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ABSTRACT 

Encephalopathy, brain edema and intracranial hypertension are neurological complications responsible for 

substantial morbidity/mortality in patients with acute liver failure (ALF), where, aside from liver transplantation, 

there is currently a paucity of effective therapies. Mirroring its cerebro-protective effects in other clinical conditions, 

the induction of mild hypothermia may provide a potential therapeutic approach to the management of ALF. A solid 

mechanistic rationale for the use of mild hypothermia is provided by clinical and experimental studies showing its 

beneficial effects in relation to many of the key factors that determine the development of brain edema and 

intracranial hypertension in ALF, namely the delivery of ammonia to the brain, the disturbances of brain organic 

osmolytes and brain extracellular amino acids, cerebro-vascular haemodynamics, brain glucose metabolism, 

inflammation, subclinical seizure activity and alterations of gene expression. Initial uncontrolled clinical studies of 

mild hypothermia in patients with ALF suggest that it is an effective, feasible and safe approach. Randomized 

controlled clinical trials are now needed to adequately assess its efficacy, safety, clinical impact on global outcomes 

and to provide the guidelines for its use in ALF. 
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INTRODUCTION 

Hepatic encephalopathy and brain edema leading to intracranial hypertension are two major complications in 

patients with acute liver failure (ALF). Whereas the former defines the syndrome of ALF, the development of high 

intracranial pressure (ICP) is associated with high mortality [1]. The current view embraces both entities as parts of 

the same spectrum of alterations, and recognizes central pathophysiologic roles for ammonia and astrocyte swelling 

(Fig. 1) [2]. Risk factors for developing intracranial hypertension and brain herniation include a short interval 

between the onset of jaundice and brain dysfunction, worsening of encephalopathy, and arterial ammonia 

concentrations >150 mM [3] and [4]. 
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Fig. 1. Electron micrograph of a section of cerebral cortex from a patient who died with acute liver failure. 

Perivascular astrocytes (A) are markedly swollen and vacuolar. Endoplasmic reticulum is dilated (arrow) 

and mitochondria (M) are also swollen (original magnification ×6000). From Kato et al. [168], with 

permission. 

Accumulating evidence suggests that mild hypothermia (32–35 °C) can effectively treat the neurological 

complications of ALF. In contrast to other alternatives, its ease of application and low cost opens this therapy to 

hospitals throughout the world, many of which do not benefit from the liver transplantation option. At a time when 

mild hypothermia is increasingly being used in ALF patients in uncontrolled studies, this review summarizes the 

rationale that supports its use and calls for the need for controlled clinical trials. In the studies reviewed here, 

hypothermia was induced by cooling the whole body, as selective brain cooling is difficult in adults [5]. 

USE OF HYPOTHERMIA AS A BRAIN-PROTECTANT IN NEUROLOGICAL AND SYSTEMIC DISORDERS 

Current clinical use of hypothermia 

The modern clinical use of hypothermia commenced in 1950, when Bigelow demonstrated its neuro-protective 

properties during cardiac surgery [6] and [7]. This hallmark discovery allowed the performance of open-heart 

surgical procedures without the neurological sequellae of brain ischemia, and prompted the investigation of 

hypothermia in other conditions. In addition to cardiac surgery, hypothermia is now used during some neurosurgical 

procedures, mainly those involving aneurysms [8]. 

Cardiac arrest and traumatic brain injury are two conditions, where hypothermia is also used. The American Heart 

Association includes hypothermia in the treatment of unconscious adult patients with spontaneous circulation after 

out-of-hospital cardiac arrest [9], based on two recent randomized controlled trials [10] and [11]. The utilization of 

hypothermia in traumatic brain injury is controversial [12] and [13], despite promising experimental studies [14], 

[15], [16] and [17]. Beneficial effects were found in single-center clinical trials [18], [19] and [20], but a recent multi-

center study failed to show any benefits in survival or neurological outcome [21]. Intercenter differences, however, 

could have influenced the results [22]. Despite the controversy, hypothermia is often used in these patients [8], as its 

efficacy to reduce ICP is well established [18], [20], [21], [23] and [24]. Hypothermia has also been clinically used in 

acute cerebrovascular accidents [25], [26], [27], [28] and [29] or subarachnoid haemorrhages [30], but its benefit is 

unclear as most studies are uncontrolled. 
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Mechanisms of action of hypothermia in systemic disorders 

A brief examination of the mechanisms of hypothermia in systemic disorders may help to understand its benefit in 

ALF. 

