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1 Introduction

Single-peakedness has a long history in economic theory. It goes back as far as Black (1948)

who shows that if preferences are restricted to those that are single-peaked, then the major-

ity rule generates transitive social preferences. Other important contributions include Inada

(1969) and Sen (1970) who provide related value restrictions that focus on single-peaked

preference profiles. See also Moulin (1980) and Sprumont (1991) for applications in the

context of strategy-proofness. There is no need to restrict the notion of single-peakedness

to a single dimension. Generalizations to higher dimensions are employed, for instance, by

Barberà, Gul and Stacchetti (1993), Barberà and Jackson (1994), Dutta, Peters and Sen

(2002), Ehlers and Storcken (2008) and Le Breton and Weymark (2011). Ballester and

Haeringer (2011) characterize one-dimensional single-peaked preference profiles by provid-

ing necessary and sufficient conditions for the existence of a single ranking such that all

preferences in the profile are single-peaked with respect to this ranking.

Single-peakedness and its generalization single-plateauedness are analyzed in a choice-

theoretic setting by Bossert and Peters (2009, 2013). The notion of single-peakedness is

too restrictive if choices are permitted to be multi-valued. This generalization is applied

by Moulin (1984), Berga (1998), Ehlers (2002a), Barberà (2007) and Berga and Moreno

(2009), among others.

The natural counterpart of single-peakedness is single-dippedness, where preferences are

such that there is a single ‘dip’ rather than a single peak, and we refer to its generalization to

environments that permit multi-valuedness as single-basinedness. Single-dipped preferences

frequently appear when a public bad is to be located and individuals are assumed to

prefer a larger distance from the bad to being closer to its chosen location. The relevant

literature includes Kunreuther and Kleindorfer (1986), Klaus, Peters and Storcken (1997),

Peremans and Storcken (1999), Klaus (2001), Ehlers (2002b), Lescop (2007), Besfamille

and Lozachmeur (2010), Barberà, Berga and Moreno (2012), Öztürk, Peters and Storcken

(2012, 2013) and Manjunath (2013).

The purpose of this paper is to provide a choice-theoretic basis for single-basined pref-

erences. We work within a Euclidean space that can be of any (fixed) dimension and study

choice correspondences that select a non-empty and compact subset of chosen elements from

each non-empty, compact and convex subset of Rn, the Euclidean n-dimensional space. As

is common in this type of literature, we concentrate on choice correspondences that satisfy

independence of irrelevant alternatives, a contraction consistency condition that is neces-

sary (but, in general, not sufficient) for the rationalizability of a choice correspondence by
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an ordering; see, for instance, Richter (1966, 1971). In view of the typical applications

of single-dippedness and single-basinedness, this focus is suitable. We additionally impose

the condition of single-basinedness on a choice correspondence: this condition says that

if x is revealed preferred to y, then also all points on the straight line through x and y,

further away from y than x, are revealed preferred to y. We then show that such a choice

correspondence either has a basin, which is a (convex) set of worst points, or it does not

have a basin, in which case it always picks boundary points from a choice set. Also, if the

choice correspondence is upper semicontinuous and has a basin, then this basin is closed.

Finally, we show that adding upper semicontinuity and Suzumura consistency results in

the choice correspondence assigning the maximizers of a quasi-convex function.

2 Independent choice correspondences

Suppose n ∈ N is fixed and define C = {C ⊆ Rn | C is non-empty, compact and convex}.
A choice correspondence is a mapping ϕ: C →→ Rn such that ∅ 6= ϕ(C) ⊆ C and ϕ(C) is

compact for all C ∈ C.

The direct revealed preference relation Rϕ of ϕ is defined as follows. For all x, y ∈ Rn,

xRϕy ⇔ there exists C ∈ C such that x ∈ ϕ(C) and y ∈ C.

The asymmetric part of Rϕ is denoted by Pϕ, and Iϕ is the symmetric part of Rϕ.

A generalized version of Samuelson’s (1938) weak axiom of revealed preference can be

stated as follows (see Bossert and Suzumura, 2010, p. 17, for a discussion and alternative

formulations).

Weak axiom of revealed preference. For all C ∈ C and for all x, y ∈ C, if xRϕy and

y ∈ ϕ(C), then x ∈ ϕ(C).

