Inclusive Fitness Maximization:

An Axiomatic Approach
Samir Okasha®, John A. Weymark®, Walter Bossert®

2 Department of Philosophy, University of Bristol, 9 Woodland Road, Bristol
BS8 1TB, United Kingdom
b Department of Economics, Vanderbilt University, VU Station B #351819,
2301 Vanderbilt Place, Nashuville, TN 37235-1819, USA
¢Department of Economics and CIREQ), University of Montreal, P.O. Bozx
6128, Station Downtown, Montreal QC H3C 3J7, Canada

May 2013

Abstract. Kin selection theorists argue that evolution in social contexts
will lead organisms to behave as if maximizing their inclusive, as opposed
to personal, fitness. The inclusive fitness concept allows biologists to treat
organisms as akin to rational agents seeking to maximize a utility function.
Here we develop this idea and place it on a firm footing by employing a stan-
dard decision-theoretic methodology. We show how the principle of inclusive
fitness maximization and a related principle of quasi-inclusive fitness max-
imization can be derived from axioms on an individual’s ‘as if preferences’
(binary choices). Our results help integrate evolutionary theory and rational
choice theory, help draw out the behavioural implications of inclusive fitness
maximization, and point to a possible way in which evolution could lead
organisms to implement it.

Keywords. Hamilton’s Rule, inclusive fitness, kin selection, rational choice

*Corresponding author. Tel. +44 (0) 117 928 7829
E-mail addresses: samir.okasha@bristol.ac.uk,
john.weymark@vanderbilt.edu, walter.bossert@umontreal.ca

1



1. Introduction

A central tenet of inclusive fitness theory is that a trait may be selected for
even if it involves some sacrifice to personal fitness, provided that it suffi-
ciently enhances the reproductive success of genetically related individuals.
Typically, genetic relatedness between social partners stems from kinship, in
which case inclusive fitness theory can be identified with kin selection theory.
Inclusive fitness is central to much work on the evolution of social behaviour.
It has been used to understand diverse biological phenomena including sex-
ratios, co-operative breeding, dispersal, reproductive skew, group formation,
and more. For introductions to inclusive fitness theory, see Frank (1998),
McElreath and Boyd (2007), and Wenseleers, Gardner, and Foster (2010).

J. B. S. Haldane purportedly enunciated the basic idea of inclusive fitness
theory in a pub when he quipped that he would sacrifice himself by jumping
into a river to save two brothers or eight cousins, a view he only expressed
in print at a much later date (see Haldane (1955, p. 44)). However, it was
W. D. Hamilton (1963, 1964a,b) who first provided a precise formal statement
of the theory. In addition to Haldane (1955), other precursors to Hamilton
include Darwin (1859), Fisher (1930), and Haldane (1932) (see Dugatkin
(2007)).

Hamilton’s original theory contains two distinct though related ideas:
firstly, his famous rule for when a gene coding for an altruistic action will
be favoured by natural selection; and secondly the idea of inclusive fitness,
as opposed to personal fitness, as the quantity that individuals will behave
as if they are trying to maximize. Hamilton’s Rule is expressed by the in-
equality rb > c. This rule tells us that a gene for altruism will spread so
long as the cost ¢ to the altruist is offset by a sufficient amount of benefit b
to relatives who are sufficiently close, as measured by the relatedness coeffi-
cient r. This way of thinking involves taking the ‘gene’s eye view’, that is,
looking for the selective advantage that a trait has for the gene that causes
the trait, rather than the individual that expresses it. However, Hamilton
showed that altruistic behaviour can also be understood from an individual’s
perspective. Though an individual performing an altruistic action will re-
duce its personal fitness (i.e., expected number of offspring), it may enhance
its inclusive fitness—a measure that also takes into account the effect of the
action on the reproductive output of relatives. Under certain conditions, it
can be shown that natural selection will lead an individual to behave as if it
is trying to maximize its inclusive fitness (see Frank, 1998; McElreath and



Boyd, 2007; Grafen, 2006, 2009).

