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Abstract

Atrial fibrillation (AF) is an abnormal heart rhythm (cardiac arrhythmia). In AF, the atrial
contraction is rapid and irregular, and the filling of the ventricles becomes incomplete,
leading to reduce cardiac output. Atrial fibrillation may result in symptoms of
palpitations, fainting, chest pain, or even heart failure. AF is an also an important risk
factor for stroke. Coronary artery bypass graft surgery (CABG) is a surgical procedure to
restore the perfusion of the cardiac tissue in case of severe coronary heart disease. 10% to
65% of patients who never had a history of AF develop AF on the second or third post
CABG surgery day. The occurrence of postoperative AF is associated with worse
morbidity and longer and more expensive intensive-care hospitalization. The fundamental
mechanism responsible of AF, especially for post-surgery patients, is not well
understood. Identification of patients at high risk of AF after CABG would be helpful in
prevention of postoperative AF. The present project is based on the analysis of cardiac
electrograms recorded in patients after CABG surgery. The first aim of the research is to
investigate whether the recordings display typical changes prior to the onset of AF. A
second aim is to identify predictors that can discriminate the patients that will develop

AF.

Recordings were made by the team of Dr. Pierre Pagé on 137 patients treated with CABG
surgery. Three unipolar electrodes were sutured on the epicardium of the atria to record
continuously during the first 4 post-surgery days. As a first stage of the research, an
automatic and unsupervised algorithm was developed to detect and distinguish atrial and
ventricular activations on each channel, and join together the activation of the different
channels belonging to the same cardiac event. The algorithm was developed and
optimized on a training set, and its performance assessed on a test set. Validation
software was developed to prepare these two sets and to correct the detections over all
recordings that were later used in the analyses. It was complemented with tools to detect,
label and validate normal sinus beats, atrial and ventricular premature activations (PAA,

PVC) as well as episodes of arrhythmia.



Pre-CABG clinical data were then analyzed to establish the preoperative risk of AF. Age,
serum creatinine and prior myocardial infarct were found to be the most important
predictors. While the preoperative risk score could to a certain extent predict who will

develop AF, it was not correlated with the post-operative time of AF onset.

Then the set of AF patients was analyzed, considering the last two hours before the onset
of the first AF lasting for more than 10 minutes. This prolonged AF was found to be
usually triggered by a premature atrial PAA most often originating from the left atrium.
However, along the two pre-AF hours, the distribution of PAA and of the fraction of
these coming from the left atrium was wide and inhomogeneous among the patients. PAA
rate, duration of transient atrial arrhythmia, sinus heart rate, and low frequency portion of
heart rate variability (LF portion) showed significant changes in last hour before the onset
of AF. Comparing all other PAA, the triggering PAA were characterized by their
prematurity, the small value of the maximum derivative of the electrogram nearest to the
site of origin, as well as the presence of transient arrhythmia and increase LF portion of

the sinus heart rate variation prior to the onset of the arrhythmia.

The final step was to compare AF and Non-AF patients to find predictors to discriminate
the two groups. Five types of logistic regression models were compared, achieving
similar sensitivity, specificity, and ROC curve area, but very low prediction accuracy for
Non-AF patients. A weighted moving average method was proposed to design to improve
the accuracy for Non-AF patient. Two models were favoured, selected on the criteria of
robustness, accuracy, and practicability. Around 70% Non-AF patients were correctly
classified, and around 75% of AF patients in the last hour before AF. The PAA rate, the
fraction of PAA initiated in the left atrium, pNN50, the atrio-ventricular conduction time,
and the correlation between the latter and the heart rhythm were common predictors of

these two models.
Key words:

Coronary artery bypass graft surgery, Postoperative Atrial Fibrillation, Atrial

Electrogram, statistical analysis, predictor.
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Résumé

La fibrillation auriculaire (FA) est une arythmie touchant les oreillettes. En FA, la
contraction auriculaire est rapide et irréguliere. Le remplissage des ventricules devient
incomplet, ce qui réduit le débit cardiaque. La FA peut entrainer des palpitations, des
¢vanouissements, des douleurs thoraciques ou I’insuffisance cardiaque. Elle augmente
aussi le risque d'accident vasculaire. Le pontage coronarien est une intervention
chirurgicale réalisée pour restaurer le flux sanguin dans les cas de maladie coronarienne
sévere. 10% a 65% des patients qui n'ont jamais subi de FA, en sont victime le plus
souvent lors du deuxiéme ou troisieme jour postopératoire. La FA est particuliérement
fréquente apres une chirurgie de la valve mitrale, survenant alors dans environ 64% des
patients. L'apparition de la FA postopératoire est associée a une augmentation de la
morbidité, de la durée et des cotits d'hospitalisation. Les mécanismes responsables de la
FA postopératoire ne sont pas bien compris. L'identification des patients a haut risque de
FA apres un pontage coronarien serait utile pour sa prévention. Le présent projet est basé¢
sur 'analyse d’électrogrammes cardiaques enregistrées chez les patients aprés pontage un
aorte-coronaire. Le premier objectif de la recherche est d'étudier si les enregistrements
affichent des changements typiques avant l'apparition de la FA. Le deuxiéme objectif est
d'identifier des facteurs prédictifs permettant d’identifier les patients qui vont développer

une FA.

Les enregistrements ont été réalisés par I'équipe du Dr Pierre Pagé sur 137 patients traités
par pontage coronarien. Trois électrodes unipolaires ont été suturées sur l'épicarde des
oreillettes pour enregistrer en continu pendant les 4 premiers jours postopératoires. La
premiére tache était de développer un algorithme pour détecter et distinguer les
activations auriculaires et ventriculaires sur chaque canal, et pour combiner les
activations des trois canaux appartenant a un méme événement cardiaque. L'algorithme a
été¢ développé et optimisé sur un premier ensemble de marqueurs, et sa performance

¢valuée sur un second ensemble. Un logiciel de validation a été¢ développé pour préparer
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ces deux ensembles et pour corriger les détections sur tous les enregistrements qui ont été
utilisés plus tard dans les analyses. Il a été complété par des outils pour former, étiqueter
et valider les battements sinusaux normaux, les activations auriculaires et ventriculaires

prématurées (PAA, PVA), ainsi que les épisodes d'arythmie.

Les données cliniques préopératoires ont ensuite €t€¢ analysées pour établir le risque
préopératoire de FA. L’age, le niveau de créatinine sérique et un diagnostic d'infarctus
du myocarde se sont révélés étre les plus importants facteurs de prédiction. Bien que le
niveau du risque préopératoire puisse dans une certaine mesure prédire qui développera la

FA, il n'était pas corrélé avec le temps de l'apparition de la FA postopératoire.

Pour l'ensemble des patients ayant eu au moins un épisode de FA d’une durée de 10
minutes ou plus, les deux heures précédant la premiére FA prolongée ont été analysées.
Cette premiere FA prolongée était toujours déclenchée par un PAA dont ’origine était le
plus souvent sur l'oreillette gauche. Cependant, au cours des deux heures pré-FA, la
distribution des PAA et de la fraction de ceux-ci provenant de l'oreillette gauche était
large et inhomogene parmi les patients. Le nombre de PAA, la durée des arythmies
transitoires, le rythme cardiaque sinusal, la portion basse fréquence de la variabilité du
rythme cardiaque (LF portion) montraient des changements significatifs dans la derniére

heure avant le début de la FA.

La derniére étape consistait a comparer les patients avec et sans FA prolongée pour
trouver des facteurs permettant de discriminer les deux groupes. Cinq types de modeles
de régression logistique ont ét¢ comparés. Ils avaient une sensibilité, une spécificité et
une courbe opérateur-receveur similaires, et tous avaient un niveau de prédiction des
patients sans FA trés faible. Une méthode de moyenne glissante a été proposée pour
améliorer la discrimination, surtout pour les patients sans FA. Deux modéles ont été
retenus, sélectionnés sur les critéres de robustesse, de précision, et d’applicabilité. Autour
70% patients sans FA et 75% de patients avec FA ont été correctement identifiés dans la
derniére heure avant la FA. Le taux de PAA, la fraction des PAA initiés dans I'oreillette

gauche, le pNN50, le temps de conduction auriculo-ventriculaire, et la corrélation entre
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ce dernier et le rythme cardiaque étaient les variables de prédiction communes a ces deux

modéles.

Mots-clés :
Pontage coronarien, fibrillation auriculaire postopératoire, électrogramme auriculaire,

analyse statistique, facteurs de prédiction.



Contents

F N 0] 2 2Tt PSPPSR 1
RESUMEC......oiiiiiieee et et e e e e e i1
12 1o) (G 55 ] RSP RRRUUSRRURS 1X
FAGUIE LLIST..iiiiiiiieeciiie ettt e e e e e e e e e e e e naee e ennneas X1
ADBDIeviation LiSt .......c.ccociiiiiiiiiiieeiieeieeeeeee e XVviil
ACKNOWIEAZEMENTS.....c.eviiieiiiieeiie ettt et e e seeee e XXi
Chapter 1 INtrodUCtiON .........eevuieeriiieeieeeiee ettt 1
1.1 Post-operative Atrial Fibrillation ............cccoovieiiiiiniiiiieieciecieee e 1
1.2 Review Of the LItETature .......coouiiiiieiiiiiiecie et 3
1.2.1 Electrophysiological MechaniSm............c.cccueeriieriiiiiienieeieeieeieeee e 3
1.2.2 Risk Factors: Preoperative, Intraoperative, and Postoperative of Postoperative
A ettt 7
1.2.3 Prophylaxis and Postoperative AF Treatment ............cccceeeevveeeciieenciieenieeeneen. 17
1.2.4 Methods for Predicting Postoperative Atrial Fibrillation ..........ccccceceveviencee 17
1.3 Analysis on Atrial Electrograms (AEG) to Study the Mechanism and Prediction. 20
1.3.1 Hypothesis and ODbJECtIVES......cc.eeruieiiriiniiiinieieeieet ettt 20
1.3.2 Choice Of SUDJECLS ....eeviieiiieiieeiiecie ettt ettt eae e aee e enes 21
1.3.2 Study Plan .....cooooiiiiiii e 22
1.3.3 Statistical MethodS.........ccovieriiiiiiiiieiieeie et 23
Chapter 2 Detection, Validation and Time Series Building of AEG ........... 27
2.1 Data COIECHON ...eouiieiieeiieeiiecie ettt ettt et saaeebe e saeenseesaeeenseenns 29
2.2 Detection and Classification of Atrial and Ventricular Activations....................... 30
2.2.1 Detection Challenges ..........cccueeiiieriieiiienie ettt e 30
2.2.2 A and V Detection and Discrimination..............cecueereeenieenieenienieenieenieeieee 32
2.2.3 Detection RESULILS .......ccviiiiiiiieiieeie ettt et 39
2.3 ValAAtION ..ottt ettt ettt ettt s 39
2.3.1 Selection of the Interval to Validate ...........cccoeoveeiiiiniienieniieieieceeeee 40
2.3.2 Correction of Individual Local or Global Event.............ccoccooiiiiiiiiiiiinnne 41
2.3.3 Template MatChing .........cccceecuieriiiiiiieiiecie et s 42
2.3.4 Classification AlgOTithm..........ccooviiiiiiieiiieceeeee e e 43
2.3.5 Template Driven Timing.........ccceeecieeriienieeniienieeiie et eie et eee e seveeaee e 47
2.4 Beat FOTMAtION. ....c..iiiiiiiiiiiieiie ettt et ettt 48
2.5 Validate Beat.......cocuiiiiiiiieiieeie ettt et 50

vi



2.6 Beat Time Series BUuilding..........cccooviiiiiiiiiiiiieiie e 53

2.7 DISCUSSION ...vvvveiiieeeeeeeetitieeeee e e e e eeetate e e e e e e e e seesstaaeeeeeeesesasastaereeeessssssssrasreeeeeeessannnnes 57
2. 7.1 RECOTAING .....ocuvieiieeiieiie ettt ettt ettt ettt et ete et eesbeennaeenseesaeeenseenees 57
T N D 1< 1< Ter5 (o) 4 BRSSPSR 57
2.7.3 Validation SOFtWATE..........ccooeiuviiiiiiiiiec et 59
2.7.4 Time Series BUullding .........cocoviieiiiiiiiiiicieccee e e 61

2.8 SUITIMATY ..ettieiiieeeiie ettt ettt et e ettt e et e et eeestteeeasteesnsteesasbeesnbeeesaseeesasaeenaseesnnseeenns 63

Chapter 3 Analysis of Premature Atrial Activation and Time Analysis before

ONSEL OF AF ... e 64
3.1 PAA ANALYSIS..cuuiiiiiiiiiiiieeiie ettt ettt ettt e e be et e et eaaeebeessaeentaennaeenneennns 65
3.1.1 Number of LPAA (Left PAA) vs. RPAA (Right PAA)......cccoiiiiiii. 65
3.1.2 Temporal Trend of PAA and Arrhythmia...........ccccooeveiiiviiniiiiiiiieeeeeeen 67
3.2 Post-hoc Analysis of Raw Data and Position Data............c.ccoeiieiiiniiiiinniieee 71
3.3 Discrimination of Trigger from Non-Trigger Period...........cccccceeviiiiienienciiennnnnnn 75
3.4 Characteristics of PAA Eliciting Occurrence of AF.........ccccoeviiiiniiiiniiniicnne 80
R IR 3 B 5 (<) 10 11111 OSSR 80
3.4.2 Intra-atrial Propagation Time (CTA) of PAA.......ccooiiiiiiiiece 82
3.4.3 Local Derivative (DVAL) .....cccueeeeeeeeciieeiieeeiee ettt eve e e s 83
3.4.4 Cardiac Autonomic Neural Balance ............cccccoeveeniiiiiinniniiieieeeeeeeeee, 84
3.5 Uniqueness of PAA ELiciting AF.........ccoooviiiiiiiiieiieieceeeeeeee e 86
3.0 DISCUSSION ...ttt ettt ettt et ettt et e et e estt e e bt esateeabeesabeesbeesseesnseesneeenneenens 88
3.6.1 Time Evolutionary Risk FACtOTS ..........cccuevrviiiiieiiiiiiiciiecieeeee e 88
3.6.2 Triggering vs. Non-triggering PAA ..ot 95
3.7 SUIMNIMATY ...tieiiiie ettt ettt ettt e et e e st eessteeessaee e abeeesseeansseeansseesnsneesnseesnnseesnnses 96

Chapter 4 Preoperative Risk Factor Analysis of AF and Non-AF Patients . 98

4.1 Univariate Analysis RESUIL ........cccooiiiiiiiiiiiiiieeceeee e 99
4.1.1 Univariate Logistic REGIeSSION.......cccueeviiiiriiieiiieeiee et 99
4.1.2 AQE/GENACT ...ttt ettt ettt ettt e et et e et e e saeesnbeeseeenseens 101

4.1.3 Artery Hypertension (HT).......ooooiiieiiieiieeceeee e 104
4.1.4 Prior Myocardial Infarct (IMI).........cocuveviiiiiiiiiiciieieee et 105
4.1.5 Sertum Creatinine .......c.ceeevuieriieeieeniie ettt ettt et e sttt e st e e b e saeeebeesaeeens 106

4.2 Multivariate Logistic Regression ANalysis.........cccoecueevieriiienienciienieeiienie e 108

i 10 A 4 (LT3 () o USSR 114

4.4 DISCUSSION ...ttt ettt ettt sttt et sbe ettt sbe e bt eatesbe e bt satesbt et e eatenbeensesaeenseenees 117

4.5 SUMIMIATY ..eeiiiiiiiie ettt ee et e e et e e e ettt e e esabbeeeesnbaeeeessssaeessnnsaeeeennsseeeenn 120

Chapter 5 AF vs. Non-AF Clinical Predictor Analysis........cccccvveervreennnee. 121

5.1 UNIVAriate ANALYSIS......cccvieiieeiiieriieeieeriieeteesieesteesteesveeseesseeseessseeseessseenseessseens 122

5.1.1 Analysis Of PAA ..ot 123

vil



S5.LITLPAA and RPAA ..ot 124

5.1.1.2 PAA Rate (R,,,) and Proportion ( P, ) Analysis .....cccccccereeverucnnennee. 127

ST 1.3 LPAA ANALYSIS toeeuviiieiiieeiieeeie ettt et s esnaee e es 128
5.1.2 Non-sustained Arrhythmia............cccoooiiiiiiiiiiiiie e 129
5.1.3 AA Trend and AA Relative Difference Trend..........cccoceveerinieninnennenenee. 130
5.1.4 LFPortion of AF and Control Patients.............ccoeceevieniiiiieniieiienieeeeee 132
5.2 Model Building to Discriminate AF from Non-AF Patients ...........cccccecereenenee. 132
5.2.1 Logistic Regression Based on BTI (Basic Time Interval) Data .................... 133
5.2.2 Modified Models for AF and Non-AF Prediction .........ccccceeeveeneniercenennee. 142
5.3 WMAM (Weighted Moving Average Method) For Model Prediction Improvement
ANA MONTEOTINE. ..c.vteeeiiieeiieeeiee ettt e ettt e et e e st e e steeesbeeestbeeesaeeesseeensseeensseesnseeesnseeenns 147
5.4 DISCUSSION ..utitieiieeitte et ett ettt te ettt et esate e bt esabe et eesaeeenbeesneeenbeesaeeenbeessseenseenaseans 151
5.5 SUMMATY ..etieiiiie ettt et e et e et e e e aaeeestaeeensseeessteeenseeesnseeensseeenns 156

Chapter 6 Originality, Limitation and Future Development of the Study.. 158

6.1 Originality 0f the STUAY .....ceeeiiiiiiiiiieecee e 158
6.2 Study LIMItAtioN ....cceeiiieiiiieeiiieciieeciee et etee e eee e e e sev e e aaeeeeseeesaeeennaee e 160
6.3 Future DevelOPMENt.........cccuiiiuiieiiiiiieiieie ettt ettt ens 160
| S 1S3 (5] 1 (61 PR R 162
ANNEXE Lottt e e et e e e e e e e e arae e e e e ananes I
ANNEXE I ..ot XXVI

viii



Table List

Chapter 1

Table 1.1 Baseline Characters of Patients of Study Population..............ccccceveveierirennennne. 11
Table 1.2 Multivariable Predictors of Postoperative Atrial Fibrillation..............cccc........ 14
Chapter 3

Table 3.1 Test within subject effects: (One-Way Within-Subjects ANOVA)................. 73
Table 3.2 Post-Hoc Analysis of Raw and Position Data of Specific Variables with
Significant Time-effects in 2-pre AF HOUTS .....cc.coceriiiiiiiiniiniiiicccecceeeen 73
Table 3.3 The p value from univariate and multivariate logistic regression model with
position data and 5 MINULES PATTIEION .....cc.eeviieriieeiieiie ettt 77

Table 3. 4 The comparison of AUC (area under ROC curve) among the four methods,
including the area difference, the standard error, the significance of the difference and the

CONTIAENCE INTETVAL ....outiiiiiiieiiiie ettt s 80
Chapter 4

Table 4.1 Baseline characters of the 137 patients of the study population..................... 100
Table 4.2 P value of variables in univariate unweighted and sex weighted logistic
TEETESSION 1.uvieeuereeeireeeteeeeteeeateeeasseeeasseeeasseeensseeansseeesseeasseeansseesnsseesnssesssseenseeensseesnnses 101
Table 4.3 R (AF): Risk of AF in the group without (Non-HT) and with (HT)
hypertension. RR: 1elative TISK ......cciiiiiiiiieiiieiiecieeeeeeeee e 104
Table 4.4 R(AF): Risk of AF in the group without (Non-MI) and with (MI) ................ 105

Table 4.5 Beta values and probability of the variables included in the logistic regression
models. Weighted(W) and unweighted (Non-W) univariate (U) and multivariate (Mv)
models. The numbers in parenthesis is the order of entry of each variable in the stepwise
models. For variables not included in a model, the significance of the variable evaluated

at the last step of the iteration is indicated. ...........eccueeiiieriieiienie e 108
Table 4.6 Indices of Model 1, 11, and III on men, women and total population.............. 111
Chapter 5

Table 5. 1 Beta value of predictors in the final forward logistic regression model for 5,

10, 15 MINULES INTEIVALS .eevvviiiiiiiiieeeeeeeeee ettt e e e e e e s s a e e e e e e e e s esnaaaaees 133
Table 5. 2 Sensitivity, specificity, and ROC area of models of 5, 10 and 15 minutes BTI
......................................................................................................................................... 134
Table 5. 3 p value of Group (AF vs. Non-AF), Time, and Group*Time effects upon
ANOVA analysis of each variable of 10 minutes BTI data.............ccocoveiiniininncnnnne 137
Table 5. 4 Comparison of AUC (area under ROC curve) among the successive models
obtain in the eight steps of the 10gistic T€ZreSSION ......ccueevvieeiieiiieiieie et 139
Table 5. 5 Sensitivity, specificity, and ROC area of stepwise logistic regression models
by the order of variables entering into the models.............cccevcvieriiiiiiiniiiniiee e, 140

1X



Table 5. 6 The mean value of beta coefficients of stable predictors of Model 0,L,ILIILIV

......................................................................................................................................... 146
Table 5. 7 Indices of five models (excluding the missing value periods, and missing value
018 TS 115 SRS 147
Table 5. 8 Normalized beta coefficients obtained by logistic regression........................ 148



Figure List

Chapter 1

Figure 1. 1 A) A normal plane depolarization front travelling along the vertical direction;
B) reentry. It was induced by applying a second stimulus covering half of the plane in the
horizontal direction. The abscissa and ordinate are the coordinate of the tissue in the unit
of pixel. The color stands for the membrane potential, corresponding values indicated in
the color bar (mv). (The simulation data come from the project done by Elhacene Matene,

Centre de recherche de 1'Hopital du Sacré-Coeur, Montréal). ........cc.ccerviniivinicnecnennn. 5
Figure 1. 2 Flow chart of the project research method ..............cccoevviiiiiiiiiiiniiiiie, 22
Chapter 2

Figure 2. 1 Posterior view of the heart showing the 3 electrodes sutured to the right (Si,
S2) and left (S3) atrium and their electrograms. The atrial (A) and ventricular activations
(V) are indicated for three beats, as well as the ventricular T wave (T).......ccccceeveeennenns 27
Figure 2. 2 Flow chart of building time series from AEG...........ccccooceiviriiniineniiinienen. 28
Figure 2. 3 The five spatial configurations of unipolar electrodes on the posterior atria.
LAA: Left Atrial Appendage. RAA: Right Atrial Appendage. LA: Left Atrium. RA:
Right Atrium. PV: Pulmonary Vein. SVC: Superior Vena Cava. IVC: Inferior Vena
CAVA. ettt ettt e b e bttt st enaee 30
Figure 2. 4 Four example of difficulties encountered in the detection process: A) Holter
device saturation, B) Baseline wandering, C) Noise in signal, D) Disproportion within
and between Channels. .........cooiiiiiiiii e 31
Figure 2. 5 Detection and labelling algorithm (From the paper [151] with permission of
the editor). The acronyms in the figure refer to variables that are defined in the paper
presented I ANNEXE L. ..oooiiiiiiiiiiiiiee et 35
Figure 2. 6 Detection of global activations (step 8).a) Original signals Si, Sz, and S3. The
horizontal lines show the extent of the global activations, from their onset (TPeakon) and
to their offset (TPeakofr). b) Pass 1: events are segments with E°’y > Thresh; (gray line)
for at least 40 ms, from T*n(*) to Tt (0). The upper dash line maxE1 is the maximum
of energy used to calculate the threshold (line labelled Threshi). TPeakon and TPeakoft,
used to delineate the extent of the global in panel A, are the first minimum before T**n
and after T*ofr respectively. Each event is removed and replaced by a 3 samples pivot
with an amplitude = 5% of energy at T*"on. If the limits of two events are separated by
less than 50ms, as the two events in the middle of the panel, a pivot in inserted in the
middle, with an amplitude = 50% of energy at the first T*'on. ¢) Pass 2: The residual E%g

X1



is analyzed as in Pass 1, with the new threshold Thresh: (gray line), calculated from the
updated maxE> function (upper dash line, Eq. 2.8) (from the paper [151] with permission
OF the ©AILOT)....uviiiieie e et e et e et e e etb e e e et e e e taeeenbaeeenaeeeenreeenns 36
Figure 2. 7 E¢”° (continuous line) and E¢* (dash line).I90 and 125 are the integral on a
+40ms interval around the maximum of E90 and E25 respectively. The ratio R=100 125/
190 is used to calculate the threshold to discriminate A and V events. (From the paper
[151] with permission Of the €ditor) .........coeeiiriiiiiiiiieee e 37
Figure 2. 8 Detection and identification in a sequence containing a salvo of atrial
premature activations. a) Discriminating function (continuous line, DF) and of a sequence
of R ratio (described in Figure 2.7) for global events, showing discrimination of A (under
DF) and V (over DF). When an activation is missed (3 V in that example), DF, which
also depends on past values, maintains the discrimination. b) The DF function for channel
S2 shown in the panel c. Even if one V is detected after 4 successive A, the discrimination
is maintained. c¢) A and V detection and discrimination for a salvo of premature atrial
activation (PAA) whose energy was highly depressed. All the PAA’s were correctly
detected and labelled as A, even when much depressed as in channel S3 (only 2 channel
shown for clarity). In Sz, the first fusion beat was detected, but the depressed A was
labelled as a possible V. In Ss, the three fusion beats were labelled as A (from the paper
[151] with permission Of the €ditor) .........ceeviiiiieiiiiiieee e 38
Figure 2. 9 Principal interface of the validation software. The upper panel shows the
tendencies, in this case AA of an electrode. Lines showing the mean value +2 standard
deviations are displayed and outliers are highlighted by red dots. The orange heart shape
dot indicated the position that is selected for examination. The lower panel shows the
signal of three channels, the A and V markers, and the extent and labels of the global (A
red, V green) in an adjustable interval around the location selected in the upper panel.

The operation control menus and buttons appear on the right of the figure..................... 41
Figure 2.10 The context menu serves to remove or to change the label of the markers or
modify their location. B) Pop-up menu for adding a marker...........ccccooceeveeviniininnnnnnn. 42
Figure 2. 11 Classification in selected time interval and pop-up menu providing choices
for group modification of the attributes of markers in a cluster. ...........ccccoeevevireriennnnnnn. 43
Figure 2. 12 Signal (blue line) around the position of a selected marker (green), and
boundaries (red) set by ChOOSING G . ......cc.coiiriiiiiiiiiriiiieeiecee e 46
Figure 2. 13 The set of reference waveforms of the clusters. ..........cccccveecvienciiencieennee. 46
Figure 2. 14 Adaptive filtering method Z = H* X ...ccoociiiiiiiiiiieee e 47
Figure 2. 15 One atrial activation chosen as the filter (template H)............cccvveenneennnn.. 47
Figure 2. 16 The signal X as input of filtering............ccccevviieriieiieniiiieeieeeeeee e 48
Figure 2. 17 The output of the convolution of H with X. Maximum beyond an adjustable
threshold (red hatched line) localizes the position of similar waveform to H in X........... 48
Figure 2. 18 Intra-Atrial conduction time (CTA), atrial firing order, an atrio-ventricular
conduction tiME (CTAV) ...oiiiiieeiee ettt e tae e e eae e e s ta e e eraeesaeeeenreeees 50
Figure 2. 19 AA intervals of two consecutive beats with the same order of atrial firing. 50
Figure 2. 20 The main menu of Validate Beat............cccceevieriieiieniiiiieiiieieeeee s 51
Figure 2. 21 Indices of a beat, which can be edited. ..........ccceeevveviiiiiiiiieiieeeeeee, 51
Figure 2. 22 Interactive panel to perform beat modification. ..........cccceecveveeneniienvenennns 52
Figure 2. 23 After detection and validation, the activations of three channels are grouped
into beats with a label corresponding to their type (Normal sinus beat, PAA...) ............ 53

xil



Figure 2. 24 Dispersion of the activations Amplitude vs. dV/dtmin from two channels from
different patients. All activations from 2hr recording prior to AF onset are shown: A (red
dot), V (blue circle) and PAA (green dot), PAC (black star). Top panel: the distribution
forms a continuous cluster, with PAA spread between A and V. Bottom panel: PAA and
V are in a cluster between two separated clusters of A. ........cccoevieriiieiiiiniiienieie s 58

Chapter 3

Figure 3.1 Proportion of LPAA (blue) and RPAA (golden) in the second hour before AF
onset. The abscissa represents the identification (ID) number of the patients in the
analysis. The ordinate is the proportion of LPAA (blue) and RPAA (gold) among the total
PAA number within each patient. Patients with ID 1 to 26 and 27 to 29 had their AF
triggered by PAA from left and right atrium respectively, while the origin of a subset of
PAA including the trigger was unknown for the patient with ID 30. Homogeneity of

proportion was rejected by y” test, using either the mean number (patients 1-29, P

<0.0001, patients 1-26 P<0.0001) or the mean proportion of left and right PPA (patients
1-29, P <0.0001, patients 1-26 P<0.0001) as null hypothesis. Both variables were
examined because of the huge dispersion in the number of PAA among the patients. .... 66

Figure 3.2 Mean value and standard deviation of A) PAA Rate (R},,,Rp,,, in Panel A)

and B) PAA Proportion (P, ,,Ps,, , in Panel B) within each 5 minutes before AF. Left

atrium: blue line and circle; Right atrium: red line and diamond. .............cccceveeninennene. 67
Figure 3.3 Mean patterns associated to the clusters obtained by the analysis of five

minutes (A) R;,, and (B) Ry,, . The number of patient within each cluster is indicated.

The abscissa axis is the time before the onset of AF (min). .........cccovvveiviiiiiiiiniieecieees 70
Figure 3.4 A) mean and standard deviation of the duration of arrhythmia
( ArrhyDuration ) by 5 minutes interval; B) Mean clusters profile of arrhythmia duration.

Figure 3.5 A) evolution of mean of the raw (blue) and position 44Mean (red) in the last
hour before AF. B) Cluster analysis of A4Mean during the last hour before AF. Mean
patterns of the clusters were plotted, and the number of patients associated to each cluster
1S TNAICALEA. ...ttt ettt st e b ettt b e st eeaee 74
Figure 3. 6 A) evolution of mean of the raw (blue) and position LFPortion (red) in the
last hour before AF. B) Cluster analysis of LFPortion during the last hour before AF. .. 74
Figure 3.7 Comparison of prediction of the trigger period (last interval before AF) using
raw variables (A) and position variable (B) for five minutes intervals. Green color box
stands for true positive, blue for false negative, red for false positive, and white for true
negative, black for the period with missing values because of insufficient number of sinus
beats in five minutes. The abscissa is the time from the onset of AF, and the ordinate is
the PAtIENT IAENTILY.....eeiiiieiiii e et et e et e e et e e esraeeeseeesnsaeesnseeennseeas 76
Figure 3.8 A) Sign of estimated coefficient of predictors in the logistic model (red:
positive coefficient, green: negative coefficient) for different partitions of 2 hours
intervals before AF. B) Sensitivity (red) and specificity (black) of each model with
cutting point calculated from the ROC CUIVe. .......ocooiieiiiiiieiiecieeeeeee e 77

Xiii



Figure 3.9 ROC curves of Model I, II, III, and IV. The circles indicated the best cut off
points for €aCh MOAEL. .......ccuviiiiiiiiiieee e e e 79
Figure 3.10 A) Cumulative distribution among the patients of the normalized absolute (-
Premaps, point) and relative (P-Premyel, star) prematurity of the triggering PAA. The
abscissa is the value of P-Premanss and P-Premyei, the ordinate is the cumulative proportion
of patients for which the trigger PAA has P-Premass and P-Premyer < the corresponding
value on the abscissa. B) Relation between PAA rate and P-Premass and P-Premyer. The
abscissa is the PAA rate in last five minutes (number/min.), and the ordinate is the
absolute (P-Premans, point) and relative (P-Premyei, star) prematurity of triggering PAA. 81
Figure 3.11 A) Histogram of CTA distribution of LPAA and RPAA of one patient (LPAA,
red color; RPAA, blue color). B) Histogram of CTA of LPAA of one patient, CTA varying
from around 10 t0 80 MSEC. ..eeruviiiiiiiiiiie ettt e 82
Figure 3.12 A) Cumulative distribution among the patients of the position of NDvdt of
the triggering PAA. The abscissa is the position of NDvdt of triggering PAA, and the
ordinate is the proportion of patients having NDvdt of the trigger PAA with position < to
each level indicated by the abscissa; B) The contrast plot of correlations: the abscissa is
the correlation between NDvdt and prematurity, and the ordinate is the correlation
between NDvdt and AA; C) Cumulative distribution of the trigger NDvdt residue position.
Residue of regression of Ndvdt with A4 and Prematurity were obtained and ranked in
€ACH PAIENLE (SEE tEXL)...uieeuiieeiiiieeitieeetie ettt e eteeesteeesteeesaeeeseseeesbeeesasaeesseeessseesnsneesnsneenns 84
Figure 3.13 A) The cumulative distribution among the patients of the AAMean
(continuous red line) and LFPortion (broken blue line) trigger PAA position. The
abscissa is position of the trigger PAA, and the ordinate is the proportion of patients
having a triggering PAA with a position < to each level indicated by the abscissa. B)
Scatter plot of MeanAA vs. LFPortion positions of the triggering PAA among the
018 S 01 SRS 85
Figure 3.14 A) For each percentage of non-triggering PAA included in the sample, the
ratio of the 200 runs in which each variable was included in the logistic model. The color
bar indicate the value of the ratio; B) Mean value and standard deviation of sensitivity,
specificity, and ROC curve area over the 200 runs for each percentage of non-triggers
PA A ettt ettt et et b e e aeeat e teenbeertenteenbeententeenteeneans 87
Figure 3. 15 A) Relative P value of each independent variable in the logistic regression
for four groups of patients (P/0.2, set to a maximum of 1); B: Beta values of variables of
in the final forward conditional logistic model on different group PAA with significant
level for entering the variables as 0.05 and 0.10, green stands for negative parameter, and
red stands for positive parameters, white indicates non-significant predictor. (Tot, total
PAA; LeLe, LPAA from patients with AF triggered by LPAA; LeLo, LPAA with PAA
number<100; LeHi with PAA number>100).........cccceeviiriiiiriieiieniecieeeee e 88
Figure 3.16 Mean value and standard deviation of LPAA4 (blue) and RPAA (pink) CTA,
Premaps, CTA, Dvdt and NDvdt. The rightmost points in each panel are the average and

standard deviation of the individual mean values. ........c..cccceeceriiiiniiiniinincnecceecee 90
Figure 3.17 Diagram of pulse propagation either from RPAA, or from LPAA, assuming
propagation at constant speed for the activation before the premature activation............ 92

Figure 3.18 Simulation of eq. 3.1, with & =0.2, and k=0 (left) and k=0.5 (right). The
premature impulse was applied at both end, with a coupling time P=1. Propagation of the
first front was done by stimulation at position 0 in a resting medium (i.e. P(x) = o ) The

X1V



solid line is the conduction time vs. position of pulse from the right, and dot line for from
the left applied with the prematurity =1.........ccccoeviiieeiiiieieee e 92

Chapter 4

Figure 4.1 Number of AF (blue) and Non-AF (red) patients in the different A) age groups
and B) sex groups; Proportions of AF (blue) and Non-AF (golden) patients in C) age
groups aNd D) SEX TOUPS. ....eeriieiieiiieiie ettt ettt ee st et e siteebeeseteebeesaaeebeeseeeenbeesaeeens 102
Figure 4.2 Age distribution across AF vs. Non-AF and Male vs. Female groups. The
lower and upper lines of each box are the 25" and 75" percentiles, whose separation
defined the inter-quartile range. The middle line is the median and red diamond the mean.
The upper and lower ‘whiskers’, the lines extending above and below the boxes, are
located either at 1 inter-quartile from the top and bottom of the box, or at the position of
the minimum and maximum if they are within these limits. Outliers beyond these limits
are indicated by the +. The notches in the box are the 95% confidence interval of the
median. All following box plot figures follow the same formula...............ccceeeieinie. 103
Figure 4.3 Distribution of Age as a function HT and AF among. A) male and B) female.
The symbols of four groups: NAFNHT, Non-AF without HT; NAFHT, Non-AF with HT;
AFNHT, AF without HT; AFHT, AF with HT. .....cccoooiiiiiieeee, 104
Figure 4.4 Distribution of age in the groups with and without previous MI and AF for A)
male and B) female. NAFNMI, Non-AF without MI; NAFMI, Non-AF with MI;
AFNMI, AF without MI; AFMI, AF with ML ..o 106
Figure 4.5 A) Bar plot of mean and standard deviation of serum creatinine level in AF vs.
Non-AF according to gender. AFMale: AF and Male; NAFMale: Non-AF and Male;
AFFemale: AF and Female; NAFFemale: Non-AF and Female (Sex effect=0.01). B)
Mean serum creatinine of different age groups. The ordinate of both panels is the serum
CIEAtININE LEVEL. ...oouiiiiiiiiiiiii e e 107
Figure 4.6 A) mean and standard deviation of serum creatinine level as function of HT
and AF. NAFNHT:Non-AF and Non-HT, AFNHT: AF and Non-HT, NAFHT: Non-AF
and HT, NAFHT: AF and HT (Effect: HT: 0.102, AF: 0.135, HT*AF: 0.986). B) Mean
of serum creatinine level in AF vs. Non-AF according to HT. The ordinate of both panels

1s the serum creatinine leVel............oooiiiiiiiiiii e 107
Figure 4.7 ROC curves from logistic regression Model I, II and III. The circles of the
curves correspond to the optimal sensitivity and specificity for each model. ................ 110

Figure 4.8 Distribution of age of TP, FP, TN and FN obtained by Model I. The diamond
square points indicate the mean value of each group. TP: True Positive; FP: False
Positive; TN: True Negative; FN: False Negative. ......ccccoevvieviieiieniiiiieciecieeee e 112
Figure 4.9 Distribution of serum creatinine of TP, FP, TN and FN obtained by Model II.
The diamond square points indicate the mean value of serum creatinine in each group.113
Figure 4.10 Pervious myocaridal infarct proportion in four groups TP, FP, TN and FN.
......................................................................................................................................... 114
Figure 4.11 Survival curve and cumulative hazard function of AF with respect post-
operative time (A: Survival function, B: Hazard Cumulative Hazard function). ........... 115
Figure 4.12 Survival curves of three groups of Patients with different preoperative risk
score classified i three GroUPS. ......occvieriiiiieiieeii et 116

XV



Figure 4.13 Survival curves by the functions of age group and seX..........cccceeevveererennnen. 117

Chapter 5

Figure 5.1 Time windows of AEG signals for an AF patient and its matched Non-AF
control. 0 represents the time of beginning of post-surgery. T for AF patient is the time of
occurrence of AF, T for control (Non-AF) patient is the same post-operative time. ..... 121
Figure 5.2 Cumulative distribution of the PAA number in AF and Control group. The
distribution of the PAA number in the two groups, AF (blue line) and Control (red line)
WaS QUITE dITRIENL. ....eiiiiiiii et 124
Figure 5.3 Fraction of LPAA (blue color) and RPAA (golden color) for each patient of
the control group. Patients 48 to 58: no PAA detected. Homogeneity of the proportions

was rejected by y° test (<0.001) using either the mean number (all patients) or the mean

proportion (patients 1-47) of left and right PAA. ......cccviioiiieeeee e 125
Figure 5.4 ROC curves from a logistic model including the total number of PAA and
the LPAAFraction. In the forward stepwise logistic regression model, the total number of
PAA and LPAAFraction both brought a significant contribution to the discrimination of
AF and Non-AF patient. For the first mode 1 (red ROC curve), the predictor is
LPAAFraction; for the second model (blue ROC curve), the two predictors are
LPAAFraction and PAA are included.............coooiiiiiiiiiiiiceee e 126
Figure 5.5 A) Mean value and standard deviation of PAA rate (R,,,) within each 5

minutes for the 2 hrs of Control (Non-AF) and AF Group. B) Mean value of PAA
proportion ( P,,,) within each 5 minutes for the 2 hrs. Control (Non-AF, diamond shape,

red line); AF(circle shape, blue line). ........cccoeviiiiiiiiiiiiiciieieceeeee e 127
Figure 5.6 The 8 biggest groups from cluster analysis of PAA rate in control group
(Patients without PAA were excluded)........ccccvveeiiiiniiiiiiiecece e 128

Figure 5.7 A) mean value of LPAA number within each 5 minutes during 2 hrs. B) Mean
value of LPAA Fraction within each 5 minutes during the 2 hrs. (AF: blue line and circle
shape; Control: red line and diamond Shape)...........cccvveeeiiieiiiieniieee e 129
Figure 5.8 A) The mean value and standard deviation of arrhythmia duration time (sec.)
in each five minutes; B) The mean value of relative difference value of arrhythmia
duration for AF and Control. The relative difference (eq. 5.1) was calculated using the
value of the first 5 minutes as reference. (AF: blue line and circle shape; Control: red line
and diamond SHAPE). .....cccuiiiiiiiiieiiee et 130
Figure 5.9 The trend of raw AA (A) and relative difference (B) AA, the latter calculated
using the time period of the first 5 minutes as the reference. AF: red and diamond; Non-
AF: blue and circle. As in chapter 3, only normal sinus beats were considered. ........... 131
Figure 5.10 Cluster analysis of AA raw (Panel A) and relative difference data (Panel B).
In panel A and B the mean trends of 8 more populated groups were plotted respectively.

