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RÉSUMÉ 

  

Le travail présenté dans cette thèse porte sur le rôle du cortex prémoteur dorsal 

(PMd) au sujet de la prise de décision (sélection d’une action parmis nombreux choix) et 

l'orientation visuelle des mouvements du bras. L’ouvrage décrit des expériences 

électrophysiologiques chez le singe éveillé (Macaca mulatta) permettant d’adresser une 

fraction importante des prédictions proposées par l'hypothèse des affordances 

concurrentes (Cisek, 2006; Cisek, 2007a). Cette hypothèse suggère que le choix de toute 

action est l’issue d'une concurrence entre les représentations internes des exigences et des 

atouts de chacune des options présentées (affordances; Gibson, 1979).  

Un intérêt particulier est donné au traitement de l'information spatiale et la valeur 

des options (expected value, EV)  dans la prise de décisions. La première étude (article 1) 

explore la façon dont PMd reflète ces deux paramètres dans la période délai ainsi que de 

leur intéraction. La deuxième étude (article 2) explore le mécanisme de décision de façon 

plus détaillée et étend les résultats au cortex prémoteur ventral (PMv). Cette étude porte 

également sur la représentation spatiale et l’EV dans une perspective d'apprentissage. 

Dans un environnement nouveau les paramètres spatiaux des actions semblent être 

présents en tout temps dans PMd, malgré que la représentation de l’EV apparaît 

uniquement lorsque les animaux commencent à prendre des décisions éclairées au sujet 

de la valeur des options disponibles. La troisième étude (article 3) explore la façon dont 

PMd est impliqué aux “changements d'esprit“ dans un procès de décision. Cette étude 

décrit comment la sélection d’une action est mise à jour à la suite d'une instruction de 

mouvement (GO signal).  
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Les résultats principaux des études sont reproduits par un modèle computationnel 

(Cisek, 2006) suggérant que la prise de décision entre plusieurs actions alternatives peux 

se faire par voie d’un mécanisme de concurrence (biased competition) qui aurait lieu dans 

la même région qui spécifie les actions. 

  

  

Mots-clés: décisions, biais, concurrence, affordances, sélection d'action, spécification des 

actions, cortex prémoteur, PMd, PMv, EV, valeur relative, valeur absolue, distance, 

paramètres spatiaux, apprentissage, électrophysiologie, singe. 
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ABSTRACT 

 

This thesis examines the role of the dorsal premotor cortex (PMd) in the process 

of decision making (action selection) and visual guidance of arm movements. The work 

describes electrophysiological experiments conducted in awake monkeys (Macaca 

mulatta) and tests a number of important predictions suggested by the affordance 

competition hypothesis (Cisek, 2006; Cisek, 2007a). This hypothesis suggests that 

decisions can be viewed as the result of a competition between internal representations of 

conflicting demands and opportunities for actions or affordances (Gibson, 1979).  

Specific interest is given to the interaction between spatial information and 

expected value (EV) in a proposed affordance competition mechanism for action 

selection. The first study presented (article 1) explores how EV is represented during the 

delay period in PMd. This study also describes how this area reflects the spatial metrics 

of the options and examines the interaction between value and spatial information. The 

second study (article 2) explores the mechanism of action selection in more detail and 

extends the results to ventral premotor cortex (PMv). This study also addresses the nature 

of value and spatial representations from a learning perspective. In a novel environment 

the spatial metrics of the actions seem to be invariably present in PMd, meanwhile EV 

representations appear only once the animals make behaviorally informed decisions about 

the value of the available options. The third study (article 3) explores how PMd is 

involved in “changes of mind” in which action selection is updated following a 

movement instruction (GO signal).  
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The major findings in all these studies are reproduced by a computational model 

(Cisek, 2006) suggesting that decisions between actions can be made through a biased 

competition process that takes place in the same region that specifies the actions.  

 

 

Keywords: decisions, bias, competition, affordances, action-selection, action-

specification, premotor cortex, PMd, PMv, EV, relative value, absolute value, distance, 

spatial parameters, learning, electrophysiology, monkey. 
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I. PREAMBLE  

 

The organization of this thesis is as follows. A general philosophical introduction 

lays out the main concepts that will be treated in further detail through the entire work. 

The introduction is followed by an historical perspective section on the anatomy of the 

main structure studied here, the dorsal premotor cortex (PMd). Subsequently, a 

physiology review section recapitulates the anatomy and discusses in detail the 

fundamental concepts presented in the general introduction. This section is split in two 

parts. The first part introduces the function of PMd according to a “cognitive view” and 

describes its advantages and drawbacks. The second part is more general and describes 

alternatives to the cognitive view. This part introduces the foundations of the affordance 

competition hypothesis.  

The affordance competition hypothesis is central in this dissertation and its main 

concepts are treated in full detail (i.e. a description of fronto-parietal visual processing 

pathways, bias competition concepts, source of bias information and supporting data in 

computational modeling). The general hypothesis makes specific predictions that are 

described after the physiology review section and are tested in three included articles.  

The discussion section consists of several parts. The first part consists in a global 

recapitulation of the predictions and results. The second part addresses the competition 

hypothesis in PMd and basal ganglia (BG). The third part compares relative value 

encoding in PMd with other cortical areas such as the lateral intraparietal cortex (LIP) 

and the frontal eye fields (FEF). A fourth part extends these observations to human 
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studies. The last part revisits two aspects of the competition process: the location and 

timing of the process in basis of observations conducted by different research groups.  

A future perspectives section follows the discussion. This section introduces the 

notion of effort and action cost in the context of potential upcoming studies within the 

frame of the affordance competition hypothesis. A recent debate about the emerging field 

of neuroeconomics is briefly inspected. A conclusion section finalizes the present work.  
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II. INTRODUCTION 

 

1. General philosophical introduction 

 

The work presented in this thesis addresses several important aspects of the 

neurophysiologic process known as decision making. Decision making is a deliberative 

process that results in the commitment to a categorical proposition (Gold and Shadlen, 

2007). It can be seen as motivated procrastination (Cisek et al., 2007) or a situation in 

which one succumbs to the preponderance of one set of influences over another (Bierce, 

1911). However, to favour one option over another or to engage in one action or another 

might be completely different things. We term decisions in a similar fashion whether we 

deal with an abstract process, such as choice of university or career, or whether we 

ponder among two concrete actions, such as braking or accelerating upon the sight of an 

amber light in our drive to work.  

The classical view of decision making (Fodor, 1983; Pylyshyn, 1984) has this 

process belonging to “cognition”, a separate process from sensory motor control. For 

instance, few processes can be as removed from sensory-motor control as playing 

strategy games such as chess. For a chess player, decisions are portrayed best by the time 

commitment of one pondered strategy over another with no obvious link between a 

reported movement and the internal sequences of action-outcomes that the player has in 

mind (Newell and Simon, 1972). The mental process has to be covert if the player wants 

to stand a chance since guessing is a main feature in the game. The view of decision 
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making as entirely abstract (“cognitive process”) is deeply rooted in history, starting from 

classic Greek scholarship (Hicks, 1907).  

Aristotle for instance, argued that the mechanism responsible for purposive 

human behavior was conveyed exclusively by a “nonmaterial substrate” like the human 

soul. This influential idea was not challenged by any alternative view until Descartes 

(Descartes, 1649, 1664) proposed a dual deterministic and cognitive explanation of 

human behavior. In contrast with Aristotle, fully deterministic decisions included very 

elegant and stereotyped sensory-motor reflexes that had a very tangible substrate in the 

human body. Although cognitive behavior was still relegated to a “nonmaterial substrate”, 

the very foundations for empirical research, binding the neural mechanisms linking 

sensation and action, were laid down at this time. Notably, the notion of information 

being transferred from sensory nerves to muscles through basic reflexes flourished with 

20th century physiologists such as Sherrington (Sherrington, 1906).  

The characterization of the primary sensory and motor systems along with recent 

physiological data provided the foundations for novel paradigms in psychology like 

behaviorism (Skinner, 1974). Behaviorists attempted to explain even the more abstract 

process on the basis of essential sensory-motor behaviors and argued that all processes 

(covert or non-covert such as thinking or walking respectively) should have similar 

observational correlates. Supporters of behaviorism proposed to treat physical and 

psychological disorders with qualified experimental methods such as operant-

conditioning (Skinner, 1974).  

In response to the behaviorist view, Lachman and Butterfield proposed a 

“cognitive” alternative to explain processes such as decision making (Lachman et al., 
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1979). The cognitive view relegates decision making, including decisions among actions, 

to an exclusive stage of abstract processing that takes place in a serial information 

processing architecture. This view further suggests a spatial and temporal decoupling of 

the decision process from perception and action. Although the disagreement between 

behaviorism and cognitivism went beyond the scope of the decision making it is 

important to emphasize that this point was particularly crucial. 

The dispute between these two psychology schools continued until the second 

half of the 20th century when it was found that both views could complement each other 

for the treatment of psychological pathologies such as phobias, posttraumatic stress 

disorders and addictions (Hofmann and Smits, 2008; Rachman, 1997; Santrock, 2008). 

Moreover, the interaction of the cognitive and behaviorist points of view led to important 

advances in developmental child psychology (Piaget, 1954).  

However, a certain ambiguity still remains today attending the characterization of 

decision making.  Although the cognitive view might still be popular, from an ecological 

perspective decision making cannot be seen as an entirely abstract process, since the 

majority of living creatures are faced with a world of actions that need both spatial and 

temporal overt behavior.  The point of view that a decision can be made between overt 

actions is an outstanding feature that has evolutionary implications as well. All animals 

display a capacity to decide among actions, whether the decisions are very simple, as it is 

the case in quasi-reflexive local feeding responses observed in primitive organisms like 

flatworms (i.e. Planocera gilchristi, Gruber and Ewer, 1962) or whether the decisions 

involve complex foraging behaviour as it is the case in primates and humans (Bautista et 

al., 2001; Janson, 1998; Kacelnik, 1997; Noser and Byrne, 2007; Tinbergen, 1951; 
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Stevens et al., 2005). Although decisions among actions can vary greatly in complexity it 

is reasonable to believe that they are governed by similar principles that allow 

accumulation of evidence, comparison of the potential options and commitment as more 

abstracts form of decisions (Glimcher, 2003; Gold and Shadlen, 2007). For instance, 

early oculomotor studies of saccade selection have shown that even simple kinds of 

decisions might confer insights into higher cognitive functions (Schall, 2004a). 

Consequently, a main and very general question regards how decisions among actions 

are currently characterized within the existent framework of theoretical, anatomical and 

physiological knowledge.  

Several attempts to address this question have been proposed and lead to the 

current debate in neuroeconomics. Neuroeconomics is an emerging discipline that 

bridges neuroscience and economics and suggest that humans make decisions between 

different options by integrating all relevant factors such as expected gains, potential risks 

and action costs, into a single variable reflecting the subjective value of each offer 

(Friedman, 1953; Simon, 1947, 1983). However, some neuroeconomists go a step further 

in this assumption and postulate that all decisions are made according to classic 

economic-utility postulates for economic value (Padoa-Schioppa, 2011; Von Neumann 

and Morgenstern, 1944). Among other assumptions, economic-utility postulates require 

decisions to be independent of any contextual parameter such as the metrics and cost of 

the actions.  

The economic-utility conjecture appears to be grounded on particular 

neurophysiology studies suggesting the orbitofrontal cortex (OFC) as the neural correlate 

for economic value and economic choice (Padoa-Schioppa and Assad, 2006, 2008). 
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According to this point of view, a decision is made exclusively in abstract terms and is a 

serial process dictated by the OFC, wherefrom the outcome of the decision radiates to all 

other structures. This view is substantiated in the goods-based model (Padoa-Schioppa, 

2011).  

This model has several important caveats as it proposes that decisions are made 

before action costs can be taken into account for instance, and cannot explain human non-

transitive behavior (Güth et al., 1982; Kahneman and Tversky, 1982). Alternatives to this 

view have been proposed (Cisek, 2012).  

In Cisek’s view, decisions among actions can be seen as the consequence of a 

dynamic interaction between perception and action rather than sequestering the decision 

process to an abstract stage like “cognition”. This view proposes that decisions can be 

made through a distributed consensus in which action costs and spatial parameters of the 

action can be taken into account when decisions are made among actions. The 

framework in which the decision process is made is the affordance competition 

hypothesis. This hypothesis suggests that decisions can be viewed as the result of a 

competition between internal representations of conflicting demands and opportunities 

for action, also called affordances (Gibson, 1979). The competition between potential 

actions plays out within reciprocally interconnected areas of the parietofrontal system 

(Matelli and Luppino, 2000) that can represent different aspects of movement (Jones et 

al., 1978; Marconi et al., 2001; Pandya and Kuypers, 1969).  

Sensorimotor areas such as dorsal premotor cortex (PMd) are sensible candidates 

for being causally involved in action selection. For instance, Song et al. (2011) showed 

that reversible inactivation of the superior colliculus (SC), a sensorimotor structure just 
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two synapses away from the motor neurons that move the eye (Basso and Wurtz, 1998), 

could affect saccade target selection in non-human primates. The animals performed in a 

4-target visual search task and after SC inactivation, made fewer saccades to the targets 

in the affected zone. These deficits were not simply motor as they were mostly absent 

when only a single target was presented and inactivation was conducted. In this case the 

animals were still able to saccade to the single target.   

The affordance competition hypothesis also suggest that multiple potential actions 

can be represented simultaneously within a given cortical area as has been indirectly 

shown for the arm system (reach and grasp) and oculomotor system (Baumann et al., 

2009; Cisek and Kalaska, 2005; Glimcher, 2003; McPeek and Keller, 2002; Scherberger 

and Andersen, 2007). For instance, cell population data in PMd suggests that two 

mutually-exclusive potential reaching actions can be simultaneously represented until a 

choice can be made, at which time the activity corresponding to the non-chosen option 

becomes suppressed. This simultaneous specification of multiple potential actions is also 

supported by several behavioral studies of reaching movements made in presence of 

distractors (Song and Nakayama, 2006, 2008; Song et al., 2008; Tipper et al., 1992) and 

lays out the framework for a competition based mechanism for action selection.  

The affordance competition hypothesis further suggests that the competition 

process between the options takes place within the same regions that specify the actions 

(Cisek, 2006, 2007a). This suggestion is in agreement with proposed mechanisms of 

selective attention, in which the selection process also takes place through competition in 

the very sensory areas that process the percepts (Boynton, 2005; Desimone and Duncan, 

1995; Treue, 2001). In both selective attention and affordance competition mechanisms, 
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cells with different percept preferences (stimuli orientation or movement preference, 

respectively) mutually inhibit each other, creating a competition between potential 

actions or percepts. In the affordance competition hypothesis, the competition process is 

gradually resolved throughout the parieto-frontal system as new information is 

incorporated into the process: the bias. The notion of bias arises from the different 

excitatory inputs that the fronto-parietal system receives from diverse cortical and 

subcortical structures that project to it (e.g. prefrontal cortex, PFC and BG) conveying 

particular sets of information (e.g. appetitive, hedonic value) about the options for action. 

These biases become integrated with sensory or motor variables. For instance, LIP 

integrates expected utility, local income, hazard rate and relative subjective desirability 

along with specific spatial parameters of the actions such as saccade probability (Dorris 

and Glimcher, 2004; Janssen and Shadlen, 2005; Platt and Glimcher, 1999; Sugrue et al., 

2004).  Expected utility is an economic concept that represents the betting preferences of 

an individual as a function of the payout, probability of outcome, risk and subjective 

value of the options (i.e. utility of the options). The hazard rate represents the probability 

of an event to happen in time and local income the reward history (actual vs past rewards).  

The mechanism proposed in the affordance competition hypothesis is not 

surprising from the point of view of interactive behavior where decisions among actions 

must take account of the “dynamic” aspects of the environment in which the actions are 

played out. Considering, for instance, the situation in Figure 1A, a predator may be 

initially faced with two potentially useful/attractive pursuit actions, but as soon as the 

chase begins the metrics of the actions and the estimates of their relative value may 

change, as it is the case if one of the targets (zebras) splits in two groups.  Furthermore, 
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decisions between actions are strongly dependent upon their geometrical relationship. For 

example, if an animal seeking escape (zebra in Figure 1B) is faced with two opposite 

routes (large obstacle ahead), the choice has to be all-or-none to a given direction. If the 

escape routes are similar (small obstacle ahead) then the best strategy may consist in 

mixing both options and delay making the choice until the last moment. This implies that 

when choosing to reach between two nearby targets the nervous system can mix their 

neural representation and start moving between them. The observation that decisions 

among actions can be affected by the metrics of the actions is both consistent with human 

psychometric data (Chapman et al., 2010; Favilla, 1997; Ghez et al., 1997) and with a 

number of oculomotor neurophysiology studies (Louie et al., 2011; Schall, 2004a), 

although this particular issue remains a central topic in the present work and will 

therefore be examined in detail.  
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Figure 1. Schematic decision making scenarios during natural behavior. 

A. The environment around the lion provides information on both the spatial metrics and 

relative values of potential pursuit actions (arrows, with value indicated by width). 

During ongoing activity, this information is constantly changing and what was once a 

single action may sometimes split into two (bottom). B. When faced with two opposite 

escape routes (top), the zebra must make an all-or-none decision, but when the escape 

routes are similar (bottom), it may mix them initially and veer toward one or the other in-

flight (adapted from Cisek, 2012). 
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2. The motor role of the central nervous system, a brief historical perspective 

 

From the earliest western medical writings, it was thought that the movement of 

the body was controlled by the brain. In the Edwin Smith Surgical Papyrus originating in 

the Pyramid age (3000 BC) there are a number of descriptions of motor dysfunctions 

after head injury (Breasted, 1930). A literal citation of one of the cases reads as follows 

“the subject walks shuffling with the sole on the side of him having that injury which is 

to the skull”. This contralateral symptom was interpreted as the result of a blow to one 

side of the head causing the brain to impact on the inside of the contralateral skull 

(contrecoups syndrome). Later on, Hippocratic doctors (500 BC) would write more 

extensive treaties on head wounds showing good awareness that head injuries could 

produce contralateral symptoms. However, the primary interest was diagnosis and not the 

study of the underlying anatomy or physiology (Courville, 1946). Aretaeus, a Greek 

physician who practiced in Rome and Alexandria (200 BC), went a step further and 

distinguished paralysis due to head injury from paralysis due to spinal injuries, an 

observation that led him to postulate that some kind of crossing must take place above the 

craniovertebral junction. However, where exactly the crossing occurred remained a 

mystery for centuries (Louis, 1994) only to be revealed much later by the Pisan scholar 

Domenico Mistichelli (1675-1715) in his “trattato dell’apoplessia” and by the French 

military surgeon Dr François Pourfour du Petit (1664-1741) with complementary field 

work (Thomas, 1910).  

One of the most important events in the history of the study of the motor 

functions of the cortex was the discovery by Fritsch and Hitzig in 1870 that electric 
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stimulation of the cerebral cortex could produce discrete movements. These results were 

in agreement with the ideas of John Hughlings Jackson (1815-1911), often considered the 

“father of English clinical neurology”. Hughlings Jackson reasoned that the cortex had 

basic sensory-motor functions and also gathered clinical evidence substantiating this view 

(Young, 1970). In studying epileptic seizures, he noticed a systematic spread of 

convulsions from one body part to its immediate next. These observations led him to 

suggest that different areas of the cortex could be involved in the control of particular 

muscle groups and that these areas would be arranged in a way that mimic the 

organization of the body (Hughlings Jackson, 1873; Temkin, 1971; Young, 1970). 

Hughlings Jackson’s work was notably expanded by Ferrier (1874a, b) who explored the 

effects of electrical stimulation in extensive areas of the cerebral cortex, well beyond 

what is considered today’s motor cortex (M1) and including prefrontal areas such as FEF. 

Ferrier observed that electrical stimulation could induce not only seizures but also 

discrete movements. The later observation was particularly interesting because these 

discrete movements seemed to cluster on particular areas. Ferrier reported that electrical 

stimulation on these areas evoked movements of eyelids, face, mouth, tongue, ear, neck, 

hand, foot and tail. The early work by Ferrier was conducted in a wide range of animals 

such as dogs, jackals, rabbits and cats, substantiating the generality of Jackson’s 

assumptions. A growing interest in the primate brain would then lead Ferrier to extend 

research to non-human primates, delineating not less than 19 centers related to different 

movements including walking, arm retraction, extension and flexion of the wrist, mouth 

opening and protrusion of the tongue, sneering expression of the face and eye movements 

(Ferrier, 1874-1875). Ferrier (1875) also conducted lesion studies of the motor centers 
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reporting a correlation between the size and location of a lesion with the type and severity 

of the resulting paralysis. As techniques for electrical stimulation improved, Ferrier’s 

results were confirmed in humans. The Canadian Dr. Penfield and colleagues applied 

electrical stimulation along the precentral cortex in patients during surgery for the 

removal of tumors and epileptic foci (Penfield and Boldrey, 1937; Penfield and 

Rasmussen, 1950). Their results revealed a disproportionate somatotopic map of the body 

that is commonly depicted as Penfield’s motor homunculus with very similar results in 

non-human primates (Woolsey’s semiusculus; Woolsey et al., 1952). These pioneering 

works are the foundation of the modern functional and anatomical definition of the motor 

and premotor cortices. 

 

3. The anatomical organization of the premotor cortex 

 

Early human anatomical work by Brodmann (1909) revealed that a significant 

fraction of the frontal lobe lacks a clearly defined internal granular layer (IV) and is 

commonly referred as agranular cortex. This area can be further parceled into a well 

defined field with large pyramidal cells including exclusively Betz cells (Betz, 1874), 

lying in the anterior bank of the precentral sulcus (area 4), and a wide region spanning 

the precentral gyrus and the posterior portion of the superior frontal gyrus on both the 

lateral and medial surfaces in the primate brain (area 6) (Figure 2A-B).  
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Figure 2. Architectonic areas in the human (A) and macaque brain (B) along 

with expanded mesial and lateral views of the macaque brain (C). The numbers on 

the left-side picture correspond to Brodmann and Walker's classification, meanwhile the 

right-side picture uses the classification of Barbas and Pandya (1987). Notice the 

consistent mapping of area 6 (blue shades) and area 4 in both humans and macaques 

despite the different representation of gyrus sulci in both species, in particular for 

macaque principal sulcus (P) that becomes the superior frontal sulcus (SF) and the 

inferior frontal sulcus (IF) (orange ellipse in the right-side pictures). The figures on the 

right show the location of the dorsal premotor cortex (PMd) and its homologous 

subdivisions in humans and macaques. PMd can be subdivided into rostral PMd (pre-

PMd in humans and F7 in the macaque, pink ellipses) and caudal PMd (PMd proper in 

humans and F2 in the macaque, blue ellipse). On the top left figure: PCS, precentral 

sulcus; CS, central sulcus; SMG, supramarginal gyrus; IPS, intraparietal gyrus; STS, 

superior temporal gyrus; SFy, Sylvian fissure; AS, arcuate sulcus; PS, principal sulcus. 

On the top right figures: dlPFC, dorsolateral prefrontal cortex; SPc, superior precentral 

sulcus; C, central sulcus; PPC, posterior parietal cortex (green ellipses); IPc, inferior 

precentral sulcus; AS, superior arcuate sulcus, AI, inferior arcuate sulcus; S, spur of the 

arcuate sulcus; C, central sulcus; SPD, superior precentral dimple; C, central sulcus; IP, 

intraparietal sulcus (adapted from Aboitiz and Garcia, 1997; Abe and Hanakawa, 2009). 

The green rectangle depicted in C shows the parcellation of the motor cortex, posterior 

parietal, and cingulate cortices. The motor and premotor areas are defined according to 

Matelli et al. (1985, 1991). IP, intraparietal sulcus, AG, annectant gyrus; C, central sulcus; 

Ca, calcarine fissure; Cg, cingulate sulcus; IO, inferior occipital sulcus; L, lateral fissure; 

Lu, lunate sulcus; P, principal sulcus; POs, parieto-occipital sulcus; ST, superior temporal 

sulcus; FEF, frontal eye field; SEF, supplemental eye field; PMd, dorsal premotor cortex; 

PMv, ventral premotor cortex, M1; motor cortex; pre-SMA, pre-supplementary motor 

area; SMA, supplementary motor area. AI, inferior arcuate sulcus; AS, superior arcuate 

sulcus; C, central sulcus; Cg, cingulate sulcus; ACC, anterior cingulate cortex; OFC, 

orbitofrontal cortex; DLPFd, dorsolateral prefrontal cortex, dorsal; DLPFv, dorsolateral 

prefrontal cortex, ventral; MIP, medial intraparietal cortex; LIP, lateral intraparietal 

cortex; VIP, ventral intraparietal area; Anterior intraparietal area, AIP; PE, PEc, PEIp, PF, 
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PFG and PG are arbitrary names given to cytoarchitectonically distinct areas defined by 

von Bonin and Bailey (1947). Note that area 6 corresponds roughly to PMd, PMv (green 

and red shaded areas), SMA and pre-SMA (blue and orange shaded areas). Area 4 

corresponds to M1 (beige shaded area F1) (adapted from Rizzolatti and Luppino, 2001). 

 

 

Evidence from clinical observations and cortical ablation experiments conducted 

by Fulton (1935) led to the original view of a primary motor cortex corresponding to 

area 4, whereas Woolsey et al. (1952) along with Penfield and Welch (1951) further 

established the concept of a non-primary motor cortex revealing a physiologically distinct 

region, the supplementary motor cortex.  

The supplementary motor cortex is located in the medial aspect of area 6 and 

represents today’s supplementary motor area (SMA) and pre-supplementary motor area 

(pre-SMA). Hines (1929) defined the remaining of area 6 as “premotor cortex”, although 

research in this region would linger for nearly half a century mainly because of 

experimental shortcomings. For instance, Woolsey et al. (1952) and Travis (1955) 

concluded that the premotor cortex was not a part of the motor system because cortical 

stimulation of the area in deeply anesthetized monkeys didn’t evoke movements. 

Although it was known that the level of anesthesia is a critical variable for cortical 

excitability (Bucy and Fulton, 1933), knowledge of the connectivity pattern of the 

premotor region and spinal cord were at that time very limited and so were the chances to 

obtain an ideal combination of stimulation parameters and probing locations.  

It is known today that low intensity electrical stimulation (≥40µA) of regions of 

the premotor cortex that have corticospinal projections (F2, PMd, Figure 2C) (Dum and 

Strick, 1991; He et al., 1993) can evoke everything from finger twitches to complex arm-
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to-mouth movements (Godschalk et al., 1995; Graziano et al., 2002; Raos et al., 2003). 

Extensive stimulation of the premotor cortex has also helped characterizing areas 

involved in oculomotor control such as the supplemental eye field (SEF; Tehovnik and 

Lee, 1993) and FEF (Bruce et al., 1985; Robinson and Fuchs, 1969; Schlag and Schlag-

Rey, 1987). We can parcel the premotor cortex of non-human primates in at least seven 

non-primary motor areas involved in controlling arm movements such as reaching and 

grasping (Barbas and Pandya, 1987; Geyer et al., 2000; Matelli et al., 1985, 1991; Vogt, 

1919; Von Bonin and Bailey, 1947) and two further areas involved in oculomotor control 

(Barany et al., 1923; Ferrier, 1875) (Figure 2C).  

The first two regions are located in Brodmann’s area 6 and are namely the dorsal 

and ventral premotor cortices (PMd and PMv) which are caudal to the arcuate sulcus and 

rostral to M1. The SMA and pre-SMA are located in the superior frontal gyrus and 

loosely correspond to Woolsey’s supplementary motor cortex (Woolsey et al., 1952). 

Another three non-primary motor areas can be further identified in the banks of the 

cingulate cortex, namely the rostral, dorsal and ventral cingulate motor areas (CMAr, 

CMAd and CMAv, respectively)(Dum and Strick, 1991; He and Strick, 1995; Picard and 

Strick, 1996). The two oculomotor areas are FEF and SEF. The first region, FEF (also 

called area 8 of Brodmann) is located within the anterior wall of the arcuate sulcus and 

encompasses a triangular area next to the spur junction of both branches of the arcuate 

sulcus (Barany et al., 1923; Ferrier, 1875). The second area, SEF is a post-arcuate region 

located in the rostral bank of the arcuate sulcus close medially to pre-SMA (Schlag and 

Schlag-Rey, 1987; Woolsey et al., 1952). Although these two areas are classified 

traditionally as belonging to the prefrontal cortex, the FEF in particular has functional 
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features that are similar to PMd (Thura et al., 2011).  The FEF is involved in action 

specification and competition-based mechanisms of goal selection in the oculomotor 

system while the PMd may perform similar functions in the arm system (McPeek et al., 

2006; Cisek and Kalaska, 2005). 

The modern organization of the premotor cortex is full of nuances and a number 

of alternative ways of subdividing area 6 have been proposed (Barbas and Pandya, 1987; 

Matelli et al., 1991; Muakkassa and Strick, 1979). These alternative divisions are worth 

mentioning in order to address the functional differences observed within the region. For 

instance, Barbas and Pandya (1987) delineated the premotor cortex (area 6) mainly on the 

basis of cytoarchitectonic and myeloarchitectonic features and subdivided it into a dorsal 

sector (PMd) and a ventral sector (PMv) at the spur of the arcuate sulcus.  

These authors reported hints of an “emergent” layer IV in PMv and higher myelin 

content in PMd, although the most striking results were observed studying the 

connectivity patterns within these two sectors using anterograde and retrograde tracers. A 

rostral portion of PMd had specific frontal connections restricted to the neighboring 

dorsal frontal regions, whereas a caudal portion of PMd sent projections to the motor 

cortex. These results would be later complemented by tracing studies conducted by Strick 

and colleagues detailing inputs from the dorsolateral prefrontal cortex (DLPFC) to rostral 

PMd (Lu et al., 1994) and projections from the caudal sector of PMd to not only M1 but 

also directly to the spinal cord (Dum and Strick, 1991; He et al., 1993).  

In contrast, the PMv was found to be connected extensively both with PFC and 

M1. For instance, Carmichael and Price (1995a, b) and Strick and colleagues (Lu et al., 

1994) showed that both OFC, DLPFC and the dorsomedial prefrontal cortex (DMPFC) 
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share reciprocal projections with PMv. The DLPFC projections to PMv are extensive in 

contrast to the projections of DLPFC to PMd that are limited to only a portion of the arm 

area. Matsumura and Kubota (1979) and Muakkassa and Strick (1979)  also showed 

projections of PMv to M1.   

