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ABSTRACT 

Induction of cyclooxygenase-2 (COX-2) has been described in a wide range of neurological diseases including animal 

models of epilepsy. The present study was undertaken to assess COX-2 expression in hippocampal biopsies from 

patients with therapy-refractive temporal lobe epilepsy (TLE). For this purpose, hippocampal CA1 subfield was 

dissected from epileptic patients with (n=5) or without (n=2) hippocampal sclerosis (HS). COX-2 expression was 

investigated using immunohistochemistry and semi-quantitative RT-PCR. COX-2 immunoreactivity in TLE patient 

material in the absence of HS was restricted to a few neurons of the hippocampus. In the presence of HS, on the other 

hand, a significant induction of astrocytic COX-2 immunoreactivity associated with a concomitant increase in the 

steady-state level of COX-2 mRNA was observed in the CA1 subfield. These findings suggest that induction of 

astrocytic COX-2 is implicated in the pathogenesis of HS in TLE and is consistent with the previous findings of 

increased concentrations of prostaglandins in the cerebrospinal fluid of these patients. 
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INTRODUCTION 

Glutamate is the primary excitatory neurotransmitter of mammalian brain and abnormalities in the glutamate 

system have been implicated in experimental and human epilepsy (Meldrum, 1994). Overstimulation of N-methyl-d-

aspartate (NMDA) receptors is associated with neuronal cell death in the pyramidal cell layers (CA regions) and 

dentate gyrus of the hippocampus and has been suggested to play a role in temporal lobe epilepsy (TLE) (Marthern 

et al., 1999). Stimulation of NMDA receptors activates calcium-dependent enzymes such as phospholipase A2, 

leading to accumulation of arachidonic acid and to its subsequent conversion into leukotrienes by 5-lipoxygenase or 

into prostaglandins and thromboxanes by cyclooxygenases (Shimizu and Wolfe, 1990). Cyclooxygenases, or 

prostaglandin endoperoxide synthases, catalyze the first committed enzymatic step in the formation of 

prostaglandins from arachidonic acid and exist in two isoforms. Cyclooxygenase-1 is a constitutive enzyme 

associated with homeostatic functions, while cyclooxygenase-2 (COX-2) is associated with inflammation. COX-2 was 

initially described as a neuronal immediate-early gene inducible by seizures or NMDA-dependent synaptic activity ( 

Yamagata et al., 1993 and Marcheselli and Bazan, 1996). However, basal levels of COX-2 expression have been 

observed in neurons in the hippocampus as well as in other brain regions (Kaufmann et al., 1996). COX-2 is up-

regulated in a variety of other cell types by cytokines and growth factors and down-regulated by glucocorticoid 

hormones (Smith et al., 1996). COX-2 is also expressed by normal and reactive astrocytes in the adult rat central 

nervous system (Hirst et al., 1999). 
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COX-2 expression in the brain is dramatically increased in a wide range of neurological disorders including cerebral 

ischemia (Iadecola et al., 1999), Alzheimer disease (Pasinetti and Aisen, 1998), and amyotrophic lateral sclerosis 

(Drachman and Rothstein, 2000). It has also been suggested that COX-2 and prostaglandins may play a role in 

epilepsy. For example, COX-2 expression is induced in hippocampus after kindling (Tu et al., 2000), in the genetically 

susceptible El mice (Okada et al., 2001), and in kainate-induced seizures (Hirst et al., 1999, Chen et al., 

1995 and Sandhya et al., 1998). Newly synthesized COX-2 protein is known to contribute to NMDA-mediated 

neuronal cell death in cultured neurons (Hewett et al., 2000) and transgenic mice overexpressing neuronal COX-2 

are more suspceptible to kainic acid excitotoxicity (Kelley et al., 1999), suggesting that induction of COX-2 could be 

responsible for tissue damage occurring during seizures in TLE. A major consequence of COX-2 activation is the 

generation of highly reactive oxygen free radical species with potentially damaging effects on lipids, proteins and 

DNA (Sun and Chen, 1998). 

The present study was undertaken to assess COX-2 expression in hippocampal biopsies from patients with therapy-

refractive TLE. For this purpose, the hippocampal CA1 subfield was dissected from surgical biopsy samples from 

groups of epileptic patients with or without hippocampal sclerosis (HS). COX-2 expression was investigated using 

immunohistochemistry and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). 

EXPERIMENTAL PROCEDURES 

Patients 
Surgical hippocampal specimens were obtained from epileptic patients with medial TLE with (n=5), or without (n=2) 

HS (Table 1). All patients suffered from complex partial seizures and the epileptic focus was localized to the temporal 

lobe in all patients as revealed by physical examination, MRI, and long-term video monitoring. The hippocampus was 

removed surgically from these patients in order to achieve seizure control. Hippocampal samples were rapidly 

frozen for molecular studies or immersion fixed in phosphate-buffered saline (PBS) for histological evaluation and 

subsequent correlative analysis. Hematoxylin–eosin staining of sections from TLE patients with HS revealed an 

almost complete loss of neurons from the CA1 subfield and astrocytosis (Sauvageau et al., 2001). The CA1 region was 

microdissected from frozen samples and kept at −80 °C until RNA extraction. Ethical permission for this study was 

granted by the Ethics Committee of University of Montreal (CHUM). 

