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ABSTRACT 

Mild hypothermia has a protective effect on brain edema and encephalopathy in both experimental and human acute 

liver failure. The goals of the present study were to examine the effects of mild hypothermia (35°C) on brain 

metabolic pathways using combined 1H and 13C-Nuclear Magnetic Resonance (NMR) spectroscopy, a technique 

which allows the study not only of metabolite concentrations but also their de novo synthesis via cell-specific 

pathways in the brain. :1H and 13C NMR spectroscopy using [1-13C] glucose was performed on extracts of frontal 

cortex obtained from groups of rats with acute liver failure induced by hepatic devascularization whose body 

temperature was maintained either at 37°C (normothermic) or 35°C (hypothermic), and appropriate sham-operated 

controls.  At coma stages of encephalopathy in the normothermic acute liver failure animals, glutamine 

concentrations in frontal cortex increased 3.5-fold compared to sham-operated controls (P < 0.001). Comparable 

increases of brain glutamine were observed in hypothermic animals despite the absence of severe encephalopathy 

(coma). Brain glutamate and aspartate concentrations were respectively decreased to 60.9% ± 7.7% and 42.2% ± 5.9% 

(P < 0.01) in normothermic animals with acute liver failure compared to control and were restored to normal values 

by mild hypothermia. Concentrations of lactate and alanine in frontal cortex were increased to 169.2% ± 15.6% and 

267.3% ± 34.0% (P < 0.01) respectively in normothermic rats compared to controls. Furthermore, de novo synthesis 

of lactate and alanine increased to 446.5% ± 48.7% and 707.9% ± 65.7% (P < 0.001), of control respectively, 

resulting in increased fractional 13C-enrichments in these cytosolic metabolites. Again, these changes of lactate and 

alanine concentrations were prevented by mild hypothermia. Mild hypothermia (35°C) prevents the encephalopathy 

and brain edema resulting from hepatic devascularization, selectively normalizes lactate and alanine synthesis from 

glucose, and prevents the impairment of oxidative metabolism associated with this model of ALF, but has no 

significant effect on brain glutamine. These findings suggest that a deficit in brain glucose metabolism rather than 

glutamine accumulation is the major cause of the cerebral complications of acute liver failure. 

Abbreviations Ala, alanine; ALAT, alanine aminotransferase; ALF, acute liver failure; GABA, γ-aminobutyric acid; Gln, 

glutamine; HAL, hepatic artery ligation; HE, hepatic encephalopathy; Lac, lactate; LD, lactate dehydrogenase; MSO, 

methionine sulfoximine; NAA, N-acetyl-aspartate; NMR, nuclear magnetic resonance; PC, pyruvate carboxylase; PCA, 

portacaval anastomosis; PDH, pyruvate ehydrogenase; TCA cycle, tricarboxylic acid cycle 

INTRODUCTION 

The principal cause of mortality in patients with acute liver failure (ALF) is brain herniation resulting from 

intracranial hypertension caused by a progressive increase of brain water content.1 The pathophysiologic 

mechanisms responsible for brain edema in ALF have not been fully elucidated; however, ammonia remains the 

prime candidate. Hyperammonemia is invariably observed in ALF, and a recent study revealed a significant 

correlation between arterial ammonia concentrations and the complication of brain herniation in patients with 
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ALF.2 Ammonia-related mechanisms that have been proposed to explain the encephalopathy and brain edema in 

ALF include direct electrophysiologic actions of the ammonium ion on excitatory/inhibitory neurotransmission,3 

osmotic effects resulting from the brain accumulation of the ammonia detoxification product glutamine4 as well as 

effects of ammonia on cerebral energy metabolism,5 astrocytic glutamate transport,6 and glutamate (NMDA) 

receptors.7 and 8 

Mild hypothermia prevents brain edema in both experimental9, 10 and 11 and human12 ALF. Not only do these 

findings herald the possibility of new approaches to the management of patients with ALF, they also provide an 

important research tool with which to investigate basic mechanisms responsible for brain edema and 

encephalopathy in ALF. The goals of the present study, therefore, were to study the effects of mild hypothermia 

(35°C) on metabolic pathways in the brain derived from glucose metabolism, using combined 1H and 13C-nuclear 

magnetic resonance (NMR) spectroscopy, a technique that facilitates the study not only of metabolite concentrations 

but also of their de novo synthesis via cell-specific pathways13 in the brain. 