......................................................................................................................................... 131
Figure 5.11 The trend of mean of LFPortion (A) and of its relative difference (B). (AF:
blue, circle; Control: red, diamond)...........cc.eeeviieeiiiieiie e 132

Xvi



Figure 5.12 The time evolution of mean and standard deviation of the risk scores of 5, 10
and 15 minutes BTI (A, B, C) logistic regression model in AF (red) and Non-AF (blue)
EOUPS. et eutteeiteeeatteeeatteestteestteesatteesaseeeaateeenseeenteeeasseeaasaeeenseeeenseeeanbeeenbeeenbeeenbeennnreens 135
Figure 5.13 Left panels: temporal evolution of pNN50, CTAVMean, CTAVStd and
CorrAA_AV (from top to bottom) in AF (blue circle) and NAF (red diamond) groups. All
values were computed from normal sinus beats in each 10 minutes interval. The average
values were also calculated for each patient. The last point in each panel shows the mean
and standard deviation of these averages in each group. The right panels show the
cumulative distribution of these averages within each group..........c.ccceecvvevieriieniennnnns 136
Figure 5.14 ROC curves of stepwise logistic regression models for 10 minutes BTI by the
order of predictors entering into the models: R,,, , PreopRisk, LPAAFraction,
CTAVMean, pNN50, CorrAA AV , CTAVStd , LEPOFLION . .......cccouveeeeeaereaerraannne. 138

Figure 5.15 For each sample size (represented by the abscissa value), the fraction of 100
random samples in which each variable was selected as a significant predictor (p<0.05).
......................................................................................................................................... 141
Figure 5.16 mean and standard deviation of the £ coefficients of the 7 stable predictors

as a function of the sample size. (The value of the constant was added). For each
sampling size, the mean and standard deviation of the [ value of each variable were

computed from all the samples in which it was included as a significant predictor....... 142
Figure 5. 17 Weights assigned to AF and Non-AF time intervals in Model III and Model
IV. Linear (red, model III) and hyperbolic tangent (blue, model IV) weights for AF time
intervals, constant weights (magenta) for Non-AF time intervals. The data is 10 minutes
BTI data. The sum of the weights is 1 for all cases. ........cccceeeieriieiiieniiieiieeieeeeeeeee, 143
Figure 5.18 For each sample size, appearing in the abscissa, 100 random samples were
constructed from the full set of intervals. The figure show the fraction of these in which
each variable was selected: Model I (A), Model II (B), Model III (C) and Model IV (D).
......................................................................................................................................... 144
Figure 5.19 Prediction accuracy of AF and Non-AF vs. cut-off point. The magenta points
are the optimal ROC cut-off points and their corresponding prediction accuracy values.
......................................................................................................................................... 150
Figure 5.20 Classification of each time interval for Model 0, I, 11, III, IV, (A to E) using
the optimal threshold shown in Figure 5.19. The ordinate is the time from 100 minutes to
the onset of AF, or corresponding monitoring time for Non-AF. The abscissa is the
patients ID (1-29, AF; 30-87, Non-AF). Color code: red, true positive; green: false
negative; white, true negative; magenta, false positive; black, missing independent
variables because of insufficient sinUS beats. .........cccceevieeiiiiiiiiiieiiieee e, 150
Figure 5.21 Prediction accuracy of AF and Non-AF prediction over the time based on
ROC threshold for Model 0, I, II, IIT and I'V. The abscissa is the time before the onset of
AF, or the corresponding monitoring time for Non-AF. The ordinate is prediction

accuracy for AF (red) and Non-AF (BIU€). ......cooouieiiiiiiiiiiiiee e 151
Chapter 6
Figure 6.1 Activation integral surfaces of Wave .........cccceevveriieiieniieieee e, 161

xvil



A

AA
AAMean
AAStd
ACE
AEG

AF

ANP
ANS

ArrhyDuration

AV

AV

BTI

CABG
CANS

CAP

CHF

COPD

COPD
CorrAA_AV
CorrAA_CTA
CorrdAV _CTA
CPB

CRP

CTA

CTAStd
CTAV

Abbreviation List

atrial

time interval between consecutive atrial activations
mean of AA

standard deviation of AA series
angiotensin-converting enzyme

atrial electrogram

atrial fibrillation

atrial natriuretic peptides

autonomic nervous system

arrhythmia duration

time interval between consecutive atrial and ventricular activations
atrioventricular

Basic Time Interval

coronary artery bypass graft surgery
Cardiac Autonomic Nervous System

cell action potential

congestive heart failure

chronic obstructive pulmonary disease
chronic obstructive pulmonary disease
Correlation of A4 series and CTAV series
Correlation of 44 series and CTA series
Correlation of AV series and CTA series
cardiopulmonary bypass time

C-reative protein

intra-atrial conduction time

standard deviation of CTA4 series

atrio-ventricular conduction time

xviil



CTAVMean
CTAVStd
DC

DF

dv/dt
ECG
ERP
FFRW
FFT

FN

FP

HF

HRV

HT

ICD

LF

LPAA

LPAAFraction

LVEF
LVEF
MAP
MI
Non-AF
NSAIDs
PAA
PAC
PNN50
P-Prem
Premans
Premyei

PreopRisk

mean of CTAV

standard deviation of CTAV

Deviation Cohort

discrimination function

the maximum slopes of negative deflections of each atrial activation
electrocardiogram

refractory period

far field R-waves

Fast Fourier transformation

False Negative

False Positive

high frequency, 0.15-0.4 Hz

heart rate variability

hypertension

implantable cardioverter-defibrillator

low frequency, 0.04-0.15 Hz

PAA initiated from left atrium

LPAA fraction

left ventricular ejection fraction

left ventricular ejection insufficiency

monophasic action potential

Myocardial Infarct

without atrial fibrillation

nonsteroidal anti-inflammatory drugs

premature atrial activation

premature atrial complex

Proportion of successive with a difference > 50ms
Position value of the prematurity of each triggering PAA
absolute prematurity

relative prematurity

Preoperative risk score obtained by logistic regression

X1X



PVA
rMSSD
ROC

RPAA
Rpau
Ry,
Rpva
SA
SAPD

TP
UW vs. W

VA
\'A%

premature ventricular activation
root mean square of difference between successive AA

Receiver Operating Characteristics

PAA initiated from right atrium
PAA rate

Left PAA rate

PVA rate

sinoatrial

signal-averaged P-wave duration
True Negative

True Positive

unweighted vs. weighted

ventricular

time interval between consecutive ventricular and atrial activations

time interval between consecutive ventricular activations

XX



Acknowledgements

I would like to acknowledge Dr. Alain Vinet, who served as mentor, supervised me and
supported me during my M.Sc., Ph.D. study and the research work in Hopital du Sacré-
Coeur. He encouraged me, and believed me to be able to overcome the difficulties. He
shared enormous time with me on the project. His strong theoretical background,
scientific spirit, and patient supervision, made my research work advanced further. He set
a good example for me to be a researcher. I am very fortunate and grateful to have him as

my mentor.

I also wish to thank Dr Pierre Pagg, for his contribution of the clinical data of the project,
and the sharing his clinical experience related to this project. I appreciated very much the
help of Dr Aimé-Robert Leblanc for his good suggestion about the project, especially in

detection part of the electrograms study.

I would also like to acknowledge Dr Yalin Yin and Mr. Bruno Dubé. Dr Yin taught me
so much cardiac electrophysiology and clinical knowledge about atrial fibrillation. He
also revised the dissertation. Bruno did a big part of work in the detection and

identification. They both contributed in a major way to the success of this research.

There are numerous others who contributed to this project in different stages and ways.
Dr Pierre Savard, Dr Michael Guevara shared their ideas in the research proposal. I am

also grateful to Dr Réginald Nadeau for his revision of the dissertations.
This project would not have been possible without the support of Centre biomédecine,
Hopital du Sacré-Coeur. I do appreciate the help and support from the working staff and

students in the research center.

I would never forget all the people who helped, supported me during the time of my
study.

xx1



Chapter 1 Introduction

1.1 Post-operative Atrial Fibrillation

The cardiovascular system transports and distributes essential substances to each part of
the body and removes by-products of metabolism. The heart consists of two pumps in
series: the right ventricle propels blood to exchange of oxygen and carbon dioxide within
the lungs and the left ventricle propels blood to all other tissues of the body. The
functions of different cardiac chambers must be precisely controlled and electrically
synchronized. In normal resting heart rhythm, the heart rate varies from 60 to 100 beats
per minute. Normal electrical activation is initiated in the sinoatrial (SA), from which the
impulse propagates in the atria and then induces the atrial contraction. The wave of
excitation ultimately reaches the atrioventricular (AV) node. Conduction is slow in the
AV node, which provides a delay between the atrial and ventricular depolarization that
assures a complete filling of the ventricles. Then the impulse spreads rapidly across the

ventricles through the Purkinje fibers to make them contract [1, 2].

Atrial fibrillation (AF) is a cardiac arrhythmia, involving the two atria. During AF, the
atrial contraction is rapid and irregular. The filling of the ventricles becomes incomplete,
and their frequency, which is limited by the refractory period of the AV node, may
become very rapid and irregular, leading to reduce of cardiac output [3-5]. The regular
electrical impulses travelling from the sinoatrial node are replaced by disorganized and
rapid electrical impulses, which result in irregular heartbeats [6]. Atrial fibrillation may
result in symptoms of palpitations, fainting, chest pain, or even heart failure. In addition,
the erratic motion of the atria leads to blood stagnation, which increases the risk of

formation of blood clots that may travel from the heart to the brain and other areas. AF is



generally explained by the phenomenon of reentry, in which the propagation of an
activation front becomes self-sustained. Two scenarios have been proposed:
uncoordinated multiple wavelets of excitation circulating throughout the atria or

fibrillatory conduction front generated by a single mother rotor [5, 7].

Coronary artery bypass graft surgery (CABG) is a surgical procedure performed to
relieve angina and restore the blood flow. Arteries or veins from elsewhere in the
patient's body are grafted from the aorta to the coronary arteries to bypass atherosclerotic
narrowing and improve the blood supply to the coronary circulation supplying the
myocardium [5, 8-11]. Despite the increased rate of percutaneous coronary intervention,
CABG is still a common surgery. In Ontario for example, around 8,0000 interventions
have been performed each year from 1998 to 2004 [12]. About 500,000 CABG
operations are performed annually in the United States. 10% to 65% of patients who
never had a history of AF develop AF on the second or third post CABG surgery day [13-
15]. The patients undergoing valve surgery or combined valve and CABG have higher
incidence of postoperative AF than patients having CABG alone. AF is especially
common after mitral valve surgery, occurring in as many as 64% of patients. The
occurrence of postoperative AF is associated with worse morbidity and longer and more
expensive intensive-care hospitalization [16-19]. There is evidence that AF associates
with adverse events: patient discomfort, the need for additional medications and
treatments, decrease in cardiac output, hypotension, and congestive heart failure. The
most serious complication of AF is stroke. The prolongation of stay in hospital leads to
negative social and economic aftereffects. In the United States, the cost for the intensive
care against postoperative AF is substantial, with annual estimated expenditures

exceeding 1 billion US dollars [20]-[21].

Although the understanding of cardiac arrhythmias has advanced considerably during the
last half century, it is only during the last 20 years that the pathology of AF has become a
popular topic for physicians and researchers in the cardiology field. The fundamental
mechanism responsible of AF, especially for post-surgery patients, is not well

understood. Prophylactic medical therapy decreases the incidence of postoperative AF



after CABG. The most effective preventive methods, either medical prevention or
preventive pacing, require additional nursing and medical resources and expense.
Prophylaxis of the whole patient population undergoing GABG is not an optimal choice.
Unless the pathophysiological mechanisms of AF are identified, the design of adequate
strategy of prevention will remain problematic. Identification of patients at high risk of

AF after CABG would be very helpful and cost-effective [20] [9, 10, 19].

Therefore, the aim of the present research is to investigate to which extent multi-channel
unipolar atrial electrograms (AEG) can be used to predict the onset of AF and

discriminate AF from non-AF patients

1.2 Review of the Literature

In the last 20 years with the development and maturing of the CABG operation, more and
more researchers and physicians turn toward research of mechanism, prediction and
management of AF [7, 20-27]. Many studies aimed to develop methods of AF prediction
based on the analysis of ECG, with focus on different aspects such as P wave duration,
autonomic balance, non-linear analysis or advanced signal processing [24, 28-35].
However, so far, there is not adequate explanation for why some patients develop
postoperative AF whereas others remain in sinus rthythm. The next section will discuss
the current development and hypotheses regarding the electrophysiological mechanisms,

the prevention, the treatment and the prediction of AF.

1.2.1 Electrophysiological Mechanism

Publications are still controversial regarding the mechanisms responsible for the onset of
However, all forms of AF are believed to share common basic electrophysiological
mechanisms, while some studies indicated possible localized pathoelectrophysiological

mechanisms [37-43]



The search for AF mechanism could be traced as early in 1907 when Winterberg
proposed that multiple rapidly firing foci located throughout the atria led to occurrence of
AF [44]. GR Mines and WE Garrey advanced independently the concept of reentry,
whereby the conduction of an excitation front around a closed circuit can become self-
sustained. They then proposed that AF or VF could be caused by ‘multiple-simultaneous-
reentrant circuits’ coexisting in the tissue [7, 45, 46]. In a later 1924 review paper, Garrey
stated that its original proposal did “not mean, and never was intended to mean that
multiple circuits were fixed in their isolated paths and independent of each other,..., but
it was intended to convey the idea that impulses looped back upon its old path,
completing a circuit now here, now there. Such reentrant circuit can exist side by side
transiently” [47]. Until the mid 20’th century, the debate between the multiple foci and
multiple reentries hypotheses, as well as on the exact nature of these reentries (unique or
multiple, fixed or transient) was still open [48]. In 1959, Moe and Abildskov, in fact
revisiting the arguments of Garrey, proposed that the occurrence of AF was
fundamentally different from multiple ectopic discharges [3]. Afterwards, Moe put
forward the ‘multiple wavelets hypothesis’, which differed from the fixed multiple-
circuit-reentry concept. It states that multiple independent wavelets circulate around
functionally refractory tissue without returning to their initial starting points. Some
wavelets are able to propagate through tissues of adequate excitability and maintain
themselves with or without producing daughter wavelets. They exemplified their multiple
wavelets hypothesis by a two dimensional cellular automata model [49]. From then,
Moe's theory was more generally accepted compared to the foci origination theory. The
idea of Moe's theory, in brief, is that atrial fibrillation was considered to be a
fundamentally turbulent and self-sustaining process, occurring in inhomogeneous
excitable medium. The process could be initiated by an impulse propagating through the
medium at a time when some of its components have recovered while others remain
partially or fully refractory as a result of a preceding activation [3, 49]. The mother wave
hypothesis, in which a one or a few anchored or locally meandering high frequency
reentries result in complex patterns of propagation, has been proposed as an alternative to
the multiple wavelet hypothesis [44]. Nowadays, both scenarios are considered to occur,

suggesting that they may require different types of intervention.



Reentry can occur around an anatomical obstacle, in which case it can be labeled as
closed circuit reentry. Two-dimensional simulation plans of the depolarization front
along one direction and the reentry are showed in Figure 1.1. However, both mother
wave and multiple-wavelet AF implicitly refer to functional reentry which does not
necessitate an unexcitable core. An example of reentry induced by premature stimulation
is a two-dimensional model cardiac tissue is showed in Figure 1.1. There exist two
competing models of functional reentry in cardiac tissue: the leading circle which is a
qualitative model based on experimental observations [50], the spiral wave model, based
on theoretical considerations and numerical simulations of ionic models[7, 51, 52]. The
latter provides a more realistic representation of the electrical properties of the tissue and
a more correct prediction of state of the core around which propagation takes place [53].
In the classical view of closed circuit and leading circle reentry, the wavelength of
reentrant wavelets, the product of the conduction velocity and refractory period, is the
main determinant of the persistence of AF. The wavelength determines the size of each
functional reentry circuit and limits the number of simultaneous reentry wavelets that can
exist during fibrillation. The relation becomes more complex in the spiral model, since it
involves the curvature of the front and the electronic effect during repolarization [53].
Nevertheless, both models predict that the shortening of the refractory period (ERP) has a

crucial role in increasing wavelets number and is a major determinant in sustaining of AF

[54].
B
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Figure 1. 1 A) A normal plane depolarization front travelling along the vertical direction;
B) reentry. It was induced by applying a second stimulus covering half of the plane in the
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horizontal direction. The abscissa and ordinate are the coordinate of the tissue in the unit
of pixel. The color stands for the membrane potential, corresponding values indicated in
the color bar (mv). (Figure provided by Elhacene Matene, student of Dr. V. Jacquemet,
Centre de recherche de I'Hopital du Sacré-Cceur and Institut de Génie biomédical,
Université Montréal. It shows a simulation of reentry in a model of atrial tissu).

Patients developing postoperative AF are speculated to have a vulnerable heterogeneous
substrate prone to develop AF, such as non-uniform and dissimilar refractoriness, a
depolarizing wave front becomes fragmented when encountering both refractory and
excitable myocardium. This allows wave fronts to return and stimulate previously
refractory but now repolarized myocardium, which can lead to self-sustained propagation
or reentry [55, 56]. However, other elements such as the slope of the action potential
restitution curve, the curvature of the wave front and the distribution of gap junctions also
contribute to the dynamics and stability of reentry [54, 57]. Han et al. proposed that
dispersion of recovery of excitability in the atria or ventricles of the heart predispose to
the development of both atrial and ventricular arrhythmias [58, 59]. Comtois et al. also
explained that the difference of adjacent atrial cells can predispose to pulse conduction
reentry [53]. Beside, fibrosis has been strongly associated with the presence of heart
diseases/arrhythmias. It was recently considered to alter atrial electrical conduction and

excitability and provides a substrate for AF onset and perpetuation [60, 61].

Although the pathological substrate may favors the incidence of AF, ectopic focal
activation is a mechanism to trigger the AF [62]. Ectopic foci can be found in many areas
of the atrium including the pulmonary veins, the superior cava, the coronary sinus ostium,
as well as the posterior and anterior left atrium [63-65]. In Holter ECG monitoring, a
triggering premature atrial complex (PAC) was present in more than 90% percent of AF
episodes. According to the polarity of the ectopic P-wave, triggering PACs were left
atrial origin in 74.3%, right atrial in 15.3%, not determined in 10.4% of cases. Frequency
of PACs was significantly higher in the hour preceding the onset of AF. Among PAC,
two-thirds had a left atrial origin [66].

The intrinsic cardiac autonomic nervous system is also believed to play a role in the

occurrence and maintenance of AF. Heterogeneous electrophysiological properties could



be due to autonomic innervations [34, 37, 67]. It is reported that either vagal nerve
activation or sympathetic nerve stimulation, both could facilitate the occurrence of AF.
Either vagal stimulation or acetylcholine administration decreases the atrial refractory
period in a spatially heterogeneous way [68, 69]. In addition, vagal stimulation promotes
both the production of PAA and their propensity to start AF [7, 70]. Sympathetic
stimulation can also promote the initiation of AF. Sympathetic nerve stimulation also
shortens atrial refractoriness in a comparable degree. The difference between vagal and
sympathetic stimulation might lie in the more spatially heterogeneous effect of vagal
nerve activation. Two major patterns of AF initiation can be observed. AF occurring after
a slowing heart rate, thought to be triggered by a dominant parasympathetic tone that
frequently occurs in patients with normal hearts. Adrenergic-induced AF is more frequent
in older patients with structural heart disease, and typically occurs during exercise [71,
72]. The possible implication of the autonomic nervous system in postoperative AF was
discussed in many publications, and the atrial electrophysiological effects caused by
autonomic nervous system stimulation are complex, sometimes even controversial [20,
33, 71, 73, 74]. Amar reported an increase both in heart rate and in heart rate variability
(HRV) prior to the onset of postoperative AF. These findings are consistent with
parasympathetic resurgence competing with increasing sympathetic activity as a
triggering mechanism for postoperative AF [33]. It has been put forward that elevated
norepinephrine levels suggested that sympathetic activation may be important in the
pathogenesis of post CABG AF. Sympathetic activation, however, is highest the first 24
hours after operation, whereas the onset of AF usually occurs between the second and
third postoperative days [75]. Some findings suggested divergent autonomic conditions
to occur before arrhythmia onset, which could be either heightened sympathetic or
parasympathetic tone, or event dysfunctional autonomic heart rate control, with higher or

lower measures of heart rate variable [71, 76].

1.2.2 Risk Factors: Preoperative, Intraoperative, and Postoperative of

Postoperative AF



Many risk factors for postoperative AF have been identified, but the results of different
studies have often been inconsistent. This might be due to the factors as: 1. the
mechanism of AF is complex and multi-factorial; 2. most studies are observational and
retrospective, with varying inclusion criteria. This is illustrated in Table 1.1, which shows
the patients characteristics in four studies on post-operative AF. The distribution of
preoperative factors found to be related to AF occurrence in some studies is not even
reported in others (empty boxed if not available). Table 1.2 compares the risk score (a
risk index to indicate risk degree, definition seen in [77]) or odds ratio associated to
different variables in these same four studies. It shows that using different data and/or
study population can leads to very different results. The following reviews current

knowledge on the preoperative, intraoperative and postoperative risk factors.

Preoperative Risk Factors

The following variables have been reported as potential preoperative and perioperative
risk factors: age, sex, right coronary artery stenosis of 90% or higher, left ventricular
abnormality as ejection fraction, enlargement, hypertrophy; dilation, aortic
atherosclerosis, hypokalemia, history of atrial fibrillation, valvular disease,
CHF(congestive heart failure), vascular disease, neurological event, diabetes, any
MI(myocardial infarction), hypertension or chronic obstructive pulmonary disease
(COPD), prior CABG surgery or valve surgery, previous congestive heart failure, and
preopeative absorption of beta-blockers, angiotensin-converting enzyme (ACE)

inhibitors, calcium channel blockers, amiodarone, or nonsteroidal anti-inflammatory

Age has a significant relation with the incidence of postoperative AF. The incidence rate
of post-CABG AF is more than 50% for patients older than 80 years, but less than 5%
for those that are less than 50 years [76, 81]. The association could be attributable to age-
related structural changes in the atrium such as dilation, muscle atrophy and fibrosis.
Patients with a history of AF appear to have the underlying substrate conducive to the

development of AF and may be more susceptible to postoperative AF [77, 82]. This



would be consistent with the concepts of electrical remodeling and “AF begets AF” that

is supported by numerous clinical and experimental studies [7].

Men appear more likely to develop AF after CABG than women [83, 84]. Sex differences
in ion-channel expression and hormonal effects on autonomic tone may explain this
difference between genders However, there exist conflicting reports, in which male

gender was not an independent predictor of AF [80].

Hypertension was regarded as a predictor of postoperative AF, and this may be related to
increased fibrosis and dispersion of atrial refractoriness [85, 86]. However, such a

relation was not found in another study involving a larger number of patients [87].

Chronic obstructive pulmonary disease (COPD) is a predictor of AF after cardiac
surgery. It might be related to fact that COPD patients have frequent premature atrial

contractions that can act as a trigger for the initiation of AF [84].

The right coronary artery also conveys the blood supply to the right atrium, the sinoatrial
node and the atrioventricular node. Patients with a total occlusion or severe stenosis of
the proximal right artery had postoperative AF more often when retrograde cardioplegia
was used. In other studies, obstructive disease in the sinoatrial nodal and atrioventricular
nodal arteries was more common in patients developing AF after CABG than in those
who remained in sinus rhythm. Stenosis of the sinoatrial artery or the right coronary
artery has been found to be independent predictors of AF after CABG by other
investigators [14, 88].

Many studies showed that obesity, or body mass index and metabolic syndrome are risk
factors of postoperative AF [13, 89-93]. Echahidi demonstrated that obesity was a
powerful and independent risk factor for the occurrence of postoperative AF in patients
older than 50 years. In a younger population, obesity was not a risk factor whereas

metabolic syndrome remained an independent risk factor [13] .



There was also the study about preoperative renal function associated with the risk of
atrial fibrillation after surgery [94, 95]. It was found the patients measured higher level of

serum creatinine, were more risky to develop postoperative AF.

Several studies have examined the relationship between left atrial dysfunction [96, 97].
Leung found that the patients subsequently developing post-operative AF had a larger LA
and LA appendage area, and lower LA ejection fraction measured in the pre-bypass
period. Their results demonstrate that some of the structural and functional changes in the
atria common to chronic AF in the elderly population are also prevalent in surgical
patients who develop post-operative AF, suggesting that both may share similar
pathophysiology. LA enlargement was also found to be a predictor of postoperative AF
either in CABG patients [98] after cardiac valvular surgery [99]. However, Zaman et al.
did not find any difference in the size of LA between the patients who had AF and those
who remained in sinus rhythm. Their study included only 64 patients and was subgroup

of a larger study population [100].

Some studies proposed that preoperative withdrawal of beta-adrenergic blockers was
associated with increased risk for postoperative AF [80, 101]. The withdraw effect is
characterized by an increased plasma concentration of catecholamine that may increase
the incidence of AF. It has been demonstrated that the bioavailability of perioperative
metoprolol (beta-adrenergic blockers) is markedly reduced when administered in tablet
early after CABG. The poor absorption of oral beta blocker immediately cardiac surgery
may further strengthen the withdrawal effect [102]. The prophylaxis with moderate doses
of amiodarone in the postoperative period of cardiac surgery (coronary artery bypass
grafting and/or valve surgery), was shown to reduce the incidence of AF in high risk
patients with high risk patients, raising the possibility that it could also be protective for a

larger class of patients [103].
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Table 1.1 Baseline Characters of Patients of Study Population

Mathew Zaman Amar Auer
[77] [100] [104] [80]

Age(mean, SD), years (p<0.0005) (p<0.0001) (p=0.008)
AF 67.8(8.2, n=976) 65.9(n=92) 68(9,n=508) 67.5(9.1,n=99)
Non-AF 61.8(9.8,n=2117) | 61.7(n=234) 62(11,n=1.045) | 63.7(11.4,n=154)

Incidence of AF 32.27% 28.22%

Men, No. (%) (p=0.084) (p=0.63) (p=0.29)
AF 770(78.9, DC) 81(88) 336(66) 55(55.5)
Non-AF 1682(79.5, DC) 187(80) 704(67) 98(63)
SAPD(ms) (p<0.0005) (p=0.02)

AF 158 11717
Non-AF 145 115118
LVEF, % (p=0.751)

AF 56

Non-AF 56

Left atrial size, cm” (p=0.831)

AF 3.8

Non-AF 3.9

History, No. (%)

Atrial fibrillation (p<0.0001)
AF 142(14.6, DC) 57(11)
Non-AF 126(6.0, DC) 27(3)
Valvular disease
AF 271(27.8, DC)
Non-AF 316(14.9, DC)
Myocardial Infarction (p=0.48)
AF 612(62.7, DC) 265(52)
Non-AF 1334(63.0, DC) 525(50)
COPD (p=0.13)
AF 137(14.0, DC) 46(9)
Non-AF 183(8.6, DC) 72(7)
Hypertension (%) (p=0.17) (p=0.68)
AF 668(68.4, DC) 371(73) (60.6)
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Non-AF
Diabetes(%)

AF

Non-AF

1348(63.7, DC)

303(31.1, DC)
660(31.2, DC)

728(70)
(p=0.19)
167(33)
379(36)

(64)
(p=0.12)
(19.2)
(28.6)

Preop. treatment, No.(%)
[ -Blockers

AF
Non-AF
Calcium channel blockers
AF
Non-AF
ACE inhibitors
AF
Non-AF

645(66.1, DC)
1480(69.9, DC)

391(40.1, DC)

768(36.3, DC)

447(45.8, DC)
875(41.3, DC)

54(59)
164(70)

(p=0.05)
239(47)
547(52)

Cross-clamp, mean(SD),min
AF
Non-AF

69.5(35.1, DC)
61.8(29.3, DC)

(p=0.306)
45
43

(p=0.33)
63122
64122

Heart valve surgery(%)
AF
Non-AF

(P<0.0001)
62.6
33.1

RCA graft(% of CABG)
AF
Non-AF

(P=0.08)
58.1
72.3

CPB time, mean(SD), min
AF
Non-AF

108.6(45.7, DC)
98.7(39.8, DC)

Pre-operative Q-waves, n(%)
AF
Non-AF

(p=0.506)
31(34)
70(30)

RCA stenosis, n(%)
AF
Non-AF

(p=0.212)
55(60)
122(52)

CPB time, min

AF

(p=0.025)
81
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Non-AF 74

Grafts>3, n(%) (p=0.040)
AF 31(34)
Non-AF 53(23)

Preoperative creatinine (p=0.260)
>125 4 mol/L, n(%)
AF 22(23)
Non-AF 43(18)

Postoperative Low cardiac
output, n(%)

AF

Non-AF

<0.0001
36(7)
24(2)

Postoperative
complications(%)
AF
Non-AF

(p<0.05)

12.1
5.8

DC: Derivation Cohort;

ACE: angiotensin converting enzyme;
SAPD: signal-averaged P-wave duration;
LVEEF: left ventricular ejection fraction;

CPB=cardiopulmonary bypass time.
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Table 1.2 Multivariable Predictors of Postoperative Atrial Fibrillation

Mathew Zaman Amar Auer
[77] [100] [104] [80]
Risk Score, Odds Ratio Odds Ratio Odds Ratio
RS, p) (OR,, p) (OR,, p) (OR,,
95% CI, p)
Age,y p<0.001 1.53(<0.0005) 1.1 (p<0.0001) 2.6(1.2-3.9)
<30 (R.S)) 6 (per 5-y increase) (per year incre.) <0.01
30-39(R.S.) 12
40-49(R.S.) 18
50-59(R.S.) 24
60-69(R.S.) 30
70-79(R.S.) 36
280(R.S.) 42
(R.S.,
Risk Score)
Medical history
AF(R.S.), p 7(<0.001) 3.7(p<0.0001, O.R.)
COPD(R.S.), p 4(.009)
Concurrent  valve | 6(<.001) 2.8(1.1-3.5)
surgery <0.01
Withdrawal of
treatment
[ -Blockers 6(<.001)
ACE inhibitors | >(<0-001)
Preop. and postop.
treatment
[ -Blockers -7(<0.001)
ACE inhibitors | ~(<0-001)
Postop. [ - | -11(<0.001)
Blockers treatment
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Other treatment
Potassium
supplementation

NSAIDs

-5(<0.001)

~7(<0.001)

SAPD>155ms

5.37(<0.0005)

p-wave duration

>110ms

1.3(p=0.02)

Male sex

2.88(0.0092)

Postoperative low

3.0(p=0.0001)

cardiac output
(O.R)
Postoperative 1.9(1.0-7.5)
complication <0.05
Non-use 1.7(1.1-4.9)
preoperative beta- <0.05

adrenergic blocker

O.R.: 0odds ratio
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Intraoperative Risk Factors

Auer proposed that the type of surgery may affect the risk of AF after cardiac surgery
[80], and higher risk of postoperative AF and mortality were observed after mitral valve

surgery [105].

Whether the risk of AF is different for On-pump versus off-pump CABG is still
contentious. Murphy reported a lower incidence of AF after off-pump than on-pump
CABG [106] , while Topal found that on-pump no significant difference as long as the

operating time did not exceed a certain duration [107].

The association between the duration of aortic cross-clamp and the risk postoperative AF
also remains controversial. Mathew proposed that the risk was increased by prolonged

cross-clamp [108], an observation contradicted by the study of Salaria el al [109].