Table 1. Comparison of clinical variables in epileptic patients with or without hippocampal sclerosis for COX-2 mRNA 

expression 

Patient 
number 

Status Sex Age 
Number of seizures 
(months) 

Age at seizure onset 
(years) 

Duration of seizures 
(years) 

1 
Non-
sclerotic 

M 15 25 9 6 

2 
Non-
sclerotic 

M 32 6 13 19 

3 Sclerotic F 30 10 20 10 

4 Sclerotic M 44 15 18 26 

5 Sclerotic M 34 52 5 32 

6 Sclerotic F 29 4 5 24 

7 Sclerotic M 30 11 6 24 

 

IMMUNOHISTOCHEMISTRY 
Frozen sections (6 μm) were fixed in methanol for 2 min at −20 °C. The cell membranes were then permeabilized in 

PBS containing 1% Triton X-100 for 30 min at room temperature. The sections were rinsed with PBS and incubated 
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with 0.3% H2O2 for 5 min to inactivate endogenous peroxidase. Non-specific sites were blocked in PBS containing 

0.1% Triton X-100 (PBST) and 1.5% heat-inactivated goat serum for 30 min. Sections were incubated overnight at 

4 °C with rabbit polyclonal antibody (1 μg/ml) directed against human COX-2 (Santa Cruz Biotechnology, CA). After 

washing with PBST, sections were incubated with biotinylated goat antibody against rabbit IgGs (Vector laboratory, 

CA) at a 1:200 dilution for 30 min at room temperature. Sections were washed with PBST and incubated with an 

avidin–biotin–peroxidase complex (Vectastain, Vector laboratory, CA) at a 1:500 dilution for 30 min. After washing 

with PBST, bound immunoglobulins were detected by incubation with 0.1 M Tris–HCl (pH 7.4) containing 0.5 mg/ml 

3,3′-diaminobenzidine (HCl) and 0.01% hydrogen peroxide. The sections were mounted on glass slides and counter-

stained with hematoxylin. Control sections were incubated with PBST instead of primary antibody; these showed 

absence of immunostaining. 

RNA extraction 
Total RNA was extracted using TRI Reagent (MRC Inc., Ohio) according to the manufacturer’s protocol. Putative 

contaminating DNA was eliminated by adding 100 U of RNase-free DNase I per 50 μg of total RNA at 37 °C for 1 h. 

Purified RNA was then extracted with phenol, precipitated with ethanol and resuspended in diethylpyrocarbonate-

treated water. RNA samples were kept at −70 °C until use. 

RT-PCR analysis 
β-Actin was used as an internal standard to monitor loading variations. Total RNA (0.5 μg) was mixed with 10 mM 

Tris–HCl (pH 8.3), 1.0 mM MgCl2, 50 mM KCl, 0.01% (w/v) bovine serum albumin, 100 μM dNTPs, primers at 1 μM 

each, AMV reverse transcriptase (80 U/ml), Taq DNA polymerase (20 U/ml) and 50 μCi/ml [α32]dCTP 

(3000 Ci/mmol), for a total reaction volume of 50 μl. Amplification efficiency conditions were determined after a 

kinetic study to ensure that the amount of the amplified product was linear with respect to the number of cycles 

(data not shown). The reactions were initially heated at 50 °C for 15 min followed by PCR at 95 °C for 30 s, 59 °C for 

45 s and 72 °C for 1 min. β-Actin and COX-2 were amplified for 20 and 27 cycles, respectively. After amplification, the 

samples were electrophoresed onto 9% polyacrylamide gels, dried, autoradiographed at −70 °C. Each band was 

excised and Cerenkov radiation was quantitated using a β-counter. Oligonucleotide primers were designed using the 

PRIME program (Genetic Computer Group, WI) and synthesized by the Sheldon Biotechnology Center (McGill 

University, Que.) based on the following GeneBank accession numbers: X00351 (β-actin; Ponte et al., 1984), and 

L15326 (COX-2; Jones et al., 1993).The forward and reverse primer sequences were as follows: 

GACCTGACTGACTACCTCAT and AGACAGCACTGTGTTGGCGT (β-actin, 350 bp); and CATTCTTTGCCCAGCACTTCAC 

and ATCATCAGACCAGGCACCAGAC (COX-2, 304 bp). The specificity of the oligonucleotide primers was verified using 

the program BLASTN (National Center for Biotechnology Information, Bethesda, MD). 