In our framework, the weak axiom of revealed preference is equivalent to independence

of irrelevant alternatives, which is a contraction-consistency condition imposed on a choice

correspondence. It is often referred to as Arrow’s choice axiom (see Arrow, 1959) but, as

Shubik (1982, pp. 420–421 and p. 423, footnote 2) remarks, the axiom already appears in

1950 in an informal note authored by Nash. A version for single-valued choice is due to

Nash (1950) in the context of axiomatic bargaining theory.

Independence of irrelevant alternatives. For all C, D ∈ C, if D ⊆ C and D∩ϕ(C) 6= ∅,
then ϕ(D) = D ∩ ϕ(C).
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For future reference, we note that, because our domain C is closed under intersection

(that is, for all C, D ∈ C, the intersection C ∩ D is also in C whenever this intersection

is non-empty), the weak axiom of revealed preference is equivalent to independence of

irrelevant alternatives; see Hansson (1968) for a generalization of this observation. We

state this known result without proving it here; an explicit proof is provided in Bossert and

Peters (2013).

Lemma 1 A choice correspondence ϕ: C →→ Rn satisfies independence of irrelevant alter-

natives if and only if ϕ satisfies the weak axiom of revealed preference.

As is well-known, the weak axiom of revealed preference implies independence of irrelevant

alternatives even if the domain of a choice correspondence is not closed under intersection.

As a consequence of Lemma ??, we can use independence of irrelevant alternatives and the

weak axiom of revealed preference interchangeably.

3 Single-basined choice correspondences

For distinct x, y ∈ Rn, [x, y,→) is the half-line through y starting at x and [x, y] is the

line segment with end points x and y. The (relatively) half-open sets [x, y) and (x, y], and

the (relatively) open set (x, y) are defined analogously in the usual way. The boundary of

C ∈ C is denoted by bd(C) and the interior of C is int(C). The convex hull of C is conv(C)

and the closure of a subset D of Rn is denoted by cl(D). Convergence of a sequence of sets

in C is defined in terms of the Hausdorff metric for compact subsets of Rn. The function

d: Rn × Rn → R+ denotes the Euclidean distance in Rn.

Single-basinedness of a choice correspondence is defined as follows.

Single-basinedness. For all distinct x, y ∈ Rn, if xRϕy, then zRϕy for all z ∈ [y, x,→)

with z 6∈ [y, x).

Thus, single-basinedness demands that if a point x is directly revealed preferred to another

point y, then any point z that is located on the half-line starting at y and passing through

x and that is, moreover, at least as far away from y as x, is directly revealed preferred to

y.

We conclude this section with two lemmas that are used in proving our theorems.

Lemma 2 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-basinedness, and let C ∈ C. If ϕ(C)∩ int(C) 6= ∅, then ϕ(C) = C.
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Proof. We need to prove that C ⊆ ϕ(C). Let x ∈ ϕ(C) ∩ int(C). For any y ∈ C \ {x},
there exists z ∈ [y, x,→)∩C such that x ∈ (y, z) because x ∈ int(C). We thus have xRϕz

because x ∈ ϕ(C) and z ∈ C. By single-basinedness, it follows that yRϕz. Thus, there

exists C ′ ∈ C such that y ∈ ϕ(C ′) and z ∈ C ′. By independence of irrelevant alternatives,

y ∈ ϕ([y, z]) and hence yRϕx because x ∈ [y, z]. Because y ∈ C and x ∈ ϕ(C), the weak

axiom of revealed preference implies y ∈ ϕ(C).

Lemma 3 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-basinedness, let C ∈ C and let x, y, z ∈ C be such that z ∈ (x, y). If

z ∈ ϕ(C), then [x, y] ⊆ ϕ(C).

Proof. Suppose x, y, z ∈ C and z ∈ ϕ(C) ∩ (x, y). Let w ∈ [x, y] \ {z}. Consider first the

case w ∈ [x, z). Clearly, there exists v ∈ (z, y] because z ∈ (x, y). We have zRϕv because

z ∈ ϕ(C) and v ∈ [x, y] ⊆ C. By single-basinedness, it follows that wRϕv. Thus, there

exists C ′ ∈ C such that w ∈ ϕ(C ′) and v ∈ C ′. By independence of irrelevant alternatives,

w ∈ ϕ([w, v]) and hence wRϕz because z ∈ [w, v]. Because w ∈ [x, y] ⊆ C and z ∈ ϕ(C),

the weak axiom of revealed preference implies w ∈ ϕ(C). The proof for the case w ∈ (z, y]

is identical.