The concept of inclusive fitness is somewhat unintuitive, and critics have
questioned both the generality of the theory and the usefulness of the concept
(e.g., Nowak, Tarnita, and Wilson, 2010). While granting that inclusive
fitness has its limitations, and that there are other valid ways to study the
evolution of social behaviour, here we focus on a conceptually attractive
feature of inclusive fitness theory, namely that it allows us to preserve the
idea of the individual organism as a quasi-rational agent, choosing between
alternative actions according to the criterion of maximal inclusive fitness.
This aspect of the theory explains its wide appeal to behavioural ecologists
as it allows them to take an adaptationist approach to social behaviour, as
has been emphasized in recent work by Grafen (2006, 2009) and Gardner,
West, and Wild (2011), among others.

In this article, we offer a novel perspective on inclusive fitness theory by
applying tools from the economic theory of rational choice. Our aim is to de-
rive inclusive fitness maximization from axioms on an individual organism’s
choice behaviour. Consider a focal individual and the set of other individ-
uals who might be affected by this individual’s actions. Each of the latter
individuals stands in a fixed relatedness relationship to the focal individual.
The focal individual is faced with a choice between alternative social actions.
Each action leads to a payoff (which could be positive, negative, or zero) for
the focal individual and each of the other affected individuals. An individ-
ual’s payoff is the incremental change in its personal fitness due to the focal
individual’s action. The focal individual’s choice behaviour is described by
a binary preference relation on the set of actions. This relation specifies, for
any two actions, which the focal individual would choose; in principle, this
choice could be directly observed. The question we pose is: What condi-
tions must this binary relation satisfy such that the focal individual always
behaves as if it were trying to maximize its inclusive fitness? We also con-
sider a variant of inclusive fitness maximization called quasi-inclusive fitness
maximization that can be applied when the focal individual is unable to de-
termine the exact degree of relatedness to some of the other individuals, and
axiomatically characterize this behaviour as well.

The axiomatic approach employed here is the standard way of justifying
a maximization assumption in rational choice theory, and it is instructive
to apply it to inclusive fitness for three reasons. Firstly, it offers a novel
way of forging links, both formal and conceptual, between social evolution
theory and economic theory. Many authors have drawn attention to the anal-



ogy between the utility-maximizing paradigm of economics and the fitness-
maximizing paradigm of behavioural ecology; here we develop this analogy
in a precise way by finding the behavioural conditions that are necessary and
sufficient for an organism to be representable as an inclusive fitness maxi-
mizer. Our results draw on related work in social choice theory, which is the
branch of rational choice theory that is concerned with social preferences.
Axiomatic social choice theory has been used by Okasha (2009) and Bossert,
Qi, and Weymark (2013a,b) to evaluate alternative measures of group fitness
in hierarchically structured populations. This article is the first to apply this
methodology to analyzing inclusive fitness.

Secondly, our results suggest a possible route by which evolution could
program organisms to implement inclusive fitness maximization, or some-
thing close to it. That is, the axioms we use to characterize inclusive fitness
maximization could be viewed as heuristic rules by which evolution might in-
duce organisms to display optimal behaviour in social settings without having
to consciously perform inclusive fitness calculations.

Thirdly, our results help bring out the behavioural implications of in-
clusive fitness theory, and could thus facilitate its empirical testing. An
organism’s binary choices between actions can be directly observed, whereas
the consequences of those choices for inclusive fitness are typically difficult to
determine. If it could be shown that an organism’s choice behaviour violated
one of the axioms below, we could immediately infer that the organism was
not maximizing inclusive fitness.

Section 2 describes the formal framework employed here. Our axioms are
introduced in Section 3. Our axiomatic characterizations of the two forms
of inclusive fitness maximization are presented in Section 4. We offer some
concluding remarks in Section 5. The proofs of our theorems may be found
in the Appendix.

2. The Model

We consider a set of individuals I = {1,...,n}. Individual 1 is the focal
individual whose actions we are interested in; the other n — 1 comprise all
the other individuals who might be affected by the focal individual’s actions.
We let r; € [0, 1] denote the relatedness of the focal individual to individual
17, with higher values denoting a closer degree of relatedness; so r; = 1 and
r; < 1 for all © # 1. Thus, the set I has an associated relatedness profile
r = (r,...,m) € R\ {0}, where O denotes an n-vector of zeros. The
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profile r is a fixed parameter of our model. We set aside the much-debated
question of how exactly relatedness should be defined in inclusive fitness
theory; our formal model is neutral with respect to this, requiring only that
all relatednesses satisfy the restrictions described above.

