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Abstract 

Inflammatory bowel diseases (IBD) are characterised by uncontrolled immune 

responses in the gut. Genome-wide association studies (GWAS) have identified a 

protective polymorphism for IBD in the IL23R gene. IL23R codes for the IL-23r 

protein, one of the two subunits of IL-23R. IL-23R belongs to the IL-12R family, 

which contains many heterodimeric receptors. For example, both IL-12R and IL-23R 

share the IL-12Rβ1 subunit. Nevertheless, IL-12R and IL-23R are associated with 

different immune processes (Th1 vs. Th17).  

 

This thesis characterizes the cellular patterns of expression of both IL-23R and 

IL-12R, to further elucidate their roles in inflammation. We established that IL-23R 

and IL-12R were never co-expressed together, even though they share the IL-12Rβ2 

subunit. Analysis of murine splenocytes revealed that IL-23R is expressed by some 

TCRγδ T-cells, a few B-cells, CD4+ T-cells and several Lti-like cells. IL-12R protein 

was found in a few B-cells. 

 

The analysis of IL-23R and IL-12R expression in different organs revealed that 

the lamina propria of the small intestine was the organ containing the largest proportion 

of IL-23r+ cells. IL-12R+ cells were found in constant numbers throughout the organs. 

 

Finally, in vitro cultures showed that IL-23R and IL-12R had crossed reaction 

to IL-12 and IL-23. Study of IL-23R in IBD should always be accompanied by IL-12R 

analysis, because both receptors could have complementary roles. 

 

Key words: Inflammatory bowel diseases, IL-23, IL-12, IL-23R, IL-12R, small 

intestine lamina propria, Lti-like cells, IL-23R-GFP reporter mouse 
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Résumé 

 

Les maladies inflammatoires de l'intestin (MII) sont caractérisées par des 

réponses immunitaires incontrôlées dans l'intestin. Des études génétiques ont associé 

un polymorphisme dans le gène de l'IL23R à la résistance aux MII. IL23R code pour la 

protéine de l’IL-23r, une sous-unité du récepteur à l’IL-23 (IL-23R). Ce récepteur 

appartient à la famille de l’IL-12R, contenant plusieurs récepteurs hétérodimériques. 

D’ailleurs, IL-12R et IL-23R partagent la sous-unité IL12Rb1. Néanmoins, ces deux 

récepteurs favorisent des réponses immunitaires distinctes (Th1 vs Th17).  

 

Ce mémoire caractérise les dynamiques d’expression cellulaires de l’IL-23R et 

l’IL-12R, afin d’élucider leurs rôles dans l’inflammation. Nous avons établi qu’IL-23R 

et IL-12R ne sont jamais co-exprimés, malgré qu’ils partagent la sous-unité IL-12Rβ1. 

Parmi les cellules de rates de souris, la protéine IL-23r est trouvée dans certaines 

cellules T TCRγδ ou T CD4+, quelques cellules B et des cellules Lti-like. La protéine 

IL-12Rβ2 est exprimée par quelques cellules B. 

 

L’analyse de l’expression de l’IL-23R et l’IL-12R dans différents organes 

révéla que la plus grande proportion de cellules exprimant l’IL-23R se retrouve dans la 

lamina propria de l'intestin grêle, alors que les cellules exprimant l’IL-12Rβ2 ont été 

retrouvées en proportion équivalente dans tous les organes lymphoïdes. Ces 

observations appuient les études génétiques suggérant un rôle prédominant de l’IL23R 

dans les intestins. 

 

Finalement, des cultures in vitro suggèrent que l’IL-23R ou l’IL-12R avaient 

des réactions croisées à l’IL-12 ou l’IL-23. L’étude de l’IL-23R dans les MII devrait 

donc être complémentée par l’étude de l’IL-12R, car les deux récepteurs pourraient 

avoir des rôles complémentaires. 

 

Mots clés: maladies inflammatoires de l'intestin, IL-23, IL-12, IL-23R, IL-12R, lamina 

propria de l’intestin grêle, Lti-like cells, souris IL-23R-GFP 
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Introduction 

1. Inflammatory Bowel Diseases 

Inflammatory bowel diseases (IBD) are a family of illnesses including Crohn’s 

disease (CD), ulcerative colitis (UC) and indeterminate colitis, among others[1]. This 

introduction will focus mainly on Crohn’s disease and ulcerative colitis, as they are the 

two most prevalent and most studied in this family of diseases
1
. Even though both 

diseases share certain hallmark characteristics, there are striking differences between 

their etiology, genetic predisposition and the clinical presentation of patients.[1]  

 

Crohn’s Disease 

The prevalence of autoimmune and inflammatory diseases such as Multiple 

sclerosis (MS) and systemic lupus erythematosus (SLE) is often higher in women than 

in men, suggesting a role of sex hormones in the pathogenesis of the disease. However, 

CD is diagnosed in equal number between men and women[2], which could indicate 

that factors other than sex hormones are determinants in this disease. 

 

The most common symptom of CD is chronic diarrhea, often accompanied by 

weight loss and abdominal pain. Some CD patients also suffer from symptoms that can 

manifest outside the GI tract, including pain in joints, bones and muscles[2]. However, 

those symptoms are not helpful in leading to a direct diagnosis of CD. 

 

Indeed, to diagnose this disease, a variety of tests are required. 

Ileocolonoscopies, which involves the observation of both the colon and the ileum, as 

well as biopsies from both are essential to rule out other diseases, including UC[2]. 

Diagnosis of CD is usually made through the exclusion of known infectious origins and 

other gastrointestinal diseases, after which CD is confirmed through pathological tests, 

such as histological analysis of biopsy samples. 

                                                 
1
 Around 10% of people suffering from IBD suffer from indeterminate colitis, a disease with hallmarks 

of both CD and UC1. Danese, S. and C. Fiocchi, Ulcerative Colitis. New England Journal of 

Medicine, 2011. 365(18): p. 1713-1725.. 
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Pathology 

Inflammation during CD can be found throughout the GI tract, from the mouth 

to the anus. However, it is not continuous, and areas of unaffected tissue are found 

interspersed between diseased sections of tissue. The inflammation is transmural, 

meaning all layers of gut epithelium extending into the lamina propria may be invaded 

with lymphocytes. Inflammation can also result in granulomas: macrophages and T-

cells forming structures where tissues are necrotizing[3]. 

 

Treatment 

As is the case for many other relapse-remitting disease chronic diseases, 

treatment of CD consists of induction of remission and maintenance of remission[4]. 

There are no definitive treatments available right now. Disease remission is first 

induced using various agents, such as corticosteroids, antibiotics, aminosalicylates and 

other immunosuppressive drugs. New biological agents, for example anti-TNF-α 

monoclonal antibodies, are more and more frequently utilized. 

 

However, those immunosuppressive agents cannot be used on a long-term basis 

for the management of CD, especially in the case of corticosteroids and antibiotics. For 

instance, continued treatment with corticosteroids is associated with bone 

demineralization and increased susceptibility to infections. Various studies analyzed 

the effect of 5-aminosalicylates with anti-TNFα and other drug combinations, but 

opinions are divergent regarding the best course of treatment and how to maintain 

remission in CD patients, since no drug combinations are completely devoid of side-

effects nor do they effectively prevent relapses[4]. 
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Ulcerative Colitis 

Ulcerative colitis(UC) is more common than Crohn’s disease
2
[1, 5]. Very often, 

it is also milder than CD and is easier to treat. However, it still severely impedes the 

quality of life of patients affected by it.  

 

Like CD, UC is a relapsing-remitting disease, where symptomatic and 

asymptomatic periods alternate, with no specific patterns of timing[5]. The most 

frequent symptom of UC is bloody diarrhea[6]. Depending on the severity of the 

disease, it can be accompanied by weight loss, fever, abdominal pain and other 

symptoms[6]. 

 

Because there are no standard hallmarks of the disease, diagnosis relies on a 

combination of colon biopsy and histological findings, while medical history and stool 

analysis may be used to rule out known infections causes and other intestinal 

diseases[6]. Histological findings, such as continuous inflammation contained in the 

colon and restricted to the first layer of the intestine lining will confirm the UC 

diagnosis. Currently, one of the main research goals in this field is to identify disease 

markers that could facilitate UC diagnosis, including genetic markers. 

 

Pathology 

Even though CD and UC have many similar characteristics and symptoms, 

there are also some very important differences amongst the two: UC is restricted to the 

colon, inflammation is restricted to the mucosal layer and it is usually continuous[1]. 

Colonoscopy is therefore essential in order to establish a correct diagnosis, as treatment 

and consequences of UC can be very different from those with CD. For example, as 

one of the main consequences of UC is colon cancer, and patients who suffer from UC 

for a decade or more must be followed for possible cancerous lesions in the colon [1].  

 

                                                 
2
 Reported by Danese et al., incidence of UC is 1.2 to 20.3 cases per 100,000 people, while CD 

incidence varies from 0.03 to 15.6 cases per 100,000 people. 
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Treatment 

Similar to CD, there are conceptually two steps in the treatment of UC: 

induction of remission and maintenance of remission. 

 

As most patients are diagnosed during an episode of inflammation, treatment 

starts by making an attempt to decrease gut inflammation. 5-aminosalicylates, orally 

and/or rectally, is effective in around 50% of patients in inducing clinical remission[1]. 

If it does not work, glucocorticoid therapy is given, and as a last resort anti-TNFα 

monoclonal antibodies are administered. In the second treatment phase, the goal is to 

maintain the patient in an asymptomatic phase. Various immunosuppressive therapies 

can be used (but not usually glucocorticoids, for the same reasons mentioned in CD 

treatment, where the side effects of long-term treatments with glucocorticoids 

overcome its possible benefits). Many studies have looked at the potential use of 

infliximab in a long-term treatment option for medium-to-severe disease; these studies 

showed positive results for many of the patients participating[7]. However, there could 

be possible risks for adverse events, such as cancer and/or serious infections[7]. The 

final UC treatment, which leads to complete remission but also brings various serious 

life-impediments is a  colectomy, or the complete removal of the colon[1]. 

 

IBD epidemiology 

In Western countries, the incidence of inflammatory and autoimmune diseases, 

such as multiple sclerosis and more relevant to this thesis, CD, has been increasing 

over the last seventy years. For example, incidence of CD has more than tripled [8] 

since the 1950s. Danese and Fiocchi characterized IBD as “disorders of modern 

society”[1]. An interesting study from Molodecki et al. reviewed 260 articles from 

different countries measuring incidence and prevalence of IBD through time and 

different regions of the world [5]. This analysis concluded that 75% of CD studies and 

60% of UC studies showed statistically significant increases of incidence of their 

respective diseases studied. Perhaps more importantly, no CD studies showed a 

decrease in the incidence of the disease. 
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Causes 

One of the main problems in the identification of the causes of IBD is that upon 

their first medical visit, patients already exhibit advanced clinical symptoms of the 

disease. [9] Early IBD patients are difficult to find. However, it is widely accepted that 

IBD, in general, are the result of an anormal immune response against the microbiota 

in the gut, leading to an uncontrolled immune response and inflammation[9]. 

Nevertheless, there is no consensus on the causative factors of IBD. This is still a 

“chicken or the egg” dilemma, where some scientists believe that defects in mucosal 

immune responses in the presence of normal flora in the gut leads to IBD, while others 

posit  that defects in resident gut microflora lead to abnormal immune responses[10]. 

 

Evidently, IBD are multifactorial diseases, where there is an interplay between 

the genetic susceptibility of the host, bacterial infections, inadequate innate and 

adaptive immune responses and weakness of the mucosal barrier in the gut which may 

contribute to the pathology of IBD[11]. See Figure 1 for a better understanding of IBD 

factors. 
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Figure 1: Pathogenesis of IBD 
a) There are four factors interacting together that can lead to IBD: genetics, environment, bacterial 

infections and the microbiota of the individual. Polymorphisms in certain genes can increase 

susceptibility to some infections, but also influence types of bacteria colonizing the gut. The 

composition of the microbiota can increase or decrease susceptibility to specific infections, but bacterial 

infections can modify the gut microbiota. Finally, different environmental factors, including food and 

cleanliness, can change the frequence of bacterial infections and the composition of the gut microbiota. 

b) The order in which the different factors can lead to IBD is not unanimous in the scientific community. 

In the first hypothesis, the gut microbiota in an individual is normal, but abnormal immune responses, 

triggered by genetic susceptibility or bacterial infection, disturb the normal immune responses, leading 

to IBD. The second hypothesis proposes that abnormal gut flora is the first factor leading to abnormal 

immune responses, which increase in genetically susceptible individuals, leading to IBD. 
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Hygiene hypothesis 

One of the reasons frequently evoked to explain why those autoimmune 

diseases are more prevalent in industrialized nations is due to the decrease of infectious 

agents encountered during childhood in those specific environments. Some scientists 

even suggest that the lower number of infections encountered throughout childhood is 

the single most important factor[8]. This explanation is also known as the hygiene 

hypothesis. 

 

For example, the frequency of intestinal infections in children has massively 

decreased in Western countries when compared to developing countries. These 

intestinal infections are crucial in shaping the intestinal flora. Parasitic infections can 

also stimulate Toll-like Receptors (TLR), leading to the production of various pro and 

anti-inflammatory cytokines, which can help in intestinal repairs and control of 

bacterial infections, both elements which can be defective in IBD[12]. 

 

Bacterial infections 

Studies of blood and gut samples from IBD patients sometimes incriminate one 

or another bacterium, such as adherent enteroinvasive Escherichia coli and 

Mycobacterium avium subspecies paratuberculosis [3]. For example, biopsy samples 

from CD patients showed a subspecie of E. coli that adhere to intestinal tissue in CD 

patients than in healthy controls. However, transfer of intestinal bacteria into colitis 

susceptible monkeys was not sufficient to induce IBD, demonstrating the importance 

of other factors to induce IBD[13]. Another example of bacteria suspected to play a 

role in IBD is M. avium subspecies paratuberculosis, which is known to cause Johne’s 

Disease in cattle, a disease highly similar to CD. Some studies reported identification 

of M. avium subspecies paratuberculosis in some CD patients, but this bacterium is not 

systematically found in patients samples analyzed[13].  

 

Microbiota 

Even if we humans like to think that we are “clean”, we are in fact colonized by 

hundreds of billions of bacteria. The gut contains the largest amount of those bacteria, 
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followed by the skin. Humans have an extremely diversified intestinal flora. One of the 

first indications that bacteria have a role to play in IBD was demonstrated by the 

efficacy of antibiotics in inducing remission and decreasing symptoms in IBD 

patients[3].  

 

Furthermore, many mouse models of IBD are resistant to methods of inducing 

colitis when they are highly treated with antibiotics or deprived of a normal gut 

flora[9]. However, in other settings, mice deprived of gut microbiota can be more 

susceptible to colitis, demonstrating a protective role of gut bacteria against colitis 

induction. Also, some IBD mouse models, such as the Helicobacter hepaticus transfer 

model, rely on the addition of a specific bacterium to induce gut inflammation[14]. 

Finally, many genes linked to IBD in humans have roles to play in innate immune 

responses, and especially in bacterial recognition[3]
3
. 

 

Genetics 

To better understand and identify genes that could be involved in IBD, various 

genetics studies have been done through the years. More than 30 susceptibility loci 

have been associated with IBD[15]. A more recent analysis using even more patients 

and healthy controls increased the number of CD risk loci to 71[16]. CD and UC both 

share similarities in their pathogenesis yet are different in other ways, as reflected by 

the genetic polymorphisms linked with the diseases; some are associated with CD only, 

some are linked with UC only and others are linked with both diseases. [17]. For 

example, genetic polymorphisms present in genes of the IL-23R pathway, such as 

STAT3, p40 and IL23R are linked to both UC and CD[1]. However, the first genetic 

polymorphism linked with increased susceptibility to IBD was NOD2, and is only 

associated with CD[17]. Polymorphisms in ATG16L1, a gene associated with both 

autophagy and NOD2 signaling, are also only associated with CD. Polymorphisms in 

DAP, death associated protein, are often linked with UC[18]. Other genes possibly 

involved in UC pathogenesis include epithelial-barrier associated genes, such as 

HNF4A, CDH1 and LAMB1[18]. However, these UC-only genes will not be further 

                                                 
3
 For example, NOD2 and ATG16L1, which will both be discussed later in this section. 
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discussed in this study, as they are not directly linked to immunology, even if they may 

be crucial in understanding the full scope of pathogenesis of the disease. 

 

One of the tools used to understand the genetics of IBD is the genome wide 

association study (GWAS), where genomes from patients are compared to genomes 

from healthy controls. Using genetic markers, there is an attempt to identify allelic 

patterns, where rare alleles are more frequently associated with one phenotype[17]. 

Through GWAS, many genetic loci were identified, revealing candidate genes 

involved in the pathogenesis of IBD. Only a few of these genes will be discussed 

herein. 

NOD2 

The first gene to be associated with CD was NOD2(encoded by CARD15)[19]; 

this gene is only associated with CD and not UC. The NOD2 protein can sense 

muramyl dipeptide, a subunit of peptidoglycan found in bacteria. So far, three different 

polymorphisms of NOD2 have been identified, all of which are found in the LRR 

coding domain which detects the presence of MDP when expressed in monocytes[17]. 

This leads to a reduced detection of the PAMPs in bacteria and a subsequent decreased 

activation of the NF-κB pathway. However, NOD2 genetic polymorphism are not 

enough to induce CD on its own; only 15% of CD patients have one or two 

polymorphic alleles (SNP identified through GWAS) of NOD2[20], so most CD 

patients (85%) have a disease independent of NOD2 mutations.  

 

The mechanism by which NOD2 could increase disease risk is poorly 

understood. One hypothesis is that NOD2 signalling can regulate and decrease TLR2 

signaling; without NOD2, TLR2 signaling induces an increased amount of IL-12 and 

leads to dysregulated immune functions[20]. However, there is increasing evidence 

that IL-12 is not the most important cytokine involved in the pathogenesis of IBD. In 

mouse models of colitis, NOD2 deficiency is insufficient to cause colitis by itself; 

another stimulus is required to induce gut inflammation. 
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ATG16L1 

ATG16L1 is important in autophagy, the biological process by which the cell 

“recycles” its components. Autophagy is central for antigen preparation, protein 

degradation and other important processes of immune responses[21]. In a North 

American-wide study, a polymorphic allele of ATG16L1 was the third most frequent 

polymorphism associated with CD, after IL-23R and NOD2[21]. Other studies, 

including one in Germany, replicated these findings[22]. Interestingly enough, 

ATG16L1 is highly expressed in the epithelium layer of the intestine, as well as in 

APC and T-cells, and is important for responses against Mycobacterium infections, 

sometimes suspected in the pathogenesis of CD[11]. 

 

A link between ATG16L1 and NOD2 signaling has recently been revealed; 

NOD2 signaling is essential for the formation of the autophagosome following 

bacterial stimulation[23]. Without autophagosome formation in DCs, antigen 

presentation is impaired and the immune response against the bacterium is impaired. 

This could explain how polymorphisms in both ATG16L1 and NOD2 could work 

together to create susceptibility to IBD. 

 

Polymorphisms in genes involved in bacterial handling and recognition, such as 

NOD2 and ATG16L1, increase susceptibility to IBD. Those genes are mostly 

expressed in epithelial cells and DC. Bacterial signaling through NOD2 and ATG16L1 

is one of the first steps in the induction of the immune response. Those immune 

responses, when out of control, can lead to chronic inflammation and IBD. The 

signaling through NOD2 and ATG16L1 also induces a plethora of inflammatory 

mediators, but also the induction of the adaptive immune response. An example of an 

important inflammatory cytokine is IL-23. It is known that DCs are an abundant source 

of IL-23 and IL-12; could the signaling induced by those cytokines be important in the 

pathogenesis of IBD? Genetic studies point towards an involvement of IL-23R and its 

signaling cascade. 
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IL-23R 

The polymorphism identified in IL-23R was the second IBD-associated 

polymorphism found in humans[24]. After a GWAS study comparing approximately 

600 healthy controls with 600 patients having ileal CD, a polymorphism was found in 

the intracellular domain of the receptor where an arginine at position 381 is modified 

for a glutamine (R381Q polymorphism). This polymorphism is protective against 

colitis. In addition to the R381Q polymorphism, nine other polymorphisms were 

identified in the IL-23R region, including in the intergenic region between IL-23R and 

IL-12Rβ2 (both genes are next to each other on chromosome 6), but no polymorphism 

were identified in IL-12Rβ2. Other studies also found involvement of IL-23R with 

psoriasis and ankylsoing spondylitis[25].  

 

Following the identification of this polymorphism, multiple studies have tried 

to identify the biological impact of the amino acid substitution. One of them took 

CD4+CD45RO+ T-cells from patients with either WT or R381Q coding alleles and 

activated them with αCD3 and αCD28 antibodies[25]. Measurements of INFγ, IL-17 

and IL-22 revealed that the cells coming from individuals with the R381Q 

polymorphism secreted less cytokines than cells coming from individuals with the 

wild-type allele. R381Q CD8+ T-cells stimulated in the same conditions also produced 

less cytokines. IL-23 induced STAT3 phosphorylation was also decreased in R381Q 

cells. The R381Q polymorphism induces a change in the amino acid sequence of the 

IL-23r
4
 subunit. This amino acid substitution is between the transmembrane domain of 

the receptor and the possible JAK2 recruitment site[26]. This could lead to either 

impairment of recruitment of the receptor to the cell surface or problems in the 

downstream signaling cascade. Failure or decrease of JAK2 recruitment could lead to 

decreased activation of STAT3 (and other factors), as well as decreased cytokine 

production. This group’s findings were also consistent with other studies where IL-23 

signaling on R381Q T-cells led to less phosphorylation of STAT3, but also STAT1. 

Another study demonstrated that the number of circulating Th17 T-cells was not 

different between the two alleles, but the responses and pathogenicity following IL-23 

stimulation was decreased in patients bearing the protective allele[27]. Together, these 

                                                 
4
 IL-23R is the receptor composed of two subunits, IL-23r and IL-12rβ2. Further explanation on the 

nomenclature will be provided. 
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findings indicate that IL-23R signaling is essential in the pathogenesis of both UC and 

CD. Furthermore, less signaling through the receptor following cytokine binding could 

lead to decreased inflammatory signalling and therefore protects against colitis. 