MATERIALS AND METHODS 

Experimental animal model of ALF/surgical procedures 
ALF was induced in adult male Sprague-Dawley rats (175–200 g) by portacaval anastomosis (PCA) according to the 

guidelines of Lee and Fischer14 followed by hepatic artery ligation (HAL). In brief, the rats were anesthetized with 

halothane, the inferior vena cava and portal vein were isolated, the inferior vena cava was partially clamped 

(anastomosis clamp, Roboz Instruments Inc, Washington, DC), and an elliptical piece of vein 1.5 times the portal vein 

diameter was removed. The portal vein was ligated and cut and an end-to-side anastomosis performed under a 

dissecting microscope. Total surgery time was less than 15 minutes. In sham-operated control rats, the inferior vena 

cava and portal vein were occluded for 15 minutes. Following surgery, all animals were housed individually under 

constant conditions of temperature, humidity, and light cycles and were allowed free access to standard laboratory 

chow and water. Overall mortality for shunted rats was less than 5%. Forty-eight hours after PCA surgery, animals 

were anesthetized with halothane and subjected to hepatic artery ligation (HAL) or laparotomy (controls). Following 

HAL, body temperatures were monitored continuously and maintained at either 35°C (hypothermic) or 37°C 

(normothermic) by means of thermal pads and heating lamps. Animals were assessed neurologically every 30 

minutes during progression of ALF. Animals that could no longer right themselves after being placed on their backs 

were considered to be in precoma stage; animals in which both righting ability and corneal reflex could not be 

elicited were considered to be in coma. Hypothermic rats were killed at the same time post-HAL as the comatose 

normothermic rats. All animals received humane care according to the criteria outlined in the “Guide for the Care 

and Use of Laboratory Animals” prepared by the National Academy of Sciences and published by the National 

Institutes of Health (NIH publication 6–23, revised, 1985). 

Control of arterial glucose concentrations and administration of [1-13C]glucose 
Arterial blood glucose levels were monitored every hour, and glucose was administered subcutaneously as needed to 

maintain normoglycemia. To ensure the same fractional 13C enrichment in glucose entering the brain, blood glucose 

levels were measured immediately before administration of [1-13C]glucose (6.62 ± 0.49, 6.48 ± 0.52, and 6.80 ± 0.61 

mmol/L in sham-operated controls, normothermic, and hypothermic ALF groups, respectively). After administration 

of [1-13C]glucose, the fractional enrichments in blood glucose ([1-13C]/[12C]glucose), determined from 1H-NMR 

spectra, were not significantly different between the experimental groups (24.55 ± 2.05, 25.09 ± 1.81, and 22.92 ± 

1.97 in sham-operated controls, normothermic, and hypothermic ALF groups, respectively). 

Preparation of brain extracts 
Sham-operated control rats and hepatic devascularized rats maintained at 37°C at coma stages (normothermic ALF 

rats) or at 35°C (hypothermic ALF rats) at comparable postsurgery time points were administered [1-13C]glucose 

(200 mg/kg, IP; Cambridge Isotope Laboratories) and killed 15 minutes later by decapitation. The bolus injection of 
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glucose in unanesthetized rats was chosen to facilitate the study of metabolic changes in relation to neurologic status 

and to avoid hyperglycemic conditions. The blood was taken from the neck wound and immediately mixed with 20% 

perchloric acid. Forebrains were immediately frozen in isopentane (at −80°C), dissected over dry ice for the frontal 

cortex, and frozen in liquid nitrogen. The samples were powdered over liquid nitrogen. Blood and tissue samples 

were extracted with 12% perchloric acid as previously described.13 

Brain water measurement 
Water content of the brain (percentage) was measured gravimetrically using a density gradient of bromobenzene-

kerosene precalibrated with K2SO4 as previously described.15 Eight measurements were made per animal, and 

values were arithmetically averaged. 

