkdk =−∇ f (xk) (2.13)

Step 2. Step calculation: Compute αk which satisfies the Wolfe condition as in
(2.12) and obtain the step sk = αkdk.
Set xk+1 = xk + sk.
Set k← k+1, update matrix Hk+1 and go to step 1.

We note that for the secant approximation, the update will choose Hk+1 that satisfies

the secant condition

Hk+1(xk+1− xk) = ∇ fk+1−∇ f (xk).

Further the matrix Hk+1 cannot be positive definite if yT
k sk < 0, because sT

k Hk+1sk =
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yT
k sk < 0. Typically, quasi-Newton methods that use the secant update employ a line

search to locate a point for which yT
k sk > 0. The step length αk satisfies the Wolfe

conditions, therefore we have:

∇ f T
k+1dk ≥ c2∇ f T

k dk

⇒ (∇ f T
k+1−∇ f T

k )dk ≥−(1− c2)∇ f T
k dk

⇒ (∇ f T
k+1−∇ f T

k )sk ≥−(1− c2)αk∇ f T
k dk.

As in (2.13), we have dT
k ∇ fk = −dT

k Hkdk < 0. Therefore if Hk is positive definite, we

always have (∇ f T
k+1−∇ f T

k )sk ≥ −(1− c2)αk∇ f T
k dk > 0, which means that the matrix

Hk+1 is positive definite. When paired with the BFGS update, a line search using the

Wolfe conditions will produce a positive-definite sequence of matrices {Hk}.

2.2.3 Stopping conditions

All iterative algorithms need to verify at each iteration whether a stopping condition

has been met. A common stopping condition is when an iteration produces a small value

of the norm of the gradient, in this case we have a successful execution process. Another

popular stopping condition is when an insignificant objective decreases is produced or

when the number of iterations is too large or the trust-region radius is too small (in

trust-region algorithm), in which case we have an unsuccessful execution process.

The next two stopping conditions are used in our implementation. A first stopping

condition used at each iteration is a classical test based on the gradient. The algorithm is

terminated as soon as

∇ f (xk)≤ ε,

where ε is a small constant. We also use a modification of this classical test which

is based on the relative gradient (Dennis and Schnabel, 1983 [12], chapter 7 ). The

algorithm can be terminated when

∇̄(xk)
def
= max

0≤c≤[size of xk]−1

(
|[∇ f (xk)]c|,max{[xk]c,1.0}

max{| f (xk)|,1.0}

)
≤ ε
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where vc is cth component of the vector v.

2.3 Hessian approximations

The previous section describes two common classes of methods to optimize non-

linear unconstrained functions. In many cases, these methods requires that we compute

derivatives of the function that needs to be optimized, which can be an expensive task.

For example, in the context of the trust-region and the line-search iterative methods

above, an Hessian matrix has to be computed for each iteration. The computation of

the Hessian is costly, so we use an approximation instead of true Hessian. The meth-

ods selected for approximating the Hessian decide of the behavior of the optimization

method. In this section, we describe three methods for approximating the Hessian ma-

trix. The secant approximation and statistical approximation are popular in optimization

and maximum likelihood estimation. We also present one special method, called com-

bined approximation, which is based on the special structure of the MLE problem.

2.3.1 Statistical approximation

In the context of maximum likelihood estimation, we have presented the BHHH

estimator which allows to approximate the Fisher information matrix by the sum of

outer products of the scores:

Î1 =
1
N

N

∑
i=1

g(yi, θ̂N)g(yi, θ̂N)
T

where g(yi,θ) is the first derivative of the function ln f (yi|θ̂N), with respect to θ . If the

information matrix equality holds, we have another estimator of the information matrix

as follows

Î2 =−
1
N

N

∑
i=1

∇
2
θθ ln f (yi|θ̂N) =−∇

2
θθ LLN(θ̂N).
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Under the conditions of the information equality, both estimators are consistent. This

result gives a formula for approximating the Hessian matrix

Ĥ(θ) =− 1
N

N

∑
i=1

g(yi,θ)g(yi,θ)
T (BHHH) (2.14)

where Ĥ(θ) is an approximation of the Hessian matrix evaluated at θ . This approach

has been originally proposed by Berndt, Hall, Hall and Hausman [6], as a cheap Hessian

approximation technique as we have to evaluate the individual gradients only, and don’t

have to deal with the second derivative at all.

Another formulation of the BHHH estimator can be obtained by subtracting the mean

score before taking the outer product

Ĥ(θ) =− 1
N

N

∑
i=1

(g(yi,θ)−g)(g(yi,θ)−g)T (BHHH2) (2.15)

where g = 1
N ∑

N
i=1 g(yi,θ). The BHHH2 makes sense when the iterative process is not at

the maximum, the average score is not zero and H(θ) does not represent the covariance

of the scores (Train [27], p.195).

2.3.2 Secant approximation

The approach can be motivated by observing the quadratic expansion of the objective

function around an iterate of the optimization process:

mk(p) = f (xk)+∇ f T
k p+

1
2

pT Hk p

where Hk is an symmetric matrix that is updated at every iteration. Note that the value

and the gradient of this model at p = 0 match f (xk) and ∇ f (xk) respectively. Suppose

that that we have generated a new iterate xk+1 and wish to construct a new quadratic

model with the new matrix Hk+1

mk+1(p) = f (xk+1)+∇ f (xk+1)
T p+

1
2

pT Hk+1 p (2.16)



21

such that the gradient of mk+1(p) matches the gradient of the objective function for the

latest two iterations xk and xk+1. We can realize that ∇mk+1(0) = ∇ f (xk+1) precisely

when the gradient of mk+1 matches the gradient of the objective function at xk+1. For a

matching at xk, we have to have:

∇mk+1(xk− xk+1) = ∇ f (xk) (2.17)

Taking derivatives of both sides of (2.16) at p = xk− xk+1 and using (2.17) , we obtain

∇ f (xk) = ∇ f (xk+1)+Hk+1(xk− xk+1).

Rearranging, we obtain

Hk+1(xk+1− xk) = ∇ f (xk+1)−∇ f (xk). (2.18)

If we define vectors sk = xk+1− xk and yk = ∇ f (xk+1)−∇ f (xk), (2.18) becomes

Hk+1sk = yk. (2.19)

We refer to this formula as the secant condition and consider two methods constructed

based on this formula, called the BFGS method and the SR1 method. With the BFGS

method, named from its discoverers Broyden, Fletcher, Goldfarb, and Shanno, the matrix

Hk+1 is updated at each iteration by the formula

Hk+1 = Hk−
HksksT

k Hk

sT
k Hksk

+
ykyT

k
yksk

(BFGS) (2.20)

This is the fundamental idea of quasi-Newton updating: instead of recomputing the it-

eration matrices from scratch at every iteration, we apply a simple modification that

combines the most recently observed information about the objective function with the

existing knowledge embedded in our current Hessian approximation.

In the BFGS updating formula, the updated matrix Hk+1 differs from its predecessor
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Hk by a rank 2 matrix. There is also a simple rank-1 update that maintains symmetry of

the matrix and allows it to satisfy the secant equation, called SR1, which is described in

the formula below

Hk+1 = Hk +
(yk−Hksk)(yk−Hksk)

T

(yk−Hksk)T sk
(SR1) (2.21)

Note that this update doesn’t maintain the positive definiteness and the matrices gener-

ated by this formula tend to be very good approximations of the Hessian matrix, often

better than the BFGS approximations. This remark was considered a major drawback

when we used line search method, but with the advent of trust-region methods, the SR1

updating formula has proved to be quite useful, and its ability to generate indefinite Hes-

sian approximations can actually be regarded as one of its chief advantages, as we can

capitalize on negative curvature directions.

2.3.3 Combined approximation

Secant approximation and statistical approximation are well-known approaches in

mathematical programming for the case when the exact Hessian is too hard or impossible

to compute. Another approximation of the Hessian can be obtained by considering the

special structure of the maximum log-likelihood problem as in the work of D.Bunch

([8]). For this, we consider the objective function under generalized regression model:

f (θ) = ρ(R(θ)), R : Rp→ RN , ρ : RN → R1.

In the context of the generalized regression, the N components of R(θ) are the general-

ized residuals for the N data points. We have R(θ) = [r1(θ),r2(θ), . . . ,rn(θ)]
T where

ri(θ) is the ith generalized residual and the function ρ(p), p ∈ RN , is the sum of N

criterion functions φi(t), t ∈ R. So the function has the form:

f (θ) =
N

∑
i=1

φi(ri(θ)).
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Selection of the specific functional forms for ri(·), and φ(·) corresponds to various re-

gression problems. In the MLE problem, if we define φ(·) ≡ ln(·) and rn(·) ≡ f (yi|·)
then we obtain the log-likelihood function under generalized regression:

LLN(θ) = f (θ) =
1
N

N

∑
i=1

ln f (yi|θ),

the first and the second-order development under generalized regression:

∇ f (θ) = R′(θ)T
∇ρ(R(θ))

∇
2 f (θ) = R′(θ)∇2

ρ(R(θ))R(θ)+
N

∑
i=1

δiρ(R(θ))∇2rn(θ)

and in the context of the MLE problem:

∇θ LLN(θ) =
1
N

N

∑
i=1

∇θ f (yi|θ)
f (yi|θ)

∇
2
θθ LLN(θ) =

1
N

N

∑
i=1

∇2
θθ

f (yi|θ)
f (yi|θ)

− 1
N

N

∑
i=1

[∇θ f (yi|θ)][∇θ f (yi|θ)]T

f (yi|θ)2

Therefore the Hessian can be written as the sum of two matrices

∇
2
θθ LLN(θ) = A+C

where

A =
1
N

N

∑
i=1

∇2
θθ

f (yi|θ)
f (yi|θ)

and C =− 1
N

N

∑
i=1

[∇θ f (yi|θ)][∇θ f (yi|θ)]T

f (yi|θ)2 .

Moreover, (2.14) shows that C = −∑
N
i=1 gigT

i , where gi is the first derivative of

f (yi|θ) or score function, is also the matrix obtained by the BHHH formula. The Hes-

sian matrix is the sum of a matrix C, which is easy to calculate, and the matrix A which

requires the calculation of N expensive Hessian matrices. The expensive term A can

be approximated by the secant approximation. We present here two approaches to ap-
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proximate the second term of the Hessian matrix considering the special structure of

maximum likelihood estimation.

We suppose that at iteration k, the matrix Hk is available to approximate the next

Hessian Hk+1. Following (2.18), the new approximation can be obtained by specifying

an appropriate secant condition, which takes the form

Hk+1sk = yk (2.22)

where Hk+1 is a new matrix approximation. We can write Hk+1 = C+Ak+1 where the

matrix C is computed by the BHHH formula and where the second term Ak+1 is the

approximation of A for the next iteration. If we set the matrix Ak+1 = 0 for all iteration

k, the approximation becomes the statistical approximation (BHHH).

As discussed in Bunch ([8]), we first consider the secant condition (2.22). The matrix

Ak+1 can then be expressed as

Ak+1sk = yk−Csk.

So if we set ȳk = yk−Csk, we have a secant equation for updating matrix Ak+1 - called

the default secant condition in the terminology of Dennis and Schnabel [12] :

Ak+1sk = ȳk (2.23)

Otherwise, we can consider the structure of the matrix A (at iteration k+1)

A =
1
N

N

∑
i=1

∇2
θθ

f (yi|θk+1)

f (yi|θk+1)
(2.24)

Under the secant approach, we consider each term ∇2
θθ

f (yi|θk+1)

f (yi|θk+1)
and note that

∇
2
θθ f (yi|θk+1)(θk+1−θk)≈ ∇θ f (yi|θk+1)−∇θ f (yi|θk).
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Substituting into (2.24) gives us

Ask ≈
1
N

N

∑
i=1

∇θ f (yi|θk+1)−∇θ f (yi|θk)

f (yi|θk)
.

If we set ŷk =
1
N ∑

N
i=1

∇θ f (yi|θk+1)−∇θ f (yi|θk)
f (yi|θk)

, we obtain another secant equation to approx-

imate the matrix Ak+1

Ak+1sk = ŷk (2.25)

(2.23) and (2.25) gives us two secant conditions to approximate the Hessian term A.

These are two approaches to approximate the Hessian matrix that we call combined

approximation. We note that the BFGS or SR1 methods can be used in both of the two

secant conditions above to obtain these approximations. With the secant equation in

(2.23), the matrix Ak+1 can be estimated by BGFS formula

Ak+1 = Ak−
AksksT

k Ak

sT
k Aksk

+
ȳkȳT

k
ȳksk

or by SR1 update

Ak+1 = Ak +
(ȳk−Aksk)(ȳk−Aksk)

T

(ȳk−Aksk)T sk
.

With the equation (2.25), the formulas is similar but we use ŷk =∑
N
i=1

∇θ f (yi|θk+1)−∇θ f (yi|θk)
f (yi|θk)

instead of ȳk.

