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ABSTRACT 

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome which develops as a result of liver failure or 

disease. Increased concentrations of brain lactate (microdialysate, cerebrospinal fluid, tissue) are commonly 

measured in patients with HE induced by either acute or chronic liver failure. Whether an increase in brain lactate is 

a cause or a consequence of HE remains undetermined. A rise in cerebral lactate may occur due to (1) blood-borne 

lactate (hyperlactataemia) crossing the blood–brain barrier, (2) increased glycolysis due to energy failure or 

impairment and (3) increased lactate production/release or decreased lactate utilization/uptake. This review 

explores the different reasons for lactate accumulation in the brain during liver failure and describes the possible 

roles of lactate in the pathogenesis of HE. 
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Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome which develops as a result of liver failure or 

disease. It is characterized by an array of neurological symptoms ranging from changes in personality, alterations in 

day–night rhythms, consciousness, concentration and attention, progressing to relentless cognitive, psychiatric and 

motor disturbances, coma and death (Butterworth and Vaquero, 2009). HE typically presents as one of 2 forms in 

association with (1) chronic liver failure/disease (CLF) or (2) acute liver failure (ALF). Brain edema is a common 

characteristic observed in ALF, believed to occur due to astrocyte swelling (Butterworth and Vaquero, 2009). 

Intracranial hypertension is a major complication developing principally in patients with ALF which consequently 

leads to brain stem herniation and 30% mortality (Shawcross and Jalan, 2005). Brain edema is also observed in the 

setting of CLF however contrary to ALF, intracranial hypertension is rarely seen (Häussinger, 2006). 

Circulating neurotoxins which accumulate in brain as a consequence of liver failure/disease cause a number of 

effects on cerebral metabolism, creating a multiplicity of metabolic disturbances and encephalopathy (Felipo and 

Butterworth, 2002). Ammonia, produced mainly within the gut during protein digestion and amino acid 

deamination, is a neurotoxin believed to play a major role in the pathogenesis of HE. The concentration of ammonia 

in the blood is regulated by the urea cycle in the healthy liver and therefore liver failure/disease leads to 

hyperammonemia. Ammonia in aqueous solution is composed of gaseous (NH3) and ionic (NH4
+) components and 

the ratio of NH3/NH4
+ is derived from the Henderson-Hasselbalch equation (Cooper and Plum, 1987). As a gas, 

ammonia can easily diffuse across all membranes and since the ionic properties of NH4+ are very similar to K+, 

NH4+ is capable of crossing in and out of cells through K+ transporters and channels (Bosoi and Rose, 2009). A 

specific transporter for ammonia has recently been identified in the kidney however its role in the brain remains 

uncertain (Bakouh et al., 2006). With ammonia easily capable of crossing all cell membranes, an increase in blood 

ammonia leads to an increase in brain ammonia. The neurotoxicity of ammonia has been well documented, however 

the exact mechanisms by which ammonia exerts its pathological effects continue to be unanswered. In ALF, 

increased intracranial pressure (ICP) and brain stem herniation are related to arterial ammonia concentrations as 

demonstrated in both clinical studies (Bernal et al., 2007, Bhatia et al., 2006, Jalan et al., 2004 and Clemmesen et al., 
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1999) and animal experiments (Sen et al., 2006, Jover et al., 2006 and Rose et al., 1999). Hyperammonemia is a 

common characteristic of CLF (Butterworth et al., 2009) however whether the existence of a correlation between 

blood ammonia levels and grade (severity) of HE remains controversial (Kundra et al., 2005 and Ong et al., 2003). 

Lactate, a product of glucose metabolism, is another factor believed to be implicated in the pathogenesis of HE 

however whether an increase in brain lactate is a cause or a consequence of HE is not fully resolved. 