Ammonia measurement 
Plasma and cerebrospinal fluid ammonia concentrations were estimated using a commercial ammonia test kit, which 

uses an ion-exchange method, followed by colorimetric measurement of ammonia nitrogen with the Bertholet 

phenate-hypochlorate reaction (n = 8 in each experimental group).16 

NMR spectroscopy 
The lyophilized extracts of brain tissue and blood plasma were dissolved in 0.6 mL D2O and centrifuged. The pH was 

adjusted to 7.0 with DCl and NaOD. 1H- and 13C-NMR spectra were recorded on Bruker DRX 600 or AVANCE 

NB/WB360 spectrometers, operating at frequencies of 600 MHz or 360 MHz for 1H measurements and 150.9 MHz or 

90.5 MHz for 13C measurements. 1H-NMR spectra were recorded with a 5-mm H,C,N inverse triple resonance probe, 

400 accumulations, repetition time 15 seconds, spectral width 7183 Hz (DRX 600) or 3623 Hz (AM/AMX 360). 

Chemical shifts were referenced to lactate at 1.33 ppm. 13C-NMR spectra were recorded with a 5-mm 1H/13C dual 

probe, 10,000 accumulations, repetition time 2.5 seconds, composite pulse decoupling with WALTZ-16, and spectral 

width 47,619 Hz (DRX 600) or 20,833 Hz (AM/AMX 360). Chemical shifts were referenced to the C-3 signal of lactate 

at 21.3 ppm. 

Measurement of metabolite concentrations 
Lactate concentrations were determined enzymatically (adapted for measurement in 96-well microtiter ELISA plates) 

using a commercially available kit (Roche Molecular Biochemicals, Mannheim, Germany). The concentrations 

(μmol/g tissue) of other unlabeled metabolites and their pool sizes ([13C] + [12C]) were determined from fully relaxed 
1H-NMR spectra of blood and brain extracts, obtained after injection of [1-13C]glucose or equivalent amounts of 

unlabeled glucose, using the known lactate concentrations as an internal standard. 

Calculation of fractional 13C enrichments 
The fractional 13C enrichment in lactate was calculated as the ratio of [3-13C]lactate to unlabeled lactate by 

integration of the peak areas of the methyl groups in 1H-NMR spectra (Figure 1):  

(1)  

The values were corrected for 1.1% natural abundance 13C. 13C enrichments in [1-13C]glucose were calculated 

accordingly using the H1α glucose resonances in 1H-NMR spectra. The fractional 13C enrichment of each carbon of 

other metabolites was derived from peak area ratio of the 13C-labeled carbon/natural abundance carbon and using 

the known 13C enrichment of lactate as internal standard as described in detail previously.13 and 17 The absolute 

amount of 13C in a specified carbon position (absolute synthesis from [1-13C]glucose; μmol/g wet weight) is the 

concentration of the unlabeled metabolite times the fractional 13C enrichment. 
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Figure 1. Labeling of metabolites from [1-13C]glucose: label distribution in glycolytic and TCA cycle 

intermediates during metabolism of [1-13C]glucose. A single turn of the TCA cycle from pyruvate via 

pyruvate carboxylase (PC) or pyruvate dehydrogenase (PDH) to 2-oxoglutarate and subsequently glutamate 

and glutamine is considered. A description of the pathways leading to the different isotopomers is provided 

in the text. LDH, lactate dehydrogenase; ALAT, alanine aminotransferase; GAD, glutamate decarboxylase; 

GDH, glutamate dehydrogenase; GS, glutamine synthetase. 