The focal individual can perform a number of different actions, each of
which potentially affects the personal fitness (expected number of offspring)
of every individual in I. We identify an action with a payoff vector a =
(ay,...,a,) € R" where a; € Ris the incremental personal fitness gain or loss
that individual i suffers as a result of action a. The set of all possible actions is
R™. There is a fixed status-quo payoff vector s = (s1,...,s,) € R’ describing
the fitness of each individual before any action is performed. Thus, the set of
feasible actions is given by F'={a € R" |a+s >0} ={acR" |a > —s}.

The focal individual’s choice behaviour is described by a binary preference
relation 77, on F. The relation =, indicates, for any two actions in F', which
the focal individual would prefer given the relatedness profile r; formally,
>~ is a subset of F' x F. Although the relatedness profile r is fixed here, we
include it in the notation for this binary relation to highlight its conditionality
on r. As the notation suggests, 7, is a weak preference relation; that is,
a 7—, b means that action a is either strictly preferred or indifferent to b.
From 7—., we can define corresponding relations of strict preference >, and
of indifference ~, by letting a >, b =4 [a 72, b and not(b ZZ, a)] and
a~; b=y [az,bandb 7, a]. The concept of preference being appealed
to here is an ‘as if” one; the preference -, is simply a way of summarizing the
focal individual’s choice behaviour. That is, a >, b means that a is chosen
when the options are a and b, whereas a ~. b means that either of these
actions might be chosen when both are available.

The inclusive fitness of a feasible action a € F' is defined as 2?21 ;.
That is, it is a weighted sum over individuals of the action’s payoff to each
individual, with weights given by the relatedness profile. If the focal individ-
ual is an inclusive fitness maximizer, then its preference relation -, is
represented by the inclusive fitness function, which means that for all actions
a,be F,az,bifand only if Y 1", ra; > > o rib;.

If the focal individual is not an inclusive fitness maximizer, this may be
because it cannot discriminate sufficiently precisely between different classes
of relatives. We define a quasi-inclusive fitness maximizer as an individ-
ual whose preference relation 77, is represented by > " | B;a; for some vector
(B1,. .., 0n) € R\ {0} such that §; > §; if and only if r; > r; for all 4, j € I.

A quasi-inclusive fitness maximizer uses a weighted sum of the payoffs to



evaluate an action; however, the weights need not be the true relatednesses
but, rather, can be any monotonic transformation of them.

The concept of quasi-inclusive fitness maximization is interesting for two
different reasons. Firstly, it describes a way that an organism might attempt
to maximize inclusive fitness if it lacks information about exact degrees of
relatedness, but can tell who it is more related to. Empirically, it seems
likely that many organisms are in this situation. Secondly, it highlights
the fact that inclusive fitness maximization comprises two logically separate
components: (i) evaluating social actions by a weighted sum of the payoffs
and (ii) using relatednesses as the weights in the sum. Below, we obtain an
axiomatic separation of these two components of inclusive fitness theory.

Our goal is to identify ‘natural’ axioms on 7~ that characterize the focal
individual as an inclusive fitness maximizer and as a quasi-inclusive fitness
maximizer.

We have implicitly assumed that the payoffs (i.e., the incremental fit-
nesses) are measurable on an absolute scale. This is a stronger assumption
than is necessary; both inclusive fitness maximization and quasi-inclusive fit-
ness maximization only require that gains and losses of incremental fitness
are comparable across individuals. The importance of measurement-theoretic
issues for the quantification of fitness has recently been stressed by Wagner
(2010).

3. The Axioms

In this section, we consider a number of axioms that might be imposed on the
relation 7~ and comment briefly on their meaning and biological significance.

The binary relation -, is (i) reflezive if for alla € F, a -, a, (ii) complete
if for all a,b € F' with a # b, a 7, b or b 77, a, and (iii) transitive if for
all a,b,c € F,az,.band b 7, cimply a 7, c. An ordering is a reflexive,
complete, and transitive binary relation.

Ordering. =, is an ordering.