The idea that anatomical differences could be observed not only in PMd and PMv 

but also within each of these cortical areas separately motivated yet another parcelation 

of area 6, incorporating a growing bulk of information from neuroanatomical and 

physiological studies (Matelli et al., 1985, 1991). According to Matelli et al. (1985, 1991), 

the dorsal part of the agranular frontal cortex could be subdivided into three areas: area 

F1, corresponding to the primary motor cortex (M1), and areas F2 and F7 which together 

correspond to PMd (Figure 2). Area F2 occupies the caudal two-thirds of superior area 6 

and is bordered caudally by area F1 and extends rostrally up to the border with area F7. 

Area F7 is located about 3 mm in front of the genu of the arcuate sulcus and extends 

medially to the superior limb of the arcuate sulcus until area F6 (pre-SMA). Area F7 

corresponds roughly with the rostral division of PMd of Barbas and Pandya (1987) and 

incorporates a distinct eye movement representation in its rostro-medial aspect (SEF) and 

a motor representation of a forelimb field with a minority of other body parts 

representations embedded in it (Tachibana et al., 2004).  

These results are congruent with physiological studies (Boussaoud et al., 1998; 

Fujii et al., 2000; Mitz and Godschalk, 1989) suggesting that this area is involved in 

visual guidance of arm reaches.  Area F2 is medially delimited by area F3 (SMA) and 

laterally by the spur of the arcuate sulcus, which separates it from areas F4 and F5, that 

together correspond to Barbas and Pandya’s PMv. F2 corresponds roughly to the region 
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referred to as the caudal part of PMd in physiological studies (Wise et al., 1997). The 

topography of the corticospinal projections (Dum and Strick 1991; He et al. 1993), the 

data from single-neuron recording studies (Kurata, 1989) and intracortical 

microstimulation studies (Godschalk et al., 1995; Raos et al., 2003) suggest that area F2 

has a gross somatotopic arrangement, with a hindlimb field located medially to the 

superior precentral dimple and a forelimb field located laterally to it (SPP, Figure 2B). 

Area F2 contains a significant proportion of cells (16%) with visual responses and seems 

implicated in visual guidance of arm reaches. The visual responses in area F2 are not just 

perceptual but appear to be driven by the instructional significance of the stimulus for 

motor behaviour (Wise et al., 1996a). Most visually driven neurons are concentrated 

within the rostrolateral sector of the forelimb representation of area F2 (which is the 

region of F2 spanning from the precentral dimple to the spur (Fogassi et al., 1999). 

 Tanji’s group (Fujii et al., 2000) reported similar visual responses and evoked 

saccades in the PMd region corresponding roughly to the entire area F7 plus a rostral 

portion of F2. It has been shown that gaze modulation effects observed in PMd for arm-

reaching movements are modest when the animals are instructed to perform in a free gaze 

condition, in comparison to when the animals have to move the eyes after an oculomotor 

instruction  (Boussaoud et al., 1998; Cisek and Kalaska, 2002). These results are in 

agreement with the work from Tanji’s group (Fujii et al., 2000). Their study reported that 

saccadic responses elicited by either visual or electrical stimulation in PMd were 

functionally different from responses observed in SEF and FEF, further indicating the 

role of PMd in coordination of eye and arm movements in a context that requires 

cognitive behavioral control.  
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The border between PMd and its neighboring areas has also been an issue of 

debate mainly concerning PMv. A precentral polysensory zone caudally located from the 

spur separating area F2 and F4 (between caudal PMd and PMv) has been recently 

proposed by Graziano and Gandhi (2000). Graziano suggests a role in the guidance of 

movements in basis of tactile, visual and auditory information for this particular region. 

According to Matelli, PMv can also be subdivided in anatomical and 

physiologically distinct regions, namely areas F4 and F5. Area F4 constitutes the caudal 

part of PMv (Matelli et al., 1985). It is connected with posterior parietal areas such as the 

ventral intraparietal area (VIP), the intraparietal sector of area PE, and the secondary 

somatosensory cortex (S2) (Rizzolatti and Lupino, 2001, for a review). F4 neurons 

discharge according to specific body part movements and electrical stimulation of this 

area evokes neck, arm, and face movements with often a combination of two or three 

body parts (Fogassi et al., 1996; Gentilucci et al., 1988). Most F4 neurons are activated 

by somatosensory, visual or auditory stimuli (Fogassi et al., 1996; Gentilucci et al., 1988; 

Graziano et al., 1999). This area presents bimodal, somatosensory and visual neurons that 

have RF within a reaching distance (peripersonal space) and code actions in extrinsic 

(spatial) coordinates, rather than in intrinsic limb coordinates (Kakei et al., 2001). It has 

therefore been suggested that area F4 transforms specific positions in peripersonal space 

into arm, neck, and face/mouth movements and is also involved in space perception 

(Fogassi et al., 1996; Rizzolatti et al., 1996).  

Area F5 occupies the most rostral part of PMv in the macaque monkey, and 

contains a motor representation of distal hand movements (Hepp-Reymond et al., 1994; 

Kurata and Tanji, 1986; Rizzolatti et al., 1988). The neurons of this area discharge during 
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specific goal-directed hand movements such as grasping, holding and tearing. This area is 

also directly connected with M1 and receives rich inputs from S2, parietal area PF (7b), 

and from a parietal area located inside the intraparietal sulcus, the anterior intraparietal 

area (AIP) (Godschalk et al., 1984; Luppino et al., 1999; Matelli et al., 1986; Matsumura 

and Kubota, 1979; Muakkassa and Strick, 1979) which is traditionally associated with 

grasping (Baumann et al., 2009).  There are two classes of visuomotor neurons in 

monkey area F5: canonical neurons, which respond to the presentation of an object, and 

“mirror” neurons, which respond when the monkey sees object-directed action (Rizzolatti 

and Luppino, 2001). “Mirror” neurons require a meaningful interaction between an 

effector (e.g. hand or mouth) and an object (e.g. edible fruit) in order to be active 

(Gentilucci et al., 1988).   

Early studies characterize these cells according to the naturalistic motor acts that 

they prefer and classify them into proximal and distal classes involving diverse effectors 

such as arm, hand and mouth. For instance, Gentilucci et al., (1988) reports “mirror” 

neurons in the distal classes as "Grasping-with-the-hand-and-the-mouth neurons", 

"Grasping-with-the-hand neurons", "Holding neurons" and "Tearing neurons". The 

proximal classes are: "Reaching neurons" and "Bringing-to-the-mouth-or-to-the-body 

neurons".  More recently it has been demonstrated that area F5 also harbors “mirror” 

neurons that discharge during the execution and observation of mouth actions.  

Most of mouth “mirror” neurons become active during the execution and 

observation of mouth ingestive actions such as grasping, sucking or breaking food. Some 

of them respond during the execution and observation of oral communicative actions 

such as lip smacking (Ferrari et al., 2003).  In general, “mirror” neurons have gathered 
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considerable attention in the scientific community as they might be involved in diverse 

processes such as action understanding, language, communication and learning by 

imitation (Rizzolatti and Luppino, 2001). Despite the appeal of this hypothesis “mirror” 

neurons cannot be regarded as the only type of cells in which the observation of external 

events can generate motor representations of the actions associated with those events. 

Unlike “mirror” neurons, PMd cells do not respond to direct observation of naturalistic 

behaviors but are implicated in the prediction of impending actions or events based on 

arbitrary cue-response associations. However, Cisek and Kalaska (2004) found PMd cells 

that are active during action observation and seemed involved in mental rehearsal of 

action plans (Cisek and Kalaska, 2004). This property might contribute to abstract 

functions underlying the assessment and understanding of observed events and suggest a 

relation with PMv “mirror” cells: although PMd cells and PMv “mirror” cells may have 

very different properties, it is plausible that both groups are required in processes such as 

action learning and understanding.  

 

4. The role of PMd in visual guidance of movements: visual processing pathways  

 

Early studies indicated that the occipital cortex lacks direct access to the primate 

frontal lobe (Jones and Powell, 1970; Pandya and Kuypers, 1969), although it has been 

known for a long time that striate and extrastriate visual areas can relay visual 

information to premotor areas via the parietal cortex (Critchley, 1953a; Milner and 

Goodale, 1993).  The notion of a parietal relay for visual information has its foundations 

in the classic “dorsal and ventral processing streams” hypothesis proposed by 
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Ungerlieder and Mishkin (1982). However, the idea that the visual system is divided into 

two main streams of information may not be entirely novel and can be tracked back to the 

work of Max Schultze (1866) and to the Duplicity Theory proposed by von Kries (1895).  

According to Ungerlieder and Mishkin’s proposal, visual processing can be 

segregated into two anatomically and functionally distinct pathways originating in the 

striate cortex, namely an occipito-parietal dorsal stream specifying spatial location and 

an occipito-temporal ventral stream specifying object identity (Figure 3A).  

The dorsal stream travels through the occipitoparietal cortex (V1-V4) to the 

caudal part of the posterior parietal cortex (PPC), the inferior parietal lobule (IPL), and 

extends further to DLPFC. The ventral stream travels through the occipitotemporal cortex 

to the inferior temporal cortex (TE) and extends further to the ventrolateral prefrontal 

cortex (VLPFC, Figure 3A).  

Lesions of the ventral and dorsal streams in monkeys produced selective deficits 

in object vision and spatial vision, respectively, leading to their characterization as 

‘What’ and ‘Where’ pathways (Macko et al., 1982; Mishkin et al., 1983). Human patients 

with PPC lesions are able to recognize objects, but not their spatial relationship 

(Andersen, 1987; Critchley, 1953a, b). For instance, optic ataxia is characterized by a 

specific deficit in localizing visual targets with respect to the body and results from 

lesions centered around the intraparietal sulcus (IPS) and the superior parietal lobule 

(SPL) (Rondot et al., 1977). Consequently, patients suffering from optic ataxia are able to 

identify objects properly, although they cannot accurately perform a goal directed action. 

However, it is important to mention that the functional distinction between ventral and 

dorsal stream is not entirely clear-cut and a number of additional clinical studies in 
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humans have revealed nuances for grasping actions (James et al., 2003; Milner et al., 

1991; Read et al., 2010). For instance, a patient with agnosia (patient D.F.) who had a 

large bilateral lesion of the occipitotemporal cortex and a small left-sided lesion of the 

occipitoparietal cortex (James et al., 2003; Milner et al., 1991) presented impaired 

perception of objects but intact ability to grasp them (Figure 3B). 

In fact, patients like D.F. can pre-shape the hand to reflect size, shape and 

orientation of objects and are able to both orient and transport the hand to an intended 

reach location in space. However they cannot indicate the orientation of their own hand 

in space (and by extension pantomime an action) despite being aware of spatial depth 

information (Read et al., 2010). These findings, combined with the connectivity patterns 

between the posterior parietal and frontal premotor areas (Wise et al., 1997 for a review), 

have led to the proposal of a ‘How’ instead of a “Where” function for the dorsal stream 

(Goodale and Milner, 1992).  

Recent studies account better for these nuances by segregating the dorsal parieto-

frontal stream into three functionally and anatomically distinct, major pathways: a 

parieto–prefrontal pathway, a parieto–premotor pathway and a parieto–medial temporal 

pathway (Figure 3C). The parieto–prefrontal pathway has its strongest sources in the 

LIP, VIP, the mediotemporal (MT) and mediosuperiotemporal (MST) regions, and links 

the occipito–parietal circuit with two areas, namely a pre-arcuate region (i.e. FEF) and 

the caudal portions of the banks of the principal sulcus in PFC (i.e. DLPFC) (Cavada and 

Goldman-Rakic, 1989; Schall et al., 1995). This pathway is basically involved in control 

of eye movements, spatial working memory and highly cognitive processing. The 

parieto–premotor pathway comprises two distinct parallel projections.  
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Figure 3 Frameworks of visuospatial processing. A. The original formulation of the 

dorsal and ventral streams in the macaque monkey. The ventral stream is a multisynaptic 

pathway projecting from the striate cortex (area OC) to area TE in the inferior temporal 

cortex, with a further projection from area TE to VLPFC (i.e. FDv from Bonin and Bailey, 

1947). The dorsal stream is a multisynaptic pathway projecting from striate cortex to area 

PG in the inferior parietal lobule, with a further projection from area PG to dorsal DLPFC 

(i.e. FDD from Bonin and Bailey, 1947). On the basis of the effects of lesions in monkeys, 

the ventral stream was termed a ‘What’ pathway supporting object vision, whereas the 

dorsal stream was labeled a ‘Where’ pathway supporting spatial vision. B. The top panel 

depicts the location of the lesions in patient D.F. (shown in blue and indicated by white 

arrows) that led to impairment in object perception but not in the accuracy of orienting 

her hand when reaching to the same objects. This pattern of results led to the proposal 

depicted in the bottom panel, that the dorsal stream is more accurately characterized as a 

‘How’ pathway supporting visually guided action than as a perceptual ‘Where’ pathway. 

C. The new neural framework for dorsal stream function that is proposed by Kravitz et al. 

(2011). At least three distinct pathways emanate from the posterior parietal cortex. One 

pathway targets the PFC (shown by a dashed green arrow) and supports spatial working 

memory (the parieto–prefrontal pathway); a second pathway targets the premotor cortex 

(shown by a dashed red arrow) and supports visually-guided actions (the parieto–

premotor pathway); and the third targets the medial temporal lobe, both directly and 

through the posterior cingulate and retrosplenial areas (shown by a dashed blue arrow), 

and supports navigation (the parieto–medial temporal pathway). PCC, posterior cingulate 

cortex; RSC, retrosplenial cortex; TE, rostral inferior temporal cortex; TEO, posterior 

inferior temporal cortex; V1, visual area 1. (A and B are adapted from Kravitz et al., 

2011; C is adapted from James et al., 2003).  
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One projection has its major source in SPL areas V6A and the medial intraparietal 

region, MIP. This projection targets PMd areas F2 and F7 (Gamberini et al., 2009; 

Matelli et al., 1998). The second projection arises primarily from area VIP and projects to 

PMv areas F4 and F5 (Rozzi et al., 2006). This pathway mediates eye movements 

(Nachev et al., 2008), as well as numerous forms of visually guided actions such as reach 

and grasp (Colby and Duhamel, 1991; Duhamel et al., 1998; Fattori et al., 2001, 2009, 

2010; Galletti et al., 1991, 1995, 1997, 2001). The parieto–medial temporal pathway 

links the IPL with the medial temporal lobe (MTL) including the hippocampus. This 

pathway is involved in processing of navigationally relevant information, distant-space 

perception, route learning and spatial long-term memory (Kravitz et al., 2011). The two 

former pathways traditionally constitute the parieto-frontal network which is highly 

relevant for both visual guidance of movements and decision making processes. 

 

5. The role of PMd in visual guidance of movements: the parieto−frontal network.  

 

The anatomical and functional organization of the parieto-frontal network 

underlying arm reaching is well documented (Caminiti et al., 1996; Johnson et al., 1993, 

1996) and particular emphasis will be given to the role of the main structures in PPC and 

PMd. The PPC shares with motor and premotor areas a multiplicity of arm, leg and face 

representations. In particular, the arm skeletomotor region is represented at least 8 times 

(Rizzolatti et al., 1998). PPC comprises a diverse number of functions including spatial 

attention, spatial awareness, polysensory integration, coordinate transformation, 

movement intention and decision making (Andersen et al., 1987, 2009; Andersen and 
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Buneo, 2002; Burnod et al., 1999; Cohen and Andersen, 2002; Colby and Goldberg, 1999; 

Critchley, 1953a, b; Desmurget et al., 1999; Gold and Shadlen, 2007; Kalaska et al., 1997;  

Mishkin et al., 1983; Mountcastle et al., 1975; Rushworth et al., 2001a, b).  

Anatomically, the PPC is formed by two lobules: SPL and IPL (Figure 4). SPL 

includes area 5d, V6A and MIP in the superiorlateral bank of the intraparietal sulcus (IPS) 

(Caminiti et al., 1996; Johnson et al., 1996) and area 7m, the medio-dorsal parietal area 

(MDP) and the parieto-occipital area (PO) in the medial crest of the IPS (Lewis and Van 

Essen, 2000a, b; Matelli et al., 1995; Shipp and Zeki, 1995). IPL includes areas 7a and 

7b in its exposed lateral surface and the lateral intraparietal area, LIP (Andersen et al., 

1985; Blatt et al., 1990); the ventral intraparietal area,VIP (Colby et al., 1993a, b; 

Maunsell and van Essen, 1983) and the anterior intraparietal area, AIP (Sakata et al., 

1995) in the inferiolateral bank of the IPS (Figure 4). The IPL has been classically 

regarded as the main relay of visual information to the motor areas because it constitutes 

the main parietal input from the dorsal stream (Jones and Powell, 1970; Pandya and 

Kuypers, 1969).  

However, the projections of the IPL are not mainly addressed to motor and 

premotor cortices but to prefrontal areas instead (Andersen et al., 1985; Cavada and 

Goldman-Rakic, 1989; Petrides and Pandya, 1984; Schwartz and Goldman-Rakic, 1984). 

In fact, visual information is conveyed to PMd by area PO in SPL and to some extent by 

area 7a in IPL (Tanne et al., 1995). PMd also receives visual information indirectly from 

PO via area 7m (Cavada and Goldman-Rakic, 1989) and MIP (Blatt et al., 1990). All 

these areas: PO, 7a, MIP and 7m receive direct extrastriate visual inputs (Felleman and 

Van Essen, 1991). See Figure 5 for a summary.  
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Figure 4.  The parietofrontal network: a summary of connectivity from posterior 

parietal cortex primarily to PMd and M1. (Bottom) Lateral view of the left hemisphere. 

(Top) medial view of the hemisphere, depicting areas of the same left hemisphere as the 

bottom figure. Arrows are shown projecting to PMd, but note that most corticocortical 

projections are reciprocal. Quantitatively, more significant projections are marked by the 

thicker lines. Abbreviations are as in Figure 1, with these additions: MIP, LIP, and VIP, 

medial, lateral, and ventral intraparietal areas, respectively; PO, parieto-occipital visual 

area; MDP, medial dorsal parietal area; areas 7a, 7b, and 7m, subdivisions of posterior 

parietal cortex; area 5d, dorsal area 5; S1, somatosensory cortex (adapted from Wise et al., 

1997). 
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Figure 5. Summary of the major corticocortical visual pathways to premotor 

cortex. Dashed lines represent sparser connections. In this diagram, the areas are not 

arranged in a functional hierarchy, but rather in a quasi-regional manner (adapted from 

Wise et al., 1996). 
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Dorsal stream visual information can also reach PMd through even less direct 

routes after being relayed by prefrontal areas within the parieto-frontal network. The IPL 

sends its prefrontal projections predominantly to DLPFC (Cavada and Goldman-Rakic, 

1989), whereas the SPL projects more to DMPFC (Petrides and Pandya, 1984). These 

two prefrontal areas project mostly to the dorsal and medial premotor regions (e.g. PMd, 

preSMA, SMA) (Barbas and Pandya, 1987; Barbas, 1988). For instance, PMd receives 

the majority of the prefrontal inputs in its more rostral aspect, area F7 (Barbas and 

Pandya, 1987; Lu et al., 1994; Stepniewska et al., 1993; Tachibana et al., 2004). In 

contrast PMv receives prefrontal inputs originating from VLPFC that convey ventral 

stream information (Barbas, 1988). However, the dorsal stream and ventral stream 

prefrontal pathways are not completely separate. Recent evidence suggests that ventral 

stream information can be also relayed to PMd via VLPFC (Takahara et al., 2012). 

Quantitatively, the majority of the parietal input to PMd and M1 originates from 

SPL area 5 and MIP (Figure 4) (Jones et al., 1978; Jones and Powell, 1970; Pandya and 

Kuypers, 1969). Additionally, MDP and 7m project exclusively to PMd. It is important to 

mention that association projections between PMd and these structures in SPL tend to 

relate regions sharing similar activity types in a gradient-like fashion indicating a 

common role in visual planning and coordination of movements (Johnson et al., 1996; 

Marconi et al., 2001). In fact, rostral PMd and ventral MIP show similar signal, set-

related and directional tuning activities during delay period in spatial visuo-motor tasks, 

whereas movement and postural-related activities are more prominent in dorsal MIP, area 

5d and M1 (Johnson et al., 1996). In contrast, PMv input originates from VIP and area 7b 

(Figure 4) (Caminiti et al., 1996; Colby and Duhamel, 1991; Galletti et al., 2003; 
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Luppino et al., 1999; Matelli et al., 1998; Pesaran et al., 2008; Shipp et al., 1998; Snyder 

et al., 1997; Tanne-Gariepy et al., 2002; Tomassini et al., 2007; Wise et al., 1997).  

 

6. Parietal structures implicated in visuo-motor transformations and guidance of 

movements 

 

Visually guided reaching requires transformation from eye to limb centered 

coordinates. It has been proposed for PPC, that a direct transformation subtracting the 

position of the hand from the position of the target (both in eye coordinates) can be used 

to form a movement vector centered on the arm without stepping in sequential 

transformations through multiple reference frames (Andersen and Buneo, 2002; Buneo et 

al., 2002). To this purpose, a brief account of the functional peculiarities of PPC areas 

involved in visual guidance of movements is useful.  

Studies conducted in the parietal reach region (PRR, a term used by Andersen’s 

group to define the area encompassing MIP, 7a and PO; Andersen and Buneo, 2002; 

Cohen and Andersen, 2002) have shown that it contains neurons representing visual 

targets in eye coordinates (Batista et al., 1999; Buneo et al., 2002; Pesaran et al., 2006). 

This is in contrast with area 5 where cells can be found coding simultaneously eye and 

limb coordinates (Batista et al., 1999; Buneo et al., 2002; Caminiti et al., 1991). MIP 

reflects limb movement and position (Johnson et al., 1996), although cells are also 

sensitive to both visual and somatosensory stimuli (Colby and Duhamel, 1991). MIP 

neurons display a gradient of responses that range from purely visual to proprioceptive, 

with occasional representation of both (Colby and Duhamel, 1991; Eskandar and Assad, 
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1999; Snyder et al., 1997). As mentioned previously, MIP neurons have similar 

functional gradient responses as observed in the region ranging from rostral PMd to M1, 

supporting the hypothesis that both areas participate in visual guidance of movements. 

A study conducted by Snyder’s group (Chang and Snyder, 2010; Chang et al., 

2009) in the PRR is particularly pertinent to the above observations. Although PRR 

represents space using multiple reference frames (E.g. cells having either hand centered, 

gaze centered or intermediate tuning responses) this heterogeneous representation 

cohexist with a systematic compound gain field that modulates activity proportional to the 

distance between eyes and hand.  This compound gain field consists of a distinct eye 

position gain effect and a hand position gain effect that have similar magnitude but 

opposite sign.  It is important to mention that the compound gain field was present in the 

majority of cells systematically and regardless from their reference frame encoding. 

These results can be interpreted from a computational point of view. Whereas multiple-

reference frame representations may be pertinent to optimally compute non-linear 

sensorimotor transformations in visually guided reachings, the compound gain effect may 

be more pertinent for linear transformation between eye and hand reference frames.  

 

Area 5d, which primarily projects to M1 and the caudal parts of PMd, appears to 

encode arm position in a shoulder-centered coordinate system (Lacquaniti et al., 1995) or 

eye-and-limb coordinates (Buneo et al., 2002). This area processes proprioceptive 

information and contains neurons that reflect movement kinematics (Hyvarinen, 1982; 

Mountcastle, 1975) and contributes to the visuomotor coordination of complex sequences 

of movements such as locomotion (Drew et al., 2008). Cells in this region are modulated 
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by the direction of reach movements just like in M1 (Ashe and Georgopoulos, 1994). 

However, some differences have been observed since area 5d seem to only weakly 

encode forces and movement dynamics (Kalaska et al., 1990).  

It has also been reported that parallel representations of azimuth, elevation, and 

distance of the hand relative to the shoulder occur in largely segregated neuronal 

populations in area 5 (Lacquaniti et al., 1995). These results suggest a role for this area 

for the encoding of hand position and movement in 3D space and perhaps in visuo-motor 

reference frame transformation processes (Ferraina et al., 2009). PMd was found to 

encode the target of reach relative to the eye, to the hand, or both (hand relative to the eye; 

Pesaran et al., 2006) and this form of encoding suggest a coordinate frame based on the 

“work-space” defined by eye, hand and target rather than each of them separately.   

Other areas of PPC that do not project directly to PMd are nonetheless important 

for the visual guidance of movement. For instance, area LIP, also called the “parietal eye 

field” (Andersen et al., 1992) is part of a visuo-saccadic system of the monkey and has 

been intensively studied over the past three decades as a model for understanding 

sensory-motor control in general (Andersen and Buneo, 2002; Colby and Goldberg, 

1999). For instance, both PRR and LIP encode the position of objects in the same eye-

centered reference frame and both areas show effector-specific modulation suggesting 

that a communication within different parietal areas might contribute to movement 

planning (Batista et al., 1999; Cohen and Andersen, 2000, 2002; Cohen et al., 2002; 

Stricanne et al., 1996). 
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7. Parietal structures implicated in action-selection and guidance of movements 

 

In addition of sensory-motor functions, PPC areas are notably involved in 

decision making and action selection processes. Notably, area LIP has been studied in the 

context of perceptual decision making, saccade target selection, working memory, 

allocation of attention, behavioral intention, representation of reward, expected value and 

elapsed time (Assad and Maunsell, 1995; Chafee and Goldman-Rakic, 2000; Dorris and 

Glimcher, 2004; Eskandar and Assad, 1999; Hanks et al., 2006; Leon and Shadlen, 1999; 

Platt and Glimcher, 1999; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001; 

Sugrue et al., 2004). It is important to mention that LIP, FEF, and SC together comprise 

the core of a heavily interconnected network that plays a critical role in visuo-saccadic 

decision making (Glimcher, 2003; Gold and Shadlen, 2007). There is also a growing 

body of evidence suggesting a parallel role in non-saccadic decision making for M1, PMd, 

SMA and MIP (Cisek and Kalaska, 2005; Cui and Andersen, 2011; Nakayama et al., 

2008). Notably, cognitive signals from MIP representing expected value and reach target 

location have been used in context of neural prosthetic studies (Mulliken et al., 2008a, b; 

Musallam et al., 2004) with similar results in motor and premotor areas (Bansal et al., 

2011; Santhanam et al., 2006). Potential action representations (action plans) for reaches 

and anti-reaches can be also represented in PRR (Kalaska, 1996; Kalaska and Crammond, 

1995; Klaes et al., 2011) with similarities with action plan representations in PMd (Cisek 

and Kalaska, 2005), SC (Basso and Wurtz, 1998) and other parietal structures such as 

LIP (Platt and Glimcher, 1997). The similarities between parietal and premotor regions 
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for decision and executive functions suggest a parallel if not complementary role of these 

areas in action selection and visual guidance of movements. 

 

8. The basal ganglia and premotor cortex 

 

The basal ganglia (BG) are a complex network of subcortical nuclei involved in 

control of skeletal movement, sensorimotor integration, and cognitive and motivational 

processes (Bolam et al., 2000; Gerfen, 1996). It has been also suggested that the BG 

could be involved in selection of motor programs (Chevalier and Deniau, 1990; Mink and 

Thach, 1991; Mink, 1996; Redgrave et al., 1999; Turner and Anderson, 1997) and in 

reinforcement learning (Apicella et al., 1991; Bar-Gad and Bergman, 2001; Schultz et al., 

1993). BG receive inputs from wide areas of the cerebral cortex in basically two main 

structures, the striatum and the subthalamic nucleus (STN). The information processed in 

these two structures returns primarily to the cerebral cortex via the thalamus and 

constitutes what is commonly known as BG loops (Alexander et al., 1986, 1990; 

Alexander and Crutcher, 1990a). BG loops are composed of several parallel, segregate, 

and functionally distinct, but homologous circuits (Alexander et al., 1986; Middleton and 

Strick, 2000) (Figure 6). 
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Figure 6. Basic circuitry of the basal ganglia. This diagram includes the Cx–STN–

GPi/SNr hyperdirect, Cx–Str–GPi/SNr direct, and Cx–Str–GPe–STN–GPi/SNr indirect 

pathways. Open and filled arrows represent excitatory glutamatergic (glu) and inhibitory 

GABAergic (GABA) projections, respectively. The gray arrow represents dopaminergic 

(DA) projections. Cx, cerebral cortex; GPe, external segment of the globus pallidus; GPi, 

internal segment of the globus pallidus; SNc, substantia nigra pars compacta; SNr, 

substantia nigra pars reticulata; STN, subthalamic nucleus; Str, striatum; Th, thalamus 

(adapted from Nambu, 2008). 
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The limb motor loops, which control voluntary limb movements, originate from 

the motor cortices, such as M1, SMA, PMd, PMv and project to somatotopic motor 

territories of BG. The outputs structures from BG are the internal segment of the globus 

pallidus, (GPi) and the substantia nigra pars reticulata, (SNpr). These two structures 

convey information to the thalamus, which then project back to M1, SMA, PMd and PMv 

(Akkal et al., 2007; Hoover and Strick, 1999; Middleton and Strick, 2000; Miyachi et al., 

2006). It is  also important to mention that the anatomical distribution of particular motor 

loops support the functional differences observed in areas such as PMd and PMv 

(Boussaoud and Wise, 1993; Hoshi and Tanji, 2007).  

These two areas seem to have partially segregated cortico-basal loops in rhesus 

macaques and owl monkeys (Dum and Strick, 2005; Morel et al., 2005; Nakano, 2000a, b; 

Stepniewska et al., 2007). The input projections from the PMd and PMv largely overlap 

in the medial aspect of the STN, whereas they segregate laterally (Nambu et al., 1997). 

The thalamic outputs for these two areas show partial overlaps with important nuances 

(Morel et al., 2005). PMd receives the majority of its thalamic projections from the more 

dorsal portion of nucleus ventralis anterior (VAd) and the posteriodorsal ventrolateral 

nucleus (VLpd). In contrast, PMv receives its main projections from the ventral portion 

of the nucleus ventralis anterior (VAv), the posterioventral lateral nucleus (VLpv), and 

the ventral medial nucleus (VM). Both areas receive largely overlapping projections from 

the medial dorsal nucleus (MD) and anterior ventrolateral nucleus (VLa), the first being 

selective for rostral-PMd (F7) and PMv (F5) and the later for caudal-PMd (F2) and PMv 

(F4)(Stepniewska et al., 2007). 
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In addition to the motor and premotor loops, the oculomotor, prefrontal, and 

limbic loops connect the cerebral cortical areas (FEF, SEF, PFC and limbic cortex) with 

the corresponding parts of BG and thalamic nuclei. Through these multiple loops, BG 

control eye movements, higher brain functions and emotions, as well as limb movements. 