This section terminates the background of the maximum likelihood estimation and

the approaches to solve it. The principle of the problem and the methods for estimating

MLE were presented. The MLE problem occurs in many applications. In our work, we

focus specifically on discrete choice theory. We implemented our algorithms for the dis-

crete choice problem, especially for the mixed-logit model, as a good framework to test

the efficiency of our algorithms. The main concepts and principles of the discrete choice

theory will be presented in Chapter 5, but before that, we will present our contributions

about the optimal algorithms to estimate the MLE in the next chapter, based on the idea

that we can switch between the Hessian approximation methods.



CHAPTER 3

SWITCHING APPROACHES FOR MAXIMUM LIKELIHOOD ESTIMATION

In the previous chapter, we have considered maximum likelihood estimation and

some related concepts such as the Fisher information matrix and the information matrix

equality. We have also seen that the BHHH method is appropriate given the special

properties of the likelihood function and the maximum likelihood estimation. Moreover,

based on the special structure of MLE, Bunch [8] has proposed a new method to correct

the BHHH approximation using standard secant Hessian approximations, presented in

the previous chapter under the name of combined approximation.

The existence of many methods to approximate the Hessian matrix has lead us to

consider combining several Hessian approximations in order to obtain a better model at

each iteration. Bunch [8] has the first proposed combining several Hessian approxima-

tions under the name of model switching. Our work develops the generalization of the

method proposed by Bunch, in which a set of Hessian approximations is considered. In

trust-region methods, this generalization generates a set of sub-problems while for line-

search methods it creates a set of search directions. We propose approaches to select

the most reasonable sub-problem or search direction for determining the step at each

iteration.

In this chapter, we first introduce two new general frameworks based on model

switching for trust-region methods and for line-search methods. They are key in the

development of our algorithms. Next we describe our own algorithms: predictive al-

gorithm, retrospective algorithm, multi sub-problems algorithm and multi sub-problems

with BHHH algorithm.

3.1 Model switching

The key idea of model switching is that we can switch between quadratic models at

each iteration. Each quadratic model correspond to one Hessian approximation. We con-
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sider a set of Hessian approximations, then we obtain the set of corresponding quadratic

models.

In the previous chapter, we have introduced three methods to approximate Hessian

matrices in the context of maximum likelihood estimation:

– statistical approximation or BHHH approximation.

– secant approximation, either the SR1 and the BFGS formula.

– combined approximation (based on the work of Bunch [8]).

The available methods to approximate the Hessian matrix constitute the set of Hes-

sian approximations. We denote by Hk = {H i
k, i = 1,2 . . .} the set of Hessian approxi-

mations at iteration k with i indexing the Hessian approximation method. H i
k+1 will rep-

resent the update of matrix H i
k produced by one of the approximation methods (BFGS,

SR1, BHHH or combined approximation).

For trust-region methods based on a set of Hessian approximations, we denote by

{mi
k(p), i = 1, . . .} a set of quadratic models where each model mi

k(p) is defined by

mi
k(p) = f (xk)+∇ f T

k p+
1
2

pT H i
k p, H i

k ∈Hk. (3.1)

The set of quadratic models yield a set of sub-problems {minp∈Bk mi
k(p), H i

k ∈Hk}.
On the other hand, for line-search methods, the search direction is computed by cal-

culating the vector dk satisfying the condition Hkdk =−∇ f (xk) where Hk is an Hessian

matrix approximation. The set of Hessian approximations provides a set of search direc-

tions {di
k, i = 1,2, . . .}, where each element satisfies the condition

H i
kdi

k =−∇ f (xk), H i
k ∈Hk. (3.2)

The general form of model switching is described by Algorithm 3.1 for trust-region

methods and by Algorithm 3.2 for line-search methods.

Obviously, a key issue in these two algorithms is the identification for step 1 of a

method to select the best Hessian matrix approximation. We do not have a direct answer

to this question but we propose some approaches to predict which matrix is better based
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Algorithm 3.1 : General model switching algorithm (trust-region methods)
Step 0. Initialization Given an initial point x0 and an initial trust-region with

radius ∆0. The constants η1, η2, γ are also given as in Algorithm 2.1.
Choose an initial set of matrices H0 and set k = 0.

Step 1. Step calculation Consider a set of models {mi
k(p)}, where each model

mi
k(p) is defined as in (3.1). Select only one model mi∗

k (p) and solve ap-
proximately the corresponding sub-problem

min
p∈Bk

mi∗
k (p)

to obtain step pi∗
k .

Evaluate ρk

ρk =
f (xk)− f (xk + pi∗

k )

f (xk)−mk(pi∗
k )

.

If ρk > η2 then define: xk+1 = xk + pi∗
k , otherwise set xk+1 = xk.

Step 2. Trust-region radius update Identical to step 2 of Algorithm 2.1.

on the properties of the quadratic model. For trust-region methods, we note that the

model m(p) is defined based on a Taylor-serie expansion of f around x, which is also the

prediction of the objective function around x. Thus we define the best model as the model

that is the closest to the objective function, i.e, the model mi∗(p) where i∗ minimizes the

different between the quadratic function and the objective function

i∗ = argmin
i
|mi(p)− f (x+ p)|.

Another possible model choice is to select the one giving the best prediction of the

objective function decrease.

For line-search methods, the quadratic model m(d) is also used to predict the ob-

jective function. The search direction d can be computed by minimizing the quadratic

function. Thus we take the derivative of m(d) and set it equal to zero to find the solution.

∇dm(d) = 0.
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Algorithm 3.2 : General model switching algorithm (line-search methods)
Step 0. Initialization: Given an initial point x0, an initial set of Hessian approx-

imation matrices H0 and set k = 0.

Step 1. Search direction calculation: Compute the set of search directions
{di

k} as in (3.2). Search direction di∗
k is somehow deemed to be better than

the other ones and can be chosen to define the step.

Step 3. Step calculation: Compute αk by solving approximately the sub-
problem

min
α>0

f (xk +αdi∗
k )

Set xk+1 = xk +αkdi∗
k and go to step 1.

But m(d) = f (x)+∇ f T d+ 1
2dT Hd, so we have ∇ f T +dT H = 0. This give the equation

to calculate the search direction d.

dT H =−∇ f T .

The real step is obtained by searching along the search direction s = αd. Like trust-

region methods, the search direction can be selected by minimizing the difference be-

tween the quadratic function and the objective function, i.e, such that i∗ minimizes the

value |mi(s)− f (x+ s)|.
Our purpose is to apply algorithms 3.1 and 3.2 to complex functions, so we have to

avoid computing the value of the objective function or its derivatives many time, other-

wise our algorithms will be slow. A predictive algorithm and a retrospective algorithm

are developed, which use the available information and try to avoid calculating more

than one objective function and its derivative at each iteration. The multi sub-problems

algorithm is another approach in which we compute more than one step and compare

the decrease in the objective function. This algorithm requires computing the objective

function more than once at each iteration, but we can show that the number of needed

iterations is much smaller when compared with other approaches. Among the approxi-

mations of the Hessian matrix, statistical approximation has proved its efficiency at the

beginning of the iterative process. Therefore we can start with BHHH approximation
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and switch to multi sub-problem when the current point is close enough to the solu-

tion. This is also the idea to improve the multi sub-problems approach, presented in the

section below.

3.2 Predictive model

The idea of predictive model is to use available information from the current iteration

to select an approximation of the Hessian in the next iteration.

For trust-region algorithms, the step pk is computed by approximating the solution of

the sub-problem minp∈Bk mk(p). If this step is not accepted, the trust-region is reduced

and the sub-problem is solved again, otherwise this step can be used to select the Hessian

approximation for the next iteration. Recall that we use a quadratic model to approximate

the objective function:

f (xk + p)≈ mi
k(p) = f (xk)+∇ f T

k p+
1
2

pT H i
k p.

We denote by δ i
k(p) the approximation error of the quadratic function mi

k(p), which is

defined as follows

δ
i
k(p) = |mi

k(p)− f (xk + p)|

= | f (xk + p)− f (xk)− pT
∇ fk−

1
2

pT H i
k p|

(3.3)

where H i
k ∈Hk is one Hessian approximation. We assume that the best Hessian approx-

imation minimizes the approximation error of the quadratic function. So we can predict

the best Hessian approximation for the next iteration by finding i∗ which satisfies:

i∗ = argmin
i
|δ i

k(pk)|. (3.4)

In case we apply the predictive model for line-search, the index i∗ satisfies

i∗ = argmin
i
|δ i

k(sk)|. (3.5)
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where sk = αkdk is the step at the current iteration. We note that, for evaluating the

approximation errors δ i
k(pk) or δ i

k(sk), we use the computed objective functions. Thus

we don’t have to calculate more than one objective function at each iteration.

Moreover, in the context of trust-region method, if ρk ≥ η2, the iteration k is said

to be successful since the candidate point xk + pk is accepted, otherwise the iteration is

declared unsuccessful and the new point is rejected. Moreover, if ρk ≥ η1, the agreement

between the model and the function is particularly good, so the iteration is said to be very

successful. If ρk ≤ η2, the iteration is said to have failed. For trust-region algorithms,

we expect the iteration to be very successful and to increase the trust-region, otherwise

we have to keep or reduce the trust-region to obtain a bigger agreement ρk. Thus the

agreement ρk is said to be used to predict the next trust-region.

In view of model switching, it seems to be reasonable to use the value of ρk to select

the Hessian approximation of the next iteration, which gives us another approach to

obtain the next Hessian approximation H i∗
k+1 in the context of predictive model. Let

ρ
i
k =

f (xk)− f (xk + pk)

f (xk)−mi
k(pk)

,

and let {ρ i
k|H

i
k ∈Hk} be a set of agreements. The Hessian approximation H i∗

k+1 is found

by solving

i∗ = argmax
i

ρ
i
k. (3.6)

The details of the predictive algorithm are given in Algorithm 3.3.

3.3 Retrospective model

In the predictive model, the prediction of the Hessian approximation Hk for the next

iteration occurs at the end of iteration k−1 given that the value of the objective function

f (xk−1 + pk−1) has been already calculated. The predictive algorithm uses this value to

evaluate the accuracy of the quadratic model mk−1 around xk−1. But this might seem

unnatural since the Hessian approximation Hk is used to determine the model mk, not

the previous model mk−1. A more reasonable approach consist to determine the matrix
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Algorithm 3.3: Predictive algorithm
At iteration k:
(we note that the best Hessian approximation Hk is determined at the previous iter-
ation).

2. Trust-region method.
2.1 Step calculation:

Evaluate the step pk by solving approximately the sub-problem

min
xk+p∈Bk

mk(p).

Evaluate ρk

ρk =
f (xk)− f (xk + pk)

f (xk)−mk(pk)
.

If ρk > η2 set xk+1 = xk + pk, otherwise set xk+1 = xk.
2.2 Predict the Hessian approximation:

The next Hessian approximation H i∗
k+1 is predicted by solving (3.4) or

(3.6). Set Hk+1 = H i∗
k+1 (to be used at next iteration).

2.3 Trust-region radius update:
Identical to step 2 of Algorithm 2.1.

3. Line-search method.
3.1 Search direction calculation:

Identical to step 1 of Algorithm 2.2
3.2 Step calculation:

Compute step length αk which satisfies the Wolfe conditions and set
xk+1 = xk +αkdk.

3.3 Predict the Hessian approximation: Predict the next Hessian approxi-
mation H i∗

k+1 by (3.5). Set Hk+1 = H i∗
k+1 (to be used at next iteration).

Hk at the beginning of iteration k, by considering the quadratic model mk. To avoid

computing more than one objective value at each iteration, the retrospective algorithm

use the available objective value at the previous iteration to evaluate the model mk.

We evaluate the approximation error (defined in (3.3)) at the point −ph (where h < k

is the largest successful iterate before iteration k, ph 6= 0) by

δ
i
k(−ph) = | f (xh)− f (xk)+ pT

h ∇ fk−
1
2

pT
h H i

k ph|.
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The calculation of δ i
k(−ph) does not require any new calculations of the objective func-

tion. And finally the matrix H i∗
k can be obtained by minimizing the approximation error

i∗ = argmin
i

δ
i
k(−ph) (3.7)

for trust region algorithms or

i∗ = argmin
i

δ
i
k(−sk−1) (3.8)

for the line-search algorithms.

In the classical framework of the trust-region algorithms, the trust-region radius is

updated at the end of each iteration. The ratio ρk is used to predict the trust-region

radius for the next iteration. Bastin et al. [4] propose the retrospective algorithm in

which the trust-region radius is updated after each successful iteration k− 1 (that is at

the beginning of iteration k) on the basis of the retrospective ratio ρ̃k which is defined as

follows

ρ̃k =
f (xk)− f (xk−1)

f (xk)−mk(−pk−1)
.