4 Basins

A set B ⊆ Rn is a basin for a choice correspondence ϕ if B 6= ∅ and, for all x ∈ B and for

all C ∈ C such that x ∈ C,

x ∈ ϕ(C) ⇔ C ⊆ B.

If such a set B exists, we say that the choice correspondence ϕ has a basin.

As a first observation regarding the properties of a basin, we state the following lemma.

It establishes that if a choice correspondence ϕ satisfies single-basinedness and has a basin

B, then B must be a convex set.

Lemma 4 Let the choice correspondence ϕ: C →→ Rn satisfy single-basinedness and suppose

that ϕ has a basin B. Then B is convex.

Proof. Let x, y ∈ B. We have to show that [x, y] ⊆ B. If x ∈ ϕ([x, y]) or y ∈ ϕ([x, y]),

then [x, y] ⊆ B follows from the definition of a basin. Otherwise, let z ∈ ϕ([x, y]) ∩ (x, y).

Then zRϕx and, by single-basinedness, yRϕx. By definition of Rϕ, there exists C ∈ C such
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that y ∈ ϕ(C) and x ∈ C. By definition of B, this implies C ⊆ B and, hence, [x, y] ⊆ B

because [x, y] ⊆ C by the convexity of C.

Next, we show that if a choice correspondence satisfies single-basinedness and has a

basin, then this basin must be unique.

Lemma 5 Let the choice correspondence ϕ: C →→ Rn satisfy single-basinedness and suppose

that ϕ has a basin B and a basin B′. Then B = B′.

Proof. By way of contradiction, suppose that B and B′ are basins for ϕ and B 6= B′.

Without loss of generality, suppose there exists x ∈ B \B′.

Case (i). B ∩ B′ 6= ∅. Let y ∈ B ∩ B′, which immediately implies that y 6= x. Because

x, y ∈ B and B is convex by Lemma ??, it follows that [x, y] ⊆ B. By definition of a basin,

ϕ([x, y]) = [x, y]. Because y ∈ B′, y ∈ [x, y] and y ∈ ϕ([x, y]), we obtain [x, y] ⊆ B′ since

B′ is a basin. This contradicts our supposition that x 6∈ B′.

Case (ii). B ∩ B′ = ∅. Let x ∈ B and y ∈ B′. Then, again by definition of a basin,

ϕ([x, y]) ∩ B = ϕ([x, y]) ∩ B′ = ∅. Let z ∈ ϕ([x, y]). Thus zRϕy by definition of Rϕ, and

hence xRϕy by single-basinedness. Let C ∈ C be such that x ∈ ϕ(C) and y ∈ C. This

implies C ⊆ B because B is a basin and thus y ∈ B, contradicting the supposition that

y 6∈ B.

An immediate corollary of combining the above two lemmas is that if ϕ satisfies single-

basinedness and has a basin, then this basin is unique and convex.

The following theorem illustrates that our definition of single-basinedness suitably cap-

tures a multi-valued generalization of single-dipped choice in the presence of irrelevant

alternatives if ϕ has a basin. The properties of such a choice correspondence reflect those

associated with a unique set of ‘worst’ elements in the choice-theoretic sense. That is, (a)

whenever a feasible set C is contained in the basin B, the entire set C is chosen. In all

other cases (that is, whenever C contains points in Rn that are not in B), (b) none of the

points in B are in ϕ(C), and (c) only boundary points of C are chosen. In addition, (d)

there is a well-defined sense in which ‘better’ points are reached when we move away from

B along a half-line.

Theorem 1 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-basinedness and suppose that ϕ has a basin B. Then B is unique

and convex and, for all C ∈ C,
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(a) C ⊆ B ⇒ ϕ(C) = C;

(b) C 6⊆ B ⇒ ϕ(C) ∩B = ∅;

(c) C 6⊆ B ⇒ ϕ(C) ⊆ bd(C);

(d) C 6⊆ B ⇒ [b, x,→) ∩ C ⊆ [b, x] for all x ∈ ϕ(C) and for all b ∈ B.