Postoperative Risk Factors

Many studies have considered the association of inflammation with the occurrence of
postoperative AF [110-113]. C-reactive protein (CRP) is the classic acute phase reactant.
During severe inflammation or infection, its blood levels may increase up to 500 times to
1,000 times above normal. The reason why inflammation markers in atrial fibrillation
may become high after CABG is a puzzling problem. The peak levels of C-reactive
protein (CRP) were paralleled to the incidence of postoperative AF. In the general
population, CRP was also higher in patients with AF than those who do not develop [114].
The reported efficacy of anti-inflammatory drugs such as steroids in the prevention of AF
supports the association between AF and inflammation [115]. However, Ahlsson found

that postoperative AF has no correlation to CRP level in heart surgery patients [116].

Postoperative pneumonia and mechanical ventilation for more than 24 hours have been
shown to be independent postoperative predictors of AF [75]. Another study reported that

low postoperative mixed venous oxygen saturation and the need for postoperative
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mechanical circulatory support were also independent predictors of post-CABG AF

[L17].

1.2.3 Prophylaxis and Postoperative AF Treatment

The prevention of post-cardiac surgery AF arouses much interest because of its high
incidence and the associated morbidity, mortality, and cost. Prophylactic drug
administration has been shown to decrease the incidence of post-CABG atrial fibrillation
and Prophylactic appears to be more effective than postoperative administration [103,

118-120]. The most promising drugs include [ -blockers, amiodarone and calcium

channel blocker, which are also administered for a wide range of ventricular and
supraventricular arrhythmias [118]. The effectiveness of beta-blockers in the prevention
of AF after cardiac surgery has been demonstrated in numerous studies [120, 121].
Indeed, according to the recent guideline, beta-blocker prophylaxis should be given to

every patients undergoing cardiac surgery when there is no contraindications.

If AF does occur after cardiac surgery, the guidelines recommend managing patients as
non-surgical AF patients [122, 123]. Two management strategies are available to treat AF
after CABG: rate control or rhythm control. For patients who less urgently require sinus

rhythm restoration, [ -blockers are considered as the first-line therapy. When £ -

blockers alone inadequately control the heart rate, calcium channel blockers may be
administered [122]. Infusion of amiodarone can also be used for adequate rate control in
AF. For hemodynamically unstable, highly symptomatic patients or for those having a
contraindication to anticoagulation, rhythm management is preferred. These patients

should undergo urgent electrical cardioversion to sinus rhythm.

1.2.4 Methods for Predicting Postoperative Atrial Fibrillation

Many studies aim to develop methods for the prediction of postoperative. Risk
stratification would be very useful either to optimize the prophylactic antiarrhythmic

treatment in high risk patients, or to limit drugs administration in low risk subjects. The
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works published so far managed to achieve good results in terms of sensitivity and
specificity. However, since these methods were not completely reliable, their clinical
application is still limited. Methods were based on ECG analysis in the time or frequency

domain, or on the measure of biochemical markers such as atrial natriuretic peptides [15,

It is generally believed that an abnormal prolongation of P wave duration on the ECG

reflects the presence of intra-atrial conduction defects [24, 29-32, 126-133]. A slowed

conduction may promote the development of arrhythmia by shortening the wavelength
necessary to sustain reentry. P wave dispersion is also considered as a predictor for AF
after CABG. The main limitations of the methods based on P wave duration come from
the fact that there is no accepted definition of normal duration. Beside, the use of
different methods to measure of P wave duration makes the comparison of the results
achieved by various groups difficult. P wave delineation is more difficult to implement
than QRS complex one, mainly owing to the low signal-to-noise ratio and the shape

variability of the P wave [134].

The autonomic nervous system (ANS) has been recognized as a potential contributor to
balance has been hypothesized to be associated to AF. The notion that certain ranges of
frequencies in the power spectrum of the heart rhythm may be indicative of either
sympathetic or parasympathetic tone has stimulated the of heart rate variability (HRV) as
a diagnostic tool. The parasympathetic influence on heart rate is mediated via release of
acetylcholine by the vagus nerve. Higher sympathetic /parasympathetic tone usually
related with higher/lower heart rate [2]. The efferent vagal activity is a major contributor
to the high frequency component. More controversial is the interpretation of the low
frequency component, which is considered by some as a marker of sympathetic
modulation (especially when expressed in normalized units) and by others as a parameter
that includes both sympathetic and vagal influences. This discrepancy is due to the fact
that in some conditions associated with sympathetic excitation, a decrease in the absolute

power of the LF component has been observed [135]. Divergent results have been
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reported the link between heart rate variability (HRV) and post-cardiac surgery AF.
Dimmer et al. observed a shift in the autonomic balance, with a loss of vagal tone and a
moderate increase in sympathetic tone, before the onset of AF [71], while Hogue et al.,
performing HRV analysis after CABG surgery, observed either lower or higher values of
different frequencies content before AF. They concluded that their patients could have
either heightened sympathetic or vagal tone or dysfunctional autonomic heart rate control
before AF onset [136]. Marco Bettoni concluded that the occurrence of AF greatly
depended on the variation of the autonomic tone, with a primary increase in adrenergic
tone followed by an abrupt shift toward vagal predominance [137]. David Amar et al
evaluated autonomic change preceding AF after thoracotomy. They found a significant
increase in HRV and heart rate prior to the onset of AF, consistent with vagal resurgence

competing in a background of increasing sympathetic activity as a mechanism to trigger

AF [33].

Recent studies have shown that the new nonlinear measures, particularly fractal analysis
methods of heart rate dynamics, could perform better than traditional analysis methods as
a predictor of sudden cardiac death in post-infarction populations [134, 138]. Altered
short-term fractal properties of heart rate dynamics have also been shown to precede the
onset of ventricular tachyarrhythmias in patients with heart disease. Approximate
entropy, a measure of complexity of heart rate variability has been used to predict the

onset of paroxysmal atrial fibrillation. However, these methods have not been applied yet

to post- CABG AF [134].

Currently, most electrophysiological methods to predict the onset of postoperative AF are
based on the ECG. The intrinsic limitation of P wave studies is that P wave cannot give
precise information of atrial activity. P wave is a complex expression of the whole
electrical activity in left and right atrium, and it cannot give a detail picture of the
electrical propagation in the atrium. Furthermore, the criteria of calibration of P wave sets
quite rely on the individuals, which may explain the discrepancies between the published

articles [134]. Authors also use different methods to choose subjects, to treat the
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premature beats, saturations periods, etc., which further contribute to the differences

between their results.

A M Pichlmaier et al utilized the monophasic action potential continuously recorded from
the epicardial surface to predict the onset of atrial fibrillation after cardiac surgery [139].
They found that the morphological changes in the MAP could be good indicators that the
atrial rhythm is likely to become unstable and to deteriorate to AF, and concluded that
epicardium MAP recording could be a valid tool for detecting imminent AF after cardiac

surgery.

Atrial natriuretic peptides (ANP) are produced primarily in the cardiac atria. The
dominant stimulus controlling their release is the increase of the atrial wall tension,
reflecting rising intravascular volume. Different studies have examined the possible link

between ANP level and AF [15, 124, 140, 141]. Hakala et al. found that, in the univariate

analysis, high ANP level were associated with the development of postoperative AF.
However, ANP did not appear in forward conditional multivariate analysis in which only
age and left atrial enlargement were left as independent predictors. In their cohort, ANP
level did not act as an independent predictor because it was correlated to age. They
concluded that the wide variation in the peptide levels observed in their cohort renders

the implementation of this measure in clinical practise superfluous [15].

1.3 Analysis on Atrial Electrograms (AEG) to Study the Mechanism and

Prediction

1.3.1 Hypothesis and Objectives

Postoperative AF is the most common complication after surgery. Its mechanisms are
not fully understood. Both “structural” and “electrical” remodelling of the atrium may act
to promote AF [142]. The remodeling may involve pathological alterations in the
structure, function and geometry of the atria, such as changes of the atrial electrical and

contractile properties or in the amount and the composition of the extracellular matrix,
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which may facilitate the induction of AF. Studies on the induction of AF by neural
stimulation in canine preparation have shown that the autonomic can be involved. [143].
Pichlmaier also noticed significant change of MAP waveforms prior to the onset of AF
[139]. Our study relies on the analysis of three channels unipolar electrograms recorded
on the atria (AEG). The advantage to use AEG rather than ECG is that AEG can provide
some measures relevant to the occurrence of AF that are difficult or even impossible to
obtain from ECG. For example, AF is often preceded by multiple atrial premature
activations [62, 66]. Simultaneous recording of unipolar electrograms from different sites
can supply more precise information on the origin of these premature activations. The

hypotheses guiding our analyses are:

1) The onset of AF after CABG is preceded by typical changes that are reflected in

the time series derived from the AEG.

2) These time series, in addition for pre-CABG risk factors, can be used to
discriminate patients with and without AF, and predict the onset of AF soon

enough to allow for prophylactic interventions

1.3.2 Choice of Subjects

Patients admitted for CABG surgery at Hopital du Sacré-Coeur de Montréal (HSC) and
Institut de Cardiologie de Montréal (ICM) were screened. Patients were excluded if they
were not in sinus thythm at admission, were taking class I or III antiarrhythmic drugs or
digoxin, had a prior history of AF, were diagnosed for congestive heart failure, were
receiving hemodialysis, or had a permanent pacemaker. We realized that these exclusions
criteria were meant to avoid such confounding effects as the effect of class I drugs on
conduction times and atrial ectopy or the parasympathicomimetic effects of digoxin.
Informed written consent was obtained. A total of 137 patients were included, 108 from

HSC and 29 from ICM.
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The criteria to decide a patient belonging to AF group, it is upon whether the patient
develop sustained atrial fibrillation with duration longer than 10 minutes after CAGB
surgery [101]. Among these 137 patients, 41 patients developed at least sustained AF
lasting for 10 minutes or more after the CABG surgery. Herein, these 41 patients were
classified as AF patients. Among AF group, the distribution of the first sustained AF
duration time was very inhomogeneous, with a minimum value of 10 minutes, maximum
duration time of 3732 minutes. 75% of AF group patients have the fist sustained AF
duration time between 150 and 650 minutes. Among remaining 96 patients classified as
Non-AF group, some of them had very short transient supraventricular arrhythmias, from

several second to 2 or 3 minutes, and with a maximum duration close to 5 minutes.

1.3.2 Study Plan

AEG were recorded continuously during the first four post-operative days. The First task
was to detect, distinguish and validate the markers corresponding to the atrial and
ventricular activation on each channel. The markers of the three channels belonging to
the same cardiac event had to be grouped together and the nature of each event (e.g.
normal sinus beat, premature atrial or premature ventricular beat) resolved. Then,
different time series were constructed, reflecting either the intra-beat or inter-beat
dynamics. Finally, statistical analysis of the time series characteristics was performed to
discriminate the AF group (patients with AF > 10 minutes) and non-AF group and obtain

predictors.

Data Collection Build Time Series Analyze Time Series Predictors

Figure 1. 2 Flow chart of the project research method

Results are presented in the three following chapters. Chapter 2 presents the methods of
activation and events detection and labeling. In chapter 3, the time series of AF patients
are analyzed to see if changes occur in the two hours before the onset of the first long

lasting AF. In chapter 4, AF and Non-AF are compared regarding their preoperative risk
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factors. In chapter 5, the preoperative predictors and AEG time series are used together to
discriminate AF and Non-AF patients. The final chapter summarizes the results and

draws the conclusions over the whole studies.

1.3.3 Statistical Methods

In the following chapters, diverse statistical methods were used to analyze the
preoperative data as well as the time series extracted from the electrograms. Two
softwares, Matlab (The MathWorks Inc, Mass, USA) and SPSS (IBM), were used for

the analysis. The main statistical methods used in the analysis are explained below.

1. Repeated measures analysis of variance (ANOVA)

Repeated measures ANOVA test the equality of the means as any ANOVA. It is used
when the measurement of dependent variable is repeated under different condition for
each subject [144]. The sphericity assumption of repeated measures ANOVA means that
the variances of the differences between all combinations of the groups are assumed to be
equal. If sphericity is violated, then the variance calculations may be distorted, which
could result in an inflated F-ratio [145]. In the project, Huynh-Feldt correction was

applied to assess the significance of the F-ratio.

2. Logistic regression

Logistic regression is widely used to model the outcomes of a categorical dependent
variable based on one or more predictor variables. The probabilities describing the
possible outcome of a single trial are modeled as a function of explanatory variables
through the logistic function. For binary outcome (y=0, 1), the probability for a subject i

to get the reference outcome (y=1) is given by:
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in which xij is the value of the j’th independent variable for patient i, and S, the value of

the parameters. In the project, the logistic regression was done using either SPSS or an
in-house Matlab program in which part of code was originally contributed as freeware by
Britt Anderson (http://brittlab4.uwaterloo.ca). A Conditional forward stepwise method
was used, of the predictor selection was used with p value criterion for variables to enter

and remain in the model usually set at 0.05 and 0.10 respectively

Parameters are obtained by maximum likelihood estimation. The likelihood function is

L=TTR" (=R

where yi is the outcome (0 or 1) of the 1’th subject and wi the weight that can be given to
the observation (1 by default). The significance of the contribution of each variable
included in the model is assessed by a chi-square test over the improvement that it brings
to the likelihood functio[146], [147]. The logistic regression provides a value P;
(probability of having y=1) for each patient. In logistic regression, the patient would be

assigned to outcome 0 or 1 if P; is less or greater than 0.5 respectively

However, Pi can also be treated as a propensity score. In that case, an arbitrary threshold
between 0 and 1 can be selected to allocate each subject to one of the outcomes. For each
value of the threshold, the sensitivity (number of subjects with y=1 correctly classified)
and specificity (number of subjects with y=0 correctly classified) can be computed. The
set of [ 1-specificity, sensitivity] for all values of the threshold can be plotted together as a
ROC (receiver operating characteristic) curve. The area under the curve measures the
probability that a randomly selected pair of y=1 and y=0 subjects would be correctly
classified (i.e. score of subject with y=1 > score of subject with y=0), such that the scores
do not provide any discrimination if the area <0.5. The significance of the discrimination

can be evaluated from the excess of the area beyond 0.5 [148]. Methods and the software
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also exist to compare different ROC curves based on their difference of area
(http://www.medcalc.org/manual/comparison_of roc_curves.php). Upon  stepwise
logistic regression, it is expected that the ROC curves associated to successive significant
improvement of the maximum likelihood ratio by addition of new variables would also
bring significant changes of the ROC area. As we will see in the next chapters, it may

occur that the two tests differ because they are based on different concepts.

3. Survival analysis and Cox regression model

Survival analysis is generally defined as a set of methods for analyzing data where the
outcome is the time elapsed until the occurrence of an event of interest. The Cox model
is a statistical technique for exploring the relationship between the temporal evolution of
the proportion of surviving subjects and several explanatory variables whose values are

distributed among the subjects [149].

Consider S(t), the survival curve giving the proportion of subject for which the event has

not yet occurs at time t. The hazard function is defined as:

h(t) =
() S0)
The proportional hazard Cox model postulates that the hazard function with a set of

variable X=[x1,...,Xn] is expressed as:

zﬂixi
h(t! X)=hy(t)e”

A positive S, coefficient means that the hazard increases with xi higher and thus that the

prognosis is worse.

4. Cluster analysis
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Cluster analysis is a set of techniques to separate a set of subjects in different groups (also
called cluster) based on some index of similarity. It can be achieved by various
algorithms that differ in the choice of the index of similarity and the way the index
calculated between clusters [150]. Since diverse methods has been used in different

phases of our study, details will be given in the sections where they appear.
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Chapter 2 Detection, Validation and Time Series

Building of AEG

The aim of the project is to study how time series extracted from 3-channel atrial unipolar
electrograms (AEG) can help to predict the onset of AF in post-CABG patients. As seen
in Figure 2.1, the morphology of the signals is very different from standard ECG. The
local atrial activations (A) are brief with amplitude most often larger than the deflections
associated to the far-field ventricular activation (V). Since standard ECG timing methods
were ineffective, the first task was to develop an automatic and unsupervised algorithm
(Find AV) to automatically detect and distinguish A and V activations. To develop the
algorithm and assess its performance, sets of activation times were required for which
both the temporal position and the labeling (A or V) of the markers were validated.
Validation software was elaborated and implemented (Validate AV) for this purpose,
which was also later used to validate all the results of the automatic timing prior to the

analysis.

(An)leuBis

I
4400 4600 4800 5000 5200 5400

Sampling Sequence

Figure 2. 1 Posterior view of the heart showing the 3 electrodes sutured to the right (Si,
S2) and left (S3) atrium and their electrograms. The atrial (A) and ventricular activations

(V) are indicated for three beats, as well as the ventricular T wave (T).
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Because the electrodes are distributed in the two atriums, their A activations in a cardiac
beat are not simultaneous. Hence, atrial and ventricular activations of the different
channels belonging to the same cardiac beat must be grouped together. Different types of
events must also be distinguished, such as normal sinus beats, premature atrial or
ventricular activations, atrial activations that do not reach the ventricles, as well as runs
of ventricular or atrial arrhythmias. Software for automatic beat formation and labeling
(Form Beat), complemented by a validation tool (Validate Beat), was also developed.
The flowchart in Figure 2.2 resumes the different steps of the process leading to the
activation markers that are needed for the construction of the time series used in the
analysis. This chapter presents some details on each stage of the processing. We have
been associated closely to development of Find AV. We have designed and implemented
Validate AV, Form Beat and Validate Beat, and have performed most of the validation of
the data.

Recorded Signals
\ 4
Find AV
........................ Jrommrr
Validate AV
Validation
Form Beat Software
\ 4
Validate Beat

[ .
X o
N o
. 04
.....................................................................

[ Build Time Series ]

Figure 2. 2 Flow chart of building time series from AEG
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2.1 Data Collection

Recordings were made by the team of Dr. Pierre Pagé on patients on which he had
performed CABG surgery at the Hopital du Sacré-Coeur de Montreal or at the Institut de
Cardiologie de Montréal. The protocol was approved by the Ethics Committee of Hopital
du Sacré-Coeur de Montréal. Recordings were made for the first 4 consecutive days
following CABG using a modified (class III) three-channel Holter digital recorder with
16 bits encoding, providing a =5 mV input range with 0.16 x# V resolution (Burdick,

model 6632). The sampling rate was set at 500 Hz per channel. This setting was chosen
such that batteries and the storage memory card had to be changed only once every 24
hours. Three atrial unipolar electrodes (ETHICON model TPW40) were sutured on the
epicardium of the atria and connected to the positive poles of the Holter by wires fixed on
the patient’s thoracic wall. The three negative poles of the Holter were connected

together to serve as a reference electrode positioned on the lateral side of the thigh.

Then recordings were transferred to a PC for off-line analysis. A short stretch of signal is
shown in Figure 2.1, in which A and V activations are identified. More than 100 patients
were recorded. In the course of the project, five different configurations of electrodes

were used, which are shown in Figure 2.3.
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Figure 2. 3 The five spatial configurations of unipolar electrodes on the posterior atria.
LAA: Left Atrial Appendage. RAA: Right Atrial Appendage. LA: Left Atrium. RA:
Right Atrium. PV: Pulmonary Vein. SVC: Superior Vena Cava. IVC: Inferior Vena
Cava.

The number of patients of the five recording configuration were 49 (I, 35.8%), 6 (II,
4.4%), 2 (111, 1.5%), 62 (IV, 45.3%) and 18 (V, 13.1%). All recordings methods have
one electrode near the sinus node, where the electricity pulse normally initiates and at
least another close to the pulmonary veins, from where the ectopic beats are known to
often originate. All configurations thus allow discriminating whether an ectopic beat was
produced from the left or right and give similar total conduction times for normal sinus

beats.

2.2 Detection and Classification of Atrial and Ventricular Activations

2.2.1 Detection Challenges
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AEG recorded both the local A and the far field V activations. Because the positions of
the electrodes on the atrial epicardium were not the same among the patients and their
health status were different and varied during the recordings, so the morphology of the
signals were usually very different between patients, channels and even in time within
one channel. The challenge of activation detection was further enhanced by the possible
disproportion of the amplitudes between the channels, the presence of artifacts related to
the movement of the subjects or to poor contact and polarization of the electrodes, as well

as bouts of saturation. Some of these difficult circumstances are illustrated in Figure 2.4.
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Figure 2. 4 Four example of difficulties encountered in the detection process: A) Holter
device saturation, B) Baseline wandering, C) Noise in signal, D) Disproportion within
and between channels.
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Assuming a normal heart rate of 75 beats/min, the analysis of the recordings necessitates
the determination of 27,000 markers/hr (60 min/h * 75 b/min* 3 channels * 2 markers (A,
V)/beat), which made mandatory the development of a reliable automatic and

unsupervised method of A and V timing and discrimination.

2.2.2 A and V Detection and Discrimination

The detection of algorithm was developed using a validated test set of ~46,000 markers
from 19 patients, and its final performance assessed from ~1.6 millions validated markers
coming from 27 patients. In this section, we only describe the main original features of
the method whose flowchart is presented in Figure 2.5. For more details, the reader is
referred to the article “Automatic detection and classification of human epicardial atrial

unipolar electrograms” [151] included in Annexe II.

The detection of the activations was done on a pseudo-energy computed from the square
of the derivative of the signals, a quantity commonly used for ECG processing [152,
153]. A global energy, constructed by adding the energy of the three channels, was used
to identify the A or V global events and set their limits. Afterward, activations of the
individual channels were located by analyzing their own energy within these limits.
Ideally, each local and global event should be associated with an isolated bell-shaped
peak of the energy functions, such as shown in Figure 2.6. To reach this result, the
energies must be computed as a moving average to remove the notches associated with
the zero-crossing of the derivatives and obtain a function whose amplitude remains high
during the activation. Optimal averaging windows were determined, specific to the global
and individual channel energy (given by eq. 2, 3, 4, 5 in paper). This was the first
specificity of the method.

A second originality of the method was the pre-processing of the derivatives prior to the
computation of the energy. Two sample-by-sample functions were computed from the
raw signal to quantify saturation and baseline wandering (QoS% in flowchart), as well as

the local high frequency noise content (QoS®%). QoSS" was convoluted with the
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derivative, while QoS*® triggers conditional low-pass filtering of the derivative along
noisy segments. Another function (QoS*"), which provided a sample-by-sample measure
of the density of the low frequency fluctuations, was used to adjust the threshold of

detection.

Typically, high energy events corresponding to A activations are followed by lower
energy V events. The detection of the Global events relied on a two-step process. In the
first step, an adaptive sample-by-sample threshold function was constructed from the
distribution of the minima and maxima of the global energy in an interval around each
point. Once high amplitude events had been detected using this threshold function
(energy > threshold for at least 40 ms), the energy was blanked in the intervals associated
to each global event, and detection was repeated with a new threshold function whose
computation also took into account the density of low frequency fluctuations measured
by QoS*" (See Figure 2.6). The dual detection process, involving time-varying adapting

threshold, was another original feature of the method.

The detection of global events and their temporal delineation was followed by the
detection of the events in each individual channel. Within the time limit of each global
event, the threshold was fixed to a fraction of the maximum energy of each channel,
which depended on the type of global detection (first or second pass) associated to the
interval and on the local density of fluctuation (i.e. QoS*"). At the end of this step of the
processing, there was a sequence of temporally delineated global events, each associated

with local events detected on the individual channels.

The last innovative aspect of the algorithm was the method to discriminate A from V
events. Because A activations corresponded to sharp deflections produced by the
travelling of activation fronts beneath the electrodes, they usually had higher frequency
content than the far-field V events. The discrimination was based on the comparison of
the energy computed from the [6, 90] (I°) and [6, 25] (I?°) Hz band-pass filtered

derivatives. The 1>°/1°° ratio is usually lower for A than V events (See Figure 2.7). The

33



ratio discriminating threshold was based on a moving average of the ratio computed from

event to event (See Figure 2.8).

Similar rules were applied for both global and individual channel events, based on the
global or channel energy respectively. The final diagnosis (A or V) of the global and
associated local events was completed with test of coherence over their labels. Finally,
the temporal markers of local events, which would be needed to build the time series to
be analyzed, were put at the location where the cumulative energy within the limits of an

event reaches 50%.
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Figure 2. 5 Detection and labelling algorithm (From the paper [151] with permission of
the editor). The acronyms in the figure refer to variables that are defined in the paper

presented in Annexe I.
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Figure 2. 6 Detection of global activations (step 8).a) Original signals Si, S2, and S3. The
horizontal lines show the extent of the global activations, from their onset (TPeakon) and
to their offset (TPeakofr). b) Pass 1: events are segments with E°’y > Thresh: (gray line)
for at least 40 ms, from T*n(*) to T*otr (0). The upper dash line maxE; is the maximum
of energy used to calculate the threshold (line labelled Threshi). TPeakon and TPeakoft,
used to delineate the extent of the global in panel A, are the first minimum before T**on
and after T*ofr respectively. Each event is removed and replaced by a 3 samples pivot
with an amplitude = 5% of energy at T*on. If the limits of two events are separated by
less than 50ms, as the two events in the middle of the panel, a pivot in inserted in the
middle, with an amplitude = 50% of energy at the first T*. ¢) Pass 2: The residual E%,
is analyzed as in Pass 1, with the new threshold Threshz (gray line), calculated from the
updated maxE> function (upper dash line, Eq. 2.8) (from the paper [151] with permission
of the editor)
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Figure 2. 7 E¢’° (continuous line) and E¢* (dash line).190 and 125 are the integral on a
+40ms interval around the maximum of E90 and E25 respectively. The ratio R=100 125/
190 is used to calculate the threshold to discriminate A and V events. (From the paper

[151] with permission of the editor)
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Figure 2. 8 Detection and identification in a sequence containing a salvo of atrial
premature activations. a) Discriminating function (continuous line, DF) and of a sequence
of R ratio (described in Figure 2.7) for global events, showing discrimination of A (under
DF) and V (over DF). When an activation is missed (3 V in that example), DF, which
also depends on past values, maintains the discrimination. b) The DF function for channel
S2 shown in the panel c. Even if one V is detected after 4 successive A, the discrimination
is maintained. ¢) A and V detection and discrimination for a salvo of premature atrial
activation (PAA) whose energy was highly depressed. All the PAA’s were correctly
detected and labelled as A, even when much depressed as in channel S3 (only 2 channel
shown for clarity). In Sz, the first fusion beat was detected, but the depressed A was
labelled as a possible V. In S3, the three fusion beats were labelled as A (from the paper
[151] with permission of the editor)
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2.2.3 Detection Results

As described in the Annexe, the final algorithm was tested on a set of 1,593,697 validated
activations that were also classified as normal A or V activations (A, V) or premature
atrial or ventricular activations. (PAA, PVA). These were from 2-hours recordings from
29 patients taken just before the onset of their first prolonged (> 30 min) AF. They were
selected because it was a moment where the heart thythm was known to become more
irregular, and where activation would be more difficult to detect. 99.92% of the
activations were detected, and among these, 99.91% of the A and 99.75% of the V
activations were correctly labeled. In the subset of the 39705 PAA, 99.85% were detected
and 99.21% were correctly classified as A. The false positive rate was 0.34%. The
detailed results can be found in Table 1 and 2 of the article in the Annexe. In summary,
an automatic and unsupervised detection and labeling method had been successfully

developed.

2.3 Validation

The timing software provided a list of global events with their temporal limits, and the
temporal location of the activations detected on each channel within the limits of each
global. The global events were labeled as A or V if the global and all markers of the three
channels received the same label (A or V). The global could also be classified as mixed
when there were discrepancies between the global and some local labels. The Validate
AV software permitted to change, delete or add makers on selected channels, to correct or
modify their labels including the addition of new labels (such as premature atrial or
ventricular activation, PAA, PVA, or other user defined categories). It also allowed to
suppress existing global activations, to modify their limits and/or labels, to merge global
activations (e.g. when delayed atrial activation in one channel ended up in a separate
global), or create new global activations with specific user defined signatures (e.g. stretch

of signal associated to atrial flutter, AF, or other atrial or ventricular arrhythmias).

The basic functions of the software are:
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1. Location of dubious global or local markers for manual editing.
2. Deletion, repositioning or relabeling of activations based on waveform analysis;

3. New timing also based on waveform analysis.

Herein, we just describe the main features of the software. Details were given in a user
manual and it is available at the Sacré-Coeur hospital research center. The software was

written in Matlab (MathWorks Inc).

2.3.1 Selection of the Interval to Validate

The choice of markers or intervals to validate is based on the examination of time series
computed from individual channels or global activations. For individual channels, the
user can display AA, VV, AV and VA time series, (i.e. time between successive A and/or
V markers). For global activations, these time series, calculated from the mean values of
the markers within each global, are also available. Panels showing the sequence of the
type of global activations (A, V or Mixed) and of the number of activations within these
global events can also be selected. Any number of these time series can be displayed in

the main or supplementary panels (see Figure 2.9).

To help locating problematic intervals, points lying beyond two standard deviations of
the mean value are highlighted by red dots. Clicking on a position in any of these panels
display the three channels over an adaptable interval centered on the selected location.
Beside, the chosen location is indicated in all panels. As seen in Figure 2.9, the signals,
the positions and labels of each marker, as well as the extent and label of each global

appear in the main panel.
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Figure 2. 9 Principal interface of the validation software. The upper panel shows the
tendencies, in this case AA of an electrode. Lines showing the mean value * 2 standard
deviations are displayed and outliers are highlighted by red dots. The orange heart shape
dot indicated the position that is selected for examination. The lower panel shows the
signal of three channels, the A and V markers, and the extent and labels of the global (A
red, V green) in an adjustable interval around the location selected in the upper panel.

The operation control menus and buttons appear on the right of the figure.

2.3.2 Correction of Individual Local or Global Event

Once a problematic detection area has been identified, the following functions are

available: Change the signature of the local or global markers, remove or add markers. It
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is also possible to define new global events bringing together new and/or existing
markers. All displayed time series are immediately updated after any modification. As
shown in Figure 2.10, global events can receive labels such as atrial fibrillation, atrial
flutter and ventricular tachycardia. For these, two distinct global events are necessarily
given the same label, to locate the beginning and end of the arrhythmia. The same
method is used to delineate intervals where the quality of the signals does not allow

reliable detections.
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Figure 2.10 The context menu serves to remove or to change the label of the markers or

modify their location. B) Pop-up menu for adding a marker.

2.3.3 Template Matching

Template matching, another option allows a waveform analysis of all or a few types of
markers from a channel in a preselected time interval. The user first chooses the duration
of the signal around each marker to be included in the waveform. The intervals preceding
and following the markers are set independently. Afterwards, cluster analysis is

performed on the waveforms using criteria that are described in the next section. At the
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end of the process, the reference waveform and the number of member of each cluster are
reported (See Figure 2.11). From there, all the markers belonging to a specific cluster can
be deleted or relabeled. Any cluster can also be selected for further processing. The
position of the marker in the template can be changed, which is applied to all members of
the cluster. If the waveform is chosen long enough, other markers can also appear in
some or all members of the cluster (e.g. V before or after waveform driven by A
activation, see Figure 2.11). These secondary markers can be removed, added, or

relabeled, and then such modification can be applied to all events in the cluster.
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Figure 2. 11 Classification in selected time interval and pop-up menu providing choices
for group modification of the attributes of markers in a cluster.

2.3.4 Classification Algorithm

The classification theory has been much developed in the past thirty years with the

introduction of artificial neural networks and advanced signal and image processing
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methods. Several algorithms have been proposed for classification of ECG beats and
reported results that left room for improvement. [154-168]. One major problem is the
wide variations in the morphologies of ECG waveforms within and among patients. For
example, an ECG beats classifier which performs well for a given training database often
fails miserably when presented with different patient’s ECG. Such an inconsistency is a
major hurdle preventing fully automated ECG processing systems to be widely used
clinically. Our classification method is very general and fast implementing, based on

template matching.

Cluster analysis requires a measure of distance between the objects to be compared, and a
rule to group together objects considered as similar [169]. In our case, the objects are N-

samples waveforms ( X :{xi =1,N}), corresponding stretches of signal around the

markers selected for analysis. We use two measures of distance between waveform X and

Y.

1. Pearson’s correlation coefficient

i(‘xi _)_nyi _;)
r(X,Y)=—2 (2.1)

Sl 3]

i=l1

Statisticians in medical data analysis generally refer to a correlation close to zero as
indicating ‘no correlation’, a correlation between 0 and 0.3 as ‘weak’, a correlation
between 0.3 to 0.6 as ‘moderate’, a correlation between 0.6 and 1.0 as ‘strong’, and a
correlation of 1.0 as ‘perfect’ [170]. In our program, the value for clustering can be
selected by the user, but is set at a default value of 0.8. This measure is independent of

the baseline and amplitude of the signals.

2. Minimum distance
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Alternatively, the Euclidean distance

Dz:||X—Y||2=<X—Y)T<X—Y):le(xi—y,.)2

i (2.2)
is also often used in pattern classification. We have implemented a variant that has been
used in ECG classification[171]. It started by setting a threshold 0 > 0 to define

X1: X1=X+6

X2:X2=X-6 (2.3)
The choice of 0is done through an interactive panel (See Figure 2.12) on which the first

waveform to analyze is displayed.

Then, Y belongs to the same class X if

DX(XLY)=(X1-Y) (X1-Y)= y (x.+0-y,) <n&’ (2.4)
i=1

Or

DX (X2,Y)=(X2-Y) (Xx2-Y)= Zn“(xi —6-y.) <né’ (2.5)

Note that the vector taken as a reference does not matter since D, (X,,Y)=D,(X,Y,)

and D, (X,,Y)=D,(X,Y,).

Classification:

Considering a set of waveforms {X,X,,---,X, }, the algorithm of the classification

proceeds as follow: Choose the metric to compare waveforms (correlation and/or
distance), and set the required threshold (rur and/or 0). If both metrics are selected, a
waveform will be included in a cluster as soon as one of the criteria is satisfied.

1. Set the reference waveform Z1=Xi;

2. Calculate r(Z1, X2) and/or Dg(Z1, X2). If the criterion on r or Dk is met, put X2 in
cluster Z1. Otherwise, create a new cluster with Z>=Xb;

Then for Xi=.N
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3. Apply step 2 to Xi using the reference waveform of each existing cluster Zi to Zx
and stopping the search as soon as the clustering criterion is fulfill. Otherwise create a
new cluster Zx+1 with reference waveform Xj;

4. Sort the order of the existing clusters according to their number of member, and

their order of creation for ties.

More complex algorithms could have been implemented. However, we kept this simple
cluster-seeking algorithm because it ends up being very efficient in our context of
validation. Figure 2.12, is an example of a first reference waveform, which is used to set
the clustering criteria®. Figure 2.13 shows the reference waveforms of the cluster found

in a stretch of signal.

Figure 2. 12 Signal (blue line) around the position of a selected marker (green), and
boundaries (red) set by choosing 8.

¥ 104 . Channel: A& Marker Classification Template

| | | | | | |
0 200 800 800 1000 1200 1400 1600 1800

Figure 2. 13 The set of reference waveforms of the clusters.
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2.3.5 Template Driven Timing

A template driven timing module is also integrated to the Validate AV software. The
module is based on linear adaptive filtering method [172]. It is used to localize the
segments of the signal that are similar to the template. Any stretch H(n) of the signal X
can be picked a template. Then H is convoluted with the portion of X selected for

analysis to produce a new function Z (Figure 2.14).

X Z

H (n)
(template)

v

Figure 2. 14 Adaptive filtering method Z = H * X

Figure 2.14 shows an example where an atrial activation was chosen as template from a
signal X (Figure 2.16), to produce the output Z (Figure 2.17). Then a threshold can be

selected to detect activation similar to H.

x 10
9.2

8.8 B

8.6 B

8.4 -

8.2 B

Figure 2. 15 One atrial activation chosen as the filter (template H)
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Figure 2. 17 The output of the convolution of H with X. Maximum beyond an adjustable
threshold (red hatched line) localizes the position of similar waveform to H in X

2.4 Beat Formation

Once local and global activations are validated, the final processing step is to form beats,
in which atrial and ventricular events belonging to the same cardiac cycle are linked
together, and where final identification are given to all events. The analysis is performed
on successive frames of five minutes. This is done because, as explained below,
premature activations are identified with reference to the mean atrial frequencies, which

needed to be updated. The procedure is as follows:

1. For each global ventricular activation, search for the closest immediate (i.e.
without any other intercalated event) global atrial activation. The search is done in
5 sec. windows both before and after the ventricular global, allowing for the
detection of retrograde activation of the auricles by premature ventricular
activation.