In the context of model switching, we also defined the set of retrospective ratios {ρ̃ i
k, 1 =

1,2, . . .} where each element is determined as follows

ρ̃
i
k =

f (xk)− f (xh)

f (xk)−mi
k(−ph)

where h < k is the largest successful iterate before iteration k. Based on the role of

retrospective ratios in the retrospective algorithm, the Hessian approximation can be

determined by choosing the index i∗ which maximizes the retrospective ratio

i∗ = argmax
i

ρ̃
i
k (3.9)

which provides another method to select the Hessian approximation for the current iter-

ation. Equations (3.7) and (3.9) provide two approaches to select the Hessian approx-

imation in the context of model switching, and it is straightforward to show the two
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approaches are not equivalent. The retrospective algorithm is described in Algorithm

3.4.

Algorithm 3.4 : Retrospective algorithm
At iteration k:

1. Define the set of Hessian approximations Hk.

2. Trust-region method:
2.1 Step calculation:

Select the Hessian approximation H i∗
k by solving (3.7) or (3.9).

Calculate the step pk by solving approximately the sub-problem

min
xk+p∈Bk

mi∗
k (p).

Evaluate ρk

ρk =
f (xk)− f (xk + pk)

f (xk)−mk(pk)
.

If ρk > η2 set xk+1 = xk + pk, otherwise set xk+1 = xk.

2.2 Trust-region radius update:
Identical to step 2 of Algorithm 2.1.

3. Line-search method:
3.1 Search direction calculation:

Select the Hessian approximation H i∗
k by solving (3.8).

The search direction dk satisfies H i∗
k dk = ∇ fk

3.2 Step calculation:
Identical to step 2 of Algorithm 2.2

3.4 Multi sub-problem model

Each iteration in trust region methods defines a sub-problem. Solving approximately

this sub-problem determines the current step. In the context of model switching, at each

iteration there is a set of sub-problems:

min
p∈Bk

mi
k(p) = min

p∈Bk
{ f (xk)+∇ f T

k p+
1
2

pT H i
k p}, H i

k ∈Hk.
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For trust region methods, we solve (approximately) the sub-problem to get the step. It is

natural to consider a step as good if it decreases significantly the objective function. This

leads to a way to solve approximately all the available sub-problems in order to obtain

the set of steps pi
k and to choose the step which minimizes the objective function. We

call this approach the multi sub-problems algorithm. The step pi∗
k is chosen if it satisfies:

i∗ = argmin
i

f (xk + pi
k) (3.10)

or

i∗ = argmax
i
| f (xk + pi

k)− f (xk)|. (3.11)

When the predictive and retrospective algorithm choose the sub-problem by evaluating

how well the quadratic model predict the objective function, the multi sub-problem al-

gorithm has a more natural approach since the sub-problem is chosen by evaluating the

decreasing of the objective function made by the steps. However this algorithm requires

solving the multi sub-problem and calculating more than one objective function at each

iteration. It violates one of the purposes of the switching model mentioned above. In

some cases, the algorithm can be slower than the two previous algorithms, but it requires

less iterations and it converges in some difficult cases (where retrospective and predic-

tive algorithms cannot converge). Details of the results will be presented in next chapter

with some real data of choice model. Algorithm 3.5 describes the multi sub-problems

algorithm.

3.5 Multi sub-problem with the BHHH model

The algorithm that uses BHHH approach to update the Hessian approximation, can

reach very fast the neighbourhood of solutions, but often it does not converge (as shown

in next chapter). On the other hand, the multi sub-problems algorithm has good conver-

gence, it requires less iterations than other approaches but it is slow because it computes

more than one objective value at each iteration. At the beginning of the iterative process,

if we use the BHHH approach instead of multi sub-problems, we can avoid computing
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Algorithm 3.5 : Multi sub-problems algorithm
At iteration k:

1. Define the set of Hessian approximation Hk.

2. Step calculation:
Calculate the set of steps {pi

k, i = 1,2 . . .} by solving approximately all the
sub-problems.

min
p∈Bk
{mi(p), H i

k ∈Hk}.

Determine the best step pi∗
k by solving (3.10) or (3.11).

Compute the ratio ρk

ρk =
f (xk)− f (xk + pi∗

k )

f (xk)−mk(pi∗
k )

.

If ρk > η2 set xk+1 = xk + pk, otherwise set xk+1 = xk.

3. Trust-region radius update: Identical to step 2 of Algorithm 2.1.

unnecessary objective values. From this analysis, we present an improvement of the

multi sub-problems approach which combines the BHHH method and the multi sub-

problems approach. The algorithm uses the BHHH method for the first iterations, but

when the current point is in the neighborhood of the solution, it switches to the multi

sub-problems algorithm.

The decision to switch from the BHHH method to the multi sub-problems method

has an impact on the algorithm, but it is difficult to determine when a point is in the

neighborhood of the solution. We consider two approaches. One is that we determine

that a point is in the neighborhood of the solution if the norm of the gradient at this point

is small. A second one considers the length of the step, if max{||pu||, ||pv||}< ε where

pu and pv is two successive successful steps, and ε is a small constant. Algorithm 3.6

describes the Multi sub-problems with BHHH algorithm.

Note that switching in multi sub-problems with BHHH occurs only one time, i.e, if

the algorithm switch to multi sub-problems algorithm it will never switch back to the

BHHH approach.
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Algorithm 3.6 : Multi sub-problems with BHHH algorithm
Give a constant ε > 0.
At iteration k:

1. Step calculation:
1. If max{||pu||, ||pv||}> ε , the Hessian approximation Hk is computed by

the BHHH formula. The rest of the step is identical to step 1 of Algo-
rithm 2.1.

2. If max{||pu||, ||pv||} ≤ ε , the step pk is computed by multi sub-problem
approach, identical to step 2 of Algorithm 3.5.

2. Trust-region radius update: Identical to step 2 of Algorithm 2.1.



CHAPTER 4

ADAPTIVE LINE SEARCH

The previous chapter has introduced new algorithms inspired from model switching.

We now describe our new line-search algorithm called adaptive line-search. This al-

gorithm is developed from the idea that we can adapt the length of search directions to

obtain better steps. Adaptive line-search algorithm is described in this chapter as a new

optimization algorithm to solve MLE.

In line-search methods, the step length needs to be computed at each iteration. The

following sub-problem needs to be solved at each iteration

min
α>0

φk(α) = f (xk +αdk)

where dk is the search direction, which can be computed by the formula Hkdk = ∇ f (xk).

In computing the step length αk, we would like to choose αk such to obtain a substantial

reduction of f , but at the same time, we do not want to spend too much time making

this choice. The ideal choice would be the global minimizer of the univariate function

φk(α). But in general, it is too expensive to identify this value. Finding even a local

minimizer of φk with a moderate precision generally requires too many evaluations of

the objective function f and possibly its derivatives. More practical strategies perform

an inexact line-search to identify a step length that achieves adequate reductions in f at

minimal cost.

Typical line-search algorithms try a sequence of candidate values for α and accept

one of these values when certain conditions are satisfied (i.e the Wolfe conditions, de-

scribed in previous chapter). A popular inexact line-search condition stipulates that αk

should first give a sufficient decrease in the objective function f

f (xk +αdk)≤ f (xk)+ c1α∇ f T
k dk. (4.1)
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But the sufficient decrease condition is not enough by itself to ensure that the algorithm

makes reasonable progress as it can be satisfied for all sufficiently small values of α . To

rule out unacceptably short steps, we consider a second condition, called the curvature

condition, which requires αk to satisfy

∇ f (xk +αkdk)
T dk ≥ c2∇ f T

k dk. (4.2)

The iterative process to compute the step length which satisfies the Wolfe conditions

(more simply we can call it line-search procedure) requires an initial estimate α0
k and

generate a sequence {α i
k} that either terminates with a step length αk satisfying the

conditions or determines that such a step length does not exist. A typical line-search

procedure consists of two phases: a bracketing phase that finds an interval [α i
k,α

i+1
k ]

containing acceptable step lengths, and a selection phase that zooms in to locate the final

step length αk. The selection phase usually reduces the bracketing interval during its

search for the desired step length and interpolates some of the function and derivative

information gathered on earlier steps to guess the location of the minimizer (see Nocedal

and Wright [23], Chapter 2).

The first phase of line-search procedure generates a sequence of trial step lengths

{α i
k, i = 0,1, . . .} which is monotonically increasing. The procedure uses the knowledge

that the interval (α i
k,α

i+1
k ) contains step lengths satisfying the Wolfe conditions if α

i+1
k

violates the sufficient condition, or φk(α
i+1
k ) ≥ φk(α

i
k), or ∇αφk(α

i+1
k ) ≥ 0. From the

interval (α i
k,α

i+1
k ) generated by the first phase, the second phase define the interval

(α lo
k ,αhi

k ) which starts by (α i
k,α

i+1
k ). Each iteration of the second phase generates (αk) j

between (α lo
k ,αhi

k ) then replaces these endpoints by (αk) j. This process stop at the value

αk that satisfies the curvature condition.

For the line-search procedure, an initial step length α0
k = 1 is usually be used as the

initial trial step. The iterative process starts generating the sequence step {α i
kdk, i =

0,1, . . .} from the step α0
k dk, which should usually be equal to dk. But if the length of dk

is too large or too small, the iterative process could start from an unreasonable starting

point and the algorithm could be unstable (the numerical results in the next chapter
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will show that). A solution for this problem is to normalize the search direction by the

formula

dk←
dk

||dk||
.

Then the length of the search direction is fixed, equal to 1. However, the line-search

procedure is an expensive task. The iterative process at each iteration requires many cal-

culations of the objective function and its derivatives. The line-search procedure usually

limit the number of iterations. Consequently, sometime, the procedure cannot find a step

length which satisfies the Wolfe condition. Thus, the initial step of a line-search proce-

dure α0
k dk is important and is expected to be closed to the final step αkdk. Obviously, it is

difficult to estimate whether the initial step satisfies this expectation without computing

several values of objective function f and its derivatives. Rather, we propose a scale of

search-direction, called line-search scale ∆k, which multiplies with the search direction,

dk← ∆kdk.

The scale is adaptive at each iteration. The behaviour of the adapting ∆k is as follows:

if the step length of the current iteration is greater than the one of the previous iteration,

the line-search scale ∆k is increased. Otherwise it is decreased. From that we propose a

new algorithm, called adaptive line-search algorithm. The details of this algorithm are

described in Algorithm 4.1.
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Algorithm 4.1: Adaptive Line-search algorithm

Step 0. Initialization: Given the starting point x0, an initial Hessian approxima-
tion B0, an initial line-search scale ∆0 and k = 0. Given two constant γ1, γ2
satisfying

γ1 > 1 > γ2 > 0

Step 1. Search direction calculation: Compute the search direction by finding
dk that satisfies the equation:

Hkdk =−∇ f (xk)

where Hk is a Hessian approximation matrix.

Step 2. Step normalization: Set dk← ∆k.dk
||dk|| .

Step 3. Step calculation: Compute αk that satisfies the Wolfe condition in (4.1)
and in (4.2). Note that the initial trial step length α0

k = 1.
Set xk+1 = xk +αkdk.

Step 3. Update line-search scale: Set µk = ||αkdk||.

∆k+1 =

{
min{γ1∆k,µk} if ∆k ≤ µk
max{γ2∆k,µk} if ∆k > µk

Set k← k+1 and go to step 1.



CHAPTER 5

DISCRETE CHOICE THEORY

Discrete choice problems have been of interest to researchers for many years in a

variety of disciplines. Examples of many possible applications can be found in mathe-

matical psychology (Luce [16]), in marketing (see McFadden and Train [18]), in trans-

portation (Sheffi [26], Chapter 10) and econometric studies (see McFadden [17]).

A discrete choice model is one in which decision makers choose among a set of al-

ternatives to fit within a discrete choice framework. The decision makers can be people,

households, firms, or any other decision-making unit, and the alternatives might repre-

sent competing products, courses of action, or any other options or items over which

choices must be made. Following the framework given by Ben Akiva and Lerman [5],

we consider the choice as the outcome of a sequential decision making process, which

includes 4 steps: i) Definition of the choice problem, ii) generation of alternatives; iii)

evaluation of attributes of the alternatives iv) choice and implementation. We describe

more clearly this decisional process in the context of the discrete choice theory below.

5.1 Decision-maker

A decision-maker in discrete choice theory is assumed to be an individual who makes

decisions. The concept of individual may be extend, depending on the particular applica-

tion, it may be one person or it may be a group of persons (for example a household). The

internal decisions within the group are then ignored and we only consider the decisions

of the group as a whole. We refer to decision-maker and individual interchangeably. We

denote by I the population size or number of individuals.

5.2 The alternatives

The alternatives are the objects that are chosen by decision-makers. The set contain-

ing these alternatives is called the choice set. In discrete choice, the choice set needs



43

to exhibit three characteristics: alternatives need to be mutually exclusive, alternatives

must be exhaustive and the number of alternatives must be finite. Therefore, a discrete

choice set, which we denote by A , contains a finite number of alternatives that can be

explicitly listed.