Statistical analysis 
Statistical significance of differences between the groups was determined by unpaired t-test. 

RESULTS 

COX-2 immunoreactivity in the CA1 hippocampal subfield of epileptic patients without HS was restricted to a few 

neurons (Fig. 1A). In contrast, a marked induction of COX-2 immunoreactivity was observed in the CA1 hippocampal 

subfield of all epileptic patients with HS. COX-2 immunolabelling in these latter cases was localized to astroglial cells, 

mainly astrocytes identified by the long and delicate stellate cytoplasmic processes (Fig. 1B, left panel) and the 

presence of numerous capillary end feet (Fig. 1B, right panel). Semi-quantitative RT-PCR analysis revealed a 

significant 43% increase (P<0.05) in the steady-state level of COX-2 mRNA (after normalization to β-actin) in the 

CA1 subfield of three epileptic patients with HS compared to patients without HS (Fig. 2). The variation observed in 

the steady-state levels of COX-2 mRNA in epileptic patients with HS may reflect the very short half-life of COX-2 

mRNA (not more than 3.5 h) in human brain (Lukiw and Bazan, 1997). Linear regression analysis of COX-2 mRNA 
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levels did not reveal any significant correlation with the frequency (r=−0.60; P=0.28), the age of onset (r=0.20; 

P=0.74) or the duration of seizures (r=−0.73; P=0.16) (Table 1). 

 
 

 

 

 

 

 

 

Fig. 1. Increased COX-2 immunoreactivity in the CA1 subfield of patients with TLE. (A) COX-2 immunoreactivity in 

non-HS patients; (B) COX-2 immunoreactivity in HS patients. Note the neuronal localization of COX-2 

immunolabeling (arrow) in (A) and immunolabeling in cytoplasm and astrocytic processes (arrow heads) in (B) (left 

panel) as well as in juxtaposition to capillary end-feet (right panel). Scale bar for both figures (A) and (B) is 10 μm; 

×600. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Increased expression of COX-2 mRNA in the CA1 subfield of epileptic patients. Total RNA was extracted from 

the CA1 regions of biopsies from five epileptic patients with hippocampal sclerosis (HS: lanes 5–9) and from two 

epileptic patients without hippocampal sclerosis (non-HS: lanes 2 and 3). β-Actin and COX-2 mRNAs were reverse-

transcribed and amplified by PCR as described in Experimental procedures. Lane 1: molecular weight standard; Lane 

4: AMV reverse-transcriptase was omitted (as a negative control) from the reaction mixture. 
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DISCUSSION 

Results of the present study reveal a significant induction of astrocytic COX-2 mRNA and protein in the CA1 

hippocampal subfield in surgical biopsies from patients with TLE. Although, on a limited number of cases, this study 

represents the first investigation of COX-2 expression in human TLE. These findings are consistent with the 

increased levels of prostaglandins found in the cerebrospinal fluid of epileptic patients (Wolfe and Mamer, 1975) and 

in the brains of animals with experimental epilepsy (Bazan et al., 1986). 

Our findings also confirm and extend previous observations from animal models of TLE. For example, expression of 

COX-2 in rat brain is increased markedly in neurons a few hours following kainic acid administration and precedes 

neuronal cell death (Chen et al., 1995). COX-2 expression in reactive astrocytes, however, has been observed and 

found to persist for several weeks after kainate administration (Sandhya et al., 1998). Although, the exact 

contribution of COX-2 to the epileptogenesis process remains uncertain, the present findings of induction of 

astrocytic COX-2 in therapy-refractive TLE patients with longstanding and progressive HS may have profound effects 

on brain function. Activation of the astrocytic metabolism of arachidonic acid leading to increased prostagandin 

synthesis may promote neuronal damage, either directly through the production of oxygen radicals (Kontos and 

Povlishock, 1986), or indirectly by modulating glutamate neurotransmitter release and uptake (Gegelashvili and 

Schousboe, 1997, Manzoni and Mennini, 1997 and Bezzi et al., 1998). Accordingly, drugs that inhibit COX activity 

such as indomethacin, or selective COX-2 inhibitors such as rofecoxib have been found to reduce seizure frequencies 

and hippocampal cell death in several animal models of epilepsy (Wallenstein, 1987, Wallenstein, 1991, Baran et al., 

1994, Paoletti et al., 1998, Kunz and Oliw, 2001 and Okada et al., 2001). 

In view of the roles played by prostaglandins in brain inflammation and of the increased prostaglandin 

concentrations found in the cerebrospinal fluid of epileptic patients (Wolfe and Mamer, 1975), the present study 

suggests that induction of astrocytic COX-2 may play a role in the pathophysiology of epilepsy and/or in the 

pathogenesis of epileptic brain damage. These new findings also suggest that selective COX-2 inhibitors such as the 

non-steroidal anti-inflammatory drugs may provide novel anti-epileptic or neuroprotective strategies in human TLE. 
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