Ordering is a standard axiom in the theory of rational choice. Essentially
it requires that the focal individual can rank all feasible actions in terms of
betterness, with ties permitted. Though violations of transitivity have been
reported empirically in both humans and animals, this axiom is a fundamen-
tal part of the meaning of ‘rationality’, and is necessary if an individual’s
choices are to maximize any quantity, inclusive fitness or some other. The
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reader can easily verify that if the focal individual’s choice behaviour violates
Ordering, then it is not an inclusive fitness maximizer.
The binary relation 77, is continuous if for any action a € F, the sets

~Y

{be F|bx,a}and {b e F|a, b} are both closed.
Continuity. 7, is continuous.

Continuity is also a standard axiom of rational choice theory. It formalizes
the intuitive idea that ‘small’ changes in payoffs should not lead to ‘large’
changes in preference. It is an appropriate assumption in any context where
payoffs cannot be measured with perfect accuracy or are subject to minor
chance fluctuations.

Payoff Dominance. For all a,b € F' such that a; > b; forall j € I, a >, b.

Payoff Dominance says that if one action yields a strictly higher payoff
for every individual than another action, then the former action is strictly
preferred. If the focal individual violated this axiom by choosing a dominated
action, then its behaviour would seem clearly non-optimal because by simply
switching actions, it would be able to increase the personal fitness of every
individual in I. This axiom is closely related to the ‘Pareto principle’ in
social choice theory.

Focal Individual Monotonicity. For all a,b € I such that a; > b; and
aj=>b;forall j€{2,...,n}, a>, b.

Focal Individual Monotonicity says that starting from any action, if the
focal individual’s payoff is increased while the payoff of all other individuals is
held fixed, then the resulting action is strictly preferred to the original. Thus,
the focal individual is not completely other-regarding; it does care about its
own personal fitness. Again, violating this axiom would seem clearly non-
optimal for it would amount to sacrificing one’s own personal fitness without
a compensating gain in personal fitness for anyone else.

Baseline Independence. For all a,b,c € F such that (a+c) € F and
(b+c)eF,
ar;b & (a+c)= (b+c).

Baseline Independence requires the focal individual’s evaluation of an
action to be independent of the ‘baseline fitnesses’ from which we start; so if
action a is preferred to b, this preference will never be reversed by changing
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the baseline. (Note that on the LHS of the above equivalence, the baseline is
the null action 0, whereas on the RHS it is ¢.) So if an individual prefers a to
b today, it should continue to do so tomorrow, irrespective of what fitness-
affecting events have occurred in the interim. Another interpretation is to
think of (b+c) as the result of performing actions b and ¢ in succession; the
axiom then says that if one action is preferred to another, it should remain
so irrespective of which other actions have already been performed.

Nepotism. For all a,b € F for all j,k € I such that r; > r;, and for all
x>0,ifb; =a;+x, by =a, —x, and b; = q; for all i € I\ {j, k}, then (i)
b >, aifr; >r; and (i) b ~, a if r; = 7.

Nepotism captures the idea that the focal individual would prefer to help
closer than more distant relatives; this is a central prediction of kin selection
theory. The axiom says that starting from a given action, if some quantity
of payoff is shifted from one individual to another more closely related in-
dividual while everyone else’s payoff is held fixed, then the resulting action
will be preferred; while if payoff is shifted to an equally related individual,
indifference will result. To satisfy Nepotism, all the focal individual needs to
‘know’ is which of any pair of individuals it is more closely related to, but
not by how much. This seems a reasonable idealization of the actual powers
of kin discrimination of many animals.

Haldane. For all a,b € F, if there exist k € {2,...,n} and x € R such that
(i) rp, >0,by = a1 —x, by = ay+x/ry, and b; = a; for all j € I\ {1, k} or (ii)
e =0,b1 =ay, by =a, +x,and b; = a; for all j € I\ {1,k}, then a ~, b.

Haldane provides a formal statement of the idea that starting from a
given action, if we reduce the focal individual’s own payoff by z and increase
the payoff to any other individual ¢ by 2, then indifference is the result; that
is, the focal individual uses relatedness as the ‘exchange rate’ for determining
which payoff sacrifices it is prepared to make. The axiom derives its name
from Haldane’s remark quoted in the Introduction that it would be a fitness-
enhancing sacrifice to jump into a river to save two brothers or eight cousins
when r = (1, %, é, .. ) Note that this axiom requires only that the focal
individual be able to perform ‘egocentric’ comparisons; that is, it must be
able to compare the results of transferring its own payoff to others. It does
not require comparisons among pairs of actions that involve transfers between

two non-focal individuals (unlike Nepotism). Nonetheless, to satisfy Haldane



is still a demanding task, as it requires that the focal individual ‘knows’ its
degree of relatedness to every other individual in 7, and uses this information
to compute the level of self-sacrifice it is prepared to make.