Theoretical labeling of metabolites from [1-13C]glucose 
The metabolic pathways whereby the 13C label from [1-13C]glucose is transformed into various metabolites are 

presented schematically in Figure 1. 17 Briefly, via the glycolytic pathway, [1-13C]glucose is transformed to [3-

13C]pyruvate and subsequently to [3-13C]alanine and [3-13C]lactate. [3-13C]Pyruvate may then enter the TCA cycle 

via the anaplerotic pathway (pyruvate carboxylase [PC] or malic enzyme [ME]) or via the oxidative pathway 

(pyruvate dehydrogenase; PDH). Via PC, glutamate and glutamine are labeled at C-2. In the oxidative pathway, 

pyruvate enters the cycle as [2-13C]acetyl-CoA, and glutamate and glutamine are monolabeled at C-4. The ratio of 

C4/C2 in glutamate and glutamine was used to estimate the relative contribution of the PDH vs. the PC pathway. The 

order of labeled carbons is reversed in γ-aminobutyric acid (GABA) (i.e., the labels in [2(4)-13C]glutamate end up in 

[4(2)-13C]GABA) (not shown in Figure 1). Because we did not observe double-labeled isotopomers, only 1 TCA cycle 

turn is shown in Figure 1. Isotopomers arising from scrambling of the label within the TCA cycle are omitted for 

clarity. 

Statistical analysis 
The NMR studies were carried out with sham-operated controls (n = 6) and 12 hepatic devascularized rats (n = 6 

normothermic ALF rats and n = 6 hypothermic ALF rats). Data are expressed as mean ± SD. Data between individual 

groups were analyzed using ANOVA and post hoc Tukey’s test. Differences were considered significant when P < 0.05 

http://www.sciencedirect.com/science/article/pii/S0016508503010540
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(†significantly different from sham-operated controls; ‡significantly different between hypothermic and 

normothermic ALF groups; ∗∗∗P < 0.001; ∗∗P < 0.01, ∗P < 0.05). 

RESULTS 

Following hepatic devascularization, normothermic ALF rats (n = 8) developed progressive encephalopathy 

consisting of loss of activity, loss of righting ability (precoma stage), and loss of corneal reflex (coma stage at 13.4 ± 

1.1 hours). At times when the normothermic ALF rats were comatose, none of the hypothermic ALF (n = 8) rats had 

developed significant neurologic symptoms. Hypothermic ALF rats eventually became comatose at 18.3 ± 1.1 hours 

post-HAL, confirming a previous report.9 Plasma ammonia levels were not significantly different between the 2 

groups at any time point studied (Table 1), whereas CSF ammonia concentrations were significantly less (by 34%, P 

< 0.01, n = 8) in the hypothermic than in the normothermic ALF group at coma stages of encephalopathy (672 ± 73 

μg/dL vs. 1007 ± 78 μg/dL) (Table 1). Normothermic ALF rats manifested increased brain water content, whereas 

mild hypothermia led to a significant attenuation of this increase (sham, 80.22% ± 0.12%; normothermic ALF rats, 

81.74% ± 0.13%; hypothermic ALF rats, 80.48% ± 0.15%; P < 0.01 compared with the normothermic ALF group, n = 

8 in each experimental group) (Table 1). 

Table 1. Plasma and CSF Ammonia and Brain Water Content in ALF Rats 

 

 

 

 

 

 

Brain amino acid concentrations 
The concentrations of amino acids related to the TCA cycle and neurotransmitter metabolism, i.e., glutamine, 

glutamate, GABA, aspartate as well as the neuronal marker molecule N-acetyl-aspartate (NAA) in frontal cortex, were 

calculated from 1H-NMR spectra Figure 2 and Figure 3. At coma stages (10–12 hours after HAL), glutamine 

concentrations were significantly increased both in the normothermic and the hypothermic rats compared with 

controls (to 374% ± 31.0%, P < 0.001 and 387% ± 49.0%, P < 0.001, respectively; n = 6). Glutamate, aspartate, and 

NAA concentrations in frontal cortex were decreased in normothermic rats to 60.9% ± 7.7% (P < 0.01), 42.2% ± 5.9% 

(P < 0.001), and 70.7% ± 7.0% (P < 0.01), respectively, but normalized to control values under hypothermic 

conditions. GABA levels were unchanged in both normothermic and hypothermic ALF rats. 