The brain needs a constant supply of glucose and oxygen. In general, the activities of brain energy-producing 

pathways decrease 2- to 4-fold by a 10 °C decrease of temperature [31]. The reduction of energy demands during 

low energy supply was the initial rationale for using hypothermia [6] and [32]. Accordingly, induction of 

hypothermia during brain ischemia decreases the histological damage in several experimental models [15], [33], 

[34] and [35]. In contrast to anaesthetics, which only decrease brain energy requirements associated with 

electrophysiological activity [36] and [37], hypothermia decreases these requirements even during 

electroencephalographic silence, suggesting that it affects energy processes associated with both basic cellular 

functions and neurotransmission [38]. 

The reduction of brain energy demand during ischemia is not the sole mechanism of action of hypothermia. Delayed 

induction of hypothermia – after the ischemic or traumatic insult – provided brain protection in various 

experimental models [16], [35], [39], [40] and [41]. Reductions of only 2–4 °C, which produce relatively small 

decreases of brain metabolism, also have protective effects. The protection afforded by similar suppressions of brain 

metabolism using anaesthetic agents, in contrast, is less clear [42]. Finally, hypothermia can be effective despite a 

concomitant depletion of brain energy stores or accumulation of lactate [15] and [43]. These observations suggest 

that hypothermia affects other steps in addition to the disturbance of energy metabolism. 

The alteration of cellular ionic homeostasis plays a major role in brain ischemia and neurotrauma. Due to energy 

failure, the energy-dependent membrane ionic pumps, the voltage-dependent ion channels and others become 

progressively altered, and result in disturbance of ionic homeostasis, which ultimately leads to cell swelling, 

activation of proteolysis, lipid degradation, mitochondrial dysfunction and free radical generation. A release of 

excitatory neurotransmitters worsens further this scenario, e.g. via the influx of sodium and/or calcium after the 

binding of glutamate to NMDA receptors. Hypothermia may influence several steps of this cascade of events. For 

example, it may have a ‘membrane-stabilizing’ effect, improving the altered permeability to ions [44]. Hypothermia 

also prevents the extracellular increase of brain excitatory neurotransmitters in brain ischemia [45], [46], [47], [48], 

[49], [50] and [51] and neurotrauma [20] and [52]. The extracellular levels of glutamate correlate with the formation 

of free radicals [52] and [53], which can influence signalling pathways or cause direct damage of cellular 

components. Importantly, hypothermia prevents the elevation of hydroxyl radical-derived compounds in the brain of 

rats following cerebral ischemia or traumatic brain injury [52] and [54], suggesting another potential effect. 

Apoptosis and inflammation are also potential targets of hypothermia. Hypothermia may decrease the number of 

apoptotic cells by the modulation of apoptotic pathways, such as the release of cytochrome-C or the activation of 

caspases [55], [56], [57], [58], [59] and [60]. Hypothermia may also reduce the infiltration of brain tissue by 

polymorphonuclear cells [60], [61], [62] and [63], as well as the production of leukotrienes [64], nitric oxide [65], 

[66], [67] and [68] and pro-inflammatory cytokines [69]. Lower concentrations of IL-1β in cerebrospinal fluid [20] 

and IL-6 in internal jugular vein [70] have been noted in neurotrauma patients treated with hypothermia. Finally, 

hypothermia ameliorates the alteration of blood–brain barrier permeability in animal models of brain ischemia-

reperfusion and traumatic brain injury [71], [72], [73] and [74]. 

These actions of hypothermia may attenuate brain edema and intracranial hypertension. In addition, the rapid 

decrease of ICP-induced by hypothermia [18], [20], [21], [23] and [24] suggests that the reduction of cerebral blood 

flow (CBF) and volume may account to a large part for the effect of hypothermia on ICP. The reduction of ICP has, in 

turn, beneficial effects on the preservation of brain tissue perfusion and blood–brain barrier integrity. 
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MECHANISMS RESPONSIBLE FOR THE PROTECTIVE EFFECT OF MILD HYPOTHERMIA IN ALF 

The pathophysiology of brain edema and intracranial hypertension in ALF differs from the previous disorders. Mild 

hypothermia, however, is effective for preventing the neurological complications of ALF in experimental studies [75], 

[76], [77] and [78]. The effects of hypothermia on the major factors considered to determine brain edema and 

intracranial hypertension in ALF have been the focus of both clinical and experimental studies (summarized in Table 

1). 

