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1. Introduction

We consider an environment where agents face various choice sets A, all subsets of the
same finite master set T = {x1, . . . , xn} of objects. Agents choose a single object from a
choice set A each time it is presented to them.

Most models for stochastic discrete choice specify or imply choice probabilities PA(x),
for all x ∈ A ⊆ T . We assume that these choice probabilities describe the choice behaviour
of a single agent. This assumption holds for the data we analyse here; alternatively, we
could interpret choice probabilities as describing the choice behaviour of agents randomly
drawn from some population. We also assume that choices are statistically independent
across presentations of choice sets.

A random choice structure (T, P ) is the complete specification of the PA(x). As such, a
random choice structure with no restrictions on probabilities is a non-parametric model. It
is true that it consists of a finite number of unknown probabilities, but this is a consequence
of the finite nature of choice sets, not the imposition of a restrictive finite-dimensional
parametric distribution.

With flexibility comes the danger of over-fitting and poor out-of-sample predictive perfor-
mance. Prior information can impose discipline, and it can come in many forms, including
choice axioms imposing constraints on probabilities across choice sets. Various axioms
have been suggested in the literature. See below for some examples and McCausland and
Marley (2013) for further discussion, including graphical illustrations of the relationships
among them and citations to the literature.

The purpose of this paper is to propose, implement and demonstrate a testing ground
for probabilistic choice axioms in an abstract choice setting. It involves applying methods
of Bayesian model comparison to measure the plausibility of axioms in the light of discrete
choice data. These include compound axioms, obtained as the union, intersection or com-
plement of other axioms. We investigate several particular axioms, but emphasize that our
approach can be used to evaluate others, including those yet to be proposed.

1.1. Some axioms from the literature. Some axioms pertain only to binary choice
probabilities. Due to the importance of these probabilities, we adopt a standard notational
convention: for all distinct x, y ∈ T , we write p(x, y) for P{x,y}(x). The random choice
structure (T, P ) satisfies

TI: the triangle inequality if and only if for all distinct x, y, and z,

p(x, y) + p(y, z) + p(z, x) ≥ 1,

WST: weak stochastic transitivity if and only if for all distinct x, y, and z,

p(x, y) ≥ 1

2
and p(y, z) ≥ 1

2
=⇒ p(x, z) ≥ 1

2
,

MST: moderate stochastic transitivity if and only if for all distinct x, y, and z,

p(x, y) ≥ 1

2
and p(y, z) ≥ 1

2
=⇒ p(x, z) ≥ min[p(x, y), p(y, z)],
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SST: strong stochastic transitivity if and only if for all distinct x, y, and z,

p(x, y) ≥ 1

2
and p(y, z) ≥ 1

2
=⇒ p(x, z) ≥ max[p(x, y), p(y, z)].

Other axioms constrain choice probabilities on differently sized choice sets. We say that
(T, P ) satisfies

Reg: regularity if and only if for all A,B ⊆ T and for all x ∈ A,

PA(x) ≥ PA∪B(x).

MI: the multiplicative inequality if and only if for all A,B ⊆ T and all x ∈ A ∩B,

PA∪B(x) ≥ PA(x) · PB(x).

For MI, see Sattath and Tversky (1976), Colonius (1983) and Suck (2002). For the
remaining conditions, see Luce and Suppes (1965). MI should not be confused with the
multiplication condition in Luce and Suppes (1965), which is a different axiom, involving
only binary choice probabilities. McCausland and Marley (2013) survey in more detail the
literature on theorems about these axioms, and graphically illustrate some of the relation-
ships among them.

We will need some more notation to define a final condition. For all non-empty A ⊆ T ,
we define R(A) as the set of rankings on A; a ranking distribution on A is a pair (A,Π)
such that Π is a probability mass function on R(A). For any ranking distribution (T,Π),
we define the random choice structure induced by (T,Π) as the random choice structure
(T, PΠ) such that for all non-empty A ⊆ T , and all x ∈ A,

PΠ
A (x) =

∑
{�∈R(T ) : h�(A)=x}

Π(�),

where for every nonempty A ⊆ T and every rank order �∈ R(T ), h�(A) is the highest
�-ranked object in A.

Our final condition is this: a random choice structure (T, P ) satisfies the random rank-
ing hypothesis, denoted RR, if there is a ranking distribution (T,Π) such that P = PΠ.
While this definition is not framed in terms of choice probabilities, there are necessary
and sufficient conditions that are. Fiorini (2004) gives these conditions as follows: for all
non-empty A ⊆ T and all x ∈ A,

(1)
∑

B : A⊆B⊆T
(−1)|B\A|PB(x) ≥ 0.

Block and Marschak (1960) and Luce and Suppes (1965, Theorem 49) show that for finite
master sets the random ranking hypothesis is equivalent to what is often known as “random
utility”. Random utility models are those in which agents select from each choice set as
if they drew, independently and from the same continuous distribution, a random utility
function over the master set and then went on to choose the utility maximizing element
from that set. The assumption that utilities have a continuous distribution implies that
the probability that any two utilities are equal is zero. If the definition is only asserted for
the binary choice probabilities, then the model is called a binary random utility model. If
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the utilities ux, x ∈ T , are mutually independent, then we say the model is an independent
random utility model. When the master set has no more than five elements, TI is necessary
and sufficient for binary random utility. See Dridi (1980) for a proof, Koppen (1995) and the
literature cited there for additional necessary conditions when the master set has more than
five elements. Sattath and Tversky (1976) show that MI is necessary for an independent
random utility model.

There is a relatively long history in Economics, Psychology and Marketing, of theory and
application of probabilistic discrete choice models. Most of these models are random utility
models. Widely used random utility models include the (multinomial) logit, (multinomial)
probit, McFadden’s (1977) Generalized Extreme Value (GEV) model, the class of mixed
(multinomial) logit models and Tversky’s (1972) Elimination By Aspects (EBA) model.

Logit models are independent random utility models by construction. Probit models
are random utility models, also by construction, but not necessarily independent random
utility models. The class of GEV models explicitly includes logit, nested logit, paired
combinatorial logit and generalized nested logit models. McFadden (1977) shows that a
representation of choice probabilities characterizing GEV is equivalent to a random utility
model where the vector of utilities has a generalized extreme value distribution. Dagsvik
(1994) shows that the GEV class is dense in the set of random utility models. The class
of mixed logit models explicitly includes latent class logit models. McFadden and Train
(2000) show a limiting equivalence of the set of mixed multinomial logit models and the
set of random utility models. See Train (2009) for more on logit, probit, GEV and mixed
logit.

The EBA model is not explicitly constructed as a random utility model, but Tversky
(1972, Theorem 7) shows that it is indeed one. Sattath and Tversky (1976) show that
EBA models satisfy MI, which we have seen is a necessary condition for independent
random utility; however, Tversky (1972) gives an example of an EBA model that is not an
independent random utility model.

In Economics and Marketing, probabilistic discrete choice models are almost exclusively
random utility ones. In Psychology, random utility models, including logit, probit and
EBA, are commonly used. See summaries in Luce and Suppes (1965), Luce (1977), Luce
(1994) and Marley’s (1992a, 1992b, 2002) editorial introductions to special journal issues.
Models that are not necessarily random utility models include dynamic stochastic choice
models such as decision field theory models and the leaky competing accumulator model.
These are summarized in Rieskamp, Busemeyer, and Mellers (2006) and Busemeyer and
Rieskamp (2013).