Proof. (a) Suppose C ⊆ B. Because B is a basin, we have x ∈ ϕ(C) for all x ∈ C. This

implies C ⊆ ϕ(C) and, therefore, ϕ(C) = C.

(b) Suppose C 6⊆ B. If ϕ(C) ∩B 6= ∅, it follows that C ⊆ B by definition of a basin, a

contradiction to our hypothesis. Thus, we must have ϕ(C) ∩B = ∅.

(c) Suppose x ∈ ϕ(C) ∩ int(C). By (b), x /∈ B. Since x ∈ int(C), we can take b ∈ B

and y ∈ C such that x ∈ (b, y). Then xRϕy by definition of Rϕ, and single-basinedness

implies bRϕy. By definition of Rϕ, there exists C ′ ∈ C such that b ∈ ϕ(C ′) and y ∈ C ′.

Independence of irrelevant alternatives implies b ∈ ϕ([b, y]). Because x ∈ [b, y], we obtain

bRϕx. By definition of a basin, [b, x] ⊆ B and, thus, x ∈ B, a contradiction.

(d) Suppose there exists y ∈ [b, x,→) ∩ C such that y 6∈ [b, x]. Thus, x ∈ [b, y) and,

because x ∈ ϕ(C) and y ∈ C, we have xRϕy. Single-basinedness implies bRϕy and the

same argument as in the proof of (c) applies.

Note that the statements (a) and (b) in the above theorem are true whenever ϕ has a

basin; independence of irrelevant alternatives and single-basinedness are not required in

the respective proofs. Furthermore, the uniqueness and the convexity of B are not invoked

in the proof of any part of the result.

5 The case without a basin

Even if a choice correspondence does not have a basin, independence of irrelevant alterna-

tives and single-basinedness imply that the spirit of single-basined choice is respected. Of

course, if ϕ has no basin, then statements (a), (b) and (d) in Theorem ?? become vacuous.

However, there is an analogue to part (c) the proof of which is more involved than one

would expect. More precisely, we obtain the following theorem.

Theorem 2 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-basinedness. If ϕ does not have a basin, then ϕ(C) ⊆ bd(C) for all

C ∈ C.
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Proof. Suppose that there exists C ′ ∈ C such that ϕ(C ′) ∩ int(C ′) 6= ∅. By Lemma ??,

ϕ(C ′) = C ′. We now construct a set B ⊆ Rn and show that it is a basin for ϕ, which will

complete the proof of the theorem. Let b ∈ int(C ′) (hence b ∈ ϕ(C ′)) and let H be the

set of all half-lines emanating from b. Consider any h ∈ H. Since b ∈ int(C ′), we can take

b′ ∈ (h ∩ C ′) \ {b}. Now ϕ(C ′) = C ′ implies b′Rϕb and hence zRϕb for all z ∈ h by single-

basinedness. Furthermore, bRϕz for all z ∈ h ∩ C ′. If bRϕz for all z ∈ h, define Bh = h.

Otherwise let ẑh = arg infz{d(z, b) | z ∈ h and zPϕb}. If ẑhPϕb, define Bh = [b, ẑh); if

ẑhIϕb, define Bh = [b, ẑh]. Now define B =
⋃

h∈H Bh. Because b ∈ B, B is non-empty. It

remains to be shown that, for all C ∈ C and for all x ∈ B ∩ C,

x ∈ ϕ(C) ⇔ C ⊆ B.

(i) “⇒.” Suppose x ∈ ϕ(C). Let y ∈ C. We have to prove that y ∈ B. If x = b, we have

bRϕy and, by definition of B, y ∈ B. If y = x or y = b, the desired conclusion follows

trivially because b, x ∈ B by assumption. This leaves the case in which the three points b,

x and y are pairwise distinct.

Consider ∆ = conv({b, x, y}). Because x ∈ B, the definition of B implies bRϕx. Because

x ∈ h for some h ∈ H, we have xRϕb. Hence, xIϕb. Because x ∈ ϕ(C) and y ∈ C, it

follows that xRϕy. The following three cases cover all possibilities.