2. For all the couples formed at step 1, calculate the absolute value of the time

distances between the V and the associated atrial activation (Day, Figure 2.18),
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build the D4y cumulative distribution, and remove the first and last deciles of the

distribution before computing the mean value (MD.y). The distribution is

truncated to get rid of possible outliers.

Couples in which D4y < 3*MDay are joined together and define events which are

consider as AV cardiac beats. All other global are considered as isolated events.

From AV consecutive cardiac beats, get the time series of coupling times A4

(difference between the time of the first atrial activation in each beat, most often

A1ALl, as in Figure 2.19).

. For beats in which the atrial activations precede the ventricular activation (as in

Figure 2.18), extract the atrial firing order of the three channels and identify the

most frequent order, which corresponds to that of normal sinus beats. Calculate

the mean coupling time (MeanAAre) from consecutive beats of this class.

. Finally, each beat or isolated global is labeled as:

1)  SNAC(Sinus normal activation): beats formed by an atrial global followed
by a ventricular global for which the atrial firing order belongs to the most
frequent group and AA = 0.7* MeanAA.f,

i) PAA (Premature Atrial Activation): beats formed by an atrial global
followed by a ventricular global for which the atrial firing order is not the
most frequent and/or AA<0.7 MeanAA:.f,

i) PVC (premature ventricular conduction): beats formed by an ventricular
global followed by an atrial global;

iv) BA/BV (Blocked atrial/ventricular conduction): isolated atrial or ventricular
activation;

v) ARE (atrial retrograde conduction): isolated mixed global, holding both
atrial and ventricular activations;

vi) VT (ventricular tachycardia), AF (atrial fibrillation), AFL (atrial flutter),
SATUE (invalid interval): as described in section 2.3.2, the beginning and
end of these kinds of intervals are labeled by the user in the validation step.
All global activations between these limits are then put together to define

either an invalid or arrhythmia episode.
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CTA CTAV

Figure 2. 18 Intra-Atrial conduction time (CTA), atrial firing order, an atrio-ventricular
conduction time (CTAV)

Figure 2. 19 AA intervals of two consecutive beats with the same order of atrial firing

2.5 Validate Beat
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As for global and local activations, the results of the Form Beat software have to be
validated. This is done by the module Validate Beat that offers five main functions

(Figure 2.20):

SMNAC SMAC SMNAC

Demo Beat Property

h. Beat Type ¥
. Dietach Beat
A )
v* | Combine Beat
Reset Children

_ Delete Baat

Figure 2. 20 The main menu of Validate Beat.

1. Demo Beat: the information of any particular beat can be displayed and edited. as

shown in Figure 2.21;

) Beat Property

BeatlD 4530 BGID 4630 4640
BType SMAC BGType 1 2
BeatLacation(ech) 950031 BN 1 1
AtrialPropQrder wIY BGMNEY 1 1
SARhythmicity(ms) 847 BGMbT 1 1

Intra2PrapTime(ms) 426 BGMEegin 975940 98016

A%PropTime(ms) 121.8 BGMEnd 93014 98032

Figure 2. 21 Indices of a beat, which can be edited.

2. Change Beat Type
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# O Z Channel Signal / Markers / Beats

10 p— p— p— — p— p— p—
(=) —
g —
Demao Beat Property
7L [ ch. Beat Type Sinus Beat{SHAC) _|
Detach Beat Ectopic BeatiEAC)
Combine Beat Premature V{PWC)
o i Reset Children EBlocked A(EA) 4
B~ # ||| Delete Beat Blacked WiEY) s & | . -
»
L] ~ Atrial retrogradel ARE) 3 LD 4 1
Atrial Fibrillstion(AF) 1
5 Atrial Flukker{ AFL) —
ventricular Tachycardia(vT)
4= —
v W W
W v
W M W
3 — —
2 | | | | |
1.0821 1.0921 1.0922 1.0922 1.0922 1.0923

Figure 2. 22 Interactive panel to perform beat modification.

10923
x 107

3. Detach Beat: uncombined global activations linked in a beat or arrhythmia, such that

they become available for the formation of new events;

4. Combine Beat: combine two consecutive events into one beat;

5. Reset Children: reset the beat information if the local markers or global markers

information has been modified;

6. Delete Beat: delete the existing beats if local or global markers have been deleted;

Actions 2 to 6 can be performed in an interactive panel shown in Figure 2.22. Figure 2.23

shows an example a final validated sequence of events.
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4
XY Z Channel Signal / Markers / Beats x10

x 10
1 T T
10+ - _ - - - - - — —
8 - —
SMAC  PYC SMAC SMAC SNAC SMAC  PVT SNAC SMAC
S o T e T e S s I e O s T e R e N |
5 A A A A ARE A A -
*y F'VACRE. vy i vy v [P e vy vy
4 - - * h| -
5 _ —]
a4 -
3 - —
2 | | | | | | |
111 1115 112 1125 113 1.135 114 1.145 115

Figure 2. 23 After detection and validation, the activations of three channels are grouped
into beats with a label corresponding to their type (Normal sinus beat, PAA...)

2.6 Beat Time Series Building

Different time series were built from the validated markers and events. The following

section provides a definition of the variables and how they are computed.

1. PAA(premature atrial activation) related measures

The origin (left or right, LPPA, RPAA) of the PAA is set by the location of the first

activated channel in the beat.
PAA Rate: The total (R,,,), left (R;,,) and right (R}, ,) rate: number of PAA occurring

in a reference period (e.g. 5 minutes) divided by the time without atrial and ventricular

arrhythmia during the reference period.
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PAA proportion (P, , Py, , Pr,): corrected number of PAA in a reference period

(CNi= rate in the 1’th period* duration of the period) divided by CNr, the sum of the CNi.

Anova was performed on the Freeman-Tukey arc-sine transformed proportion [173]

1 CN CN, +1
F-T(P =—| arcsin L_ |+ arcsin /—1 =~ arcsin|,/P,
( PAA,I) 2 |: ( CNT + 1 j [ CNT + 1 ]:| ( PAA.I )

Besides, in the few instances where the total number of Right PAA was zero, Py, , was

set to sin® (F-T ( Py, , )=0);

LPAA Fraction (LPAAFraction): the number of LPAA in the reference period divided the
total number of PAA in the period. Anova was also performed using the Freeman-Tukey
transformed fraction. When the total number of PAA was 0, then LPAAFraction was set

as 0.5.

2. Sinus atrial rhythm related measures

In events defined as normal sinus beats, the first atrial activation always occurs in the
same channel, which is used to calculated A4 (ms), the time interval between successive
normal sinus beats. The following measures are also computed in each reference time
interval (most often, 5 minutes):

Mean ( AAMean ) and Standard deviation of AA ( AAStd );

rMSSD : Root mean square of difference between successive 44 ;

pNNS50: Proportion of successive 44 with a difference > 50ms;

3. PAA prematurity

Two measure of PAA prematurity are used in the analysis

Premans, the absolute prematurity: the time from the previous activation to the premature

activation calculated from the electrode first activated in the PAA.
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Premyer, the relative prematurity: Premaps divided by the mean AA interval of the normal

sinus beats in the minute before the PAA.

4. Premature ventricle activation (PVA) related measured.

PVA rate (R,,,): The total number of PVA4 in the reference period of time (e.g. 5

minutes) divided by the duration of the interval without of atrial or ventricular

arrhythmia;

5. Arrhythmia Duration( ArrhyDuration )

ArrhyDuration : Duration of all arrhythmias during in each reference period. An episode

of arrhythmia was considered to occur when there was more than 3 consecutive atrial or
ventricular ectopic beats. In these cases, the first ectopic beat was kept as a PAA or PVC,

while the other was joined in an arrhythmia.

6. Intra-atrial conduction time ( CTA4) related measures

For all events, CTA is computed as the time between the first and last atrial activation.
Then, the Mean ( CTAMean ) and standard deviation ( CTAStd ) are computed from

normal sinus beats in each reference time interval.

7. AV node conduction time (CTAV ")

Atrio-ventricular conduction time (CTAV , ms) correspond to the time elapsed between
the last atrial activation and the following ventricular activation within each beat. Then,
the mean (CTAVMean ) and standard deviation (CTAVStd ) of CTAV are computed from

normal sinus beats in each reference time interval.
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8. Local derivative (d" dt)

d%l ’ (mV/ms): the maximum slopes of negative deflections of each atrial activation (

max‘_d"dt‘ );

9. CANS (Cardiac Autonomic Nervous System) measures from spectral analysis of AA

Five minutes A4 time series of normal sinus beats were analyzed by Fast Fourier
transformation (FFT). All events different from normal sinus beats were excluded, as
well as normal sinus beats immediately following a PAA. The resulting time series was
interpolated with a fixed time step of 1 second and convoluted with a Hamming window
[174]. Then following a common rule, the power contained in low (LF: 0.04-0.15) and
high frequency (HF: 0.15-0.40 Hz) was computed [175-178]. The following quantities

were considered:

Low Frequency (LF) component: The summation of low-frequency spectrum ( LF :0.04-
0.15 HZ);

High Frequency (HF) component: The summation of high-frequency spectrum
(HF :0.15-0.4 HZ).

LF Portion: LF/(LF+HF);

HF Portion: HF/ (LF+HF),

LF HF Ratio: LF/HF.

10. Correlation of conduction time series

The following Pearson correlation of normal sinus beats time series were built within

each five-minute interval:

CorrAA AV : Correlation of AA series and CTAV series;
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CorrAA _CTA: Correlation of AA series and CT4 series;

CorrAV _CTA: Correlation of AV series and CTA series.

2.7 Discussion

2.7.1 Recording

Although methods were devised to continuously monitor the noise level of the signals in
order to activate conditional filtering and adjust the detection thresholds, a few recordings
had to be excluded because the quality was too poor to provide reliable time series.
Different configurations of electrodes were used. Although their sequence of activations
in a beat differed, all of them allowed to decide whether ectopic beats were originating
from the left or right atrium and provided similar measure of atrial and atrio-ventricular
conduction times for normal sinus beats. Because the number and position of the
electrodes in the left atrium was changed, the measure of the prematurity of left atrium
premature activation was probably the variable that could be the most affected by the
change of configuration. It is acknowledged that would have been more appropriate to get
data from a single recording configuration. Nevertheless, we decided to keep and analyze
all patients together because of the limited number of subjects, especially among patients

with episodes of AF.

2.7.2 Detection

The final performance of the detection algorithm was assessed using more than 1.5
million validated markers taken in the 2 hours before the onset of a prolonged AF, a
period that most often encloses complex rhythms. The problem of detection and labelling
in our project was somewhat similar to that encountered in the analysis of signals

recorded by ICD or pacemaker, i.e., to capture activations during atrial ectopy,
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tachycardia, and fibrillation and avoid false detections caused by noise or far-field R-
waves (FFRW). The top panel of Figure 2.24 is an example where the plot of activation
amplitude versus dV/dtmin shows a continuous spectrum, thus invalidating separation by
clustering. In the bottom panel of Figure 2.24, PAA and V activations fall in between two
separated clusters of atrial activations. In both cases, our method based on energy

frequency content was able to correctly label most of the activations.

Amplitude (mV)
- L
(4,1 % n |7

=
T

o
tn

-04 035 03 -025 02 015 -01 005 0
dvidt__(mV/ms)

3 . . T
2.5}

S

E 2} 5 .

[+4] : .

E15-:':!:;Zii 8% 5, o N

£ "“””l“ilm||TJI|||| e

- 8 ! I “li“;- - Q
0.5} ! ¢
008 20.06 -0.04 0.02

dVvidt_._ (mV/ms)
min

Figure 2. 24 Dispersion of the activations Amplitude vs. dV/dtmin from two channels from
different patients. All activations from 2hr recording prior to AF onset are shown: A (red
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dot), V (blue circle) and PAA (green dot), PAC (black star). Top panel: the distribution
forms a continuous cluster, with PAA spread between A and V. Bottom panel: PAA and
V are in a cluster between two separated clusters of A.

Another study proposed to use A and V wave templates to detect and label the activations
[179]. However, this study ignored highly changing conditions and inter-individual
variability, as well as the complex rhythms that frequently arise just before AF. That

makes the template approach less appropriate for our work.

The problem of faulty detections due to noise was handled by continuous monitoring of
the quality of the signal to guide local filtering and threshold adjustment. The signal was
also blanked during episodes of saturation and clipped to equilibrate the amplitude of the
different channels. This brought an improvement of the false positive and false negative
detections by a factor 4 and 3.5 respectively. The parameters adjusting the threshold as a
function of the quality of the signals were optimized to detect PAA and PVC even at the
expense of some false positive. These can also be adjusted for other requirements or

different types of signals.

2.7.3 Validation software

The development of the validation software (Validate AV) was mandatory to obtain both
the training and evaluation sets of A and V activations needed for the development and
assessment of the automatic timing algorithm. Beside, much emphasis was put on
strengthening the method to detect PAA and PVC that firstly had to be authenticated
manually. After the development of the algorithm, validation was still needed to correct
missed or mistaken global or local activations and defined episodes of arrhythmia prior to
the analyses. Along with the progress of the project, new functions were added, such as
the automatic formation and labeling of beats, as well as associated tools of validation.
The final result is user-friendly interactive software specifically adapted for multichannel
AEG analysis, with no commercial equivalent. It is acknowledged that the final manual
validation of the activation times, beats and beats types is to some extent operator

dependent, which may have so impact on the reproducibility of the resulting time series.
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To reduce the inter- and intra-user differences, a proper training of the validation
software is strongly suggested. The optimal method which will compare the results

obtained by different users to reach a consensus would be too much time-consuming.

The classification module is an important part of validation software. Diverse methods of
ECG analysis have been proposed, based on artificial neural networks or signal

processing methods [153, 159, 161, 162]. Classification is usually performed by feature

extraction from raw data waveforms, or from compressed waveforms constructed by
principal component analysis [180, 181], independent component analysis [182], or
wavelet analysis [183-185]. Class formation then relies on some measure of similarity.
Since the markers of activation were already available, we found that the option to define
the extent of the waveform both before and after the markers very useful for analysis and
classification. Our clustering method, using either correlation coefficient or minimum

distance without prior processing, was at once simple, fast and reliable.

The initial purpose of the classification module was to validate the identification of A or
V activations. Then the module was strengthened to validate the detection of cardiac
beats. In addition, once the templates of the classes were defined, they could be used to
delete, move, positioned or label any number of markers simultaneously for all events
belonging to a chosen cluster. This much improved the efficiency and the speed of the

validation process especially in time periods enclosing many of detection errors.

The grouping of neighboring global atrial and ventricular activations within cardiac beats
was based on the computation of the mean CTAV over 80% of the adjacent pairs in each
five minutes period. Even for normal sinus beats, C7A)V was found to range from 50 to
100 ms among different time interval and patients. Finally, we have chosen 3 times the
mean CTAV as an upper bound for beat formation. This criterion was appropriate for
most beats, except during arrhythmia episodes such as atrial fibrillation, atrial flutter and
ventricular tachycardia. In these types of episodes, especially with long lasting time,
CTAV could become very irregular, with complex and even asynchronous A-to-V or V-

to-A activations ratio. This is why all intervals of arrhythmia were defined manually. The
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automatic detection of atrial retrograde activation was also often difficult. For activations
presumably starting in the Hiss or Purkinje system, some atrial activations were often
close or even within the ventricular activation, such that they could be included in the
same mixed global event. Sometimes, the waveform of atrial retrograde looked like
premature ventricular activation. The morphology of atrial retrograde beats also

frequently varied from beat to beat and channel to channel.

The detection and identification of PAA was imperative because of their suspected
relation with the occurrence of AF. The detection was maximized by the two-step process
of detection, both with moving threshold. They were identified by either their prematurity
or their firing sequence with respect to the normal sinus beats. They were assumed to
originate from the atria where the first activated channel was located. Obviously, this
remains an approximation since the time for the activation front to reach an electrode is
not only related to its distance from the ectopic focus, but also depends on the conduction

speed and the conduction path.

2.7.4 Time Series Building

Our basic hypothesis was that the onset of AF could be linked to the distribution and
prematurity of PAA, as well as to the presence of a proarrhythmic substratum. Therefore,
variables related to these two factors were computed. Some were used to typify each
PAA: localization, prematurity, intra atrial and atrio-ventricular conduction times, dv/dt
of the first activated channel. Others were considered to characterize the state of the
substratum: density of PAA, PVC and duration of transient arrhythmia; diverse measures

computed during normal sinus rhythm.

The use of AEG gives access to information that is difficult or impossible to obtain from

dv
ECG. The value of local derivative ( 4’7 ) associated to each atrial activation, which is
related to the local pulse propagation velocity, provides a measure of the local excitability

of the tissue. The atrial firing sequence permits at least a partial identification of the
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location of the ectopic focus, which would have been difficult to be known from three

channels ECG Holter recordings. The intra-atrium conduction time (CT4), although it
does not correspond to the full time needed for the front to cover both atria, is a more
reliable and stable measure that the duration of P wave which is often difficult to evaluate

from the low amplitude ECG. This is also true for 44 and CTAV.

Both sympathetic and parasympathetic stimulation can shorter refractory period of action
potential of the cardiac myocytes, possibly causing substrate conduction inhomogeneous
property and then facilitating electricity reentry. AA LF and HF power components
obtained by FFT analysis were analyzed both in absolute and normalized units. The
LF/HF ration has been proposed to be an index of sympathovagal balance. The dynamics
of autonomic nervous system tone can be studied to find if imbalance occurs before the

occurrence of AF.

Neural modulation can produce changes in 44,CTA,CTAV time series. The correlation
between these time series might provide some measure of the state of cardiac autonomic
nervous system, complementary to those provide by the spectral analysis of the AA.
Since the cardiac autonomic nervous system feeds the sinus node, the auricles and the
AV node, positive or negative correlation between any of these time series might indicate
either an imbalance or concordance of the autonomic input between these structures

and/or a dominance of the rhythm dependent properties in the atrial tissue or AV node.
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2.8 Summary

1.An automatic algorithm to detect and identify complex AEG signals was presented. The
algorithm was unique, robust, and gave results at a high level, and solved the prerequisite

problem of our study with good performance.

2.Validation software was designed to validate the AV detection results, form beats and
validate beats. It provided an intuitive tool to investigate the signal and tendencies of
conduction time series, to validate the detect markers and form beats. The embedded
functions in the software also allowed unsupervised classification to automatically
modify markers and beats. These strengthened the validation performance of the

software.

3.Time series were built for the purpose of identifying predictors of postoperative atrial

fibrillation.
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Chapter 3 Analysis of Premature Atrial Activation and

Time Analysis before Onset of AF

This chapter studies the temporal evolution of various indices before to first protracted
episode of AF (> 10 minutes [101]). If there is no significant change prior to the onset of

AF, it would be useless to monitor the patients to detect impending AF.

It is generally acknowledged most AF are preceded by premature atrial activations (PAA)
that frequently originate from the pulmonary vein [62, 186-188]. Waktare et al. have
shown an increase of ectopic activity before the onset of paroxysmal AF [189, 190].
Increasing frequency of supraventricular ectopic beats and of ‘warning’ short transient
atrial arrhythmias also occur before the onset of postoperative AF [186, 187]. It was thus
mandatory to first examine if there was an increased incidence of PAA close to the onset

of AF.

In many patients in our study, a large number of PAAs were recorded all over the two
hours before the AF. Although PAAs preceded the onset of AF, the occurrence of PAA
was not bound to trigger an episode of AF. J. M. Leung has proposed that impairment of
left atrial function is an important risk factor of post-operative AF [96]. More generally,
patients developing AF are speculated to have heterogeneous spatial distribution of
excitability and repolarization [7, 191-193]. This raises the possibility that substrate
properties may evolve toward a state that facilitates the incidence of AF. The analysis
presents both univariate and multivariate analyses of the temporal evolution of indicators
of the state of the atrial tissue, while the last section examines if the triggering PAAs that

occur just before the onset of AF are endowed with specific properties.
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Initially, the choice to analyze the two hours before the onset of AF was guided by
previous studies in which the same period was considered [33, 136]. We decided that, at
the end of the analysis of AF patients, this period would be considered appropriate if
significant changes were found between some periods close to the AF onset and the
others, while in the further periods the time series could be considered as constant. If the
periods further from the AF had not been diagnosed as constant, we would have extended
the analysis to a longer time period. As demonstrated in the chapter, we found significant
changes to occur in the first hour before AF, but none in the second hour. As a
consequence, the two hours period was used for all analysis. Among the 41 patients with
AF, 11 patients were excluded because the quality of their signals (such as too much
noise, or lost of contact by at least one electrode) precluded a complete and reliable
analysis. Among the 30 remaining patients, there were 24 men (age: 69.9 £ 6.3) and 6
women (age: 74.6 + 2.1).

3.1 PAA Analysis

3.1.1 Number of LPAA (Left PAA) vs. RPAA (Right PAA)

All long lasting AF (>10 minutes) episodes were immediately preceded by one or more
premature atrial activations that originated from the left atrium (LPAA) for 26 patients
and from the right atrium (RPAA) for 3 patients. For one patient recorded with the second
configuration described in chapter 2, the origin was ambiguous because the electrode
positioned in the left atrium was most often activated firstly even in regular rhythm.
Since many analyses were performed considering PAA either a left or a right PAA, this

patient was discarded.

The number of LPAA was greater than the number of RPAA for 25/26 of the patients
whose AF was triggered from the left atrium, and 2/3 of patients triggered from the right
atrium (Figure 3.1). However, the proportion of LPAA (i.e. LPAA/ LPAA+RPAA) was

very inhomogeneous.
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Figure 3.1 Proportion of LPAA (blue) and RPAA (golden) in the second hour before AF

30

onset. The abscissa represents the identification (ID) number of the patients in the
analysis. The ordinate is the proportion of LPAA (blue) and RPAA (gold) among the total
PAA number within each patient. Patients with ID 1 to 26 and 27 to 29 had their AF
triggered by PAA from left and right atrium respectively, while the origin of a subset of
PAA including the trigger was unknown for the patient with ID 30. Homogeneity of

proportion was rejected by y” test, using either the mean number (patients 1-29, P
<0.0001, patients 1-26 P<0.0001) or the mean proportion of left and right PPA (patients
1-29, P <0.0001, patients 1-26 P<0.0001) as null hypothesis. Both variables were

examined because of the huge dispersion in the number of PAA among the patients.

The rate of PAA (Rp44 = nb. PAA/ minute without arrhythmia) was also highly variable
among the patients: [Rr4amin RP44.median Rraamax] = [0.02, 0.7, 37.90/min] in the two
hours; [0.03, 0.95, 38.11/min] in last 30 minutes; [0.2, 2.36, 35.80/min] in last 5 min
before AF.
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3.1.2 Temporal Trend of PAA and Arrhythmia

Temporal Trend

The temporal evolution of LPPA and RPAA was studied by considering their incidence in
successive 5 minutes intervals. Analysis was performed either by considering for each
patient either the rate within each interval (R},,,R},, = number of PAA in 5 minutes/(5
min-duration of arrhythmias), Figure 3.2 A) or by the proportion of the total 2hr LPAA or
RPAA in each 5 minute interval (P;,,, Py, = number of PAA in 5 minutes/ total number
of PAA, Figure 3.2 B). Either from the aspect of rate or proportion, LPAA shows an
increasing trend over the time. Each method has its own drawback, the former being

driven by the patients with the highest numbers of PAA, while the latter can be distorted

by patients with a small number of PAA concentrated in a few intervals.
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Figure 3.2 Mean value and standard deviation of A) PAA Rate (R},,,Rp,,, in Panel A)

and B) PAA Proportion (Py,,,Ps,, , in Panel B) within each 5 minutes before AF. Left

atrium: blue line and circle; Right atrium: red line and diamond.
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Because the temporal trends of Rj,, and Rj,, were significantly different (Anova
time*L-R interaction, p=0.001, Huynh-Feldt criteria), they were analyzed separately.
Only R;,, showed a significant time effect (p=0.048, Huynh-Feldt criterion). Post-hoc

analysis was done using different sets of orthogonal contrasts. The difference between the
first and second hour was the only significant contrast (p=0.034) and it remained
significant even after removing the last five minutes. No contrast (linear or other)

restricted to the last hour, the last 20 or 10 minutes was even close to being statistically
significant. The non-significance of the R;,, linear increase in the second hour may

seem surprising upon the examination of the Figure 3.2 A. As explained below, it stems

from the heterogeneity of the profiles among the patients.

Analysis of Proportion (Py,,,Pp.,)

Since P;,, and P;,, both sum to 1, analysis was performed by removing the first 5
minutes. As mentioned in Chapter 2, all ANOVAS’ on proportions were performed using
the Freeman-Tukey transformation. Taken together, P;,, and P;,, shows a significant

time effect, with or without the last five minutes (p=0.003, p=0.045 respectively), but no
significant left-right difference or interaction. Post-hoc analysis with different sets of
orthogonal contrasts showed a significant difference between the first and second hour,
both with and without the last 5 minutes before AF (p<0.001, p=0.003 for both right and

left taken separately ). Within the last hour, all significant contrasts were a consequence

of the high increase in the last 5 minutes for P,,, as well as Py, , .

Patterns of Temporal Evolution

The analysis of rate and proportion both concluded to an increase of PAA in the last hour
before AF (left and right for proportion, left only for rate). However, the lack of
significant contrast within the second hour also suggests that there were different patterns

of evolution among the patients. The patterns were classified by cluster analysis of the
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sequences of 5 minutes values in the last hour. The correlation between the mean
sequence of each cluster was used as a measure of similarity, with a threshold of 0.576 to
stop the aggregation (threshold corresponding to p=0.05 significance level for sample
size of 12). Correlation was chosen because it compares the profiles, irrespective of their

relative amplitudes.

Figure 3.3 A presents the mean profiles R;,, of the clusters obtained from the analysis.

The largest cluster, gathering 11/29 patients, shows an increase of the PAA rate
beginning 15 minutes before AF and culminating in the last 5 min. However, the rate of
the members of this cluster was generally smaller than those of other clusters. This
explains why a similar trend was seen in the evolution of the mean proportions (Figure
3.3) but not in the mean rates (Figure 3.2 A). The other three clusters, for a total of 7
patients, displayed a sharp rise of the rates from 40 to 30 minutes before AF. Together,
all these clusters are responsible for the linear trend of the mean rate in Fig 3.2 A. Finally,
three other patients rather showed a progressive decrease of the PAA rates during last
hour. The remaining 8 patients, who did not belong to any cluster, had isolated bursts of

PAA in one or a few intervals.

ForR},, , the most important cluster, gathering 9 patients, with another cluster of 3
patients, showed an abrupt increase of PAA in the last 5 minute. 5 patients in this cluster
also had a marked increase of R},, in the last 5 minutes. Globally, 19/29 patients
showed a high rate of RPAA in the last 5 minutes, which may have been preceded by
bursts in one or a few intervals within the last hour. The correlation between the profile

of right and left PAA within either the last hour or half hour was highly variable, being
beyond 0.5 for only 10 (1hr) or 5 patients (1/2 hour) respectively.

Finally, the rate of PVA was also analyzed. For most patients, there were random
fluctuations of the rate of PVA within the 2 hours, with only a few patients showing an
increase before AF. 4 patients had higher rate of PVA than PAA without any significant
time trend. For these, some PVA4 may have induced PAA by retrograde propagation.
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Figure 3.3 Mean patterns associated to the clusters obtained by the analysis of five

minutes (A) R;,, and (B) Ry,, . The number of patient within each cluster is indicated.

The abscissa axis is the time before the onset of AF (min).

Non-sustained Arrhythmia

As shown in Figure 3.4 A, the duration of transient atrial arrhythmias increased in the last
30 minutes, with an abrupt rise in the last 5 minutes where it reached a mean duration of
10.03 seconds. These non-sustained arrhythmias were made of short runs of ectopic
activations and/or atrial tachycardia. Figure 3.4 B shows the main clusters identified
using correlation. 23/29 of the patients were in the biggest cluster, presenting an abrupt
jump of the arrhythmia duration time in the last five minutes, and a minor increase in the
last 25 minutes. The other patients had burst of arrhythmias distributed in the last hour
before the onset of AF.
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Figure 34 A) mean and standard deviation of the duration of arrhythmia

( ArrhyDuration ) by 5 minutes interval; B) Mean clusters profile of arrhythmia duration.

3.2 Post-hoc Analysis of Raw Data and Position Data

The methods used to analyze the PAA rate and the arrhythmia duration (repeated
measures ANOVA analysis of values calculated within each 5 minutes, followed by post-
hoc contrasts and finally cluster analysis), were also employed for the other variables.
These variables were AAMean , AAStd , rMSSD , PNN50, CTAMean , CTAVMean ,
LF , HF , LF/HF , LF/(LF + HF), CorrAA_AV , CorrAA CTA, CorrAV CTA .

They were calculated keeping only the sinus beats within each interval. These variables
were considered as indices of the state of the tissue. The significance of the time effect

was assessed for the raw data as well as the position data.

As described in Methods, position data were obtained by allocating to each data point of
a patient its position in the cumulative distribution of the values obtained by this patient.
Hence, for measures such as A4, CTA or CTAV, the position of each data point was
obtained from the 2hr time series, and the mean position calculated within each time
interval. For measures like PAA rate, arrhythmia duration, 44Std (standard deviation) or

LF (low frequency content of the A4 time series), the values were obtained from the raw
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data within each five minutes interval, and position was allocated with respect the set of
24 values obtained from the two hours. Then, these position data were analyzed like raw

data.

As seen in Table 3.1, among all indices, only the PAA Rate (R,,,), the arrhythmia

duration, the mean period of sinus rhythm ( 44 ), the low frequency proportion of the 44
variation (LFPortion= LF/(LF+HF) or alternatively LF/HF ratio) had significant
(P<0.05) or close to significant (P<0.10) time effects for raw and position data. Table 3.2
shows the results of the post-hoc contrast analysis for these variables. In nearly all

instances, the significance was higher for position than raw data.

The details of the AA and LF portion last hour evolution are presented in Figure 3.5 and
Figure 3.6 respectively. The mean AA and the mean position AA showed a slight
decreasing trend during the last hour (Figure 3.5 A). This heart rate acceleration was
associated with the largest cluster, including 15/29 patients (Figure 3.5 B, blue line). A
group of 3 patients oscillated from 680 msec. to 740 msec. in the last hour (red) and a
cluster of 5 patients displayed a slightly increasing AA (green). In both these clusters, AA
reached a maximum close to the onset of AF. The last cluster of 3 patients did not show
much change (cyan). The other three patients that did not belong to any cluster had

1solated fluctuations of AA.

The mean and position LFPortion (Figure 3.6 A) exhibited an increasing trend starting
about 20 minutes before AF and peaking in the last 5 minutes. Despite the complexity of
the profiles (Figure 3.6 B), three clusters including 17 patients showed a LF portion
increase (blue, green, red), especially in the last 30 minutes. The other three profiles
including 9 patients (cyan, yellow, violet) did not show any regular trend. Other 3

patients did not belong to any cluster and showed sharp and isolated burst of LF increase.

72



Table 3.1 Test within subject effects: (One-Way Within-Subjects ANOVA)

P (raw) P (position)
R,,, (PAA Rate) 0.035 0.007
ArrhyDuration (Arrhythmia Duration) 0.030 0.009
AAMean (AA Mean) 0.002 0.004
LF/(LF + HF) (LF Portion) 0.025 0.087

Table 3.2 Post-Hoc Analysis of Raw and Position Data of Specific Variables with

Significant Time-effects in 2-pre AF Hours

(The upward arrow stands for the increasing trend over the contrasted comparison

periods, and the downward arrow stands for the decreasing trend over those periods)

R,,, ArrhyDuration AAMean LF/(LF + HF)

raw | position | raw | position | raw | position | raw | position
[120 60] | 0.019 0.007 0.016 0.009 0.001 0.024
SRR
[60 0]
[60 30] 0.084
Vs. ﬂ
[30 0]
[30 15] 0.019 0.069 0.026
b0
[15 0]
[10 5] <0.001 | 0.010 0.010 0.001 | <0.001
SR K
[5 0]
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Figure 3.5 A) evolution of mean of the raw (blue) and position AAMean (red) in the last
hour before AF. B) Cluster analysis of A4Mean during the last hour before AF. Mean
patterns of the clusters were plotted, and the number of patients associated to each cluster

is indicated.
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Figure 3. 6 A) evolution of mean of the raw (blue) and position LFPortion (red) in the

last hour before AF. B) Cluster analysis of LFPortion during the last hour before AF.

74



3.3 Discrimination of Trigger from Non-Trigger Period

In an alternative approach, the power to identify the period close to AF was assessed by
logistic regression. The analysis was repeated for both raw and position data dividing the
2 pre-AF hours in equal time periods of 5, 10, 15, 20, 30 and 60 minutes (variables
analyzed in Sections 3.1 and 3.2). The power of these variables to discriminate the last
period just before AF (triggering period) from the others (non-triggering periods) was
assessed using forward conditional stepwise logistic regression (p<.05 entrance criteria).
The scores of the resulting logistic model were used to build a ROC (Receiver Operating

Characteristic) curve and select the optimal cut-off point.

Figure 3.7 shows the classification obtained for five minutes periods. The performance
was much better with position than raw data although the same variables were selected in
both cases. Similar results were obtained for all the partitions of the two hours: same

selection of variables, but superior discrimination with position data.
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Figure 3.7 Comparison of prediction of the trigger period (last interval before AF) using
raw variables (A) and position variable (B) for five minutes intervals. Green color box
stands for true positive, blue for false negative, red for false positive, and white for true
negative, black for the period with missing values because of insufficient number of sinus
beats in five minutes. The abscissa is the time from the onset of AF, and the ordinate is

the patient identity.

The results of the logistic model with the position data for different time divisions are
shown in Figure 3.8. Panel A gives the variables kept in the model for each time
partition, the color code indicating whether higher (red) or lower values (green) were
predictive of the triggering period. Globally, seven variables were selected at least once,
while R,,,(PAA rate), ArrhyDuration (Arrhythmia Duration), 44Mean (means AA) and
LF/(LF + HF)(LF Portion) were more often present. Globally, the results indicated that

the onset AF tended to be preceded by an increased number of PAA and transient
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arrhythmia episodes, on a background of accelerated sinus rhythm and a relative increase
of its low frequency fluctuations. However, the changes were more informative when
normalized using the distribution of values within each patient (position vs. raw data).
The sensitivity and specificity (correct classification of the trigger and non-trigger
interval respectively) remained between 65% and 85%, the total predictivity reaching a
maximum for 30 to 60 minutes intervals. (Figure 3.8 B)
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Figure 3.8 A) Sign of estimated coefficient of predictors in the logistic model (red:
positive coefficient, green: negative coefficient) for different partitions of 2 hours
intervals before AF. B) Sensitivity (red) and specificity (black) of each model with

cutting point calculated from the ROC curve.

Table 3.3 The p value from univariate and multivariate logistic regression model with

position data and 5 minutes partition

Univariate (p Value) Multivariate (p<0.05)
R, <0.001 0.002
ArrhyDuration <0.001 0.045
AAMean 0.002 0.010
AAStd 0.576
rMSSD 0.810
PNN50 0.794
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LF <0.001
HF 0.016
LFPortion <0.001 0.001
HFPortion <0.001
LF/HF <0.001
CTAVMean 0.631
CTAVStd 0.489
CTAMean 0.632
CTAStd 0.558
CorrAA_AV 0.279
CorrdA_CTA 0.316
CorrdV _CTA 0.732

Table 3.3 gives the results of the univariate and multivariate logistic regression for 5
minutes position data. Four variables were entered in the multivariate model in the
following order: RPAA, LFPortion, Arrhythmia Duration, AAMean. Figure 3.9 shows the

ROC curve associated with the successive models: I, R,,,;II, LFPortion +R,,,; Il

LFPortion +R,,,+ ArrhyDuration ; 1V: LFPortion+ R,,,+ ArrhyDuration + AAMean .
It is evident that the predictor R,,, plays the most important role, achieving around 65%
sensitivity and specificity. Then the other two predictors LFPortion and ArrhyDuration

made some sensitivity improvements. The predictor of 44Mean , finally introduced in the
model, further improved the prediction, to reach a sensitivity of 72% and a specificity of
85%. Table 3.4 show the results of the comparison of AUC (area under ROC curve)
differences using the method described in section 1.3.3. The methodology of the
calculation of the Standard Error of the Area Under the Curve (AUC) and of the
difference between two AUCs is the method of DeLong et al. [194]. The method
employed the nonparametric approach to compare the areas under correlated ROC
curves, by using the theory on generalized Mann-Whitney U-statistics for comparing

distributions of values from the two samples [195]. The asymptotic normality and the
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expression for the variance of the Mann-Whitney statistic was derived from theory
developed for generalized U-statistics by Hoeffding [194]. Once the distribution of the
variance, the distribution was defined, the standard deviation, and the confidence interval

automatically followed.