1.2. Statistical methods for testing axioms. There is a long history of using data on
observed choice frequencies to support or undermine probabilistic choice axioms. Regen-
wetter, Dana, and Davis-Stober (2011) survey some of the approaches used in the literature
on stochastic transitivities. Many studies interpret frequencies as probabilities, and mea-
sure the evidence for or against an axiom by the number of necessary conditions that are
violated; such an approach ignores sampling variation. Other studies take into account
sampling variability, but run into multiple testing problems, by performing multiple tests
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of various necessary conditions rather than a single joint test of a set of necessary and
sufficient conditions. Another issue is using distributions for test statistics that are not
even asymptotically correct under the null hypothesis that an axiom holds; correct fre-
quentist inference is notoriously difficult when parameter values are subject to inequality
constraints and point estimates of parameters are near the boundary of the constrained set.
The above problems can well lead to erroneous conclusions; in addressing them, Iverson
and Falmagne (1985) overturn the conclusions of Tversky (1969).

Cavagnaro and Davis-Stober (2013), Myung, Karabatsos, and Iverson (2005) and Zwill-
ing, Cavagnaro, and Regenwetter (2011) take a Bayesian approach to testing axioms taking
the form of inequality restrictions over probabilities. Testing these constraints or estimat-
ing parameters subject to them is conceptually straightforward in a Bayesian framework.
A baseline model, consisting of a prior distribution over the set of relevant choice prob-
abilities, serves as an encompassing model. A restricted model is obtained by truncating
the prior distribution to the set of probability configurations that satisfy some axiom. The
Bayes factor in favour of the restricted model against the baseline model is equal to the
ratio of posterior to prior probability of the restriction holding in the baseline model.

Cavagnaro and Davis-Stober (2013) and Myung, Karabatsos, and Iverson (2005) both
use a uniform prior on the space of relevant binary choice probabilities to define their base-
line model. Probabilities for distinct pairs of objects are independent and their marginal
distributions are all uniform on [0, 1]. Truncation to the region where some axiom holds
typically induces dependence and non-uniform marginals. Myung, Karabatsos, and Iverson
(2005) discuss two possible extensions, to non-uniform priors and non-binary probabilities.
They suggest Beta distributions as non-uniform priors for binary choice probabilities and
Dirichlet priors for non-binary choice probabilities. Their claim that these priors are con-
jugate for a likelihood function arising from choice observations implies that they have
in mind a joint prior distribution where choice probabilities over distinct choice sets are
independent.

McCausland and Marley (2013) introduces a family of joint distributions over all the
choice probabilities in a random choice structure. The marginal distributions are symmetric
Dirichlet, but choice probabilities across choice sets need not be independent. As far as
we know, this is the first paper to propose a baseline model where choice probabilities
are dependent. Unfortunately, this dependence destroys conjugacy, which makes it more
difficult to simulate from the posterior distribution. Until now, these priors have not been
used for empirical analysis. The present paper develops the posterior simulation methods
needed for inference.

1.3. Empirical evidence for and against various axioms. Rieskamp, Busemeyer, and
Mellers (2006) review the empirical literature testing weak and strong stochastic transitivity
and regularity. They conclude that although some have found systematic violations of weak
stochastic transitivity, the violations are limited to rare and unusual situations. However,
they point to an “overwhelming number of studies” suggesting that human behaviour does
not satisfy strong stochastic transitivity.
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They also document much evidence against the regularity axiom. Since regularity is nec-
essary for random utility, violations of the former are violations of the latter. They identify
different types of regularity violations, including attraction and asymmetrical dominance
effects.

To our knowledge, the multiplicative inequality has not been tested directly. Independent
random utility, a stronger condition, is considered by many to be too inflexible, but it is
not known how consistent the multiplicative inequality is with observed choices.

1.4. Prior distributions for random choice structures. Bayesian analysis involves
the choice of a prior distribution. McCausland and Marley (2013) propose a class of prior
distribution on the space of random choice structures, indexed by two parameters, α and λ.
The α parameter governs how consistent an agent is likely to be in repeated choices from
the same choice set; for low values of α, a random choice structure drawn from the prior
is likely to feature choice probabilities PA(x) close to zero and one; for high values of α,
they are likely all to be close to 1/|A|. The λ parameter governs the degree of dependence
of choice probabilities across choice sets. For λ = 0, the vectors (PA(x))x∈A are mutually
independent, A ⊆ T ; thus learning PA(·) gives no information about PB(·). For λ = 1,
the random choice structure satisfies the random ranking hypothesis with probability one.
While we do not know the joint density over the space of random choice structures in closed
form, we do know the marginal distributions. They are

(PA(x1), . . . PA(x|A|)) ∼ Di

(
α

|A|!
, . . . ,

α

|A|!

)
,

where Di(·) denotes the Dirichlet distribution — see Forbes, Evans, Hastings, and Peacock
(2011).

1.5. Outline. Section 2 describes a model for discrete stochastic choice, consisting of a
hierarchical prior distribution for a random choice structure (T, P ). The highest level of
the hierarchy gives a prior distribution for the hyper-parameters α and λ of the class of
priors in McCausland and Marley (2013).

Section 3 describes Bayes factors, which we use to document the evidence for or against
various axioms of discrete stochastic choice. In all the cases we consider, the event that an
axiom holds has non-zero prior probability. In these cases, the Bayes factor of an axiom,
with respect to a baseline model, equals the ratio of posterior to prior probabilities of the
axiom holding in the baseline model.

Section 4 describes posterior simulation methods. It does not help us that the marginal
prior distribution of each PA(·) is Dirichlet, the conjugate distribution for the likelihood
function for independent categorical data. A consequence of our decision to allow prior
dependence across choice sets is that the joint prior distribution over all choice probabilities
is not conjugate for the entire likelihood function. For this reason, we resort to Markov
chain Monte Carlo (MCMC) simulation methods to simulate from the posterior distribution
and thereby compute posterior moments and quantiles of interest.

Section 5 reports results from the analysis of data from previous experiments. Section
6 concludes.



BAYESIAN INFERENCE AND MODEL COMPARISON FOR RANDOM CHOICE STRUCTURES 7

2. An Unrestricted Model for Discrete Stochastic Choice

A random choice structure (T, P ) gives a family of distributions for discrete stochastic
choice. Here we complete the model by specifying a hierarchical prior distribution for the
random choice structure (T, P ). We will call this the unrestricted model and denote it
M0. We will also consider various restricted models, obtained by imposing different choice
axioms.

The prior specifies the joint distribution of two hyper-parameters δ and δ̃, a vector γ of
latent variables and the random choice structure (T, P ). At the upper level of the hierarchy

are two hyper-parameters, δ and δ̃, a priori independent with distributions

(2) δ ∼ Ga(a, b), δ̃ ∼ Ga(ã, b̃).

The two parameters α and λ in McCausland and Marley (2013) are given as the following

transformations of δ and δ̃:

λ =
δ

δ + δ̃
, α = δ + δ̃.

We use δ and δ̃ only for computational convenience; α and λ are the parameters of interest.
When b = b̃, the implied joint prior distribution of α and λ is such that α and λ are
independent, with

λ ∼ Be(a, ã), α ∼ Ga(a+ ã, b).

The next level of the hierarchy gives the conditional distribution of latent variables given
hyper-parameters, a distribution described in McCausland and Marley (2013). Given
hyper-parameters, the latent variables are conditionally independent. For each ranking
�∈ R(T ), there is a latent variable γ(�) with conditional distribution

(3) γ(�)|δ, δ̃ ∼ Ga

(
δ

n!
, 1

)
.

For each choice set A and each ranking �∈ R(A), there is a latent variable γ̃A(�) with
conditional distribution

(4) γ̃A(�)|δ, δ̃ ∼ Ga

(
δ̃

|A|!
, 1

)
.