4. The Results

We now use the axioms introduced in the preceding section to provide ax-
iomatic characterizations of inclusive fitness maximization (Theorem 1) and
quasi-inclusive fitness maximization (Theorem 2).

Theorem 1. The relation >, satisfies Ordering, Focal Individual Mono-
tonicity, and Haldane if and only if the focal individual is an inclusive fitness
MaTimizer.

Theorem 1 states necessary and sufficient conditions for the focal individ-
ual to be an inclusive fitness maximizer, namely that its preference relation
>~ satisfies Ordering, Focal Individual Monotonicity, and Haldane. It might
be thought that this result is somewhat unexciting on the grounds that the
Haldane axiom is conceptually quite similar to inclusive fitness maximization
itself. However two points should be noted. Firstly, recall that Haldane con-
cerns only ‘egocentric’ comparisons between actions which involve a transfer
of payoff from the focal individual to another. The axiom is silent about
how to rank pairs of actions that are not of this sort; yet inclusive fitness
maximization yields a ranking of all actions in the feasible set. So the con-
ceptual gap between the axioms of Theorem 1 and the characterization is in
fact substantial, and the proof correspondingly non-trivial.

Secondly, note that the Haldane axiom on its own does not suffice to char-
acterize inclusive fitness maximization; the other two axioms of Theorem 1
are also needed. Therefore, the theorem helps to clarify the exact logical
relation between Haldane’s original idea, as formalized here, and Hamilton’s
later theory. Because the two axioms that must be added to Haldane to yield
inclusive fitness maximization (Ordering and Focal Individual Monotonicity)
are fairly obvious rationality requirements, this vindicates the widely-held
view that Haldane had grasped the essence of inclusive fitness theory prior
its detailed elaboration by Hamilton.

Theorem 2. The relation >, satisfies Ordering, Continuity, Payoff Domi-
nance, Baseline Independence, and Nepotism if and only if the focal individual
s a quasi-inclusive fitness mazximizer.
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Theorem 2 characterizes quasi-inclusive fitness maximization using five
axioms that do not include Haldane. As the proof in the Appendix shows,
the first four axioms (Ordering, Continuity, Payoff Dominance, and Baseline
Independence) imply that the focal individual evaluates actions by a weighted
sum of the payoffs for some vector of non-negative weights; the addition of
Nepotism then restricts those weights to be monotone transformations of
the relatednesses. Thus, the first four axioms characterize one component
of inclusive fitness theory—evaluating actions by weighted sums of payoffs,
while the fifth axiom ensures a logical link with the second component—using
relatednesses as the weights.

Although Theorem 2 only characterizes quasi-inclusive fitness maximiza-
tion, rather than inclusive fitness maximization itself, it has one significant
advantage over Theorem 1, namely, its axioms make weaker informational
demands on the focal individual than does Haldane. Consequently, it should
be correspondingly easier for natural selection to bring about conformity to
them. Recall that Nepotism requires that the focal individual prefers to help
closer than more distant relatives; exact degrees of relatedness do not matter.
Because kin discrimination is quite common in social species, there is no great
difficulty in imagining how natural selection could produce organisms whose
choice behaviour satisfies Nepotism. By contrast, it is rather harder to imag-
ine natural selection fine-tuning choice behaviour so as to satisfy Haldane.
So although Theorem 2 only yields quasi-inclusive fitness maximization, the
axioms it uses are more biologically reasonable.

5. Conclusion

The popularity of the inclusive fitness concept in evolutionary biology arises
because it allows social behaviour, even when it is individually costly, to be
understood from the perspective of an individual organism ‘trying’ to achieve
a goal, thus preserving Darwin’s insight that selection will lead to the appear-
ance of design in nature. (The goal in question, of course, is maximization
of inclusive fitness.) This has led many authors to see a link between so-
cial evolution and rational choice theory; that is, evolved organisms should
behave like rational agents trying to maximize a utility function, where the
utility function is inclusive fitness. Our aim has been to develop this idea
further and place it on a secure foundation by seeking to deduce inclusive
fitness maximization from a more primitive basis, namely axioms on an in-
dividual’s ‘as if preferences’, in accordance with standard decision-theoretic
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methodology. Our hope is that this will shed light on the conceptual links
between evolution and rational choice theory, show a possible route by which
natural selection could bring about inclusive fitness maximization or some-
thing close to it, and help to draw out behavioural implications of inclusive
fitness theory that are directly testable.