HYPERLACTATAEMIA 

Hyperlactataemia is observed in patients with ALF (Walsh et al., 1999 and Saibara et al., 1994) and blood lactate 

levels have been suggested as a prognostic marker in patients with either acetaminophen-induced (Bernal et al., 

2002 and Schmidt and Larsen, 2003) and non-acetaminophen-induced (Funk et al., 2006 and Dabos et al., 2004) ALF. 

Furthermore, blood lactate has also been found to be independently associated with mortality in seriously ill 

cirrhotic patients (Zauner et al., 2000) as well as many other critical illnesses (Mizock and Falk, 1992). 

Different animal models of ALF have also demonstrated an increase in blood lactate. ALF induced by hepatic 

devascularisation/ischemia in both pigs (Rose et al., 2007) and rats (Zwingmann et al., 2003, Chatauret et al., 2003, 

Mans et al., 1994 and Bosman et al., 1990) leads to hyperlactataemia. ALF caused by carbon tetrachloride 

hepatotoxicity leads to increased blood lactate (Bates et al., 1989) a finding which is also observed in urease-injected 

(Bosman et al., 1990) and acute ammonia-injected (Fitzpatrick et al., 1989) rats. 

Traditionally, an increase in lactate is believed to be a result of energy failure or impairment and increased anaerobic 

metabolism due to cellular hypoxia. This may be of importance in the setting of liver failure (Subramanian and 

Kellum, 2000) however numerous other reasons for increased blood lactate in liver failure/disease exist. It is 

important to note that elevated blood lactate concentrations do not always indicate tissue hypoxia (Clemmesen et al., 

2000 and Walsh et al., 1998). Circulating lactate is normally metabolised in the liver to glucose (gluconeogenesis) 

and therefore impaired hepatic function will decrease the elimination and prolong the half-life of lactate, leading to 

hyperlactataemia (Levraut et al., 1998 and Woll and Record, 1979). An increase in blood lactate may also arise due to 

necrotic hepatocytes expelling their intracellular contents (including lactate) (Clemmesen et al., 2000). Moreover, 

the levels of blood lactate are further elevated upon the onset of multi-organ-failure during liver failure/disease 

through organ-failure lactate leakage. In summary, hyperlactataemia in liver failure/disease may arise from (i) 

decreased hepatic lactate metabolism, (ii) increased hepatic lactate production due to energy failure or impairment 

and/or (iii) increased release due to hepatocyte necrotic cell death (Schmidt and Larsen, 2006 and Murphy et al., 

2001). 

INCREASED BRAIN LACTATE 

Increased brain lactate is a consistent finding in various animal models of ALF (Rose et al., 2007, Zwingmann et al., 

2003, Chatauret et al., 2003, Nyberg et al., 1998, Mans et al., 1994, Bates et al., 1989, Holmin et al., 1983 and Hawkins 

et al., 1973) and has been reported to parallel changes in encephalopathy defined by shifts in 

electroencephalography (Bosman et al., 1990). Normal and portacaval shunted rats following acute injections of 

ammonia become severely encephalopathic and experience an increase in brain lactate (Therrien et al., 1997, 

Fitzpatrick et al., 1989 and Hindfelt et al., 1977). Cerebral microdialysis, an in vivo technique to monitor the 

metabolism and biochemistry of the extracellular compartment in a defined region of the brain, is an excellent 

method to define the temporal resolution of changes in cerebral metabolites (with successive sampling of 

microdialysates) in relation to changes in encephalopathy. In pigs with ALF, induced by hepatic 

devascularisation/ischemia, microdialysate lactate increased in association with increased ICP (Rose et al., 2007). 

Clinically, cerebral microdialysis has become a well-established technique in many intensive care units ( Ungerstedt 

and Rostami, 2004 and Hutchinson et al., 2000) and the group of Dr. Fin Stolze Larsen from Copenhagen, Denmark 
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have done remarkable studies monitoring the extracellular space in parallel with changes in ICP in the brains of 

patients with ALF. His group has shown an increase in microdialysate (extracellular) lactate in the frontal cortex of 

patients with ALF correlates with an increase in ICP and preceeds surges in high ICP (Tofteng and Larsen, 2002). 