The lowest level of the hierarchy gives choice probabilities as deterministic functions of the
latent variables:

(5) PA(x) =

∑
�∈R(T ) : x=h�(A) γ(�) +

∑
�∈R(A) : x=h�(A) γ̃A(�)∑

�∈R(T ) γ(�) +
∑
�∈R(A) γ̃A(�)

.

We denote by γ the vector of all weights γ(�) and γ̃A(�).
We use the same prior distribution for all participants in all experiments, and do posterior

inference for each participant separately. Alternatively, one could extend the hierarchical
prior to induce dependence of random choice structures across participants — the resulting
joint analysis would “borrow strength” across individuals — but we do not pursue this here.
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Thus, we do not need to introduce notation to distinguish participants in the experiment.
For the remainder of the section, we assume we are discussing the choices of a single
participant.

For every A ⊆ T and x ∈ A, we observe NA(x), the number of times the participant
chooses object x when presented with choice set A. For all A ⊆ T , let NA be the vector
(NA(x))x∈A of all choice counts associated with A. Let N be the vector of all choice counts,
(NA(x))A⊆T,x∈A. In some cases, there will be a choice set B the participant never sees. In
such a case, the vector NB(·) will be zero. However, since the PA(·), A ⊆ T , are statistically
dependent across choice sets, the posterior distribution of PB(·) will typically not be the
same as its prior distribution.

Since we assume choice events are independent across trials, the log likelihood function
can be written as

L(γ;N) =
∑
A⊆T

∑
x∈A

NA(x) logPA(x).

It will be helpful to decompose the log likelihood by choice set. Accordingly, we write

L(γ;N) =
∑
A⊆T
LA(γ;N), where LA(γ;N) =

∑
x∈A

NA(x) logPA(x).

3. Bayes Factors

We evaluate the plausibility of an axiom in the light of observed data by reporting a
simulation consistent approximation of the Bayes factor in favour of a restricted model
Mr, in which the axiom holds, against the unrestricted model M . By Bayes’ rule, we can
express this Bayes factor as

Pr[N |Mr]

Pr[N |M ]
=

Pr[Λ|N,M ]

Pr[Λ|M ]
,

where Λ is the event that the axiom holds for (T, P ).
The left hand side gives the Bayes factor as it is usually defined, in terms of a ratio of

marginal likelihoods. The right hand side is a ratio of the posterior to the prior probability
of the axiom holding in the unrestricted model. A high posterior probability is a measure
of how consistent the data are with the axiom; a low prior probability is a measure of how
small or parsimonious the model becomes when the axiom is imposed. In McCausland and
Marley (2013), we pointed out that since the numerator probability cannot exceed one,
the reciprocal of an axiom’s prior probability gives an upper bound on the Bayes factor
in favour of the restricted model in which the axiom holds. No matter how much data is
collected for a single decision maker, the Bayes factor cannot exceed this bound.

We will approximate the numerator and denominator probabilities using prior and poste-
rior simulation, respectively, and compute numerical standard errors measuring simulation
noise.
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4. Prior and Posterior Simulation

Most techniques of Bayesian empirical analysis involve computing moments and quantiles
of prior or posterior distributions of unknown quantities. Prime examples include point and
interval estimation, model comparison, prior and posterior predictive analysis, and out-of-
sample prediction. See Berger (1985), Bernardo and Smith (1994) and Geweke (2005).
In our case, we will be computing prior and posterior probabilities, which are means of
indicator functions, as well as prior and posterior moments of the α and λ parameters.

Closed form evaluation of many prior and most posterior moments and quantiles is
intractable, so practitioners usually resort to Monte Carlo simulation methods. First, they
draw a sample from the appropriate target distribution; then they approximate moments
and quantiles of the target by their sample counterparts. Independence Monte Carlo, based
on an iid sample, is usually practical when the target is the prior distribution but not when
it is the posterior. For the posterior distribution, most resort to Markov chain Monte Carlo
methods. Laws of large numbers and central limit theorems for ergodic Markov chains are
available to describe and measure simulation error. For texts introducing MCMC, see
Gilks, Richardson, and Spiegelhalter (1996) and Robert and Casella (2010). For details on
basic Markov chain asymptotic theory, see Meyn and Tweedie (1993).

We will report posterior moments of α and λ, and Bayes factors in favor of various
axioms, for six different baseline models, M1 through M6, specified in Section 5. The six
models differ in terms of the prior, and the purpose of multiple models is to illustrate the
sensitivity of results to the prior specification.

While we are only interested in results for the six baseline models, we simulate from the
prior and posterior distributions of a different model, M0. We then use importance sampling
to compute prior and posterior probabilities and other moments for the six baseline models.
We never simulate directly from the baseline models. The prior of M0 is such that all
importance weights are bounded. See Geweke (1989) for more on importance sampling.

Prior simulation is straightforward: we obtain an i.i.d. sample by direct simulation from
the gamma distributions in (2), (3) and (4). We use routines from the GNU Scientific
Library to draw gamma random variables.

Posterior simulation is more difficult, and we resort to MCMC methods. In Section
4.1 and Appendix A, we describe the Markov chains we use to sample from the posterior
distribution.

In Section 4.1.4 we describe how to use the prior and posterior samples we obtain for
model M0 to compute prior and posterior moments for the six baseline models M1, . . . ,M6.
We use importance sampling, which amounts to re-weighting the various draws from the
posterior sample such that weighted sample moments approximate population moments for
one of the six baseline models. We also show how to compute numerical standard errors,
a measure of simulation noise.

Computing prior and posterior probabilities of axioms involves repeated evaluation of an
indicator function over several different random choice structures. To determine whether
an axiom holds for a given random choice structure, we use the robust methods described
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in McCausland and Marley (2013), to guard against classification errors due to machine
rounding error.

4.1. Posterior simulation. We now describe an ergodic Markov chain whose invariant
distribution is the posterior distribution for the unrestricted model in Section 2. The
posterior distribution is the conditional distribution of hyper-parameters δ, δ̃ and γ given
data N . As in many chains used for posterior simulation, the random transition from the
current state of the chain to the next consists of a sequence of several Metropolis-Hastings
transitions, each updating some of the unknown quantities of the model in such a way as
to preserve the posterior distribution. When we say that a stochastic transition preserves
a distribution we mean that the distribution is an invariant distribution of the transition.
See Chib and Greenberg (1995) for a tutorial on the Metropolis-Hastings algorithm.

A single transition of the chain consists of a sequence of three Metropolis-Hastings
updates, described in Sections 4.1.1, 4.1.2 and 4.1.3. Once we have a posterior sample γ(j),
j = 1, . . . , J , we can obtain a posterior sample P (j), j = 1, . . . , J , using (5), draw by draw.

4.1.1. A Metropolis-Hastings update for δ and γ(�), �∈ R(T ). The first update is a
Metropolis-Hastings transition replacing current values δ and γ(�), �∈ R(T ), with ran-
dom new values δ′ and γ′(�), �∈ R(T ). It preserves the conditional distribution of δ and

γ(�), �∈ R(T ), given δ̃, other latent variables, and data N .

(1) Draw β ∼ Be(πa, (1 − π)a) and ε ∼ Ga((1 − π)a, b), with β and ε mutually inde-
pendent and independent of the history of the chain, and form the candidate value
δ∗ = βδ + ε. Since β and ε are only devices used to obtain δ∗, they are discarded.
The random transition from δ to δ∗ is an example of a Beta-Gamma transition,
and it preserves the conditional distribution of δ given a and b — see Appendix A.
Here, π ∈ (0, 1) is a fixed parameter governing the degree of dependence between
δ and δ∗.

(2) For all �∈ R(T ),
(a) if δ∗ > δ, draw the proposal γ∗(�) from the following conditional distribution

of γ∗(�) given γ(�), δ and δ∗:

γ∗(�)− γ(�) ∼ Ga

(
δ∗ − δ
n!