Appendix

We say that the focal individual is an m-inclusive fitness mazimizer, m €
{2,...,n}, if, for all M C I such that 1 € M and |M| = m,

ar:b & Zﬁaz‘ > Zribi

ieM ieM

for all a,b € F such that a; = b; for all j € I\ M. Thus, the focal individual
is an inclusive fitness maximizer if it is an n-inclusive fitness maximizer.
The following two lemmas are used in the proof of Theorem 1.

Lemma 1. If the relation >, satisfies Ordering, Focal Individual Monotonic-
ity, and Haldane, then the focal individual is a 2-inclusive fitness maximizer.

Proof. Consider any k € {2,...,n}, M = {1,k}, and a,b € F. Let a} = q;
for all j € I'\ {1,k} and consider the set

L(aj)jelv\h,k} (a1, ax) = {(a/h a;c) | a’ € F and a’ ~, a},

where a’ = (a),...,al)). This is the level set of the restriction of >, corre-

sponding to the set of components {1, %} that contains (a,a;) conditional
on the remaining variables having the values (a;)jen\(1,6). By subtracting
x = —[rg(sk + ax)] from a; and adding z/r; to a; when r, > 0 or by
adding —(sg + ax) to ax when r, = 0, it follows from Haldane that the
point (ay + rx(sk + ax), —sx) belongs to this level set.

In order for the focal individual to be a 2-inclusive fitness maximizer, it

is necessary that any point (a}, ;) in La), w1 (@1, ax) be such that
ay + rray, = a + rpap = ay + ri(sg + ag) + re(—sk). (1)

Any such point can be reached by subtracting = = a; + (s + ax) — a]
from ay + r(sk + ax) and adding z/r; to —s, when rp > 0 or by adding
sk + aj, to —sx when 7, = 0. Thus, by Haldane, it follows that any point
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(a},a),) for which (1) holds is in the level set of the point (a; + 7 (sk +
a), —Sk). The transitivity of ~, then implies that a’ ~, a for all (a},a}) €
Liay)ieniimy (a1, ax). By Ordering and Focal Individual Monotonicity, higher
level sets of =, are associated with higher level sets L(a‘j)jeN\{l,k}(al, a).

The same procedure can be applied to b. Defining b" and L),y 1.1 (b1, by,)
by analogy to a’ and L(a)), (1, (@1, ax), it follows that b’ ~, b for all
(05, 80.) € Lv),en 1y (01, 0r) and that higher level sets of =, are associated

with higher level sets L), v\ 1 (b1, bg). Transitivity now implies that

atrb = a1+7‘kCLkZbl+kak

for all a,b € F such that a; = b; for all j € I\ {1,k}. Hence, the focal
individual is a 2-inclusive fitness maximizer. O

The following lemma is established by adapting the proof of Lemma 3.3.1
in d’Aspremont (1985).

Lemma 2. If the relation =, satisfies Ordering, Focal Individual Monotonic-
ity, and Haldane, then the focal individual is an m-inclusive fitness maximizer
for allm e {2,...,n}.

Proof. By Lemma 1, the focal individual is a 2-inclusive fitness maximizer.
If n = 2, we are done. If n > 2, we complete the proof by induction.
Suppose that the focal individual is an m-inclusive fitness maximizer, where
m € {2,...,n—1}. We need to show that the focal individual is an (m +1)-
inclusive fitness maximizer.