In the table, the standard error The results of this test much differed from those of the
logistic regression since none of the variables entered after Reaa were diagnosed to bring

a significant AUC difference.
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Figure 3.9 ROC curves of Model I, II, III, and IV. The circles indicated the best cut off

points for each model.
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Table 3. 4 The comparison of AUC (area under ROC curve) among the four methods,

including the area difference, the standard error, the significance of the difference and the

confidence interval.

ITvs. I Tvs. III Ivs. IV II vs. III I vs. IV I vs. IV
Difference of | 0.0328 0.0353 0.0506 0.00256 0.0178 0.0152
AUC
S.E. 0.0415 0.0351 0.0471 0.00723 0.0211 0.0233
95% -0.0408 to | -0.0335to | -0.0417 -0.0116 -0.0236 to | -0.0305 to
Confidence 0.114 0.104 t0 0.143 to 0.017 0.0592 0.0610
Interval
Significance | 0.4301 0.3147 0.2830 0.7233 0.3992 0.5137
Level

3.4 Characteristics of PAA Eliciting Occurrence of AF

In the second phase analysis, we examined whether the trigger PAA occurring just before

the onset of AF were endowed with specific properties.

3.4.1 Prematurity

The arrhythmogeneity of an activation is often linked to its degree of prematurity [186].
For each PAA, the absolute prematurity (Premass= Time from the previous activation to
the premature activation, evaluated at the electrode first activated in the PAA) and the
relative prematurity (Premr.i= absolute prematurity/ mean AA interval of the sinus beats
in the minute before the PAA) were calculated. Position value of the prematurity of each

triggering PAA (P-Prem) was obtained by finding its location in the cumulative
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distribution of the prematurity of all PAAs within each patient. The distribution of the P-
Prem of the trigger PAA among the patients was similar for Premass and Premyrer. As seen
in Figure 3.10 A, the trigger P-Premaps and P-Premr. were among the 5% most premature
for about 40% patients, but were spread uniformly for the others such that P-Premabs,rei

<0.5 for about 75% of the patients.

It was suspected that the accumulation of PAA close to the onset of AF might make the
substrate so prone to arrhythmia that any PAA could then act as a trigger. However, there
was a low correlation between the prematurity of the trigger PAA and the rate of PAA in
the last 5 minutes (P-Premass, = 0.15, P-Premyel, = 0.24). In fact, the three patients with
the highest rates of the PAA (> 28/min, at least twice higher than all others patients) were
responsible for this low level of correlation. As seen in Figure 3.10 B, not very premature
trigger PAA could occur for different rates of PAA, which suggests that information on

the substrate must also be taken into account.
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Figure 3.10 A) Cumulative distribution among the patients of the normalized absolute (P-
Premaps, point) and relative (P-Premye, star) prematurity of the triggering PAA. The
abscissa is the value of P-Premass and P-Premyei, the ordinate is the cumulative proportion
of patients for which the trigger PAA has P-Premass and P-Premye < the corresponding
value on the abscissa. B) Relation between PAA rate and P-Premass and P-Premye. The
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abscissa is the PAA rate in last five minutes (number/min.), and the ordinate is the

absolute (P-Premabs, point) and relative (P-Premyei, star) prematurity of triggering PAA.

3.4.2 Intra-atrial Propagation Time (CTA) of PAA

Intra-atrial conduction time (CTA) was measured as the time between the first and last
activation for each PAA. The definition of C74 in our project, however different from the
definition of intra-atrial time in traditional ECG analysis, in fact measured the intervals
between detected markers for the first and last activations within a beat. As seen in the
example presented in Figure 3.11 A, the CTA of left and right PAAs were often very
different (paired t-test between mean C7TA of LPAA and RPAA of each patient, p<0.0001),
such that they could not be pooled together for analysis. Even considering only LPAA (or
RPAA), the dispersion of the CTA values was huge and the distribution was complex and
multi-modal. The example of Figure 3.11 B shows a LPAA bimodal distribution,
suggesting at least two different ectopic foci. Hence, CTA might depend on multiple
factors such as prematurity, previous sinus rhythm, changes in the relative position of
ectopic focus and of the conduction path across the atria, which explains why it was not a
useful variable to discriminate trigger from non-trigger PAA.
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Figure 3.11 A) Histogram of C74 distribution of LPAA and RPAA of one patient (LPAA,
red color; RPAA, blue color). B) Histogram of CTA of LPAA of one patient, CTA varying

from around 10 to 80 msec.
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3.4.3 Local Derivative (Dvdfr)

The maximum derivative of unipolar electrogram (Dvdt =|dV/dtlmax) depends on the
extracellular current associated with the passage of the activation front close to the
electrode. It is related to the local excitability of the tissue, the propagation speed, form of
wave front, the thickness of cardiac tissue beneath the electrode, the electrode-heart
contact and resistance and the intra and extracellular resistivity [196-198]. We analyzed
the Dvdt of the first activated channel for each PAA. Since first activations could occur
on different channels, a normalization procedure was needed to bring the data together
within each patient. For each channel, the Dvdt of all PAAs were collected, outliers were
removed when bigger than 10 times the mean value, and the normalized derivatives
within each channel were calculated as NDvdt=(Dvdt-min(Dvdt))/(max(Dvdr)-
min(Dvdt)). Afterward, the NDvdt of the first activated channel was selected for each
PAA and a position was assigned to each data point with the usual distribution method.
Figure 3.12 A shows the distribution of the trigger PAA NDvdt among the patients. It was
less than 0.2 for 60% of the patient. Low NDvdt might be a consequence of prematurity
and/or high frequency activation prior to the PAA, which would be translated by a
positive correlation between NDvdt and both the prematurity and the mean sinus beats
AA for the minute before the PAA. Figure 3.12 B shows the distribution of these
correlations, among which around 60% were located in region I where both correlations

were positive.

To remove the effect of A4 and Prematurity, the residues of the linear regression of
NDvdt with A4 and prematurity were also analyzed. For each patient, the residues were
ranked from the most negative to the most positive to obtain the position of the trigger
PAA. As seen in Figure 3.12 C, the residue was the most negative for ~30% of the
patients and below 0.5 for 85%. Hence, the NDvdt of the triggering PAA was often lower
than what would be expected from its prematurity and previous sinus rhythm, which

suggests that it may occur in tissue with enhanced depression of excitability.
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Figure 3.12 A) Cumulative distribution among the patients of the position of NDvdt of
the triggering PAA. The abscissa is the position of NDvdt of triggering PAA, and the
ordinate is the proportion of patients having NDvdt of the trigger PAA with position < to
each level indicated by the abscissa; B) The contrast plot of correlations: the abscissa is
the correlation between NDvdt and prematurity, and the ordinate is the correlation
between NDvdt and AA4; C) Cumulative distribution of the trigger NDvdt residue position.
Residue of regression of Ndvdt with A4 and Prematurity were obtained and ranked in

each patient (see text).

3.4.4 Cardiac Autonomic Neural Balance

In order to characterize the substrate associated with each PAA, the normal sinus beats in
the 5 minutes preceding PAA were analyzed. Position data were calculated from the
distribution of all sinus beat, as in the section of temporal evolution. Figure 3.13 shows
the result of analysis for 44Mean and LFPortion=LF/(LF+HF), the two variables that
brought a significant contribution to the discrimination of AF onset time in the previous
section. LFPortion were calculated from the sinus beats AA time series for the five
minutes preceding each PAA, and the position values were obtained from the distribution

of these LFPortion values within each patient.
Figure 3.13 A shows the distribution of the values associated with the triggering PAA

among the patients. For A4 Mean(blue line), the position of trigger PAA was less than 0.3

for 55% of the patients. For the remaining 45% patients, the position of the trigger was

84



spread uniformly from 0.3 to 1.0. The distribution of the trigger LFPortion was
somewhat a mirror image of the AAMean. A group gathering ~40% of the patients had a
trigger LFPortion above 0.9, 4 patients (~13%) had a low value below 0.15, the remnant
being spread between these values. The scatter plot (Figure 3.13 B) did not show a
significant correlation between LFPortion and AAMean of the trigger PAA’a (correlation
coefficient 0.052, p= 0.788). This suggests that A4Mean and LFPortion bring different
non-redundant information on the state of the substrate. Hence, the relative high heart
rate and high portion of LF components represents different meanings. The LFPortion
might mainly represent the fluctuation of heart rate, while the higher heart rate is

attributed to comparative increase of sympathetic tone.
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Figure 3.13 A) The cumulative distribution among the patients of the AAMean
(continuous red line) and LFPortion (broken blue line) trigger PAA position. The
abscissa is position of the trigger PAA, and the ordinate is the proportion of patients
having a triggering PAA with a position < to each level indicated by the abscissa. B)
Scatter plot of MeanAA vs. LFPortion positions of the triggering PAA among the

patients.
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3.5 Uniqueness of PAA Eliciting AF

Forward conditional logistic regression was used to discriminate trigger PAA (set as 1, 1
by patient) from other PAA (set as 0, number varying among patients). As for the
temporal analysis of section 3.3, the analysis was repeated for both raw and position data.
The selected variables were the same for both sets of data, but position data again
provided a better discrimination. In this section, we report only the results obtained with
the position data. The positions (with respect to the distribution of values among PAA in
each patient) of PAA were used as independent variables, namely Premass, CTAMean,
CTAVMean, NDvdt, AAMean, AAStd, LF, HF, LFPortion, LF/HF, ArrhyDuration and
Rra4, which were either significant predictors in univariate logistic regression analysis,

or closely related to the substrate of PAA.

Bootstrapping was used to get around to problem of the obvious discrepancy between the
numbers of triggering (1 for each patient) and non-triggering PAA. Analysis was
performed including from 5 to 100% of non-triggering PAA. For each sampling
percentage < 100%, the analysis was repeated on 200 random samples. Figure 3.14 A
displays, for each sampling percentage, the ratio of the 200 samples for which each
variable was included in the logistic model. Clearly, four variables were always included
irrespective of the sampling percentage: ArrhyDuration, Premass, NDvdt, and LFPortion.
Mean value and standard deviation of the sensitivity, specificity and the area under ROC
curve are plotted in Panel B of Figure 3.14. These three indices did not vary much as a
function of the sampling frequency. Hence, additional analyses were performed using all

non-triggering PAA.
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Figure 3.14 A) For each percentage of non-triggering PAA included in the sample, the
ratio of the 200 runs in which each variable was included in the logistic model. The color
bar indicate the value of the ratio; B) Mean value and standard deviation of sensitivity,
specificity, and ROC curve area over the 200 runs for each percentage of non-triggers

PAA.

The discrimination power of each variable was also measured by using the statistical
significance of its parameter in the univariate logistic regression. Since most patients had
their triggering PAA on the left atrium, analysis was repeated for these patients
considering their LPAA only. Besides, analysis was also done separately in the subset of
these patients with high (N>100) and low number (N<=100) of PAA to verify if the

predictive power of the variables was different in these subgroups.

Figure 3.15 shows the results for the four groups of patients: all patients (Tot), patients
triggered from the left atrium considering only their LPAA4 (LeLe) and among these, those
with high or low LPAA rate (LeHi, LeLow). Figure 3.15 A gives the discriminating
power of each individual variable (p of the null hypothesis/0.2, set as 1 if bigger than 1,
such that the usual p <.05 level of significance corresponds to p/0.2 <.25). For all
patients taken together, all variables, except A4Mean and CTAMean, could individually
bring a significant contribution. 44 Mean also became significant when the analysis was
restricted to the LeLe group (LPAA from patients with AF triggered by LPAA). Within
this group of patients, CTAVMean, Rraa and ArrhyDuration provided a significant
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discrimination only in the low LPAA rate group (LeLow), while NDvdt and LFPortion

were significant only for the high rate group.

Figure 3.15 B gives the variables that were selected by the conditional forward logistic
regression, using a cut-off point of 0.05 or .1 for inclusion. ArrhyDuration, Premabs,
LFPortion and NDvdt were selected in both the total and LeLe groups. ArrhyDuration
and Premaps were selected in the LeLo groups, LFPortion and NDvdt in the LeHi group.

B
Relative P Value=P/0.2 (if Relative P>1, then setto 1) Beta of the Logistic Regression for the Independant Variables
PAA Rate ! PAA Rate
ArrhyDuration ArrhyDumlionﬁ
LF/HF E LF/HF
LFPortion .7 LFPortion#
HF HF
LF ’ LF
5
AAStd AAStd
AAMean *  AAMean*
Nivdt - Ndvdt*
CTAVMean 0.2 CTAVMean
CTAMean 0.1 CTAMean
Lele LeLow LeHi Tot(0.05) Tot{0.10) LeLe(0.05)LeLe{0.10)LeLo(0.05)LeLo{0.10)LeHi{0.05) LeHi{0.10)

Figure 3. 15 A) Relative P value of each independent variable in the logistic regression
for four groups of patients (P/0.2, set to a maximum of 1); B: Beta values of variables of
in the final forward conditional logistic model on different group PAA with significant
level for entering the variables as 0.05 and 0.10, green stands for negative parameter, and
red stands for positive parameters, white indicates non-significant predictor. (Tot, total
PAA; LeLe, LPAA from patients with AF triggered by LPAA; LeLo, LPAA with PAA
number<100; LeHi with PAA number>100)

3.6 Discussion

3.6.1 Time Evolutionary Risk Factors

Previous studies on post-CABG AF have considered intervals of two hours, one hour,

thirty minutes, or even a few minutes before the onset of the arrhythmia [134, 139, 188].
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Besides, different durations of AF were considered. We initially chose two hours to
investigate if monitoring could be useful to detect changes associated with impending
AF. Significant differences were found for subsets of variables between the first and
second hour, within the second hour, but never during the first hour (Table 3.1, 3.2).
Therefore, we conclude that the 2 hours interval was an appropriate time frame for our

study.

AEG provides the local prematurity of PAA and helps to determine the origin of PAA.
Prematurity is a local measure, in contrast to coupling time measured from QRS which is
a global measure that includes intra-atrial and atrio-ventricular conduction time. AF was
initiated by LPAA for 87.6% of the patients, and the proportion of LPAA was greater than
RPAA in all except two patients (Fig. 3.2). This differs from the result of Frost et al. who
found the trigger PAA to originate from the left atrium in only 8 of 14 post-CABG
patients. However, they were using only two epicardial electrodes and were considering

the first >30 s AF, while we chose >10 minutes AF [186].

In this chapter, position data were calculated from all information recorded in the two
hours and ended up to improve the discrimination of periods close to AF relative to raw
data. This indicates that changes measured relative to the state of the patients might be
more relevant that raw values. However, position data were less effective than raw or
other forms of normalized data in the comparison of AF and Non-AF patients presented

in Chapter 5.

Most patients had more LPAA than RPAA. Ashar reported that AF triggers most
frequently originate in the carina region of the pulmonary veins [199, 200]. However,
was the 26/30 dominance of trigger LPPA simply a consequence of their greater
incidence among the total PAA, or did LPAA stems from a more arrhythmogenic
substrate to have greater potential to trigger AF? Here we give a discussion of the
difference of LPA4 and RPAA in the substrate point of view. On average, LPAA had
lower prematurity, Dvdt, NDvdt, and longer CTA (Table 3.4). As shown in Figure 3.16,
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such differences in mean value are found in 13 to 20 patients, together lower Premuaps, rel

and lower CT4 in 15 patients.

Coupling Interval
I I

s 1 .
RAeT fititarite yi%ﬁiﬁg i

1000

ms

0 |
0 5

300 T T T

200 —

SPERE iiifziigiiii Tia,eseifat i

ol -

ms

100 L L \ \ \ L
0 5 10 15 20 25 30

400 T T T T

NN
.];;;E; %;iifﬁ; - Hi“;gj ;

05 | I I I I
0 5 10 15 20 25 30

200 —

uwims

¥
o]
L]
e
B
e
»
#
Hote—|
few—]|
L
Hel
#
.
b
L]
+
™
l-eel!
!

o+

15 |

L ]
o

0

Figure 3.16 Mean value and standard deviation of LPAA (blue) and RPAA (pink) CTA,
Premaps, CTA, Dvdt and NDvdt. The rightmost points in each panel are the average and

standard deviation of the individual mean values.
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Table 3.5 P value of Anova of Premabs, CTA, Dvdt and NDvdt, excluding patients with
less than 2 LPAA and RPAA. For CTA, Dvdt, NDvdt analysis were repeated with (C) and
without (N.C.) Prematurity as covariate. The analyses were done with patient effect
considered as a random effect. However, the distribution of the patients CTA4, Dvdt and

NDvdt mean values were far from normal, with or without covariate.

Premans CTA Dvdt NDvdt
N.C. C. N.C. C. N.C. C.
Origin(L
R) 0.027 0.004 0.115 0.036 0.203 0.145 0.155
or

Patient | <0.001 <0.001 <0.001 <0.001 | <0.001 0.304 0.456

Origin*
' <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Patient

If the relation of speed to prematurity was the same across the tissue and if the pathway
of propagation was also identical irrespective of the origin of the ectopic, then, following
a sinus beat, CTA should be shorter for a LPAA than for a RPAA with the same level of
prematurity. As it can be understood from Figure 3.17, this follows from the fact that the
front created by the LPPA would be moving toward locations that were depolarized
sooner than the position where the ectopic is created. In this simple model, a way to get a
longer CTA for LPAA would be to assume that the speed of propagation, in addition to
prematurity, also depends on position. This is shown in Figure 3.18, where
1

o) = kot e @) G-l

where P is the coupling time at each location. Assuming a slower propagation would also
be consistent with lower Dvdt. Our results suggest that, in patients experiencing
prolonged AF, LPPA, beside the fact that they present greater prematurity, are often
associated to some level of enhanced depression of excitability of the left atrium (Seen

the analytical resolution in Annexe II). This is consistent with the finding that
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preoperative impairment of left atrial function such as a larger LA, larger LA appendage

and lower LA ejection fraction, increases the risk of post-operative AF [96].

1.PAA

RPAA

Figure 3.17 Diagram of pulse propagation either from RPAA, or from LPAA, assuming

propagation at constant speed for the activation before the premature activation
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Figure 3.18 Simulation of eq. 3.1, with & =0.2, and k=0 (left) and k=0.5 (right). The

premature impulse was applied at both end, with a coupling time P=1. Propagation of the
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first front was done by stimulation at position 0 in a resting medium (i.e. P(x) — o ) The
solid line is the conduction time vs. position of pulse from the right, and dot line for from

the left applied with the prematurity =1.

Globally, there was an increase of Rr44 in last hour before the onset of the AF, coming
essentially from an upsurge in LPAA (Figure 3.3). This is similar to the previous
observations that the number of ectopic beats tends to increase before the start of
paroxysmal AF [189] [33, 201]. The analysis of the temporal Rp44 evolution showed
diverse of profiles (Figure 3.4), with 18 patients displaying some sustained increase of
the number of LPAA in the last 40 to 15 minutes before AF. Hence, AF is not always
preceded by an increasing trend of PAA or LPAA.

Logistic regression analysis indicated that four variables were contributing more often to
distinguish the last time periods (5, 10, 15, 20 and 30 minutes) before AF from the other
time periods: higher heart rate, higher LFPortion, increase density of PAA and short-

transient arrhythmias.

Higher heart rate is in accordance with the results of different groups that suggested that
postoperative patients with higher heart rate were more prone to AF [24, 71, 202].
However, Hogue et al. rather concluded that heart rate dynamics before AF could be
either lower, higher or even constant. [136]. Our observations did not contradict either of
these statements. As seen in figure 3.5 A, which is a population-based approach, there is
indeed a gradual acceleration of the heart rate before AF. However, cluster analysis of
figure 3.5 B reveals that only 15/29 patients follow this trend. As for PAA rate, there is
no unique pattern that could be alone predictive of impending AF. The heart rate
variability measures were calculated in five minutes intervals. This time frame was
considered as a tradeoff between the stationary needed for FFT to be significant and its
frequency resolution. Heart rate variability might be useful as a measure of the
modulation of autonomic tone even though the connection between may sometime
become ambiguous. Indeed, Movement and vascular perturbations that may be unrelated

to the autonomic tone might alter the heart rate variability.
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As discussed in Section 1.2.1 (Chapter 1), the LF component of heart rate variability is
often considered to be a marker of sympathetic modulation, although this point of view
remains somewhat controversial. In both raw data and position data, we found an
increasing trend of the population mean LFPortion, in last 30 minutes, reaching a peak
in last 10 minutes before AF (Figure 3.6 B). The increase of both A4Mean and
LFPortion might be explained as an augmentation of the sympathetic and/or decrease of
the parasympathetic tone in last half hour. However, the study of correlation between
AAMean and LFPortion trend did not support that point of view because the correlation
was widely distributed among the patients (correlation between 5 min. values, [min,max,
mean * std,]: 2hr=[-0.77,0.45,-0.12 £ 0.37]; last hr=[-.74,0.59,-0.12 =+ .035];last Y2 hr=[-
0.84,0.73,-0.06 £ 0.51]). That’s to say, the two variables could not be equivalent since
LFPortion and AAMean represents two different physiological meanings. The higher or
lower AAMean is caused by the increase of sympathetic or the decreased of
parasympathetic tone. LFPortion reflects the fluctuation of heart rate, so it is also more
related to the temporal fluctuation of sympathovagal action. Therefore, both variables

entered into the final logistic regression model.

Dimmer et al. reported an increase LF/HF ratio before AF, which they attributed to a
loss of vagal tone (0.16<HF<0.4) and a moderate increase in sympathetic tone (LF) [71].
In our case, there was no significant time effect for LF or HF alone. As for heart rate,
Hogue et al. observed divergent autonomic conditions before AF onset: heightened
sympathetic tone in some patients, but either higher vagal tone or dysfunctional
autonomic heart rate control in others [136]. This is consistent with the huge variability

in LFPortion time course found in cluster analysis (Figure 3.6 B).

Although the same variables had significant time effects and were selected in the final
logistic regression model for either raw or normalized data, the latter always had higher
level of statistical significance and correct classification. This comes from the huge
variations of mean level and amplitude of changes observed for every variable among the

patients. The normalization, based on the distribution of the values in each patient,
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removes these differences of scale. It suggests that a relative threshold, adapted to the

state of the patient, can be a better predictor of impending AF.

3.6.2 Triggering vs. Non-triggering PAA

Prematurity (coupling interval) is believed to be an important index of the pro-arrhythmic

potential of a PAA [186, 190, 199, 203]. The triggering PAAs were among the 10% most

premature PAA experienced by each individual for ~40% of the patients, while
prematurity was uniformly distributed for the others (Figure 3.11 A). The triggering PAA
with long coupling time were not necessarily associated with periods with high density of
PAA or transient arrhythmias (Figure 3.11 B). This suggests that the state of the tissue in

which the PAA takes place must also be taken into account

Figure 3.11 shows that the distribution of C7A4 was variant and multimodal, which
suggests the existence of multiple foci and/or conduction paths. As a consequence, the
correlation between prematurity and CTA4 was erratic among patients (LPAA, from -0.78
to 0.65, -.21+0.36), as well as the position of the trigger PAA in the distribution (from
0.017 to 1, .44 +£0.36). Although related, CT4 is not completely equivalent to the duration
of the P wave that was found to be prolonged in patients developing AF [28, 30, 127,
128].

As mentioned earlier, Dvdt obtained from AEG characterizes local propagation. Dvdt of
the trigger PAAs had a lower relative value than other PAA, even when correcting for
prematurity and previous sinus rhythm (Figure 3.13), which suggests that that the

substrate of local tissue was with enhanced depressed excitability.

AAMean, the AA of sinus beat, and LFPortion of five minutes preceding each PAA were
analyzed. There was a significant proportion of patients for which the triggering PAA
was associated with lower 44Mean and higher LFPortion (Figure 3.13A). However, few

patients possessed both properties (Figure 3.13B), which suggests that these indices may
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qualify different properties of the substrates. Temporal analysis suggested the same

conclusion.

Forward logistic regression, in conjunction with bootstrapping, identified four stable
independent predictors of triggering PAA: Premass(or Premrel), NDvdt, LFPortion,
ArrhyDuration (Figure 3.14). Together, they achieved a sensitivity and specificity ~ 80%.
The model indicates that more premature PAA with smaller Dvdt, preceded by sinus
rhythm with higher LFPortion and more transient arrhythmias, are more likely to trigger
prolonged AF. The model brings together properties of the PAA per se (prematurity), of
the substrate in which it occurs (Dvdf) and of the dynamics (LFPortion, ArrhyDuration).

The same logistic model was obtained when including only LPAA for the 26 patients for
which the trigger was also from the left atrium. Whilst prematurity appears as a stable
discriminator of the trigger, the predictive power of the other variables differs contingent
to the PAA density of the patient. For low PAA density patient, longer ArrhyDuration
and, to some extent, shorter A4Mean, are associated with the trigger. For high density
PAA patients, the risk factors rather become Dvdt and LFPortion. The contribution of
Dvdt might be explained by the fact that, when many PAA occur close to the onset of
AF, the state of the tissue for each PAA may become more important to discriminate the

trigger.

3.7 Summary

1. AF was always immediately preceded by a premature atrial PAA mainly originating
from the left Atrium. The number of PAA and the fraction of LPAA among the patients

were very inhomogeneous. LPAA was more prone to elicit arrhythmia than RPAA.

2. PAA rate, arrhythmia duration time, sinus heart rate, LF portion of heart rate

variability showed significant changes over the time in last hours before the onset of AF.
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3. Prematurity, Dvdt of the PAA, as well as LF portion and unsustained arrhythmia
duration time in the preceding five minutes were predictors of the model to discriminate

triggering from non-triggering PAA.
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Chapter 4 Preoperative Risk Factor Analysis of AF and
Non-AF Patients

Pre-CABG clinical data were available for 137 patients, 108 patients from Hopital du
Sacré-Coeur de Montréal, and 29 patients from Institut de cardiologie de Montréal

(ICM).

The following clinical data were available for all patients and included in the analysis:
age, sex, left ventricular ejection insufficiency (insufficient if = LVEF<60%),
hypertension(HT), diabetes, chronic obstructive pulmonary disease (COPD), history of
stroke, former myocardial infarct(MI), serum creatinine level, number of vessels at
CABG surgery, beating heart or extra-corporal circulation, duration of extra-corporal
circulation, duration of clamp time, preoperative Beta-blocker administration,
preoperative calcium inhibitor administration, and preoperative vasopressors/inotropes

administration.

Incidence of Atrial Fibrillation

41 (41/137=29.9%) patients experienced a first >10 minutes AF episode during the
second and third 24hrs after CABG surgery. This incidence was on the same level as that
reported in the United States (33.7%), Canada (36.6%), Europe (34.0%), United
Kingdom (31.6%), lower than for Middle East (41.6%), but higher than South America
(17.4%) and Asia (15.7%) [77].

Statistical Methods:

Univariate associations between potential predictors and AF were investigated using chi-
test (category variable), t-test, ANOVA (scale variable), logistic regression modeling and

survival analysis (for both kind of variables).
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All variables with significant univariate effect were further analyzed with multivariate
logistic regression using a combinative stepwise forward conditional selection method.
The analysis, repeated with choice among all variables, gave the same results. Model
entry and retention criteria were set at p<0.1 and p<0.15. The final logistic models were
evaluated using the Hosmer-Lemeshow goodness-of-fit test [146]. The receiver operating
characteristic (ROC) was used to compare the strength of the different models. Because
of the disproportion between men and women (104 vs. 33), weighted logistic regression
was used for some analyses, in which the contribution of the women to the likelihood

function was multiplied by the male vs. female ratio.

Cox regression (proportional hazards model) was used to investigate the effect of clinical

variables upon the post-operative time of AF [149].

4.1 Univariate Analysis Result

4.1.1 Univariate Logistic Regression

The baseline characters of the 137 patients of our study population, is listed in Table 4.1.
The predictive power of the variables to discriminate AF from Non-AF patients was
firstly assessed by univariate logistic regression. The analysis was repeated using
unweighted (UW) or sex-weighted (W) logistic regression. As seen in Table 4.2, four
variables were either significant or close to be significant for both analyses: age, previous
myocardial infarct, and hypertension and serum creatinine. The next sections provide a

detailed analysis of these four variables.
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Table 4.1 Baseline characters of the 137 patients of the study population

Group AF Non-AF
Number ( %, among total ) 41(29.93%) 96(70.07%)
Age (meantstd), years 68.54+7.40 62.42+9.19
Sex (n, % among men/women)

Men 31(29.8%) 73(70.2%)
Women 10(30.3%) 23(69.7%)
LVEF (n, %) 7 (17.07%) 11(11.46%)
Stroke (n, %) 4(9.75%) 4(4.16%)
MI (n, %) 23(56.09%) 39(40.62%)
COPD (n, %) 4(9.75%) 10(10.42%)
Hypertension (n, %) 30(73.17%) 56(58.33%)
Serum Creatinine (mean+std, mmol/L) 101.08+38.170 89.29+28.793
Diabetes (%) 13(31.71%) 31(32.29%)
Mean Number of Vessels of CABG 2.63 2.63
surgery (Mean)

Beating Heart vs. 4(9.75%) 10(10.42%)
Extra-Corporal Circulation

Duration of Extra-Corporal 71.07+38.89 66.27+34.54
(mean+Std), minutes

Cross-clamp(mean+Std), min. 44.05+26.09 42.94+25.66
Preop. Treatment (n, %)

Beta-Blockers 28(68.29%) 77(80.21%)
Calcium channel blockers 11(26.83%) 23(23.96%)
Vasopressor/Inotropes 2(4.87%) 3(3.13%)

% represents the rate among the AF or Non-AF group if not specified
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Table 4.2 P value of variables in univariate unweighted and sex weighted logistic

regression
Uw W
Age 0.000 0.000
Gender 0.927 0.896
LVEF 0.311 0.229
Former History of Stroke 0.219 0.230
Previous Myocardial Infarct(MI) 0.043 0.007
Hypertension(HT) 0.057 0.072
Diabetes 0.642 0.433
COPD 0.989 0.814
Serum Creatinine 0.065 0.032
Number of Vessels of CABG surgery 0.924 0.581
Beating Heart vs. Extra-Corporal Circulation 0.829 0.549
Duration of Extra-Corporal 0.624 0.700
Duration of Clamp 0.987 0.838
Preoperative Beta-blocker 0.372 0.423
Preoperative Calcium Inhibitor 0.408 0.294
Preoperative Vasopressor/Inotropes 0.642 0.681

4.1.2 Age/Gender

As seen in Figure 4.1, the patients were rather uniformly distributed among 50 to 80 age
groups, with a few patients below 50 and over 80. However, the proportion of AF
patients clearly increased with age. There was also three times more male than female
patients (104 vs. 33), but the proportion of AF was the same in the two groups (M:
29.81%, F: 27.27%, p=0.830).
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Figure 4.2 shows the age distribution across the (AF vs. Non-AF) and (Male vs. Female)

groups. Two-way ANOVA indicated a significant AF vs. Non-AF effect (p=.001), with
an estimated AF-Non-AF difference of 6.15 years (95% conf. inter.: 2.7-9.7 y.), as well

as a significant sex effect (p<.001), with an estimated Female-Male difference of 6.8

years (95% confidence interval: 0.9-12.8), but no interaction (p=0.957). However, the age

dispersion of the male and female Non-AF patients was very large.
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Figure 4.1 Number of AF (blue) and Non-AF (red) patients in the different A) age groups

and B) sex groups; Proportions of AF (blue) and Non-AF (golden) patients in C) age

groups and D) sex groups.
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Figure 4.2 Age distribution across AF vs. Non-AF and Male vs. Female groups. The
lower and upper lines of each box are the 25" and 75" percentiles, whose separation
defined the inter-quartile range. The middle line is the median and red diamond the mean.
The upper and lower ‘whiskers’, the lines extending above and below the boxes, are
located either at 1 inter-quartile from the top and bottom of the box, or at the position of
the minimum and maximum if they are within these limits. Outliers beyond these limits
are indicated by the +. The notches in the box are the 95% confidence interval of the

median. All following box plot figures follow the same formula.
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4.1.3 Artery Hypertension (HT)

Table 4.3 R (AF): Risk of AF in the group without (Non-HT) and with (HT)

hypertension. RR: relative risk

N | Non-HT | R(AF) HT R(AF) | RR(HT/Non- | p( 4%)
HT)
Total | 137 |51(37.2%)| 0.196 | 86(62.8%) | 0.349 1.78 057
Men | 104 |41(39.4%)| 0.195 |63(60.6%)| 0.365 1.87 081
Women | 33 | 10(30.3%) | 0.200 |23(69.7%)| 0.304 1.52 434

As seen, in Table 4.3, the ratio of hypertensive to non-hypertensive patients is
approximately 2 to 1 in both sex groups, with a relative risk of AF greater than 1.5 for

hypertensive patients.
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Figure 4.3 Distribution of Age as a function HT and AF among. A) male and B) female.
The symbols of four groups: NAFNHT, Non-AF without HT; NAFHT, Non-AF with HT;
AFNHT, AF without HT; AFHT, AF with HT.

However, the interplay of hypertension and age made its real AF predictive power harder
to assess (See Figure 4.3). On one hand, hypertensive patients tended to be older in both
sex groups (Male: 64.57 vs. 59.5, Female 70.2 vs. 67.8), which made them more prone to
AF. Were the differences simply a consequence of age promoting both AF and
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hypertension, or rather the expression of a risk factor whereby hypertensive patients
became more liable to AF at a lower age? Upon 3-ways ANOVA of age, Sex (p=0.001)
and AF (p=0.001) effects were diagnosed as significant, but not HT (p=0.576). There
was also an indication of a potential HT*AF interaction (p=0.076), patients without
hypertension and AF having a propensity to be younger. The small differences of age
existing between hypertensive and non-hypertensive AF patients (HT vs. Non-HT, Men:
66.5+ 8.0 vs. 67.9 £5.1, Women= 73.31+5.5 vs. 76.5 + 6.4) somewhat mitigated to the

role of hypertension as an independent risk factor, at least in the male group.

4.1.4 Prior Myocardial Infarct (MI)

Table 4.4 R(AF): Risk of AF in the group without (Non-MI) and with (MI)

(RR: relative risk)

N Non-MI | R(AF) MI R(AF) RR P( %)
(MI/Non-MI)
Total 137 | 75(54.7%) | 0.227 | 62(45.3%) | 0.371 1.64 064
Men 104 | 60(57.7%) | 0.233 | 44(42.3%) | 0.386 1.66 .092
Women | 33 | 15(45.5%) | 0.200 | 18(54.5%) | 0.333 1.66 392

The patients were almost equally divided between the groups with and without prior
myocardial infarct (MI), but the former had a 2/3 increase of risk. Figure 4.4 details the
relation between age, sex, AF and MI. In the men group, Age remained the main
predictor of AF in both the MI and Non-MI groups. For women, the AF vs. Non-AF age
difference was much reduced in the MI group, suggesting that it could be an age-

independent AF predictor for this group.
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Figure 4.4 Distribution of age in the groups with and without previous MI and AF for A)
male and B) female. NAFNMI, Non-AF without MI; NAFMI, Non-AF with MI;
AFNMI, AF without MI; AFMI, AF with MI.