The BG loops consist of three major projection systems linking the input nuclei (striatum, 

STN) to the output nuclei (GPi/SNpr), namely the ‘direct’, the ‘hyperdirect’ and the 

‘indirect’ pathways (Figure 6) (Alexander and Crutcher, 1990a; Alexander et al., 1990).  

 The direct pathway arises from GABAergic striatal neurons and projects 

monosynaptically to GPi/SNr. The indirect pathway arises from GABAergic striatal 

neurons that projects polysynaptically to GPi/SNr by way of sequential connections with 

the globus pallidus pars externa, (GPe) and the STN. The STN receives direct cortical 

inputs, and is considered another input station of BG, in addition to the striatum. The 

cortico–STN–GPi/SNr ‘hyperdirect’ pathway conveys strong excitatory signals from the 

cortex to the GPi/SNr with faster conduction velocity than the direct and indirect 

pathways (Nambu et al., 2002) and seems to be important for inhibiting irrelevant motor 

programs and/or changing motor plans (Isoda and Hikosaka, 2008; Leblois et al., 2006). 

 In general, a transient cessation in tonic inhibition supplied by BG to motor 

structures releases movements via the direct pathway, whereas a transient increase in 

inhibition by the basal ganglia to motor structures via the indirect and hyperdirect 

pathways prevents the release of selected motor programs (Leblois et al., 2006; Mink, 

1996; Nambu et al., 2002). This observation can be explained on the basis of the circuitry 

diagram shown in Figure 6.  Considering that the projections of BG to thalamus are 

always inhibitory, a stronger suppression of the BG via the direct pathway results in 
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disinhibition of the thalamus and cortical sensorimotor targets. The converse situation is 

observed if BG receives stronger excitatory inputs via the direct or hyperdirect pathway. 

 

Based on these properties it has been suggested that BG is perhaps involved in 

action-selection (Leblois et al., 2006; Redgrave et al., 2011) as it has been reported in 

cortical motor areas such as PMd (Cisek and Kalaska, 2005; Klaes et al., 2011).  

 

9. PMd role in visual guidance of movements: learning studies 

 

People apply associations between arbitrary visual cues and body movements on a 

daily basis (for example, pushing the brake pedal when stopping at a red light). Learning 

these arbitrary associations relates to conditional visuomotor learning (CVML). This type 

of learning establishes a solid foundation for understanding abstract-rule learning 

mechanisms. CVML has been studied extensively in motor, premotor and prefrontal 

areas (Brasted and Wise, 2004; Buch et al., 2006; Chen and Wise, 1995a, b; Hadj-

Bouziane and Boussaoud, 2003; Mitz et al., 1991; Watanabe, 1990) and PMd is essential 

for this type of learning.  

The studies of Passingham (1986) and Petrides (1982) showed that ablations of 

the monkeys’ PMd specifically caused serious deficits in retention and learning of novel 

arbitrary visuo-motor mappings (Halsband and Passingham, 1982, 1985; Passingham, 

1986; Petrides, 1982, 1985, 1997). Humans who have frontal lobe lesions including PMd 

are also impaired in this task (Petrides, 1997). Neuroimaging studies confirm that PMd is 

normally activated during CVML tasks (Grafton et al., 1998). However, task impairment 
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can only be detected when conditional motor associations are instructed by contextual 

visual cues. Monkeys are able to perform well in conditional motor—motor associations 

such as sequences of three finger movements to obtain reward (Passingham, 1986). On a 

sequence task of this sort the cue for the next movement can be given by joint 

information (proprioceptive input) from the last movement, whereas, on the visuo-motor 

mapping task the cue has to be visual.  

Mitz et al. (1991) trained monkeys in a CVML task in which monkeys were 

presented with novel and familiar visual stimuli. Novel stimuli were never the same 

across two different sessions in contrast to familiar stimuli for which the animals had 

learned the visuo-motor mapping thoroughly during training. This randomization was 

done in order to ensure pertinent learning for all novel stimuli. Cell recordings were 

conducted in PMd while the animals were learning mappings for the novel stimuli by trial 

and error. Criterion (i.e. behavioral measure to assess successful learning of an 

association) was achieved when the monkeys made a correct choice three consecutive 

times. Learning-related effects were seen across cells in several epochs (i.e. set, delay 

period, movement, and reward); although some could show effects only in particular ones.  

The group of Wise (Chen et al., 1995a, b, 1996; Mitz et al., 1991) classified these 

cells according to the type of changes observed in each epoch. A general observation was 

that during learning many cells showed an increase in cell activity at any epoch, and this 

modulation closely paralleled the improvement in task performance of the animals. These 

types of cells were defined as learning dependent. These cells showed trial outcome 

selectivity, and fired more for correct responses in the preferred direction of the cell than 

in the opposite direction. Plotting average cell activity across trials for entire epochs (e.g. 
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delay period) indicated that cell activity increased as learning progressed and stabilized at 

comparable levels to what was observed with presentation of familiar stimuli.  

According to Mitz and colleagues (1991), learning effects were similar for 

different sets of novel stimuli presented, and therefore, independent of the particular 

visual features of the stimuli. This suggests that the effects described reflect learning of 

visuomotor mapping and not sensory responses to novel stimuli. Similar results were 

obtained in subsequent studies in PMd for oculomotor (Brasted and Wise, 2004) or arm 

reaching tasks (Buch et al., 2006).  

Learning dependent cells were also observed in other cortical areas such as SEF 

in addition to other type of cells defined as learning selective cells (Chen et al., 1995a). 

This particularly interesting type of cell is characterized by an unusually high firing rate 

during the early stages of learning and activity decay with behavioral performance. 

Learning selective cells show stable and very low baseline activity both at later stages of 

learning and when presented with familiar stimuli. A correlation between the evolution of 

the directional tuning properties of theses cells and learning has also been observed. 

Learning selective cells are transiently tuned during early stages of learning but become 

unmodulated in later stages of learning or when exposed to familiar stimuli (Chen et al., 

1996). These results suggest that cells that are normally not directionally tuned can take 

part of a learning process.   

Different groups have reported similar types of responses in CVML in very 

diverse cortical areas including PMd, SEF, FEF, PFC and BG (Brasted and Wise, 2004; 

Buch et al., 2006; Chen and Wise, 1995a, b; Hadj-Bouziane and Boussaoud, 2003; Mitz 

et al., 1991; Watanabe, 1990). It is noteworthy that learning effects in frontal lobe 
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structures (such as PMd, SEF) and BG had very modest qualitative and quantitative 

differences, and similar post-stimulus onset latencies (Brasted and Wise, 2004; Buch et 

al., 2006; Chen and Wise, 1995a, b, 1996; Hadj-Bouziane and Boussaoud, 2003). This is 

in contrast with areas M1 and FEF in which CVML effects were comparatively scarce 

(Chen et al., 1996; Germain and Lamarre, 1993; Mitz et al., 1991).  

These results are consistent with the idea that CVML is mainly driven by a 

parallel modular network that involves certain frontal lobe and BG structures (Alexander 

and Crutcher, 1990a; Alexander et al., 1986; Houk and Wise, 1995). A few functional 

interpretations have been proposed for the role of the different learning types of cells. For 

instance, Wise and Boussaoud proposed that long-lasting effects in learning dependent 

cells could reflect long-term storage of learned associations (Chen and Wise, 1995a; 

Hadj-Bouziane and Boussaoud, 2003; Mitz et al., 1991). In contrast, learning selective 

cells might play a role in short-term plasticity changes and strengthen the connectivity 

between BG and PMd in early stages of learning (Hadj-Bouziane and Boussaoud, 2003). 

Some indirect evidence of this has also been suggested in a imaging study conducted in 

humans (Toni et al., 2002). 

 

10. Role of dorsal premotor cortex in guidance of arm reaching movements: a 

traditional cognitive view 

 

Cognitive neuroscience proposes that complex behavior can be explained in terms 

of neural mechanisms of perception, cognition and action that are traditionally organized 

within a serial input-output framework such as information processing theory (Albright et 
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al., 2000; Fodor, 1983; Gazzaniga, 2000; Johnson-Laird, 1988; Keele, 1968; Marr, 1982; 

Miller et al., 1960; Pylyshyn, 1984).  

According to this view perception collects sensory information to build and 

update a stable and unified internal representation of the external world (Marr, 1982; 

Riesenhuber and Poggio, 2002) that is subsequently used as input to cognitive processes 

in order to make informed judgments about the course of action (Johnson-Laird, 1988; 

Newell and Simon, 1972; Shafir et al., 1995). Once cognitive processes have decided 

what to do, a single program is prepared for execution. The resulting plan is tailored by 

the motor system (e.g. grasp an apple or a raisin) through a process of action specification 

(how to do) that is used to generate a desired trajectory of movement through muscle 

activation (Keele, 1968; Miller, 1960). The motor system perform these executive 

functions borrowing formalisms from control theory in which a predetermined motor 

program is passed to a controller that executes it (Keele, 1968; Miller, 1960). As a 

consequence of this serial-processing view, the functions of PMd have been traditionally 

studied in the context of independent processing stages, namely: action selection, action 

planning, movement preparation and movement execution.  

 

10.1. Decisions among actions in PMd  

 

 Decisions among actions typically refer to the task of choosing “what to do” and 

can also be called action selection. The process of selection among available potential 

options is one of the hallmarks of cognitive neuroscience, namely decision making, and is 

the subject of intense research in the motor system. Neural correlates for motor decisions 
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in the arm system have been observed in sensory motor areas such as PMd (Cisek and 

Kalaska, 2005; Klaes et al., 2001), PMv (Acuna and Pardo-Vazquez, 2011; Hoshi and 

Tanji, 2002; Pardo-Vazquez et al., 2011; Romo et al., 2004) and PRR (Batista and 

Andersen, 2001; Cui and Andersen, 2007; Scherberger and Andersen, 2007). Neural 

correlates of perceptual decisions are also well documented for the eye system in LIP 

(Coe et al., 2002; Dorris and Glimcher, 2004; Platt and Glimcher, 1997; Shadlen and 

Newsome, 200; Yang and Shadlen, 2007), FEF (Coe et al., 2002; Gold and Shadlen, 2000; 

Schall and Bichot, 1998) and SC (Basso and Wurtz, 1998; Carello and Krauzlis, 2004; 

Glimcher and Sparks, 1992; Horwitz and Newsome, 1999; Keller et al., 2005; Shen and 

Pare, 2007). According to the traditional view action selection is an entirely abstract 

process that does not incorporate information about the metrics of the actions. 

Additionally, the traditional view implies that action selection is an independent stage in 

which a single goal is always selected before a particular action can be planned and 

released for execution (Keele, 1968; Miller, 1960). However, recent physiology studies in 

PMd have shown otherwise (Cisek and Kalaska, 2005; Klaes et al., 2011). For instance, 

when the available sensory information is insufficient to define a particular goal among 

several options, premotor delay activity in PMd can represent instead all potential goals 

(Cisek and Kalaska, 2005).  

Cisek and Kalaska (2005) trained monkeys with an instructed delay task where 

spatial-information (two potential targets) and non-spatial information (color) were 

required for correct performance in the task. The team presented these two sets 

sequentially during the delay period. When the spatial cue was presented to the animals 

the PMd population activity reflected both options until the appearance of the subsequent 
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non-spatial cue specified the correct one. At this time the directional signal for correct 

reach direction increased meanwhile the signal for the rejected target became suppressed. 

The authors proposed that multiple reach options are initially represented in PMd and a 

competition process between the option representations resolving the selected target for 

overt execution can take place within the same region that specify the actions (Cisek and 

Kalaska, 2004; Cisek, 2006).  

 

10.2. Action planning in PMd  

 

Action planning is the process that determines “how” an action has to be 

performed and is also called action specification. Action planning typically involves 

integration of sensory percepts and information specifying the components of a particular 

action during an instructed delay period (e.g. reach to grasp a cup or a peanut are two 

similar actions but might require different muscle activation sequences and the usage of 

contextual knowledge about the action goal and its features, Ansuini et al., 2006). It is 

known that PMd activity signals the information carried by sensory stimuli about the 

nature and the metrics of the impending action suggesting that the visual responses are 

not isolated percepts but are signals that become integrated in the process specifying the 

actions (Wise et al., 1992). PMd is modulated by spatial cues instructing the monkey to 

reach in a particular direction (Weinrich and Wise, 1982; Weinrich et al., 1984; Wise, 

1985), although when the stimulus location does not match the direction of movement 

(anti-reach or redirected reach studies) neural activity in PMd first appears to encode the 

location of a stimulus and later reflect the movement direction instructed by that stimulus 
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(Crammond and Kalaska, 1994; Gail et al., 2009; Georgopoulos et al., 1989a, b; 

Georgopoulos and Grillner, 1989).  

This is similar to what has been observed in other areas such as FEF during visual 

search tasks (Schall and Bichot, 1998) indicating that PMd retrieves the information 

concerning a given operant rule as, for example, in reach/antireache (Klaes et al., 2011) 

or match/non-match tasks (Wallis and Miller, 2003a). For instance, PMd neurons also 

discharge after presentation of an arbitrary cue whose features instruct the monkey to 

execute a particular movement (Kurata and Hoffman, 1994; Kurata and Wise, 1988a, b; 

Mitz et al., 1991). The ability of PMd to integrate sensory-motor information is also 

observed in lesion and learning studies. The studies of Passingham (1986), Petrides (1982) 

and Kurata and Hoffman (1994) have shown that ablation or transient inactivation of 

monkey’s PMd with muscimol (GABAa agonist) specifically causes deficits in retention 

and learning of novel arbitrary visuo-motor mappings (Halsband and Passingham, 1982; 

1985; Passingham, 1986; Petrides, 1982; 1985).  

Neuroimaging studies have also confirmed that PMd is normally activated during 

CVML tasks in humans (Grafton et al., 1998) and that patients with PMd lesions are 

impaired in these tasks (Petrides, 1997). However, the impairments can only be detected 

when conditional motor associations are instructed by contextual visual cues. For 

instance, monkeys are able to perform well in conditional motor-motor associations 

where sequences of three finger movements are required in order to obtain a reward 

(Passingham, 1986). A sequence task of the sort can be solved using only intrinsic 

information. The cue for the next movement can be given by joint information 

(proprioceptive input) from the last movement, whereas on a visuo-motor mapping task 



50 

processing using an extrinsic reference frame is normally required. These results further 

indicate the particular role of PMd in specification of visually-guided movements. 

However, there is also some evidence that PMd does not only integrate visuo-spatial 

information but also other percepts like auditory information (Germain and Lamarre, 

1993; Weinrich and Wise, 1982). It has also been shown that PMd integrates intrinsic 

motor information, such as the effector used (Cisek et al., 2003; Hoshi and Tanji, 2000, 

2002, 2006). For instance, Hoshi and Tanji (2000, 2002, 2006) used a sequentially 

instructed delay task to dissociate target location from effector information (arm to be 

used). PMd reflected arm use or target location independently of the order of cue 

presentation and integrated both sets of information before action specification (action 

selective cells). This is in contrast with PMv that was mainly selective for the physical 

location of the cues representing either arm or target choice and did not integrate the two 

sets of information. However, it is arguable that the results could be task dependent, as 

PMv is typically active in tasks involving 3D object manipulation and grasping. Indeed, 

neural correlates of motor planning in PMv have also been reported (Murata et al., 1997; 

Raos et al., 2006).  

The group of Hoshi and Tanji (Nakayama et al., 2008; Yamagata et al., 2009) 

conducted additional studies and used a set of sequential instructions in order to further 

dissect the process of action planning when the information provided is incomplete.  In 

one variant of the task (virtual action plan) a symbolic cue provided partial information 

about the spatial metrics of the rewarded movement. Each symbolic cue was associated to 

a particular motor rule (e.g. a square maps to a “right” reach location while a cross maps 

to a “left” reach location). The symbolic target was followed by a spatial cue consisting 
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of a couple of choice targets presented at different positions on the screen (e.g. a pair 

appears either on the left, the middle or the right side of the screen). In this task the 

animals were rewarded for reaching the correct target relative to the pair presented and 

not in the absolute metrics of the display. In a variant of the same study (direct action 

plan) a single symbolic cue provided the information about the target location in the 

display and the animals were rewarded for reaching the actual position of the target there.  

The virtual action task is similar to the one conducted by Cisek and Kalaska’s 

study (2005) where a color cue provided partial information about the identity of the 

rewarded target and a subsequent spatial cue presented metric information about the 

options. In Hoshi’s virtual action plan, PMd activity was initially selective for the partial 

instruction (left or right) and integration of spatial information provided by the second 

cue was observed in cells that had a combined selectivity for the first partial instruction 

and subsequent target location in the display. This result is important because it suggests 

that PMd could reflect the spatial metrics of the options relative to each other rather than 

in the absolute metrics of the display which is the case when there is stimulus-response 

compatibility (i.e. direct action plan). All these studies substantiate the notion that PMd 

can integrate partial sensory-motor information to specify an action. 

 

10.3. Movement preparation in PMd  

 

The involvement of the PMd in motor preparation was first described as set-

related activity, which is defined as the neural activity that starts once a forthcoming 

movement is instructed and continues until the movement is executed (Weinrich and 
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Wise, 1982, 1984, 1985). The set-related activity in PMd reveals the motor significance 

of a visual instruction rather than its sensory or attentional significance (di Pellegrino and 

Wise, 1993). This is in contrast with the activity in PMv which represents better the 

attentional significance of spatial cues, the shape of motor targets and peri-personal space 

(Gentilucci et al., 1988; Graziano et al., 1997; Murata et al., 1997; Mushiake et al., 1997). 

The PMd set-related activity typically reflects the spatial aspects of a forthcoming 

movement such as its intended direction (Kalaska and Crammond, 1995; Kurata, 1993), 

amplitude (Fu et al., 1993; Messier and Kalaska, 2000; Riehle and Requin, 1989) and 

trajectory (Archambault et al., 2009; 2011; Hocherman and Wise, 1991; Shen and 

Alexander, 1997) as well as non-spatial aspects of a movement such as speed 

(Churchland et al., 2006) or impending forces (Xiao et al., 2006). 

 

10.4. Movement execution in PMd  

 

At the stage of motor execution, neurons in PMd exhibit activity that resembles 

M1, suggesting that this area is involved in movement execution as well (Lee and van 

Donkelaar, 2006) and is influenced by hand trajectory (Hocherman and Wise, 1991; Shen 

and Alexander, 1997) and limb orientation (Scott et al., 1997). However, PMd is in 

general less sensitive than M1 to limb-related motor output details such as joint posture 

and force (Crammond and Kalaska, 1996; Kakei et al., 1999; Riehle et al., 1994; Scott et 

al., 1997) although certainly more than PMv (Kakei et al., 2001). This result is not 

surprising since PMd tends to reflect abstract aspects of the task (Caminiti et al., 1998; 

Cisek et al., 2003; Crammond and Kalaska, 2000; Shen and Alexander, 1997). During an 
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instructed-delay task where arm reaches could be instructed with either the ipsilateral or 

contralateral limb, Cisek et al. (2003) revealed that neural activity in PMd was not 

effector-selective but reflected the abstract goal or direction of targets to be reached. 

Similar observations have been made by Hoshi’s group in their study dissociating virtual 

action plans from direct motor plans (Nakayama et al., 2008; Yamagata et al., 2009).  

A reach goal location can be computed with respect to an external reference frame 

(extrinsic reference frame) or with respect to constituent parts of the body such as joints 

or muscles (intrinsic reference frame). PMd represents reaching goals both in extrinsic 

and intrinsic reference frames although the latter to much less extent than in M1, in 

agreement with the functional differences observed between the two areas.  Cells in PMd 

are modulated by hand, eye or a combination of hand-and-eye position (Batista et al., 

2007; Boussaoud et al., 1998; Caminiti et al., 1991; Cisek and Kalaska, 2002; Pesaran et 

al., 2006). However, the group of Georgopoulos has also observed coding of reach targets 

in extrinsic coordinates (hand) in M1 and has suggested a less evident difference in 

reference conding between the two areas (Georgopoulos, 1986; Georgopoulos et al., 

1986). Altogether, these data suggests that although PMd is a sensory-motor integration 

region involved in abstract aspects of motor guidance it has a close correspondence with 

M1, an area more implicated in the details of motor execution.  

This is in contrast with PMv that despite being a major source of inputs to M1 

(Matsumura and Kubota, 1979; Muakkassa and Strick, 1979) is heavily devoted to visual 

processing and does not typically represent intrinsic parameters of movement such as arm 

posture (Kakei et al., 2001). Moreover, PMv reflects mostly the perceived trajectory of 

motion in visual space (Schwartz et al., 2004) or the direction of image motion rather 
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than the actual direction of the moving arm itself (Ochiai et al., 2005). Kurata and Hoshi 

(2002) used shift-prisms to dissociate the motor space from the visual space and found an 

important proportion of cells (2/3rd) representing target location in visual space 

(exclusively or in combination with motor space). It has been additionally proposed that 

PMv contains cells involved in peripersonal perception of space (area F4) and “mirror” 

representation of goal-oriented actions (area F5). There are however some similarities 

between PMd and PMv when it comes to execution of reach to grasp movements (Raos et 

al., 2004, 2006). There are two regions involved in preparing and executing similar 

grasping movements of three-dimensional objects: one located in PMv (area F5) and one 

in PMd (ventral and rostral portion of F2, close or in juxtaposition to Grazianos 

polysensory zone, Graziano and Gandhi, 2000). PMv has a larger proportion of reach-to-

grasp cells than PMd although this can be explained based on the functional properties of 

the area and the visual processing requirements needed for grasping.  

 

11. Inconsistencies in the traditional cognitive view: perception, cognition and action 

 

Studies on the cerebral cortex have encountered difficulties interpreting neural 

activity in belonging to discrete perceptual, cognitive or motor systems. For example, 

Ungerlieder and Mishkin (1982) observed that visual processing diverges in the cortex 

into two separate pathways: an occipito parietal dorsal stream specifying spatial location, 

and an occipito-temporal ventral stream specifying object identity. In addition, color, 

shape and motion are further processed separately within these streams (Felleman and 

Van Essen, 1991) and multiple representations of space co-exist suggesting a non-unified 
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representation of the world (Colby and Goldberg, 1999; Stein and Glickstein, 1992). The 

sensory representations are strongly influenced by attentional changes (Boynton, 2005; 

Moran and Desimone, 1985) or by decision variables (Platt and Glimcher, 1999) and are 

far from being static even when the observer scans a familiar and stable scene (Bushnell 

et al., 1981; Gottlieb et al., 1998).  

The neural representations of the visual world seem to be dominated by the 

behavioral relevance of information in higher visual areas further suggesting that 

perception and cognition are not two clearly independent processing stages  (Coe et al., 

2002; Dorris and Glimcher, 2004; Gold and Shadlen, 2000; Platt and Glimcher, 1997; 

Schall and Bichot, 1998; Shadlen and Newsome, 2001; Treue, 2001; Yang and Shadlen, 

2007). For instance, Gardner’s group has shown that attention enhances behavioral 

performance by enabling efficient selection of behaviorally relevant sensory signals 

(Pestilli et al., 2011).  

The search for discrete cognitive stages has been even more problematic. For 

instance, traditional cognitive theories propose that action selection precedes action 

planning (Tversky and Kahneman, 1981) and that these two functions are carried out by 

distinct physical correlates and without any timing overlaps: there is only a single 

program prepared for execution before a movement begins (Keele, 1968; Miller, 1960). 

However, it is difficult to dissociate action selection from action planning even 

conceptually. Animals are continuously faced with opportunities and demands for action 

and must make decisions about what to do (action selection) and how to do it (action 

specification).  
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At least from the perspective of overt behavior, continuous interaction with the 

world often does not allow one to procrastinate ad-libitum and collect all information 

needed to build a complete knowledge of the surroundings. A hostile environment (e.g. 

approaching predator) motivates us to build representations of potential actions which 

the environment currently affords (e.g. escape running down the valley or fight back 

using the  cutting capacity of a sharp stone) even if these representations are partial and 

can be at times misleading (e.g. the sharp stone may be of little use on a mammoth’s thick 

fur). There is growing evidence that decisions among actions in the arm system are found 

within the same sensory-motor circuits that are responsible for planning and even 

executing the actions (Cisek and Kalaska, 2005; Gold and Shadlen, 2007; Pesaran et al., 

2008; Romo et al., 2004; Scherberger and Andersen, 2007).  

Oculomotor decisions also seem to involve the same sensory-motor areas 

involved in saccade generation (Coe et al., 2002; Dorris and Glimcher, 2004; Gold and 

Shadlen, 2000; Platt and Glimcher, 1997; Schall and Bichot, 1998; Shadlen and 

Newsome, 2001; Yang and Shadlen, 2007)  and  within “less integrated” areas barely two 

synapses away from the muscle like SC (Basso and Wurtz, 1998; Carello and Krauzlis, 

2004; Glimcher and Sparks, 1992; Horwitz and Newsome, 1999; Keller et al., 2005; Shen 

and Pare, 2007; Thevarajah et al., 2009).  

In all these areas, the same neurons that reflect decision variables (e.g. visuo-

motor rule in a reach decision task or accumulated evidence in a perceptual decision task) 

also encode later the metrics of the actions to report the decision (Cisek and Kalaska, 

2005; Kim and Basso, 2008; Nakayama et al., 2008; Roitman and Shadlen, 2002; 

Yamagata et al., 2009; Yang and Shadlen, 2007). It is therefore plausible that action 
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selection and specification involve the same circuits and are performed in an integrated 

manner: a parallel decision/planning process (Cisek, 2006, 2007b; Fagg and Arbib, 1998; 

Shadlen and Newsome, 2001). Associative regions also do not correspond well with the 

segregated topology view suggested by traditional cognitivism (Lebedev and Wise, 2002). 

For instance, PPC contains cells related to perception, cognition and action (Andersen 

and Buneo, 2003; Colby and Duhamel, 1996; Kalaska and Crammond, 1995). PPC is 

modulated by a wide range of variables associated with decision making such as expected 

utility (Platt and Glimcher, 1999), local income (Sugrue et al., 2004), log-likelihood of 

estimates (Yang and Shadlen, 2007) at the same time that it represents intended saccades 

or reaches (Andersen and Buneo, 2003; Kalaska and Crammond, 1995; Snyder et al., 

1997, 2000a, b) and is strongly modulated by attention and behavioral context 

information (Colby and Duhamel, 1996; Colby et al., 1996; Colby and Goldberg, 1999). 

 

12. Alternatives to the cognitive view 

 

Interactive behaviour cannot be broken down into a sequence of distinct and self-

contained events that each starts with a discrete stimulus and ends with a specific 

response. The deficits of the traditional view have been pointed out several times (Dewey, 

1896; Gibson, 1979; Hughlings Jackson, 1884). Gibson for instance, argued that 

perception does not involve constructing a static representation of the external world but 

rather is an active process that selects information pertinent to one’s behavior.  

For instance, the notion that perception can be gated by the significance of the 

action is well rooted in the processes of selective attention (Desimone and Duncan, 1995). 
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Interactive behavior could be viewed as a distributed system that involves continuous 

modification of on-going actions, evaluation of alternative options and updating of 

sensory information from the external world. Additionally, it does not seem to be the 

result of a static interaction of independent and highly specialized modules such as it is 

proposed in the traditional view. From an engineering point of view, interactive processes 

can be managed with a distributed control system (Parunak and Vanderbok, 1997) with 

sensori-motor feedback loops instead of using a serial and local control architecture 

(Ashby, 1965; Brooks, 1991; Sahin et al., 2007). This is precisely what is observed 

physiologically: the cerebral cortex incorporates considerable functional redundancy (e.g. 

motor regions with overlapping functions, Wise, 1985), parallel processing (e.g. visual 

information pathways, Ungerlieder and Mishkin, 1982) and loop processing architecture 

(e.g. striatal-pallido-thalamo-cortical pathways, Alexander et al., 1990; Middleton and 

Strick, 2000).  

Having some functional redundancy along with parallel processing confers 

important advantages. For instance, redundancy provides robustness to the system 

towards perturbations or lesions and possibilities for compensation after stroke (Dancause 

and Nudo, 2011; Nudo and Milliken, 1996; Nudo et al., 1996). Parallel processing 

contributes to facilitate action selection by filtering relevant from non-relevant 

information of the impending actions (Aglioti et al., 1995; Desimone and Duncan, 1995; 

Kusunoki et al., 2000; Treisman and Gelade, 1980).  

Temporal processing in a dynamic system is ecological in the sense that the 

system has the ability to respond any time that it is requested, since there is no beginning 

or end of processing but a continuum. This assumption implies that partial 
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representations simultaneously coexist, allowing flexible decision behavior. Indeed, there 

is growing evidence that the brain begins to prepare several actions in parallel while 

collecting evidence for selection between them (Cisek and Kalaska, 2005; Gold and 

Shadlen, 2007; Kalaska et al., 1998; Kim and Basso, 2008; Kim and Shadlen, 1999; Platt, 

2002; Ratcliff et al., 2007). From this perspective, interactive behaviour can be viewed as 

a constant competition between internal representations of conflicting demands and 

opportunities of the available actions, in other words a competition between 

“affordances”. 

 

13. Frontoparietal specification of potential actions and the foundations of the 

affordance competition hypothesis 

 

Ungerlieder and Mishkin (1982) observed that visual processing diverges in the 

cortex into two separate pathways. An occipito-temporal ventral stream specifies object 

identity and answers to a what question, meanwhile an occipito-parietal dorsal stream 

specifies spatial location (where question) (Figure 3). Goodale and Milner were the first 

to suggest that the predominant role of the dorsal stream is not only to build a 

representation of the environment but also to specify the spatial parameters of potential 

and on-going actions in visually guided behavior (Goodale and Milner, 1992; Milner and 

Goodale, 1995). This view directly involves structures lying in the dorsal pathway and 

reciprocally interconnected areas in specifying the parameters of potential actions 

(Andersen, 1997; Andersen and Buneo, 2003; Goodale and Milner, 1992; Kalaska, 1996; 

Kalaska and Crammond, 1995; Wise et al., 1996b, 1997).  



60 

The interconnected areas in the ventral stream provide instead information for 

action selection (Andersen and Buneo, 2003; Cisek, 2007b; Kalaska et al., 1998; 

Sakagami and Pan, 2007). Perceptual information is transformed into parameters of 

action along the dorsal stream and information diverges into a number of parallel 

subsystems each specialized towards the needs of different types of actions (Andersen 

and Buneo, 2003; Andersen et al., 1987; Colby and Goldberg, 1999; Stein and Glickstein, 

1992; Wise et al., 1997). For example, LIP is concerned with the control of gaze (Snyder 

et al., 2000b), represents the space in a body-centered reference frame (Colby and 

Duhamel, 1996; Colby et al., 1996; Snyder et al., 1998) and is interconnected with other 

parts of the gaze control system such as FEF and superior colliculus (Pare and Wurtz, 

2001). MIP is involved in guidance of arm reaching movements (Cui and Andersen, 2007; 

Kalaska and Crammond, 1995; Pesaran et al., 2008), represents target locations with 

respect to the direction of gaze (Buneo et al., 2002) and is interconnected with frontal 

regions that are involved in reaching such as PMd (Johnson et al., 1996; Wise et al., 

1997). The anterior intraparietal area (AIP) is involved in grasping (Baumann et al., 

2009), represents object features such as size and orientation (Nakamura et al., 2001) and 

is interconnected with the grasp-related area of PMv (Rizzolatti and Luppino, 2001). 