Two concepts of choice set are considered: the universal choice set and the reduced

choice set. While the universal choice set contains all potential alternatives in the con-

text of the application, the reduced choice set on the other hand is a subset of a univer-

sal choice set as observed by some particular individuals. Alternatives in the universal

choice set that are not available to the individual under consideration are excluded. In

our research, the choice set refers to the reduced choice set. We denote A (i) ∈ A the

set of alternatives available for individual i (i = 1,2, . . . , I).

5.3 Attributes

Each alternative in the choice set is characterized by a set of attributes. The attributes

may be generic to all alternatives or may be specific to only one alternative. An attribute

is not necessarily a directly observed quantity. It can be any function of the available

data, and it depends on the particular application.

5.4 Utilities and Decision rule

In this section, we define the notions of utilities and decision rule which are used to

describe the behavior of decision-makers. For each individual i, each alternative avail-

able A j ∈A (i)( j = 1,2, . . . , |A (i)|) has an associated utility Ui j, which depends on the

individual characteristics and the relative attractiveness of the alternative. Here we focus

on random utility models since they constitute the most common framework for gener-

ating discrete choice models.

In random utility models, each alternative has some probability to be chosen by an

individual. Each probability is modelled as a function of the socio-economic character-

istics of the individual and the relative attractiveness of the alternative. The utility Ui j is
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a random variable assumed to have the form:

Ui j =Vi j + εi j (5.1)

where Vi j = φ(β j,xi j) is a function of a vector β j to be estimated and a vector xi j con-

taining all the attributes of alternative j. εi j is a random term representing the unob-

served part of the utility, reflecting the idiosyncrasies and particular tastes of each in-

dividual. We can also think of Vi j as the systematic component of a decision maker’s

utility and εi j as the stochastic component. A popular and simple expression for Vi j( j =

1,2 . . . , |A (i)|) is the linear utility:

φ(β j,xi j) = β
T
j xi j =

K j

∑
k=1

β
k
j xk

i j (5.2)

where K j is the number of observed attributes for alternative A j( j = 1, . . . , |A (i)|). The

parameter vector β j( j = 1, . . . , |A (i)|) is assumed to be constant for all individuals but

may vary across alternatives. Linearity simplifies the formulation and the estimation of

the model, but the non-linear effects can still be captured in the attributes definitions, as

a function of available data.

A random utility model assume that the decision-maker belongs to a given homo-

geneous population, acts rationally and has a perfect discrimination capability. The

decision-maker chooses the alternative with the highest utility by choosing alternative

j if and only if Ui j ≥ Uit ∀t 6= i, t = 1,2 . . . |A (i)|. The analyst cannot observe the

utility of decision maker but can observe some attributes xi j of the alternatives and

some attributes of the decision maker, labelled βi. The analyst can also specify a func-

tion that relates these observed factors to the decision maker’s utility. This function

Vi j =V (xi j;βn)∀ j is also called representative utility.

The derivation of random utility models is based on a specification of utility as de-

fined above. The decision rules then assume that individual i selects the alternative that
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maximizes its utility. In other terms the individual chooses A j if and only if

Ui j ≥Uit ∀t 6= i, t = 1,2 . . . |A (i)| (5.3)

On the derivation of random utility, (5.3) equivalent with:

Vi j + εi j ≥Vit + εit ∀t 6= i, t = 1,2 . . . |A (i)|

The researcher does not know εi j, and therefore treats these terms as random. The joint

density of the random vector εi j is denoted f (εi j). With this density, the analyst can

make probability statements about the choice of the decision maker. In other words, the

probability that decision maker i choose alternative j is simply:

Pi j = Prob[Ui j >Uit ,∀t 6= j]

= Prob[Vi j + εi j >Vit + εit ,∀t 6= j]

= Prob[Vi j−Vit > εit− εi j,∀t 6= j]

We realize that this probability is a cumulative distribution, the probability that each

random term εi j− εit is below the observed quantity Vi j−Vit . Using the density f (εi) =

f (εi1,εi2, . . . ,εi|A (i)|), this cumulative probability can be written as:

Pi j = Prob[Vi j−Vit > εit− εi j,∀t 6= j]

=
∫
R|A (i)|

I(Vi j−Vit > εit− εi j,∀t 6= j) f (εi)dεi

(5.4)

where I(Vi j−Vit > εit − εi j,∀t 6= j) is the indicator function, equalling 1 when the ex-

pression in parentheses is true and 0 otherwise. This is a multidimensional integral the

density function f (εi) of the unobserved portion of the utility. This integral takes a closed

form only for certain specifications of density function f (·). The actual form of the dis-

tribution of the residual εi j leads to different families of models. The next sub-section

presents some common random utility models.
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5.5 Random utility models

Probit, logit, nested-logit and mixed-logit are the common models described in this

section. logit and nested-logit have closed-form expressions for the integral. They are

derived under the assumption that the unobserved portion of the utility is i.i.d. extreme

value of type, also called Gumbel distribution, and a type of generalized extreme value

(GEV), respectively. Another model, probit is derived under the assumption that f (·)
is a multivariate normal and mixed-logit is derived under the assumption that the unob-

served portion of the utility comprises a part that follows any distribution desired by the

analyst and a part that is i.i.d extreme value. The integral of probit and mixed-logit have

no closed form solutions, we have to evaluate them numerically through simulation. The

details of these models is presented below.

Probit model or the multinomial Probit model is derived from the assumption that

the random vector εi = (εi1, . . . ,εiJ)
T is multivariate normal distributed with a vector

mean µε and a J× J variance-covariance matrix Σε . The probit model is motivated by

the central limit theorem, assuming that the error terms are the sum of independent un-

observed quantities. With probit, the probability function (5.4) has no closed analytical

form which is the main limitation of this model.

Logit model is derived from assumption that the residuals εi j are independent and

identically Gumbel distributed with mean 0 1 and scale factor µ , the probability that the

individual i chooses the alternative A j ∈A (i) can be expressed by the expression

Pi j =
eµVi j

Σ
|A (i)|
m=1 eµVim

(5.5)

µ is often set to 1, leading to the standard Gumbel distribution. We note that with

Gumbel distributed, the density for each unobserved component of the utility is

f (εi j) =
1
µ

e−
εi j−α

µ e−e−
εi j−α

µ

1. More generally, any constant mean can be assumed, as long as it is equal among the alternatives.
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where α is the mode of the Gumbel, and the cumulative distribution is

F(εi j) = e−e−
εi j−α

µ

.

The variance of this distribution is π2

6 µ2 and the mean is α +αγ , where γ is the Euler-

Mascheroni constant.

The difference between two extreme value variables is distributed logistic. That is,

if εi j and εit are i.i.d extreme value, then ε∗i jt = εi j− εit follows the logistic distribution

F(ε∗i jt) =
eε∗i jt

1+ eε∗i jt
(5.6)

We now can derive the logit choice probability by using the probability function in (5.4)

and (5.6).

Nested logit models are an extension of the multinomial logit model which is de-

signed to capture correlations among alternatives. It is based on the partitioning of the

choice set A into disjoint subsets Ak (which are called nests).

A =
n⋃

k=1

Ak, and Ak∩Al = /0, ∀k 6= l. (5.7)

A direct extension of the nested-logit models consists in partitioning some or all nests

into sub-nests. Because of the complexity of these models, their structure is usually

represented as a tree (see [11]). The number of potential correlation structures can be

very large and no technique currently exist to identity the most appropriate one from the

data.

Generalized extreme value (GEV) models are derived from the Generalized ex-

treme value distribution. In probability theory and statistics, the generalized extreme

value distribution is a family of continuous probability distributions developed within

the extreme value theory to combine the Gumbel, Fréchet and Weibull families [15]. In

a GEV model, the probability of an individual i choosing alternative A j ∈A (i) is given



48

by

Pi j =
eVi j δG

δx j
(eVi1, . . . ,eViAn )

µG(eVi1, . . . ,eViAn )
(5.8)

where G : Rn
+→ R with the following properties:

1. G(·) is differentiable.

2. G(x)≥ 0 ∀x ∈ Rn
+.

3. G(·) is homogeneous of degree µ > 0, that is G(αx) = αµG(x) ∀x ∈ Rn
+.

4. limxt→∞ G(x1, . . . ,xt , . . . ,xn) = +∞ for all l ∈ [1,n].

5. The kth partial derivative with respect to k distinct x j is non-negative if k is odd

and is non-positive if k is even, that is ∀ j1, . . . , jk such that 1 ≤ l ≤ n ∀l ∈ [1,k]

and jl 6= jm l 6= m and l,m ∈ [1,k], we have:

δ kG
δx j1 . . .δx jk

(x) =

 ≥ 0 k is odd

≤ 0 if k is even.

We note that Logit and Nested-logit are both special case of GEV models. We can obtain

Logit model if G(x) = ∑
n
j=1 xµ

j , and Nested-logit if G(x) = ∑
n
k=1 (∑ j∈Ak

eσkxi)µ/σk .

Mixed-logit models have been known for many years but have only become fully

applicable since the advent of simulation. Mixed-logit, presented by McFadden and

Train [19], is a highly flexible model that can approximate any random utility model. It

obviates the three limitations of standard logit by allowing for random taste variation, un-

restricted substitution patterns, and correlation in unobserved factors over time. Mixed-

logit models can be derived under a variety of different behavioural specifications, and

each derivation provides a particular interpretation. The mixed-logit model is defined on

the basis of the functional form for its choice probabilities. Any behavioural specifica-

tion whose derived choice probabilities take this particular form is called a mixed-logit

model. The first application of mixed-logit was apparently the demand for electricity-

using goods ([13]).

In mixed-logit models we assume that each parameter vector β (i),(i = 1, . . . , I) is a

realization of a random vector β . Furthermore, β is itself derived from a random vector

ω and a parameter vector θ , which we express as β = β (ω,θ). ω typically specifies
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the random nature of the model and the vector parameters θ quantifies the population

characteristic for the model. If we know the realization ω(i) for some individual i, we

have β (i) = β (ω(i),θ). The probabilities that individual i chooses alternative j would

then be given by the standard logit formula

Li j(β ) = Li j(ω,θ) =
eVi j(β (i),xi j)

∑
|A (i)|
t=1 eV it(β (i),xit)

. (5.9)

Because vector β is random, we need to compute the associated unconditional probabil-

ity, which is obtained by integrating (5.9) over the random parameters ω:

Pi j = EP[Li j(ω,θ)] =
∫

Li j(ω,θ) f (ω)dω

where P is the probability measure associated to ω , EP[Li j(ω,θ)] is the mathematical

expectation of logit probability over the probability measure P and f (·) is the density

function. The evaluation of Pi j requires the evaluation of one multidimensional integral

per individual. The value is therefore replaced by some approximation, obtained by the

Monte Carlo simulation and setting by sampling over (see Bastin et al. [2]), and given

by:

Pi j ≈ SPR
i j(θ) =

1
R

R

∑
ri=1

Li j(ωri,θ) (5.10)

where R is the number of random draws ωri , taken from the distribution function of ω .

Estimating a mixed-logit model is numerically very expensive, even when Monte-

Carlo approximation are used, the choice of an adequate optimization procedure is there-

fore crucial. In the next section, we will explore the problem of maximum likelihood and

its application in mixed-logit models.

5.6 Mixed-logit model estimation

Having defined the form of the choice probabilities, we now face the problem of

estimating the parameters vector β in the alternative utilities. This is usually done by

the means of the maximum likelihood (ML) method. Assume that we have a sample of I
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individuals from an homogeneous population. If this population is large, we can assume

that the observations in the sample are independent. The likelihood function is then the

product of individual choice probabilities:

L(β ) =
I

∏
i=1

Pi ji(β )

If β̂ = argmaxL(β ), then β̂ corresponds to the parameters vector which has the greatest

probability of having generated the observed sample. In practice, as we described it in

the likelihood section, when I is large, evaluating of the likelihood function is numeri-

cally stable since 0≤ Pi ji ≤ 1, (i = 1, . . . , I), and, more importantly, the maximization of

a product is often less stable than the maximization of a sum. To avoid these difficulties,

it is preferable to consider the logarithm of the likelihood

LL(β ) =
I

∑
i=1

lnPi ji(β )

In the context of mixed-logit model, the parameter vector β is itself derived from a ran-

dom vector ω and a parameter vector θ , and the probability is estimated by integrating

over the random parameters ω as in (5.10). From that, the vector of parameters θ is

estimated by maximizing the log-likelihood function, i.e. by solving the problem below:

max
θ

LL(θ) = max
θ

I

∑
i=1

ln(Pi ji(θ))

where ji is the alternative choice made by the individual i. We note that the normal-

ization factor 1
I is often used for consistency with the stochastic programming literature

(Shapiro [25]). As a result, the value of θ is estimated by solving the log-likelihood

simulation problem:

max
θ

SLL(θ) = max
θ

1
I

I

∑
i=1

ln(SPR
i ji(θ)),
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where SPR
i ji(θ) is an approximation of Pi ji(θ), which can be obtained by the Monte Carlo

simulation (see 5.10). We notice that this problem can be viewed as a special case of the

stochastic programming problem, which we restate for clarity as:

min
θ

gR(θ) = min
θ
−SLL(θ) = min

θ
−1

I

I

∑
i=1

ln(SPR
i ji(θ))

This is a non-linear optimization problem that must be solved by some iterative tech-

nique. The methods for solving this problem are presented in the above chapter. Recall

that the log-likelihood function can be approximated by Monte-Carlo method, see Fabian

and al. [3], or by RQMC methods (see for instance Munger and al. [21]). Consequently

the log-likelihood simulation problem is very expensive to solve. The optimizations

which are designed for this class of problems have to avoid repeatedly calculating the

likelihood values. In the next chapter, we report and analysis the numerical results of the

optimal algorithm which are introduced above for the real data sets of discrete choice

model. We also point out the dominance of our new algorithms, compares to the classi-

cal algorithms, especially with the complex discrete choice model with panel data.