, 1

)
.

(b) if δ∗ ≤ δ, draw γ∗(�) from the following conditional distribution:

γ∗(�)

γ(�)
∼ Be

(
δ

n!
,
δ − δ∗

n!

)
.

(3) Jointly accept the proposal consisting of δ∗ and γ∗(�), �∈ R(T ), with probability

min

(
L(γ∗;N)

L(γ;N)
, 1

)
.

Accepting the proposal means setting new values equal to proposals; here, setting
δ′ = δ∗ and γ′(�) = γ∗(�), �∈ R. Rejecting means setting new values equal to
old values; here, setting δ′ = δ and γ′(�) = γ(�), �∈ R.
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Appendix A shows that the update described here is a true Metropolis-Hastings update of
the conditional distribution of δ and γ(�), �∈ R, given data, other parameters and other
latent variables.

4.1.2. A Metropolis-Hastings update for δ̃ and γ̃A(�), A ⊆ T , �∈ R(A). The second

update does something very similar for the hyper-parameter δ̃ and the γ̃A(�), A ⊆ T and
�∈ R(A).

(1) Draw β ∼ Be(πã, (1 − π)ã) and ε ∼ Ga((1 − π)ã, b̃), independently, and form

δ̃∗ = βδ̃ + ε.
(2) For all non-empty A ⊆ T and �∈ R(A),

(a) if δ̃∗ > δ̃, draw

γ̃∗A(�)− γ̃A(�) ∼ Ga

(
δ̃∗ − δ̃
|A|!

, 1

)

(b) if δ̃∗ ≤ δ̃, draw

γ̃∗A(�)

γ̃A(�)
∼ Be

(
δ̃

|A|!
,
δ̃ − δ̃∗

|A|!

)

(3) Jointly accept δ̃∗ and γ̃∗A(�), A ⊆ T and �∈ R(A), with probability

min

(
L(γ∗;N)

L(γ;N)
, 1

)
.

Appendix A shows that this update is a true Metropolis-Hastings update of the conditional
distribution of δ̃ and γ̃A(�), A ⊆ T and �∈ R, given data, other parameters and other
latent variables.

4.1.3. A Metropolis-Hastings update for γ̃A.

(1) For all A ⊆ T and �∈ R(A),

(a) draw γ̃∗A(�) ∼ Ga
(

δ̃
|A|! , 1

)
,

(b) accept γ̃∗A(�) with probability

min

(
LA(γ∗;N)

LA(γ;N)
, 1

)
.

This a sequence of direct Metropolis updates, each updating the conditional distribution
of one of the γ̃∗A(�) given everything else. These updates do not change the state of the
chain by much. Furthermore, they are redundant in the sense that the variables being
updated are also updated in the second Metropolis-Hastings update. However, they are
cheap because only parts of the likelihood need to be reevaluated.
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4.1.4. Reweighting using importance sampling. Let (α(j), λ(j), γ(j)), j = 1, . . . , J be a sam-
ple from the posterior distribution corresponding to model M0. We want to use this sample
as an importance sample to compute posterior moments for the baseline model Mi. We
evaluate, at each posterior draw j, the prior density f0(α, λ) for model M0 and the prior
density fi(α, λ) for the model i for which we want to compute posterior moments. The
importance sampling weights are

wij =
fi(α

(j), λ(j))

f0(α(j), λ(j))
.

Suppose h(α, λ, γ, P ) is a function whose posterior mean we want to compute for model
Mi. Assume the posterior mean exists. For example, h could be the indicator function
with value 1 whenever the random choice structure P satisfies weak stochastic transitivity
and value 0 whenever it does not. In this example, the posterior mean is the posterior
probability that P satisfies weak stochastic transitivity, the numerator in the Bayes factor
in favour of the model Mi with WST imposed, relative to the baseline model Mi. A
simulation consistent approximation of E[h(α, λ, γ, P )|Mi] is given by

(6) ĥ ≡ N

D
≡
∑J

j=1wijh(α(j), λ(j), γ(j), P (j))∑J
j=1wij

.

We compute an approximation of the variance of ĥ, random because of simulation noise,
in the following way. We first use the batch mean method to approximate variances of
the numerator and denominator and their covariance. Then we use the delta method to
approximate the variance of the ratio.

The batch mean approximation of the variance σ2
N of the numerator is

σ̂2
N ≡

1

N2
B

NB∑
k=1

(n̄k − n̄)2,

where NB is the number of batches, B = J/NB is the batch length, (we choose J and NB

so that B is an integer) n̄k = B−1
∑kB

j=(k−1)B+1wijh(α(j), λ(j), γ(j), P (j)) is the k’th of B

numerator batch means and n̄ =
∑J

j=1wijh(α(j), λ(j), γ(j), P (j)) is the numerator sample
mean.

We obtain similar approximations σ̂2
D and σ̂ND of the denominator variance and the

covariance. Then the delta method gives the approximation

σ̂2
h =

σ̂2
N − 2ĥσ̂ND + ĥ2σ̂2

D

D2

of the numerical variance of the ratio, ĥ. We call the square root, σ̂h, the numerical
standard error of ĥ.

The Bayes factor in favour of Mi, over M0, is a posterior mean whose simulation consis-
tent sample counterpart is the denominator D in (6). The variance of its numerical error
is approximated by σ̂2

D. logD is a simulation consistent approximation of the variance of
the log Bayes factor. The delta method approximation of its variance is σ̂2

D/D
2.
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We use a similar approach to compute numerical errors for the prior distribution.

5. Results

Here we report results from artificial data simulations testing the correctness of our pos-
terior simulation methods, and do posterior analysis for data from an experiment described
in Regenwetter, Dana, and Davis-Stober (2011).

5.1. Getting it right. We perform a simulation whose sole purpose is to test the correct-
ness of our posterior simulation methods. This is a purely pre-data exercise, involving only
artificial data. The tests described here are similar to those described in Geweke (2004).
We draw a sample from the joint distribution of hyper-parameters, latent variables and
data, for an artificial choice experiment where the master set has n = 3 elements and all
subsets of size two and three are presented exactly once. We complete the specification of
the prior by choosing values a = ã = 10 and b = b̃ = 0.1, and complete the specification
of the proposal distribution by choosing the value π = 0.5. We obtain a sample of size
J = 106.

The initial draw is a direct draw from the joint distribution of δ, δ̃, γ and N , obtained
by first drawing hyper-parameters δ and δ̃ from their prior distribution, then the latent
variable vector γ from its conditional distribution given δ and δ̃, and then data from
their (categorical) conditional distribution given γ. Subsequent draws are the output of

a Markov chain whose invariant distribution is the joint distribution of δ, δ̃, γ and N . A
single transition of the chain consists of four Metropolis-Hastings updates. Three are the
very same updates used to update the posterior distribution. The fourth is a direct draw
of N from its conditional distribution given hyper-parameters and latent variables.

If the Markov chain has the correct invariant distribution and if data simulation and
posterior simulation are implemented correctly, then a realization of the chain must be
a sample of draws from the correct joint distribution, although the draws will be seri-
ally dependent. This is a very strong condition that leads to multiple tests of program
correctness.

We test 18 hypotheses implied by program correctness. We know that the marginal
distributions of δ and δ̃ are the same as their prior distributions, both Ga(10, 0.1). At all

draws of δ and δ̃ in the sample, we evaluate indicator functions 1[0,q](·), for nine different
values of q. The value of the indicator function is one when its argument is in the interval
[0, q] and zero otherwise. The values of q are the quantiles of the Ga(10, 0.1) distribution
corresponding to the nine probabilities p = 0.1, 0.2, . . . , 0.8, 0.9. The nine values of p and
q are tabulated in Table 1.