These observations suggest that all these areas represent a large distributed system for 

action specification for visually guided actions (Fagg and Arbib, 1998; Goodale and 

Milner, 1992). 
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14. Sources of biasing signals for action selection 

14.1. The dopamine system 

 

Biasing signals can represent very diverse variables (e.g. EV, local income, 

hazard rate, discounted value, action cost and utility) and are closely related to different 

aspects of reward processing (Croxson et al., 2009; Kennerley et al., 2009; Kim et al., 

2008; Louie and Glimcher, 2010; Padoa-Schioppa and Assad, 2006, 2008; Platt and 

Glimcher, 1999; Roesch et al., 2006; Rushworth and Behrens, 2008; Schultz, 2010; 

Sugrue et al., 2004; Yang and Shadlen, 2007).  

According to the predominant theory in modern psychology, we can distinguish 

two main types of reward: primary and secondary rewards (Mowrer, 1960). Primary 

rewards are those that meet direct biological needs (eg. water, food, sex and sleep), while 

secondary rewards are stimuli that have acquired rewarding properties through their 

association with primary rewards (conditioned reinforcers). Animals can treat these 

reward signals in completely different and contextually dependent ways leading to a 

fairly rich and dynamic reward-seeking behaviour (e.g. patient vs impatient foraging, safe 

vs risky gambling behaviour).  

However, the simplest type of biasing signal, reward value, hinges on a unique 

computation: the comparison between a predicted and obtained reward. This computation 

has been observed in the dopamine system (Schultz, 2006, 2007) and enables 

reinforcement learning, a process by which animals deal with secondary rewards by 

assigning a reinforcing value to a neutral stimulus. The dopamine system and BG are two 
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fundamental structures involved in reward processing and reinforcement learning 

(Murray et al., 2012 for a review).  

The dopamine system is a phylogenetically well conserved structure that can be 

traced back to primitive vertebrates. Diencephalic structures in primitive fish such as the 

lamprey seem to be homologous to the midbrain dopamine system in tetrapods (Smeets et 

al., 2000). Consequently, it would be reasonable to observe reward biasing signals for 

action selection in these structures.  

It is worthy mentioning that the dopamine system and BG are not the only 

structures that are able of reward valuation and reinforcement learning. It has been 

observed that invertebrates (with whom we do not share any telencephalic structures) can 

also learn associations through reinforcement learning (Carew and Sahley, 1986; 

Samarova and Balaban, 2007, 2009; Zhang et al., 2005). However, it is uncertain wether 

invertebrates use reward value in a similar way that vertebrates do. Certain invertebrates 

like Aplysia do not take account well for the temporal structure of reward and fit better 

with the Rescorla-Wagner model (Hawkins and Kandel, 1984).  

In contrast, the learning features of vertebrate’s dopamine system are best 

described by a temporal difference model (TD model).  This suggests that vertebrates can 

not only predict the reward associated with a condition stimulus (CS) but also can predict 

when the reward will actually occur in time (Suri and Schultz, 2001; Sutton and Barto, 

1990). Higher-order conditioning is also a notable feature of this system (Schultz, 1997; 

Suri and Schultz, 2001).  

Although the previous mentioned distinctions between invertebrate and vertebrate 

reward valuation and learning might seem attractive, there is substantial evidence that 
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social insects (e.g. bees) can learn novel associations through a hebbian-learning 

mechanism such as the TD model (Montague et al., 1995, 1996). These animals can also 

predict reward through higher order conditioning (Abramson et al., 2009; Hussaini et al., 

2007) suggesting that functional analogues to the dopamine system might exist. 

 

14.2. The basal ganglia 

 

The basal ganglia (BG) are particularly interesting from the point of view of a 

competition based model of action selection because of their particular anatomical 

organization (Nambu, 2008). Afferent pathways relay information from nearly the entire 

cerebral cortex and limbic system to the input nuclei, namely the striatum (caudate 

nucleus, putamen, nucleus accumbens), and STN, which then converge to the output 

nuclei (GPi/SNr) before they relay back to the cerebral cortex through the thalamus. This 

type of closed loop organization is typical of BG’s modular network and segregates in 

large parallel channels running through motor areas, limbic areas, associative areas and 

highly cognitive areas such as PFC (Alexander and Crutcher, 1990a; Alexander et al., 

1986; Middleton and Strick, 2000; Nakano, 2000a, b). For instance, the primary motor 

cortex (M1) projects through the striatum to the motor part of GPi (Alexander et al., 1986; 

Parent and Hazrati, 1995a, b) and relays information from GPi through the thalamus back 

to M1 (Hoover and Strick, 1999; Kayahara and Nakano, 1996). These motor loops are 

additionally somatotopically organized (Alexander et al., 1986; Deniau et al., 1996) and 

fine parallel subcircuits can be distinguished with regards to the effector used. For 



64 

instance, arm-related areas in M1, striatum and GPi are connected in a closed loop 

starting and finishing in M1 (Kelly and Strick, 2004).  

In addition to the structures taking part in cortico-basal loops, BG incorporates 

fundamental dopaminergic structures, namely the dorsolateral substantia nigra SNdl (area 

A8), the substantia nigra pars compacta SNpc (area A9) and the ventral tegmental area 

VTA (area A10) that convey reward related information (dopaminergic inputs) directly to 

the striatum (Nambu, 2008). In fact, dopaminergic inputs provide the scaffolding material 

for action-value signals encoded in BG (Samejima et al., 2005). 

The input nuclei in the striatum are involved both in the organization of 

movement (Alexander and Crutcher, 1990a; Alexander et al., 1990; Middleton and Strick, 

2000) and processing of reward information (Fiorillo et al., 2003; Hollerman and Schultz, 

1998; Morris et al., 2004; Satoh et al., 2003). This duality is important for decision 

making processes because reward information (and in particular reward prediction errors) 

can be used to learn about stimuli in the environment and select profitable courses of 

action (Montague and Berns, 2002).  

In fact, different types of reward signals have been identified in BG. For instance, 

neurons in striatum show modulation by reward magnitude (Cromwell and Schultz, 2003) 

and similar responses have also been observed in dopamine neurons (SNpc, SNdl, VTA) 

(Satoh et al., 2003; Tobler et al., 2005) which are known for encoding reward prediction 

errors (Hollerman and Schultz, 1998; Morris et al., 2004; Schultz et al., 1997).  

Reward expectation signals have also been described in striatum with some 

heterogeneity as they can integrate information concerning the modality of the stimulus 

(taste) as well as space information (goal direction) (Hassani et al., 2001). The dorsal 
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striatum (caudate nucleus and putamen) offers less pure-reward responses than the 

ventral striatum (accumbens) (Apicella et al., 1991; Schultz et al., 1992), consistent with 

the notion that motivational functions such as appetitive behaviour are more strongly 

represented in this nucleus (Kelley, 1999, 2004; Stratford and Kelley, 1999). This is in 

contrast with reward responses associated with goal-directed behavior that is widely 

represented in the dorsal nuclei (Hollerman and Schultz, 1998; Kawagoe et al., 1998). In 

fact, the integration of reward and goal-related information has been proposed as a core 

feature of BG suggesting an important role in reinforcement-driven decision making 

(Cromwell et al., 2005; Samejima et al., 2005).  

Samejima et al. (2005) have shown that the specific reward value of an action 

(action-value or spatial-reward encoding) is represented by striatal neurons. It is 

therefore not surprising that spatial-reward magnitude (Cromwell and Schultz, 2003; 

Kawagoe et al., 1998), spatial-reward probability (Samejima et al., 2005) and spatial-

reward adaptative coding (Cromwell et al., 2005) have been reported in this structure. In 

addition, striatal neurons show modulation during movement preparatory delay 

suggesting that the striatum is to some extent involved in movement preparation 

(Hollerman and Schultz, 1998) and can predict the animal’s choice (Samejima et al., 

2005). Furthermore, striatal activity evolves in concert with PMd activity to indicate the 

selected movement during learning of arbitrary visuomotor mappings (Buch et al., 2006) 

and striatal activity can reflect “virtual action plans” when only partial information is 

available for movement preparation (Arimura et al., 2010).  

Traditionally, the major output of BG (e.g. pallidum) has been linked to motor 

activity (Arkadir et al., 2004; Mink, 1996; Turner and Anderson, 1997). The pallidum 
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encodes movement direction in a similar way as M1 (eg. cosine tuning functions; 

Georgopoulos et al., 1982; Turner and Anderson, 1997) and focal inactivation of this 

structure clearly disrupts motor programs such as reaching and grasping (Wenger et al., 

1999).  

Bergman’s group (Arkadir et al., 2004) conducted recordings in globus pallidus 

(GPe) with monkeys trained in a probabilistic visuomotor task and reported spatial 

reward encoding in this structure. Namely 34% of pallidal neurons were modulated 

solely by direction of movement while the activity of a comparatively large number of 

cells (41%) was modulated by both expected trial outcome and direction of arm 

movement.  

Further work by Boraud’s group demonstrated important differences between the 

BG input and output nuclei precisely at the level of the interaction between reward value 

and motor parameter representations (Pasquereau et al., 2007). Boraud’s group recorded 

simultaneously in the major input structure of the motor striatum, namely the putamen, 

and the major output nucleus, GPi. Both structures were modulated by movement 

parameters (direction) and cognitive parameters (reward probability) both during the 

delay period and movement execution. Approximately the same numbers of cells in both 

structures represent the spatial location of the targets during the delay period. However, 

only cells in GPi are modulated by the chosen target. This suggests that the GPi integrates 

spatial information and goal information (movement plan) as has also been reported in 

PMd during the delay period (Crammond and Kalaska, 1994, 2000). 
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14.3. Prefrontal cortex  

 

The ability to select actions on the basis of very abstract criteria may suggest the 

participation of phylogenetically recent cognitive structures in the prefrontal lobe (Hauser, 

1999). Prefrontal structures are strongly implicated in decision making and action 

selection (Fuster et al., 2000; Kim and Shadlen, 1999; Miller, 2000; Tanji and Hoshi, 

2001). Neurons in the DLPFC integrate very diverse stimulus features and make the area 

particularly versatile (di Pellegrino and Wise, 1991; Hoshi et al., 1998; 2000; Kim and 

Shadlen, 1999). Prefrontal decisions appear to involve accumulation of votes for the 

categorical selection of one choice over another (Buschman and Miller, 2007; Cromer 

and Miller, 2009; Hoshi et al., 2000; Kim and Shadlen, 1999).  

Kim and Shadlen (1999) showed that DLPFC activity reflects initially the quality 

of evidence in favor of a given target and later the chosen target. Upon presentation of an 

incomplete set of information for action selection, Hoshi et al. (2000) showed that 

DLPFC cells reflect first  all potentially relevant stimulus features such as  shape and 

location but compute rule-selection (i.e. shape-match or location-match) and intended 

movement only once this information is provided.  

It is generally thought that prefrontal structures are responsible for implementing 

higher-order rules and strategies (Collins et al., 1998; Ragozzino et al., 1999; Wise et al., 

1996a). In addition, prefrontal areas are more active during learning of new tasks rather 

than during performance in familiar tasks (Asaad et al., 1998; Raichle et al., 1994). These 

results suggest that PFC plays a stronger role in rule acquisition rather than in rule 
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retrieval (Asaad et al., 1998; Dias et al., 1996; Wallis and Miller, 2003a). When a rule 

becomes familiar it tends to be encoded more strongly in “downstream” motor system 

structures (Wallis and Miller, 2003a; Wise et al., 1996a).  

Prefrontal areas are particularly important for performance in novel visuo-motor 

mappings, and therefore, subjects with PFC lesions are not impaired on already known 

mappings (Bussey et al., 2001). Moreover, neurological lesion and imaging studies 

suggest an involvement of PFC in rule-switching tasks (Asaad et al., 1998; Dias et al., 

1996; Mansouri et al., 2006; Stuss et al., 2000; Wise et al., 1996a). Taken altogether, this 

data suggests that PFC is responsible for learning novel, higher-order rules such as rule-

switches.  

However, two different areas, DLPFC and OFC, might be involved in different 

aspects of high-order rule learning. For instance, rule-switching on the basis of reward 

contingencies or spatial contingencies involves OFC and DLPFC very differently. 

Humans with OFC damage are impaired in gambling tasks; meanwhile, humans with 

DLPFC lesions are impaired in learning spatial working memory tasks (Bechara et al., 

1998). A similar dissociation has been observed in monkeys (Dias et al., 1996; Wallis et 

al., 2001). These results can be due to the strikingly different cortical inputs that are 

received by DLPFC and OFC. OFC receives information from all sensory modalities 

(Carmichael and Price, 1995a, b; Cavada et al., 2000; Romanski et al., 1999), including 

highly processed information from inferior temporal cortex (ITC) and has extensive 

connections with the limbic system and very notably with the amygdala. Therefore, OFC 

encodes reward in terms of magnitude (number of drops of juice), incentive value (taste), 

emotional value and visual preference (Wallis, 2007). In contrast, DLPFC densely 
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connects with premotor cortex (Chiba et al., 2001; Lu et al., 1994; Wallis, 2007; Wallis 

and Miller, 2003b) and receives “dorsal-stream” visuo-spatial information (Goodale and 

Milner, 1992). DLPFC encodes reward amount, visual preferences and spatial 

information (Chen et al., 2001; Leon and Shadlen, 1999; Mushiake et al., 2006), although 

visual preference effects are less represented than in OFC (Wallis and Miller, 2003b). 

Multiple aspects of reward are encoded in OFC. Tremblay and Schultz (1999) 

have shown that OFC has range adaptation properties. In this study the monkey was 

presented with two different arbitrary visual cues simultaneously, each of which was 

associated with one of three different types of reward (raisin, apple or cereal). The value 

associated with each cue was reflected in the modulation of cell firing rate and was 

contingent on the pair presented. A cell fired for the raisin cue when both raisin and 

apple cues were presented, although the same cell fired for apple cue when apple was 

presented together with cereal cue.  

Padoa-Schioppa and Assad (2006) showed economic value encoding in OFC 

(offer value, chosen value and taste cells (the later two being subjective-value correlates) 

(Padoa-Schioppa and Assad, 2006). OFC also shows differences in firing rate between 

reward and punishments (Roesch and Olson, 2004). Another interesting observation is 

that OFC encodes the value of a reward-predictive cue earlier than other prefrontal areas 

do, DLPFC (Wallis, 2007; Wallis and Miller, 2003b).   

OFC plays also a unique role as well in the learning of reward contingency 

reversals (Leon and Shadlen, 1999; Thorpe et al., 1983; Wallis and Miller, 2003b). 

Monkeys with OFC lesions fail to perform correctly in a rule-switching task and continue 

to perform according to a preoperatively learned contingency. This persevering behaviour 
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is very specific to OFC injuries (McEnaney and Butter, 1969; Wallis, 2007, for a review). 

In contrast, DLPFC bilateral lesions do not cause strong impairments in rule-switching 

task performance in both monkeys and humans (Clarke et al., 2004, 2007; Dias et al., 

1996; Fellows and Farah, 2003; Rolls et al., 1994). Rule-switching in OFC depends on 

serotonergic innervation (Clarke et al., 2004, 2007; Dias et al., 1996).  

Other studies have shown that OFC is also involved in gambling tasks and 

compulsive behaviour (Volkow and Fowler, 2000). For instance, human subjects that had 

damage in OFC showed performance deficits in the Iowa gambling task (Bechara et al., 

1994, 1998; Malloy et al., 1993). Such subjects were unable to “play safe”. Moreover, 

OFC lesions in monkeys produce a marked difficulty in suppressing the NO-GO response 

in a GO/NO-GO task (Butters et al., 1973; Iversen and Mishkin, 1970; Lawicka et al., 

1975), similar to what is observed in human patients with OFC damage (Leimkuhler and 

Mesulam, 1985; Malloy et al., 1993). In contrast, DLPFC damage in humans does not 

impair GO/NO-GO performance (Decary and Richer, 1995; Drewe, 1975). This 

demonstrates the selectivity of the ventral orbito-frontal region in the inhibitory control of 

impulsive behavior. 

 

14.4. Ventral stream structures  

 

Biasing information for visually-based action selection could also come from the 

ventral visual stream (Cisek, 2007a; Kalaska et al., 1998; Sakagami and Pan, 2007). The 

ITC is sensitive to visual features of stimuli (Brincat and Connor, 2004, 2006; Desimone 

et al., 1984; Tanaka et al., 1991; Verhoef et al., 2012) and the behavioural context in 
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which these features are presented (Eskandar et al., 1992). However, ITC is also 

modulated by attention (Mo et al., 2011). Thus, the selectivity that ITC shows for 

particular object identity features could subserve other roles than object recognition such 

as an attentional based pre-selection oriented to actions.  

The detection of particular stimulus that release specific behaviors has been first 

observed by ethologists (Ewert, 1997; Tinbergen, 1950). This is consistent with Gibson’s 

(1979) notion that perception is an active process of picking up behaviorally relevant 

cues. Duncan and Desimone (1995) proposed a model where action selection could be 

based either on target features and saliency (bottom up control) or by the locus of 

attention (top down). Bottom-up processes are dominated by stimuli that stand out from 

their background. For instance, new and unfamiliar stimuli become processed 

preferentially at nearly all levels of the visual system (Allman et al., 1985; Desimone et 

al., 1985). In a top-down situation the locus of attention can guide action selection.  

In one of their studies, Moran and Desimone (1985) conducted recordings in area 

V4 and ITC in a visual search task designed explicitly to address this dichotomy. In one 

task variant the target and distractor cues were simultaneously presented within the 

receptive field of the cells (RF), while in another variant one of the two stimuli was 

placed outside RF. The effects reported in area V4 and ITC were congruent between 

these two areas. When both the target and distractor were presented within RF, the cells 

were modulated primarily by the target and the responses to the distractor were greatly 

attenuated. The cells responded as if their RF had shrunk around the target (Desimone 

and Duncan, 1995). However, in the second task variant there was no modulation by the 
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presence of the distractor outside of the RF of the cells, as if the presence of the distractor 

didn’t matter (Moran and Desimone, 1985).  

These results are consistent with a biased competition model of visual attention in 

which target and distractor are competing for the cells response when they are close to 

each other (Desimone and Duncan, 1995). The findings have been extended by other 

recent studies (Monosov et al., 2010) indicating that spatial selection can precede object 

identification during visual search tasks. This observation suggests that the role of the 

ventral stream may not be only pure perception but also collection of visual information 

useful for action selection (Milner and Goodale, 1993; Passingham, 1985; Lebedev and 

Wise, 2002). 

 

15. The affordance competition hypothesis  

 

Behavior can be viewed as a constant competition between internal 

representations of conflicting demands and opportunities, of the potential actions that 

Gibson (1979) termed “affordances”. Figure 7 depicts a schematic representation of how 

the ‘‘affordance competition’’ framework may be used to interpret neural data on visually 

guided behavior (Cisek, 2007a, b; Cisek and Kalaska, 2010). According to this 

hypothesis, visual information in stimulus-response tasks (SR) is processed at the level of 

cortex through at least two waves of activity. A first wave of visually driven activation 

quickly sweeps through thalamocortical projections and through the occipitoparietal 

‘‘dorsal stream’’. The information processed in this wave leads to the specification of 

potential actions in fronto-parietal structures.  
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The second wave sweeps through the ventral stream and travels through the 

limbic system, BG and PFC. The information processed by this wave is gradually 

conveyed to fronto-parietal structures and leads to the selection of a winning action that is 

released for execution (Mishkin et al., 1983; Milner and Goodale, 1995; Pisella et al., 

1998). The first wave activates neurons in occipital, parietal, and frontal cortical areas 

within 40–60 ms of stimulus onset (Ledberg et al., 2007; Schmolesky et al., 1998; 

Thompson et al., 1996). It is striking for instance, that integrated oculomotor areas such 

as FEF can respond to visual stimulation as early as 50ms (Schmolesky et al., 1998).  
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Figure 7. Sketch of the proposed neural substrates of the affordance competition 

hypothesis, in the context of visually guided movement. The primate brain is shown, 

emphasizing the cerebral cortex, cerebellum and BG. Filled dark arrows represent 

processes of action specification, which begins in the visual cortex and proceed rightward 

across the parietal lobe, transforming visual information into representations of potential 

actions. Polygons represent three neural populations along this route: the leftmost 

represents the encoding of potential visual targets, modulated by attentional selection; the 

middle represents potential actions encoded in parietal cortex; and the rightmost 

represents activity in premotor regions. Each population is depicted as a map of neural 

activity with activity peaks corresponding to the lightest regions. As the action 

specification occurs across the fronto-parietal cortex, distinct potential actions compete 

for further processing. This competition is biased by input from BG and prefrontal 

cortical regions which collect information for action selection (double-line arrows). This 

biasing influences the competition in a number of loci, and owing to reciprocal 

connectivity, these influences are reflected over a large portion of the cerebral cortex. 

The final selected action is released into execution and causes both overt feedback 

through the environment (dashed blue arrow) and internal predictive feedback through 

the cerebellum (adapted from Cisek and Kalaska, 2010). 
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In a pop-out visual search task Shall’s group (Thompson et al., 1996) has shown 

that an ideal observer can reliably differentiate the activity evoked by a target from that 

evoked by a distractor even earlier (30ms with respect to target onset). These results are 

consistent with the observations of Salinas group pointing out that decision biases for 

color based discrimination of target and distractor can also take place as early as 30ms 

(Stanford et al., 2010).  

This perceptual detection latency is significantly earlier than in some other visual 

areas such as V2 and V4 further reinforcing the idea that the visual system neural 

activation does not necessarily comply with a serial activation sequence (Paradiso, 2002). 

Altogether, these results suggest that fast responses are not entirely perceptual because 

they reflect the context in which the stimuli are presented. For instance, in a reaching task 

in which the monkey expects to see one or two stimuli the PMd population is modulated 

by the presence of a familiar visual cue as early as 50ms after cue onset and the response 

is larger for one stimulus than for two stimuli (Cisek and Kalaska, 2005). This suggests 

that PMd activity can reflect anticipatory visual biases or priors (Coe et al., 2002; 

Takikawa et al., 2002) that need to be taken in consideration or not, depending on the 

contingencies of the task (Crammond and Kalaska, 2000). In summary the very early 

wave of visual activity in the dorsal stream represents the immediate environment in 

terms of information about potential actions that are currently available (Gibson, 1979; 

Milner and Goodale, 1995).  

In addition, this initial wave of activity causes multiple potential actions to be 

simultaneously encoded within effector-specific fronto-parietal systems as distinct groups 

of active neurons within each local population (Cisek and Kalaska, 2005, Gharbawie et 
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al., 2011a, b). For example, visual targets for saccadic eye movements are represented in 

LIP and FEF (Schall and Bichot, 1998; Snyder et al., 1997, 2000b) while directions of 

reaching movements from the current hand location to graspable objects are represented 

in MIP and PMd (Alexander and Crutcher, 1990b, c; Buneo et al., 2002; Crutcher and 

Alexander, 1990; Ferraina and Bianchi, 1994; Kalaska and Crammond, 1995). 

Within each cortical area multiple potential actions can be simultaneously 

encoded (Cisek and Kalaska, 2010). Hoshi and Tanji (2006) trained monkeys in a 

bimanual response-choice task in which the animals were first presented with a reach 

target location without specifying which arm to use and neural activity in the premotor 

cortex reflected the potential movements of both hands until the monkey was instructed 

about which hand to use (Hoshi and Tanji, 2006).  

Moreover, simultaneous specification of multiple potential actions can occur even 

within the same effector system (Basso and Wurtz, 1998; Bastian et al., 1998, 2003; 

Baumann et al., 2009a; Cisek and Kalaska, 2005; Klaes et al., 2011; McPeek and Keller, 

2002; Platt and Glimcher, 1997; Powell and Goldberg, 2000; Schall and Bichot, 1998; 

Scherberger and Andersen, 2007). For instance, when two potential reaching options are 

available the PMd population simultaneously reflects the impending reaching direction 

for both of them (Cisek and Kalaska, 2005). Even with a single target, the reach and anti-

reach options can be simultaneously represented both in PMd and in the parietal reach 

region (PRR) (Klaes et al., 2011). In perceptual decision making tasks, Shadlen and 

Newsome (2001) have also shown that LIP cells can reflect a simultaneous representation 

of two alternative random-motion directions. There is substantial evidence of this notion 

in the oculomotor system in behavioral and neurophysiological data (Basso and Wurtz, 
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1998; ; McPeek et al., 2000; McPeek and Keller, 2002; Platt and Glimcher, 1997; Schall 

and Bichot, 1998).  

McPeek and Keller (2002) suggest that the preparation of multiple sequential 

saccades can overlap in time. When two or more potential saccade targets are presented 

simultaneously, neural correlates for each of them can be observed in area LIP and even 

in the SC where they are modulated by selection probability (Basso and Wurtz, 1998; 

Kim and Basso, 2008; Platt and Glimcher 1997; Powell and Goldberg 2000). 

According to the affordance competition hypothesis these simultaneously 

represented potential actions compete for release into overt execution through mutual 

inhibition in a similar way to the mechanism of selective attention (Boynton, 2005; 

Desimone and Duncan, 1995) consistent with earlier proposals suggesting parallel 

movement preparation (Erlhagen and Schoner, 2002; Fagg and Arbib, 1998; Tipper et al., 

1998).  

Action selection is mediated by a competition process that takes place across a 

distributed set of cortical areas, and it is biased by a variety of task-relevant factors. 

Action selection is a slow and gradual process that overlaps with the initial “visual 

detection process”. For instance, FEF neurons respond to the onset of a stimulus as early 

as 50-30ms (Schmolesky et al., 1998) but discriminate the choice for prosaccades versus 

antisaccades in approximately 120ms (Sato and Schall, 2003). Moreover, neurons in PMd 

respond to the locations of the cues instructing two potential movements in around 70ms 

but start predicting the monkey’s choice after 110ms (Cisek and Kalaska, 2005).  

The biasing influences are conveyed by the second wave of visual activation that 

travels through the ventral stream (Milner and Goodale, 1995; Mishkin et al., 1983; 



78 

Pisella et al., 1998). This wave arrives from BG, PFC, and the limbic system, and within 

50–100ms after the initial wave of visual activation, these biases become strong enough 

to cause a winning action to emerge and other potential actions to be suppressed, leaving 

activity throughout the fronto-parietal system to reflect a decision (Cisek and Kalaska, 

2005; Ledberg et al., 2007; Thompson et al., 1996).  

Ledberg et al. (2007) conducted a local field potential (LFP) study that is 

particularly relevant to the process discussed here. The group recorded LFPs from several 

regions simultaneously, meanwhile monkeys performed in a discrimination task. The 

group reported latency segregation between three types of neural events, namely visual 

responses at cue onset, discrimination of target features and prediction of the monkeys’ 

choice (action selection). They observed a feedforward sweep of cue-onset related 

activity at around the same time (50-70ms) in all visual areas (striate/extra-striate cortex) 

as well as in FEF and premotor cortex, followed by a signal correlated with 

categorization 100ms after cue-onset in the visual areas, and 200ms in prefrontal sites.  

Most interestingly, signals reflecting the animal’s decision appeared around 

150ms after cue-onset in all areas, somehow at an intermediate timing between the two 

previous processes. However, it is likely that the order in which the decision appears 

across the cerebral cortex is task dependent (Cisek, 2006). For instance, when monkeys 

perform in a pop-up visual search task, neural activity in LIP reflects the choice before 

FEF, but if the task requires conjunction search FEF reflects the choice before LIP 

(Buschman and Miller, 2007). In a GO/NO-GO task in which the animals are asked to 

make decisions on the basis of cognitive rules (i.e. matching task), PMd predicted the 

response even before PFC (Wallis and Miller, 2003b).  
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Although action specification and action selection appear as processes belonging 

to two distinct waves of activation, this may be consequence of the task design. It is 

likely that during continuous interaction with a natural environment these two processes 

can be entirely overlapping with new actions being specified as others are being executed 

allowing biasing information to dynamically redirect decisions from one behavioral 

option to another (redirected actions, lion chasing prey from figure 1A).  

To summarize, the affordance competition hypothesis suggests that visual 

information leads to the very rapid specification of potential actions across a diverse set 

of regions distributed within the fronto-parietal cortex at the same time that it receives 

biasing information to select an action for execution (simultaneous action selection and 

specification). PMd is an attractive candidate to test the predictions of this hypothesis 

because of a number of physiology and anatomy considerations (previously discussed) 

suggesting a role of this area both in action selection (decision making) and action 

specification. 

 

16. A computational model for reaching decisions: achievements and predictions 

 

Cisek developed in 2006 an “affordance competition model” focusing on visually 

guided actions. The model includes some of the main cortical regions involved in 

reaching behaviour, such as the PFC, PPC, PMd and M1 (Figure 8A). The input to the 

model consists of visual information about the direction of the targets and a signal 

triggering movement onset (GO signal). The output of the model reflects the direction of 

the target selected and does not attempt to interpret overt kinematics.  
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Figure 8. Computational model. A. Each neural layer is depicted by a set of 

circles representing cells with different preferences for a movement parameter (e.g. 

direction). Thin arrows represent topographic connections (in most cases reciprocal) 

between layers involved in action specification. Grey polygons represent the input to and 

from prefrontal cortex, which is divided into two subpopulations each preferring a 

different stimulus color (R:red, B:blue). These projections are also topographic, but with 

much lower spatial resolution. Visual inputs are presented to the input layer, and the GO 

signal gates activity in M1. Abbreviations: PPC, posterior parietal cortex; PFC, prefrontal 

cortex; PMd, dorsal premotor cortex; M1, primary motor cortex. B. Each population 

consists of cells with different preferred directions, and their pattern of activity can 
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represent one (i) or (ii) several potential directions simultaneously (adapted from Cisek, 

2007). 

The neural populations in each cortical region do not encode a unique value of a 

movement parameter such as a single movement direction in space but represent instead 

an entire distribution of potential movement value parameters allowing different 

movement directions to be represented simultaneously.  