 

Among other genetic polymorphisms identified in IL-23R which differ between 

healthy controls and IBD patients, one of them, r10889677, was found to be in the 3’ 

untranslated region (3’UTR) of the receptor. This polymorphism altered the sequence 

in the UTR of the IL-23r mRNA which led to a different mRNA[28]. People bearing 

this variant produced more IL-23R protein. One mechanism proposed was that miRNA 

Let-7 could not bind and regulate the translation of the IL-23R mRNA, leading to 

increased signaling and immune responses, including feedback regulation. Patients 

with a difference in the UTR region are more susceptible to colitis, as more signaling 

through IL-23R could induce more inflammation. 

 

As IL-23R variants seem to have very strong implications with IBD, other 

genetic studies looked carefully at possible genes involved in the IL-23R signaling 

cascade and their possible implication in increasing or decreasing susceptibility to IBD. 

Susceptibility alleles were found in IL12B(p40, which forms IL-23 when paired with 

p19 or IL-12 when paired with p35), STAT3, IL12RB1, JAK2 and JUN2[29, 30]. 

Those genes are essential in the activity
5
 and signaling cascade of IL-23R[17]. 

 

Since the identification of different polymorphisms in IL-23R, many 

investigators have tried to create new therapies to control IBD by modulating IL-23 

and IL-23R responses. One study used ustekinumab, a α-p40 monoclonal antibody 

against IL-12 and IL-23. This randomized trial did not lead to dramatic effects when 

compared to placebo. It did have a beneficial effect for some patients, but overall, did 

not lead to drastic improvements[31], which could indicate the possible need for 

therapies targeted only to IL-23R and not both IL-12R and IL-23R. 

 

So, even though some genetic variants are found in CD and not UC and vice-versa, 

IL-23R is common to both diseases. Understanding the roles of IL-23R in one or both 

                                                 
5
 The structure and signaling cascade of IL-23R will be studied in deeper detail in the next section. 
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diseases is crucial for diagnostics, prevention, and treatment of IBD, which are all 

currently strongly lacking in the field of IBD. 
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2. IL-23R and IL-12R biology 

 

IL-12R/IL-23R/IL-35R/IL-27R family of receptors 

The IL-12R family, which includes IL-12R, IL-23R, IL-35R and IL-27R, are all 

heterodimeric receptors : they are made of two different subunits linked together with 

covalent bonds[32, 33](Figure 2: Receptors of IL-12R family). IL-12Rβ1 and IL-

12Rβ2(which form together IL-12R) both have homology to gp130[34], one of the 

subunits of IL-27R. IL-23r is highly similar to IL-12Rβ1 and IL-12Rβ2: all three 

subunits contain in their extracellular domain a signal sequence, two cytokine receptor 

domains, but only IL-23r and IL-12Rβ2 possesses an N-terminal Ig-like domain[35]. 

However, IL-23r, unlike IL-12Rβ2 and gp130, does not contain three fibronectin-like 

extracellular domains[35]. In humans and mice, IL-23r and IL-12Rβ2 are 150kbp apart 

on chromosome 1 or 6, respectively. 

 

It is sometimes hard to differentiate between IL-23 receptor, composed of two 

different subunits,  and the IL-23r subunit itself. The ambiguity between IL-23R and its 

IL-23r subunit will be resolved in this thesis in the following way: IL-23r with a small 

r, will denote the subunit, while IL-23R with the capital R, will denote the functional 

IL-23R protein, made of the IL-23r and IL-12Rβ1 subunits. 

 

IL-27R is composed of gp130 and WSX-1(also known as IL-27Ra
6
)[36]. gp130 

also possesses an N-terminal Ig-like domain
7
. IL-35R can act through three different 

receptors: heterodimers made of gp130 and IL-12Rβ2, homodimers made of gp130 or 

homodimers made of IL-12Rβ2[37]. Each receptor is comprised of subunits highly 

similar to one another, however, they bind to different cytokines and are expressed in 

different cell types, leading to very different in vivo roles. One must be also cautious 

when analyzing mice knock-out data; for example, IL-12Rβ2KO mice lack 

responsiveness to IL-12, but could also show decreased Treg functions through the lack 

or the decreased number of IL-35R. 

                                                 
6
 http://www.informatics.jax.org/marker/MGI:1355318 

7
 Idem 
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Figure 2: Receptors of IL-12R family 
The IL-12R family are all heterodimeric receptors (IL-35R can be composed of IL-12Rβ2 or gp130 

homodimers). All the subunits contain a signal sequence, a fibronectin-like domain and an intracellular 

domain. All receptors contain at least one subunit with an immunoglobulin like domain. The two 

subunits are linked together through a covalent bond. IL-23r is the only receptor subunit without a 

cytokine receptor domain, which probably explains why IL-23 is known to mostly bind to the IL-12Rβ1 

subunit. 
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IL-12/IL-23/IL-35/IL-27/p40 homodimer families of cytokines 

IL-12 family cytokines are heteromeric complexes, where two different 

subunits linked with a disulfide bond form a functional cytokine[33]. IL-12 is made up 

of a p35 chain and a p40 chain. IL-27 is made up of p28 and EBI3, which are 

homologuous to p35 and p40, respectively[33]. EBI3 can also bind to p35, forming the 

IL-35 cytokine. IL-23 is composed of p40 and p19, where p19 is also homologuous to 

p35.  

The result is therefore four highly similar cytokines. However, even though 

they share many similarities they have drastically different roles. IL-35 is essential for 

the suppressive activity of Tregs in mice. IL-12 induces INFγ, inhibits IL-17 and is 

characteristic of Th1 response. IL-23 leads to IL-17 cytokine production and Th17 

responses and IL-27 can induce Th1, but strongly inhibits the development of 

Th17[33]. Addition of IL-35 in T-cell proliferation assays will strongly decrease the 

proliferation of T-cells. This inhibition of proliferation is similar to the effect of the 

addition of Tregs in the same assay[38]. IL-35 is secreted by Tregs and can act on other 

T-cells to restrain their proliferation[39].  

 

The last and often overlooked member of this cytokine family is the p40 

homodimer. This homodimer can bind to IL-12Rβ1 with both high and low 

affinity[40]. When injected in vivo following LPS injection, p40 homodimer decreases 

levels of INFγ in the serum[41]. This homodimer can be either an agonist or an 

antagonist[42] of IL-12 secretion, and thus regulates IL-12 signaling. Because of the 

strong links and shared subunits between the cytokines, one must be careful when 

interpreting data from murine cytokine knock-outs
8
. 

 

To understand the role of each cytokine, one must understand their source and 

the stimuli leading to IL-12, IL-23, IL-27 and IL-35 secretion. DCs are a source of IL-

12, IL-23 and IL-27 following stimulation through different TLR signaling 

cascades[33], while IL-35 is mostly secreted by Tregs[39]. The quantities of each 

cytokine found during an immune reaction depend on the ligands recognized by the 

DC.   

                                                 
8
 For an overall analysis of mice knock-out experiments, consult section 3 of the introduction. 
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Figure 3 : Cytokine structure 
Ebi3 and p40 are homologuous to each other. Both are thought to be constantly produced in various cell 

types, especially DC and monocytes. Upon signaling through PAMPs or other signals, p35, p19 and p28 

are believed to be produced. The different subunits then bind to p40 or Ebi3 through a covalent bond and 

are secreted as an heterodimer by the various cells. The p40 homodimer secretion and biology is not well 

understood. 
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For example, signaling through TLR2 will induce strong secretion of p40 and 

p19, but no secretion of p35[33]. As is frequently seen in inflammatory responses, NF-

κB is known to bind to the p40 promoter[43] and probably regulates the secretion of 

IL-23 and IL-12. The strongest p40 promoter activity by NF-κB was recorded in the 

intestine of mice and is therefore of interest when studying the biology and role of IL-

23R in the gut. Ebi3 and p40, the α chain of the cytokines, are secreted in high 

numbers, while the β chain (p19, p35) is the limiting factor of cytokine secretion and 

depends on the stimulation of both APCs and Tregs[39]. 

 

Soon after the identification of p19, mice ubiquitously expressing p19 subunit 

were created[44]. Those animals suffered from impaired growth, infertility and most 

importantly, systemic inflammation. In naïve WT mice, p40 mRNA is produced at high 

levels in many different cells without any inflammation. Levels of p40 mRNA 

production did not increase in the p19 ubiquitous mice, but high levels of IL-23 were 

found, as well as systemic inflammation. This indicates that p40 is always secreted, but 

needs production of p19 to induce its effects. However, it could also mean p19 could 

have biological effects independent of p40. 
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IL-23R biology 

 

Signals leading to the upregulation of the receptor 

Naïve CD4+ T-cells do not express IL-23R [35]. When naïve CD4+ T-cells 

were transfected with a hyperactivated STAT3 and cultured with IL-6, TGFβ and αIL-

4 antibody, IL-23R mRNA levels increased seven fold compared to cells not 

transfected, demonstrating that STAT3 is important in the upregulation of IL-23R[45]. 

One of the downstream signals of IL-23R, IL-17, increased dramatically when 

compared to controls, showing that mRNA was translated into proteins and affected 

cell signaling. Under the same conditions, using STAT3 KO naïve T-cells, IL-23R 

mRNA slightly decreased, but other downstream cytokines such as IL-22 and IL-17 

decreased tremendously, demonstrating a relationship between STAT3, IL-17 and IL-

22. Another group also showed with the same STAT3 CD4+ T-cell-deficient mouse 

model that STAT3 was required for the upregulation of IL-23R mRNA following IL-6, 

TGFβ or IL-21 exposure[46]. Together, these studies indicate an important role of 

STAT3 in IL-23R upregulation. 

 

APCs can secrete cytokines which induce naïve T-cells to differentiate into 

Th17; these cytokines include TGFβ, IL-6 and IL-21. Th17 cytokines can also induce 

IL-23R at the surface of naïve cells. Using RT-qPCR analysis, one group demonstrated 

that IL-6 (in combination with αCD3/αCD28 stimulation) could lead to up-regulation 

of IL-23R[46]. IL-21 could also upregulate IL-23R. However, in presence of 

TGFβ+IL-6 and/or IL-21, IL-23R mRNA did not increase as much. According to the 

authors of this article, and in contrast to previously published papers, TGFβ actually 

had an inhibitory effect on the induction of IL-23R mRNA.  

 

Interestingly, even though both IL-23R and NOD2 have been identified as 

important for the pathogenesis of IBD in genetic studies colitis induction by C. 

rodentium or S. thyphimurium have been shown to induce colitis in mice, Nod1 and 

Nod2 are apparently not important for the upregulation of either IL-23 or IL-23R[47]. 

The role of ATG16L1 in bacterial colitis is important, but its relationship to IL-23R is 
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unknown. Very little is known about IL-23R induction in other cell types; other data 

suggest that those cells may not need to upregulate IL-23R because they constitutively 

express it, even in a steady state. 

 

Signals at the receptor levels 

When IL-23R was first characterized in humans, it was found that IL-23 could 

bind to both subunits IL-23R and IL-12Rβ1 [35]. In the absence of IL-23, IL-12Rβ1 

and IL-23R are not bound together; the binding of the cytokine brings the two subunits 

in close proximity and leads to the dimerization of the receptor. Following 

dimerization, signaling can take place through IL-23R and the IL-23 cascade is 

therefore activated[48]. 

 

Signaling cascade 

The signaling cascade of IL-23R following IL-23 binding is highly similar to IL-12R, 

which uses JAK2, TYK2, STAT1, STAT3, STAT4, AND STAT5[35]. Signaling 

through IL-23R mainly induces the phosphorylation of STAT3, but also weakly 

phosphorylates STAT4 (and STAT1/5)[45] in Th17 cells. Tyrosine Kinase 2 ((TYK2) 

and JAK2 are bound to the IL-12Rβ1 subunit, which will phosphorylate STAT3 upon 

IL-23 binding. This stimulation induces IL-17 secretion in naïve T-cells; in the absence 

of Tyk2, IL-17 levels are decreased, indicating an important role for Tyk2 in inducing 

IL-17 production following IL-23 stimulation[49].  
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Figure 4: IL-23R induction and signaling cascade 
a) APCs are one of the main source of cytokines leading to the upregulation of IL-23R. APC are also a 

good source of IL-23. The stimuli activating APC will determine the nature of the cytokines.  

b) Following IL-23 binding to IL-23R, a covalent bond will be formed between the two subunits of IL-

23R and the downstream signaling cascade will be activated. Kinases will phosphorylate STAT3, which 

will dimerize. Once the dimerized-STAT3 reaches the nucleus, it will activate the transcription of 

various inflammatory signals, including IL-17 and IL-22. 
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IL-12R biology 

2.1.1 Signals leading to the upregulation of the receptor 

IL-18, another very important Th1 cytokine, just like IL-12[50], is known to be 

important in the upregulation of IL-12Rβ2 on the surface of developing Th1 cells, 

which assembles with IL-12Rβ1 and produces the functional IL-12R[34, 51]. IL-27, 

another member of the IL-12 family, is also believed to be an early Th1 cytokine which 

would lead to the upregulation of IL-12Rβ2. Following this upregulation, IL-12 could 

then signal through IL-12R and stabilize the Th1 phenotype[32]. Signals that could 

lead to IL-12R upregulation in cell types other than T-cells are not very well-known. 

 

Signals at the receptor levels 

Even though IL-12R is made up of IL-12Rβ1 and IL-12Rβ2 in both mice and 

humans, the affinity of IL-12 for its receptor is different. In humans, IL-12 binds with 

low and high affinity to both subunits; in mice, IL-12 seems to bind very strongly with 

IL-12Rβ1 but only possesses low affinity for IL-12Rβ2[52]. However, in mouse 

studies, it was showed that without IL-12Rβ2, STAT4 phosphorylation was greatly 

reduced and INFγ production (a hallmark of IL-12 activity) was inhibited in response 

to IL-12[52]. So, even though IL-12 only weakly binds to IL-12Rβ2, this subunit is 

essential for signaling. 

 

Signaling cascade 

Upon binding of IL-12 to IL-12R, the Jak2/Tyk2 kinases associated with the 

receptor phosphorylate the receptor's tyrosine residues [53]. IL-12 binding to IL-12R 

leads to the activation (dimerization and phosphorylation) of STAT4, but also of 

STAT1,3,5[34, 45]. The activated STATs can than translocate into the nucleus and 

activate a plethora of genes, including IFNγ. One of the hallmarks of IL-12 signaling is 

INFγ secretion; in the absence of Tyk2, INFγ secretion after IL-12 stimulation is 

greatly reduced[49] (Figure 5). 
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Figure 5: IL-12R induction and signaling cascade 
a) APCs are one of the main source of cytokines leading to the upregulation of IL-12R. APC are also a 

good source of IL-12. The stimuli activating APC will determine the nature of the cytokines.  

b) Following IL-12 binding to IL-12R, the downstream signaling cascade will be activated. Kinases will 

phosphorylate STAT4, which will dimerize. Once the dimerized-STAT4 reaches the nucleus, it will 

activate the transcription of various inflammatory signals, including INFγ. 
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IL-23R and IL-12R functions 

Th17 T-cells 

Th17 T-cells are CD4+ T-cells that secrete IL-17 [54]. Th17 cells may play an 

important role in defending against extracellular pathogens[54]. Other experiments 

demonstrated that Th17 cells were highly inflammatory and very important in animal 

models of inflammatory diseases, including colitis and EAE [54]. IL-23 is required for 

the maintenance and pathogenicity of Th17[54]. Th17 can also produce IL-22 and 

other inflammatory cytokines.  

 

Two different types of Th17 have recently been described: the classical Th17, 

which are differentiated from naïve T-cells using IL-6 and TGF-β, and "alternative" 

Th17 cells which were induced using IL-6, IL-23 and IL-1β[55]. T-cells can 

differentiate into Th17 in the absence of IL-23/12 [56], but can also form Th17 

pathogenic cells in the absence of TGF-β[57]. Th17 cells differentiated in the presence 

of IL-23 had a more pathogenic phenotype than the classical ones; this could be one 

way in which IL-23 is important to induce inflammation, through production of 

pathogenic Th17 cells. Another mechanism by which IL-23 seems to affect T-cells 

function is through the inhibition of IL-10; without IL-10, Th17 may lack this feedback 

inhibition loop which could hinder their immune responses [55]. IL-23 can also induce 

GM-CSF production from Th17 T-cells; this cytokine has potent effects on APCs, 

leading to even more IL-23 production and increasing the inflammatory environment 

[58] and the potency of pathogenic Th17 cells. 

 

γδ T-cells 

γδ T-cells are a rare subtype of T-cells, representing less that 5% of total T-

cells[59]. However, they are enriched in epithelial tissues, such as the skin and are 

found in high numbers in the gut. Unlike αβ T-cells, they do not need APC to be 

activated; their T-cell receptors recognize small bacterial patterns and not specific 

antigens [59]. γδ T-cells found in epithelial tissues are mature and can either be 

important in homeostatic processes or in the defence against pathogens.  
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Using the IL-23R-GFP reporter mouse, it was previously demonstrated that 

γδT-cells express IL-23R at steady state[60]. IL-23R+ were CCR6+ and INFγ-, while 

IL-23R- γδT-cells were CCR6+ and INFγ+[61]. γδT-cells stimulated with IL-23 

induced IL-17, IL-22 and IL-21; this cytokine production was dependent on IL-23R.  

 

Th1 T-cells. 

Th1 T-cells are essential for clearance of intracellular pathogens[62]. They are 

characterized by their high secretion of INFγ. The most important Th1-inducing 

cytokines are derived from APCs; they are IL-12 and IL-18[50]. DCs and 

macrophages, upon activation, will secrete various cytokines; if they are primed to 

secrete IL-12 and IL-18, it will lead to the up-regulation of IL-12R and differentiation 

of naive T-cells into Th1 cells. 

 

Up-regulated Th1 T-cell responses have been associated with many diseases, 

including multiple sclerosis, rheumatoid arthritis, lupus and type I diabetes [62]. On the 

other hand, down-regulation of Th1 responses leading to a decrease in IL-12 can lead 

to increased malignancy. It has also been shown that increasing the concentration of 

IL-12 in tumors can decrease the immunoregulatory environment of the tumor and 

increase the immune response against the malignancy[63]. 

 

a)Th17/Th1 dichotomy 

Generally speaking, cytokines leading to the differentiation of a certain Th 

subtype will also inhibit the differentiation of another subtype. For example, Th17-

inducing cytokines will inhibit the formation of Th1[50]. 

 

However, even if Th1 cells are associated with INFγ production and Th17 cells 

with IL-17 production, it was identified that in situations of autoimmunity, for 

example, Th17 cells actually produced INFγ[51]. In a study by Lee et al., OT-II naïve 

CD4+ T-cells in culture with irradiated splenic cells p40KO, OVAp
9
, αINFγ, αIL-

                                                 
9
 OVA, short for ovalbumin, is the specific peptide recognized by OT-II (CD4+ T-cells).In this 

experiment, OVAp are peptide charged on MHC molecules class II that can activate OT-II. 
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4(both antibodies), IL-6 and TGF-β for seven days gave rise to Th17 cells. About half 

of the Th17 differentiated cells produced IL-17, but few produced INFγ or INFγ and 

IL-17. Those Th17 differentiated cells were then transferred into new culture 

conditions. Upon stimulation with IL-12 (and OVAp, irradiated p40KO splenic cells, 

and αIL-4/αINFγ), more than 60% of the cells started producing INFγ. However, when 

stimulated with IL-23, 50% of the cells continued the production of only IL-17. This 

experiment shows that even if Th17 do not express (or express very low levels of) IL-

12Rβ2, they can still respond to IL-12 and produce INFγ. In the same study, the 

authors also showed that TGFβ and not IL-23 was required in vitro to maintain IL-17 

production by Th17 cells. These experiments cast a shadow on the specific response to 

IL-12 and IL-23; nevertheless, all of these results were obtained in vitro and merits 

verification in an in vivo model. Transcriptome analysis of Th17 cells cultured with IL-

12 revealed a Th1-skewed gene expression, which shows a plasticity in Th17 cells 

depending on the cytokine environment, but most importantly a responsiveness to IL-

12 even when expression of IL-12Rβ2 is very low. It could be that this responsiveness 

to IL-12 in vitro is an artefact of the in vitro conditions[64]. IL-23 is important in 

driving inflammatory responses in the gut; this could include the production of INFγ by 

Th17 following IL-23 stimulation[64]. 

 

Other cell types 

The importance of IL-23R in certain T-cell subtypes is reasonably well 

understood, but IL-23R expression is not restricted to T-cells. Experiments measuring 

IL-23R expression in other cell types are rare. One of the reasons is due the lack of 

appropriate antibodies to study IL-23R expression. Very often, in order to measure IL-

23R presence, cells are stimulated with IL-23 and cytokines such as IL-22 and IL-17 

are measured to evaluate IL-23 responsiveness. It is interesting how some articles 

describe certain cell populations as IL-23 responsive and IL-23R expressing[65], as 

measured by IL-23R mRNA in certain cells populations, but others respond to IL-23 

even in the presence of only very small quantities of IL-23R mRNA. This could 

indicate that IL-23 may signal through a receptor other than IL-23R; it could also mean 

that only small quantities of mRNA are required for protein production and signaling. 
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a) NK and NKT-cells 

In a recent paper, DX5+TCRβ+ cells, known as NKT-cells, were found to 

secrete high amounts IL-17 when stimulated with αCD3 and IL-23. Those cells also 

expressed IL-23R mRNA before stimulation. NK cells, on the other hand, did not 

respond to the same stimulation and did not express IL-23R mRNA [66]. Those NKT-

cells, when stimulated with either IL-23 or αCD3, still produced IL-17. The authors 

also isolated NKT-cells from an IL-23RKO mouse and stimulated them with IL-23. IL-

23 stimulation IL-23RKO NKTcells did not induce IL-17 production. Further 

characterization revealed that NK1.1- NKT cells were responsible for producing the 

most IL-17 following IL-23/αCD3 stimulation. In this article by Rachitskaya et al, 

there is a suggestion that early IL-17 production following splenocyte stimulation with 

αCD3 and IL-23 is made by NKT-cells and that this mechanism is independent of IL-6, 

which would be a mechanism different from the one inducing IL-23R in T-cells. 

 

It is generally believed that NK cells can directly respond to IL-12[67]. It is also 

known that IL-12 stimulation of NK cells in the inflammatory phase of immune 

responses induces INFγ[34]. IL-12 is usually associated with activation and 

proliferation of NK cells. IL-12 stimulated NK cells are also strong producers of INFγ. 

 

b) B-cells 

No expression of either IL-12R or IL-23R by B-cells in mice has been reported 

in the literature. Interestingly, it is known that IL-12Rβ2 acts as a tumor suppressor 

gene in human chronic B cell malignancies[68, 69], which led the authors of that paper 

to believe that IL-12/IL-12R signaling could be important in the regulation of B cells. 