We then compare the sample means of these indicator functions with what their pop-
ulation counterparts should be, namely the probabilities 0.1, 0.2, . . . , 0.8, 0.9 themselves.
Table 1 shows the results. Column p̂, δ gives the sample mean of the indicator function
1[0,q](δ), for each value of q, and the fourth column gives the numerical standard error for

p̂. Column p̂, δ̃ gives the sample mean of the indicator function 1[0,q](δ̃), and the sixth
column gives the numerical standard error for p̂.
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With our large sample size, we obtain very small standard errors. Even so, the sample
means are all within a single standard error of the population means, under the null
hypothesis that our code works properly. The results fail to reject this hypothesis.

p q p̂, δ NSE p̂, δ̃ NSE
0.1 0.6221 0.0999 0.0005 0.1004 0.0005
0.2 0.7289 0.1998 0.0007 0.1998 0.0007
0.3 0.8133 0.2993 0.0008 0.2996 0.0008
0.4 0.8904 0.3995 0.0009 0.3996 0.0009
0.5 0.9669 0.5001 0.0009 0.4992 0.0009
0.6 1.0476 0.6004 0.0009 0.5992 0.0009
0.7 1.1387 0.7000 0.0008 0.6995 0.0009
0.8 1.2519 0.7998 0.0007 0.7997 0.0007
0.9 1.4206 0.8998 0.0005 0.9004 0.0005

Table 1. Sample probabilities for “Getting it right” computations

5.2. Posterior analysis. In Regenwetter, Dana, and Davis-Stober’s (2011) experiment,
18 undergraduates participated in three different scenarios, denoted here and in that paper
by “Cash I”, “Cash II” and “Noncash”. In each scenario, the master set contains n = 5
objects, and the objects are lotteries in which a prize is won with a certain probability.
In “Cash I”, the probabilities of winning replicate those from a similar experiment by
Tversky (1969), designed to elicit intransitive revealed preferences. Prizes are monetary
values, adjusted to approximately replicate the purchasing power of the original prizes in
Tversky (1969). In “Cash II”, prizes are also monetary. Probabilities and prizes are chosen
so that the expected monetary values of the five lotteries were identical. In “Noncash”,
the prizes were non-monetary. In each scenario, all 18 participants were presented all ten
doubleton subsets of the master set twenty times.

We wish to illustrate the sensitivity of various results to the choice of prior distribution.
To this end, we report results for six baseline models, M1 through M6, differing only in
terms of the prior distribution. Table 2 defines the priors and gives selected moments. The
first four columns define the various priors in terms of the hyper-parameters a, ã, b and b̃ of
equation (2). In all cases, the values of b and b̃ are equal. The next three columns give the
implied prior mean, variance and standard deviation of the parameter α. The final three
columns do the same for the parameter λ. We will denote the prior density for model Mi

as fi(α, λ), for i = 0, 1, . . . , 6.
The model M0 is used for posterior simulation and we do not report results for it. Its

prior, also tabulated in Table 2, is chosen for its property that the ratio fi(α, λ)/f0(α, λ)
of prior densities is bounded for all i = 1, . . . , 6. This allows us to compute all results
using a single posterior sample, for model M0: results for other priors are computed using
importance sampling, as described in Section 4.1.4.

We now discuss inference based on the following simulations. For each of the 18 par-
ticipants, we generate a posterior sample of size 2.4 × 107, retaining every 300th draw,
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a ã b b̃ E[α] Var[α] σα E[λ] Var[λ] σλ
M0 1.0 0.20 1.3500 3.7500 2.1 4.625 2.153 0.747 0.098 0.313
M1 1.0 0.20 1.2500 1.2500 1.5 1.875 1.369 0.833 0.076 0.275
M2 1.0 0.60 0.9375 0.9375 1.5 1.406 1.186 0.625 0.144 0.380
M3 1.0 1.00 0.7500 0.7500 1.5 1.125 1.061 0.500 0.167 0.408
M4 1.4 0.20 0.9375 0.9375 1.5 1.406 1.186 0.875 0.067 0.259
M5 1.4 0.60 0.7500 0.7500 1.5 1.125 1.061 0.700 0.140 0.374
M6 1.8 0.20 0.7500 0.7500 1.5 1.125 1.061 0.900 0.060 0.245

Table 2. Prior hyper-parameters and moments of α and λ

for a thinned sample size of 8.0 × 104. We use the model M0 with prior hyper-parameter
values indicated in Table 2. We complete the specification of the proposal distribution by
choosing the value π = 0.5.

Table 3 shows log Bayes factors in favour of the models M1 through M6, relative to the
model M0. All of these models are unconstrained, with no axioms imposed. For a given
row, differences of log Bayes factors give log Bayes factors in favour of one model over
another. Take, for example, the first subject. The log Bayes factor in favour of M1 over
M2 is −0.04 − −0.31 = 0.27, implying a posterior odds ratio of exp(0.27) ≈ 1.310. All
numerical standard errors in this table are less than 0.015.

For no participant are Bayes factors decisive. Looking across participants, however,
some patterns emerge. For most participants, models M4 and M6 are the most favoured.
These are models where the prior mean of λ is particularly high. For participants 4 and
16, who are exceptional in many ways, they are the least favoured.

Tables 4 and 5 show posterior means µi and standard deviations σi of the α and λ
parameters, respectively. Each row shows results for a different participant in the exper-
iment; the first column gives the participant’s identifier. The tables show results for the
six models M1, . . . ,M6. All numerical standard errors in Table 4 and Table 5 are less than
0.25 and 0.03 respectively.

The variation of the posterior mean of α across participants is considerably more pro-
nounced than its variation across models. This is also true of the posterior standard
deviation. For some participants, the data are quite informative about α and the posterior
mean and standard deviation of α are much smaller than the prior mean and standard
deviation. For others, the posterior mean and standard deviation are close to their prior
counterparts.

Relative to α, the posterior mean of λ is fairly sensitive to the prior mean. Except for
participants 4 and 16, the posterior mean tends to be larger than the prior mean for all
models. This is further evidence that most subjects’ behaviour is consistent with values of
λ much closer to one than to zero. Again, participants 4 and 16 are exceptions.

Tables 6 through 11 give log Bayes factors in favour of restricted models over baseline
models. Each of these tables gives results for a single axiom; for example, Table 6 gives
log Bayes factors in favour of a restricted model with weak stochastic transitivity imposed
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M1 M2 M3 M4 M5 M6

1 -0.04 -0.31 -0.50 0.05 -0.19 0.11
2 0.14 -0.36 -0.72 0.30 -0.14 0.41
3 0.26 -0.45 -1.06 0.25 -0.40 0.21
4 -0.18 0.60 0.88 -0.22 0.57 -0.28
5 0.24 -0.51 -1.14 0.33 -0.34 0.38
6 0.06 0.28 0.35 0.16 0.38 0.22
7 0.19 -0.55 -1.14 0.37 -0.29 0.49
8 0.24 0.06 -0.27 0.20 0.05 0.14
9 -0.21 -0.63 -0.94 -0.17 -0.55 -0.14

10 0.21 -0.28 -0.69 0.35 -0.07 0.44
11 0.22 0.15 -0.08 0.24 0.19 0.24
12 -0.15 -0.22 -0.29 -0.07 -0.15 -0.01
13 -0.14 -0.54 -0.83 -0.11 -0.45 -0.09
14 0.26 -0.53 -1.19 0.24 -0.48 0.19
15 -0.01 -0.38 -0.66 0.08 -0.25 0.13
16 0.12 0.79 0.94 0.02 0.75 -0.08
17 -0.86 -0.61 -0.56 -0.93 -0.69 -0.96
18 -0.10 -0.60 -0.97 -0.07 -0.50 -0.06

Table 3. Log Bayes factors in favour of models Mi, 1, . . . , 6, by participant

against a baseline model. Each table reports log Bayes factors for each participant and
each baseline model.