This defines a “parameter field” for the options (Cisek, 2006, 2007) that is related 

to the attention model of Tipper et al. (2000) and the “decision field” theory of Erlhagen 

and Schoner (2002). The model suggests that a given population of cells, each with a 

preferred value of a particular movement parameter, behaves as something akin to a 

probability density function of potential values of that parameter. This allows a single 

population to reflect two potential actions simultaneously by a bimodal distribution 

having distinct peaks of activity for each of the options when they are mutually exclusive 

(i.e reaching to either of two diametrically opposed targets, Figure 8B (ii)), and by a 

single wide peak when the metrics of the competing actions is similar (i.e. reach in-

between targets for two close-by target locations, Figure 8B (i)).  

In this situation the strength of the activity associated with a particular movement 

reflects its likelihood of being selected that can be influenced by a variety of value 

biasing signals such as salience, effort, reward magnitude, reward probability, expected 

value (EV) or any other decision-variable observed in frontal or parietal cortices (Gold 

and Shadlen, 2000; Kim and Lee, 2010; Platt and Glimcher, 1999). 

In Cisek’s model, potential actions are represented simultaneously within a single 

frontal or parietal region. Cells that have similar value preferences excite each other, 

while cells that have different value preferences compete with each other through 
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reciprocal inhibition. This biased competition mechanism is similar to recent models of 

visual attention (Boynton, 2005; Desimone, 1998) and can explain certain neural and 

behavioral results. 

Most importantly the biased competition process assumes the existence of a 

threshold that emerges from the non-linear dynamics between competing populations of 

cells, namely the number, metrics and strength (relative or absolute) of the options (Cisek, 

2006, 2007; Grossberg, 1973). The threshold prevents noise random fluctuations driving 

the decision process and is not hardwired (Carpenter and Williams, 1995; Mazurek et al., 

2003; Smith and Ratcliff, 2004).  

The model can reproduce qualitative features of neural activity in reach-decision 

tasks (Cisek and Kalaska, 2005). Notably, it can explain the inverse relationship between 

number of options and the firing rate for each of them (Basso and Wurtz, 1998; Cisek and 

Kalaska, 2005). It can also explain a relative coding between decision variables such as 

reward value and motivation (Roesch and Olson, 2004) and the narrowing of spatial 

tuning functions for multiple options (Cisek and Kalaska, 2005).  

The model explains as well a number of psychophysical results on the spatial and 

temporal characteristics of motor decisions. For instance, it is consistent with the inverse 

relationship between RT and the quality of evidence for the options. It can also explain 

the direct relationship between RT and the number of options even if the spatial metrics 

is taken into account (Bock and Eversheim, 2000). For instance, Bock and Eversheim 

(2000) showed that the RT in a reaching task was not dependent on the number of targets 

(two or five) as long as the targets subtend the same spatial angle between them. It was 
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found instead that RT depended on the angular distance between the targets and was 

shorter when the targets were closer to each other.  

In a timed response paradigm (Ghez et al., 1997), the model predicts correctly the 

different reach directions observed for close-by or far-apart targets. Ghez et al. (1997) 

showed that when subjects are forced to make choices quickly, they move to each of the 

targets randomly if they are spaced farther than 60° away, and move in-between them if 

the targets are close together. When two targets are far apart, the model (Cisek, 2006) 

predicts multiple competing peaks of activity in the PMd-PPC population and the 

decision is determined by the peak that happens to fluctuate higher when the GO signal is 

given. If the targets are close together, then their two corresponding peaks merge into a 

single one due to the positive feedback between cells with similar parameter preferences. 

The model presented here makes a number of general predictions that are examined in 

detail in the next section. 
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III. OBJECTIVE, HYPOTHESIS AND PREDICTIONS OF THE THESIS 

 

Objective: 

The present work examines how decisions among actions take place in 

premotor cortex. Specific interest is given to the interaction of spatial information and 

decisional biases such as expected value in the processes of action selection and 

specification. 

 

Central hypothesis: affordance competition 

Action selection and action specification involve a unified, parallel architecture 

that uses sensory information to simultaneously specify several potential actions while 

collecting information for selection among them through a biased competition process. 

 

1. Specific hypothesis: action selection entails a biased competition process  

 

Prediction 1A  

Neural activity can represent multiple potential actions simultaneously 

This has already been shown neurophysiologically for reach, grasp and saccade 

goal selection processes (Baumann et al., 2009; Cisek and Kalaska, 2005; Glimcher, 2003; 

McPeek and Keller, 2002; Scherberger and Andersen, 2007). Neurophysiology data in 

PMd suggests that two mutually exclusive potential reaching actions can be 

simultaneously represented until a choice can be made, at which time the activity 

corresponding to the non chosen option becomes suppressed. Simultaneous specification 
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of multiple potential actions is also supported by several behavioral studies of reaching 

movements made in presence of distractors (Song and Nakayama, 2006, 2008, Song et al., 

2008; Tipper et al., 1992). Although a definitive assessment of the “simultaneity” aspect 

of this prediction could require multiple-unit recording using cell arrays (Shenoy et al., 

2003), a simple cell population analysis of data collected through single electrode 

recordings can address indirectly this issue. The experimental and modeling results 

presented in articles 1 and 2 support precisely this observation. 

 

Prediction 1B 

Neural activity in sensory-motor regions does not represent a single decision variable 

in isolation but integrates all factors that influence the choices 

It has already been reported that sensory-motor areas such as LIP and ACC 

integrate value, cost and other factors affecting the subjective desirability of the options 

and constitute the “biases” of a decision (Kennerley et al., 2009; Platt and Glimcher, 

1999). This prediction is tested explicitly for the interaction between spatial and value 

information in articles 1 and 2. 

 

Prediction 1C  

The variables that are associated with a given option are always expressed relative to 

the alternative actions 

Neural correlates for relative value have been shown in the oculomotor system: 

FEF (Leon and Shadlen, 1999) and LIP (Louie et al., 2011). We test this prediction 

explicitly for the arm reaching system in articles 1 and 2. 
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2. Specific hypothesis: biasing information is incorporated gradually in the action 

specification process  

 

Prediction 2A 

The latency for biasing information (ventral stream) and spatial processing (dorsal 

stream) should be different.  

Dorsal stream and ventral stream pathways can have typically different processing 

times. It is known that tasks that require prefrontal and ventral stream processing take 

more time than more perceptual tasks (e.g. categorization vs match/non-match) (Wallis 

and Miller, 2003a). Articles 1 and 2 address this prediction by comparing the latency for 

relative value and spatial information in premotor cortex. Article 2 compares additionally 

both variables within a learning context perspective. 

 

3. Specific hypothesis: the strength of the competition between potential actions 

depends on the similarity between them. 

 

Prediction 3A 

Decisions among action are affected by the metrics of the options 

In the natural environment, decisions between simultaneous options are usually 

associated with actions that have particular metrics (Figure 1, see introduction). The 

observation that decisions among actions are affected by the metrics of the actions is 

consistent with human psychometric data (Chapman et al., 2010; Favilla, 1997; Ghez et 
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al., 1997) and a growing body of evidence from oculomotor neurophysiology studies 

(Louie et al., 2011; Schall, 2004a, b). Articles 1 and 2 examine this prediction. 

 

4. Specific hypothesis: decisions are made in the same regions that guide the actions  

 

Prediction 4A  

Action selection and action specification are not two serial but parallel processes 

This prediction can be rooted in ecological and interactive behaviour. Continuous 

interaction with the world does not often allow one to stop and collect indefinitely 

information about one’s surroundings. Neurophysiology supports the notion that sensory 

information is continuously used to select and specify several currently available 

potential actions (Cisek and Kalaska, 2005; Glimcher, 2003; Gold and Shadlen, 2000; 

Kalaska et al., 1998; Kim and Shadlen, 1999; Platt, 2002). The same cells that guide 

initial decisions continue to update their activities after the animals change their mind. 

There is some evidence that this  might be the case for the arm system (Archambault et 

al., 2009, 2011; Wise and Mauritz, 1985). Article 3 addresses this particular issue. 
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ABSTRACT 

 

It has been proposed that whenever an animal faces several action choices, their 

neural representations are processed in parallel in fronto-parietal cortex and compete in a 

manner biased by any factor relevant to the decision. We tested this hypothesis by 

recording single-unit activity in dorsal premotor cortex (PMd) while a monkey performed 

two delayed center-out reaching tasks. In the one-target task, a single target was 

presented and its border style indicated its reward value. The two-target task was the 

same except two targets were presented and the value of each was varied. During the 

delay period of the one-target task, directionally-tuned PMd activity showed no 

modulation with value. In contrast, during the two-target task, the same neurons showed 

strong effects of the value associated with their preferred target, always in relation to the 

value of the other target. Furthermore, the competition between action choices was 

strongest when targets were furthest apart. This angular distance effect appeared in neural 

activity as soon as cells became tuned, while modulation by relative value appeared much 

later. All of these findings can be reproduced by a computational model which suggests 

that decisions between actions are made through a biased competition taking place within 

a sensorimotor map of potential actions. 
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INTRODUCTION  

 

Classical theories (Tversky and Kahneman, 1981) consider decision-making to be 

separate from the sensorimotor processes that implement the chosen response (Fodor, 

1983). However, recent neurophysiological studies have shown neural correlates of 

decision variables within brain regions implicated in sensorimotor control (for reviews, 

see Glimcher, 2003; Gold and Shadlen, 2007; Cisek and Kalaska, 2010). For example, 

neural correlates of decision variables have been found throughout the saccade system, 

including the lateral intraparietal area (Dorris and Glimcher, 2004; Platt and Glimcher, 

1999; Sugrue et al., 2004; Yang and Shadlen, 2007), the frontal eye fields (Schall and 

Bichot, 1998; Coe et al., 2002) and the superior colliculus (Basso and Wurtz, 1998; 

Horwitz et al., 2004), raising the question of why a putatively cognitive process should 

involve the sensorimotor system. 

Such results appear less surprising if we consider that many of our everyday 

decisions are decisions between actions, such as choosing a path through a crowd or the 

target for a reach. It has been proposed that in such situations, the brain specifies several 

potential actions in parallel, and selects between them through a process of biased 

competition within the sensorimotor system itself (Cisek, 2007; Cisek and Kalaska, 2010). 

Recent computational models have suggested how multiple potential movements can be 

simultaneously encoded in parietal and premotor cortex (Tipper et al., 2000; Erlhagen 

and Schoner, 2002; Cisek, 2006; Furman and Wang, 2008), and how a competition 

between them can be biased by decision variables (Cisek, 2006). 
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This hypothesis makes several predictions. First, it predicts that neural activity 

can simultaneously represent several potential actions, as shown in the reaching (Cisek 

and Kalaska, 2005; Scherberger and Andersen, 2007) and grasping systems (Baumann et 

al., 2009), as well as in the saccade system (McPeek and Keller, 2002; Glimcher, 2003) 

where the influence of decision variables is already well-established.  

Second, neural activity in sensorimotor regions will not represent any single 

decision variable in isolation, but will integrate all factors that influence choices. This 

implies that the variables associated with a given action will always be expressed relative 

to those associated with alternative actions. Third, the strength of competition between 

potential actions will depend on the similarity between them. This is motivated by simple 

facts of geometry: when choosing between two nearby targets, their decision-signals can 

be mixed and one can start moving between the targets. However, choosing between two 

targets in opposite directions implies that the choice has to be all-or-none.  

Here, we test these predictions through neural recordings in the dorsal premotor 

cortex (PMd) of a monkey performing a reach decision task, and compare the results to 

simulations of a biased competition model (Cisek, 2006). Some of these results have been 

presented previously in abstract form (Pastor-Bernier and Cisek, 2010). 

 

MATERIALS AND METHODS  

 

A male monkey (Macaca mulatta) performed a planar center-out reaching task 

illustrated in Fig 1A (see Supplemental methods). After a 350-650ms Center-Hold-Time 

(CHT), one or two cyan targets appeared, with border styles indicating their value in 
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drops of juice (See Fig 1A, inset). The reward was determined probabilistically to 

encourage the monkey to explore available options (Herrnstein, 1961). A “low-value” 

target (L, thick border) had a 60% chance of yielding 1 drop, 30% chance of yielding 2 

and 10% chance of yielding 3 (Expected value, EV=1.5). A “medium-value” target (M, 

no border) was worth 2 (60%), 1 (20%) or 3 drops (20%) (EV=2). A “high-value” target 

(H, thin border) was worth 3 (60%), 2, (30%), or 1 drop (10%) (EV=2.5). The non-

monotonic relationship between border thickness and value was used to dissociate 

motivational factors from physical properties of stimuli. The monkey held the cursor in 

the center for an instructed delay period (DELAY, 700-1300ms) until a GO signal was 

indicated by a change in target color and disappearance of the central circle. To receive 

the reward, the monkey had to move to a target within a maximum 550ms movement 

time (MT) and hold the cursor there (Target-Hold-Time, THT, 500ms).  

When cells were isolated, we first ran a block of 90 trials in which only one target 

was presented (1T), to identify the DELAY-period preferred target (PT) of each cell. 

Next, we ran a block of 180 two-target trials (2T), including ones where the PT target 

was present and low, medium, or high-valued, while the other target (OT) appeared at 

60°, 120°, or 180° away and was low, medium, or high-valued. Each block also included 

30 trials in which the targets were 120° apart but neither was in the direction of the PT. 

These trials allowed us to analyze the activity of simultaneously recorded cells with 

different PTs. All analyses shown here use trials in which at least one of the targets 

presented was the cell’s PT. In 67% of 2T trials (FREE), the monkey was free to move to 

either target after the GO signal. In 33% of 2T trials (FORCED), one of the targets 

disappeared at GO and the monkey had to move to the remaining one. FREE and 
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FORCED trials were randomly interleaved to encourage the animal to keep both options 

partially prepared. 

To assess relative value effects we compared DELAY-period activity during trials 

with targets 120° apart in which the OT was medium-valued while the PT value varied 

(N≥60 trials), as well as those in which the PT was medium-valued while the OT value 

varied (N≥60). To assess distance effects we examined trials in which the PT was present 

and the OT was 60° (N≥30), 120° (N≥120) or 180° away (N≥30). Significance (p<0.05) 

was assessed using two-tailed t-tests and ANOVA with post-hoc Tukey-Kramer tests. 

Latency of effects was calculated as the time when the difference in activity between 

compared conditions exceeded 2 standard deviations in a sliding window (size: 10ms; 

step: 2ms) beginning at cue onset (Sato and Schall, 2003).  

To compare neural activity to model predictions (Cisek, 2006), we ran 

simulations of the same task and used similar analysis procedures. The model was 

identical to that previously described (see Cisek 2006), without any changes of 

parameters except that the model’s “prefrontal” activity was scaled by a signal related to 

the absolute value of each target (low=0.3, medium=0.7, high=1.0). 

 

RESULTS 

Behavior 

 

In 1T trials the monkey’s success rate was 96%, in 2T FREE it was 96% and in 

2T FORCED it was 94% (in all cases N>60,000). In 2T FREE trials the monkey selected 
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the more valuable target 85% of the time, indicating that he understood the meaning of 

the stimulus cues. 

Reaction times (RTs) were similar across conditions due to the DELAY period. 

However, we observed a small but significant increase in movement speed to higher-

valued targets: in the 1T task mean MT was 400ms to high-value and 416ms to low-value 

targets (KS-test, p<0.01). 

 

Neural activity in PMd 

 

Activity was recorded from 327 cells from the arm area of PMd (Supplemental 

Fig 1), of which 226 (69%) had significant directional tuning during at least one epoch 

(DELAY, MT, THT) and were considered task-related. Here, we focus on cells with 

DELAY-period tuning (112/226, 49%).  About half of these (50/112, 45%) were isolated 

long enough to collect data across all angular distances (“Distance-complete” cells). 

Figures 1B-D show the neural activity of three example cells, from trials in which each 

cell’s PT was one of the targets presented. During the 1T task (1st column), directionally-

tuned DELAY period activity showed no effect of PT value. However, in the 2T task, 

when a second target was present and medium-valued (2nd column), the neural activity of 

all three cells now showed strong modulation with the relative value of the PT, firing 

more when their PT was more valuable than the OT (2nd column). This effect was also 

observed when the PT was medium-valued and the OT value was varied (3rd column). In 

this case the cell activity was lower when the OT was more valuable than the PT. This 
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suggests that the nature of the value effect is always relative to the other option 

presented.  

Importantly, DELAY period activity was also modulated as a function of the 

angular distance between the targets (Figs 1B-D, 4th column). In most cases, activity was 

weaker when the targets were further apart (180°) than when they were closer to each 

other (60° or 120°). Another interesting finding is the difference in latency between 

relative value and angular distance effects. For example, the cell shown in Fig 1B 

exhibited effects of angular distance 102ms after target onset (4th column), while the 

effects of expected value emerged significantly later, at 220ms (3rd column). 

 

Population analyses 

 

The population of 112 DELAY-tuned cells was tested for relative value effects 

and “distance-complete” cells were additionally tested for distance effects. From the 

entire tuned population of 112 cells, 49 (44%) showed significant effects of relative value 

in the 2T task (t-test, p<0.05) with activity increasing with PT value and decreasing with 

OT value. Importantly, no effects were ever observed in the 1T task (t-test, p>0.05 for all 

comparisons). Across the group of distance-complete cells, 38/49 (78%) showed some 

effect of relative value or distance. Thirty-five cells (71%) showed relative value effects 

and 22 (45%) showed angular distance effects (Supplemental table 1). Congruent results 

were obtained with t-tests and ANOVA with post-hoc Tukey-Kramer tests (p<0.05, see 

Supplemental Materials). 
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Figure 2A compares the mean DELAY-period activity of individual cells (N=112) 

during the 1T task when the PT was low-valued (x-axis) versus when it was high-valued 

(y-axis). The means were not statistically different (Wilcoxon signed-rank test, p=1). In 

contrast, most cells had higher DELAY activity in the 2T task when the PT was more 

valuable than the OT (Fig 2B, Wilcoxon signed-rank test, p<10-6) and lower when the OT 

was worth more than the PT (Fig 2C, p<10-6). About half (19/35, 54%) of the distance-

complete cells with relative value effects also had stronger activity when the targets were 

60° apart than when they were 180° apart (Fig 1D, p<10-3). Importantly, the same trends 

were observed across the entire population of cells with and without individually 

significant effects (p>0.9 in 1T; and p<10-5 in 2T for all comparisons). No significant 

effects of overall target value were found for cells that were not tuned during the DELAY 

(p=1).  

The latency of relative value and distance effects was calculated for all distance-

complete cells with any effect (N=38). Figure 3A shows a cumulative distribution of the 

time at which a cell becomes tuned in the 1T task, the time at which it exhibits a distance 

effect in the 2T task, and the time at which it exhibits a relative value effect in the 2T task. 

Across the population, effects of angular distance appeared at approximately the same 

time as cells became tuned, while the effect of relative value appeared 50-200ms later. 

The relative-value and distance-effect distributions were statistically different 

(Kolmogorov-Smirnov test, p<0.024) as were the relative value and tuning-onset 

distributions (KS-test p<0.024). The difference between tuning-onset and distance effect 

distributions was not statistically significant (KS-test, p>0.98) 
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Gain effect of distance over relative value 

 

Figure 3B shows the mean DELAY-period activity of three example cells (Fig 

1B-D) as a function of OT value when the PT is medium-valued, separately for trials with 

targets 60°, 120° or 180° apart. Note that all slopes are negative and steeper when targets 

are further apart. This suggests an interaction between angular separation and relative 

value effects. Figure 3C compares the slopes of all distance-complete cells with any 

effect (N=38) when the targets are 60° (x-axis) versus 180° (y-axis) apart. The further 

apart the targets are, the more negative becomes the slope of activity versus relative value 

(t-test, p<0.003). 

 

A biased competition model reproduces the results 

 

Cisek (2006) described a model of action selection in which populations of cells 

along the dorsal stream form a distributed representation of potential actions, which 

compete against each other through lateral inhibition (Supplemental Fig 2). The same 

model can simulate our neural recording results without any changes of parameters, 

except the addition of an absolute value signal into the PFC layer. As shown in Fig 4A, 

the model chooses the more valuable target when values are unequal and chooses 

randomly when they are equal. When targets are 60° apart, the model often chooses the 

direction in-between the targets (Ghez et al., 1997). Figure 4B shows an example of a 

simulated PMd neuron. Just as real neurons, the simulated cell exhibits no sensitivity to 

value in the 1T task. This is because the model continuously re-normalizes activity across 
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the population, and with one target it always produces one hill of activity that is similar 

regardless of biasing. However, the cell shows strong sensitivity to relative value in the 

2T task, in which the balance between two hills of activity can be influenced by biasing 

factors from PFC. The model also exhibits sensitivity to distance, with stronger activity 

when targets are 60° than 120° or 180° apart. Finally, as in the data, the effect of distance 

is evident in the model almost immediately but the effect of relative value takes longer to 

influence PMd activity due to the slow dynamics of model PFC (note arbitrary time units 

in Fig 4). 

 

DISCUSSION 

 

Recently, many studies have shown that decision variables influence neural 

activity throughout the sensorimotor system. These findings have sometimes been 

interpreted as the neural encoding of formal quantities such as uncertainty (Basso and 

Wurtz, 1998), expected gain (Platt and Glimcher, 1999), local income (Sugrue et al., 

2004), or accumulated sensory evidence (Yang and Shadlen, 2007). We suggest that such 

findings do not necessarily imply that decision variables are explicitly encoded in neural 

activity (in the sense that they can be decoded), but may instead reflect their influence on 

a competition between potential actions taking place within the sensorimotor system. 

This predicts that any factor relevant for the monkey’s choice will influence activity, 

including reward value, which was explicitly manipulated here. Importantly, however, 

our data shows that the effect of value was always relative, and therefore never appeared 

when there was no choice to make. Our PMd results are therefore more naturally 
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interpreted as motor-related activities that specify potential reach directions, which are 

modulated by relative subjective desirability (Dorris and Glimcher, 2004), a general term 

that includes all factors relevant to the choice. 

While we found PMd activity to always reflect the relative values of actions, 

activity related to absolute values has been reported in the striatum (Samejima, 2005; Lau 

and Glimcher, 2008). It is possible that the basal ganglia are a major source of the biasing 

signal which influences premotor activity (Cisek, 2007; Leblois et al., 2006; Redgrave et 

al., 1999). In saccade tasks, activity related to absolute value has been reported in the 

parietal cortex (Platt and Glimcher, 1999; Seo et al. 2009) and in the ventral premotor 

cortex (PMv) (Roesch and Olson, 2003). The fact that we did not find reward-related 

modulations in PMd during our 1T task may be attributable to differences between eye 

versus arm control or to differences in recording locations. For example, since PMv has 

different response properties than PMd (Boussaoud and Wise, 1993; Hoshi and Tanji, 

2007) as well as distinct anatomical connections (Rizzolatti and Luppino, 2001), it may 

be more involved in representing sensory and reward information than PMd, which is 

more concerned with motor information. An earlier study using a saccade task (Roesch 

and Olson, 2004) found that PMd activity increased when either the reward or the penalty 

for one of the targets was increased. Although it is difficult to directly compare our 

results with those of a saccade task, in which PMd cells were not strongly directionally 

tuned, it is plausible that the effect was also related to relative subjective desirability. 

One could argue that our findings are related to selective attention, which has also 

been described as biased competition (Desimone and Duncan, 1995). From the traditional 

perspective of cognitive psychology, one may wish to dissociate processes related to 
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selective attention from those related to action selection. However, in our view (Cisek, 

2007; Cisek and Kalaska, 2010) these may not be functionally distinct. It has been 

suggested that selective attention serves as an early mechanism for action selection 

(Allport, 1987; Neumann, 1990; Tipper et al., 1998), and that both are facets of the same 

biased competition occurring throughout the dorsal visuomotor stream (Duncan, 2006; 

Cisek, 2007). Indeed, it has been shown that microstimulation in a putatively motor 

region of frontal cortex can influence processing in visual cortex (Armstrong et al., 2006), 

demonstrating a strong link between attention and action selection. 

Another important implication of our findings concerns the site of the competition 

that determines choices. Decision-related modulations in the sensorimotor system do not 

themselves necessarily imply that decisions are made within sensorimotor circuits. They 

could instead made “upstream” in regions such as PFC, which are clearly involved in 

decisions (Tanji and Hoshi, 2001; Wallis and Miller, 2003) and project into sensorimotor 

regions. However, our results argue against this traditional view. First, we found that the 

dynamics of the competition that determines decisions are dependent on spatial variables. 

These are irrelevant for the abstract economics of cognition, but are important for the 

motor system, which selects between physical actions where geometrical relationships 

matter. Second, these effects of distance appear in cell activity as soon as cells respond to 

the stimuli, implying that the competition between potential actions takes place all 

throughout the fast sensorimotor “dorsal” visual stream (Cisek, 2007; Cisek and Kalaska, 

2010). All of these results are remarkably well captured by a simple computational model 

(Cisek, 2006) which suggests the following conclusion: that although decisions between 
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actions are influenced by variables supplied by higher cognitive regions, they are 

determined by a competition which takes place within sensorimotor circuits. 
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Figure 1. A. Behavioral task. B-D. Three individual cell examples. Each panel shows 

histograms and raster plots for 1T and 2T trials in which the cell’s PT was present. 

Activity is aligned on cue onset. The GO signal, movement onset, and movement offset 

are indicated by thick squares, circles and triangles, respectively. In the 1st column (1T 

task), colors indicate whether the PT value was low (blue), medium (red), or high (green). 

In the 2nd column (2T) task, the PT values were low (blue), medium (red), or high (green) 

and there was also a medium-valued OT present. In the 3rd column, the PT was always 

medium-valued while the OT value was low (blue), medium (red), or high (green). In the 

4th column, both the PT and OT were medium-valued but the OT was 60° (blue) 120° 

(red), or 180° (green) away from the PT. 
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Figure 2. Population analyses. A. Mean firing rate of individual cells in the 1T task when 

the PT was low-valued (x-axis) versus high-valued (y-axis). Each cross indicates mean 

and standard error of the mean. B. Firing rates comparing 2T trials in which the OT is 

medium-valued and the PT is low-valued (x) versus high-valued (y). C. Comparison of 

2T trials in which the PT is medium-valued and the OT is low-valued (x) versus high-

valued (y). D. Comparison of 2T trials in which the PT and OT are medium-valued and 

are 60° (x) versus 180° apart (y). In all panels, black crosses indicate cells with 

statistically significant effects (N=52) along with the rest of the delay tuned population 

(N=60, grey).  
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Figure 3. A. Cumulative distribution of latencies with which distance-complete cells 

(N=38) exhibit tuning in the 1T task (green), and discriminate angular distance (blue) and 

relative value (red) in the 2T task.  B. Firing rates of three example cells (Fig 1B-D) as a 

function of OT value, when the PT was medium-valued. Each column shows trials with a 

different angular difference between targets (60°, 120°, 180°). Note that the slope is more 

negative for the 180° trials. C. Comparison of the mean (and s.e.m.) of the slopes in the 

60° versus 180° conditions, for all distance-complete cells (N=38).  
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Figure 4. A. Activity from the model's caudal PMd population as color plots for 12 

different conditions, as in the cell data. Each color plot shows activity evolving over the 

time-course of a single trial (x-axis), with cells sorted by their preferred direction (y-axis). 

Blue indicates low activity and red indicates high activity. B. Behavior of one cell from 

the caudal PMd population, comparing activity across conditions as in the neural data 

(Fig 1B-D).  
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Task apparatus and recording sites 

 

The task involved moving a cursor from a central circle (2cm radius) to one of six 

possible targets (2.4cm radius) spaced at 60° intervals around a 12.6cm radius circle. The 

monkey performed movements using a cordless stylus whose position was recorded 

(125Hz) by a digitizing tablet (CalComp). Target stimuli and continuous cursor feedback 

were projected onto a mirror suspended between the monkey’s gaze and the tablet, 

creating the illusion that they are in the plane of the tablet. Oculomotor behavior was 

unconstrained as eye movements do not strongly influence arm-related PMd activity 

(Cisek and Kalaska, 2002). Neural activity was recorded with 3-4 independently 

moveable microelectrodes (NAN microdrive) and data acquisition was performed with 

AlphaLab (Alpha-Omega). On-line spike discrimination was used to estimate cell 

preferred directions for choosing target locations. All analog waveforms were stored on 

disk for offline sorting using principal components (Plexon). All task events, trajectory 

data and spike times were stored in a database (Microsoft SQL Server 2005) accessed 

through custom scripts for data analysis (Matlab). After completing training, the animal 

was implanted under general anesthesia with a titanium head post and a recording 

chamber placed using MRI images (Brainsight primate). The chamber was centered on 

the arm area of PMd, between the precentral dimple and the junction of the arcuate sulcus 

and spur (Supplemental Figure 1). All procedures followed university and national 

guidelines for animal care. 
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Calculation of directional tuning  

 

We calculated directional tuning preferences of each cell during each behavioral 

epoch (DELAY, MT, and THT) in the 1T block, and assessed significance with a non-

parametric bootstrap test (1000 shuffles, p<0.05; Cisek et al., 2003). The PT of each cell 

was based on its activity in the DELAY period. For cells that did not have trials in the 1T 

block (e.g. cells which were found while the monkey was performing the 2T block) the 

PT was based on the delay period activity for FREE trials in which a high-valued target 

(PT selected) and a low-value target (OT non-selected) was presented to the monkey, 

who selected the high-value target. The tuning obtained with this method was readily 

comparable with the tuning obtained in the 1T task, with very few exceptions (N=2 cells, 

which were not tuned in 1T and became tuned in the 2T task). A possible confound with 

this tuning method is that it assumes that cells have value effects in the 2T block. To 

investigate the impact of such an assumption, we calculated the tuning of DELAY cells 

with 1T trials (N=86/112, 77%) and DELAY cells without 1T trials (N=26/112, 23%) 

and treated them as two separate groups. Similar proportions of cells had statistically 

significant effects using t-tests (p<0.05): 42 out of 86 (49%) DELAY-tuned cells with 1T 

trials had value effects in 2T and 12 out of 26 (46%) DELAY-tuned cells without 1T 

trials had value effects in 2T. Comparable results were obtained using ANOVA and a 

post-hoc Tukey-Kramer test (p<0.05): 37 out of 86 (43%) DELAY tuned cells with 1T 

trials had value effects and 12 out of 26 (46%) DELAY tuned cells without 1T trials had 

value effects. A population analysis limited to cells with both 1T and 2T trials 

(Supplemental Figure 3) exhibited similar trends as an analysis of the total population 
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(including cells without 1T trials). As in the full data, no significant effects were found 

during the DELAY in the 1T task (Wilcoxon signed-rank test, p=1) and value and 

distance effects were observed in the 2T task (p<10-4 in 2T for all comparisons). This 

suggests that both groups of cells (with and without 1T trials) belong to the same 

population and were therefore analyzed together in the main text.  