Synthesis of lactate and alanine 
In normothermic rats, ALF resulted in an increase of lactate and alanine concentrations ([12C] + [13C]) to 169.2% ± 

15.6% and 267.3% ± 34.0% (P < 0.001), respectively, which were both significantly attenuated by mild hypothermia 

(increase to 131.1% ± 16.6% and 154.2% ± 18.6%, respectively) (6 animals were used in each group) Figure 

4 and Figure 5. Furthermore, the resonance attributed to 13C-labeled lactate (synthesized from [1-13C]glucose) can 

be distinguished from the unlabeled isotopomer (synthesized from substrates other than [1-13C]glucose) (Figure 4). 

During coma stages of encephalopathy, the concentration of 13C-labeled lactate increased to a much higher 

concentration (to 446.5% ± 48.7%, compared with sham-operated controls, P < 0.001) compared to its total, 

resulting in 3-fold increased fractional 13C enrichments in lactate. In hypothermic ALF rats, de novo synthesized 13C-

labeled lactate was not significantly different from sham-operated control values. Thus, hypothermia led to a 

selective reduction of de novo synthesis of 13C-labeled lactate (P < 0.001). No significant changes in [3-13C]lactate 

were observed in blood plasma of ALF rats 15 minutes after injection of [1-13C]glucose (n = 6). 
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Figure 2. 1H-NMR spectra of brain extracts 

in ALF: effect of hypothermia. Figure shows 

typical segments of 1H-NMR spectra of 

extracts obtained from frontal cortex of a 

sham-operated control rat compared with 

rats with ALF maintained at either 37°C 

(ALF-coma) or 35°C (ALF-hypothermia). 

Peak assignments: GABA, γ-aminobutyric 

acid; Glu, glutamate; Gln, glutamine; NAA, 

N-acetyl-aspartate; Asp, aspartate. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Concentrations of brain amino acids 

in ALF: effect of hypothermia. Figure shows 

concentrations of amino acids, calculated 

from 1H-NMR spectra of extracts obtained 

from frontal cortex of sham-operated control 

rats (n = 6) and of rats with ALF maintained 

at 37°C at coma stage (n = 6) and rats with 

ALF maintained at 35°C (n = 6). Values 

represent means ± SD for n = 6 animals per 

group (†significantly different from sham-

operated controls; ‡significantly different 

between hypothermic and normothermic 

groups; ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05; 

ns, not significant by ANOVA). 
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Figure 4. Brain lactate synthesis in ALF: effect of hypothermia. Left: segments of 1H-NMR spectra of extracts 

from frontal cortex of a sham-operated control rat compared with rats with ALF maintained at 37°C (ALF 

coma) or 35°C (ALF hypothermia). The percentage 13C enrichment in lactate (indicating de novo synthesis) 

was calculated according to the formula in the upper right. Bottom, right: Changes in the concentrations, 

http://www.sciencedirect.com/science/article/pii/S0016508503010540
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amounts of 13C-labeled lactate, and fractional 13C enrichments in lactate in rats with ALF compared with 

sham-operated control rats. For statistical analysis, see legend to Figure 3. 

 

Figure 5. 13C-NMR spectra of brain extracts from rats with ALF: effect of hypothermia. Figures shows 13C-

NMR spectra of extracts from frontal cortex of a sham-operated control rat compared with rats with ALF 

maintained at 37°C (ALF coma) or 35°C (ALF-hypothermia) 15 minutes after injection of [1-13C]glucose. 

Peak assignments: Ala, alanine; GABA, γ-aminobutyric acid; Glu, glutamate; Gln, glutamine; Lac, lactate; NAA, 

N-acetyl-aspartate (signals assigned NAA are due to naturally abundant 13C-labelled NAA). 

13C-labeled alanine was quantified from 13C-NMR spectra (Figure 5). As observed for lactate, ALF resulted in a 

marked increase of de novo synthesis of [3-13C]alanine to 707.9 ± 65.7 (P < 0.001; n = 6) at coma stages, which was 

significantly reduced by hypothermia (increased to 171.1% ± 20.7%; n = 6). Interestingly, the fractional 13C 

enrichment in [3-13C]alanine was increased under normothermic conditions but remained within normal limits in 

hypothermic animals (n = 6). The preferential increase of 13C labeling and the selective protective effect of 

hypothermia on elevated 13C label incorporation from [1-13C]glucose into alanine closely resembles the changes 

observed for 13C-labeled lactate. 