Table 1. Potential mechanisms of action of hypothermia for preventing brain edema and intracranial hypertension in 

ALF 

Physiological target Potential actions References 

Ammonia 

↓ Brain concentration of ammonia [79] 

↓ Arterial concentration of ammonia [80] and [81] 

↓ Production of ammonia by intestinal bacteria [83] 

↓ Renal release of ammonia to the blood [85] 

↓ Proteolysis [86] 

Brain osmolarity 

Prevention of brain lactate and alanine accumulation [96] 

Prevention of changes of brain organic solutes [97] 

Brain extracellular space 

↓ Accumulation of glutamate [76] 

↓ Of glutamate-induced astrocyte swelling [107] 

↓ Accumulation of lactate [77] 

Cerebro-vascular 

haemodynamics 

Restoration of cerebro-vascular autoregulation [119] 

↓ Of cerebral blood flow and cerebral uptake of ammonia [80] and [81] 

Prevention of cerebral hyperemia [78] and [120] 

Brain glucose metabolism 

↓ cerebral metabolic rate of glucose and oxygen [80] and [81] 

Amelioration of increased de novo synthesis of lactate and 

alanine 
[96] 

Inflammation 
↓ Of arterial concentration and brain production of 

cytokines 
[81] and [120] 

Subclinical seizure activity ↓ Seizure activity (in experimental models of epilepsy) [133] and [134] 
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Ammonia delivery to the brain and Arterial ammonia concentrations 

Exposure of the brain to high levels of ammonia is a consistent feature in ALF, where the brain-to-blood 

concentration ratio of ammonia (normal 2:1) may be as high as 8:1 [2]. The reduction of brain ammonia could be a 

major mechanism of hypothermia in ALF. Forty years ago, Schenker and Warren tested the toxicity of ammonium 

chloride administered intravenously, and found that the LD50 for normothermic (38.8 °C) mice was almost double 

than for hypothermic (27.9 °C) mice [79]. The increase of brain ammonia was less in hypothermic mice as early as 

20 s after injection, suggesting that decreased brain ammonia uptake was due to decreased CBF. 

Mild hypothermia decreases the arterial ammonia concentrations in patients with ALF [80] and [81] or urea-cycle 

defects [82]. In addition to the effect on CBF, therefore, hypothermia could reduce ammonia delivery to the brain by 

reducing its arterial concentration. Hypothermia (30 °C) decreases bacterial ammonia production in fecal samples 

and the levels of ammonia in the inferior mesenteric vein of dogs, with the capacity of liver to detoxify ammonia 

being preserved [83] and [84]. Additional mechanisms include the reduction of ammonia release by the kidney [85] 

and of proteolysis [86]. Although arterial ammonia levels were not reduced by hypothermia in some experimental 

rat models [75], [76] and [78], the prior observations point to reduction of ammonemia as an operative mechanism 

of hypothermia in ALF. 

Brain osmotic disturbances 

The brain in ALF is characterized by a profound osmotic alteration, similar to that observed in pure 

hyperammonemic models [87]. Since the brain cannot synthesize urea, detoxification of ammonia relies almost 

entirely on glutamine synthetase localized in astrocytes [88]. An increase of brain glutamine is a major feature in 

hyperammonemia or ALF [87], [89], [90], [91], [92], [93] and [94], and inhibition of glutamine synthesis attenuates 

ammonia-induced brain edema [87] and [89]. The osmotic effects of glutamine may partly explain the selective 

astrocytic swelling in ALF. 