Numerical standard errors for log Bayes factors vary greatly. The error tends to be larger
for the more improbable axioms and the smallest (i.e. most negative) log Bayes factors,
due to the difficulty of measuring the probability of rare events. In the most extreme cases,
the log Bayes factor is given as “-Inf”, indicating that not a single posterior draw of the
random choice structure P , out of 8 × 105, satisfied the relevant axiom. In those cases
where there is a great deal of uncertainty about the log Bayes factor, at least we know that
it is very small, and that the data strongly favour the baseline model.

For most participants, weak stochastic transitivity is favoured over the baseline model
for all six baseline models. The data of participants 4, 6, 12 and 17 stand out as favouring
the baseline model in all cases. Whether favourable or unfavourable, log Bayes factors are
fairly robust to the prior specification: they do not vary much across models.

Log Bayes factors in favour of WST indicate quite weak support — the largest Bayes
factor in favour is exp(0.98) ≈ 2.66. This is because the prior probability of WST is so
high. For all models, the highest log Bayes factors are very close to each other; for the
subjects with the highest Bayes factors, the posterior probabilities of WST are very close to
one, giving Bayes factors very close to the upper bound for a particular model, namely the
reciprocal of the prior probability of WST under that model. Reported log Bayes factors
in favour of WST have numerical standard errors less than 0.05. Excluding participants 4,
12 and 17, they are less than 0.01.
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µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4 µ5 σ5 µ6 σ6

1 2.61 1.35 2.50 1.18 2.41 1.06 2.43 1.19 2.36 1.07 2.30 1.08
2 1.79 0.99 1.77 0.91 1.75 0.84 1.75 0.91 1.73 0.85 1.72 0.85
3 0.51 0.35 0.51 0.33 0.52 0.32 0.57 0.36 0.57 0.34 0.62 0.37
4 1.60 0.76 1.60 0.71 1.60 0.67 1.58 0.73 1.58 0.68 1.56 0.70
5 0.76 0.48 0.78 0.46 0.79 0.44 0.82 0.48 0.83 0.46 0.86 0.47
6 1.55 0.82 1.49 0.72 1.47 0.66 1.55 0.78 1.51 0.70 1.55 0.74
7 1.45 0.81 1.44 0.76 1.44 0.72 1.45 0.77 1.45 0.73 1.46 0.73
8 0.52 0.36 0.49 0.33 0.49 0.31 0.58 0.37 0.56 0.34 0.64 0.38
9 3.03 1.73 2.96 1.53 2.87 1.37 2.69 1.45 2.66 1.32 2.47 1.26

10 1.09 0.64 1.09 0.60 1.09 0.57 1.13 0.62 1.13 0.58 1.16 0.60
11 0.67 0.43 0.63 0.39 0.62 0.37 0.73 0.43 0.69 0.40 0.79 0.44
12 2.45 1.31 2.47 1.19 2.44 1.08 2.27 1.16 2.30 1.07 2.15 1.05
13 3.17 1.67 2.98 1.44 2.84 1.28 2.85 1.42 2.73 1.27 2.63 1.25
14 0.49 0.34 0.50 0.33 0.51 0.32 0.55 0.35 0.56 0.34 0.60 0.36
15 2.77 1.39 2.59 1.20 2.46 1.07 2.57 1.22 2.44 1.09 2.42 1.10
16 0.76 0.44 0.78 0.42 0.79 0.40 0.83 0.45 0.84 0.43 0.88 0.45
17 3.05 1.75 3.07 1.53 2.96 1.35 2.63 1.44 2.70 1.32 2.38 1.25
18 3.31 1.69 3.05 1.45 2.87 1.28 2.96 1.44 2.80 1.27 2.73 1.27
Table 4. Posterior mean µi and standard deviation σi of α, by participant
and model Mi, i = 1, . . . , 6

Log Bayes factors in favour of moderate stochastic transitivity vary considerably. The
empirical evidence against MST is strong and robust for participants 4, 16 and 17. Where
the Bayes factors favour MST, the degree of support is often stronger than for WST. This
is possible because of the relative prior improbability of MST. In some cases, of course, the
evidence turns the other way. The data for participant 16 is quite consistent with WST but
not with MST, a stronger condition. Note that weak evidence against WST for participant
6 becomes weak evidence in favour of MST. Estimated log Bayes factors in favour of MST
have numerical standard errors less than 0.5. Excluding participants 4, 16 and 17, they
are less than 0.05.

For participants 4, 16 and 17, not a single posterior draw satisfies strong stochastic
transitivity. This makes it impossible to measure the log Bayes factor with any accuracy,
but we do know that it is very small. There is clearly strong evidence against SST for
these participants. For other participants, there is moderate and robust evidence in favour
of SST. Excluding participants 4, 16 and 17, estimated log Bayes factor in favour of SST
have numerical standard errors less than 1.1. Excluding 9 and 12 as well, they are less
than 0.5.

As with WST, log Bayes factors in favour of the triangle inequality are small. Only the
log Bayes factors for model M3 exceed one, and we have seen that this model has relatively
weak empirical support for participants other than 4 and 16. Again, weak support is due to
the relatively high prior probability of the axiom in question. Estimated log Bayes factor
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µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4 µ5 σ5 µ6 σ6

1 0.91 0.17 0.75 0.25 0.63 0.27 0.93 0.14 0.80 0.21 0.94 0.12
2 0.95 0.11 0.85 0.19 0.75 0.22 0.96 0.10 0.87 0.16 0.96 0.09
3 0.95 0.11 0.86 0.18 0.78 0.21 0.96 0.09 0.88 0.15 0.97 0.08
4 0.59 0.28 0.49 0.27 0.42 0.25 0.65 0.25 0.56 0.25 0.70 0.23
5 0.97 0.08 0.90 0.14 0.82 0.18 0.97 0.07 0.91 0.12 0.97 0.06
6 0.82 0.24 0.65 0.27 0.54 0.27 0.85 0.20 0.70 0.24 0.88 0.18
7 0.97 0.07 0.91 0.12 0.84 0.16 0.97 0.06 0.92 0.11 0.98 0.06
8 0.87 0.18 0.76 0.22 0.68 0.23 0.90 0.15 0.80 0.19 0.92 0.13
9 0.92 0.17 0.77 0.25 0.66 0.27 0.94 0.13 0.82 0.20 0.95 0.11

10 0.95 0.10 0.86 0.17 0.78 0.20 0.96 0.09 0.87 0.15 0.96 0.08
11 0.87 0.19 0.74 0.23 0.66 0.24 0.89 0.16 0.78 0.20 0.91 0.14
12 0.87 0.22 0.68 0.28 0.56 0.28 0.90 0.18 0.75 0.25 0.92 0.15
13 0.92 0.16 0.78 0.24 0.66 0.26 0.93 0.13 0.82 0.20 0.94 0.11
14 0.96 0.10 0.87 0.17 0.79 0.20 0.96 0.08 0.89 0.14 0.97 0.07
15 0.93 0.15 0.79 0.22 0.68 0.25 0.94 0.13 0.82 0.19 0.95 0.11
16 0.62 0.25 0.55 0.25 0.49 0.24 0.67 0.22 0.60 0.22 0.71 0.20
17 0.73 0.30 0.56 0.30 0.47 0.28 0.81 0.24 0.65 0.27 0.85 0.20
18 0.93 0.14 0.81 0.22 0.70 0.25 0.94 0.12 0.84 0.19 0.95 0.10
Table 5. Posterior mean µi and standard deviation σi of λ, by participant
and model Mi, i = 1, . . . , 6

in favour of TI have numerical standard errors less than 0.06. Excluding partcipants 4 and
16, they are less than 0.02.