Another study from the same group showed that some B cells in human tonsils 

expressed IL-12Rβ2 mRNA[70]. In the long-term study of IL-12Rβ2KO mice
10

[69], it 

was observed that B220+ B cells were activated and plasma-cell hyperplasia (B-cell 

malignancies) were high, possibly indicating a role of IL-12Rβ2 in controlling B cell 

proliferation and malignancy. 

 

                                                 
10

 Mice were kept in a specific-pathogen free facility for a period of up to 26 months. 
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c) Dendritic cells, monocytes and macrophages 

DCs, monocytes and macrophages are mostly recognized as a source of IL-23 

and IL-12, but not as responding to IL-12 and IL-23, which could indicate that they do 

not express IL-23R and IL-12R[33]. However, there are many reports of INFγ 

secretion from these cells, including following stimulation with IL-12 alone[71], which 

would indicate the presence of a receptor to IL-12 on those cells. Others report the 

requirement of IL-18 and IL-12 through a STAT4 dependent mechanism to induce 

INFγ secretion[72]. Macrophages are specifically believed to respond to IL-23 and 

therefore express IL-23R, but data is conflicting about this conclusion[67]. 

d) Lti-like 

Lymphoid tissue inducer cells (Lti) are required during embryonic development 

to create secondary lymphoid organs, such as lymph nodes [73]. Lti-like cells are cells 

similar to Lti that continue to be found in both mice and human in adulthood [73]. 

They can produce IL-22 and IL-17, are dependent on the RORγT transcription factor, 

can be found in germ-free mice, and can respond to IL-23[73]. They were found to be 

important in the αCD40 colitis models as a source of INFγ[74]. At the mRNA levels, 

IL-23R was expressed in high amounts [35]. The definition of Lti-like cells that can 

respond to IL-23 varies from one research group to another. They usually are Lin-, 

Thy1 (CD90) 
high

, Sca-1+, and RORγT[64]. Another name frequently used is innate 

lymphocytes. Lti-like cells were found to increase in numbers during gut inflammation.  

 

IL-22 production by innate lymphocytes is crucial for gut homeostasis, especially 

for epithelial cell proliferation, mucus production and overall maintenance of the 

epithelial barrier in the gut[64]. 
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3. Mouse models 

Before the discovery of IL-23 and its receptor, all biological phenotypes of p40 

were associated with IL-12. Many experiments had to be re-examined and results were 

re-analyzed. Very often, roles attributed to IL-12 and IL-12R were actually caused by 

IL-23 and IL-23R. 

 

Roles and importance of IL-23R and IL-12R in mouse models other 

than colitis 

IL-23R and IL-12R have been studied in animal models of autoimmune 

diseases, bacterial and fungal infections and malignancies. In this section, a brief 

overview of the involvement of those receptors in the disease pathogenesis will be 

given in order to emphasize the importance of studying the biology of IL-12R and IL-

23R. 

 

EAE 

Experimental autoimmune encephalitis (EAE) is an animal model of MS, where 

the animals are immunized with MOG (myelin oligodendrocyte glycoprotein), a 

peptide of myelin which is often the target of autoreactive T-cells in MS[75]. IL-12 

was considered the main orchestrator of brain inflammation through generation of Th1-

producing INFγ. However, Cua et al. showed that EAE was totally inhibited in the 

p19KO and p40KO animal models but not in the p35KO models[76, 77], showing that 

IL-23 is a crucial cytokine in the development of EAE, while IL-12 is dispensable
11

. 

The local IL-23 production in the brain was required for induction of brain 

inflammation.  

 

γδT cells are IL-23R+ and are known to accumulate in great numbers in the 

CNS of mice affected by EAE [61]. γδT cells can control and decrease the activity of 

Foxp3+ Tregs and inhibit the conversion of naїve CD4+ T cells into Tregs [61], which 

could be one of the ways IL-23R can mediate brain inflammation. 
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Other articles showed that IL-23RKO animals, similar to p19KO, were resistant 

to EAE induction, demonstrating the crucial role of the receptor in the induction of 

EAE [60, 78]. IL-12 is known to be important in the generation of Th1 pathogenic T 

cells; however, induction of EAE in IL-12Rβ2KO mice resulted in a more severe 

disease than in controls[79]. p19 mRNA was also higher in IL-12Rβ2KO mice, which 

may indicate a role for IL-12R in the control of IL-23R mediated inflammation. As one 

review clearly indicated, IL-23 is crucial for the development of encephalitogenic Th17 

and IL-17 production, but also through the modulation of an array of inflammatory 

cytokines, including GM-CSF and IL-22 and through its actions on a variety of cells 

not limited to autoreactive T-cells[80]. 

 

Collagen induced arthritis 

Collagen induced arthritis (CIA) is a murine model for rheumatoid arthritis. 

Genetically susceptible mice are immunized twice subcutaneously at the tip of the tail 

with collagen and develop a specific immune response against their joints. Using 

p35KO and p19KO mice, it was demonstrated that mice lacking IL-23 were completely 

protected from CIA, while IL-12-deficient mice actually had a worse disease than WT 

mice[81]. Mice lacking both IL-12 and IL-23 (p40KO) were also protected from CIA. 

The levels of IL-17 and TNF were slightly higher in the p35 knock-out strain compared 

to the WT animals, which could explain the slightly worse outcome of those animals. 

In this model, IL-23 seems to be the pathogenic cytokine, probably through the Th17 

and IL-17 pathway[82]. 

 

IL-23-induced arthritis 

The single hydrodynamic injection of IL-23 minicircle DNA resulted in joint-

destructive arthritis [83], clearly demonstrating the possible pathogenic effects of 

increased IL-23.  
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Lupus nephritis 

C57BL/6–lpr/lpr are susceptible to lupus erythemathosus and are therefore the 

animal model of human lupus, a disease characterised by systematic inflammation 

caused by autoreative T-cells and autoantibodies. When bred with IL-23RKO, the 

progeny were susceptible to lupus had lower cytokines, lower auto-antibodies levels 

and no nephritis, showing the importance of IL-23R in the pathogenesis of lupus in 

mice[84]. 

 

Infectious diseases 

a) Experimental Cerebral Malaria 

The role of IL-12/IL-12R in the development of malaria is still not well 

understood. In a mouse model of experiment cerebral malaria (ECM), it was shown 

that IL-12Rβ2KO mice did not suffer from ECM and survived much longer than the 

controls, but IL-12Rβ2KO mice had an unrestrained parasite proliferation and died of 

anemia[85]. When p40KO, p35KO, p19KO and IL-12Rβ1 animals were infected, they 

suffered from strong ECM and died at day 5. When this study was published, the role 

of IL-12Rβ2 in forming IL-35R was unknown; this could be an indication of the 

importance of IL-35R in the pathogenesis of ECM. 

 

b) Klebsiella pneumoniae 

In a K. pneumoniae mouse lung infection model, IL-23 was essential for the 

production of IL-17 by T cells. Without IL-17, the bacterial burden was much higher. 

However, using p19KO, p35KO and p40KO mice, they showed that mortality 

following bacterial infection was the same in p19KO, p35KO and p40KO mice, 

indicating an important role for IL-12 as well, even if IL-12 was not required for IL-17 

production[86]. 

c) Listeria monocytogenes  

Listeria monocytogenes is often used to study immune responses against 

intracellular bacteria. In a study by Riol-Blanco et al., Riol-Blanco et al. examined the 

importance of IL-23R during the infection of this pathogen[87]. IL-23R was important 
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in the early stage of the bacterial infection in order to induce the production of IL-17 

by γδT-cells and decrease the liver bacterial burden. However, IL-23R was not 

required for the immune cells to be recruited to the abdomen following the infection. 

Also, in the absence of IL-23R, the decrease in IL-17 was correlated with an increase 

in INFγ, showing a switch from Th17 to Th1 response. 

 

Colitis models 

There are currently no colitis mouse models that exhibit all characteristics of 

IBD seen in humans[9]. However, many mouse models demonstrate that the genes 

identified in genetic studies in humans were as important to the development of the 

disease in mice, including IL-23R. Mouse models are relevant to human diseases 

because many immune responses are homologous between the two mammals and very 

often rely on the same signaling pathways[9]. 

 

However, there are many limitations of mouse models when interpreting IBD in 

humans[9]: 

 Murine inflammation is usually found in the colon; most patients 

suffering from CD have inflammation in the ileum. 

 Inflammation in the mouse is chronic, while in humans most suffer from 

a relapse-remitting disease. 

 

Types of mouse colitis models 

Depending on what aspects on intestinal inflammation need to be studied, one must use 

a specific rodent model. There are different approaches for inducing intestinal 

inflammation[9]: 

1. Chemically-induced colitis (such as DSS, Dextran sulfate sodium 

and TNBS, 2,4,6-trinitrobenzene sulfonic acid) 

2. Mixed techniques (such as αCD40 injections in RagKO mice) 

3. Genetic modifications (such as IL-10KO) 

4. Transfer of bacteria into genetically susceptible mouse 
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5. Transfer of cells into a genetically susceptible mouse (such as T-

cells transferred into  RagKO mice) 

a) DSS 

DSS is awhite chemical that can easily be dissolved in water
12

. When added to 

the mice drinking water at concentrations between 1%-5% it induces an acute colitis 

characterized by colon shortening, neutrophil recruitment, weight loss, and ulcers in 

the mucosa of the intestine[88]. This model of colitis induction is useful when studying 

the importance of innate immune responses in the development of colitis in both 

SCID[88] and RagKO mice[65], which are deprived of T and B-cells and therefore of 

adaptive immune responses. However, DSS-induced colitis can also be used in 

immunocompetent mice, such as mice with T and B-cells. 

 

b) TNBS 

The TNBS model is another chemically induced model of colitis; however, 

unlike DSS, it depends on T-cells to induce intestinal damages[88]. Briefly, TNBS is 

mixed with ethanol and is given through the rectum. This model uses ethanol and 

TNBS to break the mucosal barrier in the intestine and induce gut inflammation[89]. 

 

c) αCD40 antibodies 

Injection of an agonistic CD40 monoclonal antibody in a RagKO mouse 

induces systemic inflammation and rapid weight loss[90]. Lesions and pathology are 

observed in the liver and the colon, while the spleen increases in size. Thus, this model 

is not simply a colitis model; however the intestinal pathologies induced by this model 

are particularly useful in understanding inflammation in an innate immune model. 

 

To understand the pathogenesis of the disease, monoclonal antibodies against 

different cytokines, including IL-12 and TNFα, were injected in vivo to understand the 

role of each cytokine in the pathogenesisof the disease. Amongst the ones tested, anti-

p40, a monoclonal antibody against IL-12 and IL-23, was the most effective. Anti-
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INFγ and-TNF-α inhibited the strong weight loss (wasting disease), but did not have an 

effect on colitis or cytokine serum levels[90]. The anti-p40 monoclonal antibody 

treatment indicated a possible role of IL-12 and IL-23 in the inflammation developed 

after αCD40 injection. In the next section, induction of inflammation with αCD40 in 

p19KO, p35KO and p40KO mice will be further addressed. 

 

d) IL-10KO 

A longitudinal study of IL-10KO mice revealed that many of them 

spontaneously developed colitis[91]. Inflammation started at three weeks of age, 

mostly in the colon, but after three months 100% of IL-10KO suffered from intestinal 

inflammation. Treatment with anti-INFγ decreased the disease severity but did not 

entirely inhibit it, even if analysis showed a skewed Th1 immune response in the gut of 

those animals. These findings have been replicated, but demonstrated that IL-23 and 

not IL-12 was crucial in the development of colitis in IL-10KO animals[92]. 

 

e) T-cell transfer 

Another interesting model of colitis
13

 is the transfer of CD45RBhighCD4+ T 

cells into a SCID or RagKO mouse. Upon this transfer, the mice suffer from a wasting 

disease, massive weight loss and strong intestinal inflammation[93].  

 

f) Helicobacter hepaticus 

H. hepaticus is an intestinal bacteria used to study to role of the microbiota and 

infections in the development of colitis. When given orally in 129SvEvRagKO, it 

induces inflammation of the gut, which is then a T-cell-independent gut 

inflammation[94]. However, if CD45RBhighCD4+ T cells are transferred into the 

129SvEvRagKO mouse and H. Hepaticus given orally the gut inflammation is much 

more severe, thereby showing a T-cell-dependent gut inflammation[94]. In both cases, 

transfer of Tregs can inhibit the gut inflammation. Transfer of H. Hepaticus in IL-

10KO mice also induces colitis[95], but infection with H. Hepaticus in WT animals 
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does not lead to gut inflammation. These different experiments clearly show that in the 

Helicobacter hepaticus colitis model, Tregs are a crucial element in controlling gut 

inflammation and/or immune dysregulation.  

 

Importance of IL-23R in different colitis models 

Since the identification that IL-23R is implicated in IBD aetiology, many 

groups have generated different mice that were either lacking some of the important 

genes in this pathway or cytokine family, including p35KO (absence of IL-12 and IL-

35), p40KO (no IL-12 and IL-23), p19KO (no IL-23), as well as IL-12Rβ1KO, IL-

12Rβ2KO and IL-23RKO. Then, using different methods to induce colitis, they tested 

the importance of each of the pathways knocked out in the induction of colitis. 

 

Using DSS induced-colitis, Cox et al. tested the importance of IL-23 and IL-

23R using p19KO and IL-23RKO mice. When compared to wild-type mice, both KO 

mice had less weight loss, histological colitis scores were decreased and leukocyte 

infiltration was lower[65]. All KO mice did not have the same phenotypic response; 

histological findings for the p19KO were less severe than for the IL-23RKO mice. This 

highlights, once again, that IL-23 may be acting through another receptor other than 

IL-23R, and/or IL-23R could be activated through another cytokine other than IL-

23[65]. Another group in 2006 had done a similar experiment, also using DSS 2.5% in 

p19KO mice, but their findings were contradictory to Cox et al.. Their results: the p19-

KO mice lost more weight during the course of the disease than WT mice [96]. 

Surprisingly, when using an anti-IL-12/23-p40 antibody in p19KO, the weight loss in 

DSS-induced colitis was tremendously decreased. The authors hypothesized that IL-23 

could actually control IL-12 secretion, and in the absence of IL-23, IL-12 would 

increase. Alternatively, those results could be explained by the p40 homodimer 

secretion. Becker et al. also used TNBS-induced colitis; p19KO were actually more 

susceptible to colitis than the controls. Another study of TNBS-induced colitis 

measured cytokines through the progress of the disease; the early stages of 

inflammation had high levels of IL-12 and INFγ, but as time progressed the cytokine 

profile switched to IL-23 and IL-17, which could indicate a role for both cytokines in 

this colitis model[89]. 
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However, colitis was not totally inhibited in the Cox study, demonstrating that 

other pathways are likely also important in disease induction. Pro-inflammatory 

cytokines IL-17 and IL-22 were also decreased. They also tested DSS induced colitis in 

RagKO mice, deprived of B and T-cells. In this situation, animals lacking IL-23R as 

well as T and B-cells actually lost more weight than the RagKO control animals. 

Levels of IL-22 and IL-17 were reduced. However, injection of IL-22 helped to 

decrease colitis. Depletion of Thy1.2+ cells of RagKO animals worsened the colitis 

state. Thy1.2+ are definitely one of the most important cell populations expressing IL-

23R in RagKO animals, but are probably not the only cells doing so, as evidenced by 

the residual protection from DSS-induced colitis. IL-22 was previously identified as 

important in mucosal repairs and this effect is mediated, at least partly, through Thy1+ 

cells[65]. 

 

In another colitis model, upon injection of αCD40 antibodies into RagKO 

p35KO (IL-12KO) mice systemic inflammation was inhibited, for RagKO p19KO (IL-

23KO) mice colitis stopped, and for RagKO p40KO (IL-12 and IL-23KO) mice both 

types of inflammation were inhibited. This demonstrated a different role for each 

cytokine in different settings, where IL-23 seems more important for local 

inflammation in the gut[90] and IL-12 for systemic inflammation. When this study was 

published, CD4+ cells were the main type thought to respond to IL-23, but there are no 

T-cells in the αCD40 model. The group went on to identify a population of innate 

lymphocytes CD90.2+ (Thy1.2+) Sca-1+ population in the gut that responded to IL-23 

by secreting IL-17[74]. Depletion of this cell population with a αCD90 monoclonal 

antibody decreased colitis, demonstrating the importance of this population of innate 

lymphocytes in the pathogenesis of colitis. 

 

Other colitis models, which consist of Helicobacter hepaticus administration 

and either injection of anti-IL-10R antibody or T-cell transfer into RagKO mice 

showed that IL-23 was essential for the development of severe intestinal inflammation, 

while IL-12 was dispensable. However, INFγ production was essential for some 

aspects of the pathology, and is usually associated with IL-12 production[14]. Th17 

cells are known to secrete INFγ, so INFγ coming from Th17 cells could cause severe 

intestinal inflammation. p40 had an essential role in the gut inflammation, but not p35. 
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A study using H. hepaticus infection in 129SvEvRagKO mice showed that IL-23 and 

IL-17 cytokines were increased in the intestine, but IL-12p35 was increased in the 

spleen, here again reinforcing the roles of IL-12 in systemic inflammation and IL-23 in 

local inflammation
14

[97]. Injection of αIL-23p19 greatly decreased inflammation in the 

colon and caecum and cytokine levels measured in the gut were much lower, but 

inflammation was not totally inhibited. The αp19 antibody also decreased cellular 

recruitment to the spleen, this time demonstrating an importance of IL-23 in systemic 

inflammation. In T-cell independent colitis, IL-23 was an important mediator of 

inflammation[97]. Again, another study by this group found that the CD90.2+ 

(Thy1.2+) Sca-1+ population in the gut was responding to IL-23 and secreted both 

INFγ and IL-17[74]. Those IL-23-responsive innate lymphocytes which seem 

important in the pathogenesis of animal models of colitis induced by αCD40 and H. 

hepaticus were found in increased numbers in the intestines of IBD patients[98], 

increasing their pertinence to colitis pathogenesis. 

 

In the IL-10KO colitis models, double KO IL-10KO p35KO mice still suffered 

from colitis, demonstrating that IL-12 is not required for the development of colitis. On 

the other hand, IL-10KOp19KO did not develop colitis, indicating an important role 

for IL-23 in the development of gut inflammation[92].  

 

In a T-cell transfer model, IL-10KO T-cells usually induce colitis in about 10-

12 weeks. However, continuous treatment with IL-23 led to development of colitis in 

four weeks, but IL-23 treatment by itself did not induce colitis. IL-23's effect on T-cells 

was thus crucial to the development of colitis[92]. To measure the importance of IL-23 

on T-cells, another group induced colitis in the T-cell transfer model by transferring 

IL-23RKOCD4+CD45RBhigh T-cells into RagKO mice[99]. Mice injected with IL-

23RKO T-cells only developed a mild colitis when compared to controls. T cells from 

IL-23RKO mice injected into RagKO mice led to decreased levels of IL-22, IL-17, IL-

21, TNF-α and other cytokines in the colon, but the number of CD4+ T-cells was the 

same and the total number of splenocytes was actually higher in mice injected with IL-

23RKO CD4+T-cells than in mice injected with WT CD4+T-cells. INFγ production 
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was not decreased in IL-23RKO T-cells, so Th1 differentiation was not impaired. They 

also showed with mixed bone marrow chimeras and transfer of IL-23RKO and WT T-

cells that proliferation of T-cells was reduced in IL-23RKO, probably through the 

induction of Treg and IL-10 secretion. IL-23R signaling could then modulate IL-10 

secretion, increasing inflammation.  

 

Another study by the same group also tested the importance of IL-23 over IL-

12 secreted by RagKO animals in which WT CD4+CD45RBhigh were transferred. The 

intestine inflammation score of RagKOp40KO and RagKOp19KO were much lower 

than RagKOWT animals, but RagKOp35KO was similar to RagKO[97] and intestinal 

inflammatory cytokines were decreased in p40KO and p19KO animals. However, 

systemic inflammation (measured by spleen weight, number of cells in the spleen and 

number of CD4+T-cells) was decreased only in the RagKOp40KO, which could 

indicate roles for p40 independent of p35 and p19. 

 

IL-23R-GFP reporter mouse 

One of the biggest challenges in the study of IL-23R and its biology is the lack 

of reagents. Monoclonal antibodies against IL-12R and IL-23R are rare and often non-

functional. In the studies cited previously, IL-23R expression was usually measured by 

mRNA quantification, which can be indicative but is not always translated into real 

protein measurements. It was possible to identify roles for the receptor and the 

cytokines through knock-out animals, but pin-pointing exactly which cell populations 

were directly expressing the receptor was much harder. 

 

To overcome this difficulty, an IL-23R-GFP reporter mouse was created by 

Awasthi et al[60]. To generate this mouse, an internal ribosomal entry site (IRES) and 

enhanced green fluorescent protein (GFP) were inserted directly after exon 8 in the IL-

23R gene on chromosome 6 of the mouse genome, removing exon 9 entirely. Exon 9 

codes for the transmembrane domain of IL-23R; removal of exon 9 probably inhibits 

the IL-23R protein from reaching the surface. However, insertion of IRES-GFP assures 

that GFP is produced instead of IL-23R protein. 
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When this mouse is heterozygous for the IL-23R-GFP allele, cells that should 

express IL-23R will produce both GFP and a functional IL-23R, allowing 

responsiveness to IL-23. If the mouse possesses two GFP alleles, it leads to a 

functional IL-23R knock-out mouse (IL-23RKO), but cells that should express IL-23R 

can still be tracked through GFP expression(Figure 6: IL-23r-GFP reporter mouse). 

 

Following the production of the mice, Awasthi et al. compared IL-23R-GFP 

homozygous mice to the IL-23RKO mice and both had no responses to IL-23. They 

also were equally fertile compared to WT mice and had similar numbers of different 

immune cell types compared to WT. 

 

They further analysed which cells expressed IL-23R in steady state in the 

lymph nodes. They showed that TCRγδ T-cells were the main cells expressing the 

receptor, while some CD4+CD3- cells also expressed it. There was also a small 

population of CD11c+ and CD11b+ cells that expressed IL-23R. All IL-23R+ cells 

were CD45+, indicating their hematopoietic provenance. B-cells, NK cells and 

CD8+T-cells did not express the receptor. Very low numbers of spleen cells in naïve 

animals expressed IL-23R in this system. Around 3% of CD45+ cells in the lamina 

propria of the small intestine expressed IL-23R and most(65%) LP γδ T-cells expressed 

IL-23R, but no DCs expressed the receptor. 