 

Additional repetitions in single-cell recordings  

 

A typical 2T block had 90 trials with targets 120° apart, and the PT of an isolated 

cell was one of the targets in 60 of these trials. In an additional 60 trials the PT appeared 

with an OT 60° away, and in 30 the PT appeared with an OT 180° away. Thus, in each 

2T block the trials in which the targets are 180° apart were slightly under-represented 

with respect to trials with the other two angular distances (60° and 120°). For cells that 

were held isolated long enough (Distance-complete cells) a comparable number of trials 

across angular distances were obtained through block repetition. 

 

Statistics for the assessment of value and distance effects  

 

To assess the statistical significance of value and/or distance effects at the 

individual cell level, we compared the DELAY period activity of each cell using two-

tailed t-tests (p<0.05) and an analysis of variance (ANOVA) with post-hoc Tukey-

Kramer tests (p<0.05). For example, the delay period activity for trials in any of the three 

values tested in 1T (L, M or H) were compared using ANOVA to assess whether there 
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was a statistical difference within any value combination: low vs. high, low vs. medium 

and medium vs. high. Two-tailed t-tests and Tukey-Kramer tests were used to determine 

whether there was a statistically significant difference in a particular value combination 

(Criteria for a cell with value effects). In the 1T task there was no statistical significance 

for any cell with either of these two methods.  In the 2T condition where the value in OT 

was varied (L, M, H) and the value in PT was held constant (M), the possible 

combinations were OT:low vs. OT:medium, OT:low vs. OT:high and OT:medium vs. 

OT:high. Both t-tests and ANOVA with Tukey-Kramer tests were in close agreement 

qualitatively and quantitatively (t-test: N=49 with p<0.05; ANOVA: N=42 with p<0.05). 

Similar numbers were obtained in the 2T condition in which the PT value was varied (L, 

M, H) and the OT value was held constant (M). The analysis of DELAY period activity 

for the three angular distances in 2T (60°, 120° and 180°) was performed with t-tests and 

ANOVA in a similar way as with value comparisons (t-test N=22 with p<0.05 and 

ANOVA N=18 with p<0.05). In general, both t-test and ANOVA methods were found to 

be in close agreement, yielding N=52 cells with reward or value effect with t-tests and 47 

cells with ANOVA and Tukey-Kramer tests. 

In addition, we performed 2-way ANOVAs to compare reward value in PT and 

angular distance as well as reward value in OT and angular distance. Fourteen out of 38 

distance-complete cells (37%) showed a significant interaction between relative value 

and angular distance. This is in good agreement with the proportion of cells obtained with 

the t-test method 19/38 (50%). The interactions between relative value and angular 

distance were also quite similar for the distance-complete cells that had both 1T and 2T 

trials 12/31 (39%, 2-way ANOVAS) and 17/31 (54%, t-tests). 
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Determination of a unique value for latency of effects 

 

The latency for relative reward or distance effects was taken as the earliest 

discrimination time for value effects. For example, in the 2T condition where the value in 

OT was varied (L, M, H) and the value in PT was held constant (M), the latency of 

relative value effects was chosen as the earliest among the combinations OT:L vs. OT:M, 

OT:L vs. OT:H and OT:M vs. OT:H. The earliest latency for angular distance was chosen 

among the earliest discrimination time among the following combinations: 60° vs. 120°, 

60° vs. 180°, or 120° vs. 180°.  
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Supplemental Table 1. 
Classification of delay activity according to observed effects 
 
 
         N N (1T & 2T)*        
Cells tuned during delay (Delay-tuned) 1121 89 
    
Delay-tuned with any effect of value or distance 522 412 
Delay-tuned with value effect in 1T 0 0 
Delay-tuned with value effect only (in 2T) 30 22 
Delay-tuned with distance effect only 3 2 
Delay-tuned with both value and distance effects 19 17 
Delay-tuned with any value effect 49  

(30+19) 
39 

(22+17) 
Delay-tuned with any distance effect 22  

(3+19) 
19  

(2+17) 
   
Distance-complete delay-tuned cells 50 41 
   
Distance-complete with any effect 383 313 
Distance-complete with value effect in 1T 0 0 
Distance-complete with value effect only (in 2T) 16 12 
Distance-complete with distance effect only 3 2 
Distance-complete with both value and distance effect 19 17 
Distance-complete with any value effect 35 

 (16+19) 
29 

 (12+17) 
Distance-complete with any distance effect 22 

 (3+19) 
19  

(2+17) 
   
 
(1T & 2T)* : Cells that have trials collected in both the 1T and 2T conditions 
1, 2 Cells used for general population analyses.  
3 Cells used for distance-and-value interaction effect (gain effect) and latency analyses. 
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Supplemental Figure 1. Recording locations in 

PMd. Black crosses indicate recording sites. The 

locations for tuned cells with effects are shown 

with red circles (N = 52). 
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Supplemental Figure 2. Model of action selection, in which populations of cells 

along the dorsal stream implement a distributed representation of potential actions 

that compete against each other through lateral inhibition. Each population is 

modeled as a set of tuned neurons with “on-center-off-surround” recurrent 

connectivity. The model includes posterior parietal cortex (PPC), prefrontal 

cortex (PFC), three layers of PMd (rostral to caudal) and primary motor cortex 

(M1). Biasing signals related to absolute reward value enter as input to the PFC 

layer. Figure 4 in the main text shows activity from the caudal PMd population 

(red box). 
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Supplemental Figure 3. Population analyses limited to cells that had trials both in 1T 

and 2T blocks. A. Mean firing rate of individual cells in the 1T task when the PT was 

low-valued (x-axis) versus high-valued (y-axis). Each cross indicates mean and standard 

error of the mean. B. Firing rates comparing 2T trials in which the OT is medium-valued 

and the PT is low-valued (x) versus high-valued (y). C. Comparison of 2T trials in which 

the PT is medium-valued and the OT is low-valued (x) versus high-valued (y). D. 

Comparison of 2T trials in which both the PT and OT are medium-valued and are 60° (x) 

versus 180° apart (y). 
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Supplemental Figure 4. Latency and gain effect analysis limited to cells that had trials 

in both 1T and 2T. A. Cumulative distribution of latencies with which the cells (Distance-

complete cells, N=31) exhibit tuning in the 1T task (green), and discriminate angular 

distance (blue) and relative value (red) in the 2T task. B. Comparison of the mean (and 

s.e.m.) of the slopes in the 60° versus 180° conditions, for all distance complete cells, 

N=31).  
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ABSTRACT 

 

Recent neuroeconomic theories suggest that decisions are made through 

comparisons of the costs and benefits of outcome values, prior to the preparation of actions. 

In contrast, ethologically-based theories propose that potential actions representations are 

prepared in parallel and interact with each other through a biased competition process. The 

latter view makes two key predictions: 1) that neural activity in sensorimotor regions is 

influenced by the relative, not absolute value of action choices; and 2) that the sensorimotor 

contingencies of potential actions influence the selection between them. We tested these 

predictions by recording neural activity in the dorsal and ventral premotor cortex (PMd and 

PMv) during a reach decision task in which the expected value (EV) of targets and the 

angular distance between them were independently manipulated. A significant fraction of 

cells in both regions (54% in PMd, 59% in PMv) were modulated by the relative value of 

targets, but no cell in either region was modulated by absolute value, consistent with a 

biased competition process that produces full divisive normalization. In addition, the gain 

of the value effect of many cells (42% in PMd and 20% in PMv) was modulated by the 

angular separation between targets, suggesting that the competition takes place within a 

sensorimotor map that respects the geometry of action space. The effect of angular 

separation appeared as soon as the cells became tuned (as early as 75ms after target onset), 

while modulation by relative value appeared 50-100ms later. To further examine how value 

and spatial information become integrated in the decision process, we also recorded activity 

in a task variant in which the mapping between cue stimuli and values had to be learned. 

We found that while spatial information is present even with novel cues, relative value 
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modulation only emerges after the animals learn the mapping. All of these results are 

consistent with a model in which the fast dorsal visual system specifies multiple potential 

actions in parallel, which then compete within a distributed sensorimotor map while other 

regions gradually bias that competition by modulatory decision variables such as expected 

value. 

 

INTRODUCTION 

 

When you go to the grocery store to buy a jar of peanut butter, your choice of 

product is influenced by a variety of factors, including subjective preference, cost, quality 

of ingredients, familiarity with the brand, etc. Economic theories suggest that humans make 

decisions by combining all of these factors into a unified estimate of the value of each 

choice, and then selecting the option with the highest value. While classic economic 

theories did not claim direct correspondence with neural processes (Von Neumann and 

Morgenstern, 1944), recent neurophysiological work has suggested that neural correlates of 

economic value do indeed exist in the brain. For example, neural activity in many cortical 

regions is modulated by a variety of decision variables such as expected gain (Platt and 

Glimcher, 1999), local income (Sugrue et al., 2004), and time-discounted rewards (Cai et 

al., 2011; Kim et al., 2008). In particular, neurons in the orbitofrontal cortex (OFC) and 

ventromedial prefrontal cortex (vmPFC) behave very much like what one would expect if 

they encoded the economic value of offered goods as well as the choice made (Padoa-

Schioppa and Assad, 2006). These findings have led to proposals that the classical concepts 
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of economics correspond more or less directly to the actual brain processes that implement 

our choices (Padoa-Schioppa, 2011). 

An important question concerns the kinds of mechanisms that determine our 

decisions: do we decide by comparing representations of the value of the potential 

outcomes of our choices, or do we decide through a competition between the courses of 

action available to us (Cisek, 2012)? The “ model” (Padoa-Schioppa, 2011) suggests that 

choices are driven by explicit representations of offer value – a unified measure of the costs 

and benefits of each expected outcome. Importantly, it suggests that these decisions are 

independent of the sensorimotor contingencies associated with the required actions. The 

model suggests that decision-making is an executive function made in cognitive centers 

and does not involve the regions which plan and execute (Alexander and Crutcher, 1990; 

Andersen et al., 1997; Ferraina and Bianchi, 1994; Houk and Wise, 1995; Kalaska and 

Crammond, 1992; Kurata, 1989). 

However, the activity in many fronto-parietal regions involved in sensorimotor 

control has been shown to be modulated by a variety of decision-variables (Croxson et al., 

2009; Kennerley et al., 2009; Kim et al., 2008; Louie and Glimcher, 2010; Padoa-

Schioppa and Assad, 2006, 2008; Platt and Glimcher, 1999; Roesch et al., 2006; 

Rushworth and Behrens, 2008; Schultz, 2010; Sugrue et al., 2004; Yang and Shadlen, 

2007). This could have many implications. One possibility is that these modulations are 

not related to decision-making per se, but to processes that co-vary with decision 

variables, such as arousal (Roesch and Olson, 2004). Another possibility is that the 

regions in which these modulations are found are not in fact related to sensorimotor 

control, but are part of the cognitive system (Padoa-Schioppa, 2011). A third possibility 
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is that decision-related modulations of sensorimotor cells are simply the reflection of 

cognitive processes that actually occur upstream, but these cells do not themselves 

contribute to the process of selection. All of these proposals conform to a classic 

distinction in psychology, the distinction between cognitive and sensorimotor processes 

(Fodor, 1983; Pylyshyn, 1984). 

A fourth possibility is that the brain does not respect this classic distinction, and that the 

neural mechanisms for decision-making and sensorimotor control are closely integrated 

(Cisek, 2006, 2007b; Cisek et al., 2002). While the  model offers a promising account of 

economic choices, such as decisions between different brands of peanut butter, it does not 

address the larger context of ecological choices in which our decision-making capacities 

evolved. For our distant ancestors such as primitive vertebrates, whose behavioral needs 

determined the phylogenetic foundation of our brain’s organization, nearly all decisions 

were about actions. This has an important implication: that for the kinds of decisions for 

which our brains originally evolved, sensorimotor contingencies were among the most 

important factors determining the correct choice at a given time (Cisek, 2012), in addition 

to factors such as value. 

 

For example, consider the kind of decisions that a mouse must make as it is running 

away from a cat. Which escape route should it take? Should it continue along the present 

course or should it switch directions? Importantly, the mouse cannot stop to evaluate these 

questions but must perform the decision process during its ongoing locomotion. 

Furthermore, the options offered (escape routes), as well as their costs and benefits, are 

defined by the geometry of the environment and are constantly changing. An escape route 
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of putatively high value (big enough for the mouse but too small for the cat) may be less 

attractive if it requires a sharp turn. Furthermore, beyond the potential value of the options 

themselves, their geometric relationship to each other is also relevant. For example, a 

choice between two escape routes that are 180° apart has to be all-or-none and immediate, 

but two escape routes that are close together can be initially mixed and the choice between 

them made only at the last moment. In summary, for decisions between actions, 

sensorimotor contingencies matter. 

For these reasons, a system that makes decisions between actions in real-time must 

integrate both cognitive and sensorimotor processes. This provides a straightforward 

explanation for why neural activity in sensorimotor regions is influenced by decision 

variables. It also predicts that sensorimotor contingencies such as the relationship between 

options should influence the process of deciding between them. Some behavioral evidence 

for this has already been reported. For example, the reaction time (RT) of a reaching 

movement is influenced not simply by the number of potential targets, but by the region of 

space they cover (Bock and Eversheim, 2000; Favilla, 1997). Target separation is also a 

critical determinant of whether guesses between targets are discrete (aimed randomly at 

one of two options placed far apart) or continuous (aimed in-between two options placed 

close together (Favilla, 1997; Ghez et al., 1997). Models aimed at explaining such results 

(Cisek, 2006; Erlhagen and Schoner, 2002; Tipper et al., 1998) suggest that the decision 

options themselves are defined within a continuous sensorimotor map of potential actions, 

and that it is competition within this map that determines the choice that is made. 

According to these models, such a competition receives many sources of bias, including 

input from regions that may represent classical economic variables such as offer value. 
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Interestingly, these models of action selection are mathematically closely related to models 

of attentional selection (Desimone and Duncan, 1995), which also involve a biased 

competition process. 

The biased competition model (Cisek, 2006) proposes a distinction between the 

neural systems that compute the biases for influencing action competition and those that 

implement the competition itself. There may be many sources of bias, and they may not 

always be in agreement. Activity in biasing regions may be specialized for a given type of 

decision factor (e.g. discounted value, cost, probability of success) and it may represent that 

quantity on an absolute scale that preserves transitivity. In contrast, the competition itself 

should take place within a distributed but interconnected circuit, in which the constituent 

regions represent a sensorimotor map of potential movements that respects the geometric 

relationships between them. Activity in such regions should reflect all relevant biases, and 

always in a relative manner – i.e. the modulatory effect of the value of each option should 

always be relative to the other options simultaneously presented at a given moment. 

Several testable predictions distinguish the biased competition model from a purely 

economic theory such as the  model. The most critical of these is whether sensorimotor 

contingencies matter ― for example, whether geometric relationships influence how 

decisions are made between actions. A second important prediction is that within the 

regions responsible for ultimately determining the choice, neural activity will be modulated 

by the relative and not the absolute values of currently available potential actions. 

To test these predictions, we recorded neural activity in the premotor cortex of 

monkeys trained to perform a task in which they chose between two reaching targets whose 

values and locations were varied from trial to trial (Figure 1A). The angular separation 
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between the targets was 60°, 120°, or 180°, but they were always at the same distance from 

the central starting circle and always required approximately the same level of effort. 

Importantly, the angle between the targets did not change the value or the cost of either 

choice. Thus, for a  model that makes decisions based on cost/benefit analyses of offers, 

angular separation has no bearing upon the decision process. However, for the biased 

competition model in which the decision evolves as a competition within a sensorimotor 

map, the angular separation influences how strong the competition between options should 

be. For targets far apart it predicts strong competition but for targets close together it 

predicts weaker competition and partial mixing of options, resulting in many movements 

initiated in-between the targets. Furthermore, the biased competition model predicts that in 

all cases, neural activity in the sensorimotor system will be related to the relative, not the 

absolute value of the potential rewards. Some of these results have previously appeared in 

preliminary form (Pastor-Bernier and Cisek, 2010, 2011). 

 

MATERIALS AND METHODS 

 

Two male monkeys (Macaca mulatta) performed a planar center-out reaching 

task illustrated in Figure 1A. After a 350-650ms Center-Hold-Time (CHT), one or two 

cyan targets appeared, with border styles indicating their value in drops of juice (See 

Figure 1A, inset). The reward was determined probabilistically to encourage the monkeys 

to explore available options (Herrnstein, 1961). A “low-value” target (L, thick border) 

had a 60% chance of yielding 1 drop, 30% chance of yielding 2 and 10% chance of 

yielding 3 (Expected value, EV=1.5). A “medium-value” target (M, no border) was worth 
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2 (60%), 1 (20%) or 3 drops (20%) (EV=2). A “high-value” target (H, thin border) was 

worth 3 (60%), 2, (30%), or 1 drop (10%) (EV=2.5). The non-monotonic relationship 

between border thickness and value was used to dissociate motivational factors from 

physical properties of stimuli. The monkeys held the cursor in the center for an instructed 

delay period (DELAY, 700-1300ms) until a GO signal was indicated by a change in 

target color and disappearance of the central circle. To receive the reward, the monkeys 

had to move to a target within a maximum 550ms movement time (MT) and hold the 

cursor there (Target-Hold-Time, THT, 500ms).  

When cells were isolated, we first ran a block of 90 trials in which only one target 

was presented (1T), to identify the DELAY-period preferred target (PT) of each cell. 

Next, we ran a block of 180 two-target trials (2T), including ones where the PT target 

was present and low, medium, or high-valued, while the other target (OT) appeared at 

60°, 120°, or 180° away and was low, medium, or high-valued. Each block also included 

30 trials in which the targets were 120° apart but neither was in the direction of the PT. 

These trials allowed us to analyze the activity of simultaneously recorded cells with 

different PTs. All analyses shown here use trials in which at least one of the targets 

presented was the cell’s PT. In 67 % of 2T trials (FREE), the monkey was free to move to 

either target after the GO signal. In 33 % of 2T trials (FORCED), one of the targets 

disappeared at GO and the monkey had to move to the remaining one. FREE and 

FORCED trials were randomly interleaved to encourage the animal to keep both options 

partially prepared. 

To assess relative value effects we compared DELAY-period activity during trials 

with targets 120° apart in which the OT was medium-valued while the PT value varied 
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(N≥60 trials), as well as those in which the PT was medium-valued while the OT value 

varied (N≥60). To assess distance effects we examined trials in which the PT was present 

and the OT was 60° (N≥30), 120° (N≥120) or 180° away (N≥30). Significance (p<0.05) 

was assessed using ANOVA with post-hoc Tukey-Kramer tests. 

In most sessions, the monkeys were presented with targets for which the mapping 

between border style and expected value was very familiar (see Figure 1A inset). 

However, in some cases, we held cells long enough to also record activity in a block of 

2T NOVEL trials, in which the border styles presented to the monkey had never been 

seen before (different colors, dotted vs. dashed lines, multiple borders nested within each 

other, etc.). Thus, the monkey had to learn, through trial and error, the value indicated by 

each novel border style. We kept the mapping stable for the entire block of NOVEL trials, 

and only presented the monkey with FREE choice trials, but we continued to vary the 

value of both targets as well as the angular distance between the targets, as in the familiar 

condition. 

 

Task apparatus and recording sites 

 

 The task involved moving a cursor from a central circle (2cm radius) to one of six 

possible targets (2.4cm radius) spaced at 60° intervals around a 12.6cm radius circle. The 

monkey performed movements using a cordless stylus whose position was recorded 

(125Hz) by a digitizing tablet (CalComp). Target stimuli and continuous cursor feedback 

were projected onto a mirror suspended between the monkey’s gaze and the tablet, 

creating the illusion that they are in the plane of the tablet. Oculomotor behavior was 
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unconstrained as eye movements do not strongly influence arm-related PMd activity 

(Cisek and Kalaska, 2002), but in some sessions eye position was recorded (120Hz) with 

an infrared oculometer (Applied Science Laboratories). Neural activity was recorded with 

3-4 independently moveable microelectrodes (NAN microdrive) and data acquisition was 

performed with AlphaLab (Alpha-Omega). On-line spike discrimination was used to 

estimate cell preferred directions for choosing target locations. All analog waveforms 

were stored on disk for offline sorting using principal components (Plexon). All task 

events, trajectory data and spike times were stored in a database (Microsoft SQL Server 

2005) accessed through custom scripts for data analysis (Matlab). After completing 

training, the animal was implanted under general anesthesia with a titanium head post and 

a recording chamber placed using MRI images (Brainsight primate). The chambers were 

centered on the arm area of PMd, between the precentral dimple and the junction of the 

arcuate sulcus and spur (Figure 1B). All procedures followed university and national 

guidelines for animal care. 

 

Data analysis 

 

 We calculated directional tuning preferences of each cell during each behavioral 

epoch (DELAY, MT, and THT) in the 1T block, and assessed significance with a non-

parametric bootstrap test (1000 shuffles, p<0.05; Cisek et al., 2003). We classified cells 

as DELAY cells if they were significantly tuned during the DELAY epoch and as MT 

cells if they were significantly tuned during the MT epoch. A given cell could appear in 

both groups and thus to contribute data to analyses of activity in both epochs. For 
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analyses of DELAY activity, the preferred direction of each cell was based on its activity 

in the DELAY period, and for analyses of MT activity, it was based on MT activity. For 

each analysis, the target closest to a cell’s preferred direction was denoted as the 

preferred target (PT) and any other target that appeared was called the other target (OT). 

The latency of effects was calculated as the time when the difference in activity 

between compared conditions exceeded 2 standard deviations in a sliding window (size: 

10ms; step: 2ms) beginning at cue onset (Sato and Schall, 2003).  The latency for relative 

reward or angular distance effects was taken as the earliest discrimination time for each 

effect separately. For example, in the 2T condition where the value in OT was varied (L, 

M, H) and the value in PT was held constant (M), the latency for relative value effects 

was chosen as the earliest point in time at which activity for OT:L and OT:H segregated. 

The latency for the angular distance effect was chosen as the earliest time at which 

activity for 60° and 180° segregated. 

 To evaluate the monkey’s learning performance we compared the cumulative 

number of trials (correct and incorrect) for the Low value and High value choices made 

by the monkey chronologically for each given pair association. We estimated a pair-

behavioral criterion for each pair of associations (H vs L, M vs L and H vs M) and 

defined it as the 6th consecutive trial for which a high value choice was made on a given 

pair. Given that a correct choice represents a 0.5 probability of occurring by chance, six 

consecutive trials have a probability of 1.6%. This is close to what has been reported 

previously for a behavioral criterion in conditional visuomotor-learning (Mitz et al., 1991) 

where three consecutive responses with 0.25 probability of correct choice implied 2% 

chance of choosing by chance the same target. A global behavioral criterion represent the 
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time point (trial) at which all three paired-behavioral criterions have been reached 

(complete learning). We define as incomplete learning cases in which only certain pair 

associations have been learned and as no learning the situations in which none of them 

has been learned. 

 

RESULTS 

Behavioral results 

 

Two monkeys participated in this study (M and K). In 1T trials the success rate was 

98% for monkey M and 95% for monkey K. In 2T FREE trials the success rate was 99% 

(M) and 97% (K) and in 2T FORCED it was 96% (M) and 95% (K) (in all cases 

N>60,000). All incorrectly performed trials are excluded in the forthcoming analysis. In 2T 

FREE trials both monkeys selected the more valuable target 95% of the time, indicating 

that they understood the meaning of the stimulus cues. We found that movement times 

(MTs) were shorter to higher-valued targets in 1T trials (400ms to high-value and 416ms to 

low-value targets). Although the difference was small, it was significant for both animals 

(Kolmogorov-Smirnov test (KS), p<0.05). However, the reaction times (RTs) in 1T trials 

did not depend on target value for either animal (KS-test p>0.05 for all comparisons). 

Figure 2A shows the average trajectories in different kinds of 2T trials, with the 

selected target oriented to the right. As expected, in the FORCED LOW trials (3rd column), 

when monkeys initiated movements quickly (short RT), they started toward the higher-

valued target (which disappears at GO) and then turned around toward the remaining 

lower-valued target. The distributions of the initial directions are shown in Figure 2B. Note 
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that when targets are far apart (120° or 180°), the distribution for FORCED LOW trials is 

primarily oriented toward the high-value target if the RT is short, then is bimodal for 

medium RTs, and then is primarily oriented to the selected target for long RTs. However, 

when targets are closer together (60°), the peak of the distribution shifts gradually between 

the targets as RTs are longer. A straightforward explanation is that when targets are far 

apart, two separate groups of tuned cells are active, with cells tuned to the higher-valued 

target gradually becoming less active while cells tuned to the lower-valued target 

increasing in activity. When the targets are close together, these two groups of cells 

overlap, resulting in initial directions that gradually shift from the high to the low-valued 

target. This is reminiscent of the results of Ghez et al. (1997) in a timed-response task with 

human subjects, for which similar explanations have been proposed (Cisek, 2006; Erlhagen 

and Schoner, 2002). 

 

Neural results 

 

We recorded spiking data from 696 isolated neurons in the arm area of PMd, 596 

from monkey M and 100 from monkey K (Table 1). Of these, 316 (45%) had significant 

directional tuning during at least one epoch (DELAY, MT, THT) and were considered 

task-related. From these we distinguish a group of 194 units with statistically significant 

tuning during DELAY (non-parametric bootstrap test, 1000 shuffles, p<0.05; (Cisek et al., 

2003), of which 177 increased their activity with respect to baseline and 17 decreased their 

activity (the latter are not discussed further except in the Supplemental Materials). Of the 

177 excited cells tuned during DELAY, 112 were also tuned during movement time (MT). 
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Finally, 69 cells were tuned only during MT. We also recorded 50 cells in PMv (4 in M and 

46 in K) and analyzed these using the same convention (Table 2). Some PMd cells (N=113, 

all belonging to monkey M) were held long enough to be recorded in the learning variant of 

the task (Table 5). 

 

PMd activity predicts free choices 

 

When the monkeys were presented with two equal-valued targets and allowed to 

choose between them (FREE EQUAL trials), they made choices randomly. As shown in 

Figure 3A, these random choices were predicted by the neural activity in PMd just prior to 

the GO signal. On trials when a monkey chose a cell’s preferred target (PT), pre-GO neural 

activity was higher than on trials in which the other target was chosen. This is shown for 

three example cells collected with enough trials to reach statistical significance (ANOVA 

with post-hoc Tukey-Kramer test, p<0.05) as well as for the entire population of DELAY-

tuned cells (N=177). 

 

PMd activity reflects the relative value of potential actions 

 

The biased competition model predicts that PMd neurons reflect the value of their 

preferred target relative to the value of the other target that is simultaneously presented. 

This predicts that when only a single target is present, neural activity in PMd will be 

completely insensitive to its value. This prediction was strongly and very consistently 

confirmed. As shown for three example cells in Figure 3B-D (1st column), when a single 
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target was presented in a cell’s PT the discharge rate was not dependent on the reward 

value for reaching that target (ANOVA with post-hoc Tukey-Kramer test, p>0.05 for all 

comparisons: L vs. M, M vs. H, and L vs. H). This was true for all PMd cells we recorded. 

Despite the absence of value-related modulation when a single target was presented, 

when the same target in the cell’s PT was accompanied by a second target that was 

medium-valued, neural activity was now strongly modulated by the value of the PT, 

increasing as the PT value increased from L to H (Figure 3B-D, 2nd column). Conversely, if 

the PT value was held constant then neural activity was inversely modulated by the value 

of the other target (OT), decreasing as the OT value increased from L to H (Figure 3B-D, 

3rd column). Interestingly, in some cells (e.g. Figure 3C-D) these effects were seen not only 

during DELAY but also persisted during the reaction time and movement epochs. 

It is possible that the absence of effects in 1T trials could be due to the fact that these 

were performed in a separate block than the 2T trials. However, among the 2T trials we 

also interleaved trials where both targets were equal-valued, and varied from low to high. 

In these 2T EQUAL trials, as it 1T trials, PMd activity was also not modulated by value 

(Figure 3B-D, 4th column). All of these results are consistent with the hypothesis that 

neural activity in PMd reflects the relative value of potential targets, in agreement with the 

biased competition model. 

The trends shown in Figure 3 were consistent across the entire PMd population. 

Figure 4A shows DELAY period activity of neurons that are tuned during DELAY 

(N=177), of which 96 (54%) showed significant effects of relative value in the 2T task 

(ANOVA with post-hoc Tukey-Kramer test, p<0.05) with activity increasing with PT value 

in 76/96 (79%) cells and decreasing with OT value in 81/96 (81%) cells. When the PT 



136 

target is more valuable than the OT target, the activity of some cells is stronger by a factor 

of 3 or more than when the converse is true. However, despite these strong effects in the 2T 

task, no value effects were ever observed in the 1T task (t-test, p>0.05 for all comparisons). 

Furthermore, they were never observed in the 2T EQUAL trials for any of the 39 cells 

tested with those value combinations. Figure 4B shows MT activity of cells tuned during 

that epoch (N=181, note that some cells are tuned in both epochs and contribute data to 

both analyses in Figure 4A,B). Of these, 96 (53%) showed significant effects of relative 

value in the 2T task (t-test, p<0.05) with activity increasing with PT value (76/96, 82%) 

and decreasing with OT value (75/96, 78%) cells. Again, no effect was seen in the 1T task 

or in the 2T EQUAL trials (14 cells tested). Finally, PMd cells were not sensitive to 

changes in value when both targets were away from their PT (ANOVA and Tukey tests 

p>0.05 for L vs H in 1T or in 2T EQUAL) in either the DELAY or MT epochs (data not 

shown). 

 

PMd is modulated by the angular distance between potencial actions 

 

The presence of relative value coding in PMd is one important prediction of the 

biased competition model. However, for dissociating whether decisions are made in the 

space of actions versus in the abstract space of goods, the more critical question is whether 

sensorimotor contingencies matter. For example, does the angular distance between 

potential reaching actions influence the dynamics of the competition between them? 

Figure 5A shows how the activity of four example PMd cells changes as a function of 

the angular distance between the PT and the OT, in trials where both are medium-valued. 
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For all four cells, activity is strongest when the targets are close together (60°) and weakest 

when they are far apart (180°). This trend was observed across the PMd population (Figure 

5B, C), reaching significance in 44 (23%) of cells during the DELAY and 46 (25%) of cells 

in the MT epoch. The difference in activity was strongest between 60° and 180° and 

relatively small between 120° and 180°. However, it was not found when neither target was 

the cell’s PT (ANOVA and Tukey-Kramer test p>0.05 comparing targets 60° and 120° 

apart when neither was the PT). Interestingly, this effect of angular distance was evident 

very early during the DELAY period, as shown in the lower right panels in Figure 5B, C. 