In addition to ALF, concentrations of lactate in cerebrospinal fluid (CSF) are also elevated in patients with cirrhosis 

and CLF however only in those with overt HE (>grade 2), reflecting the severity of the metabolic impairment of the 

brain (Yao et al., 1987). 

BRAIN EDEMA AND CEREBRAL LACTATE 

Elevated brain lactate concentrations have been suggested to contribute to the pathogenesis of brain edema, a 

common finding in ALF and due to newly advanced imaging techniques, is also observed in patients with CLF (Rovira 

et al., 2008, Sugimoto et al., 2008 and Häussinger, 2006). Evidence has developed from in vitro studies where 

cultured astrocytes exposed to lactate significantly swell ( Ringel et al., 2006 and Staub et al., 1990). Furthermore, 

the highest concentration of CSF lactate in rats with ALF is found during coma stages when brain edema is present 

(Chatauret et al., 2003). Additionally in the same ALF model, using nuclear magnetic resonance spectroscopy, an 

increase in de novo synthesis of lactate from glucose (13C-Glc) in brain correlates with severity of encephalopathy 

and brain edema (Zwingmann et al., 2003). In another model of ALF, brain lactate concentrations, determined by 

magnetic resonance spectroscopy were found elevated in d-galactosamine-induced ALF and associated with 

intracranial hypertension and poor neurological outcome (Nyberg et al., 1998). Recently, Chavarria et al. (2010) 

demonstrated using magnetic resonance techniques, that a shift in HE from pre-coma to coma stage (associated with 

development of brain edema) in rats with ALF was accompanied with a marked increase in cerebral lactate. 

Therapeutic interventions, such as mild hypothermia and albumin dialysis, have helped our understanding in the 

pathogenesis of brain edema in ALF. Rats with ALF (hepatic devascularisation/ischemia) cooled to 35°C 

demonstrated an attenuation in CSF ammonia and lactate along with a normalisation of brain edema (Chatauret et 

al., 2003). Also, ALF pigs treated with molecular adsorbents recirculating system (MARS), demonstrated an 

attenuation in ICP, brain edema and extracellular ammonia and lactate (Rose et al., 2007 and Sen et al., 2006). These 

studies describe the importance of cerebral ammonia and lactate in the pathogenesis of brain edema in ALF, 

however do not conclude whether ammonia and lactate are regulated independently. 

LACTATE METABOLISM IN THE BRAIN 

Lactate is produced from the metabolism of glucose through glycolysis. It is specifically generated and metabolised 

by the enzyme lactate dehydrogenase (LDH) in which the direction of the reaction is governed by the concentration 

of lactate, pyruvate and NADH/NAD+ ratio (Fig. 1). LDH is found in both neurons and astrocytes, as isoenzymes LDH1 

and LDH5 respectively. It is traditionally believed lactate is an end product of anaerobic glycolysis however there is 

increasing evidence suggesting lactate is a principal product of glycolysis (even in the presence of oxygen) and also a 

secondary fuel for the tricarboxylic acid cycle since lactate demonstrated to be an important cerebral oxidative 

energy substrate (for review see Pellerin et al., 2007 and Schurr, 2006). 

 
 

 

 

Fig. 1. Lactate dehydrogenase (LDH) catalyzes the reversible interconversion of pyruvate (+NADH) and lactate 

(+NAD+). 
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LACTATE TRANSPORT IN THE BRAIN 

Lactate is transported across cell membranes through different monocarboxylate transporters (MCTs), each with 

different Km and Vmax values. MCTs are symporters which co-transport lactate, through facilitated diffusion with H+. 

MCTs are bidirectional and the direction of lactate transport depends upon the H+ gradient (Bröer et al., 1999). 

Lactate transport therefore affects and is affected by fluxes in pH (Barros and Deitmer, 2010). Lactate is also capable 

of crossing cell membranes as lactic acid by simple diffusion (Juel, 1997) however since lactate has a pKa of 3.8, the 

ratio of lactate ion to non-dissociated lactic acid equals close to 3000/1 (at pH 7.3) therefore the amount of diffusible 

lactic acid is insignificant. 