 

They concluded their paper by inducing EAE in IL-23RKO. In the absence of a 

functional IL-23R, EAE was totally inhibited. Because EAE is caused by myelin 

autoreactive T-cells, it is possible to transfer EAE simply by transfering T-cells. 

Transfer of IL-23RKO T-cells did not induce EAE in recipient mice, indicating the 

importance of IL-23R signaling on T-cells in EAE pathogenesis. 

 

This paper strongly establishes some important facts: IL-23R expression in 

naive animals is rare, especially in the spleen. However, more cells expressed IL-23R 

in the gut, which fits nicely with the colitis experiments previously discussed. The EAE 

experiments clearly indicate a crucial role of IL-23R signaling in the pathogenesis of 

the disease. The characterization of the mouse is interesting, but as many Cutting Edge 

papers published in the Journal of Immunology point out, a lot of data is not shown and 
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many interesting cell types and organs are not looked at for IL-23R expression. They 

also generated a RagKOIL-23R-GFP mouse, but did not show how IL-23R was 

different in those RagKO animals, which could be interesting to look at rarer cell 

populations, such as innate lymphocytes. 
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Figure 6: IL-23r-GFP reporter mouse 
In wild-type mice, both IL-23R alleles are normal and produce IL-23r protein. However, it is impossible 

to detect IL-23r+ cells with flow cytometry. In IL-23r-GFP-Het mice, one allele can produce IL-23r, 

while the other will produce GFP. IL-23R will still be produced and responsiveness to IL-23 through IL-

23R is possible. In IL-23r-GFP-KO mice, IL-23r expression through GFP detection can be detected; 

however, a functional IL-23R will not be produced. 

 



Research question and hypothesis 

 

IBD represents a puzzle in which many of the pieces have been identified. 

However, figuring out how all those pieces actually fit together is still a tremendous 

challenge. Understanding IL-23R biology and how it fits in the bigger picture of IBD 

will definitely help put some pieces of this puzzle together and improve our 

comprehension of how genetics, environmental triggers and immune responses can 

lead to inflammatory bowel diseases. It is no small task to tackle.  

 

As shown in the previous sections, IL-23R functions are intrinsically linked to 

IL-12R and other members of IL-12R. IL-12R could also be involved in IBD 

pathogenesis as genes important for its biology, such as p40, IL-12Rβ1 and Jak2, have 

been identified in IBD GWAS. The strong homology between IL-12R and IL-23R and 

IL-12 and IL-23 leads to many questions: could each cytokine only act through its 

specific receptor? Which cells express those receptors? 

 

Our laboratory acquired the IL-23R-GFP mouse used in the Awasthi et al. 

article. A thorough characterization of this mouse in order to analyze IL-23R 

expression in steady state could answer some questions asked in the analysis of the 

Awasthi paper, such as IL-23R expression in RagKO. For example, colitis in certain 

RagKO mouse models is IL-23 dependent, so IL-23R expression is definitely not 

restricted to T-cells or IL-23 can signal through receptors others than IL-23R. Also, 

tracking IL-23R expression by cells through induction of colitis or cytokine stimulation 

could be indicative of IL-23R expression and the possible dichotomy between IL-23 

responsiveness and IL-23R expression sometimes seen in the literature.  

 

Furthermore, there is a new antibody targeted against the IL-12Rβ2 specific 

subunit. Analysing the expression and modulation of the two receptors could lead to a 

better comprehension of the expression dynamics of the two receptors. It was 

previously shown that both may contribute to different pathogenesis or different 

components of the same disease model, especially colitis. Mapping IL-23R and IL-12R 
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pattern expression at steady state could increase our knowledge of the possible 

interactions between the two receptors. 

 

Characterization of the expression of both receptors could help understand the 

first cells responding to IL-12 and IL-23 following an insult, such as bacterial or viral 

infection. Differentiation of naïve T-cells into Th1 and/or Th17 is clearly more 

complex than first thought, as Th17 cells seem to also secrete INFγ and both be 

influenced by IL-12 and IL-23, but can also differentiate without either cytokine. 

 

This project will focus on understanding IL-12R and IL-23R expression 

dynamics in homeostasis state, but also answer some questions raised by the paper by 

Awasthi et al. It will look at expression of both IL-23R and IL-12R in different organs, 

but also at the responsiveness of each specific cell types to IL-12 and IL-23 and the 

concordance with the receptors expression. 

 

Objectives 

1. Identify the cell populations expressing IL-23R and IL-12R using the IL-

23R-GFP reporter mouse and a monoclonal antibody, respectively; 

2. Characterize the cell populations expressing IL-23R and IL-12R in 

different organs, especially the gut; and 

3. Understand the specificity of the cytokine responses of different cell types 

following stimulation with IL-12 or IL-23 in order to understand the 

specificity of each cytokine. 

 



Methods 

 

1. Lymphocytes extraction from murine organs 

Most mice used in the experiments were aged 8 to 13 weeks old at sacrifice. 

They are sacrificed either by: cervical dislocation alone or with isoflurane anesthesia 

followed or by cervical dislocation. Following death, organs are harvested. 

 

There is an order by which it is easier to extract organs and blood. 

1. Peripheric lymph nodes 

2. Thymus 

3. Lungs 

4. Liver 

5. Spleen 

6. Mesenteric lymph nodes 

7. Intestines 

8. Bone marrow 

 

When the lungs and the liver are required, one must perfuse the mouse with fresh 

cold saline or PBS, which will wash out the organs of their blood. This step will ensure 

that the cells collected in the organs were resident in the organs and not coming from 

the periphery. It will also reduce the quantities of red blood cells found in the organs, 

making it easier for lymphocyte extraction later on. Anesthesia is first induced with 

isoflurane, then the mouse is cut opened. The hepatic vein is then cut. After opening 

the thorax, a small syringe is inserted into either the left or the right venticule of the 

heart. Then, very slowly, cold saline is injected in the heart, which will then circulate 

all through the organs. The blood and the saline will be ejected through the hepatic 

vein that was cut open. 
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1.1 Spleen, lymph nodes, thymus, mesenteric lymph nodes 

The spleen, lymph nodes, thymus and mesenteric lymph nodes are organs filled 

with lymphocytes. Extraction of immune cells from these four organs is simple. Each 

organ is crushed on a 70μM cell strainer with a syringe piston. Using a 5mL pipette, 

the cell suspension is filtered many times through the cell strainer. The filtrate is then 

transferred into a 15mL conical tube. The tube containing the cells is then centrifuged 

at 1200RPM for 7 minutes. 

 

Following centrifugation, the supernatant is removed and the cell pellet is kept. 

In organs containing high numbers of red blood cells, such as the spleen, the cells are 

resuspended in 5mL of a solution containing NH4Cl which lyses the red blood cells. 

After addition of the NH4Cl solution, the cells are again centrifuged during  at 

1200RPM for 7 minutes. 

 

The thymus, lymph nodes and mesenteric lymph nodes contain very little red 

blood cells; treatment with NH4Cl is therefore not required. Following the first 

centrifugation, supernatant is removed and cells are suspended in FACS buffer, media 

or PBS, depending on the intended use of the cells. 

 

1.1.1. Collagenase treatment 

Specific cell types, especially dendritic cells, require special treatment to be 

retrieved intact from lymphoid organs and tissues in general. To ensure proper 

collection, enzymatic treatment of the organs with collagenase is required. Collagenase 

is an enzyme that can fragment the collagen found in the extracellular matrix and 

organs in general
15

. Following digestion with collagenase, cells are freed from the 

organs, intact. 

 

Collagenase is first diluted into a concentration of 1mg/mL. Organs are then 

placed in a Petri dish. Big organs, such as thymus and spleen, are injected with 1mL of 

diluted collagenase. Then, 1mL of collagenase is added to the Petri dish itself. With a 
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razor blade or scissors, the organs are cut into small pieces and incubated at 37⁰C for 

15 minutes. For smaller organs such as lymph nodes, they are simply placed in Petri 

dish (all of them together), then 1mL of diluted collagenase is added and the mixture is 

incubated at 37⁰C for 15minutes. After the digestion, 5mL of complete media 

(10%FBS, β-mercaptoethanol, HEPES, Streptomycin/Penicillin, RPMI) is added to 

stop the reaction. The organs are subsequently treated as described in section 1.1. 

 

1.2 Bone marrow 

In these experiments, bone marrow coming from the femur and the tibia of the 

two legs of a mouse were used. The legs are first cut apart from the animal and the skin 

and muscles are removed. Following bone cleaning, each extremity of the bone is cut 

with scissors. Using a small needle attached to a syringe, complete media is flushed in 

the bone. The bone marrow falls into a cell strainer placed in a Petri dish. Each bone is 

flushed around four times, twice at each extremity
16

. 

 

Once each bone is white and therefore completely emptied of marrow, the bone 

marrow is treated similar to a spleen (section 4.1.1). It is crushed with a syringe piston, 

filtered through a 70μM cell trainer, centrifuged, treated with NH4Cl, centrifuged again 

and suspended in the desired buffer. The bone marrow can also be treated with 

collagenase (similar to lymph nodes, section 4.1.1.2). 

 

1.3 Lamina propria of the small intestine 

The lamina propria of the small intestine is a region situated below the 

basement membrane of the epithelial layer of the intestine, where there are many 

different types of lymphocytes. Those cells are different from intraepithelial 

lymphocytes, which are found between the epithelial cells of the intestinal lining[100]. 

 

Hereby is a general view of the protocol; the entire protocol, with the 

preparation of each solution, can be found in Appendix 1. After the intestines are 

                                                 
16

 Bone marrow cell extraction protocol is adapted from a common lab protocol. 
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removed from the mouse, they are cut open and washed in cold media (the exact 

composition of each solution can be found in the protocol in Appendix 1). Once they 

are thoroughly cleaned of fecal matter, they are incubated at 37⁰ C for 20 minutes in a 

solution composed of DTT, EDTA, and others, which will loosen the epithelium of the 

intestine and release both the epithelial layer and intraepithelial lymphocytes. 

Following this incubation, the intestinal fragments are shaken with a mix of EDTA and 

media and filtered through a kitchen strainer. The liquid obtained contains epithelial 

cells and intraepithelial lymphocytes. Successive filtrations on 100μM, 70μM and 

40μM cell strainers and centrifugation result in obtaining a cell suspension containing 

intraepithelial lymphocytes and some epithelial cells. 

 

The intestinal pieces that were left in the kitchen strainer are then chopped into 

very small fragments and incubated at 37⁰ C for 36 minutes with liberase, collagenase 

and DNase. This will allow the collagen in the basement membrane and extracellular 

matrix of the intestine to be digested and the lymphocytes will be freed. After 

digestion, the intestines are crushed through a 100μM cell strainer and are the cell 

suspension obtained is filtered several times through the same 100μM filter. The cell 

suspension is further filtered on a 70μM cell strainer, then centrifuged and strained 

again through a 40μM cell strainer and centrifuged one last time. The pellet obtained 

can then be suspended in the desired buffer. This results in a cell suspension of lamina 

propria lymphocytes, with some debris and other cells from the extracellular matrix. 

 

1.4 Lungs 

The lungs are also covered with an epithelial layer filled with lymphocytes. 

There is a simple way to extract those cells. The complete protocol for lung 

lymphocytes extraction can be found in Appendix 2. 

 

Once the mouse is anesthetized with isoflurane, the thoracic cage is opened and 

cold saline is injected in the heart. As the organs are perfused, blood will exit the lungs 

and mouse limbs will become pale. After the perfusion, the lungs are removed and 

placed in complete cold media on ice. The lungs are then cut in small pieces and placed 
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in a round bottom tube with 2mL of 1mg/mL collagenase and incubated for 30 minutes 

at 37⁰ C. Every 10 minutes, the tubes are vortexed. 

 

After the 30 minutes incubation, 2mL of complete media are added to the tubes. 

The pieces of tissue are then pipetted up and down and transferred on to a 70μM cell 

strainer, where the tissues are then crushed with a syringe piston. Using a 5mL pipette, 

the cell suspension is filtered many times through the cell strainer. The filtrate is then 

transfer into a 15mL conical tube. The tube containing the cells is then centrifuged 

during for 7 minutes, at 10⁰ C and 1200RPM. 

 

Following centrifugation, the supernatant is removed and the cell pellet is kept. 

The cells are then resuspended in 5mL of a solution containing NH4Cl which lyse the 

red blood cells. After addition of the NH4Cl solution, the cells are again centrifuged for 

7 minutes, at 10⁰ C and 1200RPM. The last pellet contains lung lymphocytes. 

 

1.5 Cell counting 

Following cell extraction from the different organs, it is important to know how 

many live cells were obtained. A small portion of each cell suspension is then used. 

Cells are diluted in Trypan Blue 0.016% and added onto a hemacytometer. The dye 

will penetrate into the dead cells, making them blue, while live cells will be clear
17

. It 

is therefore possible to count the number of live cells in the dilution and estimate the 

total number of cells extracted from the different organs. 

 

1.6 Flow cytometry 

One of the main tools employed to characterize cells is flow cytometry. A flow 

cytometer can detect particles from 1μM to 50μM in size and provide information on 

their size and granularity. To further characterize cells, it is possible to add antibodies 

conjugated to fluorochromes. Each antibody can recognize a specific antigen on the 

surface of the cells (and inside the cell, given the proper treatment). This antibody will 

bind to the molecule. Then, in the flow cytometer equipped with different lasers, the 
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 Invitrogen Website, http://products.invitrogen.com/ivgn/product/15250061 

http://products.invitrogen.com/ivgn/product/15250061
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fluorochrome will be excited by the laser, which will emit a light and will be analyzed 

by a computer attached to the flow cytometer. Mixing different antibodies with 

different fluorochromes can then reveal the different cell populations found in different 

organs. In these experiments, cells coming from IL-23r-GFP-Het or homozygous mice 

which express IL-23R will emit a positive signal which can be detected by the flow 

cytometer. 

 

Between 1 and 3 millions cells are added to a V-bottom 96-well plate. The cells 

are then centrifuged and the pellet is kept. Each antibody is then added to the wells. 

The proper quantity of antibody to add was previously measured in a titration. If an 

antibody is needed in a 1:200 dilution, the antibody is diluted to 5:200, then 10μL of 

the dilution of the antibody for one million cells is added to the well. If three antibodies 

are required, 10μL of each antibody will be added to the well. Then, the volume will be 

brought up to 50uL with FACS buffer
18

 and the proper dilution for each antibody will 

be obtained. Very often, an antibody against Fc receptor, 24G2, will be added to the 

cocktail. Fc receptors bind to most antibody. Blocking the Fc receptor reduces the 

amounts of unspecific binding by antibodies. 

 

The cells will be incubated for at least 30 minutes at 4⁰ C. After the incubation, 

100μL of buffer is added to wash the cells, followed by a 3-minutes centrifugation at 

1100RPM. This last step is repeated one last time. The cell pellets are then diluted and 

transferred into FACS tube. If more than five antibodies are required, there will be only 

one wash after the first antibody incubation and new antibodies will be added, followed 

by another 30minutes incubation period at 4⁰ C and two washes. Cells will then be 

transferred to a FACS tube. 

 

1.6.1 Antibodies combinations used to identify cells 

Most cells used in the different experiments were stained with CD45.2 and IL-

12Rβ2 (Research and Development, cat#FAB1959A)
19

 monoclonal antibodies. CD45.2 

is very important when staining cells coming from organs containing many epithelial 

                                                 
18

 In the example where three different antibodies are used, 20μL of FACS buffer is added to each well 

and therefore the final volume is 50μL, resulting in a final dilution of 1:200, for example. 
19

 Appendix 3 contains a list of all antibodies used. 
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cells, such as the LP of the small intestine, to make sure the proportions of cells 

analysed are only hematopoietic cells. The FITC channel was also reserved for IL-23r-

GFP+ cells. 

 

Cocktails to identify the different cell types were used, which all contained 

CD45.2 and IL-12Rβ2 monoclonal antibody. Lti-like cells cocktail contained Sca-1, c-

kit and CD90.2. The T-cell cocktail contained CD3, CD4, CD8 and TCRγδ antibodies. 

There were three B-cells cocktails. CD19 and/or B220, were always present, with 

a)CD21, CD23, IgM and IgD, b)GL-7 and CD138, or c)CD43. Monocytes and NK 

cells were often analysed together, with CD11b, CD11c, Gr1 and DX5 (CD49b). 

Finally the three subtypes of DCs were analysed with CD11c, CD8, CD11b and 

mPDCA-1. Myeloid DCs (mDC) are CD11b+CD11c+, lymphoid DCs (lDC) are 

CD8+CD11c+, and plasmacytoid DCs (pDC) are mPDCA-1+CD11c+. 

 

The last staining used was Lin(-) staining. A Lin stain removes T-cells(CD3+ 

and CD8), B-cells (B220+), NK cells (DX5), monocytes (CD11b and Gr1), CD11c 

(DC) and Ter19 (developing erythrocytes). Biotin-conjugated antibodies to all the 

markers are added in the first staining step and streptavidin-conjugated PE 

(fluorochrome) is added during the second step. All cells positive for Lin are therefore 

known subtypes, such as T-cells, B-cells, etc.. All the cells negative for Lin staining 

left are therefore called Lin(-), as they are not any of the usual subtypes. 

 

1.6.2 Cell sorting strategies 

One of the main limitations of using a regular flow cytometer is that no further 

experiments can be done on the cells, as they are destroyed following their passage 

through the flow cytometer. However, there is a specific flow cytometer, called a cell 

sorter, which allows the recuperation of the cells after their passage through the flow 

cytometer. Furthermore, cells can be sorted upon their specific markers. Cell sorting is 

a particularly efficient way to isolate specific cell types for further experiments. The 

procedure to stain cells for cell sorting is similar to the one described in the previous 

section, except that everything is done in sterile conditions. 
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To obtain cells for in vitro cell cultures, cells were stained with CD45.2, CD19, 

IL-12Rβ2, CD3, CD4, TCRγδ, DX5(CD49b), c-kit and CD90.2. This combination of 

markers allowed for us to obtain all the required cell types in the same experiments. 

Figure 7 : Sorting Strategy for cell cultures explain the gating strategy to obtain 

CD4+T-cells, γδT-cells, NK cells, Lti-like cells and B-cells without contamination 

with the other cell types. 
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Figure 7 : Sorting Strategy for cell culture 
• Color-filled boxes are cells used in further experiments.  

• CD19+ IL-12Rβ2+ are IL-12Rβ2+ B-cells, while CD19+IL-12Rβ2- are IL-12Rβ2-B-cells. 

• CD19-CD3-DX5+ are NK cells. 

• CD19-CD3+CD4+ are CD4+ T-cells, while CD19-CD3+δγTCR are γδT-cells. 

• CD19-CD3-DX5-c-kit+CD90.2+ are Lti-like cells. 

• Using this strategy, it ensures that NKT-cells, which express CD3 and DX5, are not contaminating 

DX5+NK-cells. There is also a big population of NKcells and T-cells that express CD90.2. However, they 

have been removed from the c-kit+CD90.2+ population by taking only CD3-and DX5- cells. 

 

In this strategy, all cells not expressing CD45.2 are thrown away. CD45.2+ cells are further sorted according to 

CD19 expression. CD19+ cells are B-cells; they are then sorted apart according to IL-12Rβ2 expression. This 

sorting results in two different cell populations: IL-12Rβ2+ B-cells and IL-12Rβ2- B-cells. 

 

CD19- cells are then separated into three groups: CD3+ cells(containing all T-cells), CD3-DX5+ cells(NK 

cells) and CD3-DX5- cells (containing monocytes, DCs and Lti-like cells). 

 

CD3+ T-cells are quite heterogenous; they segregated into CD4+ T-cells and TCRγδ T-cells and all the other 

ones are discarded. NK cells are kept. CD3-DX5- cells are further segregated into c-kit+CD90.2+ cells, which 

removes all DC and monocytes, while keeping Lti-like cells. 
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2. In vitro culture 

Following cell sorting, cells were cultured in different conditions and with 

different cytokines. Quantities of IL-12 and IL-23 added to each well were always the 

same. IL-12 and IL-23 were added to wells in quantities of 5ng of cytokines per 

100μL, resulting 2.5ng/μL. For IL-2, it is usually recommended to use 1000 units of 

IL-2 per mL. 10ng of IL-2 were added per 100μL of media, for a final concentration of 

1000units/mL. Those different cytokine concentrations were the ones used for all 

cultures with IL-2, IL-12 or IL-23. All the cells were incubated in the same 37⁰C 

incubator at 5% CO2. 

 

2.1 CD4+T-cells and TCRγδ+T-cells 

T-cells were always put in culture on αCD3 and αCD28 coated flat bottom 96-

well plate. To coat the plates, αCD3 was diluted to 0.5μg/mL in sterile PBS and αCD28 

was diluted to 5μg/mL. 50μL of each dilution was added in each well of the 96 well 

plate. The plate was then placed overnight at 4⁰ C. After the incubation period, each 

well was carefully washed with complete sterile media, to remove all non-attached 

antibody. 

 

After washing the wells, sorted T-cells were added to the wells. For CD4+ T-

cells, 200000 cells in 200μL of fresh media were put in each well. However, numbers 

of γδT-cells in spleens of naïve animals were pretty low. Numbers between 60000 and 

90000 cells were put per well, with 100μL of fresh media. Then, depending on the 

conditions, IL-12 or IL-23 was added. After three days in culture, 100μL of media was 

added with the appropriate cytokine to the CD4+T-cells and 50μL was added to the 

TCRγδ. On the seventh day, cells were removed from cultures and supernatants were 

kept for cytokine analysis. 

 

2.2 B-cells (IL-12Rβ2+ and IL-12Rβ2-) 

After obtaining the cells, 200000 IL-12Rβ2- B-cells in 200μL of complete 

media were put in 96 round bottom well plate. Because IL-12Rβ2+ cells are found in 
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much lower numbers than IL-12Rβ2+ B-cells, around 100000 IL-12Rβ2+ B-cells in 

one 100μL of complete media were put in each well. The cytokines required were 

added in each well. After three days in culture, media and cytokine were added to each 

well, 100μL for β2- B-cells and 50μL for β2+ B-cells. On the seventh day, cells were 

removed from culture and supernatants were kept for immunoglobulin and cytokines 

analysis. 

 

2.3 Lti-like cells 

Lti-like cells in the spleen are found in very low numbers, so their culture is a 

challenge. Around 50000 cells in 100μL were added per well of a round-bottom 96-

well plate. Adding less than 100μL of media per well was not successful, as the media 

evaporates in the 37⁰C incubator. After three days in culture, 50μL of media and the 

appropriate cytokines were added to the well. Cells were removed from culture on the 

seventh and supernatants were kept for further analysis. 