(i.1) ϕ(∆)∩{b, x, y} 6= ∅. If b ∈ ϕ(∆), it follows that bRϕy and thus y ∈ B by definition

of B. If x ∈ ϕ(∆), the weak axiom of revealed preference implies b ∈ ϕ(∆) because bIϕx

and b ∈ ∆ and, again, y ∈ B follows. If y ∈ ϕ(∆), the weak axiom of revealed preference

implies x ∈ ϕ(∆) because xRϕy. Hence, y ∈ B as just established.

(i.2) ϕ(∆) ∩ int(∆) 6= ∅. By Lemma ??, ϕ(∆) = ∆ and thus b ∈ ϕ(∆) which brings us

back to case (i.1).

(i.3) ϕ(∆)∩((b, x)∪(b, y)∪(x, y)) 6= ∅. Lemma ?? immediately implies ϕ(∆)∩{b, x, y} 6=
∅ and, again, we are back to case (i.1).

(ii) “⇐.” Suppose C ⊆ B. We have to prove that x ∈ ϕ(C). Because x ∈ B, the definition

of B implies bRϕx. Because x ∈ h for some h ∈ H, we have xRϕb. Hence, xIϕb. Let

y ∈ ϕ(C). Because ϕ(C) ⊆ C ⊆ B, this implies y ∈ B. Hence, by the same argument

that was just used for x, we also have yIϕb. If x = y, we are done. If x = b or y = b, we

have xIϕy and the weak axiom of revealed preference implies x ∈ ϕ(C) because x ∈ C and

y ∈ ϕ(C). It remains to consider the case in which the three points b, x and y are pairwise

distinct.

Again, let ∆ = conv({b, x, y}). Because x ∈ ϕ(C) and y ∈ C, it follows that xRϕy.

The following three cases cover all possibilities.
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(ii.1) ϕ(∆) ∩ {b, x, y} 6= ∅. If x ∈ ϕ(∆), it follows that xRϕy and thus x ∈ ϕ(C) by

the weak axiom of revealed preference. If b ∈ ϕ(∆), the weak axiom of revealed preference

implies x ∈ ϕ(∆) because xIϕb and b ∈ ∆ and, again, x ∈ ϕ(C) follows. If y ∈ ϕ(∆), the

weak axiom of revealed preference implies b ∈ ϕ(∆) because bIϕy. Hence, x ∈ ϕ(C) as just

established.

(ii.2) ϕ(∆) ∩ int(∆) 6= ∅. By Lemma ??, ϕ(∆) = ∆ and thus x ∈ ϕ(∆) which brings

us back to case (ii.1).

(ii.3) ϕ(∆)∩((b, x)∪(b, y)∪(x, y)) 6= ∅. Lemma ?? immediately implies ϕ(∆)∩{b, x, y} 6=
∅ and, again, we are back to case (ii.1).

6 Continuity

In this section, we explore to what extent standard continuity properties may allow us to

narrow down the class of single-basined choice correspondences discussed in the previous

section.

Continuity. For all C ∈ C and for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N, if

limi→∞ Ci = C, then limi→∞ ϕ(Ci) = ϕ(C).

As is well-known, continuity is equivalent to the conjunction of upper and lower semicon-

tinuity.

Upper semicontinuity. For all C ∈ C, for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N,

for all x ∈ Rn and for all sequences 〈xi〉i∈N with xi ∈ ϕ(Ci) for all i ∈ N, if limi→∞ xi = x,

then x ∈ ϕ(C).

Lower semicontinuity. For all C ∈ C, for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N
and for all x ∈ ϕ(C), if limi→∞ Ci = C, then there exists a sequence 〈xi〉i∈N with xi ∈ ϕ(Ci)

for all i ∈ N such that limi→∞ xi = x.

Unlike in the single-plateaued case discussed in Bossert and Peters (2013), it would

not make much sense to impose lower semicontinuity (and thus, a fortiori, continuity) in

the single-basined setting. The reason is that lower semicontinuity would rule out even

the most well-behaved single-basined choice correspondences. To see this, consider the

following example. Suppose that n = 2 and let ϕ(C) = arg maxx{d(x, (0, 0)) | x ∈ C} for

all C ∈ C. This is a single-basined (actually, single-dipped) choice correspondence with the
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basin B = {(0, 0)}. Clearly, ϕ is not lower semicontinuous (and, thus, not continuous) but

it is upper semicontinuous.