CHAPTER 6

NUMERICAL ASSESSMENT

Chapter 3 propose several new approaches to select under model switching the most

reasonable sub-problem or search direction for determining the step at each iteration

of line-search and trust-region methods. In the present chapter, we describe numerical

experiments that have been conducted on real discrete choice data sets. We evaluate

the performance of our new approaches using comparisons with results from classical

methods for estimating the parameters that we have coded and executed on the same

discrete choice data sets. Moreover, in the context of line-search, Chapter 4 proposes a

new line-search algorithm, called adaptive line-search, as a new optimization algorithm

for non-linear non-convex problems. We evaluate as well the performance of this new

algorithm based on numerical results obtained from real discrete choice data sets.

6.1 Switching algorithms for mixed-logit models

Chapter 5 introduced the mixed-logit estimation problem which can be viewed as a

special case of the stochastic programming problem. The mixed-logit estimation prob-

lem is restated here:

min
θ

gR(θ) = min
θ
−SLL(θ) = min

θ
−1

I

I

∑
i=1

ln(SPR
i ji(θ))

where SPR
i ji(θ) is the approximation of the probability Pi ji by Monte Carlo simulation

Pi ji(θ)≈ SPR
i ji(θ) =

1
R

R

∑
t=1

Li ji(ωt ,θ)

in which (ω1,ω2, ...,ωR) are R random draws taken from the distribution of the random

parameter ω . The problem minθ∈RN gR(θ) is considered as a non-linear non-convex

problem. Bastin and al. [2] proposed a new algorithm, called Trust-region algorithm
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with dynamic accuracy, which allows to adapt the number of draws such to reduce the

computational time of likelihood functions. The tests described in this chapter keep the

number of draws constant along the iterative process, but eventually we can modify our

algorithms based on the idea in [2] for better performance.

Chapter 3 describes four techniques to select Hessian approximations: Predictive,

Retrospective, Multi sub-problem and Multi sub-problem with BHHH. We have in-

cluded these techniques individually into the general switching model for trust-region

method (Algorithm 3.1) and into the general switching model for line-search method

(Algorithm 3.2), each yielding a different optimization algorithm. In the context of the

switching model for the trust-region method, we identify these algorithms as BTR-SW-

PRED, BTR-SW-RETRO, BTR-SW-MULTI and BTR-SW-MULTI-BHHH respectively

for trust-region using the Predictive approach (Algorithm 3.3), the Retrospective ap-

proach (Algorithm 3.4), the Multi sub-problem approach (Algorithm 3.5) and the Multi

sub-problem with BHHH approach (Algorithm 3.6). We compare the performance of

our algorithms with the basic trust-region method described in Algorithm 2.1 for dif-

ferent Hessian approximations. We have implemented BTR with respectively BHHH,

BFGS and SR1 updates yielding algorithms BTR-BHHH, BTR-BFGS, BTR-SR1. We

also compare with the combined approximation algorithm introduced by Bunch. The

combined approximation algorithm adds a correction term to the BHHH update. De-

pendent on the correction term that is used, we obtain different algorithms. We have

implemented the algorithms BTR-CB-BFGS, BTR-CB-SR1 which use the secant equa-

tion 2.23 to approximate the second term of the combined approximation while the al-

gorithms BTR-CB2-BFGS, BTR-CB2-SR1 apply the secant condition in 2.25.

Similarly, in the context of the switching model for line-search algorithm, we identify

our algorithms as LNS-SW-PRED and LNS-SW-RETRO respectively for line-search

with the Predictive approach (Algorithm 3.3) and the Retrospective approach (Algo-

rithm 3.4). We compare the performance of our algorithms with other line-search meth-

ods that we have implemented, LNS-BHHH, LNS-BFGS, LNS-CB-BFGS which apply

respectively the basic line-search method with statistical, BFGS and combined approxi-

mation. The ALNS-BHHH and ALNS-BFGS refer to implementations of our adaptive
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line-search described in Algorithm 4.1, with BHHH and BFGS update, respectively.

These algorithms are summarized in Table 6.I below.

Methods Algorithms Description

Trust-region BTR-BHHH Basic trust-region algorithm (BTR) with BHHH update
BTR-BFGS BTR with BFGS update
BTR-SR1 BTR with SR1 update
BTR-CB-BFGS BTR with combined approximation and BFGS
BTR-CB-SR1 BTR with combined approximation and SR1
BTR-CB2-BFGS BTR with combined approximation and BFGS
BTR-CB2-SR1 BTR with combined approximation and SR1
BTR-SW-PRED BTR with predictive model (Algorithm 3.3)
BTR-SW-RETRO BTR with retrospective model(Algorithm 3.4)
BTR-SW-MULTI Multi sub-problems model (Algorithm 3.5)
BTR-SW-MULTI-BHHH Multi sub-problems with BHHH model (Algorithm 3.6)

Line-search LNS-BHHH Basic line-search algorithm (LNS) with BHHH update
LNS-BFGS LNS with BFGS update
LNS-CB-BFGS LNS with combined approximation
LNS-SW-PRED LNS with predictive model (Algorithm 3.3)
LNS-SW-RETRO LNS with retrospective model (Algorithm 3.4)

Adaptive ALNS-BHHH Adaptive line-search with BHHH update (Algorithm 4.1)
line-search ANLS-BFGS Adaptive line-search with BFGS update (Algorithm 4.1)

Table 6.I: List of algorithms

Chapter 2 also introduced some stopping conditions. Beside criteria for successful

processes, algorithms also need some stopping conditions for when they cannot converge

to an optimal solution. Table 6.II presents these other stopping tests which are used in

our implementations.

Criteria Stopping test Description

∇ fk ≤ ε GRADIENT Successful

∇̄ f (xk)
def
= maxc

(
|[∇ f (xk)]c|,max{[xk]c,1.0}

max{| f (xk)|,1.0}

)
≤ ε RELATIVE GRADIENT Successful

k ≥MAX-ITER ITERATION Fail
0 < xk+1− xk ≤ ε STEP Fail
∆k ≤ ε TRUST-REGION RADIUS Fail

LINE-SEARCH RADIUS Fail

Table 6.II: Summary of stopping criteria
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6.2 Discrete choice data sets

We use two real-life data sets which are complex enough to validate our algorithms.

The two data sets are described in sections 6.2.1 and 6.2.2 below.

6.2.1 Cybercar model

This is a data set that has been collected in April 2008 at the Baltimore/Washington

Intentional airport (BWI), it concerns the use of an automated vehicle technology called

Cybercars (Cirilo and Xu [9]). The respondents were met in a waiting area of the air-

port and the responses were recorded during face-to-face interviews. The final sample

contains information from 274 respondents. Both Revealed Preference data (RP) and

Stated Preference (SP) information were collected. For SP, the experiment includes two

parts: SP1 (SP game 1) is a between-mode experiment and SP2 (SP game 2) is a within

mode experiment. SP1 is mainly about ground access mode choices, it includes the hy-

pothetical cybercar service as well as three other existing modes: car, transit and taxi.

SP2 proposes two different cybercar services over which the respondents are asked to

express their preferences. In each model, the respondents were presented with 9 scenar-

ios, where the attribute level of variations were based upon the respondents real trip to

the airport as reported in the RP questionnaire. We therefore have a total 2466 observa-

tions. In our tests we use only SP2. Table 6.III below lists the variables that describe

the service in this game.

A number of parametric models for the distributions will be estimated and compared.

The retained model assumes that the waiting time distribution parameters are fixed cost

individuals, that the cost is log-normal, and that the remaining service level variables are

Dropping area Ternimal bulding, parking lot

Manoeuvring system Full automated, human driver with ITS, human driver
Waiting time 5, 10, 15, 20 (in minutes)
Travel cost 70% of taxi, 85% of taxi, same as taxi
Track structure Guideway, grade with rubber tire

Table 6.III: The variables and their admissible levels for SP2
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normally distributed. The distribution of the components of β are given in Table 6.IV,

where the first three components of β have constant value, then we have five components

that have to be simulated. Note that N(µ,σ2) and lnN(µ,σ2) refer to the normal and

log-normal distributions, respectively, with parameter µ and σ . Therefore the vector of

parameters θ (to be estimated) is θ = (θ1,θ2,θ3,µ1,σ1,µ2,σ2,µ3,σ3,µ4,σ4,µ5,σ5).

Coordinate index Distribution

1 constant
2 constant
3 constant
4 lnN(µ1,σ

2
1 )

5 N(µ2,σ
2
2 )

6 N(µ3,σ
2
3 )

7 N(µ4,σ
2
4 )

8 N(µ5,σ
2
5 )

Table 6.IV: Distribution of the components of β with the real data SP2

6.2.2 IRIS model

In order to evaluate the performance of our new algorithms on a large-scale model,

where statistical approximation do not work well, we consider a data set that was col-

lected in Autumn 2002 in Brussels (Belgium). One of the main objective of this survey

was to test the propensity to switch from car to a more efficient Public Transport service,

with better access, new high-speed lanes and improved comfort. This is part of a larger

survey conceived for the estimation of a new regional transport model, called IRIS. Car

users were asked to fill out a questionnaire under the direct assistance of interviewers.

They were asked to consider three scenarios based on their current trip and then to ex-

press their choices. The survey contains seven variables, of which six present three levels

of variations and one has two levels of variations. In order to reduce the size of the total

data set, we adopted an orthogonal design. The levels of variations depend on the total

car distance from the origin to the destination; we distinguish three classes: less than 10

km, between 10 and 30 km, greater than 30 km. In summary, the variables and the levels
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were chosen as follows (in brackets we indicate the value levels for classes of distance

between 10 and 30 km and greater than 30 km)

– Car time: +5(10, 20) min, +10(20, 30) min, +20(30, 50) min compared to actual

car time;

– Car cost: +0.06 C/km compared to actual cost.

– Toll: 1, 3, 7 C.

– Delayed Departure Time: -45 min, +30 min, +60 min on the actual departure time;

– PT time: -10(-20,-30) min, +5(0,-5), +15(+10,+10) min, compared to actual car

time;

– PT Cost (ticket + parking/per month): 25(40, 50), 45(70, 85), 75(105, 130) C;

– Comfort: No seats available-very crowded, no seats available-not crowded, seats

available.

For this model, only trips with work as final destination have been considered. After

cleaning the data set, a total number of 2602 observations from 871 individuals were

entered into the model. There were four choices of options available to the respondents:

car, car with delayed departing time, car on a high occupancy vehicle (HOV) dedicated

lane and public transport (PT). Each option was specified with a different utility for car

drivers (CD) and for passengers (CP), giving a total of eight alternatives; in particular

the High Occupancy Vehicle lane was toll free when at least two passengers shared the

same car.

The model contained a total of 18 exogenous variables, of which four alternatives

specific constants (car passenger with delayed departure time, car as driver on HOV lane,

shared car on HOV and Public Transport). Seven levels of service variables (congested

and free flow time, cost, HOV toll, origin destination distance, comfort on two levels

of variations), three departure time variables, two variables representing socio-economic

characteristics (being manager or self-employed) and the remaining describing trip char-

acteristics (trip frequency per week, dummy for stopping to pick up/drop off children).

Seven of the explanatory variables are randomly distributed, with two of them assumed

to be normal or log-normal (congested and free flow time coefficients) and the remaining

five assumed to be normal. If the congested and free flow time coefficients have normal
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distribution we have the IRIS-NORMAL model, if they have a log-normal distribution

we have the IRIS-LOGNORMAL model. Thus the vector of parameter (to be esti-

mated) contains 25 components. For more details, we refer the reader to Bastin et al.

[3]. Table 6.V below summarizes the distribution of the variables.