MCT isoforms, MCT1 and MCT4, are both expressed in astrocytes (Pierre and Pellerin, 2005 and Bergersen et al., 

2002). There has been some controversy concerning the expression of MCT2 in astrocytes in vitro ( Debernardi et al., 

2003, Hanu et al., 2000 and Tildon et al., 1993) and in vivo ( Gerhart et al., 1998 and Gerhart et al., 1997) however 

most evidence to date suggests MCT2 is expressed in neurons ( Pierre and Pellerin, 2005 and Bergersen et al., 2002). 

Since MCT2 (neuronal) has a Km of 0.5 mM and MCT1 and MCT4 (astrocytic) have a Km of 3–5 mM and 15–30 mM 

respectively, this illustrates the importance of LDH activity in supporting and protecting neurons under certain 

pathophysiological conditions (see section lactate as an energy source below). Overall, neurons are better equipped 

to transport and use lactate as an energy source in comparison to astrocytes. A good example was recently described 

by Barros and Deitmer (2010) where decreasing the extracellular lactate from 2 mM to 1 mM caused a 42% decrease 

in lactate influx in MCT1-expressing astrocytes (Km of 3–5 mM) and only a 17% decrease in MCT2-expressing 

neurons (Km of 0.5 mM). Overall, increased lactate uptake of MCT2 is associated with increased intracellular lactate 

metabolism (Barros and Deitmer, 2010). 

LACTATE AS AN ENERGY SOURCE 

Since the astrocyte-neuron lactate shuttle hypothesis (ANLSH) was proposed by Pellerin and Magistretti (1994), 

many studies have documented and supported this hypothesis in which lactate synthesized within astrocytes is 

released (shuttled) into the interstitial space and used as a supplementary fuel (in addition to glucose) for neurons 

(for review see Pellerin et al., 2007). The bulk of ANLSH has been developed based on in vitro studies but has also 

been supported with in vivo studies ( Hyder et al., 2006 and Serres et al., 2005). The ANLSH hypothesis has 

revolutionized the role of lactate in oxidative metabolism and has depicted energy metabolism between neurons and 

astrocytes is dissimilar. It has previously been demonstrated LDH1 in neurons expresses a higher affinity for lactate 

than LDH5 in astrocytes (Bittar et al., 1996). It is now known that astrocytes release lactate at a greater rate than 

neurons (Walz and Mukerji, 1988), that lactate is efficiently oxidized by neurons (Pellerin, 2003) and that lactate is 

the preferred oxidative substrate over glucose ( Schurr, 2006, Tekkök et al., 2005 and Bouzier-Sore et al., 2003). 

Upon glutamate activation, glucose transport and utilization increases in astrocytes ( Loaiza et al., 2003 and Pellerin 

and Magistretti, 2004) but decreases in neurons (Porras et al., 2004) even though energy demands increase. This 

favours lactate oxidation in neurons (Pellerin et al., 2007). Astrocytes can afford to produce lactate from pyruvate 

since glutamate taken up by high affinity transporters in the astrocytes may also be used to fuel the tricarboxylic acid 

cycle and oxidative metabolism (Hertz, 2004). It is important to note, glucose and lactate are integral and important 

entities of energy metabolism (Schurr, 2006) and that glycolysis is necessary to ensure proper cell function ( Bak et 

al., 2006 and Ikemoto et al., 2003). 

Traditionally glucose is thought to be the sole metabolic fuel for brain cells and this remains true even if lactate is 

used as an energy source, since lactate production originates from blood-borne glucose. Therefore the oxidation of 

lactate should stimulate the oxidation of glucose and not spare glucose (Schurr, 2006). Glucose provided by the 

blood is taken up by the astrocytes (due to the morphological distribution of astrocytes in the blood–brain barrier) 

and is predominantly oxidized to lactate which is released into the synaptic cleft, taken up by neurons and used as an 
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energy source. The concept of a “lactate flow” from astrocytes to neurons is logical considering the differential 

expression of MCTs isoforms and LDHs isoenzymes (and their respective differential affinities) in neurons and 

astrocytes. 