 

2.4 NK cells 

After obtaining the cells, 200000 NK-cells in 200μL of complete media were 

added in each well of a 96 round bottom well plate. NK cells do not survive well 

without IL-2; therefore, most NK cultures contained the previously described dose of 

IL-2. After three days in cell culture, one well of NK cells was usually split in two 

different wells. Afterwards, 100μL-200μL of complete media was added to each well 

with the appropriate cytokines. On the seventh day, cells were removed from culture 

and supernatants were kept for further analysis. Often, after three days in culture, some 

NK cells were removed from culture and analyzed for proliferation, while supernatants 

were kept for cytokine analysis. 

 

2.4.1 Proliferation assay 

To understand the effect of the different cytokine treatments on NK cells, a 

CFSE proliferation assay was done. CFSE is a stain that can enter the membrane of 

different cells. When CFSE stained cells pass through a cytometer, they emit a signal 
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that can be detected. As the cells are proliferating, the dye is diluted and the signal 

detected by the flow cytometer decreased by half after each cell division, which can 

allow the measurement of the number of cell divisions underwent by the cells
20

. 

 

NK cells were suspended so there were 10 millions cells per 1mL of FACS 

buffer. Then, 1μL of CFSE diluted 1:100 was added per 250000 cells, while vortexing 

the cells. Afterwards, the cells were incubated 10 minutes at 37⁰C, then washed two 

times with cold complete media. The CFSE stained NK cells were put in culture in the 

same conditions as none-CFSE stained NK cells. After three days in culture, NK cells 

were washed and analysed with a flow cytometer and supernatants were kept for 

further analysis
21

. 

 

3. Measurements of supernatants 

3.1 Ig ELISA 

Upon stimulation, B-cells can secrete different kinds of immunoglobulins. 

Using an immunoglobulin typing test from Invitrogen (Mouse Immunoglobulin 

Isotyping Kit, catalogue #99200), supernatants from B-cells in culture with different 

cytokines were analysed to qualify their antibody secretion. 

 

The protocol used in these experiments is the one found in the kit
22

. Briefly, a 

flat bottom p96 well plate was coated with antibodies diluted in sterile PBS specific for 

IgG1, IgG2b, IgG2a, IgG3, IgA and IgM. The plate was incubated overnight at 4⁰ C. 

On the next day, the plate was washed and blocked. After blocking, 50μL of cell 

supernatant is diluted in 550μL of assay diluent. 25μL of each dilution was added to 

each well. After a one hour incubation at room temperature, the plate was washed 

several times and an α-mouse-κ coupled to biotin was added. Horseradish peroxidise 

(HRP) conjugated to streptavidin was then added. After a short incubation and a couple 

of washes, stabilised chromogen Tetramethylbenzidine (TMB), HRP substrate, was 

                                                 
20

 From eBioscience website, http://www.ebioscience.com/cfse.htm. 
21

 Quah, B. J. C., Parish, C. R. The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to 

Monitor Lymphocyte Proliferation. J. Vis. Exp. (44), e2259, DOI: 10.3791/2259 (2010). 
22

 From Invitrogen website, http://tools.invitrogen.com/content/sfs/manuals/ms_Ig_isotyping_man.pdf 

http://www.ebioscience.com/cfse.htm
http://tools.invitrogen.com/content/sfs/manuals/ms_Ig_isotyping_man.pdf
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added. After 10 minutes, the “Stop” reagent solution was added. The plate was then 

read on an ELISA (Biotek) plate reader at reading absorbance of 450 nm and reference 

absorbance of 650nm, in a 30 minutes timeframe after adding Stop Solution. Any 

readings above the background indicates a positive secretion of a specific antibody. 

Higher optical density (OD) readings indicate higher production of antibodies. 

 

3.2 Cytokine measurements by Flow Cytomix 

To identify the possible cytokines secreted by the cells cultured in vitro, a 

Mouse Th1/Th2/Th17/Th22 13plex Kit from eBiosciences was used. The protocol used 

is the one found in the kit
23

. Here is the rough outline. 

 

Briefly, this kit uses beads covered with antibodies specific to one cytokine. In 

this experiment, there were 13 beads (of two different sizes) for 13 different cytokines. 

All beads were added to 50μL of cell supernatants. Cytokines will specifically bind to 

the antibody-covered beds. Then, 13 different biotin-conjugated antibodies are added 

to the mixture, to the cytokines that bind to the beads. Streptavidin-PE (fluorochrome) 

is added to supernatants, which will emit fluorescence when read on a flow cytometer. 

The stronger the PE intensity, the higher the cytokine concentration. Standard curves of 

the 13 cytokines will also be read, which will allow for precise measurements of the 

cytokines secreted by each cell in culture. 

  

                                                 
23

 Protocol from eBioscience website, 

http://www.bendermedsystems.org/bm_products/MAN/822FFRTU.pdf 

http://www.bendermedsystems.org/bm_products/MAN/822FFRTU.pdf
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4. Statistics 

Unless otherwise stated, p-values were calculated using Mann-Whitney two 

tailed tests, with a confidence interval of 95%. GraphPad software was used to 

calculate p-values. Significance is achieved when p-value≤0.05. 

< 0.001 Extremely 

significant 

*** 

0.001 to 0.01 Very significant ** 

0.01 to 0.05 Significant * 

>0.05 Not significant N.S 

Table 1 : Table of significance24 

                                                 
24

 From GraphPad Prism 5 Help section, “Extremely Significant”. 



Results 

 

Objective 1: Identify the cell populations expressing IL-23R 

and IL-12R using the IL-23r-GFP reporter mouse and a 

monoclonal antibody, respectively 

IL-12R and IL-23R expression is often thought to be found only in activated 

and/or differentiated cells. Finding IL-23R+ and IL-12R+ cells in naïve conditions 

could indicate which cells first respond upon IL-12 and IL-23 secretion. 

 

Using naïve IL-23r-GFP reporter mice, it is possible to detect the presence cells 

expressing IL-23R at basal conditions. In Figure 8a, it is possible to see a small 

population of IL-23R in naïve animals, absent from IL-23r-GFP-Neg animals. All IL-

23R+ cells are CD45.2+, demonstrating their hematopoietic origin. On average, around 

0.15% of total splenocytes of naïve animals express IL-23R (Figure 17). Further, it was 

possible to characterize IL-12R expression using a monoclonal antibody against IL-

12Rβ2. Here again, a small population of splenocytes (around 0.4%) were identified as 

IL-12R(Figure 8b). Those cells were also all CD45.2+ cells. On average, 0.25% of 

splenic cells expressed IL-12Rβ2 (Figure 17). 

 

Finally, because IL-12R and IL-23R share the IL-12Rβ1 subunit, it was 

expected that both receptors would be expressed on the same cells. However, Figure 8c 

demonstrates that there is no co-localization between IL-23r and IL-12Rβ2. 

 

The next step was to identify which lymphocyte subsets express IL-23R. In 

Figure 9, we can see that in comparison to IL-23r- cells, CD3+ T-cells are enriched in 

the IL-23R+ cells population. About 60% IL-23R+ CD3+ T-cells are TCRγδ T-cells 

and 40% of total IL-23R+ cells are TCRγδ T-cells. TCRγδ T-cells are actually very 

rare in total splenic cells, representing around 1% of total splenocytes. Around 5% of 

IL-23R+ cells are CD4+T-cells. It is important to notice there is a population of IL-
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23R+CD4+CD3- cells. Those cells are therefore not T-cells. There also seems to be a 

population of CD3+CD4-CD8-TCRγδ- T-cells. This population can be deducted from 

the addition of the three subtypes of T-cells: 62.1% (CD3+ cells)-(47.4% 

(TCRγδ)+5.77%(CD4+) +0.52% (CD8+) is equal to 8.41%, so around 8% of IL-23r+ 

cells are CD3+CD4-CD8-TCRγδ- T-cells. 
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Figure 8: IL-23r and IL-12Rβ2 are of hematopoietic origin, are expressed in naïve mice 

and are not co-expressed 
Total splenocytes staining from naïve IL-23r-GFP-Het or IL-23r-GFP-Neg mice. A) IL-23r expression 

B) IL-12Rβ2 expression C) IL-12Rβ2 and IL-23r expression. 

Representative of 13 experiments. 
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Figure 9: IL-23r is expressed by different T-cell receptor bearing T-cells 
Expression of CD3, CD4, CD8 and TCRγδ in either IL-23R- or IL-23R+ splenocytes coming from IL-23R-GFP-Het 

naïve mice. 

Representative of six experiments 
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Figure 10 : IL-23R is rarely found in B-cells, DC, NK and monocytes 
Gating on total or IL-23R+ cells, it is possible to identify proportions of A)lymphoid DC (lDC, CD8+CD11c+), 

myeloid DC (mDC, CD11b+CD11c+) or plasmacytoid DC (pDC, mPDCA-1+CD11c+), B)monocytes 

(Gr1+CD11b+) or NK cells (DX5+CD11b+) or C)B-cells (CD19+) amongst the two populations. 

Representative of at least 5 experiments. 

  



71 

Around 60% of IL-23r+ cells were identified as T-cells. It was then necessary 

to phenotype the remaining 40% of cells. In Figure 10, stainings for B-cells, 

monocytes, NK cells and DCs were done to identify if those cell populations expressed 

IL-23R. In Figure 10a, it is possible to see that mDC, pDC and lDC are not the main 

cell subtypes expressing IL-23r. Added together, less than 1.5% of IL-23R+ were DC 

and most of them were mDC. When looking at monocytes and NK cells in Figure 10b, 

IL-23R+ cells were under-represented in NK cells and CD11b+Gr1low, while there 

seemed to be an enrichment in CD11bGr1high, a certain type of neutrophils. Finally, 

the last cell subtype analysed was B-cells. Around 10% of IL-23R+ cells were B-cells, 

which definitely represent an important subtype. However, when the number of B-

cells, NK cells, DCs and monocytes are all added together, we find there is around 

15% of IL-23R+ cells identified. There is still around 25%  of IL23R+ cells left to 

identify. Compilation of IL-23r+ DC, monocytes, NK and B-cells can be seen in the 

top left panel of Figure 17b. 

 

Cells of the innate immune system, such as monocytes, DCs, and NK cells are 

found in increased numbers in RagKO animals. RagKO animals are deprived of T-cells 

and B-cells. If the low percentages of monocytes, DC and NK cells expressing IL-23R 

are important in WT, RagKO animals should have increased numbers of those three 

cell types expressing IL-23R. 

 

IL-23r-GFP-Het animals were bred onto RagKO background, which resulted in 

RagKO-IL-23r-GFP-Het animals. Using those animals, it was possible to identify a 

population of IL-23r+ cells in the spleens of naïve RagKO-IL-23r-GFP-Het animals. 

Figure 11a shows that IL-23r+ cells are found in increased proportion in RagKO IL-

23r-GFP-Het animals when compared to RagKO animals. Those cells are once again 

all CD45.2+ and are therefore of hematopoietic lineage. However, it was surprising to 

see that IL-12Rβ2+ cells were found in decreased numbers in RagKO animals when 

compared to WT animals. In Figure 17a, a compilation of IL-23r+ and IL-12Rβ2+ cells 

shows that there is a significant increase in IL-23r+ cells in RagKO mice (p-

value<0.0001), while IL-12Rβ2+ are significantly decreased in RagKO mice (p-

value<0.0001). There are more IL-23r+ cells in the spleen of RagKO animals, so the 

increase cannot be caused by T-cells and B-cells, which are absent from RagKO 
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animals (Figure 11d). Figure 9c demonstrates again that even though IL-23R+ cells are 

in higher proportion and IL-12Rβ2+ cells in lower proportion than in WT animals, they 

are still not found at the surface of the same cells. 

  



73 

 

Figure 11: IL-23r is found in increased proportion in RagKO mice despite a lack of T-

cells and B-cells, while IL-12Rβ2 is found in very low proportion 
Total splenocytes staining of RagKO-IL-23r-GFP-Het or RagKO-IL-23r-GFP-Neg in naïve mice. A) IL-23r 

expression B) IL-12Rβ2 expression C) IL-12Rβ2 and IL-23r expression. Representative of 10 experiments. 

  



74 

 

Figure 12: DC, monocytes and NK are not the major cell types expressing IL-23R in 

RagKO animals 
Gating on total or IL-23R+ cells, it is possible to identify proportions of A)lymphoid DC (lDC, CD8+CD11c+), 

myeloid DC (mDC, CD11b+CD11c+) or plasmacytoid DC (pDC, mPDCA-1+CD11c+), B)monocytes 

(Gr1+CD11b+) or NK cells (DX5+CD11b+). 

Representative of at least 5 experiments. 
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The next step was then to identify IL-23r+ cells in RagKO-IL-23r-GFP-Het 

naïve mice. In Figure 12, stainings to identify DCs, monocytes and NK cells were done 

on total splenocytes from RagKO-IL-23R-Het-GFP in order to identify IL-23R 

expression in RagKO mice. Those IL-23r+ cells could not be B-cells or T-cells, as they 

are absent from RagKO mice. In Figure 12a, it is clear that most IL-23R+ are not DCs, 

where less than 0.50% of IL-23R+ cells are DCs. There are actually less IL-23R+DC in 

RagKO animals than in WT animals. DCs represent at least 15% of IL-23R- 

splenocytes in RagKO animals, which is much higher than the proportion of DCs in 

WT mice. In Figure 12b, it is also obvious that the bulk of IL-23R+ cells in RagKO 

animals are neither monocytes (0.2%) nor NK cells (2%). 

 

DCs, NK cells and monocytes represent the vast majority of splenocytes in 

RagKO, but only 3% of IL-23R+ could be accounted for using those three cell types. 

In both WT and RagKO animals, there was a population of IL-23R+ cells that could 

not be identified using the different antibody cocktails that identified NK cells, DC and 

monocytes. To verify which cell subtypes they could be, a Lineage(Lin) stain was 

made.  

 

In both IL-23r-GFP-Het and RagKO-IL-23r-GFP-Het mice, there was a 

population of IL-23R+Lin(-). In Figure 13, all Lin(-) cells were c-kit. Those cells were 

furthermore characterized as four different cell populations, depending on the CD90.2 

and Sca-1 expression. In Figure 17, it is possible to see that in IL-23r-GFP-Het, around 

25% of IL-23R+ cells are c-kit+. Amongst those IL-23R+c-kit+ cells, more than 80% 

express CD90.2. In RagKO-IL-23r-GFP-Het mice, virtually all IL-23R+ cells express 

c-kit. Here again, 80% of IL-23R+c-kit+ cells are CD90.2+. In IL-23r-GFP-Het mice, 

the 25% of IL-23r+ cells that could not be analysed are therefore c-kit+, where 80% of 

c-kit+ cells are also CD90.2+. In RagKO-IL-23r-GFP-Het, most IL-23r+ cells are c-

kit+ cells and 80% of IL-23R+c-kit+ cells are CD90.2+. Lin(-)CD90.2+IL-23r+ cells 

can be called Lti-like cells, so this terminology will be used in this thesis from here 

on[101].  
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Figure 13: A Lin(-) c-kit+ cell population express IL-23R and can be found both in WT 

and RagKO mice 
IL-23R+ Lin(-) splenocytes from A)WT and B)RagKO naïve mice all express c-kit. Those c-kit+ cells can be 

further characterized into CD90.2+ and Sca-1+ positive populations. Representative of two experiments. 
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Upon diverse experiments, it was observed that there were many variations of 

the proportion of IL-23R+ cells in total splenocytes of naïve cells. It was hypothesized 

that the collagenase treatment was influencing IL-23r expression. Another experiment 

was then setup to test this hypothesis. A spleen from RagKO-IL-23r-GFP-Het was cut 

in half. One half was treated with collagenase and the other was not. With collagenase 

treatment, the proportion of IL-23R+ went from 0.60% to more than 1.5%, as can be 

seen in Figure 14a. 

 

Collagenase treatment was not changing the expression of IL-23r+ cells, but 

treating with collagenase increased the proportion and numbers of IL-23r+ cells 

recovered from the spleens, increasing IL-23r+ cell yield. IL-23R+ cells from 

collagenase treated and untreated spleens were characterized. They were still all 

expressing c-kit and 80% of them expressed CD90.2. In Figure 14b, the total 

proportion of c-kit+CD90.2+ cells was diminished overall, whether or not they 

expressed IL-23R. Collagenase is an enzyme that disrupts the extracellular matrix in 

organs, r 

 

Those c-kit+ CD90.2+ cells are also found in spleens of WT animals. Without 

the collagenase treatment, they are extremely rare. They also triple in number upon 

treatment with collagenase, as seen in RagKO animals. 
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Figure 14 : Lti-like cells are dependent upon collagenase treatment 
A) and B): Spleen from IL-23r-GFP-Het RagKO; left panel is not treated with collagenase and right panel is the half 

spleen treated with collagenase. B) Proportion of c-kit+ CD90.2+ and c-kit+ cells in total spleen, treated or not with 

collagenase. C) Spleen from WT mice, stained with c-kit+ CD90.2+. Left, collagenase untreated, right collagenase 

treated. A) and B): Representative of two experiments 
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After IL-23R+ cells were characterized, it was important to identify the cell 

populations expressing IL-12Rβ2. It was already noticed that IL-12Rβ2 cells were 

almost absent in RagKO animals. In Figure 15a, which shows WT animals, the 

majority of IL-12Rβ2+ cells expressed both CD19 and B220, which make them IL-

12Rβ2+ B-cells. Figure 15b reinforces the idea that IL-12Rβ2+ are B-cells, as RagKO 

animals are deprived of both B-cells and IL-12Rβ2+ cells. This result was consistent. 

In Figure 17a, right panel, IL-12Rβ2+ cells are less than 0.02% of total cells in RagKO 

animals and are significantly decreased when compared to WT animals (p-

value<0.001). 

 

Because only a few B-cells expressed IL-12Rβ2, they could represent a 

different subtype of B-cells. Upon characterization of their cell surface markers, it was 

found that there were no variations in the expression of CD21, CD23, IgD, IgM, GL-7 

and CD138 between IL-12Rβ2+ and IL-12Rβ2- B-cells (Figure 15b and 15c). 

However, one surface marker was enriched in IL-12Rβ2+ B-cells: CD43(Figure 16). 

CD43 is usually expressed by less than 2% of B-cells and is not expressed by mature 

B-cells[102]. However, around 40% of IL-12Rβ2+ B-cells expressed CD43. CD43+ B-

cells are B1-B-cells, so 40% of IL-12Rβ2+ B-cells could be B1-B-cells. 

 

To conclude this section, IL-23R+ cells are mostly comprised of T-cells, B-

cells and c-kit+CD90.2+ cells. In RagKO animals, all IL-23R+ splenocytes are actually 

Lin(-) cells, expressing c-kit and CD90.2. IL-12Rβ2+ cells are absent from RagKO 

since it is mostly expressed by B-cells. However, usual B-cell markers do not vary 

between IL-12Rβ2+ and IL-12Rβ2- B-cells. The only different marker identified so far 

to distinguish the two populations is CD43. In Figure 17, the compilation of each cell 

population can be found according to gating strategies in previous figures. Another 

very important fact is that IL-23r and IL-12Rβ2+ are not expressed on the same cells. 

Furthermore, they are not only not co-expressed together; they are found in totally 

different cell subtypes. 
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Figure 15: IL-12Rβ2 is expressed by B-cells in naïve mice 
Total splenocytes from naïve mice. A) Majority of IL-12Rβ2+ are CD19+B220+ and are B-cells. B) IL-12Rβ2+ 

cells in RagKO mice. C) and D)Characterization of IL-12Rβ2+ and IL-12Rβ2- B-cells. A and B: representative of 

10 experiments. C and D: representative of two experiments. 

  



81 

 

Figure 16: CD43+B-cells are enriched in the IL-12Rβ2+ B-cells population 
Total splenocytes from naïve mice. CD43 expression by IL-12Rβ2+ and IL-12Rβ2- B-cells. Representative of 3 

experiements; compilation of CD43 expression by IL-12Rβ2+ and IL-12Rβ2- B-cells. 
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Figure 17: Compilations of IL-23R expressing cells in the spleen 
A) Frequency of IL-23r+ and IL-12Rβ2+ cells in total splenocytes in WT(IL-23r-GFP-Het and Neg) and 

RagKO(IL-23r-GFP-Het and Neg) animals. B) Distribution of IL-23r+ cells in WT and Rag KO IL-23r-GFP-Het 

animals (top panel). Bottom panel: distribution of c-kit+ cells according to their CD90.2 and Sca-1 expression. 
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Objective 2: Characterize the cell populations expressing IL-

23R and IL-12R in different organs, especially the gut 

 

IL-23R has not only been associated with colitis and gut inflammation, but also 

with other organ specific inflammation. Therefore, it was important to characterise IL-

23R lymphocytes expression throughout the different organs. Also, many other organs 

contain large (or small) populations of B-cells; examining IL-12R expression through 

the use of αIL-12Rβ2 monoclonal antibodies in other organs could help to understand 

if the distribution of IL-12R+ cells in other organs is restricted to B-cells. 

 

The first organ examined was the thymus. T-cells undergoing negative and 

positive selections undergo various phases of activation and differentiation, which 

could possibly trigger IL-23R upregulation. In all the steady state IL-23r-GFP-Het 

animals studied, the proportion of IL-23r+ cells was always very low, below 0.05% of 

the total cell expression (Figure 18). Thorough characterization of IL-23r+ and IL-

12Rβ2+ cells in the thymus was rendered difficult by the very rare expression of the 

two receptors. Only a third of IL-12Rβ2+ cells in the thymus are CD19+; however 

there are a very low number of cells that are IL-12Rβ2+ (37, data not shown). It is 

interesting that cells found in the thymus undergo many different stages and some 

activation through signaling in their TCR.  
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Figure 18: IL-23R and IL-12Rβ2 expressing cells are found in low numbers in the 

thymus  
Thymocytes of IL-23r-GFP-Het naïve mice, stained for IL-12Rβ2. Collagenase treated. Representative of two 

experiments. 
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Another organ from which lymphocyte expression of IL-23R and IL-12Rβ2 

was examined is the bone barrow. The bone marrow is one of the organs containing the 

highest amount of progenitor cells; if the IL-23r+ Lti-like cells identified in the other 

organs are progenitor cells, they should be found in higher numbers in the bone 

marrow. In Figure 19a, IL-23r+ cells are not found in increased numbers in the bone 

marrow when compared to the spleen (0.08% in this figure when compared to the 

0.15% average in the spleen). IL-23r+ cells were diminished in the BM when 

compared to the spleen (Figure 29a, p-value<0.05). The BM is also filled with B-cells 

(Figure 20b shows that 55% of IL-23R- cells in the BM are B-cells), so it is a good 

organ to analyse IL-12Rβ2 expression. Figure 19a shows that IL-12Rβ2+ is expressed 

in the same proportion of cells as in the spleen. Three-quarters of IL-12Rβ2+ were B-

cells, which is a lower proportion than in the spleen. 