Labeling of tricarboxylic acid cycle-related metabolites from [1-13C]glucose 
Synthesis of glutamine, glutamate, and GABA 13C resonances were quantified from 13C-NMR spectra (Figure 6). Six 

animals were used in each group (sham-operated controls, normothermic ALF rats, and hypothermic ALF rats) for 

13C-NMR analysis. The total amounts of 13C label (μmol/g tissue) and the fractional 13C enrichments (%) in these 

amino acids are presented in Figure 7. The increase in de novo synthesis of glutamine from [1-13C]glucose is much 

higher than the increase of its pool size at coma stages. 13C isotopomer analysis of the individual carbon positions in 

glutamine revealed a greater increase of C-2-labeled glutamine (to 718.5% ± 16.7% of control, P < 0.001) compared 

with C-4 (to 500.8% ± 80.3% of control, P < 0.001). Unlike the selective prevention of abnormal lactate synthesis 

http://www.sciencedirect.com/science/article/pii/S0016508503010540
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from [1-13C]glucose by mild hypothermia, the increase of 13C-labeled glutamine did not differ significantly between 

normothermic and hypothermic ALF groups. In normothermic ALF rats, a relatively higher decrease of [4-
13C]glutamate (through the PDH pathway) compared with its pool size resulted in a decreased relative 13C 

enrichment in C-4 of glutamate to 62.3% ± 10.7% of control (P < 0.001). Although hypothermia failed to prevent the 

increased glutamine synthesis, it led to a complete recovery selectively of PDH-mediated glutamate synthesis. The 

prevention of impaired flux of glucose through PDH by hypothermia is reflected also by the prevention of the 

decrease in the ratio of C-4/C-2 in glutamate (but without significant changes of C-4/C-2 in glutamine in 

hypothermic compared with normothermic rats), which was calculated as a measure of the relative glucose oxidative 

metabolism (vs. the anaplerotic pathway) (Figure 8). No changes were observed for de novo synthesized GABA in 

either normothermic or hypothermic groups of rats with ALF (data not shown). 

 

 

 

 

 

Figure 6. Brain alanine synthesis in ALF: effect of 

hypothermia. Figure shows changes in the 

concentration, amount of 13C-labeled alanine, and 

fractional 13C enrichments in alanine in frontal 

cortex of rats with ALF maintained at 37°C (ALF-

coma) or 35°C (ALF-hypothermia) compared with 

sham-operated controls. For statistical analysis, 

see legend to Figure 3. 
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Figure 7. Synthesis of brain glutamate and glutamine in ALF: effect of hypothermia. Figure shows changes in 

the absolute amounts of 13C (μmol/g tissue) (left) and in the percentage of 13C enrichments (right) in 

individual carbon positions (via the PC- and PDH pathways) of glutamate and glutamine labeled 15 minutes 

after injection of [1-13C]glucose, calculated from 13C-NMR spectra of extracts from frontal cortex of rats with 

ALF maintained at 37°C (ALF coma) or 35°C (ALF hypothermia) compared with sham-operated controls. For 

statistical analysis, see legend to Figure 3. 

http://www.sciencedirect.com/science/article/pii/S0016508503010540
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Figure 8. Relative contribution of carbon flux through PDH and PC. Ratios of C-4/C-2 of glutamate and 

glutamine from 13C-NMR spectra of extracts from frontal cortex of sham-operated control rats compared 

with rats with ALF maintained at 37°C (ALF coma) or 35°C (ALF hypothermia). For statistical analysis, see 

legend to Figure 3. 