The prevention of brain edema by hypothermia in hyperammonemia or ALF, however, is not accompanied by 

reduction of brain glutamine [78] and [92], similar to findings with indomethacin [95]. These observations challenge 

the notion of glutamine as the major determinant of brain edema in ALF. Glutamine, however, is not the only organic 

osmolyte or solute altered in ALF; increases of glucose, alanine and lactate and decreases of glutamate, aspartate, 

myo-inositol and taurine have also been noted [90], [91], [92] and [93]. Increases of brain lactate and alanine 

correlate better than glutamine with the grade of encephalopathy and brain edema in hepatic devascularized rats 

[91] and [92]. In this model, mild hypothermia is highly effective in preventing increases of alanine and lactate, and 

alterations of glutamate, aspartate, myo-inositol and taurine [96] and [97] (Table 2). Hypothermia, therefore, 

appears to improve the brain osmotic disturbance of ALF. 
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Table 2. Effect of mild hypothermia (35 °C) on the concentrations of organic osmolytes in the brain of rats with acute 

liver failure (ALF) due to hepatic devascularization 

 
Sham-operated controls ALF normothermic (coma stage) ALF hypothermic 

 
n (9) n (9) n (10) 

Glutamine 5.20±0.31 23.03±1.61* 26.12±2.40* 

myo-inositol 6.32±0.48 3.66±0.30* 5.27±0.44*,† 

Taurine 5.17±0.31 3.45±0.27* 5.29±0.51† 

Modified from Zwingmann et al. [97]. Concentrations of metabolites were calculated by integration of the 

respective peaks in 1H-NMR spectra of brain extracts obtained from sham-operated control rats, rats with 

ALF maintained at 37 °C at coma stages, and rats with ALF maintained at 35 °C (time-matched to ALF-37 

coma). Values (mean±SD) are given in μmol/g wet weight. Number of animal indicated in parenthesis. * 

Significantly different from controls (P< 0.05, two-way ANOVA and post hoc Tukey test). †Significantly 

different between hypothermic and normothermic ALF rats (P< 0.05, two-way ANOVA and post hoc Tukey 

test). 

Extracellular brain concentrations of amino acids 

The composition of the brain extracellular fluid is altered in ALF. Using brain microdialysis in rats with ALF, we 

observed extracellular increases of 11 out of 13 amino acids at coma stages in normothermic animals. These 

increases included neurotransmitter amino acids, organic osmolytes, branched chain and aromatic amino acids (Fig. 

2, A–D). Increases of 6 of the 11 (55%) amino acids were attenuated (Ala, Phe) or normalized (Glu, Asp, Gly, Trp) in 

rats maintained hypothermic (∼35 °C). Some increases, however, were unchanged (Gln, Tau, Val, Tyr) or even 

enhanced (Leu). These observations may provide new insights into the pathogenesis of brain edema in ALF. 

 

Fig. 2. Extracellular brain concentrations of amino acids in sham-operated rats, rats with ALF maintained at 

normothermia (ALF-37) and rats with ALF maintained mildly hypothermic (35 °C, ALF-35) (n=6/group). 

Panels show neurotransmitter amino acids (A), amino acids with osmotic properties (B), branched chain (C) 

and aromatic (D) amino acids. An end-to-side portacaval shunt or sham operation were performed in male 

http://www.sciencedirect.com/science/article/pii/S0168827805006173
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Sprague-Dawley rats followed 24 h later by stereotaxic implantation of a guide cannula in cerebral cortex. At 

48 h, hepatic artery ligation or sham operation were performed to induce liver failure. Extracellular brain 

concentrations of amino acids (μM) were measured by HPLC with fluorescence detection in brain 

microdialysate from ALF-37 rats at coma stages of encephalopathy or at parallel time-points in the other 

groups, as previously described [76]. Bars represent mean±SEM. Abbreviations: Glu, glutamate; Asp, 

aspartate; Gly, glycine; GABA, γ-amino butyric acid; Gln, glutamine; Ala, alanine; Tau, taurine; Leu, leucine; 

Ile, isoleucine; Val, valine; Phe, phenylalanine; Trp, tryptophan; Tyr, tyrosine. *P<0.05 vs. Sham, **P<0.01 vs. 

Sham, ***P< 0.001 vs. Sham. #P<0.05 vs. ALF-37, ##P<0.01 vs. ALF-37. 

Increased extracellular brain glutamate is a common finding in ALF [98], [99], [100] and [101]. Potential 

explanations include impairment of its clearance [102] and [103] and deregulation of calcium-dependent glutamate 

release from astrocytes [104]. Because increased extracellular glutamate causes astrocyte swelling in vitro 

[105] and [106], the prevention of the increase of extracellular glutamate by hypothermia may reduce brain edema 

in ALF [76]. Downstream steps may also be affected, as hypothermia (24 °C) resulted in a 74% reduction of 

glutamate-induced swelling in cultured astrocytes, an effect associated with decreased astrocytic uptake of K+[107]. 