 

BM also contains T-cells. In figure 19b, T-cell analysis reveals that around 75% 

of IL-23r+ cells in the BM expressed CD3+. Almost no IL-23r+ cells expressed CD3 

and CD4 at the same time; around 13% expressed TCRγδ and CD3, and 7% were 

CD8+ T-cells. However, only 20% of cells expressing CD3 expressed another co-

marker of T-cells, such as CD8 and TCRγδ. Those IL-23R+CD3+ cells could therefore 

be CD3+ cells, such as double negative T-cells and NK T-cells. There is also a small 

proportion of CD4+CD3- IL-23r+ cells, as seen in Figure 19b.  

 

It was then important to finish characterising IL-23R+ cells. Amongst the three 

different types of DC (lymphoid, myeloid and plasmacytoid), only pDC are found in 

high numbers in the BM (Figure 20b). But even amongst the most abundant group of 

DC in the BM, no DC in the bone marrow actually expresses IL-23R. c-kit+ cells were 

not overall higher in proportion of the total cells in the bone marrow. A small 

proportion of IL-23R+ cells expressed c-kit, but none of them expressed Sca-1 and 

only 14% expressed CD90.2+. CD90.2 expression by IL-23r+ cells in the BM was 

lower than the expression of CD90.2 by IL-23R+c-kit+CD90.2+ cells in the spleen. 

 

One of the last cell types that could express IL-23r in the BM was B-cells. 55% 

of the total cells in the BM are B-cells (Figure 20c). Interestingly, the highest 

proportion of IL-23R+ B-cells was found in the BM, where more than 30% of IL-23r+ 
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were expressing CD19. Overall, the BM did not contain a higher proportion of IL-

23R+ cells than other organs. BM IL-23r+ cells did not seem to be of the same nature 

as IL-23R+ cells found in the spleen (and other organs, which can be seen in the next 

figures). They did not express CD90.2 at the same levels are IL-23r+ found in other 

organs, but they also did not express Sca-1 in any proportion. 
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Figure 19: IL-23R and IL-12Rβ2 expressing cells are found in low numbers in the bone 

marrow and are not co-expressed on the same cells 
A) IL-23R+  and IL-12Rβ2+ cells can be found in the bone marrow of naïve IL-23r-GFP-Het animals. B) T-cells 

staining on IL-23R+ and IL-23R- cells C) CD19 expression on IL-12Rβ2+ cells. Representative of three 

experiments. 
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Figure 20: Lti-like are rare in bone marrow and are rare expressors of Il-23R, while a 

strong proportion of IL-23R+ cells are B-cells 

IL-23r-GFP-Het mouse bone marrow cell staining: A) Lti-like staining in the bone marrow B)DC staining C)B-cells 

staining A) representative of three experiments B) representative of one experiment C) representative of three 

experiments 
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Many cells found in the LNs (lymph nodes, secondary lymphoid organs) are 

activated. Activation of cells could lead to the upregulation of IL-23R in cells, so IL-

23r+ cells could be found in higher proportion in LNs than in the spleen. LNs also 

contains large amounts of T-cells and B-cells which could be activated and express IL-

12R. The co-expression between the two receptors could also be observed in the LNs. 

 

Figure 21a demonstrates that a small proportion of the total cells found in the 

LN of IL-23r-GFP-Het mice are IL-23r+. Around 0.3% of cells in the pooled LNs of a 

naïve animals expressed IL-23R+, which is slightly higher than the proportion found in 

the spleen. Figure 29a shows that the average of IL-23r+ cells is significantly higher in 

LNs than in the spleen. The proportion of IL-12Rβ2+ cells in the LN is similar to that 

found in the spleen (Figure 21a). Those IL-12Rβ2+ cells are largely B-cells (Figure 

21c), similar to what we found in the spleen. Similarly , IL-23r and IL-12Rβ2+ are not 

co-expressed at the surface of the same cells. 

 

Half of the cells found in the LNs are T-cells; however, 90% of the IL-23r+ 

cells in the LNs express CD3 and are therefore T-cells, demonstrating a specific 

enrichment of T-cells in the IL-23r+ population. The TCRγδ population, which is less 

than 1% of the total LN cells, represents 50% of the IL-23r+ population. One third of 

IL-23r+ T-cells are also CD4+, while 10% are CD8+, one of the highest proportion 

seen for IL-23r+ CD8+ T-cells seen so far. Unlike the BM, it does not seem like there 

is another T-cells population, such as the DN T-cells, that could express IL-23r in the 

LNs. 

 

T-cells represent around 90% of the IL-23r+ cells in the LNs. Another 10% of 

cells express c-kit (Figure 22). Of this IL-23r+ c-kit+ population, 80% express CD90.2 

only, while the second largest population is CD90.2-Sca-1-. The IL-23r+ Lti-like cells 

that can be found in the spleen can also be found in the LNs. However, the proportion 

of Lti-like cells in the LNs (around 10%) is lower than the proportion in the spleen 

(around 25%). 
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Figure 21: Peripheral lymph nodes contain slightly higher percentages of IL-23R 

positive cells than the spleen 
A) IL-23R and IL-12Rβ2 expression in WT and IL-23r-GFP-Het mice B) T-cells characterisation of IL-23R- and 

IL-23R+ in IL-23r-GFP-Het C) CD19 staining of IL-12Rβ2+ cells Representative of three experiments 
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Figure 22: A small proportion of IL-23r+ Lti-cells are found in the LN 
CD90.2, c-kit and Sca-1 staining of IL-23r-GFP-Het splenocytes. 
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Another organ of interest are the lungs. Lungs are an important part of the 

mucosal immune system because the epithelial lining of the lungs is also filled with 

lymphocytes. Lung lymphocytes are crucial in coping with the influx of microbes 

entering the lungs. IL-23R and IL-12R were found on many cells in the lungs because 

of the possible presence of activated lymphocytes. 

 

In Figure 23a, it is possible to see that IL-12Rβ2+ cells are found here again in 

a percentage similar to the ones found in other organs. Most of IL-12Rβ2+ cells are B-

cells (93%). Another finding is that even in the lungs, IL-12Rβ2 and IL-23r are not co-

expressed; no cells are positive for IL-12Rβ2+ and IL-23r at the same time. 

 

Figure 23b shows that 16% of IL-23r+ cells in the lungs express c-kit. 50% of 

this IL-23r+ c-kit+ cell population expresses CD90.2 and Sca-1, which is similar to 

what was seen in the spleen (60%) and higher than in the LNs. A small proportion of 

IL-23r+ cells were B-cells (6%). 

 

Finally, since these animals were WT, the proportion of IL-23r+ T-cells was 

also examined. In Figure 23c, that the proportion of CD3+ IL-23r+ cells was around 

85%. Amongst the CD3+ cells, only 20% of them were expressing other T-cells 

markers. 13% of IL-23r+ cells were TCRγδ, while 7% of them were CD4+CD3+. 

There was only a small IL-23r+CD8+CD3+ cell population. In the lungs, we observed 

a situation similar to what was seen in the bone marrow: a large proportion of CD3+ 

cells did not express CD8 or CD4, which is consistent with a DN T-cells, NK T-cells, 

another type of T-cells phenotype, or any combination of those T-cells could be found 

in the lungs and express IL-23R. 

 

From Figure 23c, it can be seen that there also seems to be a CD4+ CD3- cell 

population amongst IL-23r+, similar to the population in the spleen and BM. 

 

As previously described, the proportion of the IL-23r+ cells in the spleen of 

RagKO-IL-23r-GFP-Het naïve animals is increased when compared to IL-23r-GFP-

Het animals, probably because of the increased proportion of Lti-like cells in the spleen 

RagKO. However, when the lungs of RagKO-IL-23r-GFP-Het animals were analysed 
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for IL-23r expression, the proportion of IL-23r+ cells seemed lower. In Figure 24e, it is 

possible to see that the percentage of IL-23r+ cells in the lungs decreases from 0.5% to 

less than 0.2% when moving from WT to RagKO animals (p-value≤0.05). 

 

Only 50% of IL-23r+ cells in the lungs expressed c-kit (Figure 24b), and all c-

kit+ cells expressed CD90.2. 25% of IL-23r+ cells were c-kit+CD90.2+Sca-1+. What 

were the other 50% of IL-23r+ cells? Figure 24d clearly demonstrates that even though 

monocytes and DCs are found in high numbers in the lungs, no IL-23r+ cells were 

NKs, DCs or monocytes. 

 

Figure 24c shows that all IL-23r+ cells in the lungs expressed CD90.2. From 

this IL-23r+CD90.2+, 55% of cells also express c-kit. In other organs, all IL-23r+ that 

were not B-cells or T-cells express c-kit, which does not seem to be the situation in the 

lungs. Another important detail to note is that those CD90.2+ cells can be neither T-

cells nor B-cells, as we are examining RagKO animals in Figure 24. Interleukin 23 

receptor is therefore expressed by cell populations in the lungs that are not found in the 

spleen. It is also of importance that NK cells are very rare in the lungs. 

 

On the other hand, IL-12Rβ2 seems to be more expressed in RagKO animals, 

but the findings were inconclusive and those cells could not be identified. The possible 

identity of those IL-12Rβ2+ cells is DCs.  
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Figure 23: Lungs contain a population of IL-23r positive cells which are maily CD3+ 

and some Lti-like cells 
A) IL-23R and IL-12Rβ2 expression in IL-23r-GFP-Het mouse and CD19 staining of IL-12Rβ2+ cells. 

 IL-23R- and IL-23R+ B)Lti-like staining C) T-cells staining. Representative of one experiment. 
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Figure 24: Percentage of IL-23r+ in the lung decreases in RagKO mice 
A) IL-23r and IL-12Rβ2 expression in RagKO-IL-23r-GFP-Het mice. B) c-kit expression by IL-23R+ and IL-23R- 

cells and CD90.2 Sca-1 staining of c-kit+ cells. C) CD90.2 and c-kit staining of IL-23r+ and IL-23r- cells D) DC, 

monocytes and NK staining of IL-23r+ and IL-23r- E) IL-23r+ total cell expression in lungs of WT and RagKO IL-

23r-GFP-Het mice. Representative of four experiments 
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The last organ examined for the expression of IL-23R and IL-12R was the gut. 

The lamina propria of the small intestine is a very interesting compartment of the 

mucosal immune system in the digestive tract and is the site where many inflammatory 

processes thought to be involved in human colitis occur. 

 

In Figure 25a, IL-12Rβ2+ cell proportion is slightly higher than what was seen 

in the spleen. Most of those IL-12Rβ2+ were B-cells (84%, Figure 25c), as in other 

organs. 

 

IL-23r+ cell percentage in Figure 25a was the highest proportion of IL-23r+ 

cells seen in all of the organs in WT mice. More than 2% of the cells in the lamina 

propria of the small intestine in IL-23r-GFP-Het mice were IL-23r+. One third (36%) 

of IL-23r+ in the LP were CD3+ and therefore T-cells. Unlike the spleen, where more 

than one third of IL-23r+ cells were CD3+TCRγδ+ T-cells, only 7% of IL-23r+ cells in 

the LP were TCRγδ. An important proportion of IL-23r+ were CD4+CD3+ (18%), but 

the proportion of CD8+CD3+ T-cells was negligible. There was also a CD4+CD3- cell 

population and a possible CD3+CD4-CD8- TCRγδ-population. 

 

Characterization of IL-23r+ cells was continued in Figure 26. In Figure 26b, a 

very small proportion of IL-23r+ cells was CD11c+, but was neither mDC nor lDC. 

They could represent a small proportion of monocytes
2526

. Figure 26c also shows that 

only 4% of B-cells express IL-23r, even though B-cells compose two-thirds of the cells 

found in the LP. Half of the IL-23r+ cells found in the LP were c-kit+. Upon further 

characterization, 88% of those cells expressed CD90.2, but only 8% of c-kit+ cells 

were CD90.2+ Sca-1+, while most IL-23r+ c-kit+ cells in the spleen were both 

CD90.2+ and Sca-1+ cells. 

  

                                                 
25

 pDC are not found in the lamina propria of the small intestine and therefore there are no IL-23r+ pDC. 
26

 CD8 expression by CD11c+ cells in the lamina propria of the small intestine is different than the 

expression by mDC in lymphoid organs. 
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Figure 25: A third of IL-23R+ cells in the lamina propria are T-cells  
A) IL-23r and IL-12Rβ2 expression in lamina propria of IL-23r-GFP-Het mice B) T-cells staining of IL-23r+ and 

IL-23r- cells C)B-cells staining of IL-12Rβ2+ cells. Representative of three experiments. 
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Figure 26: Lamina propria of the small intestine contains high numbers of IL-23R 

positive cells and those cells are in vast majority Lti-like cells 
IL-23r+ and IL-23r- cells staining of A) Lti-like cells, B) DC, C) B-cells. Representative of three experiments 
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The final step in IL-23R organ characterization was to look at IL-23r expression 

in the LP of RagKO-IL-23r-GFP-Het mice, because the lamina propria of the intestine 

would be deprived of T-cells and B-cells and rarer cell populations such as Lti-like 

cells would be in increased percentages. Figure 27a clearly shows that the proportion 

of IL-23r+ cells in the LP of RagKO animals represent one third of the total cell 

counts. In Figure 27a, it is also possible to note that IL-12Rβ2+ cells are increased in 

the LP of the small intestine. It is, however, very hard to characterise those cells, as 

they are found in low numbers in an organ from which extracted cells have a low 

viability. There are suspicions those cells might be dendritic cells (data not shown). 

 

Figure 27b also clearly demonstrates that IL-23r+ cells in the LP are mostly c-

kit+ cells. They are CD90.2+ in the same proportion as the c-kit+ cells in the LP of WT 

animals. In both RagKO and WT IL-23r-GFP-Het mice, 80% of IL-23r+c-kit+ cells are 

CD90.2 and the rest are CD90.2+Sca-1+ cells. 

 

Figure 28 is a compilation of IL-23r+ cells distribution in the LP of WT and 

RagKO IL-23r-GFP-Het mice. In Figure 28a, we see that the proportion of IL-23r+ 

cells increased in the LP of RagKO animals, moving from an average of 3% to around 

40% of total cells. In Figure 28b, that c-kit+ cells are the major subtype of cells 

expressing IL-23r in the LP of both RagKO and WT animals.  

 

In WT animals, IL-23r expression is divided between T-cells, B-cells, and c-

kit+ cells. The T-cells were mostly CD4+ and TCRγδ cells, with very little CD8+ cells. 

The c-kit+ cells can be further separated in two major groups: CD90.2+(80%) and 

CD90.2+Sca-1+(20%) cells. In RagKO animals, c-kit+ cells are the only cells to 

express IL-23r at steady state. Similar to WT mice, c-kit+ cells were further 

characterized as either CD90.2+(80%) or CD90.2+Sca-1+(20%) cells 
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Figure 27: IL-23r+ cells are found in very high numbers in the lamina propria of 

RagKO mice 

Analysis of RagKO-IL-23r-GFP-Het A) IL-12Rβ2 and IL-23r staining of small intestine lamina propria B) Lti-like 

staining of IL-23r+ cells. Representative of three experiments 
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Figure 28 : Distribution of IL-23r+ cells in the small intestine lamina propria 
A: IL-23R expression is restricted to IL-23R-GFP heterozygous, while IL-12Rβ2 expression is found in both kind of 

mice. IL-23R and IL-12Rβ2 is found in both WT and RagKO mice. 

B: Gating on IL-23R+ cells in IL-23r-GFP-Het in both WT and RagKO mice, it is possible to identify different cell 

subtypes expressing the receptor. c-kit+ cells can be further segregated in four groups, depending on their CD90.2 

and Sca-1 expression (B, bottom panel). 
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Figure 29 Compilation of IL-23R expression in different organs: the small intestine LP 

is the organ with the highest proportion of IL-23r+ cells of all the organs analysed. 
IL-23R+ cell proportion in different organs coming from A) IL-23r-GFP-Het and B) RagKO-IL-23r-GFP-Het. 
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To have a better overview of IL-23R expression throughout the different 

organs, Figure 29 contains the compilation of IL-23r positive cells in all organs. In 

Figure 29a, the organ containing the most in IL-23r-GFP-Het mice is definitely the LP 

of the small intestine, followed by the LN and the lungs. The spleen was ranked third 

for having the most IL-23r+ cells, with the thymus and BM having the lowest 

proportions of IL-23r+ cells. There was no statistically significant difference in IL-23r 

expression between the LNs and the lungs. 

 

This increase in IL-23r+ in the LP was even more tangible when looking at 

RagKO animals. A third of LP cells are IL-23r+ cells, which is more than any other 

organ examined. The spleen contained more IL-23r+ cells than the lungs in RagKO 

animals, which was opposite to WT animals. IL-23r+ characterization throughout the 

different organs reinforced its possible importance in gut immunology. 
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Objective 3: Understanding the specificity of the cytokine 

responses of different cell types following stimulation with 

IL-12 or IL-23  

As mentioned previously, IL-23R and IL-12R are expressed on different cell 

types. Both receptors have different roles, are activated by different triggers, and 

induce different signaling cascades. However, both receptors have very high similarity 

in their composition, by sharing one subunit (IL-12Rβ1) and the second subunits are 

orthologous to one another (IL-23r to IL-12Rβ2). Therefore, an important experiment 

was to test the specificity of each cell type in response to both IL-12 and IL-23. 

Because each cell type seemed to express one or the other receptor, it was hypothesized 

that they should respond to only one of the two cytokines. Cells were sorted and 

stimulated in vitro with IL-12 or IL-23, alone or in combination with other cytokines. 

Cytokines secretion following cell stimulation was used to measure IL-12 and IL-23 

responsiveness. 

 

This last section contains preliminary data generated after identification of the 

cell types expressing IL-23R or IL-12R. These experiments were designed to answer 

new questions about the cytokines' capacity to induce signaling through only one 

receptor. However, most of the experiments were done only once or twice  and some 

important controls might be missing. This is important to mention, as the results may 

raise new questions and/or indicate new roles for IL-12R and IL-23R which are 

important for the characterization of the IL-12R family. 

1. Lti-like cells 

The first cells to be tested were Lti-like cells or DX5-CD3-CD19-c-

kit+CD90.2+ cells. Lti-like cells from both the spleen and the LP of the small intestine 

were extracted, sorted and cultured in vitro. In Figure 30, cytokine secretion of Lti-like 

from the spleen following stimulation with IL-12 or IL-23 is observed. To test the 

importance of IL-12Rβ2 in IL-23 and IL-12 signaling, Lti-like cells from IL-12Rβ2KO 

mice were also sorted. Cells from IL-12Rβ2KO mice should not respond to IL-12 if 

IL-12Rβ2 is required for signaling. However, if IL-23 can interfere with IL-12Rβ2, 

maybe IL-12Rβ2KO cells will react differently when stimulated with IL-23. 
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IL-22 and IL-17 are associated with IL-23 stimulation, while INFγ is mostly 

associated with IL-12 stimulation. IL-22 was effectively secreted by Lti-like cells 

following IL-23 stimulation, independent of IL-12Rβ2 presence. There was no IL-17 

secretion following IL-23 stimulation, which is exactly the opposite of what was 

expected. IL-17 is often a hallmark cytokine of the IL-23R signaling cascade. IL-12 

stimulation induced strong INFγ stimulation, even though Lti-like cells are not 

supposed to express IL-12R. IL-10 may be secreted by IL-23 stimulation, but this 

experiment was only done once and the levels were very low. There was no secretion 

of IL-4, IL-6, IL-21, IL-27 and TNF-α recorded following either IL-23 or IL-12 

stimulation (data not shown). 
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Figure 30: Lti-like cells can produce high amounts of IL-22 following IL-23 in vitro 

stimulation 
Cytokine production by CD45.2+CD19-CD3-DX5-c-kit+CD90.2+ after 6 days of in vitro culture. Cells are from the 

spleen of WT or IL-12Rβ2KO naïve mice. Representative of one experiment. 
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Lti-like cells from the LP of the small intestine were also stimulated in vitro for 

six days with IL-12, IL-23 or IL-2+IL-23. Figure 31 contains the compilation of the 

cytokine measurements. Lti-like cells from the LP cytokine secretion profile was 

slightly more heterogeneous than Lti-like cells from the spleen. IL-22 was secreted in 

response to both IL-23 and IL-2+IL-23, but slight levels of IL-22 were also detected in 

response to IL-12. IL-13 was detected only in the presence of IL-2+IL-23. In Lti-like 

cells from the LP, unlike Lti-like cells from the spleen, IL-17 was detected in response 

to IL-23 and IL-23+IL-2. 

 

IL-12 stimulation of Lti-like cells from the LP induced INFγ production, but 

only at very low levels, unlike Lti-like cells from the spleen. However, Lti-like cells 

from the LP stimulated with IL-2 and IL-23 induced higher amounts of INFγ than IL-

12 stimulation by itself. However, IL-23 stimulation by itself did not induce INFγ, so 

IL-2 could be the real inducer of INFγ. 

 

IL-6 and IL-2 levels were significant only in response to IL-2 and IL-23. 

However, as IL-2 is added directly into the wells of culture, IL-2 measurements cannot 

be considered as being secreted from Lti-like cells. IL-2 was included in the graph to 

show that it was efficiently added only to that well. IL-1α, IL-4 and IL-27 were also 

measured, but no cytokines were detected and therefore the data is not shown. 
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Figure 31: Lti-like cells from the lamina propria respond to IL-23 and IL-2 

Cytokine production by CD45.2+CD19-CD3-DX5-c-kit+CD90.2+ after 6 days of in vitro culture. Cells are from the 

LP  of the small intestine of WT naïve mice. Representative of one experiment. 
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2. T-cells 

Th17 and Th1 T-cells are thoroughly characterized. It is very often thought that 

IL-23 and IL-12 are crucial in the differentiation into those two effective T-cells 

subtypes. However, other cytokines are required to induce Th17 and Th1. IL-12 and 

IL-23 are produced in early immune responses, but do they have an effect directly on 

the cells? Could they both have an effect on T-cells, even though very few T-cells 

express IL-12R and IL-23R? 