DISCUSSION 

Results of the present study reveal that mild hypothermia delays the onset of encephalopathy and brain edema and 

selectively prevents alterations in energy and glucose metabolism in frontal cortex of rats with experimental ALF. In 

particular, hypothermia prevents the increase in brain lactate. These findings add to an accumulating body of 

evidence to suggest that increased brain lactate production is causally related to the encephalopathy and brain 

edema in ALF. Other evidence in support of this possibility includes the report of a significant correlation between 

brain lactate concentrations and both encephalopathy grade18 and EEG changes19 in experimental ALF. Results of 

in vitro studies support a key role of lactate in the pathogenesis of astrocyte swelling. For example, it was previously 

shown that exposure of primary cultures of rat astrocytes (the cell type shown to selectively exhibit swelling in the 

brain in ALF) to pathophysiologically relevant concentrations of lactate leads to significant swelling.20 A recent 

report advocated the use of a noninvasive technique to measure brain lactate in vivo as an evaluation of advanced 

encephalopathy in ALF.21 Results of the present study now show that the selective attenuation of ALF-related 

increases of lactate and alanine in frontal cortex, concomitant with the prevention of encephalopathy and brain 

edema, resides in the ability of hypothermia to prevent the de novo synthesis of lactate from glucose. 

It should be borne in mind, however, that, although there is convincing evidence, both from the present and previous 

studies, for decreased glucose oxidation and lactate/alanine accumulation in the brain in ALF, there is no evidence to 

suggest that either encephalopathy or brain edema are consequences of diminished ATP synthesis.22, 23 and 24 The 

present 13C-NMR spectroscopic study is novel by virtue of its ability to differentiate between metabolite 

concentrations and metabolic fluxes. In particular, the present findings suggest that one important mechanism of 

action of hypothermia in ALF is the facilitation of pyruvate oxidation as a consequence of decreased blood-brain 

transfer of ammonia, which has been shown to inhibit the tricarboxylic acid cycle (TCA) enzyme α-ketoglutarate 

dehydrogenase.25 Increased glycolytic activity has then compensated to maintain ATP production with consequent 

increases of brain lactate and alanine. 

Decreased brain tissue concentrations of glutamate and aspartate have consistently been reported in both 

experimental13, 18, 26, 27 and 28 and human29 ALF. Results of the present study show that mild hypothermia 

prevents the reduction of brain glutamate and aspartate associated with experimental ALF. Furthermore, analysis of 

isotopomer patterns from the 13C-NMR spectra reveals that hypothermia leads to normalization of the de novo 

http://www.sciencedirect.com/science/article/pii/S0016508503010540
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synthesis of glutamate via pyruvate dehydrogenase, a key enzyme for oxidative and energy metabolism in the brain, 

which is expressed in both astrocytes and neurons. Glutamate and aspartate are not only potent excitatory 

neurotransmitters in that both are involved in brain energy metabolism, serving as substrates/intermediates in the 

malate-aspartate shuttle (responsible for the transfer of reducing equivalents from the cytosol to mitochondria). 

Reduced availability of glutamate or aspartate in either cell type, therefore, could result in mitochondrial energy 

compromise. In the case of glutamate, studies using in vivo cerebral microdialysis have shown that increased release 

of glutamate in experimental ALF8 is sensitive to hypothermia.10 Furthermore, the aspartate derivative N-

acetylaspartate (NAA), present in high concentrations in the brain, is decreased in frontal cortex at coma stages of 

encephalopathy under normothermic conditions but is prevented by hypothermia. NAA is a neuronal marker 

molecule and is involved in brain energy metabolism.30 Decreased brain concentrations of NAA, therefore, are 

consistent with neuronal mitochondrial dysfunction in ALF. 

In contrast to glutamate and aspartate, ALF because of hepatic devascularization does not result in alterations in 

either absolute concentrations or synthesis of the inhibitory amino acid GABA. These findings add to a convincing 

body of evidence that the neural inhibition in both human and experimental ALF13, 18, 26 and 29 is not the 

consequence of altered GABA synthesis in the brain. 