The binding of glutamate to NMDA receptors leads to the production of nitric oxide, which may be involved in the 

pathogenesis of brain edema in ALF [108] and [109]. Interestingly, the increase of glycine, a positive allosteric 

modulator of NMDA receptors, was also prevented by hypothermia (Fig. 2A). Increases of aromatic amino acids, 

precursors of monoamine neurotransmitters [110], were attenuated by hypothermia (Fig. 2D). The lack of effect of 

hypothermia on branched chain amino acids (Fig. 2C), in contrast, diminishes their potential relevance to the 

development of brain edema in ALF. 

Cerebrovascular haemodynamics 

Loss of cerebrovascular autoregulation and development of cerebral hyperemia, described in patients with advanced 

ALF [111], [112], [113], [114] and [115], are relevant to the pathogenesis of brain edema and intracranial 

hypertension [116]. Loss of cerebrovascular autoregulation may cause luxury perfusion or hypoxia during increases 

or decreases of systemic arterial pressure, respectively. Cerebral hyperemia is associated with brain edema and 

mortality in ALF [113] and [117]. The mechanisms by which cerebral hyperemia enhances brain edema and ICP in 

ALF have been reviewed by Larsen and Wendon [116]. Briefly, small increases of blood volume in the non-compliant 

brain cause increases of ICP, which may result in brain hypoxia. Cerebral hyperemia may also increase hydrostatic 

pressure in brain capillaries, and worsen brain osmotic disturbances by increasing ammonia delivery; both events 

would favour the movement of water into the brain. 

Both cerebral hyperemia and loss of autoregulation are corrected by hypothermia. In the portacaval-shunted rat 

receiving an ammonia infusion, where CBF and brain edema are intimately connected [95] and [118], the reduction 

of brain edema by hypothermia was accompanied by the prevention of cerebral hyperemia [78]. Similarly, studies in 

patients with ALF and refractory intracranial hypertension showed that the rapid reduction of ICP after starting mild 

hypothermia was paralleled by decreases of CBF and cerebral uptake of ammonia [80] and [81]. Mild hypothermia 

also restored the cerebrovascular autoregulation and the normal vasodilatory response of brain vasculature to 

carbon dioxide [119], and it was highly effective in preventing the increases of CBF that commonly occur during liver 

transplantation surgery for ALF [120]. Modulation of CBF, therefore, seems a major protective mechanism of 

hypothermia in ALF. 

Brain glucose metabolism 

Brain glucose metabolism is disturbed in ALF. Increased brain lactate is common in animal models [77], [93], 

[94] and [121], and peaks of lactate in brain microdialysate preceding surges of ICP have been described in patients 

with ALF [98]. Increased brain lactate correlated with worsening encephalopathy and intracranial hypertension in 

experimental models [92] and [121], and it was due to increased de novo synthesis from circulating glucose. This 

observation suggests decreased oxidation of pyruvate [92], in accordance with inhibition of alpha-ketoglutarate 

dehydrogenase and stimulation of the glycolytic enzyme phosphofructokinase by ammonia in vitro [122] and [123]. 
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The effects of hypothermia (32–33 °C) on brain glucose metabolism were studied by Jalan et al. in patients with ALF 

and uncontrolled ICP [80]. These patients presented low cerebral metabolic rates for oxygen and glucose at baseline, 

but hypothermia reduced such rates by 75 and >90%, respectively, suggesting overall improvement of glucose 

oxidation. In support of this, mild hypothermia (35 °C) prevented the increase of lactate in the cerebrospinal fluid of 

ALF rats [77], as well as other alterations of brain glucose metabolism—studied using [1-13C]glucose and 1H–13C-

NMR spectroscopy [96] (Fig. 3). Hepatic devascularization in normothermic animals increased the brain total (↑ 

170%) and 13C-labeled (↑ 447%) lactate at coma stages compared to sham-operated controls. Induction of 

hypothermia attenuated (↑ 131%) and completely prevented the increases of total and 13C-labeled lactate, 

respectively. Similar changes were observed for alanine. These effects of hypothermia, therefore, reside in its ability 

to prevent the de novo synthesis of these compounds in the brain. 