As shown in the following theorem, a basin must be closed if the choice correspondence is

to be upper semicontinuous in addition to satisfying independence of irrelevant alternatives

and single-basinedness. This restriction cannot be obtained by means of the two original

axioms alone; see the example following the statement and proof of the theorem.

Theorem 3 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives, single-basinedness and upper semicontinuity, and suppose that ϕ has a basin

B. Then B is closed.

Proof. If B is a singleton, we are done. If not, let x ∈ bd(B). We have to show that

x ∈ B. Take y ∈ B \ {x}. Also, let x1, x2, . . . ∈ B be such that limi→∞ xi = x. Since B

is convex by Lemma ??, we have [xi, y] ⊆ B and thus ϕ([xi, y]) = [xi, y] for all i ∈ N by

Theorem ??(a). Hence, ϕ([x, y]) = [x, y] by upper semicontinuity. By Theorem ??(b), this

implies [x, y] ⊆ B and, in particular, x ∈ B.

That upper semicontinuity cannot be dispensed with in the above theorem is established by

the following example. Let n = 2 and let B be the open disc with center (0, 0) and radius

1. Now define ϕ(C) = C if C ⊆ B and ϕ(C) = arg maxx{d(x, (0, 0)) | x ∈ C} otherwise.

This is a choice correspondence with a unique convex basin B that satisfies independence

of irrelevant alternatives and single-basinedness but the basin clearly is not closed.

Also, the converse of Theorem ?? does not hold. The following is an example of a

choice function with a closed (even compact) basin that satisfies independence of irrelevant

alternatives and single-basinedness, but not upper semicontinuity. Let n = 2 and let ϕ pick

the lexicographically maximal point among all points of a choice set C that have maximal

Euclidean distance to (the unique basin point) (0, 0).

7 Representability

A choice correspondence ϕ: C →→ Rn is rationalizable if there exists a transitive binary

relation R on Rn such that

ϕ(C) = {x ∈ C | xRy for all y ∈ C}

for all C ∈ C. In this case we say that R rationalizes ϕ. A choice function ϕ is rationalizable-

representable if there exists a transitive binary relation R on Rn and a function u: Rn → R
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such that R rationalizes ϕ and

[xRy ⇒ u(x) ≥ u(y)] and [xPy ⇒ u(x) > u(y)]

for all x, y ∈ Rn, where P is the asymmetric part of R. In this case, we say that u represents

R. The natural candidate for a rationalizing binary relation is the transitive closure of Rϕ,

that is, the indirect revealed preference relation Rϕ, defined by

xRϕy :⇔ there are m ∈ N \ {1} and x1, . . . , xm ∈ Rn such that

x = x1, xiRϕxi+1 for all i ∈ {1, . . . ,m− 1} and xm = y

for all x, y ∈ Rn. Clearly, to use Rϕ for rationalizability-representability of ϕ, a neces-

sary condition is that Rϕ be Suzumura consistent ; see Suzumura (1976) and Bossert and

Suzumura (2010).

Suzumura consistency. For all x, y ∈ Rn,

xRϕy ⇒ ¬(yPϕx).

Suzumura consistency is weaker than transitivity and stronger than acyclicity, which rules

out cycles of strict preferences. In general, the conditions studied in this paper (namely,

independence of irrelevant alternatives, single-basinedness and upper semicontinuity com-

bined) are not sufficient to guarantee Suzumura consistency of Rϕ. We do not go into this

matter in more detail here but refer the reader to earlier work (Bossert and Peters, 2009,

2013) for the case of single-peaked and single-plateaued choice. We show that adding Suzu-

mura consistency to the three above-mentioned conditions implies that ϕ is rationalizable-

representable. Thus, full continuity of ϕ is not needed to obtain this result.

We start with the following auxiliary result. For x ∈ Rn and ε > 0 we write B(x, ε) for

the open (Euclidean) ball with center x and radius ε.

Lemma 6 Let the choice correspondence ϕ satisfy independence of irrelevant alternatives,

single-basinedness and upper semicontinuity. Let x, y ∈ Rn be such that xPϕy. Then there

exists a ∈ Qn such that xPϕaPϕy.