It was previously suggested that brain edema in hyperammonemic syndromes such as ALF is the consequence of 

increased intracellular accumulation of glutamine by the astrocyte.4 In favor of this hypothesis were reports of 

increased intracranial pressure in primates infused with ammonia26 and of increased brain glutamine 

concentrations in both human29 and experimental27 and 28 ALF. Moreover, brain edema because of ammonia 

infusions was partially prevented by pretreatment with methionine sulfoximine (MSO), a potent inhibitor of 

glutamine synthetase.4 and 31 However, MSO treatment may exert multiple effects. For example, MSO also induces 

massive efflux of glutamine from astrocytes in cultures.32 In addition, brain glutamine accumulation also occurs in 

chronic liver failure, a condition not normally associated with brain edema or its clinical consequences.4 and 33 

Therefore, despite several experimental data supporting glutamine as accumulating osmolyte in HE, whether or not 

glutamine accumulation is a major cause for the development of brain edema in ALF is uncertain.33 Results of the 

present study confirm an increase in brain glutamine in ALF rats. However, mild hypothermia sufficient to abolish 

brain edema in these animals did not prevent either the increase in brain glutamine concentration or its de novo 

synthesis from glucose in astrocytes (i.e., de novo synthesis via the astrocytic enzymes pyruvate carboxylase and 

glutamine synthetase). A limited capacity of glutamine synthetase was also concluded by Deutz et al.,19 who 

demonstrated a faster increase of brain ammonia compared with glutamine and by Bosman et al.,34 who observed, 

after an initial increase of extracellular glutamine during mild HE, a subsequent decrease during severe HE. Direct 

demonstration of a lack of correlation between the grade of hepatic encephalopathy and glutamine synthetase 

activity was initially reported by Kanamori et al.35 using in vivo 1H MRS in a hyperammonemic rat model. Moreover, 

a previous 13C-NMR study could find no significant correlation between brain de novo glutamine synthesis from 

glucose and grade of encephalopathy or brain edema at coma stages in the hepatic devascularized animal model of 

ALF.13 

In light of the apparently limited capacity of glutamine synthetase, which is thought to be the main detoxification 

process of ammonia, the question remains of how the brain cells regulate the disposal of excess ammonia in late 

stages of ALF. In this regard, it has been shown that ammonia can be incorporated into alanine after transamination 

of glutamate by alanine aminotransferase (ALAT) in both astrocytes and neurons. Consistent with this possibility, 

alanine has been found to be elevated in the hyperammonemic brain.18, 27 and 36 Results of the present study show 

for the first time that de novo alanine synthesis from glucose is increased as a function of the degree of 

encephalopathy/brain edema in ALF, which is partly prevented by mild hypothermia. Like lactate formation, 

synthesis of alanine via ALAT may supplement glycolytic activity, enabling cytosolic ATP production by regeneration 

of NAD+ via subsequent reamination of α-ketoglutarate by glutamate dehydrogenase (GDH). It is noteworthy that, in 

the honeybee retina, which lacks lactate dehydrogenase activity, alanine synthesis in glia fixes ammonia at a rate 

exceeding glutamine formation,37 suggesting that ALAT and GDH may operate in a complementary manner to 
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oxidize NADH and fix ammonia. Like glutamine, alanine accumulation may increase the cellular content of 

osmotically active substances, leading to water uptake, cell swelling, and brain edema in ALF. Furthermore, it has 

been shown that both alanine and glutamine induce hepatocyte swelling,38 and, in acute HE, a close correlation 

between CSF alanine with both the degree of neurologic dysfunction18 and edema27 was demonstrated, suggesting 

that increased alanine synthesis may be related to the pathogenesis of brain edema in ALF. 

Together, these findings do not support a major role for the accumulation of intracellular glutamine in the astrocyte 

as a cause of brain edema in ALF. The imperfect correlation of glutamine with brain edema and severity of 

encephalopathy points to additional mechanisms contributing to brain edema at coma stages. Elevated 

concentration and synthesis of alanine, which is selectively prevented by mild hypothermia, may play a role in the 

development of brain edema in ALF. In addition, the correlation between increased glucose flux through the 

glycolytic pathway (alanine and lactate de novo synthesis) and the severity of encephalopathy and brain edema 

suggest that a deficit in glucose oxidation and energy metabolism is a major contributor to the pathogenesis of these 

neurologic complications of ALF and provide a rational argument for the further use of hypothermia in its 

management. 
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