 

In Figure 32a, two different types of CD4+ T-cells were used: WT and IL-

12Rβ2KO. Each subtype of CD4+T-cells were either stimulated with IL-12, IL-23, 

both cytokines, or no cytokines. We first examined the cytokine production following 

IL-12 stimulation. INFγ secretion following IL-12 stimulation is well-documented in 

the literature; INFγ production were seen in CD4+T-cells stimulated with IL-12. 

Addition of IL-23 did not change INFγ secretion. However, IL-12Rβ2KO mice 

stimulated with IL-12 (or IL-12 and IL-23) produced much lower levels of INFγ, but 

above the detection limit nonetheless. IL-23 stimulation of WT CD4+T-cells, IL-

12Rβ2KO CD4+T-cells, or CD4+T-cells without any cytokine stimulation did not 

result in any increase of INFγ production. Unless IL-12 and IL-12Rβ2 were present, 

INFγ production did not increase from background secretion. Even without any Th1 

inducing conditions, IL-12 induced an increase in INFγ production through IL-12R. 

 

IL-23 stimulation is thought to induce IL-17 and IL-22 production by various 

cell types, including CD4+ T-cells. However, we showed that in Figure 32a IL-23, IL-

12 or IL-12 in combination with IL-23 induced neither IL-17 nor IL-22 production by 

CD4+ T-cells. IL-23 alone failed to induce secretion of those cytokines in vitro. 

 

IL-13 production was the highest in the presence of IL-12Rβ2 and in the 

absence of IL-12. Addition of IL-23 did not change IL-13 levels.  However, IL-12, 

independently of IL-12Rβ2 expression, seemed to decrease IL-13 levels.  

 

IL-2 levels were all similar, except in the presence of IL-12 or in the absence of 

IL-12Rβ2; IL-2 levels were very high in the circumstances. On the other hand, IL-23 
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added to IL-12Rβ2KO CD4+T-cells seemed to inhibit all IL-2 production. Others 

cytokines such as IL-1α, TNF-α, IL-6, and IL-10 were all measured but were not 

absent or in very low quantity in cell supernatants. 

 

Another important subtype of T-cells in IL-23 biology is TCRγδ T-cells. Figure 

32b is the analysis of splenic TCRγδ T-cells from either WT or IL-12Rβ2KO naive 

mice. Each subtype of TCRγδ T-cells were either stimulated with IL-12, IL-23, both 

cytokines, or no cytokines. 

 

Very surprisingly, IL-12 had an effect on INFγ secretion by TCRγδ T-cells, but 

this effect was the opposite on CD4+ T-cells. Addition of IL-12 to WT TCRγδ T-cells 

strongly decreased INFγ production. TCRγδ T-cells stimulated with IL-23, with IL-12 

and IL-23, or without IL-12Rβ2 all had similar INFγ production. 

 

IL-22 production in response to IL-23 by TCRγδ T-cells was much lower than 

IL-22 production by Lti-cells. However, the highest production of IL-22 was by WT 

TCRγδ T-cells stimulated with IL-23 only. IL-22 secretion was not detectable in IL-

12Rβ2KO TCRγδ T-cells stimulated with IL-12, while it was similar in all other 

culture conditions. 

 

IL-17 secretion was also very low, but was only detectable following 

stimulation with IL-23, whether or not the TCRγδ T-cells were WT or IL-12Rβ2. 

TCRγδ T-cells seem more prone to IL-17 secretion at steady state than CD4+ T-cells. 

IL-2 and IL-5 secretion were similar in all the different cell cultures. There is also a 

trend where TNF-α production by TCRγδ T-cells depends on IL-12 and IL-12Rβ2 

presence, but more experiments will be needed to confirm this. IL-1α, IL-6, IL-21 and 

IL-27 were also measured but were not different under any of the conditions tested. 
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Figure 32: CD4+ and γδ T-cells cytokine secretion following in vitro stimulation 
Sorted spleen T-cells from naïve WT or IL-12Rβ2KO animals. Six days in vitro culture and supernatants analysis  

A)CD3+CD4+T-cells and B)CD3+TCRγδ T-cells  

  



112 

3. B-cells 

A problem was encountered throughout B-cell sorting. The monoclonal 

antibody IL-12Rβ2 was binding to B-cells in the IL-12Rβ2KO mouse. This was 

extremely surprising, but it also lead to many different problems. All of the IL-12Rβ2 

characterizations done with the monoclonal antibody could therefore be erroneous. 

 

However, as “IL-12Rβ2+” B-cells were consistently seen, the following 

experiment was done. Splenic B-cells from both WT and IL-12Rβ2KO mice were 

sorted, resulting in four different populations: WT IL-12Rβ2+, IL-12Rβ2- B-cells, IL-

12Rβ2KO IL-12Rβ2+ and IL-12Rβ2- B-cells. All the populations were stimulated with 

IL-12, IL-23 or no cytokine. Supernatants were then measured for cytokine production. 

 

In Figure 33, cytokines measurements of in vitro stimulation are shown. WT 

IL-12Rβ2- B-cells stimulated with IL-12 produced large amounts of INFγ and IL-2. 

However, those same cells stimulated with IL-23 also produce IL-2 and INFγ, even 

though some B-cells are known to express IL-23r. However, in the absence of IL-

12Rβ2, IL-23 and IL-12 did not induce any significant amounts of IL-2 and INFγ. IL-

23 stimulation of any cells did not induce IL-17 or IL-22, which is surprising as they 

are important downstream cytokines of IL-23 signaling. 

 

WT IL-12Rβ2+ stimulated with IL-12 did not produce any of those cytokines. 

Those cells did not produce any other cytokines, except IL-27. IL-27 is highly similar 

to IL-12 and is therefore very interesting. IL-27R is composed of gp130, a subunit 

orthologous to IL-12Rβ2. Other cytokines were measured: IL-10, IL-6, IL-1α, IL-21, 

IL-4, IL-5 and TNF-α, but they were not shown as they were not detected or not 

different between the cell types. 

 

Another important characterization of B-cells was identifying immunoglobulins 

secreted by B-cells in in vitro culture. In presence of IL-12 only, only IgM were 

significantly measured. However, IgM production by WT IL-12Rβ2+ was higher than 

the IgM production by IL-12Rβ2- following IL-12 stimulation (Figure 34). 
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Figure 33: B-cells cytokine secretion following in vitro stimulation 
Sorted splenic IL-12Rβ2+ or IL-12R-β2- B-cells from naïve WT of IL-12Rβ2KO mice were cultured in vitro with 

IL-12, IL-23 or no added cytokine. After six days, supernatants were removed analysed for cytokines secretion. 
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Figure 34: Ig production by IL-12Rβ2+ B-cells 
Splenic IL-12Rβ2+ and IL-12Rβ2- B-cells were sorted from naïve WT mice and put 6 days in culture, stimulated 

with IL-12. Surnatants were harvested and κ-Immunoglobulins were measured. Optical density measurements. 
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4. NK cells 

NK cells and IL-12 have often been linked together, where IL-12 is thought to 

activate and help NK cells proliferate. IL-12 is also thought to be essential for INFγ 

secretion from NK cells. 

 

To test the influence of IL-12 and IL-23 on different NK cells, two experiments 

were set up. In the first one, NK cells from WT or IL-12Rβ2KO mice were put in 

culture with IL-2, IL-2+IL-23, or IL-2+IL-12. Surprisingly, addition of IL-12 and IL-2 

to WT NK cells slowed down cell proliferation, as can be seen in Figure 35a. CFSE 

was not diluted in the presence of IL-12. However, when IL-12Rβ2KO NK cells were 

placed in the same conditions, NK cells proliferated, as can be seen in Figure 35b. 

Actually, not only did IL-12Rβ2KO NK cells proliferate the same as IL-12Rβ2KO NK 

cells cultured with IL-2 or IL-2+IL-23, but IL-12Rβ2KO NK cells proliferated more 

than WT NK cells in comparison. 

 

It was also important to measure cytokine production by NK cells. Cytokines 

were measured after three and six days in culture. Figure 36a and b demonstrate that 

only INFγ and IL-2 were found in NK cell supernatants. However, as IL-2 is added 

into the NK wells it is hard to measure IL-2 as either being produced by the cells or not 

consumed by the NK cells. INFγ was only produced by WT NK cells in the presence of 

IL-12 and with functional IL-12Rβ2 subunit. IL-12Rβ2KO NK cells cultured with IL-

12 did not produce INFγ. IL-2 or IL-2+IL-23 treatment could not induce INFγ 

production by NK cells. The readings for NK cells after six days in culture are also 

similar to those after 3 days, only with higher background cytokines secretion and 

higher amounts of INFγ. 
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Figure 35: NK proliferation is impaired when stimulated with IL-12 
After three in culture in vitro, NK cells stimulated with IL-12 and IL-2 proliferate less than NK cells stimulated with 

IL-2 only or IL-2 and IL-23. However, in NK cells coming from IL-12Rβ2KO mice, dilution in CFSE is increased 

whether cells are stimulated with IL-2 only or in combination with IL-12 or IL-23. Representative of one 

experiment. 
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A  

B  

Figure 36: Presence of IL-12 and IL-12Rβ2 is required for INFγ production by NK 

cells 
Splenic NK cells from WT and IL-12Rβ2KO naïve mice after A: 3 days in culture and B: 6 days in culture, 

stimulated with IL-12 or IL-23 and IL-2 for all conditions. Representative of one experiment. 
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Discussion 

 

IL-12R expression was hypothesized to be easily analysed with the use of a IL-

12Rβ2 monoclonal antibody. Identifying a small proportion of B-cells expressing IL-

12Rβ2 was extremely surprising, as the literature review did not impressively reveal an 

IL-12-responding or an IL-12R-responding B-cell population. B-cells expressing IL-

12R could be the first cell population responding to early IL-12 secretion in vivo, 

before IL-12R is upregulated at the surface of other cells, such as T-cells 

differentiating into Th1. Those IL-12R+ B-cells were rare by comparison, but found 

throughout the different organs examined, so they could respond in different areas of 

the body wherever the initial insult inducing IL-12 secretion was. Another indication 

that IL-12R+ cells found in the spleen were B-cells was the strong decrease of IL-

12Rβ2+ cells in RagKO animals. As RagKO animals do not produce any B-cells, it 

seems logical that IL-12Rβ2+ cells would be dramatically decreased in RagKO 

animals. After thorough characterization of B-cells with the usual subset markers, such 

as CD21, CD23, IgM, IgD, GL-6, and CD136, IL-12Rβ2+ B-cells did not seemed 

neither enriched nor decreased in any subtype. CD43 was the only one to stand. Almost 

all lymphocytes express CD43 except mature B-cells. However, a special type of B-

cell, called B-1 B-cells, are known to express CD43[103]. As reported here, less than 

2% of splenic B-cells express CD43, in contrast with IL-12Rβ2+ B-cells where 40% of 

cells expressed CD43. 

 

It would be interesting to further characterize IL-12Rβ2+ B-cells. B-1 B-cells 

are found in the spleen, but are found in even higher numbers in the peritoneal 

cavity[103], so staining peritoneal B-cells with IL-12Rβ2 monoclonal antibody could 

be a good way to continue the characterization. CD5 is another important marker for B-

1 B-cells; staining with CD5 and IL-12Rβ2 antibodies at the same time could be 

informative. B-1 B-cells are really interesting as they arise during fetal development; 

they are known to react to different antigens than conventional B-cells and are known 

to be amongst the first responders to certain bacterial and fungal antigens such as 

polysaccharides[102]. Those B-1 B-cells can almost be qualified as “innate B-cells” 
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and they would fit perfectly this model. At basal state they are the first cells that 

respond to IL-12 secretion by activated APCs and induce primary immune responses. It 

was logical that IL-12Rβ2+ cells were B-cells and were very rare in the spleen of 

RagKO animals. 

 

On the other hand, other organs still contain high amounts of IL-12Rβ2+ cells; 

those cells seemed to be DC, which is surprising. NK cells are usually thought to 

express IL-12R; this was not observed in any of our experiments. Another reason that 

could explain the high amounts of IL-12Rβ2+ cells found in other organs is due to 

monocytes. RagKO organs, such as the lungs, have very high amounts of monocytes. 

Monocytes can often bind to antibodies in an unspecific way which could artificially 

increase the apparent number of IL-12Rβ2+ cells. Another important issue was the low 

proportion of B-cells amongst IL-12Rβ2+ cells of the thymus. Only a third of IL-

12Rβ2+ thymocytes were B-cells and the other two-thirds could not be identified. On 

the other hand, IL-12Rβ2+ cells were very rare, so it was hard to analyze. 

 

Nevertheless, characterization of IL-12Rβ2+ cells seemed conclusive. They 

were mostly B-cells, with an enrichment of B-1 B-cells which would be the first cells 

to respond to IL-12 coming from APCs, which seems to be an appropriate role for 

“innate-like B-cells". 

 

However, finding that the monoclonal IL-12Rβ2 antibody could bind to the 

same B-cell population in IL-12Rβ2KO mice was quite a drawback. IL-12Rβ2KO 

animals do not express IL-12Rβ2, so the monoclonal antibody is not supposed to bind 

to cells from IL-12Rβ2KO animals. This means that the monoclonal antibody was 

binding to something that was not IL-12Rβ2, but it was consistently identifying the 

same subset of B-cells in the spleen, as they had the same characteristics throughout 

the experiments and IL-12Rβ2+ B-cells were absent from RagKO. This is indicative 

that this IL-12Rβ2 monoclonal may be recognizing something specific, but it is not IL-

12Rβ2. Another important experiment would be to sort the IL-12Rβ2+ cells from WT, 

RagKO, WT-IL-12Rβ2KO and RagKO IL-12Rβ2KO mice and measure IL-12Rβ2 

mRNA levels in each of those cells subtypes. By doing so, it would be possible to 

measure if IL-12Rβ2 actually binds to IL-12Rβ2 or if it is only some unspecific 
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binding. Furthermore, because of the strong homology between IL-12Rβ2, IL-12Rβ1, 

IL-23r, gp130 and IL-27rα, all of those subunits should also be measured, to make sure 

the antibody is not recognising another similar protein. 

 

Those “apparent” IL-12Rβ2+ cells did have some particularly special 

characteristics, such as an enrichment in CD43+ B-cells. They also produced less INFγ 

when stimulated with IL-12, which is different from what was expected. IL-12 action 

through IL-12R is thought to induce INFγ. However, IL-12 stimulation of TCRγδT-

cells decreased INFγ production, so this could present a regulatory pathway to 

controlling INFγ production. Interleukin-12 stimulation of IL-12Rβ2+ B-cells also 

induced very strong IgM production, which was not seen in the stimulation of IL-

12Rβ2- B-cells. They therefore have a certain responsiveness to IL-12. 

 

IL-12Rβ2 was rare in spleens of RagKO animals, but it was more frequent in 

the lungs and LP of RagKO animals. They could be monocytes or DCs, but it was 

difficult to characterize them. This may be because of the antibody, which was binding 

to something other than IL-12Rβ2. More thorough characterization of RagKO-IL-

12Rβ2KO animals with the IL-12Rβ2 antibody in the LP and lungs could help 

elucidate which cells bind to the monoclonal antibody. However, one explanation not 

examined is the limit of detection of the IL-12Rβ2 antibody, or what is the minimum 

number of cells positive for IL-12Rβ2 required to get positive results over the 

background. It would be interesting to compare how many cells are positive for IL-

12Rβ2 antibody in the spleen of WT and IL-12Rβ2KO mice. Maybe the positive cells 

found in the KO mouse represent an artefact. 

 

One hypothetical target of the IL-12Rβ2 monoclonal is gp130. The IL-12Rβ2 

subunit is highly similar to gp130, which is composed of IL-27R and IL-35R. The 

antibody could be recognizing this gp130 subunit, which could help render 

responsiveness to IL-12. The antibody against gp130 exists, but was not used in 

characterization of cells. An interesting follow-up experiment would be to co-stain 

splenocytes from both WT and IL-12Rβ2KO splenocytes with gp130 and IL-12Rβ2 

antibody and compare the expression pattern. It would also be interesting to stain 
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splenocytes from IL-23r-GFP-Het mice and verify if gp130 and IL-23r expression 

happens at the surface of the same cells.  

 

We therefore could not conclude on IL-12Rβ2 expression by cells from the 

spleen, lungs, LP of the small intestine, bone marrow, and thymus, because of the 

specificity of the monoclonal antibody. This does not mean that the B-cell 

characterisations were useless; those cells identified by the antibody never expressed 

IL-23r in naïve state, even though some B-cells express IL-23r. The “IL-12Rβ2+” B-

cells are therefore a specific subset of B-cells that do not express IL-23r, but they 

probably do not express IL-12Rβ2 either, because they come from the IL-12Rβ2KO 

mouse. 

 

The characterization of IL-23r was not done using a monoclonal antibody, so 

the specificity of the expression was not in doubt. IL-23r expression is found in steady 

state animals, as seen in IL-23r-GFP-Het naïve mice. Those cells are all CD45.2+, 

suggesting their hematopoietic origin. However, it is impossible to conclude that IL-

23r is only expressed by lymphocytes, as IL-23r expression by epithelial cells, for 

example, was not tested. Confocal microscopy of tissue sections could be used to 

measure GFP expression and therefore IL-23r expression in different organs and cell 

types. Flow cytometry of other cell types with specific markers could also be used. 

 

IL-23r is expressed by hematopoietic cells, but is found in a wide variety of 

cells in WT animals. Unlike what was expected, IL-23r expression is not restricted to 

one specific cell. Furthermore, not all cells from one specific subtypes express IL-23r.  

For example, c-kit+CD90.2+Sca-1+ cells are found in both IL-23R+ and IL-23r- cell 

populations. In the spleen, 50% of IL-23r+ cells are TCRγδT-cells, but that proportion 

only represents one-third to half of the total TCRγδ T-cells found at steady state. B-

cells represent at least 50% of the cells in the spleen; a handful of B-cells express IL-

23r in the spleen. This variety of cells expressing IL-23r in IL-23r-GFP-Het mice raises 

several questions: why do only a few cells in each subset express this receptor? What 

function do those specific IL-23r+ cells have? Is the IL-23r expression transient? Is it 

induced by encountering different self-antigen? Is it expressed at certain stages of 
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development? In WT animals, CD4+T-cells, Lti-like cells, B-cells and TCRγδ were the 

main types of cells expressing IL-23r.  

 

In Figure 17, there seems to be quite a few variation of the percentage of IL-

23r+ B-cells found in the spleen of naïve IL-23r-Het-GFP animals. This could relate to 

the use of two different antibodies to identify B-cells: CD19 and B220. CD19 is very 

specific to B-cells. However, B220 can sometimes be upregulated by other cell types, 

including DCs, monocytes and T-cells, especially upon activation. The next B-cells 

analysis should distinguish between CD19+ and B220+ to ensure that the variability is 

not caused by the different antibody used. 

 

However, two unknown populations of IL-23r+cells arose throughout the 

characterization: CD3-CD4+ cells and CD3+CD4-CD8-TCRγδ- cells. Some CD3-

CD4+ cells have been found before in the gut; they are called innate lymphocytes. 

They have also been implicated in colitis development, IL-17 and IL-22 secretion, and 

can respond to IL-23, making a case that they probably express IL-23r[74, 98]. Those 

cells were characterized base on the expression of Sca-1+CD90.2+ (Thy1.2+), but they 

were not expressing c-kit. As almost all IL-23r+ cells in the gut and spleen of RagKO 

mice express c-kit, they are evidently not the same cells. On the other hand, in 

inflammatory conditions, the CD4+CD90.2+CD3-c-kit- innate lymphocytes could be 

in increased numbers and respond to IL-23 production. There were IL-23r+CD90.2+c-

kit- cells in the lungs of RagKO-IL-23r-GFP-Het mice which could be the same 

CD4+CD90.2+CD3-c-kit- cells seen in the Buonocore article [74]. Another experiment 

is required to  verify whether or not the c-kit+CD90.2+IL-23r+ cells in the lamina 

propria of the small intestine are CD4+CD3-. Staining specifically splenocytes 

obtained from IL-23r-GFP-Het and RagKO-IL-23r-GFP-Het mice with Lin(-) staining, 

CD90.2, c-kit and CD4 could prove whether or not the IL-23r+Lti-like cells identified 

in this thesis are the same as the innate lymphocytes identified by Buonocore et al. As 

will be discussed later, those c-kit+CD90.2+ Lti-like cells responded to IL-23 by 

secreting IL-22, but did not produce any IL-17, which is another indication that they 

are not the same cells described in the Buonocore article, since those cells were 

described as secreting IL-17 in response to IL-23. 
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CD3+CD4-CD8-TCRγδ- T-cells can be of different nature, but two main types 

are known: double-negative T-cells (DNT-cells) and NKT-cells. Both are big 

contenders for IL-23r+ expression. In the first characterization of the IL-23R-reporter 

mouse, a small population of DNT-cells were said to express IL-23r, but the data was 

not shown. NKT-cells are another important contender; another article reported that 

those cells could respond to IL-23[66]. NKT-cells express both DX5 and CD3; a 

staining with CD3, CD4, CD8, TCRγδ and DX5 could show whether or not cells can 

express IL-23r, CD3, and DX5 at the same time. DNT-cells are more probable, because 

no IL-23r+ cells expressed high levels of DX5. There seemed to be a small population 

of IL-23r+ cells expressing low levels of DX5, but further characterization is required 

to be sure. Those CD3+CD4-CD8-TCRγδ- were enriched in the lungs, BM, and the 

spleen, but seemed to be in low numbers in the LP of the small intestine. 

 

Lti-like cells were not identified in spleens and therefore were not well 

described and characterized throughout the literature. The roles they could play in 

immune responses and especially their importance in the spleen remain obscure. 

However, they must have a specific role in IL-23r signaling; importance of IL-23 in 

colitis and other disease models in RagKO animals was well described in the previous 

section of this thesis. All IL-23r+ splenic cells in RagKO-IL-23r-GFP-Het animals are 

Lti-like cells. Even though DCs, NK cells, and monocytes are found in high proportion 

in the spleen and have been highlighted before as expressers of IL-23R, it was 

impossible to find CD11b+IL-23r+, CD11c+IL-23r+ or DX5+CD11b+IL-23r+ cells in 

the spleen of RagKO animals at steady state. Furthermore, Lti-like cells were the 

greatest producers of IL-22 following IL-23 stimulation, where IL-22 is a well-known 

downstream molecule effected by IL-23 signaling. Various publications have shown 

the importance of IL-22 in either stopping or increasing colitis development. 