 

Fig. 3. Effects of hypothermia on 13C-NMR spectra of brain extracts from rats with ALF. Sham-operated rats 

were compared with rats with ALF due to hepatic devascularization maintained at 37 °C (ALF-37) or 35 °C 

(ALF-35). Hepatic devascularization was achieved by constructing a portacaval anastomosis followed 24 h 

later by hepatic artery ligation. [1-13C] Glucose (200 mg/kg ip, Cambridge Isotope Laboratories) was 

administered 15 min before decapitation. The figure shows the distribution of the label from the 1st carbon 

position of glucose among diverse glucose-derived metabolites. Peak assigments: Glu, glutamate; Gln, 

glutamine; Lac, lactate; Ala, alanine. [Adapted from Chatauret et al. [96]]. 

 

Inflammation 

Clinical and experimental evidence links inflammation to the development of neurological complications in ALF 

[124], [125] and [126]. Correlations between decreases of cytokines, such as interleukin-1b and interleukin-6, and a 
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decrease of ICP and CBF have been reported in patients with ALF [127] and [128]. Cytokines could influence CBF and 

may directly induce astrocyte swelling [129] and [130]. 

As in ischemic and traumatic brain injury, modulation of inflammation could be a mechanism of action of 

hypothermia in ALF. Arterial levels and the brain efflux of IL-1b were lower in patients listed for liver 

transplantation in whom hypothermia was induced [120]. The prevention of cerebral hyperemia and ICP surges 

during liver transplantation was associated with attenuation of the increases of circulating IL-1b, present in patients 

operated at normothermia [120]. Similarly, the reduction of ICP by mild hypothermia in ALF patients with 

uncontrolled intracranial hypertension was accompanied by a reduction of both the arterial concentrations and the 

brain flux of TNF-alpha, IL-1b and IL-6 [81]. 

Subclinical-seizure activity 

Prevention of subclinical seizure activity by a prophylactic infusion of phenytoin may be beneficial for reducing brain 

edema in ALF [131], although a recent clinical trial noted no benefit [132]. Seizures can aggravate brain edema and 

intracranial hypertension by increasing brain metabolism, but they can also be the result of ICP surges. Hypothermia 

reduces seizure activity in experimental models of epilepsy [133] and [134], and could provide a potential 

mechanism in ALF. 

Gene expression 

The expression of genes involved in basic cellular processes in the brain is altered in ALF. Many of these altered 

genes are predominantly astrocytic, such as the glutamate transporter GLT-1, glial fibrillary acidic protein, and the 

astrocytic/endothelial cell glucose transporter GLUT-1 [135], [136] and [137]. Other genes include the peripheral-

type benzodiazepine receptor, Cu, Zn-superoxide dismutase and heme oxygenase-1 [138], [139] and [140]. Mild 

hypothermia in rats with experimental ALF corrects the expression of many of these genes [141], but it remains to 

be elucidated which of these genes are involved in hypothermia's preventive effect on brain edema in ALF. 

THERAPEUTIC IMPLICATIONS 

Elevation of the head of the bed, hyperventilation, administration of mannitol±fluid removal with renal replacement 

methods, and the administration of barbiturates constitute the standard treatments for episodes of high ICP in ALF 

[142]. Unfortunately, these treatments are not completely effective and may be contraindicated. Beneficial effects of 

N-acetylcysteine [143] and [144], propofol [145], phenytoin [131], indomethacin [146], or hypertonic saline [147] 

have been reported in single-center studies, and (bio)-artificial liver assist devices may also decrease ICP 

[148] and [149]. The efficacy of these interventions, however, still needs to be fully validated, and some are 

restricted to a few specialized centres. These considerations underline the need to find more effective and easier-to-

use therapies. 