Variable Distribution

Car passenger (CP) constant
HOV (HOV) N(µ1,σ

2
1 )

Shared car on HOV (HOVs) N(µ2,σ
2
2 )

Public transport (PT) constant
Congested travel time (LN) N(µ3,σ

2
3 ) or lnN(µ3,σ

2
3 )

Free-flow travel time (LN) N(µ4,σ
2
4 ) or lnN(µ3,σ

2
3 )

Cost constant
Toll (HOV) constant
Dist. (CD,CP,CDs,CPs,HOV,HOVs) N(µ5,σ

2
5 )

Trip frequency-once a week (PT) constant
Comfort no-seats (PT,PTs) constant
Comfort no seats, crowded (PT,PTs) constant
Earlier departure time (CP,CPs) N(µ6,σ

2
6 )

Later departure time (CP,CPs) N(µ7,σ
2
7 )

Much later departure time (CP,CPs) constant
Self-employed (CD,HOV) constant
Manager (HOV) constant
Number of cars-3 per HHLD (CD) constant

Table 6.V: Distribution of the components of β with the real data IRIS

6.3 Numerical assessment with AMLET

Numerical evaluation of the algorithms is based on the package AMLET, initially

developed by Fabian Bastin [1]. AMLET stands for Another Mixed Logit Estimation

Tool. As its name suggests, it is a software originally designed to estimate various

kind of mixed-logit models, while offering various tools for simulation and optimization.

AMLET is available in open source at the address http://amlet.slashbin.net, along with

its companion libraries ORATIO and OPHELIA.

In order to limit as much as possible the timing differences between the three al-

gorithms due to implementation, all algorithms were rewritten directly in the core of

AMLET, taking into account the standard recommendations in the existing literature.
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For BTR, we have followed the guidelines proposed by Conn et al. [10], while for the

basic line-search, we have followed the suggestions given by Nocedal and Wright [23].

In particular, we have implemented More-Thuente line-search [20], which is currently

considered as the best line-search technique. It worths observing at this point that the

trust-region approach is simpler to implement efficiently than the line-search method.

6.4 Numerical experiments

We now describe the experiments that we have conducted on the data sets SP2 and

IRIS. For the SP2 model, we estimate with 1021 random draws per individual, and eval-

uate the results over 10 independent simulations. The IRIS model is estimated with 2000

random draws per individual and also over 10 simulations. We chose the zero vector as

the starting point while the threshold to stop the iterative processes is set at ε = 5×10−5

for SP2 and ε = 2.9873708×10−6 for IRIS.

We estimated both models (SP2 and IRIS) with our new algorithms and also with

classical algorithms (basic trust-region and line-search using the classical Hessian ap-

proximation) in order to evaluate numerically our proposed algorithms. The number of

iterations, the computational times (always reported in seconds) and the values at con-

vergence are observed to evaluate and compare the performance of the algorithms. Note

that computational times are provided for the 10 simulations 1.

6.4.1 Comparison between classical algorithms

In this section we evaluate the performance of some methods with which we com-

pare our algorithms. We present numerical results of the classical trust-region algorithms

BTR-BHHH, BTR-BFGS, BTR-SR1 and the line-search algorithms LNS-BHHH and

LNS-BFGS. We also provide numerical results for the combined approximation algo-

rithm. In this section we report computational times, we compare algorithms along this

criterion. We do not report the number of iterations as for the trust region algorithms

1. Though those simulations are independent, in the figures, numerical results from a same algorithm
are connected by an edge to help contrast the performances between different algorithms.
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the number of iterations is proportional to the computational time. We do not report

the number of iterations for line-search algorithms unless the number of iterations varies

more than a certain rule among methods. In this section, we will report failures to con-

verge that are detected by exceeding the number of iterations stopping criterion. Failing

to converge in this case is observed indirectly from the computational times.

Figures 6.1 and 6.2 report computational times for the three trust-region algorithms

on data sets SP2 and IRIS-NORMAL. For both models, the algorithm BTR-BHHH is

slightly better than the others algorithms, especially for the IRIS-NORMAL model. For

the 10 simulations on the SP2 model, BTR-BHHH needs 25.9(s) on average to converge

while the average computational time is 50.6(s) for BTR-BFGS and 41(s) for BTR-SR1.

BTR-BHHH compares even better when we observe the numerical results for the IRIS-

NORMAL model. The average computational time for BTR-BHHH is 170.4(s), which

is 15% of the average computational time of BTR-BFGS (1159s) and 10% of BTR-SR1

(1754.8s). These results show that statistical approximation compared much better than

other classical approximations which explains why in many cases BHHH is the favourite

approach for MLE.

Figure 6.1: Optimization time of basic trust-region algorithms [SP2]

With SP2 and IRIS-NORMAL, the BHHH update is the best choice to estimate pa-

rameters. However, for the more complex model IRIS-LOGNORMAL, the advantage of

the BHHH approach over the other methods disappears as the average optimization time

of the BHHH method is significantly larger than for the other methods, in some runs,



61

Figure 6.2: Optimization time of basic trust-region algorithms [IRIS NORMAL]

BHHH does not even converge. The computational times for the IRIS-LOGNORMAL

data set are given in Figure 6.3. This figure shows that optimization time depends on the

sample for BHHH, while it is more stable for BFGS and SR1. On the 10 simulations,

eight of them (80%) have been especially time consuming (greater than 2500 seconds),

while only two (20%) have converged very rapidly. We also note that all eight runs with

optimization time over than 2500 seconds are failure runs, the iterative process has been

stopped because the number of iterations exceeded the maximum number of iterations

allowed before convergence. This happens typically because information identity does

not hold, so that the BHHH approximation is poor close to the solution of maximum

likelihood. Recall the information identity property assume a correctly specified model,

but unfortunately, perfect information remains elusive. Moreover, observing the numer-

ical results for the SR1 approach, we realize the advantage of the BFGS update over

the SR1. With the SP2 model, the SR1 approach is faster than BFGS, but for the two

complex models from the IRIS data set, BFGS is slightly better.

The numerical results for the combined approximation method are presented in Fig-

ures 6.4, 6.5 and 6.6. For these algorithms, there are no failures. Further, though this

is not shown in the figures, we report that in our tests they have all converged to the

same solution. In 6.4, 6.5 and 6.6, algorithm BTR-CB-BFGS appears slightly better

than algorithm BTR-CB2-BFGS. For the IRIS-NORMAL data set, algorithm BTR-CB-

BFGS is comparable to algorithm BTR-CB2-BFGS, but with the SP2 and the IRIS-
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Figure 6.3: Optimization time of basic trust-region algorithms [IRIS LOG-NORMAL]

LOGNORMAL data sets, computational times indicate a clear dominance of BTR-CB-

BFGS over the BTR-CB2-BFGS. According to these results, from now on, we only

consider the combined approximation approach based on the secant equation 2.23 to

analyze and compare other approaches.

Figure 6.4: Optimization time of combined approaches [SP2]

Now we compare the two methods to approximate the second term of combined ap-

proximation: BFGS and SR1. While comparing these two methods, BTR-CB-BFGS and

BTR-CB-SR1, we also add the results of other classical algorithms. These comparisons

appear in Figures 6.7, 6.8 and 6.9.

Figure 6.7 and Figure 6.8 show that combined approximation performs much bet-

ter than secant approximation, in particular with the IRIS-NORMAL model, but is
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Figure 6.5: Optimization time of combined approaches [IRIS-NORMAL]

Figure 6.6: Optimization time of combined approaches [IRIS-LOGNORMAL]

still slower than the BHHH approximation. With SP2, the average computational time

of BTR-BHHH is 25.9s, which is faster than BTR-CB-BFGS (28.6s) and BTR-CB-

SR1(33.6s). For the IRIS-NORMAL model, the average optimization time of BTR-

CB-BFGS is 300s, greater than BTR-BHHH (170s), while BTR-CB-SR1 is very slow

(1295s). When estimating the IRIS-LOGNORMAL model, BHHH update has difficul-

ties to reach convergence and is very slow as well. Figure 6.9 shows that BTR-CB-BFGS

is still very effective, better than BTR-CB-SR1 and much better than the BHHH approx-

imation. In summary, the results show that, in the context of the trust-region method,

the combined approximation with BFGS can be a good replacement of the statistical ap-

proximation because it is more stable than the BHHH update and its optimization time

is smaller than the secant approximation and the combined approximation with SR1.
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Figure 6.7: Optimization time of basic trust-region algorithms [SP2]

Figure 6.8: Optimization time of basic trust-region algorithms [IRIS-NORMAL]

The details of the average optimization times for trust-region algorithms based on the

statistical, secant and combined approximation are summarized in Table 6.VI. The red

numbers indicate that the corresponding algorithm has some failure runs, the small num-

bers on the top indicate the number of failure runs (i.e the number 2110s8 in the first line

indicates that with IRIS-LOGNORMAL data, the algorithm BTR-BHHH has 8 failures

over 10 simulations).

In the context of line-search, we note that the Hessian approximations have to be

positive definite. We therefore consider three basic algorithms LNS-BHHH, LNS-BFGS

and LNS-CB-BFGS with BHHH, BFGS and combined approximation, respectively. The

numerical results can be found in the Figures 6.10 and 6.11 corresponding respectively

to the IRIS-NORMAL and IRIS-LOGNORMAL models. The results are similar to the
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Figure 6.9: Optimization time of basic trust-region algorithms [IRIS-LOGNORMAL]

Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

BTR-BHHH 26s 170s 2110s8

BTR-BFGS 51s 1159s 1110s
BTR-SR1 41s 1755s 1925s2

BTR-CB-SR1 37s 1295s 1083s1

BTR-CB2-BFGS 36s 246s 1648s2

BTR-CB-BFGS 29s 299s 405s

Table 6.VI: Optimization time of basic trust-region algorithms

trust-region algorithms, algorithms LNS-BHHH and LNS-CB-BFGS are competitive on

data sets SP2 (see Table 6.VII) and IRIS-NORMAL, but algorithm LNS-CB-BFGS is

clearly faster and more stable than LNS-BHHH for the more complex data set IRIS-

LOGNORMAL. The line-search algorithm with BFGS update is always the slowest al-

gorithm. The average computational time of these algorithms is summarized in the Table

6.VII.

Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

LNS-BHHH 27s 143s 633s
LNS-BFGS 30s 795s 1602s
LNS-CB-BFGS 34s 240.4s 370s

Table 6.VII: Optimization time of basic line-search algorithms

We note for the IRIS-LOGNORMAL model, BHHH approximation under line-search
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Figure 6.10: Optimization time of basic line-search algorithms [IRIS-NORMAL]

Figure 6.11: Optimization time of basic line-search algorithms [IRIS-LOGNORMAL]

has no failures while for the trust-region method the algorithm has 80% failure runs. The

advantages and disadvantages of both line-search and trust-region methods will be dis-

cussed in more details in the final section of this chapter. We also notice that our results

exhibit a well-known behaviour of the BHHH method. Under the conditions of informa-

tion identity, the BHHH approach is very fast compared to the secant approximations.

With more complex models, the advantage of the BHHH method disappears: the algo-

rithm becomes unstable and very slow, especially close to the solution, as the BHHH

update may not converge to the true Hessian. However, even when it is no longer effec-

tive, it provides as significant speed-up when used in combination with a secant method,

for instance the BFGS technique.
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6.4.2 Model switching algorithms with the trust-region method

We have proposed four algorithms for the trust-region method: BTR-SW-RETRO,

BTR-SW-PRED, BTR-SW-MULTI and BTR-SW-MULTI-BHHH. Each of these algo-

rithms requires a set of Hessian approximations or a set of methods to approximate the

Hessian matrix at each iteration. The numerical results and the analysis in the previous

section show that BHHH and combined approximation are better than the secant approx-

imations. Therefore we use BHHH and combined approximation as the set of Hessian

approximations for our model switching algorithms. We chose the BFGS update to es-

timate the second term of combined approximation. Numerical results are reported for

the IRIS-NORMAL and IRIS-LOGNORMAL models. For SP2, the computational time

for these algorithms is very similar. Consequently we have omitted the graph of the

optimization times for SP2, but average computational times are given in Table 6.VIII.

Figure 6.12: Optimization time of trust-region switching algorithms [IRIS-NORMAL]

Figures 6.12 and 6.13 report the optimizations times of our four algorithms for the

trust-region method which are compared with the classical algorithms BTR-BHHH and

BTR-CB-BFGS for the IRIS-NORMAL model and the IRIS-LOGNORMAL model

(based on our previous numerical results, the trust-region algorithms with the classical

Hessian approximation BTR-BFGS and BTR-SR1 perform poorly, so we do not con-

sider these last two algorithms). For the IRIS-NORMAL model, our two algorithms,

BTR-SW-PRED and BTR-SW-RETRO, give optimization times similar to BTR-BHHH

(average time ≈ 175s), they are also the three fastest algorithms. They are slightly bet-
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Figure 6.13: Optimization time of trust-region switching algorithms [IRIS-
NORMALLOG]

ter than BTR-CB-BFGS (299s). For the IRIS-LOGNORMAL model, BTR-CB-BFGS,

BTR-SW-PRED, BTR-SW-RETRO are the fastest algorithms. Algorithm BTR-BHHH

is the worst with only 20% successful runs. The optimization times of the three fastest al-

gorithms is: BTR-SW-RETRO (359s); BTR-CB-BFGS (405s); BTR-SW-PRED (430s).

The average optimization time is summarized in Table 6.VIII.

Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

BTR-BHHH 26s 170s 2110s8

BTR-CB-BFGS 29s 299s 405s
BTR-SW-RETRO 25s 176s 359s
BTR-SW-FRED 17s 177s 430s
BTR-SW-MULTI 51s 324s 609s
BTR-SW-MULTI-BHHH 32s 485s 631s

Table 6.VIII: Optimization time of trust-region switching algorithms

Figures 6.12 and 6.13 show that the algorithms BTR-SW-MULTI and BTR-SW-

MULTI-BHHH are the two slowest algorithms. However, comparisons along computa-

tional times do not portrait entirely the performance behaviour of the multi sub-problem

approaches. These methods solve many sub-problems at each iteration. The compu-

tational time of each iteration is much larger than for trust-region algorithms or our

algorithms with the predictive and retrospective approaches. Figures 6.14 and 6.15

report observations on the number of iterations with the IRIS-NORMAL and IRIS-
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LOGNORMAL models respectively to converge to an optimal solution. In terms of

the number of iterations over 10 simulations, BTR-SW-MULTI on the IRIS-NORMAL

model is competitive, while on the complex IRIS-LOGNORMAL model it requires a

significantly smaller number of iterations compared to other algorithms. Therefore, con-

sidering the number of iterations, we find that multi sub-problem approaches can find

optimal solutions in a smaller number of iterations, i.e. the rate of convergence is higher.

The average number of iterations is given in Table 6.IX.

Figure 6.14: Number of iterations of trust-region switching algorithms [IRIS-
NORMAL]

Figure 6.15: Number of iterations of trust-region switching algorithms [IRIS-
LOGNORMAL]

In all previous experiments, we chose the standard starting point x0 = 0 as the initial

point of the iterative process. To evaluate the performance of the algorithms in difficult
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Algorithms IRIS-NORMAL IRIS-LOGNORMAL

BTR-SW-MULTI 20 iters 39 iters
BTR-SW-MULTI-BHHH 39 iters 56 iters
BTR-SW-RETRO 22 iters 45 iters
BTR-SW-PRED 22 iters 55 iters
BTR-CB-BFGS 42 iters 52 iters

Table 6.IX: Number of iterations of trust-region switching algorithms

case, we chose a special starting point for IRIS-LOGNORMAL data set, the most com-

plex model, which is very far from the optimal solution. Table 6.X reports the numerical

results of the algorithms with the IRIS-LOGNORMAL model when the initial parame-

ter is unnatural θ0 = ( 20.0, -25.0, -20.0, 13.0, 21.0, 30.0, -14.0,-21.0, -13.0, -1.0, 31.0,

-8.0, -22.0, 0.0, 4.0, -32.0, 11.0, -11.0, 32.0, -1.5, 12.0,15.2,-11.5, -0.6, 32.7). We note

that the optimal parameter of this model is θ̂ ≈ (-1.1,-5.5, 4.9, -7.3, 6.5, -0.64, -2.8, 1.0,

-2.97, -1.10, 0.27, -0.52, 0.216, 0.24, 3.21, -1.14, -1.84, -3.28, -2.83, -2.45, 2.51, -2.71,

1.86, 1.37, 1.91), where the optimal log-likelihood value is ≈−3.15, much bigger than

the initial log-likelihood value (≈ −275.28). The results in Table 6.X suggest that the

multi sub-problem with BHHH approach is especially efficient when the starting point

is far from the optimal solution.

Algorithms Successful Fail average computational time
(of successful runs)

BTR-SW-MULTI-BHHH 60% 40% 1170s
BTR-SW-MULTI 50% 50% 1340s
BTR-SW-RETRO 50% 50% 1186s
BTR-SW-PRED 30% 70% 1176s
BTR-CB-BFGS 30% 70% 802s
BTR-BHHH 10% 90% 1040s
BTR-BFGS 0% 100% *

Table 6.X: Rate of successful runs for difficult case [IRIS-LOGNORMAL]

The objective function in mixed-logit models is often very complex. The ability to

converge can be reduced if the choice problem is complex and the starting point of the

iterative process is difficult to chose. Consequently the optimization procedure needs to
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be selected carefully. Our results show that algorithms like BTR-SW-MULTI and BTR-

SW-MULTI could decrease the number of iterations and increase the rate of successful

runs. Second, the speed of convergence is important when we estimate complex models.

The above results show that the BHHH approach can be very fast with some model, but it

can be very slow with some others. Furthermore, with IRIS-LOGNORMAL model, the

ratio of successful runs of BTR-BHHH is very low. The above results show that the speed

and the ability to converge can be dramatically improved using the model switching

approach, in particular using the retrospective model. The retrospective algorithm allows

us to speed up the iterative process, and often to successfully terminate earlier.

6.4.3 Model switching algorithms with the line-search method

To test the performance of model switching under line-search, we have implemented

two algorithms, LNS-SW-RETRO and LNS-SW-PRED, which are compared with three

classical algorithms: LNS-BHHH, LNS-BFGS and LNS-CB-BFGS. For LNS-SW-PRED

and LNS-SW-RETRO, we use the BHHH and the combined approximation (with the

BFGS method to update the second term) to obtain the set of Hessian approximations

at each iteration. Numerical results are derived from the three data sets: SP2, IRIS-

NORMAL and IRIS-LOGNORMAL. However, as SP2 is pretty simple, the computa-

tional time of all algorithms is quite similar. We do not show the graph of computational

times for the SP2, we only report the average computational times in tables.

Figure 6.16: Optimization time of line-search switching algorithms [IRIS-NORMAL]
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Figure 6.17: Optimization time of line-search switching algorithms [IRIS-
LOGNORMAL]

Figure 6.16 show the results for the IRIS-NORMAL model. The figure shows that

convergence for the basic linear-search with BFGS is much slower than for the other

algorithms. The computational times of the basic line-search algorithm with BHHH and

the two switching algorithms LNS-SW-RETRO and LNS-SW-PRED are quite similar

and they are slightly better than the line-search algorithm with combined approximation

LNS-CB-BFGS. The results for the IRIS-LOGNORMAL model are given in Figure

6.17. A close observation reveals that LNS-SW-RETRO and LNS-CB-BFGS have the

best computational times, while LNS-BHHH and LNS-SW-PRED are slightly slower

and they are unstable. The classical line-search with BFGS update is still the slowest

algorithm. The average computational times are given in Table 6.XI.

Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

LNS-BHHH 27s 143s 633s
LNS-BFGS 30s 896s 1602s
LNS-CB-BFGS 34s 240s 371s
LNS-SW-FRED 32s 147s 563s
LNS-SW-RETRO 28s 142s 336s

Table 6.XI: Optimization time of line-search switching algorithms

The obtained results show that the behaviour of the classical line-search and switch-

ing line-search algorithms are quite similar to the behaviour of the trust-region method
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(refer to Figure 6.12 on page 67 and Figure 6.13 on page 68). More specifically, with

both line-search and trust-region method, the BFGS approximation is the slowest ap-

proach with computational times that are always greater four or five times that of the

other approaches (BHHH, combined and switching algorithms). The combined approx-

imation is one of the three fastest algorithms with the IRIS-NORMAL data set, but

still it is significantly slower than the switching algorithms. Moreover, the retrospective

algorithm based on BHHH and combined approximation delivers significant speed-up

compared to the standard techniques (and it is faster than the predictive algorithm). This

suggests that the switching strategy is especially efficient when the data becomes more

complex. These results also show that the retrospective approach is slightly better than

the predictive one, in both line-search and trust-region approaches.

6.4.4 Comparing our adaptive line-search algorithm

We compare numerically our adaptive line-search algorithm with the basic line-

search algorithm. The difference between our algorithm and the basic algorithm is the

behaviour of the search direction along the iterative process. While the basic line-search

algorithm set pk =−H−1
k ∇ fk, the adaptive line-search adapts the length of search direc-

tion using parameter ∆k, the value of this parameter can increase or decrease depending

on the step size at each iteration. We have tested our adaptive line-search on the two most

complex models: IRIS-NORMAL and IRIS-LOGNORMAL. With the SP2 model, the

difference between the computational time of the algorithms over the simulations is not

clear, so we just report the average computational times in Table 6.XI. We have two im-

plementations of this adaptive line-search, one with the BHHH update (ALNS-BHHH)

and one with the BFGS update (ALNS-BFGS). The numerical experiments show the

efficiency of these implementations.

Figure 6.18 and 6.19 report the computational times of our two adaptive line-search

implementations together with two basic line-search methods one with the BHHH update

and the other with the BFGS update. Numerical results for IRIS-NORMAL data set

in Figure 6.18 show that the adaptive line-search ALNS-BHHH performs better than

ALNS-BFGS, algorithm ALNS-BFGS performs better than LNS-BFGS while ALNS-
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Figure 6.18: Optimization time of classical and adaptive line-search [IRIS-NORMAL]

Figure 6.19: Optimization time of classical and adaptive line-search [IRIS-
LOGNORMAL]

BHHH is slightly slower than LNS-BHHH. Numerical results for IRIS-LOGNORMAL

data set in Figure 6.19 show a clear dominance of the adaptive line-search algorithms

over the classical algorithms. For more details, the average optimization times can be

found in Table 6.XII.

We note that in the above tests there were no failures. All algorithms almost converge

to the optimal solution. The results change clearly when we observe the experiment for

difficult cases (using the starting point far from the optimal solution defined in Section

6.4.2). Tables 6.XIII and 6.XIV show a clear dominance of the adaptive line-search

over the basic line-search while this algorithm can converge very fast even when the

initial point of the iterative algorithm is very far from the optimal solution and the log-
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Algorithms IRIS-NORMAL IRIS-LOGNORMAL

LNS-BHHH 143s 633s
LNS-BFGS 896s 1602s
ALNS-BHHH 209s 363s
ALNS-BFGS 795s 1192s

Table 6.XII: Optimization time of classical and adaptive line-search algorithms

Algorithms Simulation index Computational time (s) Log-likelihood value Description

ALNS-BHHH 1 509 -3.14264 SUCCESS
2 470 -3.14504 SUCCESS
3 404 -3.14769 SUCCESS
4 484 -3.14403 SUCCESS
5 422 -3.13882 SUCCESS
6 328 -3.14993 SUCCESS
7 415 -3.14513 SUCCESS
8 439 -3.15032 SUCCESS
9 528 -3.14721 SUCCESS

10 464 -3.14413 SUCCESS

LNS-BHHH 1 16 -233.228 FAILURE
2 15 -232.84 FAILURE
3 16 -234.79 FAILURE
4 14 -232.069 FAILURE
5 15 -234.404 FAILURE
6 15 -235.206 FAILURE
7 29 -228.959 FAILURE
8 14 -231.673 FAILURE
9 34 -232.479 FAILURE

10 22 -233.242 FAILURE

Table 6.XIII: Numerical results of classical and adaptive line-search for difficult case
[IRIS-NORMAL]

likelihood is much bigger than the optimal log-likelihood. With IRIS-NORMAL model,

the adaptive algorithm has 100% successful runs with average computational time ap-

proximately 446.3 seconds, but the classical line-search algorithm has 10 failure over 10

simulations (LNS-BHHH fails on the too small STEP stopping criterion, i.e. it converges

to the wrong solution). With IRIS-LOGNORMAL model, the adaptive algorithm is also

very effective with 100% successful runs and takes on average 657.1 seconds to reach

convergence, compare to 70% failure runs for the basic line-search.



76

Algorithms Simulation index Computational time (s) Log-likelihood value Description

ALNS-BHHH 1 508 -3.15772 SUCCESS
2 1154 -3.16018 SUCCESS
3 419 -3.15954 SUCCESS
4 866 -3.15826 SUCCESS
5 686 -3.15918 SUCCESS
6 577 -3.16193 SUCCESS
7 434 -3.15934 SUCCESS
8 517 -3.15527 SUCCESS
9 668 -3.15809 SUCCESS

10 742 -3.15615 SUCCESS

LNS-BHHH 1 1219 -4.37112 FAILURE
2 60 -9.04975 FAILURE
3 402 -3.15947 SUCCESS
4 754 -3.15826 SUCCESS
5 68 -6.05811 FAILURE
6 340 -5.34041 FAILURE
7 792 -3.15768 SUCCESS
8 7320 -11.767 FAILURE
9 1666 -4.68267 FAILURE

10 68 -6.7226 FAILURE

Table 6.XIV: Numerical results of classical and adaptive line-search for difficult case
[IRIS-LOGNORMAL]

6.5 Summary and conclusion

Table 6.XV summarizes the numerical results that we have obtained on discrete

choice data sets using our implementations of classical trust-region and line-search meth-

ods. We see that the algorithms based on the BHHH update often converge more rapidly

to the optimal solution. However, with the complex model, the BHHH update may not

converge to the Hessian of the objective, leading to poor performances close to the so-

lution. Our numerical results show that the corrections to the BHHH approximation,

called combined approximation, yield very effective and stable methods, even when the

BHHH is no longer effective, when the BFGS update starts to be used, relying on the

secant condition described e.g. in Dennis and Schnabel [12]. Within the classical ap-

proaches, our numerical results show that the combined approximation can be a good

alternative of BHHH to solve MLE problems.