EXPLANATIONS FOR INCREASED BRAIN LACTATE 

FROM THE BLOOD 

The same way hyperammonemia leads to increased brain ammonia, it is often debated whether hyperlactataemia 

leads to an increase in cerebral lactate. It has previously been demonstrated lactate cannot easily cross the blood–

brain barrier (Hertz and Dienel, 2002 and Auer, 1986), infusing lactate intravenously does not increase CSF lactate 

(Alexander et al., 1962) and levels of blood and CSF lactate are regulated independently (Posner and Plum, 1967). 

However, others have documented that the blood–brain barrier is permeable to lactate (Dalsgaard et al., 2004, Smith 

et al., 2003 and Oldendorf, 1973) and the lactate transporter MCT1 is expressed on endothelial cells (Gerhart et al., 

1997). Furthermore, Tofteng and Larsen (2002) in a case report describing a patient with severe ALF and brain 

edema found microdialysate (extracellular) lactate was influenced by alterations in arterial concentrations of lactate. 

However, an increase in extracellular lactate was associated with an increase in brain LDH activity in pigs with ALF 

(Rose et al., 2007) suggesting increased brain derived lactate. Therefore, in the context of liver failure/disease where 

the blood–brain barrier may be compromised, the relationship between blood and brain lactate remains undefined. 

A MARKER FOR ENERGY IMPAIRMENT 

There is a lot of evidence demonstrating that an increase in cerebral lactate is a consequence of intrinsic cellular 

metabolic changes (Zwingmann et al., 2003). The neurotoxic mechanisms of ammonia are numerous and many have 

demonstrated to interfere with several energy metabolic pathways. Ammonia has shown to increase glycolysis by 

stimulating phosphofructokinase (Abrahams and Younathan, 1971 and Lowry and Passonneau, 1966), a key 

glycolytic enzyme. Also, ammonia has been shown to inhibit the rate-limiting tricarboxylic acid cycle enzyme α-

ketoglutarate dehydrogenase (Lai and Cooper, 1986) which may be a protective mechanism for replenishing the 

astrocytic glutamate pool and subsequently detoxify ammonia through the astrocyte specific enzyme, glutamine 

synthetase (Cooper and Plum, 1987). These pathophysiological mechanisms interfere with energy metabolism 

leading to compromised brain energy metabolism as well as an increase in lactate formation. It has been postulated 

that an increase in cerebral lactate may be an indicator of impending energy failure secondary to injury to the 

mitochondria (Norenberg et al., 2005). Although the pathophysiological mechanisms listed above suggest energy 

failure, there is little evidence demonstrating high-energy phosphate compounds are reduced in the pathogenesis of 

HE. Normal rats acutely injected with ammonia develop an increase in brain lactate without affecting levels of ATP 

(Fitzpatrick et al., 1989, Lin and Raabe, 1985 and Hawkins et al., 1973). Different in vivo models of ALF 

demonstrating increased cerebral lactate and changes in electroencephalography did not show a decrease in high-

energy phosphates ( Mans et al., 1994, Bates et al., 1989, Friolet et al., 1989 and Deutz et al., 1988). Rats following a 

5-week portacaval anastomosis, a model of chronic HE, characterized by hyperammonemia and increased brain 

ammonia, are accompanied with an increase in cerebral lactate but a preserved energy state (Holmin and Siesjö, 

1974). These same animals, following an acute ammonia injection fall into coma which is associated with an increase 

in brain lactate and a decrease in brain ATP. In this same study, pre-coma stages were associated with an increase in 

cerebral lactate however no change in cerebral ATP (Hindfelt et al., 1977). 