4.1.5 Serum Creatinine

A simple T-test indicated a different serum creatinine levels (Non-AF: 89.29+28.793 vs.
AF: 101.08+£38.170 mmol/L, p=.05). However, upon closer scrutiny, the situation was
more complex. There was a marked difference between sexes (Figure 4.5 A), and two-
ways (AF, Sex) ANOVA diagnosed only the sex effect to be significant (p=.01).
However, the Non-AF vs. AF differences varied among the different age groups (Figure
4.5 B). Since age was a predictor of AF, the level of serum creatinine could be helpful to
reduce the number of false positive among older age groups. HT has a significant effect
on serum creatinine level. ANOVA analysis on the two effects of HT and AF, neither of
them is significant (HT: 0.102, AF: 0.135, HT*AF: 0.986). In Figure 4.6 B, it seemed
there is effect of HT between Non-AF and AF. The non-significance might be caused by
the confounding of serum creatinine level of HT, Non-AF patients with Non-HT, AF

patients.
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Figure 4.5 A) Bar plot of mean and standard deviation of serum creatinine level in AF vs.
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Figure 4.6 A) mean and standard deviation of serum creatinine level as function of HT
and AF. NAFNHT:Non-AF and Non-HT, AFNHT: AF and Non-HT, NAFHT: Non-AF
and HT, NAFHT: AF and HT (Effect: HT: 0.102, AF: 0.135, HT*AF: 0.986). B) Mean
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1s the serum creatinine level.
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4.2 Multivariate Logistic Regression Analysis

Both weighted and unweighted stepwise forward multivariate logistic regressions were
finally applied using the complete set of variables that was analyzed with univariate
regression. The regression was run using a p=0.1 liberal criteria of inclusion. Table 4.5

summarizes the final results. Age and serum creatinine were included with similar £ in

both multivariate models, age always entering as the first and most important predictor.
Preoperative myocardial infarct was included in the weighted model, but was less
significant in the unweighted analysis model, meaning that its discriminative power was
slightly more important for women. HT was never included in the multivariate models, a

consequence of its correlation with age as discussed in the above section.

Table 4.5 Beta values and probability of the variables included in the logistic regression
models. Weighted(W) and unweighted (Non-W) univariate (U) and multivariate (Mv)
models. The numbers in parenthesis is the order of entry of each variable in the stepwise
models. For variables not included in a model, the significance of the variable evaluated

at the last step of the iteration is indicated.

Uv. Non-W Uv. W. Mv UW Mv W

Age B 0.086 0.0847 0.086 (1) 0.101 (1)

p <0.001 <0.001 0.001 <0 .001
Infarct Jo) 0.768 0.8331 0.711 (2)

p 0.043 .0077 0.145 0.036
Creatinine Jo) 0.012 0.0123 0.011 (2) 0.012 (3)

p 0.065 0.0317 0.066 0.025
HT B 0.795 0.6318

p 0.057 0.072
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Because AF proportions in men and women were similar, sex was not a significant
univariate predictor. However, results of section 4.2.2, showing about 5 years difference
between men and women for both AF and Non-AF patients, suggested that the predictive
power of age could be improved by introducing a correction for sex. However, the gain
was not sufficient for sex to be included in the models, probably because of the wide
dispersion of age among Non-AF women. The same result was obtained in

complementary analyses in which an additional age*sex variable was also considered.

A logistic regression model provided score for each patient, which was used to build a
receiver operating characteristic (ROC) curve. It supplied a global assessment of the
model and a procedure to select an optimal threshold for discrimination [204]. The ROC
of three models (I: Age, 1I: Age+Serum Creatinine, III: Age+ Previous myocardial infarct
+ Serum Creatinine) pictured the improvement of prediction brought by the introduction

of each variable. Since the £ values of age and serum creatinine were similar for both
the unweighted and weighted models, the £ values from the weighted regression were

used for Model III. The threshold to compute the sensitivity and specificity was selected
as the level associated to the shortest distance to (1-specifity, sensitivity) = (0, 1) (see

Figure 4.7).
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Figure 4.7 ROC curves from logistic regression Model I, II and III. The circles of the

curves correspond to the optimal sensitivity and specificity for each model.

Table 4.6 presents the results of the three models for total population, as well as men (M)
and women (W) separately. The men and women indices were calculated using the same
cut-off thresholds. Serum creatinine yielded an around 5% increase of sensitivity and
specificity. Previous myocardial infarct improved the specificity, but did not change (vs.
Model I, IT) and even reduced (vs. Model II) the sensitivity. However, it improved much
the specificity and accuracy for women, which was expected since it was included in the
weighted logistic regression model only. In summary, Model II had the highest sensitivity
and medium, whilst Model III had the highest specificity.
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Table 4.6 Indices of Model I, II, and III on men, women and total population

Model | Model 11 Model 111
60.98% 65.85% 60.98%
Sensitivity 51.61% 90% 58.07% 90% 51.61% 90%
M) (W) M) (W) M) (W)
67.71% 71.88% 79.17%
Specificity 78.08% | 34.78% | 76.71% | 56.52% | 80.82% | 73.91%
M) (W) M) (W) M) (W)
65.69% 70.07% 73.72%
Accuracy 70.19% 51.52% 71.15% 66.67% 72.11% 78.79%
M) (W) M) (W) M) (W)
34.31% 29.93% 26.28%
Miss-
) ) 29.81% 48.48% 28.85% 33.33% 27.89% 21.21%
Classification
M) (W) M) (W) M) (W)
44.64% 50% 55.56%
Positive
o 50% 37.5% 51.43% 47.37% 53.33% 60%
Predictive Test
M) (W) M) (W) M) (W)
80.25% 83.13% 82.61%
Negative
o 79.17% 88.89% 81.16% 92.86% 79.73% 94.44%
Predictive Test
M) (W) M) (W) M) (W)
ROC Area 0.69792 0.71989 0.72726

M*: Male; F*: Female;

Sensitivity=True Positive/ (True Positive+False Negative),

Specificity=True Negative/ (True Negative+False Positive);

Accuracy=(True Positive+True Negative)/( True Positive+ True Negative +

False Positive + False Negative),

Miss-Classification=1-Accuracy;

Positive Predictive Test=True Positive/ (True Positive + False Positive);

Negative Predictive Test=True Negative/ (True Negative+False Negative),
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Model I was equivalent to putting a threshold on age. When logistic regression was run
for men only, age was the single significant predictor. As seen in Figure 4.8, the errors of
Model I came from old patients without AF (F': False positive, 31 patients) or young
patients with AF (F: False negative, 16 patients), showed in Figure 4.8. Ideally,
supplementary variables should act to decrease the scores of the F' and increase that of F-

, without altering the classification of the true positives (T") and negatives (T").
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Figure 4.8 Distribution of age of TP, FP, TN and FN obtained by Model I. The diamond
square points indicate the mean value of each group. TP: True Positive; FP: False

Positive; TN: True Negative; FN: False Negative.

Model II introduced serum creatinine. Classification was improved for 6 F* (becoming T,
1 man and 5 women) and 2 F~ (becoming T", 2 men). Figure 4.9 shows the distribution
graph of serum creatinine of TP, FP, TN and FN obtained by Model II. The diamond
square points indicate the mean value of serum creatinine in each group. However, it also

created 2 F* (2 men). This explains why the variable was not included in the model if
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only men were considered. The main effect was increasing the specificity for women
from 34.78% to 56.5%. A new variable of multiplication of creatinine and age was
generated to repeat the regression analysis. In Model I, this variable was also entered
into the model, but the ROC curve remained almost the same, and the sensitivity and

specificity were not improved.
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Figure 4.9 Distribution of serum creatinine of TP, FP, TN and FN obtained by Model II.

The diamond square points indicate the mean value of serum creatinine in each group.

Model IIT added the variable of myocardial infarct. Compared to Model I, it improved
the classification of 9 T°, (4 men ,5 women); 1 7" (a man), at the expense of two 2 F*,
(1 man and 1 woman) and 3 F (3 men). Figure 4.10 shows the proportion of history
infarct in four groups TP, FP, TN and FN. The specificity of women increased from
56.52% to 73.91%, and men from 76.71% to 80.92%, while sensitivity of men decreased
from 58.07% to 51.61%.
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Figure 4.10 Pervious myocaridal infarct proportion in four groups TP, FP, TN and FN.

To summarize, serum creatinine improved the female specificity and male sensitivity,
and the myocardial infarct mainly improved the female specificity. Initial analyses
suggested that sex could be a predictor in the model. However, the variables of

myocardial infarct and serum creatinine had more significant role than sex.

4.3 Cox Regression

It might be presumed that patients with higher preoperative risk could develop AF sooner
after surgery. Figure 4.11 shows the post-operative without AF Kaplan-Meier survival
curve and cumulative hazard functions for all patients [205, 206]. There was a quasi-
exponential increase of the number of AF from the second to the fourth post-operative

day.
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Figure 4.11 Survival curve and cumulative hazard function of AF with respect post-

operative time (A: Survival function, B: Hazard Cumulative Hazard function).

The baseline hazard function measures survival independently of the covariates. Forward
and backward stepwise Cox regression was applied to the same set of variables that were
considered for the logistic regression in the previous section. The analysis was performed
with entry and removal probability, i.e. 0.05 and 0.10 respectively. As for unweighted
logistic regression, both age ( 5=0.081, p<0.001), serum creatinine ( 5=0.009, p=0.026)

were the variables included in the both forward and backward final models. This has been
expected since the preoperative risk was related to the final probability of surviving

without AF.

Figure 4.12 shows the survival curves for three groups defined by the AF probabilities of
the logistic regression model, Model III, presented in the previous section : 1) P <0.2; 2)
0.2< P <£0.4; 3) P> 0.4. As expected, the final survival proportion was lower for the
higher AF probability groups. However, the initial onset of AF was not delayed among
the three groups. Among AF patients, the correlation between the AF onset time and the
preoperative probability was weak and non-significant (r=-0.107, p=0.535). This suggests
that the preoperative variables can to a certain extent predict who will get AF, but does

not seem to be predictive on the time when AF will occur. A similar analysis of patients
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classified by age groups (40, 50, 60, 70 and 80) produced the same results, which is not
surprising since age was the main contributor to the probability (Figure 4.13, left panel).
The same kind of conclusion was also drawn by examining the survival curve as a

function of gender (Figure 4.12, right panel).
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Figure 4.12 Survival curves of three groups of Patients with different preoperative risk

score classified in three groups.
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Figure 4.13 Survival curves by the functions of age group and sex

In addition, the risk score also presented very low correlation with the total PAA number,
arrhythmia duration time among AF patients. This also indicated that the preoperative

risk score plays the role of static risk factor in the occurrence of postoperative AF.

4.4 Discussion

Age appeared as the most important predictor of postoperative atrial fibrillation after
CABG surgery, the mean age of the AF patients being around 6 years older than Non-AF
patients (Men: ~67 vs. ~61 years, women: ~68 vs. ~75 years). Different studies of post-
has been attributed to age-related changes such as shorter effective refractoriness, longer
atrial conduction times, atrial stiffening, and splitting of the atrial excitation waveform
caused by the pectinated trabecula [4, 208]. It has also been suggested that unavoidable
trauma to sympathovagal fibers originating from the deep or superficial cardiac plexus
during surgery may enhance the pro-AF effect of preexisting atrial electrical changes

caused by aging [81].

There was around 3 times more men than women in our sample (104 vs. 33), but the

incidence of AF was the same in the two groups. Despite the fact that women patients
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were on average older, and that the difference of age between AF and Non-AF patients
was the same in the two groups (ANOVA and Figure 4.12), sex did not appear as
independent predictor in univariate or multivariate (as sex*age) logistic regression model.
Our results concurred with Auer et al. who concluded that sex was not an independent
risk factor, but contradict Zaman et al. who reached the inverse conclusion results [80,
100, 209]. However, it cannot be said that gender has absolutely no effect. The main
improvement in predictive power from logistic regression model from Model I to Model
IIT appeared in the specificity for women (Table 4.5). Many women were false positive
with the model incorporating age only because the average age of the women Non-AF

group was the same than the AF men group.

Hypertension is associated with left ventricular hypertrophy, which impair ventricular
filling, induce left atrial enlargement, and slow down atrial conduction velocity [210].
The changes in cardiac structure and physiology leading to hypertension also predispose
to a higher risk of developing AF. Conventional therapy of atrial fibrillation currently
focuses on interventions to control heart rate, rhythm, and the prevention of stroke by
anticoagulant medications, rather than treatment of hypertension. In patients with AF,
aggressive treatment of hypertension may reverse the structural changes in the heart,
reduce thromboembolic complications, and retard or prevent the occurrence of AF [210].
Nevertheless, our study concluded that the role of hypertension in the occurrence of post-
CABG AF is for the less dubious. Hypertensive patients had indeed a 78% increased risk
to of AF, an effect close to significance in univariate analyses (Table 4.2 and 4.3).
However, it did not appear as a predictor in the final logistic model, contradicting the
conclusion of Svedjeholm et al. [117]. In our sample, the effect of HT was confounded

by age.

To some extent, the same age confounding effect was also present for pervious
myocardial infarct (MI) (Figure 4.4), though it was still present particularly in the
weighted version of the final logistic model (Table 4.3, 4.4 and 4.5). Many studies have
demonstrated that MI has the potential to provoke AF (for review [211], [212]), although

the mechanism is still not clearly understood. In this setting, the risk of AF is increased
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by elevated heart rate, left ventricular dysfunction and impaired hemodynamic. High
heart rate suggested that the cardiac autonomic nervous system might be involved. Left
ventricular dysfunction and impaired hemodynamic hinted to a mechanical effect.
Reduced ejection fraction coming from left ventricular dysfunction or hypertension could
result in an additional expansion of the atria before opening of the atrio-ventricular valves
that may induce pro-AF remodeling Reversely, AF can often complicate MI acute

myocardial infarction (AMI) by reducing the pump function of the heart

Serum creatinine is the commonly used indicator of renal function. Renal dysfunction is
defined by a serum creatinine level of at least 177 umol/L, accompanied by an increase
of at least 61.9 umol/L from baseline [77]. Serum creatinine is usually higher in male
patients than female patients whether developing AF or not [94, 95, 213]. Radmehr
evaluated the effect of preoperative increased level of serum creatinine. It was found that
higher serum creatinine level group had higher frequent postoperative atrial fibrillation,
so he proposed that serum creatinine level preoperatively is a marker of increased early
mortality and outcome after CABG [94] . In our sample, the level of creatinine was
higher for AF group for patients older than 60 years, whereas the relation was even
inversed for younger patients (Figure 4.5). This result is difficult to explain, and may

result from the limited size of our study population.

The purpose of using weighted likelihood logistic regression was to circumvent the
disproportion of the male and female population in our sample. Sex did not show up as
an independent predictor in our analysis, but it showed some level of interplay with other
factors such of age, previous MI, serum creatinine. The difference between the
unweighted and weighted model was the higher level of significance of previous MI in
the latter. MI mainly improved the prediction specificity for women, at the expense of
sensitivity for men. The final complete model achieved a sensitivity of around 60%, and

specificity of around 80%.
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It is natural to think that AF should occur sooner in patients with higher preoperative risk.
However, the survival curves rather showed that AF occurs at the end of the first
operative days irrespective of the preoperative risk. However, the hazard rate was both
higher and more sustained in the high risk group (Figure 4.11, 4.12). As suggested in
chapter 3, some changes, beyond preoperative risk, might condition the appearance of

AF, which is the topic of the next chapter.

4.5 Summary

1. Age was the most important predictor of postoperative atrial fibrillation after CABG
surgery. The level of serum creatinine and prior myocardial infarct were also
preoperative predictors. Serum Creatinine played the role to improve the female
specificity and male sensitivity, and the myocardial infarct mainly improved the female

specificity.

2. The preoperative risk score could to a certain extent predict who would develop AF,

but were not predictive on the time when AF would occur.
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Chapter S AF vs. Non-AF Clinical Predictor Analysis

In this chapter, we compare AF and Non-AF patients to find predictors that can
discriminate the two groups. AF and Non-AF patients are compared with respect to the
preoperative risk factors obtained in chapter 4 and the time series considered in chapter 3.
For each AF patient, the last 2 hours before AF were retained as in chapter 3. Each AF
patient was matched with two Non-AF patients. For these, the two hours corresponding

to the same post-operative time were selected (Figure 5.1)

0 T-2hrs T: Occurrence of AF
AF patient
~ AN
Beginning of post-operation 2 hrs before onset of AF
0 T-2hrs T: Same Time post-op time than AF patient
Matched

\ SumE Non-AF patient

Beginning of post-operation Corresponding time window of 2 hrs before time T

Figure 5.1 Time windows of AEG signals for an AF patient and its matched Non-AF
control. 0 represents the time of beginning of post-surgery. T for AF patient is the time of

occurrence of AF, T for control (Non-AF) patient is the same post-operative time.

The AF group of 29 patients was the same that was analyzed in Chapter 3. After
excluding the noisy and incomplete recordings, 87 Non-AF patients were available.

Ideally, each AF patient should have been matched according to sex, preoperative risk
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and date of surgery. The second criterion was intended to get the same distribution of
preoperative risk in both groups. The third criterion was aimed at bringing homogeneity

in the surgery and post-surgery handling.

The matching procedure was the following
1. Sort the AF patients in risk ascending order ([R}",i=1,29, R <R\ 1);

2. Starting from the first AF patient, find the 10 closest non-AF patients with
R™ >R . If less the 10 are available, include the closest patients
withR™" < R4 ;

3. Among these 10 Non-AF patients, find the two patients whose date of surgery is
the closest to that of the AF patient. For close surgery date, select the patient that
has the same sex than the AF patient.

4. Remove the AF and matched Non-AF patients.
5. Repeat steps 1 to 4 until the last AF patient.

The dates of the surgery were spread over a period of 64 months. The analyses of chapter
4 had shown a significant difference of age and pre-operative risk between AF and Non-
AF patients. Our set of Non-AF patients was not large enough to reach an equal
distribution of preoperative risk score in the two groups ( p,_,, =0.0070). The
characteristics of the final control group were as following: 58 control patients (Sex:

Male 45, Female 13, Age: 651 8.2, PreopScore 0.2964+ 0.1503) to be compared with the
AF group (Male 23, Female 6, Age: 68.8+ 6.3, PreopScore: 0.3911%0.1514).

5.1 Univariate Analysis

We firstly present detailed analyses of the variables that were shown in chapter 3 to
display significant temporal changes prior to the onset of AF, namely Rpua,
ArrhyDuration, AAMean and LFPortion. It is followed by the results of the multivariate

analyses to discriminate between AF and Non-AF patients.
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In some analyses, we introduced the concept of Relative Difference (RD) variables.

It measures the change of a variable x; at time i relative to a reference value x, as:

RDx, = —1 o (5.1)
x, +0.001

where 0.001 avoids divergence when x, =0.

5.1.1 Analysis of PAA

As in AF group (section 3.1.1), the total number of PAA varied widely among Non-AF
patients (Min. 0, Max. 811, Median. 5, mean 49). It should be mentioned that 77% of the
PAA were concentrated in 4 patients ((444+445+500+811=2200)/2843), while 24
patients have only 3 or less PAA. As shown in Figure 5.2 and confirmed by the
Kolmogorov-Smirnov test (P< .001), the distribution of the PAA number in the two
groups (AF: Min. 3, Max. 4539, Median 87, mean 575) was different, The main
dissimilarities between the two groups came from the ~30% of Non-AF patients with 0 or
1 PAA, and from ~20% of the AF patients with more than 1000 PAA. There were no
correlation between the preoperative risk and the number of PAA, neither in the AF

(r=.187, p =.33) nor the control group (r =-0.001, p=.996).
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Figure 5.2 Cumulative distribution of the PAA number in AF and Control group. The
distribution of the PAA number in the two groups, AF (blue line) and Control (red line)

was quite different.

5.1.1.1 LPAA and RPAA

Also as for AF patients (section 3.1.1), the fractions of LPAA and RPAA (LPAAFraction
and RPAAFraction, total number of LPAA or RPAA divide the total number of PAA of 2

hours) were very inhomogeneous among the control patients (Figure 5.2).
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Figure 5.3 Fraction of LPAA (blue color) and RPAA (golden color) for each patient of
the control group. Patients 48 to 58: no PAA detected. Homogeneity of the proportions

was rejected by y° test (<0.001) using either the mean number (all patients) or the mean

proportion (patients 1-47) of left and right PAA.

It is noteworthy that 92% of the RPAA occurred in three patients (811,499,426) that had
respectively none, one and 18 LPAA, while 47% (445) of the LPAA were concentrated in
one patient that did not have any RPAA. Among the 47 patients with a number of PAA
>0, 64% had a LPPA proportion >.5, which is a slight but not significant excess, in

contrast with what we found in AF patients.
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In the forward stepwise logistic regression model, both the total number of PA4 and
LPAAFraction (set to .5 for patient without PAA) brought a significant contribution to the
discrimination of AF and Non-AF patient (P=.017 and .001 respectively, Figure 5.4),
while the preoperative risk (PreopRisk), which was highly significant alone, was not
included in the final model (P=.135, if added to the final model). Hence both the number
of PAA and LPAAFraction can partly discriminate AF from control patients (Non-AF).
The fact that an increase of PAA rate was often detected prior to the onset of AF in the
previous analyses (section 3.1.2) calls for a comparison of the dynamics in the two

groups.

Ry |

Sensitivity

LPAAFraction
PAA+LPAAFraction | 4

0.1

'] | | | | | | | | |
0 0.1 0.2 0.3 04 05 06 07 08 09 1

1-Specificity

Figure 5.4 ROC curves from a logistic model including the total number of PAA and
the LPAAFraction. In the forward stepwise logistic regression model, the total number of
PAA and LPAAFraction both brought a significant contribution to the discrimination of
AF and Non-AF patient. For the first mode 1 (red ROC curve), the predictor is
LPAAFraction; for the second model (blue ROC curve), the two predictors are
LPAAFraction and PAA are included.
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5.1.1.2 PAA Rate (R,,,) and Proportion ( 7,,,) Analysis

As in section 3.1.2, PAA temporal evolution was studied by calculating PAA rate (R,,,=
number of PAA within 5 minutes interval/5 minutes minus non sustained arrhythmia

duration) and proportion ( P,,,= number of PAA within 5 minutes/total number PAA in
two hours, set to 1/24 if total number PAA=0). The evolution trends of R,,, and P,,, of

AF and control patients are shown in Figure 5.5.
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Figure 5.5 A) Mean value and standard deviation of PAA rate (R,,,) within each 5
minutes for the 2 hrs of Control (Non-AF) and AF Group. B) Mean value of PAA
proportion ( P,,,) within each 5 minutes for the 2 hrs. Control (Non-AF, diamond shape,

red line); AF(circle shape, blue line).

As expected from the results of the section 5.1.1.1 logistic regression, ANOVA analysis
of Rraa showed significant group (AF vs. Non-AF) effect (AF: 23.2+4.7 vs. Non-AF:
2.0 £ 3.3 PAA/S min., P< .001). However, both Rpaa and Praa also had a significant
time*group (AF vs. Non-AF) interaction effect, stemming from the lack of time effect in

the control group.
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Figure 5.6 The 8 biggest groups from cluster analysis of PAA rate in control group
(Patients without PAA were excluded).

Figure 5.6 presents the results of the cluster analysis of the control Rpaa temporal
evolution. Most patterns displayed minor isolated burst over a constant trend. Some

patients showed long lasting period of sustained PAA rates.

5.1.1.3 LPAA Analysis

Our previous analyses have demonstrated the importance of LPAA as trigger of AF.
L

Figure 5.7 displays the temporal evolution of the LPPA rate (R,,,) and LPAA Fraction

(LPAAFraction= number of LPAA/ number of PAA within each 5 minutes interval, set

to .5 if no PAA in the interval). Both variables showed a significant group and
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group*time effect (p< .0001). In fact, the time effect was significant in AF group

(p<.001), but not in Non-AF group.
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Figure 5.7 A) mean value of LPAA number within each 5 minutes during 2 hrs. B) Mean
value of LPAA Fraction within each 5 minutes during the 2 hrs. (AF: blue line and circle

shape; Control: red line and diamond shape).

5.1.2 Non-sustained Arrhythmia

The evolution of the arrhythmia duration (ArrhyDuration) is shown in the left panel of
Figure 5.8. ANOVA showed again significant group and group*time (P< .001) effects.
Post-hoc analysis showed that there were significant contrast between the [120 60] vs.
[60 0], and [10 5] vs. [5 0] periods in AF group, but none in the control group. The
analysis of RD (Relative Difference) of arrhythmia duration time (using the first 5

minutes as reference) yielded to the same conclusion.
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Figure 5.8 A) The mean value and standard deviation of arrhythmia duration time (sec.)
in each five minutes; B) The mean value of relative difference value of arrhythmia
duration for AF and Control. The relative difference (eq. 5.1) was calculated using the
value of the first 5 minutes as reference. (AF: blue line and circle shape; Control: red line

and diamond shape).

5.1.3 AA Trend and AA Relative Difference Trend

The analysis of AA trend (calculated from normal sinus beats) in AF patients showed a
subset of patient with an increase heart rate preceding the onset of AF (Section 3.2 & Fig.
3.5). Such a trend did not exist in the control group (Fig. 5.9 and 5.10). ANOVA showed
that the time (p=0.001, Huynh-Feldt), time*group (p=0.055) effects were significant or
closely significant, while the group effect was not significant (p=0.761), meaning that the
mean heart rate was the same in the two groups. No significant time contrast existed in

Non-AF group.
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Figure 5.9 The trend of raw AA (A) and relative difference (B) AA, the latter calculated
using the time period of the first 5 minutes as the reference. AF: red and diamond; Non-

AF: blue and circle. As in chapter 3, only normal sinus beats were considered.
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Figure 5.10 Cluster analysis of AA raw (Panel A) and relative difference data (Panel B).

In panel A and B the mean trends of 8 more populated groups were plotted respectively.

131



5.1.4 LFPortion of AF and Control Patients

In the analysis of the pre-AF temporal evolution (Section 3.3) and of the trigger PAA
(Section 3.5), LFPortion ( LF/(LF + HF)) was a predictor of the onset of AF. The
evolution of mean of LFPortion and of its relative in the AF and Control group are
plotted in Panel A and B of Figure 5.11, respectively. The analysis was done with
ANOVA. Except for the last 5 minutes interval, the mean LFPortion was always slightly
higher in the control group, although the group effect was not significant (p=.11). There

was again no significant time effect in the control group.
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Figure 5.11 The trend of mean of LFPortion (A) and of its relative difference (B). (AF:

blue, circle; Control: red, diamond)

5.2 Model Building to Discriminate AF from Non-AF Patients

This section investigates whether and to which extent the preoperative risk and the

variables extracted from AEG can discriminate AF from Non-AF patients. The following
variables were considered: PreopRisk, R,,, , R}, , LPAAFraction, —AAMean ,
AAStd , ¥rMSSD , pNN50, CTAMean , CTAVMean , CTAStd , CTAVStd , LFPortion ,
CorrdA_AV , CorrAA _CTA, CorrAV _CTA (the definition each variable was given in

chapter 2.). The AEG variables were computed over 5, 10 and 15 minutes periods.
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Logistic regression was performed with different choices of time intervals (i.e. BTI=5 to

15 minutes).

5.2.1 Logistic Regression Based on BTI (Basic Time Interval) Data

In the first type of analysis, all time intervals were classified as AF (1) for AF patients
and Non-AF (0) for control patients, and then analyzed together by logistic regression. As
aforementioned, the preoperative risk score (PreopRisk) was also included. Forward and
backward regressions were applied with entering and removing criteria of 0.05 and 0.10
respectively. Only the variables entered in both instances were kept and a final forward
model was run with these variables. The same set of variables was selected for all BTI.
The only exception was LFPortion, which was kept because it was significant for the 5
and 10 min. BTI, but not in 15 BTIL.

Table 5. 1 Beta value of predictors in the final forward logistic regression model for 5,
10, 15 minutes intervals

5 min. 10 min. 15 min.

PreopRisk 2.744 2.902 2.726
R,,, 143 217 235
LPAAFraction 1.398 2.222 2.286

LFPortion -2.326 -1.978

PNN50 -13.597 -14.154 =774
CTAVMean 014 014 013
CTAVStd .032 067 .083
CorrdA_AV -1.006 -1.190 -1.046
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Table 5.1 shows S values of the variables entered in the final models, a positive and
negative corresponding to an increase and decrease AF occurrence risk respectively. The
higher value of LFPortion (expected from Figure 5.11), pNN50 and CorrdA AV have
protective effect. Inversely, the increase of R,,, , LPAAFraction, CTAVMean and
CTAVStd lead to higher risk. The temporal evolution of the scores for three BTI (Figure
5.12) as well as their sensitivity and specificity (i.e. nb. of time intervals correctly
classified as 1 or 0, Table 5.2) show that the three models provided similar
discrimination. Figure 5.12 shows that the separation between the groups increases as

time gets closer to the onset of AF.

Table 5. 2 Sensitivity, specificity, and ROC area of models of 5, 10 and 15 minutes BTI

Sensitivity Specificity ROC Area
5 min. 75.07% 70% 0.813
10 min. 79.64% 69.44% 0.821
15 min. 80.27% 67.32% 0.815
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Figure 5.12 The time evolution of mean and standard deviation of the risk scores of 5, 10

and 15 minutes BTI (A, B, C) logistic regression model in AF (red) and Non-AF (blue)

groups.

The left panels of Figure 5.13 show the temporal evolutions of pNN50, CTAVMean,
CTAVStd and CorrAA_AV along the 2 hours time in each group for 10 minutes BTI.
There are clear and sustained differences between the AF and Non-AF groups justifying
the inclusion of these variables in the logistic regression models, as well as the sign of
their contribution in the model. However, the cumulative distributions of the average
within AF or Non-AF (right panels) reveal that the differences mainly result from an
excess subset of Non-AF patients in the upper or lower range of values. This explains
why no significant group effect was found upon ANOVA analysis, as documented in

Table 5.3. The comparisons of the AUC (area under ROC curve) differences of the
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successive models obtained in the eight steps of the logistic regression are presented in

Table 5.4. It shows that most predictors produced significant changes.
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Figure 5.13 Left panels: temporal evolution of pNN50, CTAVMean, CTAVStd and
CorrAA_AV (from top to bottom) in AF (blue circle) and NAF (red diamond) groups. All
values were computed from normal sinus beats in each 10 minutes interval. The average

values were also calculated for each patient. The last point in each panel shows the mean
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and standard deviation of these averages in each group. The right panels show the

cumulative distribution of these averages within each group.

Table 5. 3 p value of Group (AF vs. Non-AF), Time, and Group*Time effects upon
ANOVA analysis of each variable of 10 minutes BTI data

Group Time Group*Time
PreopRisk .007

R,,, .001 .04 <.001
LPAAFraction <.001 .008 113
sdLFPortion 193 0.565 .005
PNN50 423 841 .650
CTAVMean 173 .624 .832
CTAVStd 174 544 .805
CorrdA_AV 342 .700 494

Figure 5.14 shows that the stepwise evolution ROC curves according to the predictors
entering order into logistic regression model of 10 minutes BTI data. The main
improvements come from the first four variables as R,,, , PreopRisk score, and
LPAAFraction, and CTAVMean. The index of likelihood of the 8 stepwise models shows
increase when new predictor enters (Table 5.5). The sensitivity refers to the ratio of the
number of BTI correctly classified as AF over the number of BTI of all AF patients

together, while specificity is a similar measure for Non-AF patients.

137



0.9
0.8 -
0.7
06
2
=
= 05 RPM
E — +PreopRisk
0.4 +1 PAAFraction
— +CTAVMean
0.3 + pNN50
0.2 — +CorrAA-AV
' +CTAVStd
0.1k — +| FPortion
'] | | | | | | 1

| | |
0 01 02 03 04 05 06 07 08 09 1
1-Specificity

Figure 5.14 ROC curves of stepwise logistic regression models for 10 minutes BTI by the
order of predictors entering into the models: R,,, , PreopRisk, LPAAFraction,
CTAVMean, pNN50, CorrAA AV , CTAVStd , LFPortion .
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Table 5. 4 Comparison of AUC (area under ROC curve) among the successive models
obtain in the eight steps of the logistic regression

Ivs. II II s I  ws. IV vs. | Vvs. VI VI vs. VII wvs.
III v \Y% VII VIII

Difference 0.00973 | 0.0401 [ 0.0214 0.00369 [ 0.00423 | 0.00568 | 0.00145

S.E. 0.0184 0.0106 | 0.00671 | 0.00454 | 0.00291 | 0.00389 | 0.00248
95% -0.0264 0.0193 | 0.00828 | - - - -
Confidence to to to 0.00521 0.00148 | 0.00195 | 0.00342
Interval 0.0459 0.0608 | 0.0346 to to to to

0.0126 0.00994 | 0.0133 0.00632

Significance | 0.5794 0.0002 | 0.0014 0.0187 0.1467 0.1447 | 0.5598

The following variables were successively entered in the model: RPAA, PreopRisk,
LPAAFraction, CTAVMean, pNN50, CorrAA AV, CTAVStd and LFPortion, in model I
to VIIII. Line 1 and 2: Difference of AUC and its standard deviation, line 3: 95%

confidence interval of the difference, line 4: significance of the difference.
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Table 5. 5 Sensitivity, specificity, and ROC area of stepwise logistic regression models
by the order of variables entering into the models

Sensitivity Specificity ROC Area 2Log
likelihood
R,,, 0.721557 0.783626 0.74839 1180.251
PreopRisk 0.691617 0.703216 0.73865 1095.245
LPAAFraction 0.730539 0.709064 0.77873 1035.528
CTAVMean 0.658683 0.817251 0.80015 1014.186
PNN50 0.754491 0.719298 0.80384 1000.350
CorrdA_AV 0.784431 0.719298 0.81574 982.955
CTAVStd 0.790419 0.710526 0.81997 975.811
LFPortion 0.796407 0.694444 0.82141 970.039

Finally, the stability of the logistic regression modeling was tested by bootstrap applied
10 minutes BTI data. Random samples were constructed from the 1440 (12*(29+58))
time intervals of all patients with samples sizes of [150 240 330 420 510 600 690 780
870 960]. 100 different random samples were produced for each sample size, which were
analyzed with forward conditional logistic regression. Then, the fraction of the 100
samples in which each variable was selected as a significant predictor (p<0.05) was
computed and is displayed in Figure 5.15. We considered a variable to be stable
predictor if it was selected in more 70% of the samples with the last and larger 960
sample size of (960/1440). According this criterion, the stable predictors were
PreopRisk, R}, , R,,, » LPAAFraction, pNN50, CTAVMean, CorrAA_AV. In the

following, the logistic regression model, including these 7 variables is referred as Model
0.
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We also gathered the £ coefficients of these stable predictors of all samples in which
they were selected. The mean and standard deviation of these f are shown in figure 5.16

for each sample size. The beta coefficients converged to rather stable values as the
sample size was enlarged. The final Model 0 was computed using for each variable the

mean [ value obtained from the larger sample size.
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Figure 5.15 For each sample size (represented by the abscissa value), the fraction of 100

random samples in which each variable was selected as a significant predictor (p<0.05).
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Figure 5.16 mean and standard deviation of the S coefficients of the 7 stable predictors

as a function of the sample size. (The value of the constant was added). For each

sampling size, the mean and standard deviation of the § value of each variable were

computed from all the samples in which it was included as a significant predictor.

5.2.2 Modified Models for AF and Non-AF Prediction

Model 0 had two characteristics: 1) the number of Non-AF patients was twice that of
AF; 2) all time intervals were labeled as 1 (i.e. AF) for AF patients, which favours
variables with group difference that are not or are weakly time-dependent. Four
additional logistic regression models were considered to study the robustness of the
discrimination and take into account time-dependent change. In order to balance the
contribution of AF and Non-AF patients, the weight of all intervals belonging to AF
patient were doubled to even the contributions of the two groups. This model is referred
as Model I. The analyses of chapter 3 have shown that there were temporal changes in
AF patients. Three other models were examined to investigate whether better
discrimination could be achieved by trying to take these changes into account. In Model
I1, the status variable was set to 0 for time intervals belonging to the first hour, and 1 for
those in the second hour for AF patients. In Model III and Model IV, the time intervals of

AF patients were assigned to different weights. For Non-AF patient, the weight of each
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interval was set to 1/N (N= number of time intervals for each patient). For time intervals
from AF patients, weights either increased linearly (Model III) or followed a hyperbolic
tangent (Model IV, Figure 5.17), with a sum equal to 1. These weights were chosen to
assess how rewarding more a prediction of AF closer could change the selection of
predictors and the quality of the discrimination. Results are presented for 10 minutes BTI

data.
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Figure 5. 17 Weights assigned to AF and Non-AF time intervals in Model III and Model
IV. Linear (red, model IIT) and hyperbolic tangent (blue, model IV) weights for AF time
intervals, constant weights (magenta) for Non-AF time intervals. The data is 10 minutes

BTI data. The sum of the weights is 1 for all cases.

Bootstrapping method was applied to the four models in order to study the stability of the
models as it was done in Model 0. 100 realisations were done for each sample size, and
figure 5.18 shows the fraction of these in which each variable was selected as a

significant predictor: Model I (A), Model II (B), Model III (C) and Model IV (D).
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Figure 5.18 For each sample size, appearing in the abscissa, 100 random samples were
constructed from the full set of intervals. The figure show the fraction of these in which

each variable was selected: Model I (A), Model II (B), Model III (C) and Model IV (D).