Results for regularity are similar to those for TI. Estimated log Bayes factor in favour of
Reg have numerical standard errors less than 0.05. Excluding partcipants 4 and 16, they
are less than 0.02.

There is more support for the random ranking hypothesis than there is for TI. This is
possible because of its lower prior probability. Overall, there is considerable support for
RR, more so than that for TI, a necessary condition for RR. This evidence is fairly robust
across baseline models, so that even when the prior distribution puts more mass on values of
λ close to one, there is still almost as much of an improvement in out-of-sample predictive
performance resulting from imposing RR. Even for participants 4 and 16, the evidence
against RR is weaker than the evidence against TI. It seems that the conditional posterior
probability of RR given TI is considerably higher than the corresponding conditional prior
probability.

A remarkable feature of the results in this table is that for participants 4 and 16, the
Bayes factor favours RR for the baseline model M3. Recall that this model is the best
performing baseline model for these two subjects and the worst for most of the other
participants. It is the model for which the prior mean of λ, at 0.5, is the lowest, giving a
particularly low prior probability of RR. However, truncating to the RR region improves
the predictive performance.
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M1 M2 M3 M4 M5 M6

1 0.02 0.27 0.43 -0.02 0.18 -0.05
2 0.38 0.73 0.97 0.33 0.63 0.30
3 0.38 0.74 0.98 0.33 0.63 0.30
4 -3.44 -3.93 -4.00 -3.30 -3.88 -3.19
5 0.38 0.74 0.98 0.33 0.63 0.30
6 -0.39 -0.33 -0.24 -0.40 -0.39 -0.40
7 0.38 0.74 0.98 0.33 0.63 0.30
8 0.38 0.74 0.98 0.33 0.63 0.30
9 0.03 0.25 0.39 -0.00 0.19 -0.02

10 0.38 0.74 0.98 0.33 0.63 0.30
11 0.38 0.74 0.98 0.33 0.63 0.30
12 -0.81 -0.79 -0.78 -0.82 -0.82 -0.83
13 -0.10 0.13 0.28 -0.15 0.05 -0.17
14 0.38 0.74 0.98 0.33 0.63 0.30
15 0.29 0.62 0.84 0.24 0.52 0.21
16 0.34 0.69 0.93 0.29 0.59 0.26
17 -1.91 -2.26 -2.40 -1.82 -2.17 -1.76
18 0.10 0.42 0.62 0.06 0.32 0.03

Table 6. Log Bayes factors in favour of weak stochastic transitivity, by
participant and model

Results for the multiplicative inequality are somewhat unusual. For participants 3,4,5,10,11
and 16, there is strong evidence against MI for all baseline models. For other participants,
prior and posterior probabilities are both very low, and the log Bayes factors are measured
with a lot of error: numerical standard errors for them range from 0.3 to 1.1. Even consid-
ering the large standard errors, however, there seems to be a lot of sensitivity to the prior
specification.

6. Conclusions

We have introduced new posterior simulation methods allowing more flexible inference
for random choice structures. Previous articles had specified prior distributions over the
set of binary choice probabilities in which the probabilities were independent, each with
a Beta distribution. Such priors are a convenient choice, since they are fully conjugate
for the likelihood function for choices that are independent across choice sets and trials.
However, ruling out prior dependence is quite restrictive. Our methods work for the two-
parameter class of prior distributions introduced in McCausland and Marley (2013). The
α parameter governs consistency of choice from trial to trial and λ governs dependence of
choice probabilities across choice sets.
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M1 M2 M3 M4 M5 M6

1 0.41 0.76 1.01 0.35 0.64 0.31
2 1.03 1.55 1.91 0.97 1.40 0.93
3 0.85 1.38 1.75 0.80 1.24 0.76
4 -6.52 -7.74 -7.58 -6.37 -7.85 -6.25
5 0.87 1.42 1.79 0.83 1.29 0.80
6 0.10 0.18 0.31 0.09 0.12 0.09
7 0.30 0.81 1.15 0.25 0.66 0.21
8 1.08 1.54 1.86 1.05 1.42 1.02
9 -1.43 -1.27 -1.20 -1.51 -1.40 -1.57

10 1.12 1.72 2.13 1.07 1.57 1.04
11 1.35 1.93 2.31 1.29 1.78 1.25
12 -1.97 -1.84 -1.79 -2.03 -1.92 -2.08
13 0.59 0.95 1.21 0.52 0.82 0.46
14 0.98 1.50 1.85 0.92 1.36 0.89
15 1.51 2.02 2.37 1.45 1.87 1.41
16 -4.70 -5.61 -6.07 -4.62 -5.55 -4.55
17 -4.47 -5.03 -5.26 -4.42 -4.97 -4.41
18 1.12 1.60 1.92 1.05 1.46 1.00

Table 7. Log Bayes factors in favour of moderate stochastic transitivity,
by participant and model

We have shown that for most participants in an experiment, there is strong evidence for
dependence across choices. Data are quite informative about the degree of dependence, as
measured by λ.

Certain broad inferences are fairly robust to the prior specification. For all but two
participants, there is weak evidence for weak stochastic transitivity and the triangle in-
equality. Overall, there is more support for the random ranking hypothesis than there is
for the triangle inequality, a necessary condition. Evidence for and against other axioms
varies more by participant. Evidence against the multiplicative inequality is quite strong
for a large fraction of the participants.
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Appendix A. Markov chain Monte Carlo details

A.1. Transition densities. We define some proposal distributions we use in our Metropolis-
Hastings updates. The first is the Beta-Gamma transformation introduced in Lewis,
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M1 M2 M3 M4 M5 M6

1 0.47 1.51 1.90 1.14 1.52 1.22
2 -1.53 0.00 0.68 -0.82 -0.00 -0.70
3 -0.13 1.08 1.55 0.62 1.10 0.76
4 -Inf -Inf -Inf -Inf -Inf -Inf
5 -0.49 0.78 1.29 0.28 0.85 0.44
6 1.01 2.01 2.45 1.76 2.07 1.90
7 -0.85 0.70 1.51 -0.14 0.67 -0.03
8 0.07 1.26 1.86 0.78 1.23 0.90
9 -3.52 -2.98 -3.66 -2.77 -2.85 -2.66

10 -0.27 1.10 1.78 0.48 1.13 0.63
11 1.08 2.56 3.29 1.75 2.49 1.83
12 -4.18 -7.46 -12.08 -3.29 -7.19 -3.05
13 0.10 1.00 1.34 0.75 0.98 0.82
14 -0.19 0.93 1.48 0.53 0.90 0.65
15 2.31 3.59 4.24 3.00 3.57 3.09
16 -Inf -Inf -Inf -Inf -Inf -Inf
17 -Inf -Inf -Inf -Inf -Inf -Inf
18 1.54 2.63 3.10 2.23 2.62 2.33

Table 8. Log Bayes factors in favour of strong stochastic transitivity, by
participant and model

McKenzie, and Hugus (1986). Suppose we transform a random variable x to create x∗ =
βx+ ε, where x, β and ε are mutually independent, β ∼ Be(πa, (1−π)), ε ∼ Ga((1−π)a).
Here, π ∈ (0, 1) and a > 0 are parameters. The unique invariant distribution of this trans-
formation is α ∼ Ga(a). We denote the transition density as q1(x∗|x, a, π). The Markov
chain with this transition density is known as the Beta-Gamma autoregressive process.
Importantly, Lewis, McKenzie, and Hugus (1986) show that it is time reversible, which
implies that

(7) fGa(α|a)q1(α∗|α, a, π) = fGa(α∗|a)q1(α|α∗, a, π).