Proof. xPϕy and independence of irrelevant alternatives imply x ∈ ϕ([x, y]), hence xRϕz

for all z ∈ [x, y]. Suppose that there exists z ∈ (x, y) with zRϕx. Then yRϕx by single-

basinedness, a contradiction. Hence xPϕz for all z ∈ (x, y], and {x} = ϕ([x, y]). Now let

xk ∈ (x, y] for all k ∈ N be such that xk → x as k → ∞. By upper semicontinuity, there
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exist k ∈ N and zk ∈ [xk, y) such that zk ∈ ϕ([xk, y]) and y /∈ ϕ([xk, y]). By independence

of irrelevant alternatives this implies zkPϕy. We conclude from these arguments that there

exists z ∈ (x, y) such that xPϕzPϕy.

Since xPϕz, hence (by the same arguments as before) {x} = ϕ([x, z]), upper semicon-

tinuity implies that there exists ε1 > 0 such that for all v ∈ B(z, ε1), we have ϕ([x, v]) ∩
B(z, ε1) = ∅. Let v ∈ B(z, ε1) and v′ ∈ ϕ([x, v]). Then v′Pϕv. By single-basinedness,

xRϕv, and since v /∈ ϕ([x, v]), independence of irrelevant alternatives implies xPϕv.

Since zPϕy, hence (by the same arguments as before) {z} = ϕ([z, y]), there exists, again

by upper semicontinuity, ε2 > 0 such that y /∈ ϕ([v, y]) for all v ∈ B(z, ε2). For any such

v, let v′ ∈ ϕ([v, y]). Then by independence of irrelevant alternatives, v′Pϕy, and hence by

single-basinedness and the fact that y /∈ ϕ([v, y]), we obtain vPϕy.

Let ε = min{ε1, ε2}. Take a ∈ B(z, ε) ∩ Qn. Then, by the preceding paragraphs,

xPϕaPϕy.

The rationalizability-representability result is the following.

Theorem 4 Let the choice correspondence ϕ satisfy independence of irrelevant alterna-

tives, single-basinedness and upper semicontinuity. Let Rϕ be Suzumura consistent. Then

Rϕ rationalizes ϕ and ϕ is rationalizable-representable.

Proof. Let C ∈ C and x ∈ ϕ(C). Then xRϕy for all y ∈ C, so in particular xRϕy for

all y ∈ C. Conversely, let xRϕy for all y ∈ C. Suppose x /∈ ϕ(C). Let y ∈ ϕ(C). By

independence of irrelevant alternatives, we have xRϕy and yPϕx. This, however, contradicts

Suzumura consistency of Rϕ. Hence, Rϕ rationalizes ϕ.

Let x, y ∈ Rn with x 6= y. Let Iϕ and Pϕ denote the symmetric and asymmetric

parts of Rϕ, respectively. If xIϕy, then clearly, for all a ∈ Qn, we have aRϕx ⇔ aRϕy

and xRϕa ⇔ yRϕa. If xPϕy, then Lemma ?? implies that there exists a ∈ Qn such that

xPϕaPϕy.

Now let Qn = {a1, a2, . . .} be an enumeration of the countable set Qn. We define

u: Rn → R by

u(x) =
∑

{k∈N |xRϕak}

2−k

for all x ∈ Rn. By the preceding paragraph and by transitivity of Rϕ, u represents Rϕ.

The construction of u in the proof of Theorem ?? is familiar from Debreu (1954) and

Jaffray (1975).
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Furthermore, it can be shown that u is quasi-convex. Let the choice function ϕ satisfy

independence of irrelevant alternatives and single-basinedness. Let ϕ be rationalized by Rϕ,

and let Rϕ be represented by u: Rn → R. Let x, y ∈ Rn and z ∈ (x, y). If x ∈ ϕ([x, y]) then

u(x) ≥ u(z), so that u(z) ≤ max{u(x), u(y)}. Similarly, if y ∈ ϕ([x, y]) then u(y) ≥ u(z),

so that again u(z) ≤ max{u(x), u(y)}. If z′ ∈ ϕ([x, y]) for some z′ ∈ (x, y), then by

Lemma ??, [x, y] = ϕ([x, y]), so that u(z) = u(x) = u(y) = max{u(x), u(y)}. Hence, u is

quasi-convex.
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