Induction of mild hypothermia has the potential to be one such therapy, but its clinical use in ALF has been limited so 

far to small, uncontrolled studies [80], [120] and [150]. Although these studies were performed in two conditions of 

difficult management and high mortality, beneficial effects of hypothermia were observed. Firstly, in the episode of 

intracranial hypertension unresponsive to conventional therapies. Seven patients with ALF presenting such episodes 

were treated with mild hypothermia [80], and striking reductions of ICP were observed in all cases. In 3 patients 

who were not candidates for liver transplantation, rewarming was associated with a rapid rise of ICP and death 

shortly thereafter. The remaining 4 patients, in whom mild hypothermia was maintained until a donor organ was 

available and during transplantation surgery, all survived to liver transplantation. These encouraging results have 

been recently confirmed by the same group in a new series of 14 similar patients (Fig. 4) [81]. 
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Fig. 4. Effects of hypothermia (32 °C) on intracranial pressure in 14 patients with ALF and uncontrolled 

intracranial hypertension. Arrows indicate additional treatment with mannitol in 5 of the 14 patients. 

[Adapted from Jalan et al. [81]]. 

The second clinical condition where hypothermia has been explored was the surges of ICP during emergency liver 

transplantation, which are common during the dissection and reperfusion phases of the operation [151] and [152]. 

In a new study, the 11 patients with ALF transplanted under normothermic conditions presented significant 

increases of ICP during surgery, many of them requiring treatment with thiopentone [120]. In contrast, no increase 

of ICP was observed in the patients in whom mild hypothermia was maintained during surgery. 

An aspect that deserves to be highlighted is the effect of hypothermia on systemic haemodynamics. Due to the loss of 

cerebrovascular autoregulation, the use of vasopressors in ALF can lead to increases of CBF [153] and [154] and may 

worsen intracranial hypertension. In the prior clinical studies, mild hypothermia improved the hyperdynamic 

circulation and hypotension characteristics of ALF, reflected by a reduced requirement of vasopressor medication 

[80] and [81]. Because it also restores cerebrovascular autoregulation [119], hypothermia may facilitate the difficult 

haemodynamic management of these patients. 

These beneficial effects led to evaluate a prophylactic use of mild hypothermia in patients with ALF at risk for 

developing increased ICP [142]. Why, then, is the clinical use of mild hypothermia in ALF restricted to isolated 

studies in a few centres? 

Adverse effects and Unresolved issues of mild hypothermia in ALF 

Potential adverse effects of mild hypothermia (reviewed previously in [155] and [156]) include shivering, cardiac 

complications (arrhythmias, myocardial ischemia), alterations of fluid and electrolyte homeostasis, metabolic 

alterations (hyperglycemia, hyperlactatemia), infections (mainly respiratory) and coagulopathy. In general, the risk 

of complications increases with the duration and degree of hypothermia, mainly with core temperatures below 

32 °C. In ALF, however, small decreases of temperature may be effective [157]. Individualized ‘tailoring’ of the 

therapy, thus, could avoid unnecessary complications. Anaesthetic management during the induction of hypothermia 

and adequate rewarming are also key factors to avoid complications and to determine the success of the therapy. 

The potential increase of infections and coagulopathy probably explains the reluctance to use mild hypothermia in 

ALF. A higher rate of infection and worsening of coagulation have been reported in some clinical studies of 

hypothermia in neurotrauma [158], [159] and [160]. These complications, however, have not constituted a major 

problem in the majority of randomized studies [19], [20], [24] and [161], have been absent so far in ALF patients 

http://www.sciencedirect.com/science/article/pii/S0168827805006173
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treated with hypothermia [80], [81], [119] and [120] and, importantly, they can be prevented and managed. New 

therapies, such as recombinant factor VIIa [162] or granulocyte colony-stimulating factor [163] could also be helpful. 

In ALF, the effect of hypothermia on the diseased liver is a matter of interest. Studies suggest that hypothermia 

reduces liver injury [164], [165] and [166], but it may impair liver regeneration [167]. Further research will be 

needed to clarify these issues. 

In summary, a large body of experimental evidence and initial clinical studies suggest that mild hypothermia is 

effective in the treatment of the neurological complications of ALF. Due to the multi-systemic nature of ALF, 

therapies aimed at specific complications are unlikely to have a major impact on final outcome. Although the 

multiple neural mechanisms and systemic effects of hypothermia advise caution, they also imply its potential to 

significantly influence the natural history of ALF. As for any therapy, the balance between adverse and beneficial 

effects needs to be evaluated in each subgroup of patients that may benefit from it. Randomized controlled clinical 

trials are now required to confirm the safety and efficacy of mild hypothermia in ALF, to critically assess its effects 

on global outcomes, and to provide adequate guidelines for its use. 
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