We will never need to evaluate q1(·, ·) but we will need to invoke the time reversibility
condition (7) to demonstrate the correctness of our Metropolis-Hastings updates.

We now derive the transition density q2(y∗|y, x, x∗) for a conditional transformation
from y to y∗ given x and x∗, where x > 0 and x∗ > 0, x 6= x∗, are parameters. The
transformation is defined as follows. If x∗ > x, then y∗ = y + ε, where ε and (y, x, x∗) are
independent and ε ∼ Ga(x∗ − x). If x∗ < x, then y∗ = βy, where β ∼ Be(x∗, x− x∗).

The conditional density associated with the conditional transition from y to y∗ given x
and x∗ is

q2(y∗|y, x, x∗) =

{
fGa(y∗ − y|x∗ − x) x∗ > x,
1
yfBe

(
y∗

y |x
∗, x− x∗

)
x > x∗,
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M1 M2 M3 M4 M5 M6

1 0.38 0.93 1.30 0.32 0.80 0.28
2 0.40 0.97 1.33 0.33 0.83 0.29
3 0.28 0.65 0.87 0.23 0.55 0.19
4 -2.21 -2.74 -2.78 -2.08 -2.69 -1.97
5 0.34 0.81 1.09 0.28 0.68 0.24
6 0.03 0.29 0.54 0.00 0.20 -0.01
7 0.40 0.95 1.29 0.33 0.80 0.28
8 0.10 0.41 0.64 0.08 0.33 0.07
9 0.38 0.93 1.28 0.32 0.80 0.28

10 0.36 0.88 1.22 0.30 0.74 0.26
11 0.19 0.62 0.93 0.16 0.51 0.14
12 0.21 0.52 0.73 0.17 0.43 0.15
13 0.40 0.98 1.36 0.34 0.85 0.29
14 0.30 0.69 0.91 0.24 0.58 0.21
15 0.44 1.07 1.49 0.37 0.92 0.32
16 -3.19 -4.33 -5.03 -3.09 -4.25 -3.00
17 -0.17 -0.07 0.06 -0.14 -0.10 -0.13
18 0.44 1.08 1.51 0.37 0.93 0.33

Table 9. Log Bayes factors in favour of triangle inequality, by participant
and model

where fGa denotes the standard Gamma density,

fGa(y|x) =
yx−1

Γ(x)
, x > 0, y > 0,

and fBe denotes the Beta density,

fBe(y|x1, x2) =
Γ(x1 + x2)

Γ(x1)Γ(x2)
yx1−1(1− y)x2−1, x1, x2 > 0, y ∈ (0, 1).

We now show an important result:

(8) fGa(y|x)q(y∗|y, x, x∗) = fGa(y∗|x∗)q(y|y∗, x∗, x).

Proof: Write out the left hand side of (8) as

fGa(y|x)q(y∗|y, x, x∗)

=
yx−1

Γ(x)

[
u(x∗ − x)

(y∗ − y)x
∗−x−1

Γ(x∗ − x)
+ u(x− x∗)1

y

Γ(x)

Γ(x∗)Γ(x− x∗)

(
y∗

y

)x∗−1(y − y∗
y

)x−x∗−1
]

= u(x∗ − x)
yx−1(y∗ − y)x

∗−x−1

Γ(x)Γ(x∗ − x)
+ u(x− x∗)(y∗)x

∗−1(y − y∗)x−x∗−1

Γ(x∗)Γ(x− x∗)
,

where u(·) is the Heaviside, or unit step function, equal to one for non-negative arguments
and zero for negative arguments.



BAYESIAN INFERENCE AND MODEL COMPARISON FOR RANDOM CHOICE STRUCTURES 23

M1 M2 M3 M4 M5 M6

1 0.20 0.48 0.68 0.16 0.40 0.14
2 0.34 0.87 1.27 0.28 0.74 0.25
3 0.33 0.87 1.34 0.28 0.77 0.26
4 -2.28 -3.06 -3.33 -2.11 -2.94 -1.98
5 0.41 1.09 1.64 0.35 0.94 0.31
6 -0.28 -0.45 -0.49 -0.26 -0.46 -0.25
7 0.45 1.22 1.85 0.39 1.05 0.34
8 -0.18 -0.13 0.10 -0.16 -0.14 -0.15
9 0.25 0.65 0.96 0.23 0.59 0.21

10 0.29 0.76 1.16 0.23 0.63 0.20
11 -0.19 -0.19 -0.02 -0.17 -0.20 -0.16
12 0.06 0.15 0.24 0.06 0.14 0.05
13 0.23 0.60 0.89 0.20 0.52 0.18
14 0.36 0.97 1.47 0.32 0.85 0.28
15 0.25 0.63 0.92 0.20 0.53 0.17
16 -3.07 -3.86 -4.08 -2.97 -3.82 -2.88
17 -0.46 -0.72 -0.77 -0.35 -0.59 -0.28
18 0.30 0.76 1.14 0.25 0.66 0.22

Table 10. Log Bayes factors in favour of regularity, by participant and model

The last line has the symmetry property that replacing (x, y) by (x∗, y∗) gives the same
expression. The left hand side must have the same property, which is the desired result.

A.2. Hastings ratios. Writing out the full Hastings ratio for the first Metropolis-Hastings
update gives

H =
f(α∗)

∏
�∈R(T ) fGa(γ∗(�)|α∗/n!) Pr[N |γ∗]

f(α)
∏
�∈R(T ) fGa(γ(�)|α/n!) Pr[N |γ]

·
q1(α|α∗)

∏
�∈R(T ) q2(γ(�)|γ∗(�), α∗/n!, α/n!)

q1(α∗|α)
∏
�∈R(T ) q2(γ∗(�)|γ(�), α/n!, α∗/n!)

,

where γ∗ is understood to mean the vector γ of all weights, with the γ(�) weights replaced
by γ∗(�), �∈ R.

Using equation (7) and repeated applications of equation (8), the Hastings ratio reduces
to

H =
Pr[N |γ∗]
Pr[N |γ]

.

Therefore the first Metropolis-Hastings update is a true Metropolis-Hastings update pre-
serving the conditional distribution of δ and γ(�), �∈ R(T ), given δ̃, other latent variables,
and data N . The analogous demonstration for the second Metropolis-Hastings update is
very similar and we omit it.
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M1 M2 M3 M4 M5 M6

1 1.35 1.60 1.91 1.29 1.49 1.25
2 1.51 2.02 2.46 1.42 1.85 1.37
3 1.50 2.05 2.56 1.43 1.91 1.39
4 -1.08 -1.05 1.34 -0.97 -1.75 -0.86
5 1.58 2.25 2.80 1.49 2.06 1.43
6 0.89 0.73 1.21 0.88 0.65 0.87
7 1.62 2.36 2.96 1.53 2.16 1.47
8 1.00 1.09 1.86 0.98 0.99 0.98
9 1.40 1.76 2.09 1.35 1.66 1.31

10 1.46 1.93 2.39 1.37 1.75 1.32
11 0.98 1.02 1.72 0.97 0.93 0.97
12 1.22 1.30 1.57 1.19 1.26 1.17
13 1.38 1.70 1.95 1.32 1.59 1.28
14 1.54 2.15 2.81 1.46 1.98 1.41
15 1.40 1.73 1.96 1.33 1.60 1.28
16 -1.82 -1.13 1.50 -1.82 -2.42 -1.75
17 0.69 0.42 0.92 0.78 0.48 0.82
18 1.44 1.84 2.16 1.37 1.71 1.32

Table 11. Log Bayes factors in favour of random ranking, by participant
and model
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