As for model 0, the variables appearing in more than 70% of the highest sample size
realizations were selected and were considered to be stable predictor. In Table 5.6, the
mean beta coefficients (the same calculation method as Model 0) of these stable
predictors are showed. In Table 5.6, Model 0 and Model I almost had the same
predictors. The common ones, which had also very similar beta values, were: PreopRisk,

PAARate, LPAAFraction, pNN50, CTAVMean, CorrAA AV. LPAARate appeared in
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Model 0 and not Model 1, while it was the inverse for LFPortion and CorrAV _CTA. The
difference of Model 0 and Model I laid in the weights of AF time intervals, which were
doubled in Model 1. Since all time intervals of AF patients were classified AF and had

the same weights, the predictors were variables with stable group difference.

For Model II (AF patients intervals of the first hour classified as 0, but all intervals with
the same weight), the number of stable predictors was reduced to 4: PreopRisk,
ArrhyDuration, PAARate, LPAAFraction. Because the samples were constructed from a
set where the number of intervals coming from Non-AF patients was twice that of AF
patients, PreopRisk was still selected. Nevertheless, because AF patients intervals of the
first hour classified as 0, the selection of the predictors was biased toward those having

not only group difference (AF vs. Non-AF), but also significant time effect.

Model III and Model IV were constructed as alternative to highlight the variables with
time-dependant changes in the AF group. Many new variables were selected as
predictors. The stable ones of both models were PreopRisk, LPAARate, ArrhyDuration,
PAARate, pNN50, ¥rMSSD, LFPortion, CTAVMean, CTA, CorrAA_AV, CorrAA_CTA,
CorrAV _CTA. Among those predictors, some were reflecting the group differences, but
many were linked to change occurring before onset of AF. Compared to Model 0, I, and
II, the last two models were more complicated. All the predictors appearing in two or

more models showed identical function, either proarrhythmic or protective.

In order to compare the prediction performance of five modeling methods, the stable
predictors and the mean £ values of the stable predictors were employed to build the
prediction model. The mean [ values were calculated as the same way as in Model 0
analysis in section 5.2.1. The prediction indices were evaluated by the prediction model
running over the complete data set. Table 5.6 shows the comparison of the prediction
performance of the five models. The five models had similar sensitivity, specificity, and

ROC curve area, but Model III provided the poorest performance for all the three indices.
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The Sensitivity and specificity measured the classification of the time intervals,
irrespective of which group the patients came from. We introduced an alternative index,
prediction accuracy, pertaining to the discrimination of the patients, which brings a more
appropriate measure of the performance from the monitoring point of view. It was
calculated by assuming that a patient became classified as AF as soon as a first time
intervals was classified as such. Model 0 to Model IV all achieved 100% accuracy for AF
patients, whereas the accuracy for Non-AF patients always remained around 40%, a bad

performance of prediction for Non-AF patients.

Table 5. 6 The mean value of beta coefficients of stable predictors of Model 0,LILIILIV

Model 0 Model I Model II Model III Model IV
PreopRisk 3.2456 3.2259 1.7693 3.3663 3.4492
PAARate 0.20138 0.19586 0.087225 0.18203 0.17814
LPAARate 0.024412 0.014696 0.012062
ArrhyDuration 0.25511 0.15763 0.1885
LPAAFraction 1.9328 1.9239 1.5909 1.9343
AA -0.0029401
PNN50 -16.1096 -16.388 -20.7817 -17.9611
rMSSD 0.033205 0.043766
LFPortion -2.4539 -1.5424 -1.2832
CTAVMean 0.013489 0.013127 0.01012 0.01035
CTAVStd 0.044525 0.040076
CTA 0.011708 0.01376
CorrdA_AV -1.3072 -1.3066 -0.85636 -0.58995
Corrd4A_CTA -0.36647 -0.33485
CorrdAV _CTA -0.76795 -0.58638 -0.44437
Constant -5.1238 -4.6291 -3.8176 -4.3322
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Table 5. 7 Indices of five models (excluding the missing value periods, and missing value
patients)

o o AF Non-AF
Sensitivity | Specificity ROC

Accuracy | Accuracy

Model 0 77.54% 72.58% 0.8193 100% 41.38%
Model I 75.15% 75.18% 0.8158 100% 41.38%
Model II 72.89% 72.13% 0.7766 100% 36.21%
Model III 79.04% 71.28% 0.8363 100% 39.66%
Model IV 79.64% 70.13% 0.8337 100% 39.66%

5.3 WMAM (Weighted Moving Average Method) For Model Prediction

Improvement and Monitoring

The reason for the low Non-AF patient prediction accuracy was that there were many
sparse, isolated alarms. It was hypothesized that a weighted moving average method
(WMAM) could improve the accuracy for Non-AF prediction. We consider a WMAM
model in which the final score was a function of the current and two previous time

intervals. To the select the weights ([8() B(i—1) B(i—2)]), the method of the odds

ratio maximization of in logistic regression, gave us the way to calculate a set of optimal
weights of WMAM method. First, the score of each time interval was computed from
each prediction model. Then, logistic regression was run, using the scores of the current
and two previous intervals as independent variables. The dependant variable was set to 0
or 1 depending on the time interval of Non-AF or AF patients, i.e., all the time interval

status of each AF were set as 1, and those of Non-AF were set as 0. The normalized beta
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values (i.e., B(;j)/min({B(@i), B —1), B +1)} and then rounded to nearest tenth decimal

values) obtained for each model for 10min BTI data are given in Table 5.8.

Table 5. 8 Normalized beta coefficients obtained by logistic regression

£ () B (-1) £(i-2)
Model 0 3 0 1
Model I 2.5 1 1
Model II 4 2 1
Model III 2.2 1 1
Model IV 2.6 1 1

To simplify the calculation, the final score assigned to each interval was calculated as:
Bi)* score(i)+ B(i —1)* score(i —1)+ B(i — 2)* score(i —2)
i)+ Bli-1)+B(i-2)

, which corresponds to the logarithm of the odds ratio divided by the sum of the beta.

Final _Score(i)=

(5.1)

As in the previous section, the prediction accuracy of AF and Non-AF was calculated by
assuming that a patient was classified as AF as soon as the score of one interval was
above the threshold. The evolutions of the accuracy vs. cut-off point value are shown in
Figure 5.19. These curves were turned to ROC curves by plotting the accuracy of AF vs.
1- accuracy of Non-AF. The rule of ROC analysis was then be used to select optimal
thresholds, which are plotted as magenta dots in Figure 5.19. However, the slope of the
curves around the operation point, which measures the dependability of the prediction as
a function of the threshold, should also be minimal. As seen in Figure 5.19, Model II

would be rejected in the light of this criterion.

Figure 5.20 shows the classification provided for each patient and each time interval
using the optimal ROC threshold for each model (panels A, B, C, D, E corresponding to
Model 0, I, II, III, IV, respectively). The ordinate is the time from 100 minutes to the
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onset of AF, or the corresponding monitoring time Non-AF. The abscissa is the patients
ID (1-29, AF; 30-87, Non-AF). The correctness of the prediction is indicated by a color
code: red, true positive (i.e. interval from AF patient classified as AF); green: false
negative; white, true negative; magenta, false positive; black, missing independent

variables because of insufficient sinus beats.

The temporal evolution of the accuracy of AF and Non-AF are shown in Figure 5.20.
Ideally, the Non-AF accuracy should remain relatively high and constant, while the AF
accuracy should increase as the onset of arrhythmia get closer, but reach a high level soon
enough to allow a prophylactic intervention. Taking into account the stability of the
accuracy vs. the value of threshold (robustness of the model), the high value requirement
of prediction accuracy for both AF and Non-AF patients, as well as the simplicity of the
model (the less number of predictors, the better under the same performance
circumstances), Model 0 and Model I appeared as the two best choices. Model II, III and
Model IV were discarded because either they were too sensitive to the cut-off point, or
had lower AF accuracy or were too complicated. One hour before the end of monitoring,
around 70% Non-AF patients were correctly classified by Model 0 and I, while around
75% of AF patients were correctly predicted.
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Figure 5.19 Prediction accuracy of AF and Non-AF vs. cut-off point. The magenta points

are the optimal ROC cut-off points and their corresponding prediction accuracy values.
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Figure 5.20 Classification of each time interval for Model 0, I, 11, III, IV, (A to E) using
the optimal threshold shown in Figure 5.19. The ordinate is the time from 100 minutes to
the onset of AF, or corresponding monitoring time for Non-AF. The abscissa is the
patients ID (1-29, AF; 30-87, Non-AF). Color code: red, true positive; green: false
negative; white, true negative; magenta, false positive; black, missing independent

variables because of insufficient sinus beats.
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Figure 5.21 Prediction accuracy of AF and Non-AF prediction over the time based on
ROC threshold for Model 0, I, II, III and IV. The abscissa is the time before the onset of
AF, or the corresponding monitoring time for Non-AF. The ordinate is prediction

accuracy for AF (red) and Non-AF (blue).

5.4 Discussion

In this chapter, different weighted and unweighted methods were used to construct
logistic regression models. A final WMAM logistic regression approach, combining the
scores of neighbouring time intervals, was used to improve the accuracy of the
prediction. In contrast with the position data used in Chapter 3, raw data and relative
difference variables were considered in the analysis. In chapter 3, there was a triggering
PAA and a triggering time period for each AF patient. Position data strengthened the
differences between the trigger PAA or time period and the others within each patient,

irrespective of the amplitude of these differences. In the modeling process, the dependant
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variable of the trigger PAA/Time period was assigned the value 1, and all others a value
0. However, the calculation of position data was based on the distribution of data over the
complete monitoring interval, which makes this method inapplicable in a context of
monitoring. As an alternative, we used the normalized data in which all differences were
expressed relative to an initial reference period. Result of the logistic and cumulative
logistic regressions with normalized data were not reported because it did not help to
improve the discrimination between AF and Non- patients. The specificity and sensitivity

of the models were either too poor, or too complex including as much as 20 variables.

Five methods were investigated, differing by the weights allocated either to AF and Non-
AF patients or to the different time intervals for AF patients. In all instances, the
preoperative risk was a significant predictor. The preoperative risk, specified by the
patient age, previous infarct, and serum creatinine, has a long term impact on the
occurrence of postoperative AF, a point on which there is no dispute [74, 97, 100, 207,

214-216].

Bootstrapping was used to evaluate the stability of the predictors. Predictors were
considered as stable if there were appearing in a large fraction of the samples, herein 70%
for the larger sampling rate. This was done to alleviate the limitation coming from the
smallness of the database and provide robustness to the final model since it became
relatively insensitive to the choice of subsets of observations. A second measure of
robustness, which was considered for the final WMAM models, was the slope of the
accuracy around the optimal threshold. A robust model should maintain a high and stable
AF and Non-AF prediction accuracy for some range of threshold around the optimal
choice. Besides being robust and accurate, a good model should also include a minimal

number of significant predictors.

Among the five models, Model 0 and Model I were best in fulfilling the three criteria.
Besides the preoperative risk score, their common predictors were PAARate,
LPAAFraction, pNN50, CTAVMean, CorrAA_AV. LFPortion, was in Model I only, but

was also appearing in Model 0 when it was run over the complete set of patients. It will
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nevertheless be discussed because its importance in the analysis of AF patients in Chapter

3.

Before trying to infer what each predictor might mean in term of physiological difference
between AF and Non-AF patients, it must be remind it would be misleading to consider
that all predictors contributed equally among the patients and that the difference between
AF patients from Non-AF patients is homogeneous. As shown in the cluster analyses of
Chapter 3, specific changes were usually restricted to distinct and restricted subsets of AF
patients, and different predictors were found to reflect the changes before the onset of
AF. Thereby, many variables ended up being included in the logistic regression model.
Relating the changes indicated by the different predictors to all patients might lead to
controversial arguments. Therefore, the following attempt to explain the mechanism of
change between AF and Non-AF associated to each predictor can only applicable to a

subset of patients.

Two of these predictors were related PAA: PAARate, LPAAFraction. Repetitive measure
ANOVA analysis showed that PA4ARate had significant group effect as well as a time
effect restricted to the AF group. Since the analysis of Chapter 3 found that LPAA were
more prone to initiate AF, it was not surprising that LPAAFraction appeared as a

predictor.

PNNS50 is the ratio of the number of consecutive sinus beats with 44 >50ms to the total
number of sinus beats in five minutes intervals. The concept was first proposed by Ewing
to study the neural autonomic balance from ECG recordings [217, 218]. Mietus et al. also
proposed that enhanced discrimination between a variety of normal and pathological
conditions could be obtained by using various p/NN thresholds. In their study, there found
higher pNN50 in healthy control versus congestive heart failure patients, healthy young
subjects versus healthy old subjects [219]. In our study, lower pNN50 appeared to
increase the risk in a subset of patients to develop AF, which is consistent with their
results. Vikman et al. also proposed that decreased complexity of sinus beats interval

dynamics played the role of marker of both altered regulation of sinus node behavior and
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an increased possibility of atrial firing from a single ectopic focus before the spontaneous
onset of AF, which together predispose the spontaneous onset of AF [201]. Ewing et al.
proposed pNN50 to be more likely a measure cardiac vagal integrity and that lower
pNNS50 in patients with altered hearts came from parasympathetic damages [218].
According to this point of view, lower pNN50 in AF patients, associated to
parasympathetic tone withdraw, should lead to an increase of the LFPortion. However,
this would contradict the observation that AF group had a lower LFPortion than Non-AF
group. In fact, there was no strong correlation between pNN50 and LFPortion in the AF
group, thereby explaining why the two variables might be included in the model. Herein,
we can only conclude that low pNN50, which occurred in a subset of AF patients, could
be related to impaired neural autonomic interaction, especially low level of

parasympathetic tone.

In the models, the heart rate variability was not a significant predictor to differentiate AF
from Non-AF patients although a subset of AF patients showed brief periods of sudden
changes in heart rate variability, which possibly reflected transient fluctuations of the
autonomic control. These abrupt changes might make the substrate more prone to
develop atrial fibrillation, primarily in individuals predisposed to arrhythmia by virtue of

preoperative factors and frequent PAA.

In Chapter 3, the results showed an increase of LFPortion before the AF onset in a
subgroup of patient, suggesting in these an increased of the sympathetic tone fluctuation.
In this chapter, Figure 5.11 showed LFPortion to be slightly lower in AF group except
for the last five minutes. Even though this difference came from a subset of patient as
mentioned in Section 5.2.1, high LFPortion appeared as a stable, protective predictor in
Model I, II, III, and IV. The two results seemed contradictory. This might be explained as
follows: There was indeed an increase of the LFPortion in a subset of patients close to
the onset of AF, but globally, its mean value over the two hours remains higher in the
Non-AF group. It should be mentioned that, because the onset of AF is often preceded by

PAA and transient episodes of arrhythmia, the FFT spectrum calculation, which relies on
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deletion of PAA and arrhythmia and interpolation, may enhance the low frequency

portion of the spectrum.

Longer CTAVMean appeared as a risk factor in both Model 0 and I. CTAV is known to be
modulated by cardiac autonomic nervous and to be related to the electrophysiological
properties of the AV conduction pathways [220-226]. The cardiac autonomic nervous
system simultaneously regulates SA and AV node. Indirectly, the change of the heart rate
also influenced the wvariability of AV conduction time [227-230]. Increased
parasympathetic tone or decreased sympathetic tone usually leads to an augmentation of
the AV conduction time. Besides, an increase of the inhomogenity of action potential
propagation would also prolong the AV conduction time. Reduced coronary blood flow
can result in a prolongation of the myocytes action potential [231] and to impaired
propagation of the sinus impulses through the atria and the auriculo-ventricular
conduction system [232, 233] . Therefore, longer CTAVMean may results from structural

difference, lower sympathetic (or higher parasympathetic) tone or perfusion defect.

Many studies on ECG proposed that a prolonged signal-averaged P-wave duration has
been shown to be an independent predictor of AF after cardiac surgery [24, 234, 235].
However, Amar did not find P wave duration time to discriminate between AF and Non-
AF patients [236]. We found CT4 to be longer in the AF group (mean, AF: 56.5 msec.,
Non-AF: 52.65 msec.). However, the difference was not large enough to be significant
upon repeated measures ANOVA, as well as univariate or multivariate logistic
regression. Detailed analysis showed that the longer CTA4 for AF patients was caused by
only a subset and lead to a higher group mean value. Some studies proposed that the P
wave dispersion was predictor to AF patients [30, 32, 237, 238]. As for CTA, we found a
slightly larger CTA standard deviation in the AF groups, which was not large enough to

become significant in any of the analyses.
The correlation between the A4 (sinus beat interval) and CTAV (atrio-ventricular

conduction time), was found to be a predictor, with slightly more negative value in the

AF (mean: -.082 vs. -.021). This correlation translates the rhythm dependence of the
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atrio-ventricular conduction time, which was more important in a subset of AF patients.
If the change of atrial rhythm depends mainly on neural inputs, then their concordant
influence on both 44 and CTAV (i.e. either should be reduced or increased together) acts
to erase the negative rhythm dependant correlation. This suggests that an imbalance
between the neural input to the atrial and atrio-ventricular node might exist is some AF

patients.

Above all, the mechanisms leading to post-CABG AF appears to be very complex, with
contribution of different interacting physiological factors. Our study suggests that
patients developing AF may have a vulnerable substrate, which might result from
different factors such as age or prior structural heart diseases. The conduction property of
atrium tissue is widely influenced by the autonomic neural balance and heart rate
variability can reflect the autonomic modulation. This modulation may create a more
vulnerable substrate. The trigger of AF is a premature atrial activation, but its ability to

initiate an AF depends on the vulnerability of the atrial substrate.

5.5 Summary

1. Five models were proposed to discriminate AF from Non-AF patients. The choice of
predictors and the values of their coefficients for score computation were made using
a bootstrap method to enhance the robustness of the models. They had similar
sensitivity, specificity, and ROC curve area, while with a poor performance for Non-
AF patients;

2. The Accuracy of Non-AF prediction was improved by a moving average extension of
these models. Two models were selected, based on the stability of accuracy with
respect to change in threshold;

3. The common predictors of the two best models were Preoprisk, PAARate,

LPAAFraction, pNN50, CTAVMean and CorrAA_AV;
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4. There was no correlation between Preoprisk and PAARate. High PAARate and
LPAAFraction were both predictors of AF group despite their wide distributions
among both Non-AF and AF patients;

5. Reduced pNN50 and more negative CorrdA_AV were AF risk factor, both suggesting
reduced autonomic tone;

6. Longer CTAVMean was also a risk factor, which could be linked to depressed or

inhomogeneous substratum for conduction.
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Chapter 6 Originality, Limitation and Future
Development of the Study

6.1 Originality of the Study

Using three-channel AEG instead of the standard Holter ECG recordings can provide
information that are difficult or even impossible to obtain from the latter, such as the
origin of premature atrial activation (LPAA or RPAA), the precise duration of atrial
arrhythmias, the local coupling time between atrial activations or their local derivatives.
However, it has necessitated the development of a new timing algorithm that proved to be
reliable and effective. The adaptive filtering of the signals and adjustment of the
detection threshold, the utilization of global and individual channel pseudo- energy, as
well the A-V distinction based on dual band pass filtering are the most innovative aspect
of the method. The reliable detection and discrimination of atrial and ventricular
activations is a problem that also come up with the sensing electrode of devices such as
pacemaker and implantable defibrillator, for which the algorithm could be eventually
adapted. The project also required the development of validation software to validate
markers, as well as to define and validate beats. It encompasses different options
available in commercial software such as Burdick Vision Premier, and Spike, and brings
some innovative ideas, for instance the classification module, the modification and
suspicious detection showing, or the find module which make the software very
convenient in doing validation. This software system is already used for other projects in

our laboratory.

The analysis proceeds in three steps: 1) preoperative discrimination of AF and Non-AF
patients; 2) temporal evolution in AF patient and discrimination of trigger versus non-
trigger PAA; 3) discrimination of AF and Non-AF patients AF using preoperative risk

and the different time series.
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1. Preoperative risk factors

The preoperative risk score could to a certain extent predict who will get AF, but was not
predictive on the time when AF occurred. Age appeared as the main preoperative
predictor, complemented by the level of serum creatinine and prior myocardial infarct.
Creatinine improved the female specificity and the male sensitivity, while the history of

myocardial infarct mainly impacted the female specificity.

2. Analysis of AF patients

Position data, whereby data were normalized with respect the distribution within each
patient, were more effective in discriminating both the time interval closest to the AF and
the triggering PAA. AF was always immediately preceded by a PAA mainly originating
from the left Atrium. However, the number of PAA and the fraction of LPAA among the
patients were very inhomogeneous, LPAA being more prone to elicit the arrhythmia than
RPAA. The time interval close to AF was characterized by increased transient
arrhythmias, PAA rate, sinus heart rate and LF portion of heart rate variability. However,
these changes were not homogeneous in the AF population, each occurring in a subset of
the patients as illustrated by cluster analysis. Trigger PAAs were characterized by shorter
prematurity, depressed Dvdt and the higher incidence of non-sustained arrhythmias in the

few minutes before the trigger PAA.
3. Comparison of AF and non-AF patients

Five logistic regression models to discriminate AF from Non-AF patients were compared,
differing in the weights given either to AF and Non-AF patients or to the different time
intervals before the AF onset. A bootstrap method was used to identify the more stable
predictors, and a moving average formulation was introduced to improve the accuracy of
the discrimination. Two models were finally selected, based on the criteria of robustness,
accuracy, and practicability. In these, around 70% Non-AF and 75% of AF patients were

correctly classified in the last hour before AF. The common AF predictors of these
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models were increased PAA rate and fraction of PAA initiated in the left atrium, lower
PNN50 and correlation of atrio-ventricular conduction time vs. AA, as well as prolonged

of atrio-ventricular conduction time.

6.2 Study Limitation

Ideally, the development of the logistic regression models should have been as that of the
timing algorithm: choice of variable and parameter determination through a test set of
data, assessment an independent validation set. However, the limited number of available
patients precludes from using this procedure. Bootstrapping was used to somewhat get
around this shortcoming, but the pitfall of over-fitting still remains. We consider that
results are fairly indicative of the characteristics of AF and Non-AF patients, but the

accuracy of the model should still be tested on a larger and different population.

The building of the model was based on off-line validated data. Validated data would
obviously not be available for online monitoring. Therefore, the robustness to noise and

false detection still needed to be tested.

6.3 Future Development

The construction of the prediction model was based on multiple time series extracted
from the AEG. However, it is possible that other variables that can be computed from
AEG could improve the accuracy. One interesting variable, which has been proposed
Pagé et al., is that the integral surface subtended by unipolar atrial waveform. [143, 239].
It was used as a measure of neural modification of action potential duration in canine
preparation. In these studies, the dogs were in atrio-ventricular block, such the ventricular
activation was not interfering with the atrial signal. In patients, the atrial repolarization is
at least partially masked by the ventricular activation. When part of the atrial
repolarization is available, as in Figure 6.1, the area could still bring relevant information

about local neural input, particularly for site close the origin of PAA. It could be also
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interesting to investigate if a method could be devised to restitute the complete atrial

repolarization, as it was done for ECG T-wave in a context of atrial flutter [240].

Figure 6.1 Activation integral surfaces of wave

Other variables might also be considered, such as fractal dimension that measures the
heart rate complexity and for which patients with various cardiac pathology has been
shown to differ from normal subjects [136]. Moreover, other time series could also bring
significant contribution. Our guess is that the monitoring of the pressure could be
particularly useful, particularly in association with heart rhythm. In some case,
fluctuations of the hearth rhythm could be a response to vascular events that must

certainly occur after an open-heart surgery.

Finally, a moving average version of the logistic regression model was introduced to take
into account with the temporal evolution of the AF vs. Non-AF discrimination. Other
methods, such as Bayesian survival analysis could offer interesting alternative [241]. In
fact static Bayesian network has been used in the context of beat classification and
fibrillation [242-245] . Adapting this algorithm for time changing prediction could be

interesting.
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Abstract

This paper describes an unsupervised signal processing method applied to
three-channel unipolar electrograms recorded from human atria. These were
obtained by epicardial wires sutured on the right and left atria after coronary
artery bypass surgery.  Atrial (A) and ventricular (V) activations had o be
detected and adentified on each channel, and gathered across the channels
when belonging (o the same global event, The algorithm was developed and
optimized on a training set of 19 recordings of 5 min. It was assessed on
twenty-seven 2 h recordings taken just before the onset of a prolonged atrial
fibrillation for a total of 1393697 activations that were validated and classified as
mormal atrial or ventricular activations (A, V) and premature atrial or ventricular
activations (PAA, PVA), 99.93% of the activations were detected, and amongst
these, 99 899 of the A and 99, 75% of the W activations were correctly labelled,
In the subset of the 39705 PAA, 99.83% were detected and 99.3% were cormectly
classified as A. The false positive rate was 0.37%. In conclusion, a reliable fully
automatic detection and classification algorithm was developed that can detect
and discriminate & and V activations from atrial recordings. It can provide the
time series needed to develop a monitoring system aiming to identify dynamic
predictors of forthcoming cardiac events such as postoperative atrial fibrillation,

Keywaords: Unipolar electrogram, human, atrivm, automatic activation
detection, classification

i Some figures in this article are in colour only in the electronic version)

1. Introduction

Atrial fibrillation (AF) occurs frequently as a complication of open heart surgery, with
incidence generally reported of 15-40% (Creswell er af 1993, Maisel er af 2001, Villareal

TERT-ARRAMG ] 2] M2 383000 @ 2008 Institate of Physics amd Engineering im Medicing  Primted in the UK 1 3%
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et af 20040, It typically manifests 48-72 h after surgery. Perioperative, intraoperative and
postoperative clinical information as well as standard ECG information have contributed to
identifying some risk factors or the so-called prediciors of AF after cardiac surzery (Maisel
et al 2001, Svedjeholm and Hikanson 2000, Zaman er af 2000, Amar er al 2004, Magee er al
2007, Mathew er af 2004, Ak er al 2005, Asher er al 1998, Dupont er af 2001). For example.
the analysis of P-wave duration and dispersion from preoperative ECG has been reported
(Tsikouris e af 2001, Havashida ef al 2005, Passman «f of 2000). Moreover, tentative
predictive characteristics have been documented with the analysis of heart rate variability and
nonlinear dynamics of RR intervals prior 1o postoperative AF, as well as in nol surgically
related paroxysmal AF (Amar er af 2003, Chamchad e af 2006, Hogue ef al 1998, Tusco e ol
2006, Vikman e al 20053 All these analyses were done off-line on relatively short episodes
of signals and had a limited predictive power.

Intracardiac atrial signal can provide information that cannot be extracted from the surface
ECG. Significant change of monophasic action potential waveforms has been reported prior
to the onset of AF (Pichlmaier of af 19%8) that might possibly be detected by unipolar atrial
cardiac electrograms (Pagé ef af 1995, Vigmond ef af 2000, Furthermore, AF is oflen
preceded by multiple atrial premature activations (Taylor er af 20020, Simultancous recording
of unipolar electrograms from different sites may provide information on the origin of these
premature activations. For these reasons, it became critical to develop a reliable method of
signal processing of atrial electrograms. Since unipolar atrial electrograms include waveforms
related 1o hoth the local atrial activation (A) and the far-field ventricular activation (%), these
events must be detected and distinguished,  The purpose of the study was 1o develop an
automatic and unsupervised detection method capable 1o analyse continuous three-channeal
recordings collected for period lasting as long as 4 days. The aims were to detect the A and WV
activations on each channel and to group together the activations belonging to the same A or
Woevent. The main challenge was to overcome the non-uniformity of the waveforms amongst
the channels, as well as their variations within each channel owing to single or multiple
premature A (PAA)Y or W {PVA) activations. The detection was done by amending the classical
encrgy-based detectors with nonlinear pre-conditioning. The identification of activation as A
or Wowas achieved by an unsupervised algorithm based on adaptive comparison of high- and
lowe-freguency content.

2. Method

20, Signal reconding

Recordings were made continuously in 140 patients during the first 4 consecutive days
following coronary artery bypass surgery using a modified (class 111 three-channel Holter
digital recorder with 16 bits encoding, providing a 5 m mput range with 0016 oV resolution
(Burdick, model 6632). The sampling rate was set at 500 Hz per channel. This setting. which
is barely appropriate for atrial electrograms. was chosen such that batteries and the storage
memoery card had to be changed only once every 24 h. Three atrial unipolar electrodes
(ETHICOMN model TPW40) were sutured on the epicardium of the atria and connected to the
positive poles of the Holter by wires fixed on the patient’s thoracic wall, The three negative
poles of the Holter were connected together 1o serve as a reference electrode posilioned
on the left lateral side of the thigh, The recordings were transfemed 1o a PC for off-line
analysis. A short stretch of the signal is shown in figure 1, in which A and V activations are
identified. The protocol was approved by the Ethics Committee of Hopital du Sacré-Coeur
de Momntréal. To develop the detection algorithm., a training set was constructed by taking
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Fipure 1. Posterior view of the heart showing the three electrodes sutured to the right (5, 525 and
lefit (530 atrium and their electrograms, The atrial (A) and ventricular activations (V) are indicated
for two beats. as well as the ventricular T wave (T). The first is a normal sinos beat, while the
second s an ectopic, as shown by the change of fifng sequence of the A activations.

5 min episodes from 19 patients selected to represent typical examples of the more complex
rhythms encountered throughout the recordings. All activations and their labels were validated
by an expert cardiologist using an in-house interactive program developed for that purpose.
Afterwards, 2 h recordings from 27 patients taken just before the onset of a prolonged
(=30 min) episode of AF were used as a validation set,

2.2, Constraints and methodological choice

In the course of the development process, an array of difficulties and constraints had to be
overcome through specific methodological choices.

(i} The requirement to pool together the activations of the channels belonging to the same

atrial or ventricular event, allowing calculation such as intra-atrial and atrio-ventricular
conduction times as well as the identification of the site of the origin of PAA, led to the
concept of global and local activation and energy, the latter built from the derivative of the
signals (Tremblay and LeBlanc 1985, Pan and Tompkins 1985). In the following, ‘glohal
eveni” refers o an activation detected on the sum of the energy of the three channels,
while “local event” stands for an activation detected on the energy of a single channel, We
found that it was much casier to detect global events and determine afterwards the local
members than to start from the individual channels and group activations subsequently.

{ii} For global events, activations across the channels had to be encompassed in a single

continuous high-amplitude energy segment.  Appropriate averaging windows had to
be found to cope with the wide spread of intra-atrial conduction times both within
and between the patients {e.g. figures 1, 3 and 5), which stems from the variation in
the activation sequences amongst the beats and from the change in the location of the
electrodes and in the pathways of propagation across the patients. These variations also
conditioned the algorithm to find the limits of the global events within which local events
were to be searched.
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(1iiy Events detection was based on energy thresholds.  Since noise and amplitude of the
aclivations were seen (o vary widely even in 3 min recordings (e.g. figure S(c)), thresholds
had 1o be adaptive, The problem of non-stationarity was particularly critical with regard
to the detection of atypical events such as isolated ectopic beats and short episodes of
arrhythmia, which becomes imperative in the context of monitoring where these events

can be particularly consequential (Taylor ef al 2002).
(v} The typical ten-fold difference between peak energies of A and V activations required a

dual threshold, leading to a two-pass detection algorithm. The threshold of the second
pass had to be set low enough for maximom detection, while avoiding false detection by
being oo close o the nose level, This led 1o the introduction of functions o monitor
the gquality of the signal (QoS) that directed both the local filtering of the signals and the
value of the thresholds.

2.3, Demiled algovithm

The lowchart of the detection algorithm is shown in figure 2. The main steps of the method
are explained, followed by the description of the QoS functions.

230 Derection method and fiducionl aotivarion sime

Step 1. QoS functions. described later, are calculated from the raw signals (8; (n) i = 1. 2,
3, channel number, n = 1, N, sample number). The calculation of these functions and all the
steps of the algorithm are performed in successive 300 s windows (the width can be chosen
anywhere from a minimum value of 15 s without consequence) with 3—6 s overlap to ensure
detection continuity.

Step 2. The derivative function [} is calculated as
Din) = (85(n+2)+ 85;(n+ 1) — S;(n — 1) — 50— 2))/(6°T,). T. = 2ms. ()

It corresponds to the mean of the backward and forward derivatives after a three-point moving
average of the signal. The frequency response of this derivative function (1.e. gain as a function
of the frequency of the input signal) has a maximum around 75 Hz and fades out at higher
frequencies. As explained later, D{n) is processed according to the value of the QoS functions
to yield D).

Step 3. The amplitudes of the activations, which might be disproportioned across the channels,
must be balanced. Otherwise, the events with the largest amplitudes may dominate the
detection process, blurring the information of the other channels or, in the same channel,
masking lower amplitude events,  The balance 15 done by clipping all peaks for which
| 7| is taller than a reference value calculated in successive 30 s intervals, which typically
encompasses between 30 and 60 A and V oactivations. The reference maximum for each
channel (D[™*) is set at the value corresponding to 99% of the cumulative distribution of
|D’rf"{r1-]|| within each 30 s window, with a minimum value of 50 uV ms~'. A channel remaining
everywhere =20 uV ms~! is considered disconnected and is ignored. A channel is tagged as
disproportioned if |D}"““| = 2min({| D) — 0 = 3, M = the number of active channels}).
All its peaks that are beyond the limits =1/2((%,_, ,, D™} — min{{ D7 . 1)) are then
trimmed off at these values to produce the final derivative Dn).

Steps 4 and 5. Two band-pass filtered signals are constructed from By(n), with a high cut-off
frequency of 90 Hz (D7"(n)) and 25 Hz (D (n)). respectively. and a common low cut-off
frequency of & He.
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Steps 6 and 7. Four energy functions are calculated from baoth D?-" and DV one for each

channel (£, i = 1,3) and a global energy (E7"). E, are used for detection (steps 8
and 9 and compared to Ef: to discriminate A from V events (step 10).
The calculation of E” begins with the intermediate quantity,

E=iah
I )
MPin) = — DMk, 2
;) =3 *_Eu_h{ i k) (2)
which is a mean over a 24 ms sliding window, and

1 k=nr+T
EMn) = — E MMk, 3
i {”} lit_"__ll i I:- } l:: }

an average over a 28 ms sliding window, This calculation (sum followed by average), based on
the Tremblay—LeBlanc ocsophageal A-wave and QRS detector (Tremblay and LeBlanc 1985)
and the Pan-Tompkins QRS detector (Pan and Tompkins 1955), removes notches around the
points where U?"[H]- changes sign and maintains high amplitude along the entire interval over
which local activation takes place. Eff‘ is calculated the same way using Dr;s.

The global energy is given by

E=a+l7
| 2 2
M) = 3 (D) + (D2 0) + (DY k) (4)
- k=a—17
| k=ms]
Qi b0
EX(n) = EE,J M (k). (5)

The windows used tor global energy are larger to embed the asynchronous atrial activations
of the three channels within a single high-amplitude segment (figure 3{h)).