Its latency was as short as 75ms and followed closely behind the latency at which cells first 

became directionally tuned (difference in latency of tuning and angular distance not 

significant, KS-test, p>0.05). In contrast, the effect of relative value appeared significantly 

later (KS-test, p<0.05), approximately 50-100ms after cells became tuned. 

Finally, and most importantly, once cells became modulated by the relative value of 

their preferred target, that modulation was itself dependent upon the angular distance 

between the two targets. In particular, if we examine trials in which a cell’s PT is medium 

valued and examine how that cell’s activity changes as a function of the OT value, we see 

stronger modulation when the OT and PT are further apart. This is shown for three example 

cells in Figure 6A-C, and summarized in Figure 6D. In particular, we observed that the 

further apart the targets were (120° or 180°), the more negative was the slope representing 

the magnitude of the relative value effect. These results suggest that distance has a gain 

effect over relative value (t-test, p<0.02 for all comparisons in DELAY or MT groups), 

consistent with a mechanism of competition that is stronger between cells whose preferred 

directions are far apart. The population analysis conducted in DELAY or MT cell groups 
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separately (Figure 6E and F, respectively) suggests that both groups of cells are involved in 

this competition process. 

 

Neural activity across premotor cortex follows similar trends 

 

Although fewer cells in PMv were task-related than in PMd (17/50, 34%), those that 

were exhibited similar effects. Of the 17 task-related PMv cells, 10 had relative value 

effects (Figure 7), but none showed any effect of absolute value. Furthermore, 4 PMv cells 

showed statistically significant effects of angular distance (t-test, p<0.05 between 60° and 

120°). However, the modulation by target distance was overall more modest in the PMv 

population (Figure 7G) than what we observed in PMd (Figure 4B, C). 

Figure 8 shows the cortical locations of cells that exhibited modulation by relative 

value, angular distance, or both, in either the DELAY or MT cell groups. We observed a 

mixture of effects across the rostral bank of PMd although a larger proportion of cells 

having both effects seemed to cluster more medially, particularly around the pre-central 

dimple. We did not observe a particular segregation of effects along the anterior-posterior 

axis of the sampled premotor areas. 

 

Relative value modulation for novel instructional cues can be acquired through 

learning 

 

In order to further examine the origin of both value and spatial signals in PMd, we 

recorded 113 neurons in a 2T NOVEL condition, in which the mapping between target 
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stimulus features and expected values had to be acquired through trial-and error learning 

(See Figure 9 for examples of learning behavior). Of these cells, 54 were task related and 

41 were tuned in DELAY (Table 5). In each session, we calculated when the monkey 

reached the behavioral criterion for each paired learned association using a similar 

algorithm to the employed by Mitz et al. (1991) as described in the Methods section. It is 

noteworthy to mention that learning of novel value associations took few trials and 

resembled the particular case of primary learning of familiar associations. In both cases the 

learning rate (slope for each given pair in Figure 9A-B) allows learning to take place within 

one recording session (800 trials on average). It is also worth mentioning that learning 

behavior gives us insights in the type of the assumptions the animals might be making. For 

example, are they learning the value of each target in isolation or are they learning which 

target to choose for each particular pair? In some cases (Figure 9) it appears that the animal 

made an assumption about the value of one of the targets, choosing correctly whenever it 

appeared (Figure 9B, upper left and lower left panels) while in other cases the monkey 

appears to be trapped in a false assumption (Figure 9B, upper right). Figures 10B-G shows 

single cell examples collected in this task variant.  

From behavioral analysis conducted on individual sessions (Figure 10A) we observed 

that the monkey sometimes learned individual pair-wise associations as early as 10-15 

trials (Figure 10A top). However, in other sessions the monkey failed to learn even when 

700-800 trials were provided (Figure 10A bottom). Of our task-related cells, we recorded 

29 cells during sessions in which the animal reached the behavioral criterion. Of these, only 

9 cells (31%) showed relative value effects when the behavioral criterion was reached. 

However, distance effects were present even before criterion in all of these cells; as well as 
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in those cells (13 out of 54 task related cells, 24%) recorded in sessions when the monkey 

failed to learn. Figure 10B shows an example of a cell presenting relative value and 

distance effects in the familiar condition, but only distance effects in the novel condition, 

even before criterion (Figure 10C). These results suggest that distance information does not 

require learning. Figure 10D-G shows another example of a cell presenting relative value 

effects in the familiar condition (Figure 10D) which also shows relative value effects in the 

novel condition after the criterion is reached (Figure 10E). However, while this modulation 

is present early after criterion (Figure 10F), it eventually disappears with further learning as 

shown in Figure 10G. (Note that the cell had a consistent waveform throughout the 

experiment). 

Figure 10H-K shows the analysis for all learning cells in which we could obtain data 

after criterion. In summary, we observed that the effects of relative value are present, but 

they are relatively modest, as compared to data in the familiar condition. On the other hand, 

angular distance effects are relatively clear throughout. The latency of the distance effect 

and relative value acquired though learning is also similar to what we found in the familiar 

condition and in both DELAY and MT cells (Figure 4). Namely, the distance effect and 

relative value latency distributions are different (Kolmogorov-Smirnov test, p<0.05) with 

the former appearing around 75ms after target onset and preceding the latter by 100ms on 

average.  
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DISCUSSION 

 

The results reported here were aimed at testing several critical predictions of a biased 

competition model of action selection. In agreement with that model, we found that neural 

activity in premotor cortex is modulated by the relative subjective desirability of potential 

actions, and never their absolute value. This implicates premotor regions in the process of 

determining the decision rather than a process of evaluating options using classical 

economic variables. In addition, we found that the strength of the competition was greater 

when targets were further apart, further suggesting that decisions emerge within a 

sensorimotor map that respects the geometry of actions. We found that these two effects 

appeared in cell activity with very different latencies, and that while modulation by relative 

value only appeared after the monkeys learned the meaning of stimulus cues, spatial 

interaction effects were always present. Below, we discuss the implications of these 

findings for general theoretical views on the functional architecture of voluntary behavior. 

 

Theoretical background 

 

Classical models of behavior describe it as a serial process of constructing perceptual 

representations, building knowledge and making decisions, and implementing the choice 

by executing an action. In contrast, the affordance competition hypothesis (Cisek, 2007b; 

Cisek and Kalaska, 2010) suggests that during natural behavior the brain specifies in 

parallel the potential actions that are currently afforded by the environment and selects 

between them through a biased competition mechanism. In the context of visually-driven 
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behavior, the specification of potential actions involves the dorsal visual stream and a 

distributed system of action-specific fronto-parietal cortical circuits (Andersen et al., 1997; 

Cisek, 2007b, 2012; Cisek and Kalaska, 2010; Colby and Goldberg, 1999; Gold and 

Shadlen, 2007; Milner and Goodale, 1995; Rizzolatti and Luppino, 2001; Wise et al., 

1997). Within each region, simultaneously encoded potential actions compete against each 

other while different regions coordinate their competition via reciprocal cortico-cortical 

connections. The resulting competition is distributed, and reflects biases that can arrive at 

any point in the system from a variety of sources. These may include regions involved in 

reward prediction, such as the basal ganglia (Schultz et al., 2000), outcome valuation, such 

as the orbitofrontal cortex (OFC) (Padoa-Schioppa and Assad, 2006), action value, such as 

the anterior cingulate cortex (ACC) (Kennerley et al., 2011), and abstract rules, such as the 

lateral prefrontal cortex (lPFC) (Miller, 2000; Tanji and Hoshi, 2001; Genovesio et al., 

2005), all of which can receive inputs from regions involved in sensory processing, such as 

the ventral visual stream (Kravitz et al., 2011). Importantly, the circuits within which the 

competition takes place are not merely decision centers, but continue to be involved in the 

online control of ongoing actions. This implies that the system can represent new 

opportunities that may present themselves even during ongoing activity, and in some cases 

a new potential action can suppress a current act and result in a behavioral switch. 

In the context of this general hypothesis, the biased competition process involved in 

selecting between actions is related to the biased competition process proposed for 

attentional selection among stimuli (Boynton, 2005; Desimone and Duncan, 1995; 

Reynolds and Heeger, 2009). Indeed, an influential view of attention is that it serves as 

more than merely a solution to a computational bottleneck (Broadbent, 1958) but amounts 
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to an early mechanism for orienting actions toward objects of interest (Allport, 1987; 

Neumann, 1990). In that sense, the concept of the parameter space within which actions 

compete is similar to the concepts of a “salience map” (Bisley and Goldberg, 2010), and an 

“attentional landscape” (Baldauf and Deubel, 2010). 

The affordance competition hypothesis also motivates a distinction between the 

systems involved in making the decision (a distributed biased competition mechanism) and 

those involved in valuation of options to provide the biases that yield adaptive selection 

behavior. The relative role of these systems can vary with context (Cisek, 2012). For purely 

abstract economic decisions, such as deciding on a brand of peanut butter, the process of 

valuation is of paramount importance and dominates behavior. The bulk of the task is to 

represent the outcome values, and translating that into action may be secondary and 

downstream to where the decision is resolved (Padoa-Schioppa, 2011). However, in the 

context of situated real-time activity such as escape behavior, the candidate choices 

themselves are defined as actions, and selection between them must take place within a 

map that combines abstract values with the sensorimotor contingencies of the actions 

themselves. Selection between two similar actions does not demand the same competitive 

dynamics as selection between two very different actions, such as two oppositely oriented 

escape routes (Cisek, 2012). Furthermore, although animals can covertly alternate between 

options while evaluating them (especially when different biases are in conflict), once they 

begin to act the consequences begin to play out. Thus, commitment to a decision about 

action should be closely integrated with motor initiation. 
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Premotor activity is modulated by relative value with full normalisation 

 

Here, we tested several key predictions of the affordance competition hypothesis, 

specifically focusing on the dynamics of the biased competition proposed to take place in 

the arm reaching system. We found strong evidence for biased competition in PMd and to a 

lesser extent in PMv. In particular, we confirmed earlier findings that simultaneous 

representations of multiple potential actions can co-exist in PMd (Cisek and Kalaska, 2005) 

and showed that such parallel representations are modulated by their relative subjective 

desirability (manipulated here by varying reward magnitude). 

Importantly, the value representations we observed were always relative, and never 

absolute. No cell ever exhibited modulation with the expected value of a target when only 

one was present (1T task), or when the value of two targets was varied together (2T 

EQUAL trials). This is important because it is consistent with a competition mechanism 

that implements full normalization. Previous studies in the lateral intraparietal area (LIP) of 

the oculomotor control system showed divisive normalization (Louie et al., 2011), which 

can be modeled as 

outin

in

VV

V
R

++
=

σ
α  (1) 

where R is a cell’s response above baseline, Vin is the value of targets in the response field, 

Vout is the value of targets outside the response field, and α and σ are free parameters (see 

Reynolds and Heeger, 2009). Equation (1) implies that neural activity increases with Vin 

and decreases with Vout, as in our PMd data. However, it also implies that as long as σ > 0 

then activity will still increase with Vin if only a single target is present. This agrees with 

previous studies (Platt and Glimcher, 1999), which provided the first evidence for neural 
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modulation with absolute value. We refer to this as partial normalization. In contrast, we 

never saw absolute value modulation in PMd. Thus, our results are consistent with equation 

(1) if the parameters σ is zero, implying a full normalization process. 

There are a number of possible explanations for this difference in findings. First, it is 

possible that the dynamics of decisions between eye movements are different than 

decisions between arm movements. Alternatively, it is possible that there is a difference 

between the degree of normalization between parietal representations and frontal ones. In 

particular, regions that are more closely related to the final motor output must make strong 

all-or-none decisions so that commands are sent unambiguously to the effectors. This may 

explain why frontal eye field (FEF) neurons did not exhibit reward related modulation 

when a single target was presented (Leon and Shadlen, 1999), but were modulated when a 

distractor was presented simultaneously (Roesch and Olson, 2003). As noted in the 

introduction, in the regions involved in making decisions (as opposed to regions involved 

in valuation) one expects a competition that yields fully normalized relative value 

representations (Cisek, 2006). Such normalization is a natural property of recurrent 

inhibitory networks (Cohen and Grossberg, 1983; Grossberg, 1973), which can be used to 

simulate all of our main results (Pastor-Bernier and Cisek, 2011). 

 

Evidence that decisions between actions are made within sensorimotor circuits 

 

A second question investigated here concerns whether decisions between actions are 

made in an abstract space of outcomes (Padoa-Schioppa, 2011) or in a space related to 

actions (Cisek, 2007b). As noted above, one way to test this is to determine whether 
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sensorimotor contingencies influence the decision process. It is not enough, however, to 

vary action costs, because these could be construed as part of the economic cost/benefit 

equation. Instead, here we varied the angular separation between candidate movements. 

Importantly, this manipulation does not change any aspect of the candidate movements 

themselves, not their expected value, their action cost, or their chance of success. From the 

perspective of purely economic choice, this parameter has nothing to do with the decision. 

Two drops of juice is always better than one, and the difference between them is 

unchanged whether reaching movements that yield those outcomes are 60° or 180° apart.    

However, if decisions are made within a sensorimotor map that respects the geometry 

within which potential actions are themselves defined, then a choice between two nearby 

targets is very different than a choice between two diametrically opposed ones. In 

particular, the competition between movements should be stronger as the difference 

between them increases. In strong agreement with this prediction, we found that the gain of 

the suppressive effect that the value of a competing target had on the neural representation 

of a cell’s preferred target was stronger when they were further apart (Figure 6), especially 

in PMd but also in PMv. A  model (Padoa-Schioppa, 2011) does not account for this 

finding, but it logically follows from any model in which decisions are made within a 

sensorimotor map (Cisek, 2006, 2007a; Erlhagen and Schoner, 2002; Tipper et al., 2000).   

If the competition that drives action decisions is indeed resolved within the 

sensorimotor system (for arm movements, in a frontoparietal circuit including PMd and 

MIP/PRR), then its influence should be seen even during movement execution. In 

agreement with this prediction, we found strong and consistent effects on reaching 

trajectories produced in trials in which the higher-valued of the two targets disappeared at 
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the time of the GO signal (2T FORCED LOW), forcing the monkey to move to a target 

that was presumably less desirable. Our trajectory data (Figure 2) can be easily explained in 

the context of a competition between movements represented in a sensorimotor map. 

Because the monkey did not know which trial would be forced and which would be free, 

neural activity prior to the GO signal always favored the higher-valued target (Figures 3 

and 4). After that higher-valued target vanished at the time of the GO signal, if the monkey 

withheld his movement long enough, the activity of cells tuned to that target decreased 

while the activity of cells tuned to the other increased, and the movement was initiated 

directly to the remaining target. However, in short RT trials, the strong activity associated 

with the high-value target is still present at movement initiation, producing a trajectory that 

is initially oriented toward the location of that target. Importantly, if the two targets were 

close enough for the two groups of cells to overlap, then the movement was initiated in-

between the target locations. This explanation is also consistent with numerous behavioral 

studies in humans, both in reaching movements made among distractors (Song and 

Nakayama, 2008; Tipper et al., 2000) as well as in tasks in which fast response choices 

were forced to be made close to movement onset (Chapman et al., 2010a, 2010b; Favilla, 

1997; Ghez et al., 1997). Interestingly, effects of switches between movements have also 

been observed when reaching movements are used to report abstract cognitive decisions 

(McKinstry et al., 2008), allowing trajectory information to be used to infer the time-course 

of the deliberation process. 

An additional prediction of our hypothesis is that the very same cells that are 

involved in the competition process during the DELAY period continue to be involved in 

the online guidance of movements. Although many DELAY-tuned PMd cells (65/177, 
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36%) become untuned as the movement begins (e.g. Figure 3B), many others (112/177, 

63%) continue to discharge in a tuned manner and their activity continues to reflect relative 

value (e.g. Figure 3C). Furthermore, when we examined the activity of these cells during 

FORCED LOW trials, in which the more desirable target vanished at the time of the GO 

signal and the monkey had to switch plans, we found that the neural activity of these cells 

reflected the plan switch approximately 155ms after the GO signal (Pastor-Bernier et al., 

2012), well before the time that the movement trajectory was corrected. Thus, these cells 

could still be causally involved in the plan switch. 

 

Convergence of specification and selection systems in premotor cortecs 

 

The distinction between the biased competition process and the selection influences 

that bias the choice lead us to ask where these processes may take place within the brain. 

Previous studies have strongly implicated the dorsal visual stream and the posterior parietal 

cortex as involved in the visual guidance of movements (Andersen et al., 1997; Cisek, 

2007a; Cisek and Kalaska, 2010; Colby and Goldberg, 1999; Gold and Shadlen, 2007; 

Milner and Goodale, 1995; Wise et al., 1997), and thus suggest that these regions, together 

with closely interconnected premotor areas, implement the biased competition process. We 

thus predict that most of the results we have shown here will be recapitulated again within 

the parietal cortex, and in particular with the medial intraparietal area (MIP) and parietal 

reach region (PRR) that are closely interconnected with the PMd, as well as the anterior 

intraparietal area (AIP) which is connected with PMv (Johnson et al., 1996; Rizzolatti and 



 149 

Luppino, 2001). Klaes et al. (2011) have already reported compatible results in PRR, and 

Baumann et al. (2009) confirmed parallel grasp representations in AIP. 

The proposal that the biased competition process occurs within fronto-parietal circuits 

is further supported by our finding that the effect of distance between targets appears in 

PMd at approximately the same time as cells become tuned (Figure 5B, C). This can be 

explained by the hypothesis that as visual information proceeds along the dorsal stream, 

converting stimulus information into potential actions, a competition occurs throughout, 

and always takes place in topological maps of space (be it stimulus or action space). 

Indeed, it is plausible that the same intracortical inhibitory connections are responsible for 

both shaping cell tuning functions as well as mediating the competition between options. In 

particular, while mutually inhibitory connections may be quite short-range within 

extrastriate visual regions, allowing a large number of sharply defined peaks of activity, 

similar inhibitory connections may be more long-range as one proceeds to progressively 

more anterior representations of potential actions, which permit the presence of only a few 

peaks that are broadly tuned. 

In contrast to the rapid effects of angular separation, the effects of relative value 

modulation were comparably slow. In PMd, they appeared approximately 100ms after 

tuning (50-70ms). This closely agrees with a wide variety of studies showing that while 

simple responses to the onset of stimuli are fast – as fast as 50ms in PMd (Cisek and 

Kalaska, 2005) – it takes approximately 150ms for the brain to discriminate non-target 

stimuli from targets (Sato and Schall, 2003; Song and McPeek, 2010) or to decide between 

potential actions (Cisek and Kalaska, 2005; Ledberg et al., 2007). This slower processing 
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implies a separate source of information, possibly involving sensory input processed along 

the ventral visual stream and relayed through prefrontal cortex or the basal ganglia. 

The proposed distinction between a dorsal stream system for specifying actions and a 

separate source for selection biases is further supported by our findings in the NOVEL 

condition. In particular, when monkeys were first presented with targets whose mapping to 

expected value was unknown, cell activity was nevertheless still modulated by angular 

separation, and with the same fast latency as was observed with the familiar targets. In 

contrast, modulation by value obviously could not be present until the monkeys began to 

learn the mapping of targets to value. Once that mapping was known, two observations 

could be made. First, the effects of value were again always relative, and in no case did 

absolute value coding appear, even early in the learning process. This is again consistent 

with the distinction between competition and valuation – the newly learned values 

(possibly coming from the basal ganglia or from OFC via lPFC) immediately entered into a 

fully normalizing biased competition process in premotor cortex. Second, the latency with 

which a given cell reflected the relative value of targets was not significantly different in 

the familiar condition than in the novel condition after the behavioral criterion was reached. 

This suggests that whatever the source of biasing (lPFC or BG), there is no clear evidence 

of a shift from a system supporting newly learned mappings to a system for evaluating 

highly trained habits. 
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Is modulation of neural activity simply a result of motivational changes? 

 

Previous studies of value-related modulation in sensorimotor regions have suggested 

that such modulation may not be related to a process of decision-making, but rather may 

simply reflect changes in the animal’s motivational state (Roesch and Olson, 2004). In 

particular, those authors found that activity increased with both the reward for a success 

and with the penalty for an error, suggesting that both manipulations simply increased the 

animal’s state of motivation for making the correct decision. Given those findings, it is 

important to consider whether the results shown here may be simply artifacts of changes in 

motivation. 

We believe that in the case of our data, this alternative explanation can be rejected. 

First, while our monkeys were more motivated to reach to higher-valued targets in the 1T 

task (and made those movements more quickly), we never observed any modulation with 

reward size in any PMd or PMv cell during the 1T task. Second, the neural activity 

modulation we observed in the 2T task was not consistent with any plausible definition of 

how motivation would vary in those conditions. Consider first the possibility that 

motivation is related to the sum of the values of targets presented in a trial. This would 

predict that when the targets are both high-valued, there would be more activity than when 

they are both low-valued, but this was never observed (Figure 4 and Tables 3 and 4). It 

would also predict that activity in trials where the PT is high-valued and OT is low-valued 

would be the same as in trials where the converse is true (because the sum of expected 

values is 4 in both cases), but we found activity much stronger in the latter than in the 

former case. Alternatively, consider the possibility that motivation is related to the value of 
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the highest-value target. This would predict that activity is similar in trials where the targets 

are high and low, high and medium, and high and high. However, this was not observed. In 

81/96 cells in PMd, and 10/17 cells in PMv, activity was inversely related to the value of 

the OT when the cell’s preferred target value was held constant. Finally, it is unclear how 

changes in motivation could explain why there should be any effect of the angular 

separation between targets. Thus, we believe that the modulations we report here cannot be 

explained as effects of changes in motivation, and are more parsimoniously accounted for 

by a simple biased competition process. 

 

Concluding remarks 

 

The results described above were obtained in a highly constrained experimental study 

in which monkeys made thousands of repeated planar center-out reaching movements to 

one of two targets, for which they received variable amounts of juice rewards. While this is 

far from the natural environment for which primates have evolved, we believe the results 

nevertheless carry important implications for theories of the functional architecture of 

natural behavior. In particular, our findings support the view that decisions between actions 

are made within the same sensorimotor circuits that guide the execution of movements, and 

involve a biased competition between representations of potential actions. This proposal 

seems at odds with classical economic models of choice (Simon, 1947; Von Neumann and 

Morgenstern, 1944), which have dominated cognitive psychology and now strongly 

influence cognitive neuroscience (Padoa-Schioppa, 2011) . However from the point of 

view of everyday interactive behavior, it may be more plausible to consider that animals 
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have evolved to deal with a world full of demands and opportunities for action rather than 

to deal among abstract economic representations. These types of decisions require a 

functional architecture that is ready to act at any moment, even during ongoing behavior, 

and respects the sensorimotor contingencies implied by the geometry and physics of the 

environment. The brain can make abstract choices that are not defined by concrete actions, 

and neurophysiological studies of that condition can partially separate the processes of 

decision or perceptual judgments from mechanisms of action preparation (Bennur and 

Gold, 2011; Gold and Shadlen, 2003). Separate neural systems may be recruited for purely 

perceptual decisions or pure action selection in different contexts (Camille et al., 2011; 

Cisek, 2012). However, to understand the functional architecture underlying the kinds of 

behavior that dominated brain evolution and established its highly-conserved organization, 

it is useful to consider the brain’s primary role in mediating real-time interaction with the 

environment. 
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Figure 1. A. Behavioral tasks. The tasks involve moving a cursor from a central circle to 

one of six possible locations. At the beginning of each trial the monkey placed the cursor 

in the center and two targets appeared. Each target was associated with different rewards 

indicated by different border styles (legend shows the probability of receiving 1 (red), 2 

(green) or 3 (blue) drops of juice for each border style). The monkey had to keep the 

cursor in the center until the targets changed color (GO signal). Then, it moved to one of 

the targets and held the cursor there to get a reward. In one variant of the task, the 

monkey was presented with only one target (1T). In a second variant two targets were 

presented (2T) and the monkey was either free to move to either of them after the GO 

signal (FREE trials), or one disappeared after GO leaving the monkey with only the 

remaining option (FORCED trials). In a third variant of the task (2T-Learning), two 

targets with randomly-generated border styles were presented to the monkey. In this 

variant all the trials were FREE.  
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Figure 2. Kinematic analysis. A. Average trajectories for 2T trials with the selected 

target oriented to the right and unselected targets located 60° or 120° clockwise (CW, red) 

or counterclockwise (CCW, green). In the 180° case red and green represent trajectories 

in the upper or lower half of the plane. The four panels from left to right represent FREE, 

FORCED HIGH, FORCED LOW and FORCED EQUAL trials. Thin lines show the 

average of long RT (>240ms) trials, medium lines show intermediate RT (between 

180ms and 240ms) trials, and thick lines show the average of short RT (<180ms) trials. B. 

Distribution of initial launching directions with the selected target oriented at 0°. The 

color and line thickness code is the same as in A. Trial numbers range between 2300 to 

6000 in all FORCED panels and 5000 to 14000 in the FREE panel. 
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Figure 3. A. Neural activity (aligned on the GO signal) of three individual PMd cells 

during 2T FREE EQUAL trials in which two equal value targets were presented to the 

animal and one was in the PT of each cell. In blue are trials in which the monkey selected 

the PT and in red the trials when the monkey selected the OT. The rightmost panel in A 

illustrates the mean activity of the PMd DELAY population (N=177) comparing choices 

to the PT (blue) or to the OT (red) in the FREE condition. B-D. Examples of activity of 

individual PMd cells assessed for the presence of absolute and relative value effects. 

Each row represents a cell and each column a different condition. The first column shows 

activity in 1T trials in which the PT was presented alone and was either low (blue), 

medium (red) or high valued (green). In the second column we show 2T trials in which 

the PT value varied from low (blue) to high (green) and OT was always medium valued. 

The third column shows 2T trials in which the PT was medium valued and the OT value 

varying from low (blue) to high (green).  The fourth column examines 2T EQUAL trials 

where both the PT and OT are low (green), medium (red), or high valued (green). Data in 

each split panel is aligned on target onset and on the GO signal. Marks in the rasters 

indicate the time of target onset, GO signal, movement onset, and movement offset. 
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Figure 4. Population analysis assessing absolute and relative value modulation. Each 

panel shows the mean firing rate during DELAY of the DELAY cell group (A) or during 

MT of the MT cell group (B) for all conditions. In all panels red crosses indicate cells 

with statistically significant effects in each cell group (N=102 in DELAY and N=105 in 

MT) along with the rest of delay or movement tuned population (grey crosses). Each 

cross indicates mean firing rate and SEM.  A. The upper left panel compares the mean 

firing rate of cells in the 1T task when PT was low valued (x-axis) versus high-valued (y-

axis). The bottom left panel compares the mean firing rates for 2T trials in which the PT 

and OT are equally low valued (x-axis) versus equally high valued (y-axis).  The upper 

central panel compares the firing rates for 2T trials in which the OT has a fixed medium-

value and the PT is either low-valued (x-axis) or high-valued (y-axis). The bottom central 

panel does a similar comparison with OT having a fixed low-value. The upper right panel 

compares the mean firing rates for trials in which the PT is fixed and medium-valued and 

the OT is either low-valued (x) or high-valued (y). The bottom right panel repeats this 

analysis for trials when the PT has fixed low-value. B has a similar convention to A but 

shows the MT cell group.  C illustrates the target number effects. The left panel compares 

the mean firing rate for DELAY cells in 2T trials in which both PT and OT are medium 

valued with the mean firing rate in 1T trials in which the PT is medium valued. The right 

panel repeats this analysis for the MT cell group. The right panel repeats this analysis for 

the MT cell group. Grey dotted lines show regression slopes: -35deg, R2: 0.79 for 

DELAY and -30 deg, R2:0.62 for MT.  
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Figure 5. A. Examples of the activity of individual PMd cells illustrating angular 

distance effects for equally valued trials in which both PT and OT are medium-valued. 

Each column compares the activity of a cell when PT and OT are 60, 120 or 180 degrees 

apart. B Analysis of angular distance effect across the population of DELAY cells 

(N=177). Each panel shows the mean firing rates of the cells during DELAY and 

compares 2T trials in which the PT and OT are medium-valued and are 60o (x) versus 

120o apart (y) (upper left), 60o (x) versus 180o apart (y) (upper right) or 180o (x) versus 

120o apart (y) (bottom left). The bottom right panel illustrates the cumulative distribution 

of latencies for relative-value, angular distance and tuning effects. C uses the same 

convention than B but shows activity of MT cells during the MT epoch. 
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Figure 6. Gain effect of angular distance on relative value. A-C Firing rates of three 

example PMd cells illustrating the relative value effects when PT is fixed (medium value) 

and OT varies (low, medium and high). The columns in each panel show trials with 

different angular distance between the targets (60°, 120°, 180°). Note that the slope is 

more negative for larger angular distances D. Comparison of the mean (and s.e.m.) of the 

activity of these three example cells in the 60°, 120°, and 180° angular distances. E.  