Table 6.XVI summarizes the numerical results of our algorithms for model switch-

ing, under both trust-region and line-search methods. Table 6.XVI also includes results

from the two best classical algorithms to contrast with the performance of our model
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Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

BTR-BHHH 26s 170s failure
LNS-BHHH 27s 143s 633s
BTR-BFGS 51s 1159s 1110s
LNS-BFGS 30s 795s 1602s
BTR-CB-BFGS 29s 299s 405s
LNS-CB-BFGS 34s 240.4s 370s

Table 6.XV: Optimization time of basic algorithms

switching algorithms. We see in this table that the selection of the Hessian approxima-

tion based on the retrospective approach allows to greatly speed up the iterative pro-

cess. In all cases, when the BHHH update in the fastest approach, the retrospective

algorithm is always one of the fastest algorithms. The dominance of the retrospective

approach is clearer when we observe the numerical results for the complex model (IRIS-

LOGNORMAL). Results in Table 6.XVI also allow us to conclude that the retrospective

approach is more appropriate in the context of model switching than the predictive ap-

proach, at least in terms of speed of convergence.

Algorithms SP2 IRIS-NORMAL IRIS-LOGNORMAL

BTR-BHHH 26s 170s failure
LNS-BHHH 27s 143s 633s
BTR-BFGS 51s 1159s 1110s
LNS-BFGS 30s 896s 1602s
BTR-CB-BFGS 29s 299s 405s
LNS-CB-BFGS 34s 240s 371s
BTR-SW-RETRO 25s 176s 359s
LNS-SW-RETRO 28s 142s 336s
BTR-SW-FRED 17s 177s 430s
LNS-SW-FRED 32s 147s 563s
BTR-SW-MULTI 51s 324s 609s
BTR-SW-MULTI-BHHH 32s 485s 631s

Table 6.XVI: Optimization time of trust-region switching algorithms

The model switching algorithms with multi sub-problems for the trust-region are not

the fastest, but as shown in Table 6.IX, they have a better rate of convergence, at least

for BTR-SW-MULTI. The results shows that the multi sub-problem algorithm always
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requires the least number of iterations to converge to the optimal solution. As shown in

Table 6.X, the advantage both multi sub-problem algorithms increases when we set the

initial point very far from the optimal solution. In this case, the multi sub-problem and

multi sub-problem with BHHH algorithms are the two most effective algorithms, with

the highest rate of successful runs.

Our thesis also propose a new adaptive line-search algorithm which is a new opti-

mization algorithm to solve MLE problems but also the class of non-linear, non-convex

problems. Tables 6.XIII and 6.XIV show that our new line-search algorithm based on

an adaptive approach is significantly better, especially with the more complex data sets

and difficult cases (difficult initial solutions). However, given our narrow experimental

tested, we cannot conclude that the adaptive line-search is better than the basic line-

search or can be a good replacement for the classical algorithms, but it can certainly be

an interesting approach to investigate.



CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH PERSPECTIVES

In this thesis, we have reviewed and proposed new algorithms aimed to maximize

likelihood functions, assuming no constraints on the parameters. In this setting, we face

unconstrained, non-linear and often non-convex mathematical programming problems.

Our algorithms help improve two well-know approaches: line-search method and trust-

region method. We have revisited some optimization approaches for maximum likeli-

hood estimation, particularly the design of methods to approximate the Hessian matrix.

We have exploited the idea of combining available Hessian approximation techniques in

order to obtain better step at each iteration, an idea which we have framed into a general

model switching method. We have designed the next four algorithms which apply model

switching.

Predictive algorithm

The predictive algorithm proposes a method to predict the next Hessian approxima-

tion at the end of an iteration without any new calculation of the objective function or its

derivatives. This is achieved by minimizing the approximation error or maximizing the

trust-region ratio.

Retrospective algorithm

In the predictive algorithm, the next Hessian approximation is predicted at the end

of a current iteration using the information available in that iteration. The retrospective

algorithm is a more natural approach as it selects the Hessian approximation at the be-

ginning of current iteration. To avoid computing more than one objective function at

each iteration, the retrospective algorithm uses the computed objective function from the

previous iteration. The relationship between the basic trust-region algorithm and the pre-

dictive algorithm, between the retrospective trust-region algorithm and the retrospective
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algorithm under model switching can be realized easily.

Multi sub-problems algorithm

The multi sub-problems algorithm is a natural one in the context of model switching.

At each iteration we have a set of sub-problems with their corresponding Hessian ap-

proximations. We solve approximately the sub-problems to obtain a set of steps. Given

that the purpose of our optimization is to minimize an objective function f (x), we select

the step that maximizes the decrease in the objective function. The multi sub-problems

algorithm requires more than one objective function at each iteration, but it requires less

iterations to converge.

Multi sub-problems with BHHH algorithm

This algorithm improves on the multi sub-problems algorithm by making use of the

BHHH approach. In this algorithm, the iterative steps of the optimization process can be

separated in two stages. In the first stage, the BHHH approximation is used to approx-

imate the Hessian matrix. When the step length gets small enough, the iterations enter

in a second stage, where the multi sub-problems algorithm is used to determine the step.

Like the multi sub-problems algorithm, the multi sub-problems with BHHH is designed

just for the trust-region method.

Adaptive line-search

Adaptive line-search algorithm is new line-search algorithm which is presented in

our thesis as a new optimization algorithm to solve the MLE problem. This algorithm

addresses the unstable behaviour of the original line-search algorithm in some complex

cases. In our adaptive line-search algorithm, the length of search direction is adapted

at each iteration like for the trust-region radius. The numerical results showed good

convergence of this algorithm, better than the original line-search algorithm.
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Application to discrete choice theory

Mixed logit models are currently very popular among practitioners in discrete choice

theory. But they are numerically difficult to solve since they involve random parame-

ters, which are usually assumed to be continuous, leading to choice probabilities that

are multidimensional integrals. We have shown that the mixed logit problem can be

seen as a maximum likelihood estimation problem where the objective function and its

derivatives are very expensive to compute. Our algorithms have been developed and

adapted to address these difficulties and they have been implemented with AMLET li-

brary. The numerical results exhibit favorable results, especially for the retrospective

algorithm and the adaptive line-search, in comparison with standard approaches in non-

linear non-convex programming.

Further research perspectives

Numerical results show the efficiency and competitiveness of our new algorithms in

comparison with the basic optimization algorithms. We can adapt several methods to

select the Hessian approximation. This can lead to new algorithms based on the general

idea of model switching.

Analysing the switching criteria of the retrospective switching algorithms, we can see

there is a problem if the set of Hessian approximations contains more than one matrix

which satisfies the secant equation. To be more precise, consider the switching criteria

of the retrospective approach

i∗ = argmin
i
|mi

k(−sk−1)− f (xk−1)| (7.1)

where the quadratic model is defined based on the Hessian approximation matrix

mi
k(p) = f (xk)+ pT

∇ f (xk)+
1
2

pT H i
k p.

If matrix H i
k is updated by the secant equation H i

ksk−1 = yk−1, the approximation error
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becomes:
δ

i
k(−sk−1) = |mi

k(−sk−1)− f (xk−1)|

= | f (xk)− sT
k−1∇ f (xk)+

1
2

sk−1yk−1− f (xk−1)|

and do not depended on index i, therefore (7.1) has not a unique solution. It implies

that the retrospective algorithm can not run well if the set H i
k contains several secant

approximation matrices (we note that this issues does not happen with other algorithms).

Unfortunately, the retrospective approach is the one that has performed the best, at least

for our testing environment. In order to solve this issue, we propose another algorithm,

more general by considering several previous iterations. Suppose that we have several

successive and successful iterations before the current one:

f (xh1)> f (xh2)> .. . > f (xhκ
)> f (xk)

The nearest previous point is used to evaluate the quadratic model:

ω = argmin
hi

||xhi− xk||

If ω = hκ , to avoid the secant equation, the second nearest point can be chosen as:

ω = argmin
hi|hi<hκ

||xhi− xk||

Under the retrospective approach, the Hessian approximation can be selected by taking

the minimization of the approximation errors:

iretro = argmin
i
|mi

k(xω − xk)− f (xω)|.

We also consider another solution to solve this issue as a potential research direction that

we will like to investigate. We are interested in some modified quasi-Newton approxi-

mations which no longer satisfy the secant equation. For example, a variational BFGS,
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proposed by Biggs [7], can be used:

Hk+1 = Hk +
1

sT
k yk

{(
1
tk
+

yT
k Hkyk

sT
k yk

)
sksT

k − skyT
k Hk−HkyksT

k

}
where

tk =
2

sT
k yk

( fk− fk+1 + sT
k ∇ fk+1).

It is noted that the performance of Biggs’ update is better than the original BFGS update

(see. for instance, Phua and Setiono (1992)[24]). Another variational secant equation

can be considered. Xu and Zhang in [28] proposed a modified Quasi-Newton equation:

Hk+1sk = ŷk

where

ŷk = (1+
θk

sT
k yk

), θk = 6( f (xk)− f (xk+1))+3(∇ f (xk)+∇ f (xk+1)).

Another possible research investigation is where the switching criteria is considered

based on the condition number of Hessian approximation. Note that the condition

number of a matrix A can be computed from the eigenvalues of the matrix:

κ(A) =
∣∣∣∣λmax(A)
λmin(A)

∣∣∣∣
Where λmax(A) and λmin(A) are the maximal and the minimal eigenvalues of A respec-

tively. Phua (1997) [14] proposed a switching algorithm to switch between BFGS and

SR1 updates based on the condition number. The algorithm choose the Hessian approx-

imation that minimizes the condition number. He also proposed a computationally inex-

pensive method for estimating the condition number of the BFGS and SR1 matrix. This

idea can be applied for switching with other type of Hessian approximation (BHHH),

but we have to note that the computation of the condition number κ(BHHH) may be

expensive, especially when the size of matrix becomes larger, then we will need an ef-
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fective method for estimating its condition number. This is one of our future research

perspective as well.

Recall that, beside the switching method, we also proposed a new line-search al-

gorithm. The adaptive line-search needs more investigation before making a general

conclusion. We expect, in the future, to investigate and develop a effective line-search

algorithm based on the very first idea of adaptive line-search algorithm.
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[20] Jorge J. Moré and David J. Thuente. Line search algorithms with guaranteed suf-

ficient decrease. ACM Transactions on Mathematical Software, 20(3):286–307,

1994.

[21] David Munger, Pierre L’Ecuyer, Fabian Bastin, Cinzia Cirillo, and Bruno Tuffin.

Estimation of the mixed logit likelihood function by randomized quasi-monte carlo.

Transportation Research Part B, 46(2):305–320, 2012.

[22] Whitney K. Newey and Daniel McFadden. Large sample estimation and hypothesis

testing. In R.F. Engle and D.L. McFadden, editors, Handbook of Econometrics,

volume IV, chapter 36, pages 2111–2245. Elsevier, Amsterdam, The Netherlands,

1986.

[23] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New

York, NY, USA, 1999.

[24] P.K.H. Phua and R. Setiono. Combined quasi-newton updates for unconstrained

optimization. (no 41), 1992. URL http://books.google.ca/books?id=

yf7ZpwAACAAJ.

[25] Alexander Shapiro. Stochastic programming by Monte Carlo simulation methods.

SPEPS, 2000.

[26] Yosef Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood Cliffs,

New Jersey, USA, 1985.

[27] Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University

Press, New York, NY, USA, 2003.

[28] Chengxian Xu and Jianzhong Zhang. A survey of quasi-newton equations and

quasi-newton methods for optimization. Annals of Operations Research, 103:213–

234, 2001. ISSN 0254-5330.

http://books.google.ca/books?id=yf7ZpwAACAAJ
http://books.google.ca/books?id=yf7ZpwAACAAJ

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Notation
	Acknowledgments
	Introduction
	Background
	Maximum likelihood estimation
	Consistency of MLE
	Asymptotic normality for MLE
	Asymptotic covariance estimation for MLE

	Optimization algorithms
	Trust region method
	Line search method
	Stopping conditions

	Hessian approximations
	Statistical approximation
	Secant approximation
	Combined approximation


	Switching approaches for maximum likelihood estimation
	Model switching
	Predictive model
	Retrospective model
	Multi sub-problem model
	Multi sub-problem with the BHHH model

	Adaptive line search
	Discrete choice theory
	Decision-maker
	The alternatives
	Attributes
	Utilities and Decision rule
	Random utility models
	Mixed-logit model estimation

	Numerical assessment
	Switching algorithms for mixed-logit models
	Discrete choice data sets
	Cybercar model
	IRIS model

	Numerical assessment with AMLET
	Numerical experiments
	Comparison between classical algorithms
	Model switching algorithms with the trust-region method
	Model switching algorithms with the line-search method
	Comparing our adaptive line-search algorithm

	Summary and conclusion

	Conclusions and further research perspectives
	Bibliography