Step 8 derection of global evenrs. E_Lf”{n; is used to detect A and WV global events. The
detection proceeds in two steps that are illustrated in figure 3. First, all the large energy events
are detected. They are then removed from E'(n) to find out potential remaining events, which
are most often ¥ activations or atypical low amplitude A's,

2.3.2. Peak detection and peak delineartion {onset and aoffsei)

Pass 1. A threshold function Threshy(n) 15 calculated from the tme course of maximum
(MAX () and minimum (MIN | (r)) functions constructed from E?"l{u}. First, in each
successive 100 ms interval, MAX (n) is set to the maximum of E;’”‘ encountered in a
=+1 & window centred on the middle of the interval. The resulting staircase function is
then smoothed with a moving average over a =100 ms window. The MIN () function, which
tracks the local floor level, is constructed in a similar way, but with minimum taken over
windows of £250 ms for each 20 ms interval and a final moving average over £50 ms. An
intermediate sample-by-sample detection threshold is defined as

Threshy(rnd = MIN () + 0,20 MAX, (1), ()]
The final threshold is taken as
Threshyin) = max{[(.01 Thresh, (7)Y + .99 Thresh;(n — 1), I'I.'H'.Illlll[_u\-"..-"msjz])_ (7

Thresh; adapts exponentially to an abrupt but sustained jump of the energy, but damps transient
short variations. Any segment along which E:'-I'[HJ remains =Thresh{n) for at least 40 ms is
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lerst S0 s, From P10 0o T tod, The upper dash line 15 MAX, used 1o caleulale Thresh,
(equation (01, TPeakas and TPeakqg are the minimum belore 770 and alter 7%, respectively.
Each event 15 removed and replaced by a thres samiple pivod with an amplilude = 5% of energy at
T I the lomans of two events are separsted by less than 30 ms, as the tao events in e madsdle
af the panel, a prvol s mserted o the middle, with an amplitude = 500 of enengy o1 the first 7957,
(&) Pass 2 the residual L’f’ s amalysed ason Pass 1, with the mew threshold Threshs (grey line),
calculamed from the apdated MAXS funcion (upper dash line, equation (B},

considered as a global event (figure 3(b)). A global atrial event is associated with activations
of the individual channals that occur in a sequence reflecting the propagation of the electrical
wave across the atria (figure 3a)). Hence, markers defining the onset and termination of each
global event are needed to set the limits for the later search of the related local activations.
The onset time of the event (TPeak,,,) is determined by a stepwise backward search starting
from T, the time of the initial up-crossing of Thresh; {figure 3(b)). The search continues
as long as E}'(T = T} remains greater than a floor value plus 2% of Thresh (T35"). The
floor value is updated at each step as the minimum of E7 in the interval [T-40 ms, T]. Once
TPeak,, has been found, additional tests are performed o avoid a local minimum. Typically,
El’f':' local mimimum may occur when one channel 15 activated muoch before or after the others,
A similar stepwise forward search is performed from T35, the final time of down-crossing of
Thresh to find TPeak,. the end of the global event.

Frss 2, Typically, events associated with atrial activations, which have higher energy content,
are detected in the first pass (figure 3(b)). The aim of the second pass is to detect the remaining
events, which might be V activations or sequences of fast A and/or PAA for which energy
can be depressed. All events found in pass 1 are removed from E:'", being substituted by a
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line extending from E2'(TPeak,,) to E " TPeak,g). To avoid that the new threshold reaches
the noise level when thers is no rue remaining event, a three-sample peak is left in the middle
of each removed event (the pivol in figure 3(b)). The amplitude of the pivol is set o (.05
ET[T;‘} unless the beginning of the next detected event (TPeak,,) is less than 50 ms ahead
of the end {TPeak,q.) of the current event. In that case, it is likely that all events have already
been detected and a ten-fold increased pivot is introduced between TPeak,g and the next
TPeak,,, (figure 3(b), middle). The transformed .F;:'-" is then processed as in pass 1 to obtain a

new MAX:(n) function (MIMN (a) is kept unchanged), and Threshg(n) is recalculated as
Threshgir) = MIN(m) + XimdWMAX (), (%)

In pass 1 (equation (&), X (n) was fixed to 0.20. In pass 2, to avoid false detections, Xin) €
[(.15, 1.25] is set proportional to a Qo8 function (QoS*"(n) that quantifies the level of noise).
Finally, the new Thresha{n) function is calculated as

Threshyin) = win) Threshgin) + {1 — ain)) Threshain — 1. (9

o is increased linearly from 0001, the value in pass 1, o 0.05 according to the level of noise
(QoS*") to speed up the adaptation of the threshold when the signal becomes noisy. Events
detection and delineation are then performed on the transformed E_:"' as in pass 1 (figure 3(c)).

Step 9 detection of local evenis, .Ef":' is used to find the activations of the individual channels
within the [TPeak,,. TPeak.y] interval delineating each global event. The threshold within
the borders of each global event is the constant value:

Thy = max ([ min (£ ([ TPeak,,, TPeak,q1])

+ a ¢ max ([ EY(TPeak .. TPeakoy), 1000V /ms)*]) (10

with ¢ = 0.01 and 0.02, for global activations found in pass 1 and pass 2, respectively:
a € [1, 3] depending linearly on QoS4".

Because it sometimes occurs that the A and V activations of a cardiac beat are gathered
in the same global event, up o two local activations by the channel can be accepied within
each global event. Typically, this ocours when A and Vo activations become unrelated, as when
a spontancous PVA is produced during or close o an atrial activation. For each channel, all
maxima = Th; within the [TPeak,,, TPeak,;] limits of the global event are collected, with a list
of their times of occurrence {IT_,'_M L= I,k}} sorted in descending order of amplitude.
The largest maximum, at time Ty, (1), is kept as an activation. Then, the remaining members
of the list are scanned for a second activation. Their amplitudes are recaleulated relative to the
closest minimum in the interval extending from the time of their maximum o Ty (1). The
largest of these comected maxima = Thy is kept as a second activation, The rationale is that
two activations in a channel must be separated by a period during which encrgy is depressed.
If no local event is found, the search procedure is repeated once with Th; = Th,/2.

Finally, the limits of each local activation {T%°.(k), T%,4'(k)) are determined, providing
the interval in which the final fiducial marker will be positioned (step 11). This is done through
a forward and backward search around Ty (k) to find the positions where E reaches y*
EM Tagax k1), with 3 € [0.01, 0.1] proportional 1o QoSA™, Al the end of this step, there is a
sequence of global and related local events, with the time intervals defining their respective
boundaries.

Srep 100 waveform fabelling,  Because the elecirodes are sutured w the atria, deflections
associated with the atrial activations, which correspond 1o the propagation of an activation
front close o the electrode, are most often brisker than those associated with ventricular
activations {figure 1}). Figure 4 shows that the peaks of .J:.'_Eﬁ are much lower than those of J'_-.'_:"
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8

Figure 4. E:" {continuous line) and E;’f‘ {dash line). ™ and I*¥ are the integrals over 440 ms

around the masimum of E™ and £, respectively, The ratio 8 = 10023 /P90 js used 1o diseriminate
Aand ¥ oevents,

for A than for V events. As a consequence, the ratio of the low-to-high-frequency energy
content of A evenis 15 smaller, This feature 15 used to label each global {comparing E‘;"-" and
E;f'-"} and local event (comparing £2 and E"). For each event m, the E* and E™ energies are
integrated over a 41 sample window centred on their respective maximum to get /**(m) and
M) (figure 4) and a classification ratio K is computed as

IE.‘{":"
r = )} 11
(m) Py (1)
Since the properties of the activations may change in time, the threshold value of R o
discriminate between A and V events must be updated continuously, The discrimination value
for the mth event in a sequence is sel 0

DF(m — 20+ DF(m — 1)+ S, Bim) + B Rim + 1)
2+ foy + P

DFEim) =

(12}
with defanlt 4

o+l = L.

The algorithm first proceeds to the labelling of the global events, whose ratios are
calculated from £77 and E?". The principle of the DF caleulation is based on the alternation
of A and V activations in normal cardiac cycles (figure 4). DE, with 8, |, = 1. is a weighted
average with sizeable contributions from ~6 consecutive R values. The averaging provides the
inertia to maintain discrimination for short sequences in which alternation is broken (figure 5).
For longer abnormal sequences where a single tvpe of events dominates, DF must be avoided
1o fluctvate randomly in a range of B values associated with similar events, Long-lasting
abnormal sequences were most often found when the A and V activations were embedded in
the same global event for successive cardiac beats. In normal cases, the systolic ime interval
(A o next %) is much shorter than the diastole (Voo next A). In that sense, consecutive
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1] 500 1000 1500 2000
T (ms)

Figure 3 Labelling of a seguence of events {shown in (o)) containing a solvo of PAAL
(@) Discriminating funciion (continuous line, DF) and sequence of the B ratio (described in figure 4)
for global events, showing discrimination of A (under DF) and V {over DF). When an activation is
missed (3% in that example), DE which also depends on past values, maintins the discrimination.
(B The DF function for channel 57 shown in 5 ¢, Even if only one % is detected after four successive
A, the discrimination is maintoined. (c) A and V detection and discrimination for a salvo of PAAs
whose energy was highly depressed. All the PAA were comectly detected ond lobelled as A, even
when much depressed as in channel 53 (only 2 channels shown for clorityh. In 53, the first fusion
heat wis detected, but the depressed A was labelled ns o possible %, In 53, the three fusion beats
were lobelled as A In the first one, the V' is misploced and generates o (F—, F4+) poir,

global events containing both the A and V activations become isolated, since only the diastolic
intervals are maintained. Besides, in such a global event, A and V activations are usually
detected on at least one channel such that the global contains at least four local activations.
Under these conditions, a global event & is considered isolated if (1) TPeak,,,(k)- TPeak, gl k—1)
= 00 ms and TPeak . (k+1)- TPeak &) = 300 ms, and it 2) it contains at least four local
activations. A global event fulfilling these two criteria is ignored in the caleulation of DF
(its @ = 0 in equation (123, After lve soceessive isolated zlobal evemts, the update of DF
is interrupted and its value is set to the mean of the 5 closest normal DF values (i.e. updated
with 8 ., = |, equation (12)). If these do not exist. DF is set to 50%. as long as the events

remain isolated. The labelling rule for global events is
Rim) < DFim) = A events (13)
Rim) = DFim) = V events, )

Once global events have been labelled, the procedure is repeated for local events
(figure 5(b)). R(m) is recomputed over a 21-sample window around the El.zﬁ'm AN
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and DF in equation (12} is recalculated for each channel. However, since a local event
contains a single activation by construction, the second criterion (o define solated activation
and to change the calculation of DF is ignored,

The labelling process is completed with tests of coherence. Local Vevents belonging to
a global identified as A are labelled as A", except that if their ratio R4m) = 75%. in which
case they are labelled as V™ (figure 5(c)). On the other hand, local A in a global V are labelled
as V* unless their ratio Rjm) < 23%, in which case they are labelled as A*. Afterwards, if all
channels have a single activation in a global and if only one of these has a type differing from
that of the global, it is changed, Fnally, global events that contain some mismatched local
activations (V' in global A, or A” in global V) are relabelled as a mixed (M) (figure 5(c)).

Srep 1 fimad frfucial marker, To pu:_sxiti{m tl1_¢ final fiducial marker associated with each
activation, E;" is integrated from T, 10 T and the marker is put down at the time where
the cumulative enerzy reaches 3096 of the total,

23,3, Noise monitoring:  congditional filtering and shreshold modulanon,  Three QoS
functions are computed from the raw signal 5 QoS5*%(n), acting to eliminate saturation
episodes and to damp high-amplitude baseline wandering: QoS,%(n), to measure medium
(=35 Hz) to high-frequency flickering noise and trigger local low-pass filtering: QoS",
measuring the unfiltered low-to-medium frequency noise to modulate the detection thresholds.
These functions provide a sample per sample evaluation of different features of the signals.

Qa.ﬁ‘f‘"‘_ QoS5¥(ny & [0, 1] (default value = 1) is a multiplicative function convoluted with
the raw derivative (to produce [ from D), step 2 in figure 2). It is meant to detect both
saturation and large amplitude baseline wandering.  First, th‘f‘“' is set to () along each
serment where 5 is outside 95% of the £5 mV quantification limits, T two saturation epochs
are closer than 100 ms, they are joined as a continuows saturated imterval, Afterwards, w deal
with baseline wandering, §; is low-pass filtered at 2 Hz and each point where QoS5 (n) # 0
receives amplitude (8(n)) calculated as the difference between the maximum and the minimum
in a window of 250 ms centred on sample n. QoS is then calculated as

—E(m — 700 yl") + (0,25,
J00 v

Finally, QDS?“' is smoothed by taking a moving average on a £50 ms window, Thanks to
the multiplication of the raw derivative by QoS> detection is maintained for short saturation
intervals that may occur during real atrial activation, but s suppressed within and ¢lose w
long-lasting saturation episodes. In addition, low-frequency large fluctuations of the bascline,
which may interfere with the detection process, are damped.

QoS™(n) = 1 — max (EL (14)

Qn.’i’f"‘. QL‘SF'{H]‘ aims at reducing the local medium to high-frequency content of the
derivative to avoid false detection in a noisy part of the signal while preserving the encrgy
of real activations to maintain A wversus YV discrimination.  5; is first smoothed with a
[1232 1] moving average and then scanned to generate the list of all extrema with amplitude
greater than 30 1V (in reference to the closest extremum on either side). In addition to its
amplitude, each exiremum 1s characterized by a local frequency, caleulated as the inverse of
the time from the previous o the next nearest extremum in the list, IE s an instantaneous
frequency that does not correspond o a sustained oscillation.  Extrema with a frequency
<35 Hz are discarded from the list, becanse the times between these peaks and their neighbours
are im the range of those seen in real activations. To keep only extrema that can perturb the

XII
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Figure 6. Condinonal lowe-pass illerimg, The extrema wath a local frequency =35 He ddots on
thee signal, upper traced are counted o obtain the function QoS3 (lower race). Where QoS5 = 5
{chashed lined, bocal Altering 15 apphied, The ilering remains off during most of the interval over
which each asctivation occurs, The thick line on the upper trace 15 the signal afer filtenng.

energy significantly, the mean amplitude of the remaining peaks is computed over a 30 s
window slid by 5 s steps. For each of these windows, a threshold is set at halt this mean,
with lower and upper limits of 30 and 100 0V, respectively, All extrema with amplitude less
than this threshold are considerad harmless and are removed from the list, Finally Qu-Sfﬁfﬂ]l
is defined as the number of remaining extrema in a centred window of 700 ms, which provides
a measure of the local density of a high-frequency artefact. QoS®(n) = 5 indicates that
the point lies in a region where fluctuations with frequency =35 Hz have been detected
(figure 6). Within each such segment, D} is low-pass filtered with a 35 Hz FIR (—6db cut-off,
FIR1 function in Matlab) to produce D;!’ istep 2, figure 2). To avoid abrapt discontinuities at
the ends of the filtered interval, each boundary is flanked by an interval of 7 samples on which
a moving-average filter is applicd.  As seen in figure 6, Gliering is most often not activated
during activation, thereby preserving the energy of the event.

QoSM. QoS measures the density of harmful artefacts in the range of frequencies
(=35 Hz) that were ignored by QoS It serves to adjust the threshold of the second pass
of detection on El’.’” (step 81 and the threshold Tor local activations (step 93, Ideally, only the
peaks that do not correspond to real activation but are high enough to be potentially detected as
false activations in the second pass should be counted. §; is filtered with a nine sample moving
filter ([123454321], —2db cut-off at 33 Hz), all the extrema are extracted and their amplitude
and frequency are computed as for QoS (n). Those with a frequency of =35 Hz are ignored.
The mean value { A) and the standard deviation () of the amplitude of the remaining peaks are
computed in 30 s windows moved by 5 s steps. A is either increased to 40 'V or decreased to
P00 e arat is outside the [40, 100] @ interval. Then all the peaks with amplitude less than
A are discarded, since thev are too low o interfere with the detection. Besides, within each
global found in pass 1 (from TPeal.,, to TPeak, ). the mean amplitude of the remaining peaks
is calculated, and all those which are greater than this mean plus o are also ignored. These are

XIII



Amnalysiz of human mrial electrograms 1315

potentially real activations that should not be used to measure noisy fluctuation in the signal.
Finally, QoS (n) is computed as 1007 (the number of remaining peaks in a centred 4100 ms
window )/ (the number of samples in the window), QUSf‘" is used w adjust the threshold Tor
cach channel (step 9, equation (10)), and QoS*" = 5 QoS acts on the threshold of the
second pass of detection of the global (step 8, equation {9)).

2.4, Method uxed vo ser the valwe af the parometers

The choice of the parameters”™ value in different steps of the detection method was based on a
compromise between T+ and F— rates. with an emphasis on the detection of PAA specific to
the context of momitoring for FA, Tt was done through an flerative process involving repeaied
detaled examination of all false and missed detections in the training set, as well as of the
characteristics of the signals in the region where these were occowrring, A large validation set
was constructed to test the validity of the final set of parameters. Regarding the method for
labelling activations, the limits of the band width (690 Hz, 6-25 Hz) of the two filters to
discriminate A and V activations were changed systematically to determing the optimal values.

3. Results

F. Traiming set and opiimization

The development and optimization of the algorithm was based on a training set of 19 recordings
of 3 min from distinet patients, selected to be representative of the various waveforms and
hindrances that could be encounterad in the iming process, In addition to usual problems such
as saturation, noise and baseline wandering, they include isolated and burst of PAA and PVA,
as well as complex rhythms that often precede the onset of atrial fibrllation. The activation
markers and their labels (A, V, PAA, PVA) were manually edited and validated by an expert
in cardiology, for a total of 46014 events: 23246 A and 22768 W, including 2366 PAA and
472 PVA. To compare the training set validated markers (TM) with those obtained by the
program (PR), the ThMs were handled successively in time incréasing order, The closest PM
oo TR ina £10 ms window was considersd as a true positive (T+). At the end of the
procedure, the TMs not associated with a PM and the PMs not associated with a TW were
counted as false negative (F—) and false positive (F+), respectively.

The first and second rows of table 1(A) show the performance that was reached by
optimizing the parameters of the different steps of the method without the QoS functions.
Their comparison illustrates the gain brought by the second pass of detection: an overall
21.5% increase in T+, with 7%, 26% and 119 improvement in the detection of A's, W75 and
PAAs, respectively, at the expense ol 3% more F+. The two-pass method stll prodeced 1.6%
of F—, and 8.53% F+. On a 24 h recording of similar complexity (173 000 activations at
6 bpm), this would still bring ~3000 missed and ~ 15 000 false events. Besides, 8.8% of the
PAA were undetected.

At this point, it became clear that further improvement had to come from the pre-processing
of the derivatives based on continuous indices quantifying the quality of the signal. Lines 3-5
of table | show the evoluiion of the performance as the different pre-processing procedunes
were activated, Baseline wandering correction and saturation detection (Qo5%) followed
by [6, 90] Hz band-pass filtering reduced the number of F+ by 3.3% (line 3). Conditional
low-pass filtering (QoS ™, line 4) brought an additional 1.7% decrease of F+. These functions,
which remove false peaks in the local and global energy functions, act on F+ with minimal
effect on F—.
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A large fraction of the remaining F— was coming from recordings where the energy of
some channels was disproportionate, leading 1o tall global energy peaks, These peaks, picked
im the first stage of the detection, were leaving pivots of such large amplitude that the threshold
of the second pass was too high., This problem was solved by clipping the derivatives to
diminish the disproportion between the amplitudes. As seen in line 5 of table 1, this lessens
the number of F— by a factor of 3.5. However. this major improvement in F— and PAA
detection (90.7-96.8%) came at the expense of a higher number of F+. The comparison of
lines 3 and 7 shows both the necessity and the problem brought by the second pass of detection.
It is needed, even aller pre-processing, since there is sull 8.57% of F— alter the first pass
tline 7). It decreased the F— to 0.52%, but doubled the number of F+.

The remaining F+ came mainly from noisy portions of the signals, with spurious crossings
of the second pass threshold that had been lowered by the clipping. To correct this problem.
we introduced a modulation of the thresholds by the Qo8*" function, active only on noisy
portions of the signal. This last improvement reduced (line 6 of table 1{A) the F+ number by
a factor of 1.6 without much effect on the other indices, thereby preserving the low F— and the
high PAA detection performance achieved by clipping the derivatives, Il represents the final
setting that was used to process the validation set, The comparison of lines 2 and & shows
the total benefit of preconditioning the signals and their derivatives and of modulation of the
thresholds. The F— and F+ numbers are improved by a factor of 2.8 and 3.4, respectively. with
an additional 5% detection of PAA events. The best performances for the F— and PAMA were
obtained at line 5, with derivatives clipping and without threshold correction for low-frequency
artefacts, but at the expense of greater F+, Around 60% of the final remaiming F+ and F—
came from 2 files, in which the Tusion of A and V activations was the main source of error,

The labelling specificity for T+ A's, Vs and PAAs is presented in table 1{B), The %T+
(99.4% ) are the same for A and WV activations, confirming the efficiency of the double-pass
threshold. Moreover 95.9% and 99% of the A's and Vs were correctly labelled. The 93%
proportion of correctly labelled PAAs was also acceptable.  Figure 5 illustrates a case of
PAA in which strong sinus activations are followed by a burst PAAs with less amplitude and
derivatives close 1o those of the W activations, Nevertheless, the algorithm was able 1o detect
and label these activations correctly,

F.2, Valtcdation sel

The final optimized algorithm was tested on a larger set of data taken just before the onset of
an AF, which is 2 moment where the heart rhythm is known to become more irregular and
complex { Taylor er af 2002). Twenty-seven patients had a prolonged episode of AF (=30 min).
A 2 horecording taken just before the onset of AF was extracted for each of these patients.
Markers were determined with our algorithm and then validated successively by two persons
supervised by an expert. From the original 81 segmenis available (27 patients™ 3 channels “2 h
recordings), 2 were rejecied because the elecirodes were nol attached (o the atrium, providing
electrograms similar e an ECG, and 1 because it was oo noisy to be validated, The final
validation set gathered 1593697 activations: 796913 A, T96T84 V containing, respectively.
39705 PAA and 3157 PVA. As expected. the rate of PAAs over normal sinus beats (~1/20)
was very large, while the rate of PVA, which was ten times lower, nevertheless remained
substantial. The comparison of the original and validated markers was done as for the training
sel.

The first line of table 20A) summarnzes the performance of the detection algorithm on the
validation set. The 9T+ is 99.93% for all events together and 99.83% for PAA. The method
fulfils the objective of reaching a high level of ¥V, A and PAA detection. while maintaining
acceptable count of F+ (0.37%). Lines 2 and 3 confirm on the larger scale of the validation
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sel the absolute necessity of the 2 passes;/2 thresholds approach. For these two lines, all QoS
functions were inactivated, Even if the rates of F+ (1.5%) and F— (%0.37) may already appear
acceptable, they stll represent ~30000 activations that would have o be comected. In the
traiming set, the %6F+ was at 8.5% at this stage of the analysis because problematic cases were
over-represented.

Lines 4-6 of table 2(A) document the effects of the different mechanisms of the pre-
processing. As for the training set, clipping (line 6) yielded an additional three-fold reduction
in F=, a 2% improvement in PAA. It was also highly recurrent since, for each patient, at
least one channel was clipped in 28.5% of the normal A activaiions and in 37.2% ol ihe
PAA. However, it increased the number of F+. This detrimental effect was corrected by the
madulation of the threshold by QoS* (i.e. line 6 versus line 1.

Table 2{B) demonstrates similar % T+ in the different classes of activation (99,9799 839%)
except PVAs, for which % T+ drops to 88.28%. The missed PWAs represent ~1/3 of the
missed W (366,/992) Nearly all missed ¥ arose from the fusion of the ventricular and the
atrial activations, in which the ¥ deflection was not detecied within the simulianecus high
amplitude A, Tt could come from the superposition of A and PYA, of a non-causal PAA and a
W, or from instances where the intra-atrial and atrio-ventricular conduction times were close
to one another. In fact, the length of integration windows for both global and local energies
fequations (3) and (5)) set the limits below which distinet activations cannot be separated.

The two rightmost columns of table 2(B) sum up the performance of the labelling of the
T+ activations. Globally, the percentage of correct labelling is beyvond Y9.75% for both A and
Woactivations, and is 9935 for PAA, Incorrectly labelled PAAS mosi often belonged o fasi
bursts of ectopy where some A's with depressed amplitude were coincident with ¥ activation,
In these cases. a single activation was detected, which might end up being classified as a V.
Henece, these fusion events also created F— W activation in the table. The percentage of PVAs
labelled as % was lower (79.2%). 86% of these labelling errors occurred in a single file, and
were coming in a majority from A=Y fusions in which a single activation was detected.

4. Discussion

The robustness of the algorithm was confirmed by comparing more than 1.5 million validated
markers taken in 2 h before the onset of a prolonged FA. a period with unusual complex
rhythms, To perform the huge validation task, an interactive program was developed. 1t can
display on windows of adjustable time durations, the three channels, their activation markers, as
well as different time series (e.z., AA, AV, VWV o locate and cormect wrong or missing markers.

4.1, Noise filtering and detection threshold

A proper filtering method would aim o discard all Mecmations that do not cormespond 1o
activations, while preserving the energy content of real activation. The nature of the problem
can be illustrated by comparing the “false extrema’, lying outside the limits of the global
activation, to these occurring inside these limits. In the training set. 30% of these ‘false
extrema’ had amplitude =200 V. For each 10 s intervals, the ratio of the mean amplitude of
the activations to the mean amplitude of the “false activations” was calculated for all channels
in the training set, providing a measure of the signal-to-noise ratio. The cumulative distribution
of these ratios is shown in fizure Tia), 7.5% of the activations had a ratio lower than 2, meaning
that the rejection of “false extrema’ without losing real activations and creating of F— could not
be based only on a criterion of amplitude. However, as shown in figure 7(b), the distribution
of the local frequency of the ‘false extrema’ was also very different, with peaks around 5 Hz
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Figoure 7. (a) Comulative distribution (50 in the training set of the ratio of the amplitade of the
activations o the amplitude of the extrema lying owside the global activations, The scale of the
abacissa s logarithmic. (b)) Distribution of the local frequency {defined in section 2.3.2) of all
the extrema in the raining set. Solid grey line: all extrema (Nb —2290000.  Solid dark line:
extrema lying inside the limis of the global activations, from 7' w0 T4 Dash line: *false
extrema’ outside the global activations. Ideally, these last ones should be filtered o avoid F+. To
prevent the flering of extrema potentially associaved with peal activation (dask line), Alering was
triggered for extrema with a frequency above 35 Hz (arow) if their local density was beyvond a
threshald.

and 60 Hz. The peak at 5 Hz was found 1o be associated with the T wave, comesponding 1o the
repolarization of the ventricles. These extrema were eliminated by the uniform application of
the [5-90] Hz pass-band filter. Comparing the distribution of frequencies inside and outside
the global activations, we elected to filter the extrema with a frequency =35 Hz, provided
that their density was high enough. As illustrated in figure 6, the conditional triggering of the
filter governed by QoS™ indeed protected the section of the signal associated with activations.
For the extrema in [3-33] He frequency range, potentially associated with real activations, the
QoSA" mechanism was introduced to adjust the threshold of the second pass depending on the
density of low-frequency Auctuations,

The effect of Qo8* and QoS was further investigated by adding coloured noise in all
channels of the training set (Mg =0, o = 100 2V Gaussian noise, [0.05-120] Hz pass-band
filtered). Deactivating both Qo8* and Qo§An yielded to a shocking 93.8% of F+ (table 1, line
1), a consequence of the second pass threshold that was designed to detect low-amplitude
events, but made the process highly sensitive 1o noise. QoS was highly effective, bringing a
ten-fold reduction of the F+ (table 1, line 9, 9.51% F+), QoS further halved the number of
remaining F+.

4.2, Dynanic threshold

The statistics of ables 1 and 2 confirm that a two-pass detection algorithm 1s necessary, The
activations undetected by the first pass, but identified by the second past, represent ~50% of the
W and ~~15% PAA. The ratio of the threshold of the first pass to the second pass (Thry /Thr; =
11.1 & 0.7y illustrates the huge variation of energy that makes this procedure indispensable.
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The dynamical adjustiment of the Thr, was also found to be essential. Amaongst the patients,
the ratio of maximum o minimum Thry within the 2 b recordings was uniformly distributed
between 2 and 15, There was also a 13-fold variation of the mean value of Thry, which shows
that Thry must be adapted in time within cach patient, as well as between patients. This was
even truer for Thra, The ratic of maximal to minimal Thre was found to vary from 14 to
120) amongst the patients, with a 12-fold variation of the mean Thrs value.

4.3, Reducvion of the number of active channels

Multi-channel recordings permit more robust event detection in particular when some channels
become noisy or depressed. However, in a long-lasting recording, the signal of some leads
may become transiently or permanently lost or degraded. The algorithm was tested in the
worst situation where only one signal is left. In that case, the clipping of disproportionate
activations {step 3) and the difference between local and global energy both disappear.

Line 7 of table 2(A) shows the detection performance for each channel analysed alone,
The raie of detection remains excellent [T+ = 9E.78% overall, 98.35% for PAA), bui, as
expected, the numbers of F+ and F— increase, The 17-Tfold increase of F— (From 07 1o 1L.22%:)
is misleading because 32% of these came from two electrodes, bringing 49% and 33% of
the F—, respectively. The first of these channels had leng intervals in which the signal was
behaving as an ECG, with high amplitude ¥ and very low amplitude A activations that were
missed. The situation was inverted in the second channel, where Vs were missed because
their amplitude was very low with respect to A’s. When a second channel was added, most
of these F— were detected becanse they were embedded in global activation within which the
low-threshold search was performed for each channel,

4.4, Final fiducial marker

The time of occurrence of the minimum temporal derivative (dV/dige,) is the usual marker of
activation for unipolar electrograms because it corresponds to the moment where the activation
fromt travels beneath the electrode (Hélie e af 2003). However, it is less appropriate tor a
remole signal such as the WV deflection where it depends on the position of the electirode relative
o ventricular activation fronts (Gulrajani 1998), We have chosen to position the final fiducial
marker at the time of median cumulative energy within each activation. For A activations, the
difference between the median energy marker and the position of dV/df., was stable with a
difference of the order of the 2 ms sampling time (2.7 = 1.4 ms, median 2.4 ms). Hence, if
AV /diin 15 needed, it can be taken as the minimum closest to median energy marker. The
method also stabalizes the time markers associated with Vactivations when these are shallow,
biphasic or with multiple noiches. In these cases, dV/dr,, markers were often associated with
spurious fluctuations of the AV and V'V intervals that were suppressed with the median energy
markers.

4.5, Source of ervors and potential improvement

The major part of the residual D.07% F— in the validation set was from events where the A
and ¥V activations were (o0 close 1o be separated (most often a PAA and WV, or a PVA and A,
The global energy, which is a weighted average over an interval of ~80 ms, was constrocted
to encompass all A activations of a cardiac beat together, Consequently, A and 'V activations
closer than this interval ended up inevitably in the same global. However, they could still be
detected in the search for local activation, which uses the local energies. The local energy is

XX



1322 B Db ef of

a weighted average with sizeable contribution over an interval of ~40 ms, such that A and
Voevents separated by less than ~50 ms can hardly be distinguished. In fact, this condition
rarcly oceurs simultaneously on all channels, such that the two events were always detecied on
at least one channel. This was not reflected on the statistics of tables | and 2, which shows the
performance for all channels taken together. In mixed globals in which A and V activations
have been found in at least one channel, a deeper search could be performed on channels in
which only one activation has been found. A higher sampling rate will certainly be helptul for
these cases.

Clipping and the second pass make the svstem highly sensitive o notse, because il
decreases the detection threshold o captore smaller activations,  This problem was guite
successfully dealt with by adjusting the threshold with QoS*", The function measures the
loeal density of extrema in a range of amplitudes. In some cases, activations were missed in the
second pass because the presence of high-density low-amplitude noise led to a large increase
of the QoS™" function that raised too much the threshold. This largely explains the 2. 98%
Fa rate that was obtained when coloured noise was added 1o all channels of the validation set
{line & of table 2{A). Qo5*" could be improved by weighting the contribution of each
extremum by a measure of the local signal-to-noise ratio. The latter could be evaluated from
the portions of the signal outside the global events found in the first pass of detection.

4.0, Comparison with other methods

Our problem of detection and labelling is somewhat similar to that encountered in the analysis
of signals recorded by an implantable cardioverter defibrillator or pacemaker although their
waveforms are different since their casing served as a reference elecirode. Despite the high
sampling rate uswal in these devices, the low detection threshold, required to caplure activations
during atmal ectopy, tachycardia and fibrllation, often leads 1o false detections caused by noise
or far-field R-waves (FEFRW) (Kolb er af 2006).

To discriminate FFREW from activations, clustering-based methods using amplitude and
minimum derivative have been proposed (Lewalter er af 2007, Padeletti er al 2005, Van Hemel
e af 2004). Although often appropriate, this approach was clearly failing for some of our
patients. In figure S(a), the plot of activation amplitude versus dV/dig, shows a continuous
spectrum, thus invalidating separation by clustering. However if PAAs were removed, A and
Woevents could indeed be separated. This is not the case in figure 8(b), where ¥V activations
fall in between two separated clusters of A activations. In both cases, our method based on
energy frequency content was able to correctly label most of the activations.

Another study proposed to use A and WV wave templates to detect and label the activations
(Eberhardt ef of 2006). The main goal of this study was to show that the activations were
stable in sinus rhythm despite highly changing conditions (ie. rest, suping and four levels of
exercise ], even il inter-individual varability was important, A and Viemplates were speculated
to remain stable and different enough for the approach to be possible. Whereas the condition
of stationarity of the waveforms might be respected during exercise. it is often not the case
for the complex rhythms that frequently arise just before AF {e.g. figure 5). This makes the
template approach less appropriate for our work.

In owr case, the problem of noise faulty detections was enhanced since detection of V
far-field activations had 1o be identified without the assistance of an ECG or of a ventricular
electrogram because the three available channels of your Holter device were used o record the
atrigl electrograms, Convolution of the signal with a noise-driven filter has been proposed to
reduce faulty detection (Eberhardt ef af 2006}, Unsteady noise level and energy content of the
activations encountered in many of our recordings also hampered adaptive filtering approaches
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vsing either noise or activation templates (Thakor and Zho 1991, Theres efal 20000, We elected
to perform a continuous monitoring of the quality of the signal to guide local filtering, as well
as threshold functions. The signal was blanked and clipped during episodes of saturation and
low-pass filtering and threshold adjustment were performed according to the local density of
extrema. As shown in table 1(A), this brought an improvement of the %F+ and %F— by a
factor of 3.3 and 2.8, respectively. The weighting functions translating the action of the (o3
function on the threshold were ned 1o detect PAA and PYVA even al the expense of some F+,
These can also be adjusted for other requirements or different types of signals, From lines 5
and 6 in table 1{A) and lines | and 6 table 2(A), an alternative way to use threshold modulation
by the QoS function might be to start detection without adjustment for the low-frequency
artefacts. which would be activated only if the detection appears to become erratic.  Some
additional criterion to trigger threshold adjustment would then have to be introduced.

5. Conclusion

Development of an automatic algorithm to process {i.e. detection and proper identification)
complex cardiac signals is a challenge. The adverse recording conditions resulting in long
duration signals of highly variable quality with varving waveform morphologies are the main
obstacles, Moreover, cardiac arthythmias and the superposition of waveforms of different
origing make the labelling even more complex in some situations,  The heuwristic solution
presented reaches an excellent level of accuracy. Tt achieves a high detection rate of premature
atrial activations, which is critical for the study of electrical events preceding AF onset, The
algorithm is robust to noise and minimizes the so-called blanking period over which the
algorithm stops to search for activations. The labelling of the events of atrial and ventricular
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events also reaches a very high level of correciness. The method will be used to analyse
atrial electrophysiological events leading o AF, thereby providing a unigque new direction of
reseanch on the mechamism of this challenging cardiac arrhythmia,
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ANNEXE I1

Stimulation at x=0

T(x)=P+ c]ﬁ (1 + e_“(T(y)_"y))iy

Z=T(y)/c, Z(0)=P/c

Z(x)= §+ j. (l +e®Zy) }Jy

P X
Z(x)=—+x+ je""c(z(")’y)dy
c

P X
Z(x)—x=—+ J'e_“c(z(x)_y)dy
C o

UX)=Z(x)-x, U(0)=P/c
U(x)= L + jewu(x)dy
c o

% () dU (x) 1 de oel (x)
dx oc dx

acU (x) _e(ZP = acx

=1
e

e = gex + e

U(x)= iln(acx + eap)

T(x)=cx+cU(x)= lln(acx+eap )+ cx
o
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Stimulation at x=L

By the same procedure

7=T(y)/c

U(x)=Z(x)-x, U(0)=P/c

CTA,, (L)=cL +lh’1(OKCL + eap)— P
(94

X

T(x)=P+ CI (1 4 e dTre) }z’y

0

Z(x) =£+x+je—m(Z(X)+y)dy
¢ 3

U(x)= L J’ e @V g,
¢ L

dx
de ocU (x)
— ace—ach
dx
eacU(x) _ eOtP — _(e—ac2x _ 1)/2
_ ,—oc2x
prvin _ d—e ) 4 o
2
1 1 - —oc2x
Uuo:——m[L_i__l+eWJ
oc 2
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(1 _ e—ach)

T(x)=cU(x)+cx =iln(
o 2

+eapj+cx

_-oc2l

CTA,, =T(x)-T(0)= lln[u + e“”j +cL—P
o 2
Hence
aP 1 (1 e—ach) aP
CTA,, (L) - CTA,, =—In(acL + e )-—In e |20
(04
If

which is always true.
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