 

It is possible that Lti-like cells were not previously identified in the spleen 

because most reports analysing splenocytes to not treat the spleens with collagenase. 

Without collagenase treatment, as shown in Figure 14, Lti-like cells cannot be easily 

identified in the spleen. As not every laboratory systematically treats spleens with 

collagenase, Lti-like cells can be easily missed. They are also found in very low 
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numbers. Other organs, such as the lungs and small intestines are always treated with 

collagenase to extract lymphocytes, so Lti-like cells can be found and characterised. 

 

IL-23r+ cell proportions varied between organs, where the LP of the small 

intestine clearly contained the highest proportion of IL-23r+ cells. This is of particular 

interest, as this project all started by identifying IL-23r as a possible locus for 

predisposition to colitis and therefore gut inflammation. IL-23r expression nicely 

correlates with the different polymorphisms identified in IL-23r and predisposition to 

colitis. However, IL-23r was expressed in the lungs, LNs, BMs, thymus, and spleen. In 

WT mice, IL-23r+ cells were found in higher numbers in organs where there is direct 

contact with the exterior (such as the lungs and LP), as well as secondary lymphoid 

organs. 

 

However, in RagKO animals, numbers of IL-23r+ cells were different from WT 

animals. For example, LP of the small intestine contains higher numbers of IL-23r+ 

cells; in the absence of T-cells and B-cells, Lti-like cells are increased in proportion, 

which leads to more cells that can express IL-23r+. However, in the lungs, the 

proportion of IL-23r+ cells actually decreased in RagKO animals when compared to 

WT animals. Most IL-23r+ cells in the lungs were T-cells and Lti-like cells were rare. 

In the absence of T-cells, the proportion of IL-23r+ was decreased in the lungs. In the 

spleen, IL-23r+ cells were also increased in proportion, probably for the same reasons 

as the LP of the small intestine. 

 

One of the main missing details of this thesis is IL-23r expression during 

inflammation. Some preliminary data from our laboratory showed that LPS systemic 

inflammation did not lead to an increase of IL-23r expression in the IL-23r-GFP-Het 

mouse. Other experiments which induced inflammatory conditions, such as bacterial 

infections or colitis induction, need to be done in the IL-23r-GFP-Het mice to 

understand IL-23r modulation. It is possible that other cell types, such as CD8+T-cells, 

monocytes, or DC start expressing IL-23r following different inflammatory signals. It 

would also be interesting to see CD4+T-cells in Th1 and Th17 inflammatory 

conditions and look at the up-regulation of IL-23r and IL-23 responsiveness during 

different inflammatory immune responses. 
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Because of the defective functioning of the IL-12Rβ2 it is impossible to 

conclude on the possible co-expression of IL-12R and IL-23R at the surface of the 

different cells examined. However, those “special B-cells” and whatever specific 

molecules they expressed never expressed IL-23r and responded to IL-12 in a specific 

way. They will need to be further characterized in the future. A possible comparison of 

IL-23r+ and “special B-cells” via micro-array, cell culture and stimulation, and 

cytokine analysis and Ig phenotyping could reveal how those two types of B-cells are 

different. 

 

IL-12 and IL-23 stimulation of different types of sorted cells is another way that 

characterization can be indicative of IL-23R and IL-12R expression by those cells. For 

example, NK cells do not respond to IL-23 and were not found expressing IL-23r in 

any organs examined. Those two observations agree very well with one-another.  

What was not expected from NK cells was their reaction to IL-12. IL-12 did 

induce INFγ production by NK cells; however, it also seemed to inhibit their 

proliferation. Many reviews mention that IL-12 could activate NK cells and cause them 

to secrete INFγ, but also induce NK cells proliferation. When IL-12Rβ2KO NK cells 

were cultured with IL-12 their proliferation was not inhibited; it actually increased. 

However, IL-12Rβ2KO NK cells could not produce INFγ upon IL-12 stimulation; this 

could very well reflect at IL-12-specific action through IL-12Rβ2. 

 

However, IL-12Rβ2KO NK cells proliferate much more than WT NK cells. It 

was as if IL-12Rβ2 acted as an inhibition feedback loop to control NK cell 

proliferation. In its absence, NK cells could proliferate without any control. It is 

possible that upon stimulation with IL-2, NK cells secrete IL-12 (or another cytokine) 

which can act through IL-12Rβ2 to decrease NK cells proliferation. When IL-12 is 

added to the culture wells, this decrease of proliferation is even stronger. IL-23 did not 

seem to interfere in this process, as IL-23 addition to any conditions did not change 

cytokine secretion or cell proliferation. In this situation, IL-12 had a very specific 

effect, INFγ production, through its specific receptor using IL-12Rβ2. 
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On the other hand, Lti-like cells were able to respond both to IL-23 and IL-12. 

IL-12 stimulation of splenic Lti-like cells induced strong INFγ production, while IL-23 

treatment caused only slight INFγ production. However, IL-12 did not induce IL-22 

production by Lti-like cells. IL-22 is a hallmark cytokine of IL-23 signaling and was 

detected in  very high amounts in Lti-like cells culture. Lti-like cells could therefore 

respond to IL-23, as was expected by the analysis of IL-23r-GFP-Het animals, but 

could also respond to IL-12 production. The combination of IL-2 and IL-23 in LP Lti-

like cells even induced more INFγ than IL-12 alone, so Lti-like cells can respond to IL-

2 and IL-23 in combination. IL-2 also induced IL-6 and IL-13, cytokines with totally 

different roles. IL-6 is important for Th1 T-cells development, while IL-13 is 

predominantly associated with Th2 responses. 

 

Two different types of T-cells were also stimulated with IL-12 and IL-23: 

CD4+ T-cells and TCRγδ+ T-cells. CD4+T-cells stimulation with IL-12 induced INFγ 

production, but only in WT CD4+ T-cells. Stimulation of IL-12Rβ2KO CD4+T-cells 

with IL-12 did not lead to an increase in INFγ production. IL-23, even if highly similar 

to IL-12, did not impact IL-12 stimulation of CD4+ T-cells. However, there seems to 

be another receptor through which IL-12 could work. Addition of IL-12 to IL-

12Rβ2KO CD4+ T-cells lead to a significant decrease in IL-13 secretion, which was 

not seen in the absence of IL-12 or in the presence of IL-12Rβ2. Maybe IL-12 affinity 

for this second receptor is lower than to the functional IL-12R and can only mediate 

binding to it in the absence of IL-12R. Another clue that IL-12 could bind to another 

receptor and mediate regulatory function is seen through the addition of IL-12 onto IL-

12Rβ2KO CD4+T-cells, where INFγ production is actually reduced when compared to 

unstimulated cells.  

 

TCRγδ stimulation was also surprising in regards to IL-12 stimulation. Without 

IL-12 or IL-12Rβ2, INFγ production by TCRγδ T-cells was very high. However, in the 

presence of IL-12 or IL-12Rβ2, INFγ was greatly decreased, as if IL-12 was a negative 

regulator of INFγ production by TCRγδ T-cells. NK cells produce high amounts of 

INFγ following IL-12 stimulation; inhibition of INFγ secretion by TCRγδ T-cells in 

presence of IL-12 could be a regulatory signal to control INFγ levels. 
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TCRγδ T-cells could also produce IL-22 in response to IL-23, one of the 

hallmark cytokines of IL-23. However, there seemed to be some interaction between 

IL-23 and IL-12Rβ2 for IL-22 production. IL-22 was at its highest when IL-23 and IL-

12Rβ2 were present, but IL-12 was absent. Could IL-23 compete with IL-12 to bind to 

IL-12Rβ2 and induce IL-22? So in the absence of IL-12, there would be no 

competition for IL-12Rβ2 finding for IL-23 and more IL-22 could be produced.  

 

Another important result obtained from TCRγδ T-cells stimulation with IL-23 

was that IL-17 could actually be measured in the cell supernatants, but it could also be 

measured in response to IL-12 in the presence of IL-12Rβ2. IL-17 secretion is 

supposed to be a direct downstream effect of IL-23 stimulation; however, in most 

culture conditions, IL-23 was not able to induce high amounts of IL-17 secretion. 

Furthermore, IL-23 stimulation of Lti-like cells and CD4+ T-cells did not induce IL-17 

secretion, while TCRγδ T-cells produced small amounts. It is possible that TCRγδ are 

more primed for IL-17 secretion than others, but other cytokines seemed required to 

induce strong IL-17 secretion by cells, even in the presence of IL-23. It could be 

important to reconsider IL-17 as a marker of IL-23/IL-23R signaling, as other triggers 

seem to be required to induce signaling. 

 

All the cytokine stimulation results are very interesting and could indicate that 

different cells can respond to both IL-12 and IL-23. There are also some indications 

that IL-12Rβ2 could be important for both IL-12 and IL-23 signaling. IL-12 could also 

be a negative regulator of INFγ production on TCRγδ T-cells, which seems surprising. 

However, most cytokine stimulations were done only once or twice; they all need to be 

repeated in order to make sure the trends seen can be translated into strong data. 

Another important experiment would be to repeat the stimulation using a IL-23r-GFP-

KO mouse, which would allow testing of IL-23 specificity for IL-23R to induce its 

signaling, but could also indicate if IL-12 can signal through IL-23R receptor, as the 

KO mouse is deprived of IL-23R at the surface. Different cells from IL-23r-GFP-Het 

mice could also be used, as IL-23r expression could be tracked through GFP 

expression. It would be interesting to see if IL-23r can be induced by IL-23, IL-2, IL-

12, but also if cells that express it at steady state still express during in vitro culture. 
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In conclusion, IL-23r can be found in steady state animals, without any 

inflammatory stimulation. IL-23r+ cells are found in greater numbers in the LP of the 

small intestine, which is highly indicative of a possible role of IL-23R in immune 

responses in the gut and therefore in the pathogenesis of IBD. The thorough 

characterization of IL-23r+ cells confirms various results already seen in the literature, 

such as Lti-like cells responding to IL-23. With the IL-23r-GFP-Het mouse, it was 

possible to confirm the IL-23r expression in CD4+T-cells, TCRγδ T-cells, and Lti-like 

cells. However, it also allowed the identification of new IL-23r+ cells, such as B-cells, 

but also confirmed that NK cells, monocytes, and DCs do not express the IL-23r 

receptor. 

 

It was extremely disappointing to realize that the IL-12Rβ2+ monoclonal 

antibody was not specifically binding to IL-12Rβ2. However, the antibody identified a 

population of B-cells never expressing IL-23r and those cells could respond to IL-12 

by producing IgM and IL-27. This population needs to be further characterized. 

 

Specificity of IL-12 and IL-23 action on their respective receptors has always 

been quite surprising, as both cytokines and receptors are highly similar. The cytokine 

stimulations showed that some cell types, such as NK cells, can only be activated by 

one cytokine, IL-12. However, other cell types could react to both IL-12 and IL-23. 

More surprisingly, the preliminary results in IL-12Rβ2KO mice could indicate that IL-

12R can influence not only IL-12 actions, but also IL-23 signaling. The results 

obtained from cytokine stimulations question  the dogma of IL-12 signaling only 

through IL-12R and IL-23 signaling through only IL-23R. Further characterization of 

IL-23R and IL-12R in IL-23rKO and IL-12Rβ2KO mice, by cytokine stimulation and 

RT-qPCR could be informative regarding the relationships between the two receptors. 
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IL-23R has been highly associated with IBD; however, modulating its effects in 

the possible treatment of colitis was not always successful. One possibility explaining 

why IL-23R therapies had mitigated results could be the possible interactions between 

IL-23R, IL-12R, IL-12 and IL-23, but also IL-27/IL-27R and IL-35/IL-35R, which 

altogether could be interacting with any therapies targeted against IL-23/IL-23R. To 

adequately create targeted therapies against IL-23R, it will be important to continue to 

understand IL-23R biology, its role in intestinal immune responses and in the 

pathogenesis of IBD. 
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Appendix 1 

Lamina propria extraction 

Solutions required to prepare 1 small or 1 large instestine and ceacum  

a) Extraction solution:  

a. For 500mL of RPMI1640, add 

i. Hepes (5 mL) 

ii. Beta-Mercaptoethanol (500uL)  

iii. 5mL of antibiotics (penicillin/streptomycin) 

iv. Do not add FBS 

b. Put 30mL of cold medium in a 50mL tube 

c. This RPMI will be used for all the other solutions 

b) Solution 1: 40mL 

a. RPMI1640 (about 28ml) 

b. 12 ml of FBS 

c. 5 mM EDTA (400uL of 0.5M EDTA) 

d. 0.145mg/mL DTT (40uL of 0.145g/mL) 

e. preheated to 37 ° C 

c) Solution 2: 2X15mL 

a. Cold RPMI1640 + penicillin / streptomycin (about 15mL) 

b. 2 mM EDTA (60uL of 0.5M EDTA) 

d) Solution 3: approximately 50mL for intraepithelial lymphocytes, 15 ml for LP 

a. Cold RPMI1640 + penicillin / streptomycin (approximately 45.5mL) 

b. 3% FBS (19.5mL of 10% FBS) 

e) Solution 4: 15mL 

a. Cold RPMI1640 + penicillin / streptomycin (15mL) 

b. 150uL Liberase 5mg/mL 

c. 0.05% DNase (75uL of DNase 4.33mg/mL) 

d. 2 mL of collagenase in PBS 1mL/mg 

e. Do not add the enzymes to the solution 

f) Solution 5: 30mL 

a. RPMI1640 + penicillin / streptomycin cold (about 21ml) 
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b. 3% FBS (FBS 9ml 10%) 

c. 0.05% DNase (150uL DNase 4.33mg/mL 

Instruments required 

1.  2 small Petri dishes 

2. 2 medium/large Petri dishes 

3. Kitchen strainers (or any type of strainers) 

4. Beaker 

5. Incubator that shakes 

6. Cell strainers (BD): 100um, 70um and 40um 

7. Tweezers (tongs) 

8. Scissors (for dissection and organ treatment) 

9. Centrifuge 

Most solutions are put in 15mL or 50mL conic tubes. 

A) Isolation of the mesenteric lymph nodes (MLN), small and large intestine 

and Peyer's patches. 

a. Euthanize mice by cervical dislocation. Open the abdomen and expose 

the intestines. 

b. Isolate the mesenteric lymph nodes, if necessary. By moving the small 

intestine to the left, the GLM will appear as a chain in the fatty tissues. 

c. Cut the small intestine at the junction with the pyloric valve at the 

bottom of the stomach. With tweezers, separate the fat from the intestine 

to the cecum. 

d. Cut the small intestine at the caecum. If the ceacum and the large 

intestine are required, removed them as well. 

e. Put the intestine on a gauze wet with medium. 

f. Open the intestine along the length with scissors. Then, using a clamp, 

delicately empty the intestine. 

g. Put some medium in a petri dish. Put the opened gut in the Petri dish 

and clean. 

h. Put the medium in a second Petri dish and clean again. 

i. Put the intestine in the tube containing what is left of milieu.  

KEEP ON ICE AT ALL TIMES. 

 



cxxxvii 

B) Isolation of intraepithelial lymphocytes 

a. Incubate the intestines on ice for at least 1 hour, up to 5 hours. Two 

hours of incubation on ice are highly recommended. 

b. Cut the intestines into pieces 1 to 3 cm in length with fine scissors. 

c. Add the intestines in Solution 1, preheated to 37C. Incubated for 20 min 

at 37C, with stirring at 500RPM. 

d. Place a beaker on ice and put the kitchen strainer on the top of the 

beaker. Pour the pieces of intestine in a kitchen strainer to filtrate.Shake 

the strainer several times against the beaker. 

e. Using tongs, transfer the pieces of intestine in a 50mL tube. Pour 15 ml 

of Solution 2. 

f. Shake the tube vigorously for 30 seconds. 

g. Filter the contents of the tube with the same kitchen strainer into the 

same beaker. 

h. Repeat step e and f. 

i. The pieces of intestine will become pink. 

i. Take the pieces of intestines and move to C for the extraction of 

lamina propria lymphocytes. 

ii. The beaker contains epithelial cells and intraepithelial 

lymphocytes. 

j. Filter the contents of the beaker with a 100um cell strainer placed on the 

top of a 50mL tube. Rinse the filter with 5 mL of solution 3. 

k. Take the filtered solution and strain again through a 70um strainer on 

top of a 50mL tube. Rinse the filter with a few mL of solution 3. 

i. It will take two 50mL tubes for all intraepithelial lymphocytes. 

l. Centrifuge the 50mL conical tubes at 1500RPM for 10 minutes at 4C. 

Discard the supernatant and retain the precipitate. 

m. Resuspend the precipitates in 25 mL of solution 3 in the same 

tube(transfer the precipitate of one tube into the other one). Filter 

through a 40um cell strainer. 

n. Centrifuge the conical tubes at 1500RPM for 10 minutes at 4C. Discard 

the supernatant and retain the precipitate. 
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o. If the cells go to flow cytometry, resuspend in FACS buffer. Staining 

with CD45 if highly recommended to discriminate between epithelial 

cells and hematopoietic cells. 

 

C) Isolation of lymphocytes in the lamina propria 

a. Place the intestine pieces in a petri dish. Chop the intestines with 

scissors. 

b. Transfer the pieces of pink intestines into the tube containing the 

solution 4 (without enzyme). Rinse the dish with the solution without 

enzyme. 

c. Add the Liberase, collagenase and DNase. 

d. Incubate at 37C for 36 min at 450RPM. 

e. Add DNase in solution 5. 

f. After digestion, pour the contents of the tube in a 100um filter placed in 

a petri dish. Add 10 ml of solution 5. 

g. Crushed pieces of intestine with a syringe plunger. Filter the cell 

suspension through the 100um several times. A second 100um filter 

may be necessary. 

h. Take the crushed and filtered tissues and filter through a 70um tube 

placed on a 50mL tube. Rinse all filters with solution 5. 

i. Centrifuge the tube for 10 min for 1500RPM at 4C. 

j. Discard the supernatant. Resuspend the precipitate with 10 mL of 

solution 3 and filtered with a filter placed on a 40um tube 50mL. 

k. Centrifuge the tube for 10 min for 1500RPM at 4C. 

l. Discard the supernatant. Resuspend the precipitate with 1-3ml of FACS 

buffer if the cells are going to cytometry. Staining with CD45 if highly 

recommended to discriminate between the hematopoietic cells and other 

cells. 
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Appendix 2 

Lung Lymphocyte Extraction 

1. Anesthesize mice with isoflurane (or other anesthetic) 

2. Lung perfusion 

1. Prefill all seringes and empty all air from catheters 

2. Expose the abdominal and thoracic compartments  

a. Cut the diaphragm 

b. Cut the ribs on each side of the sternum 

c. Lift the cut ribcage piece 

d. Expose the heart 

3. Carefully insert a 27G needle (plugged into a catheter) into the left ventricle 

and fix with a clamp. 

4. With scissors, make a tiny incision into the right ventricle (to your left) to 

enable blood flow-out . 

5. Perfuse (through the left ventricle, on your right) with 10 mL of COLD 

PBS. If perfusion is OK, the liver and limbs should become pale. 

a. Inject 5mL of COLD saline in the incision previously made in the 

right ventricule, which is located to your left (using the needle for 

flowout for the liver perfusion. 

i. The lungs will turn white  

b. Take out the lungs and put in 3mL of COLD RPMI medium +1% 

FBS  

i. Always keep on ice 

ii. If the perfusion worked correctly, the lungs should NOT 

float when put in PBS. If they do, they should be perfused 

directly into the lungs. 

 

Lung 

a. Cut each lung in little pieces and transfer in a 5 mL polypropylene round-

bottom tube, containing 900 µL of WARM PBS (37°C).  

b. Add 100uL of collagenase V 10X (10mg/mL, Sigma-Aldrich, Cat : C9263-

1G). 
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c. Incubate for 30 min at 37°C. 

a. Vortex the lungs every 10 minutes   

d. Add 2mL of COLD complete RPMI : 

1. 500 mL RPMI 1640  

2. 5mL PenStrep 

3. 5 mL HEPES 

4. 50 mL FBS 

5. 500 µL ß-Mercaptoethanol 

e. Pipette ups and downs, then transfer solution onto a 70µM cell strainer (BD 

Biosciences, Cat : 352350) 

f. Using a seringe plunger, crush and homogenize lung pieces  

a. Rinse strainer by pipetting to make sure all cells went through.  

g. Spin for 7 minutes at 1200 RPM at 4°C. 

h. Discard supernatant and resuspend in 5mL of NH4Cl for erythrocyte lysis.  

i. Spin for 7 minutes at 1200 RPM at 4°C. Discard supernatant and resuspend 

in 1mL FACS buffer and proceed to 1:10 cell count.  

j. Cell staining (adding CD45 would be recommended) 
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Flow Cytometry Antibodies Used 

Antigen Antibody 

Clone 

Company Fluorochrome Catalog 

Number 

CD3 17A2 

 

Biolegend 

Homemade 

Alexa 700 

Biotin 

100215 

CD4 GK1.5 Biolegend Pe-Cy7 100421 

CD8 53-6.7 Biolegend Pe 

Biotin 

100708 

100704 

CD11b M1/70 Biolegend Pacific Blue 

Biotin 

101223 

101204 

CD11c N418 Biolegend Pe-Cy7 

Biotin 

117317 

117304 

CD19 6D5 Biolegend Percp 115532 

CD21 7E9 Biolegend Percp/Cy5.5 123415 

CD23 B3B4 Biolegend Pe 101607 

CD43 1B11 Biolegend Pe-Cy7 121217 

CD45.2 104 Biolegend APC-Cy7 

Pacific Blue 

109813 

109819 

CD45R (B220) RA3-6B2 Biolegend Pacific Blue 103230 

CD49b (DX5) DX5 Biolegend APC 

Biotin 

108910 

108904 

CD138 281-2 BD Pe 553714 

IgD 11-26c.2a Biolegend Pacific Blue 405711 

IgM RMM1 Biolegend Pe-Cy7 406513 

IL-12Rβ2 305719 Research and 

Development 

PE 

APC 

FAB1959P 

FAB1959A 

GL-7 (Ly-77)  GL-7 eBioscience APC 51-5902-80 

Gr1 RB6-8C5 Biolegend Percp 

Biotin 

108425 

http://www.rndsystems.com/Products/FAB1959P
http://www.rndsystems.com/Products/FAB1959A
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mPDCA-1 JF05-1C2.4.1 Mylteniy-

Biotec 

APC 130-091-

963 

TCRγδ GL3 Biolegend Percp/Cy5.5 118117 

Ter119 Ter119 Homemade Biotin  

 

Streptavidin: PE, Biolegend, Cat # 405203 