It is sufficient to consider the case in which M = {1,...,m + 1}. Let
a,b € F be such that a; = b; for all j € I\ {1,...,m + 1}. Without loss
of generality, we can suppose that a,,1 > by,+1 (if this is not the case, then
the roles of a and b can be interchanged in the following argument). Define
c € R” by letting

¢ =a;>—s; Vjel\{lm+1}, (2)
Cm+1 = bm—}—l > —Sm+1, (3)

and
c1 = a1+ "1 (amy1r — bngr). (4)

Because a; > —s; and, by assumption, a,, 11 > by,41, it follows that ¢; > —s;
and, together with the inequalities in (2) and (3), we obtain ¢ € F.
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Using (3) and (4), it follows that

C1 + Tmt1Cm41 = A1 + Tt 1 Q41 (5)

By Lemma 1, the focal individual is a 2-inclusive fitness maximizer and, thus,
(4) implies
C~ya (6)

It follows from (2) and (3) that ¢; = b; for all j € {m +1,...,n}. By the
induction hypothesis, the focal individual is an m-inclusive fitness maximizer

and, thus,
c b & chizzribi- (7)
i=1 i=1

Because ¢,11 = b1, (7) is equivalent to

m+1 m+1
c-:b & Zrici > Z?’}bz
i=1 i=1
Furthermore, by (6) and the transitivity of >,
ar-,b & c-,.b.

Thus,
m+1 m+1

atrb <~ ZTzszzrzbz (8)
=1 =1

Because ¢; = a; for all j € I\ {1,m + 1} and (5) holds, it follows that

m+1 m+1

E r,a; = E r;C;.
=1 =1

Substituting this equality in (8), we obtain

m+1 m+1

ar~, b & Zriai > Zrzbz
=1 =1

That is, the focal individual is an (m 4+ 1)-inclusive fitness maximizer. O
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We now use Lemma 2 to prove that the relation >, satisfies Ordering,
Focal Individual Monotonicity, and Haldane if and only if the focal individual
is an inclusive fitness maximizer, as Theorem 1 asserts.

Proof of Theorem 1. 1t is straightforward to verify that if the focal individual
is an inclusive fitness maximizer, then >, satisfies Ordering, Focal Individual
Monotonicity, and Haldane.

Now, suppose that >, satisfies these three axioms. Lemma 2 states that

the focal individual is an m-inclusive fitness maximizer for all m € {2, ... ,n}
if -, satisfies these axioms. Setting m = n, it follows that the focal individual
is an inclusive fitness maximizer. ]

We now turn to the proof of Theorem 2. As a first step, we state a lemma,
the proof of which is identical to the proof of Theorem 8.1 in Bossert and
Weymark (2004) with a relabeling of the axioms and a change in notation.
See also Theorem 4.3.1 in Blackwell and Girshick (1954) for a related re-
sult (without the continuity axiom) in the context of decision-making under
uncertainty.

Lemma 3. The relation =, satisfies Ordering, Continuity, Payoff Domi-
nance, and Baseline Independence if and only if there exists (f1,...,0,) €
R? \ {0} such that, for alla,b € F,

ar. b & zn:ﬁiai > zn:ﬁibi'
i—1 i—1

We next prove that >, satisfies Ordering, Continuity, Payoff Dominance,
Baseline Independence, and Nepotism if and only if the focal individual is a
quasi-inclusive fitness maximizer, as Theorem 2 asserts.

Proof of Theorem 2. 1t is straightforward to verify that if the focal individual
is a quasi-inclusive fitness maximizer, then >, satisfies Ordering, Continuity,
Payoff Dominance, Baseline Independence, and Nepotism.

Now, suppose that >, satisfies these five axioms. In view of Lemma 3,
all that remains to be established is that, for all j, k € I, the parameters are
such that (i) r; > ry implies 3; > f; and (ii) r; = rj, implies 3; = [.

Consider case (i) first. Suppose that there exist j, k € I such that r; > ry.
Let a,b € F' and x > 0 be such that a; = a, =: ap, b; = ag +x, b = ap — x,
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and b; = a; for all ¢ € I'\ {j, k}. Nepotism implies that b >, a. By Lemma
3 and the definition of a, b, and =z,

b>a & iﬁlbl > iﬂiai
i=1 i=1

& B;bj + Brb > Bia; + Bray,
& (B + Br)ao + (B — Be)x > (85 + Br)ao
=4 (63 — ﬂk)a: > 0.

Because x > 0, the last inequality implies that 3; > 5.

The proof of case (ii) is similar. In this case, suppose that there exist
J,k € I such that r; = r;. Defining a, b as above, Nepotism implies b ~, a.
Replacing the inequalities with equalities in the displayed array, it follows
that

bwra<:>(ﬁj—ﬁk)x20.

Hence, 3; = (i because x > 0. 0]
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