In summary, an increase in cerebral lactate does not reflect a decrease in high-energy phosphates in liver 

disease/failure. Evidence to date depicts brain energy impairment is secondary to ammonia metabolism and seems 

to occur in association with severe HE. 
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CEREBRAL LACTATE METABOLISM 

An increase in extracellular lactate, measured using cerebral microdialysis, is observed in different animal models of 

ALF as well as patients with ALF (Rose et al., 2007 and Tofteng and Larsen, 2002). An increase in extracellular lactate 

is a result of either (i) over-production and/or over-release of lactate from cells or (ii) a decrease of lactate uptake 

into cells. Following the ANLSH which states neurons are better equipped than astrocytes in transporting (contain 

MCT2; higher affinity) and utilizing (contain LDH1; higher affinity) lactate as an energy source, an increase in 

extracellular lactate may reflect a decrease in neuronal lactate uptake/utilization, leading to neuronal dysfunction 

and encephalopathy. ALF pigs treated with albumin dialysis (MARS) demonstrated a decrease in extracellular lactate 

but LDH activity was unaffected and remained high compared to sham (Rose et al., 2007). This suggests attenuation 

in extracellular lactate is not due to decreased LDH activity. This implies a decrease of lactate from the extracellular 

space may be due to increased utilization of lactate by neurons. This would lead to well-fuelled, healthy functional 

neurons possibly reflected with attenuation of ICP (Rose et al., 2007). Increased neuronal utilization of lactate could 

occur as a result of lowering brain ammonia, which was also achieved following MARS treatment. The role of 

ammonia in neuronal and astrocytic lactate metabolism needs to be clarified and therefore future experiments are 

warranted. 

EFFECTS OF INCREASED BRAIN LACTATE 

Elevated levels of brain lactate can lead to lactic acidosis and subsequently a drop in pH. Acidosis can be detrimental 

to cellular function having a negative impact on metabolism (Kaila and Ransom, 1998). Furthermore, lactic acidosis 

has demonstrated to cause astrocytes to swell in vitro ( Ringel et al., 2006 and Staub et al., 1990) and knowing 

acidosis alone can induce astrocyte swelling (Kempski et al., 1988) there is evidence that specific lactic acid swelling-

induced properties exist. This includes the accumulation of intracellular lactate inside the astrocyte and rendering 

the cytoplasm hypertonic (Staub et al., 1990). A change in pH influences lactic acid levels and lactic acid levels affect 

pH. Additionally, ammonia influences pH and the ratio NH3/NH4+ is dependent upon pH ( Rose et al., 

2005 and Cooper and Plum, 1987). The relationships between and dependencies of pH, ammonia and lactate (lactic 

acid) are complex and remain unresolved in the pathogenesis of HE. Whether an increase in cerebral lactate 

dependently or independently of ammonia leads to astrocyte swelling and/or acidosis remains to be determined. 

Andersson et al. (2009) have suggested the neurotoxic effects of ammonia vs lactate on astroglial dysfunction are 

different but this has yet to be confirmed in vivo. 

In summary, increased brain lactate is observed in both patients and experimental animals with ALF in association 

with increased ICP. Increased brain lactate is also observed in CLF in both patients with overt signs of HE and 

animals with ammonia-precipitated severe encephalopathy. This suggests an increase in brain lactate occurs in 

association with the progression and severity of HE. An increase in cerebral lactate may arise due to blood-borne 

derived lactate (hyperlactataemia), increased glycolysis and/or energy impairment and increased lactate 

production/release or decreased lactate utilization/uptake (energy deprived neurons). It is inconclusive whether 

one of these pathophysiological mechanisms alone or all three are implicated in the development of HE. Finally an 

increase in cerebral lactate may not only be a consequence (marker) but also a cause in the pathogenesis of HE (Fig. 

2). 
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Fig. 2. Schematic summary describing the possible causes of increased brain lactate during liver failure and its role 

in the pathogenesis of hepatic encephalopathy. 
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