Means (and SEM) for relative-value slopes in the 60° versus 120° angular conditions (left) 

and 60° versus 180° angular conditions (right) for all DELAY cells. F shows the same for 

MT cells. Red crosses represent units with any statistical value or angular distance effects, 

while grey crosses represent the rest of the tuned population in each group. 
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Figure 7. A-C Single cell examples in PMv assessed for the presence of relative value and 

distance effects. Each row represents a cell and each column a different condition. The first 

column shows 1T trials, second and third columns assess relative value effects in 2T trials, 

and the third column shows angular distance effects. All conventions are as described in 

previous figures. Trial alignment is done on GO. D-G Value and distance effect population 

analysis. D. Mean firing rates in PMv cells comparing 1T trials in which the PT is low-

valued (x) versus high-valued (y). E. Mean firing rates in PMv cells comparing 2T trials in 

which the OT is medium-valued and the PT is low-valued (x-axis) versus high-valued (y-

axis). F. Mean firing rates in PMv cells comparing 2T trials in which the PT is medium 

valued and the OT is low-valued (x) versus high-valued (y). G. Mean firing rates in PMv 

cells comparing equally valued targets that are 60° (x) or 180° apart (y). 
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Figure 8. A. Recording locations in premotor cortex for monkey M (left) and monkey K 

(right). C-F. Location of effects during delay (C-D) and movement (E-F). The locations 

of cells with relative value effects are shown as upward red triangles, those with distance 

effects as downward blue triangles, and those with both effects as green circles. The 

number of cells with effects is represented as the size of the symbols in each location 
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Figure 9. Behavioral characterization of learning. In each panel, we plot the 

cumulative number of trials in which the higher-valued target was chosen (y-axis) against 

the cumulative number of trials in which the lower-valued target was chosen (x-axis), for 

each pair of values: medium and high (red), low and high (blue), and low and medium 

(green). A. The behavioral session when monkey M was first presented with the standard 

border styles. The inset expands the region where the learning first took place. The 

diagonal line represents chance and the grey dotted lines above and beneath it represent 5 

consecutive choices of the higher or lower value. B. Four examples of sessions when the 

monkey was learning NOVEL mappings. For example, in the upper left session the 

monkey quickly learned the high-value target but took longer to learn the others. In the 

lower left session the monkey quickly learned the low-value target but only later 

discriminated the others. In the upper right session the monkey first appeared to choose the 

medium-value target the most, and only later reversed this initial mistake. In the lower right 

panel the monkey never learned the values of the targets. 
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Figure 10. A. Identification of the behavioral criterion for two different sessions. The top 

row represents a case in which the animal achieved behavioral criterion (Complete 

learning) and the bottom row a case where it did not. On each row three learning pair 

conditions M vs H (red) L vs H (blue) and L vs M (green) are compared, showing the 

cumulative number of High value (y-axis) versus Low value choices (x-axis). The diagonal 

line represents random choices and the diagonal dashed line represents the limit of 6 

consecutive trials that are considered the threshold for each paired behavioral criterion (red, 

blue or green asterisk). Note that in these two panels the animal learned two pair 

associations within 10-15 trials except for one pair in the lower panel, which the animal 

failed to learn (shown as x). Panels B-G illustrates individual cell examples. B shows three 

panels illustrating relative-value and angular distance effects of a cell collected in the 

familiar condition. C. Shows the trials for this cell before criterion. This cell was recorded 

in the session corresponding to the lower panel in A. Note that angular distance effects are 

already present despite the fact that learning has not been completed. D-G shows an 

example of a cell that presents relative value effects in the familiar condition (D) and also 

in the novel condition (E). Notice that the value effects acquired through learning are 

stronger in the early trials after criterion (F) but gradually disappear later during the session 

(G). H-K illustrate the value and distance effect across the PMd population, in all learning 

cells after criterion (regardless of whether these cells had statistically significant effects or 

not). The conventions for these figures are the same as in Figures 4 and 5. H. Mean firing 

rates in PMd cells comparing 1T trials in which the PT is low-valued (x) versus high-

valued (y). I. Mean firing rates in cells comparing 2T trials in which the OT is medium-

valued and the PT is low-valued (x-axis) versus high-valued (y-axis). J. Mean firing rates 

in PMd cells comparing 2T trials in which the PT is medium valued and the OT is low-

valued (x) versus high-valued (y). K. Mean firing rates in PMd cells comparing equally 

valued targets that are 60° apart (x) or 180° apart (y). 
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Table 1 
Classification of recorded neurons in dorso-lateral PMd 
The recorded population is subdivided according to the alignment in a particular 

epoch (Delay, Movement or Reward). Task related neurons are all those cells for 

which there is directional tuning in any epoch. In grey is outlined the group of cells 

that is used in further analysis in the study. 

 
 

                Number of neurons 
Total recorded 696 

Task related 316 

Delay or Movement 263 

Delay tuned cells  194 

Selective excitations 177 

Selective inhibitions 17 

Cells with any movement related 
activity * 

181 

Delay only * 65 

Delay and movement * 112 

Movement only * 69 

       
  *Cells with movement related activity and cell split by tuning epoch refer exclusively 

to selective excitations 
 
 
Table 2 
Classification of recorded neurons in PMv 
The recorded population is subdivided according to the alignment in a particular 

epoch (Delay, Movement or Reward). Task related neurons are all those cells for 

which there is directional tuning in any epoch. In brown is outlined the group of 

cells that is used in further analysis in the study. 

 
 

        Number of neurons             
Total recorded 50 

Delay or Movement 17 

Delay tuned cells  6 

Cells with any movement related 
activity * 

4 

Delay only * 0 

Delay and movement * 6 

Movement only * 4 
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Table 3 
Classification of cell activity in PMd according to observed effects 
 
 
Cells with any tuning during Delay  177 

   

Delay-tuned with any effect of value or distance1 102 

Delay-tuned with absolute value effect in 1T 0 

Delay-tuned with absolute value effect in 2T EQ* 0 

Delay-tuned with any relative value effect (RV) 96 

Delay-tuned with any distance effect (D) 44 

Delay-tuned with both RVand D 38 

Delay-tuned with RV only 58 

Delay-tuned with D only 6 

 
 
Cells with any tuning during Movement2 181 

   

Delay-tuned with any effect of value or distance 105 

Delay-tuned with absolute value effect in 1T 0 

Delay-tuned with absolute value effect in 2T EQ* 0 

Delay-tuned with any relative value effect (RV) 96 

Delay-tuned with any distance effect (D) 46 

Delay-tuned with both RVand D 37 

Delay-tuned with RV only 59 

Delay-tuned with D only 9 

 
1 wherein effects were analyzed during DELAY 
2 wherein effects were analyzed during MT 
* n=39 cells (8 MM, 31 MK) were collected in this condition; they split up as 25 in 
DELAY and 14 in MT. 
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Table 4 
Classification of cell activity in PMd  
Effects split by tuning epoch 
 
 
Delay Only cells 1  65 

   

Delay-tuned with any effect of value or distance 24 

Delay-tuned with absolute value effect in 1T 0 

Delay-tuned with absolute value effect in 2T EQ 0 

Delay-tuned with any relative value effect (RV) 21 

Delay-tuned with any distance effect (D) 7 

Delay-tuned with both RVand D 4 

Delay-tuned with RV only 17 

Delay-tuned with D only 3 

 
 
Delay & Movement cells 2 112 

   

Delay-tuned with any effect of value or distance 72 

Delay-tuned with absolute value effect in 1T 0 

Delay-tuned with absolute value effect in 2T EQ 0 

Delay-tuned with any relative value effect (RV) 69 

Delay-tuned with any distance effect (D) 34 

Delay-tuned with both RVand D 31 

Delay-tuned with RV only 38 

Delay-tuned with D only 3 

 
 
Movement Only cells 3 69 

   

Delay-tuned with any effect of value or distance 33 

Delay-tuned with absolute value effect in 1T 0 

Delay-tuned with absolute value effect in 2T EQ 0 

Delay-tuned with any relative value effect (RV) 27 

Delay-tuned with any distance effect (D) 12 

Delay-tuned with both RVand D 6 

Delay-tuned with RV only 21 

Delay-tuned with D only 6 

 
1, 2 wherein effects were analyzed during DELAY 
3 wherein effects were analyzed during MT 
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Table 5. 
Classification of PMd neurons collected in the learning condition 
 
 

    Number of neurons 
Total recorded 113 

Task related Cells:  
Delay or Movement 

54 

Delay tuned cells  41 

Cells with any movement related activity * 25 

Task related cells that have a behavioral criterion (BC) 29 

Task related cells with effects in familiar condition and have BC 16 

Task related cells with effects in familiar condition without  BC  13 

Task related cells with effects in the familiar condition that have BC and effects in 
the learning condition 

9 
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Table 6.  
Predicted firing rates for relative value effects according to a completely divisive 
normalization model 
 

 Value in OT fixed 
(RM combinations) 

Value in PT fixed 
(RM combinations) 

PT 1 2 3 2 

OT 2 1 2 3 

F 0.33 0.50 0.60 0.67 0.50 0.40 

∆12 ∆23 ∆13 ∆12 ∆23 ∆13 ∆ 

0.17 0.10 0.27* 0.17 0.10 0.27 

 Value in OT fixed 
(RL combinations) 

Value in PT fixed 
(RL combinations) 

PT 1 2 3 1 
OT 1 1 2 3 

F 0.50 0.67 0.75 0.5 0.33 0.25 

∆12 ∆23 ∆13 ∆12 ∆23 ∆13 ∆ 

0.17 0.08 0.25 0.17 0.08 0.25 

 
The predicted firing rate in the cells PT can be described as a function of F:  
VPT/(VPT+ VOT). PT and OT rows represent expected value in two groups (value in OT 
fixed and PT varies, or value in PT fixed and OT varies) and two combinations (RM or 
RL). RM stands for reference medium, and represents the case in which the value of the 
target that is fixed (reference) has a medium value (2). RL follows a similar convention 
and has a low value. The F row indicates the predicted firing rate according to a fully 
divisive normalization model taking account of the values in PT and OT rows. The values 
displayed are integers: 1 (Low), 2 (Medium), 3 (High). The delta row (∆) shows pair-
wise differences between particular F values (Eg. The delta row on the top left panel, ∆13 
= FPT:3OT:2 - FPT:1OT:2 =  0.60 - 0.33 = 0.27*).  The delta values in dark shades represent the 
largest differences between F values (∆13).  
 
• Note that ∆13 in RM combinations are greater than ∆13 in RL combinations for all 

groups. This predicts stronger effects in the former case. We tested the model 
predictions by conducting linear regressions analysis in population scatterplots 
comparing the same values presented in the table and shown in Figure 4:  

1) For cells recorded in the RM combination where the value in OT is fixed and PT 
varies we obtain a 49° linear regression slope with R2 statistic 0.8 meanwhile the RL 

combination has 47° slope (R2: 0.9).  
2) For cells recorded in the RM combination where the value in PT is fixed and OT 

varies we have a -38° linear regression slope with R2 statistic 0.8 meanwhile the RL 
combination has -37° slope (R2: 0.8). In all cases the error of the variance for the 
slopes is 0.9°. The linear regressions in DELAY and MT cell group yield comparable 
results.  

These results suggest that cells in PMd display larger modulations in RM than RL 
combinations. Although the difference is very modest (2°), a complete divisive 
normalization model complies well with experimental data as described previously 
(Pastor-Bernier and Cisek, 2011; Pastor-Bernier et al., 2012). 
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Supplemental Figure 1. Additional single cell examples in PMd. Cells were recorded in 

three conditions and assessed for the presence of relative value and distance effects. Each 

row represents a cell and each column a different condition. The first and second columns 

assess relative value effects and the third column distance effects. The convention is 

similar as described in previous figures. In A and B the trial alignment is done on Cue 

onset. In C the alignment is done on Movement onset. 
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Supplemental Figure 2. Early transient responses are generally not modulated by value. 

A. Single cell example displaying early visual responses in all 1T and 2T conditions. B. 

Population scatterplots comparing DELAY responses in 1T for cells during EARLY 

tuning (first 200ms, left panel) and LATE tuning (last 200ms, right panel). Note that 

PMd cells do not show transient value responses in the EARLY group. A single outlier 

(C635) can be observed but does not represent the population. 
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Supplemental Figure 3. Rose plots illustrating the angular difference between the cells 

preferred direction during DELAY and during MT: PD(Delay)-PD(MT). Rose plots in 

green represent the totality of cells with relative value effects. Rose plots in yellow 

represent cells that are directly modulated by value magnitude during DELAY but are 

inversely modulated (inverted effect) during MT. Rose plots in red represent cells that are 

inversely modulated during DELAY and not during MT. We do not observe a clear 

clustering of cells with inverted effects with respect to inverted tuning. Cells with 

inversions have in general the same tuning properties in both DELAY and MT epochs. 

All histograms have 10°/bin. 
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Supplemental Figure 4. Relative-value population analyses split by epoch tuning 

exclusivity A. Mean firing rates in MT ONLY cells comparing 2T trials in which the PT 

is medium-valued and the OT is low-valued (x-axis) versus high-valued (y-axis). B. 

Mean firing rates in MT ONLY cells comparing 2T trials in which the OT is medium 

valued and the PT is low-valued (x) versus high-valued (y). C and D have same 

convention than A and B but present modulation during delay of cells with strongest 

tuning during both DELAY and MT epochs. E and F have same convention than A and B 

but represent cells with tuning during DELAY only.  
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Supplemental Figure 5. Distance effect population analyses split by epoch tuning 

exclusivity A. Mean firing rates during MT for MT ONLY cells comparing 2T trials in 

which the PT and the OT is equally valued (EV:2) and 60°  (x-axis) versus 180° apart (y-

axis). B. Same convention as in A but for targets that are 60° (x) versus 120° apart(y). C 

and D have same convention than A and B but represent mean firing rates in DELAY for 

cells with tuning during both DELAY and MT. E and F have the same convention than C 

and D but represent cells with tuning during DELAY only.  
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Supplemental Figure 6.  Mean and standard error of the mean (SEM) for relative-value 

slopes in different angular conditions for DELAY-only cells (A, B), DELAY and MT 

cells (C-D) and MT-only cells (E-F). The compared angular distances follow the same 

conventions as figure 16. Red crosses represent units with any statistical value or distance 

effect.  
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Supplemental Figure 7.  Example of learning cells. A shows all unsorted trials in for a 

cell collected in the novel condition. This cell has a modest but significant relative value 

effect in DELAY. B illustrates the cell responses before criterion (last trials for each 

color raster). C. Activity after behavioral criterion. Note that the cell has a modest 

increase of cell activity in B and this activity becomes sustained in C.  
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Supplemental Figure 8. A-C Three single cell examples (rows) displaying relative value 

effects in the 2T task (EV in OT: L-H and PT: M) (left column) and value effects in the 

1T task (EV in PT: L-H, right column). The cell shown in C did not have a complete 1T 

set and data for the 1T block is not available. All alignments shown are done with respect 

to GO. The upper section on each panel illustrates firing rate histograms and raster plots 

as shown in previous figures. The lower section on each panel represents oculomotor 

behavior. Notice that in all three examples, the animals looked at the center most of the 

time and started to look at the targets shortly after the GO signal, stabilizing the gaze 

upon them during the movement epoch. The cell in A has relative value effects only 

during DELAY. During this period the monkey looks towards the preferred target (OT or 

PT depending on the relative value). Note that one could interpret the presence of relative 

value effects in A on the basis of oculomotor behavior. B and C are late-DELAY and 

MT cells that also display the same relative value effects. We do not observe alternating 

saccade behavior between PT and OT after the GO signal since the animals are already 

looking at the targets. Note that for these cells oculomotor behaviour cannot be 

interpreted as causal for the observation of relative value. Also notice that exploratory 

saccades outside the single target appearing in the 1T block are present in cells A and B 

while this behavior does not seem affect cell activity. 
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ABSTRACT 

 

Previous studies have shown that neural activity in primate dorsal premotor cortex 

(PMd) can simultaneously represent multiple potential movement plans, and that activity 

related to these movement options is modulated by their relative subjective desirability. 

These findings support the hypothesis that decisions about actions are made through a 

competition within the same circuits that guide the actions themselves. This hypothesis 

further predicts that the very same cells that guide initial decisions will continue to update 

their activities if an animal changes its mind. For example, if a previously selected 

movement option suddenly becomes unavailable, the correction will be performed by the 

same cells that selected the initial movement, as opposed to some different group of cells 

responsible for online guidance.  

We tested this prediction by recording neural activity in the PMd of a monkey 

performing an instructed-delay reach selection task. In the task, two targets were 

simultaneously presented and their border styles indicated whether each would be worth 

1, 2 or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a 

choice while in the remaining trials (FORCED) one of the targets disappeared at the time 

of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less 

valuable target and started moving either toward the new target (Direct) or toward the 

target that vanished and then curved to reach the remaining one (Curved). Prior to the GO 

signal, PMd activity clearly reflected the monkey’s subjective preference, predicting his 

choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd 
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activity reflected the switch of the monkey’s plan as early as 100ms after the GO signal, 

well before movement onset. This confirms that the activity is not related to feedback 

from the movement itself, and suggests that PMd continues to participate in action 

selection even when the animal changes its mind on-line. These findings were reproduced 

by a computational model suggesting that switches between action plans can be explained 

by the same competition process responsible for initial decisions. 

 

INTRODUCTION 

 

Natural behavior requires animals to make many kinds of decisions. For example, 

an animal is often faced with selecting between different movements that accomplish the 

same behavioral goal, such as different directions to run to escape a predator. At a higher 

level of selection, the same animal may decide between different types of activity, such 

as running away versus turning around to fight. Still other kinds of decisions may involve 

purely abstract choices, which are not (at least immediately) associated with any specific 

action. In human behavior, such decisions may be extremely abstract, such as choosing 

what kind of career to pursue in life. Because the brain was built through continuous 

evolutionary refinement, we expect that the neural mechanisms of decisions at different 

levels of abstraction share many aspects of their architecture, and that consideration of 

simple spatial decisions between movement options may yield insights into decision-

making in general (Cisek and Kalaska, 2010). 

Recent work has suggested that, at least in the case of selecting between actions, 

decision-making is intimately integrated with sensorimotor control (Basso and Wurtz, 
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1998; Cisek and Kalaska, 2005; Gold and Shadlen, 2007; Platt and Glimcher, 1999; 

Romo, 2004). This has led to the proposal that while an animal is deciding between 

actions, neural activity in the sensorimotor system represents several movements 

simultaneously and the decision is made by selecting between these parallel 

representations (Cisek 2007; Cisek and Kalaska, 2010; Kim and Shadlen, 1999). For 

example, Cisek and Kalaska (2005) found that while a monkey is deciding between two 

different potential reaching movements, neural activity in dorsal premotor cortex (PMd) 

represents both options simultaneously and reflects the selection of one over the other 

when the monkey makes his choice. This is consistent with earlier proposals suggesting 

parallel movement preparation (Erlhagen and Schoner, 2002; Fagg and Arbib, 1998; 

Tipper, 1998), and with the hypothesis that action selection is accomplished through a 

biased competition within a sensorimotor map of potential actions (Cisek, 2006). 

This “affordance competition” hypothesis (Cisek, 2007) stands in contrast to the 

classical serial model, in which decisions are made in higher cognitive centers and the 

resulting choice passed down to the sensorimotor system for execution. Instead, it 

suggests that decisions are determined when a competition between actions is resolved 

within the sensorimotor system – e.g. for reaching, within the fronto-parietal cortex and 

associated corticostriatal loops. This means that although the biases that influence the 

decision may come from many sources, including the activity of higher cognitive regions, 

it is in the sensorimotor system that the final decision is taken. For selecting between 

actions, this makes good sense from an ecological perspective: The systems most 

sensitive to the spatial and dynamic attributes of the candidate actions are best qualified 

to make the final selection that takes all of these factors into account. For example, when 
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choosing between actions, the spatial layout of the immediate environment directly 

specifies the options and is of critical importance for evaluating what is the best choice in 

terms of payoffs and costs. Indeed, all else being equal, humans select the action that is 

least demanding from a biomechanical perspective (Cos et al., 2011), suggesting that the 

same “forward models” (Shadmehr et al., 2010) useful for predicting the consequences of 

motor commands may also play a role in selecting the actions themselves by biasing 

activity in sensorimotor cortices. 

Decision making within a sensorimotor map is particularly useful for spatial 

choices, such as selecting among different ways to escape a predator through an 

environment filled with obstacles. If two escape routes are close together, then you 

should not waste time deciding but instead run between them and choose in flight. In 

contrast, if you are up against a wall then a clear “winner-take-all” decision is critical, 

even if it takes a little more time to resolve. Finally, even during ongoing escape, you 

must continuously evaluate and update the options presented by the environment in case 

what appeared as an escape route turns out to be a dead end and/or if a new and better 

option presents itself. If that new option is already partially represented in sensorimotor 

maps of potential actions, then switching to it will be very fast. 

In an analogy to the above scenario, here we consider selection between reaching 

movements to different spatially specified targets. The affordance competition hypothesis 

predicts that if we present a monkey with multiple reaching options associated with 

different rewards, neural activity in PMd will be modulated by the relative value of those 

rewards. However, if a single option is present, then its value will not influence PMd 

activity because there is no competition. A recent study in our lab (Pastor-Bernier and 
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Cisek, 2011) confirmed both of these predictions, showing relative value modulation 

when two targets were presented but no value modulation with one target. Furthermore, it 

was found that the competition between options was strongest when they were furthest 

apart – just as predicted in the prey escape example described above. All of these results 

are consistent with the idea that the competition unfolds within a sensorimotor map that 

respects the pragmatic issues of selecting actions in space, and all of them could be 

simulated with a simple model of biased competition among populations of tuned cells 

(Cisek, 2006). 

In summary, previous studies have shown that the process of deciding between 

actions involves the very same brain regions that are implicated in sensorimotor guidance 

of actions, consistent with the affordance competition hypothesis (Cisek, 2007). However, 

the hypothesis also makes a complementary prediction: that the same cells involved in 

selecting the initial action will continue to be involved in adjusting and even switching 

between actions during overt behavior. In other words, if the environment changes and 

old opportunities are lost or new ones become available, the same integrated selection 

and sensorimotor guidance system should reflect the switch of the plan. Here, we 

investigate this issue by examining neural activity in PMd after a monkey has chosen one 

of two actions, but the selected option becomes unavailable. We examined the same cells 

whose delay period activity showed relative value modulation in our previous work 

(Pastor-Bernier and Cisek, 2011) but extended our analysis to the activity after the GO 

signal, with particular interest in trials in which the option with highest payoff becomes 

unavailable. Some of these results have been previously presented in abstract form 

(Pastor-Bernier et al., 2011).  
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MATERIALS AND METHODS  

Instrumentation and technical procedures 

 

A male monkey (Macaca mulatta) performed a planar center-out reaching task 

illustrated in Figure 1A. The task involved moving a cursor from a central circle (2cm 

radius) to one of six possible targets (2.4cm radius) spaced at 60° intervals around a 

12.6cm radius circle. The monkey performed movements using a cordless stylus whose 

position was recorded (125Hz) by a digitizing tablet (CalComp). Target stimuli and 

continuous cursor feedback were projected onto a mirror suspended between the 

monkey’s gaze and the tablet, creating the illusion that they are in the plane of the tablet. 

Oculomotor behavior was unconstrained, as eye movements do not strongly influence 

arm-related PMd activity (Cisek and Kalaska, 2002), but was monitored with an infrared 

oculometer (ASL). Neural activity was recorded with 3-4 independently moveable 

microelectrodes (NAN microdrive) and data acquisition was performed with AlphaLab 

(Alpha-Omega). On-line spike discrimination was used to estimate cell preferred 

directions for choosing target locations. All analog waveforms were stored on disk for 

offline sorting using principal components (Plexon). All task events, trajectory data and 

spike times were stored in a database (Microsoft SQL Server 2005) accessed through 

custom scripts for data analysis (Matlab). After completing training, the animal was 

implanted under general anesthesia with a titanium head post and a recording chamber 

placed using MRI images (Brainsight primate). The chamber was centered on the arm 

area of PMd, between the precentral dimple and the junction of the arcuate sulcus and 
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spur (Figure 1B). All procedures followed university and national guidelines for animal 

care. 

 

Behavioral task  

 

The monkey began each trial by placing the cursor in the central circle for a 350-

650ms Center-Hold-Time (CHT). Next, one or two cyan targets appeared, with border 

styles indicating the amount of juice that the monkey was likely to receive for reaching to 

that target (See Figure 1A, inset). The reward was determined probabilistically to 

encourage the monkey to explore available options (Herrnstein, 1961). A “low-value” 

target (L, thick border) had a 60% chance of yielding 1 drop, 30% chance of yielding 2 

and 10% chance of yielding 3 (Expected value, EV=1.5). A “medium-value” target (M, 

no border) was worth 2 (60%), 1 (20%) or 3 drops (20%) (EV=2). A “high-value” target 

(H, thin border) was worth 3 (60%), 2, (30%), or 1 drop (10%) (EV=2.5). The non-

monotonic relationship between border thickness and value was used to dissociate 

motivational factors from physical properties of stimuli. In particular, the most visually 

salient cue with a thick border style is deliberately chosen to have a small payoff (“low 

value”) to dissociate saliency from value effects. The monkey held the cursor in the 

center for an instructed delay period (DELAY, 700-1300ms) until a GO signal was 

indicated by a change in target color and the disappearance of the central circle. After the 

GO signal, the monkey had to initiate the movement within a 550ms reaction time (RT) 

(which had to be at least 100ms, to discourage anticipation). To receive a reward, the 

monkey had to move to a target within a maximum 550ms movement time (MT) and 
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hold the cursor there for 500ms (Target-Hold-Time, THT). When cells were isolated, we 

first ran a block of 90 trials in which only one target was presented (1T), to identify the 

DELAY-period preferred target (PT) of each cell. Next, we ran a block of 180 two-target 

trials (2T), including ones where the PT target was present and low, medium, or high-

valued, while the other target (OT) appeared at 60°, 120°, or 180° away and was low, 

medium, or high-valued. Each block also included 30 trials in which the targets were 

120° apart but neither was in the direction of the PT. In this paper we focus only on trials 

in which the targets are 120° apart (90 trials per 2T block) and at least one of the 

presented targets was the cell’s PT. In 67% of 2T trials (FREE), the monkey was free to 

move to either target after the GO signal. In 33% of 2T trials (FORCED), one of the 

targets disappeared at GO and the monkey had to move to the remaining one. FREE and 

FORCED trials were randomly interleaved to encourage the animal to keep both options 

partially prepared. FORCED trials were classified according to the value of the target that 

disappears after the GO signal. In FORCED LOW trials the target with the higher 

expected value disappears (inset in Figure 1A bottom), while the opposite is true in 

FORCED HIGH trials. In a FORCED EQUAL trial both the target that disappears and 

the target that remains have the same value.  

 

Kinematic analysis 

 

Movement trajectories were re-sampled at a constant rate (200Hz) and filtered 

using a two-way butterworth filter (0 phase lag, 4th order, norm. cutoff 0.05 (~20Hz)) 

using Matlab functions butter and filtfilt (Mathworks). The initial direction vector (IDV) 
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was calculated as the X and Y coordinate cartesian arctangent (atan2) between the 

position at movement onset and the position 100ms later. Trials were sorted by short RT 

(<180ms), medium RT (between 180ms and 240ms) or long RT (>240ms). The mean 

trajectory profiles and mean initial direction vectors were calculated for each RT group 

independently. To determine whether the IDV was pointing to a given target in space, we 

calculated the mean IDV in the 1T condition for each target individually. Then, 2T trials 

were classified as “direct” to the selected target if their IDV fell within 120° of that 

target’s mean IDV in the 1T condition. Trials whose IDV pointed away from the 

ultimately acquired target were classified as “curved”. 

 

Cell tuning and relative value discrimination 

 

We investigated only cells that had both spatial tuning and relative value 

discrimination (see Pastor-Bernier and Cisek, 2011) during DELAY. We calculated 

directional tuning preferences for the cells during each behavioral epoch (DELAY, MT, 

and THT) and assessed significance with a non-parametric bootstrap test (1000 shuffles, 

p<0.05; Cisek et al., 2003). To assess whether a cell discriminated relative value during 

DELAY, we examined whether the cell showed statistically significant differences in 

firing rate between a “HIGH” value condition (value in PT was larger than OT) and a 

“LOW” value condition (value in OT larger than PT) for the last 300ms prior to the GO 

signal (1-way ANOVA, p<0.05). This was done to verify whether the same cells that are 

involved in the initial decision continue to reflect plan switches after the GO signal. Cells 

satisfying both requirements were used for post-GO analyses. Discrimination latencies 
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were obtained using a sliding ANOVA method adapted from Peng et al. 2008 (window: 

50ms, step: 5ms, p<0.05) to perform a statistical temporal analysis between the HIGH 

and LOW value conditions. We obtained latencies for relative value discrimination with 

respect to the GO signal by aligning the neural activity on GO and parsing each trial 

backwards for 700ms (shortest variable DELAY duration). This chosen interval ensured 

that all trials had a similar time range for firing rate comparisons. The latency of relative-

value discrimination was obtained as the last 80ms sliding time-window for which a 

statistical difference could be observed. The cells that satisfied both the 1-way ANOVA 

and sliding-ANOVA requirements were called relative value discriminating cells (RV 

cells, N: 52). This population is identical to the data set described previously (Pastor-

Bernier and Cisek, 2011) in which relative-value effects were assessed for particular 

value combinations (PTvsOT: 3vs1, 2vs1, 3vs2) using paired ANOVA and Tukey-

Kramer tests. 

 

Plan-switch analysis 

 

FORCED LOW trials were of particular interest for plan-switching analysis 

because they represent conflict situations in which the more desirable option must be 

replaced by the less desirable option. In these “plan-switch” cases, DELAY activity prior 

to GO (pre-GO plan) was compared with activity after GO (post-GO plan). We further 

distinguished cases where the target that disappears is located in the cell’s PT or in the 

OT, giving rise to two different kinds of FORCED LOW trials. In FORCED LOW 

PT2OT trials the pre-GO DELAY activity reflects an initial plan to PT and the post-GO 
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activity a final plan to OT. In FORCED LOW OT2PT trials the pre-GO DELAY activity 

reflects a movement plan to OT and the post-GO activity a final plan to PT. To obtain 

plan-switch latencies FORCED LOW trials were compared with trials belonging to the 

FREE condition in which the animal naturally chose the high valued option (FORCED-

FREE comparison).  To obtain the switch latency from an initial plan to PT to a final plan 

to OT (SwitchPT2OT) the activity of FORCED LOW PT2OT trials was compared with 

FREE trials in which PT was the plan selected (FREE HIGH PT). This type of switch is 

illustrated in Figure 3A. The plan-switch latency was obtained by parsing the neural 

activity for both types of trials from GO to movement offset using a sliding ANOVA 

method (window: 50ms, step: 5ms, p<0.05) and calculated as the first moment in time in 

which they were significantly different for at least 80ms after the GO signal. For the 

plan-switch latency to be valid we also required that there be no significant difference 

between the FORCED LOW PT2OT and the FREE HIGH PT types of trial for at least 

300ms before the GO signal (1-way ANOVA, p<0.05ms). To calculate the switch latency 

from an initial OT plan to a final PT plan (SwitchOT2PT) the activity of FORCED 

LOW OT2PT trials was compared to FREE HIGH OT trials in which OT was selected. 

Figure 3B illustrates an example of this type of switch. We define as “convergence” the 

situation in which the pre-GO DELAY activity for two types of trials represents different 

movement plans, while the post-GO activity represents the same plan. The time of 

convergence to a plan in the PT direction (CONV) is found by comparing FORCED 

LOW OT2PT trials with FREE HIGH PT trials (Figure 3C). Convergence to an OT plan 

cannot be determined from the activity of cells because activity to OT is generally low. 

To obtain CONV latency a similar sliding ANOVA method was used, although the time 
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of convergence was defined as the first moment after the GO signal in which the 

difference between the two types of trial was not significant (p>0.05) for at least 80ms. 

We also required the pre-GO DELAY activity between FORCED LOW OT2PT and 

FREE HIGH PT to be different for at least 300ms (1-way ANOVA, p<0.05). In a variant 

of the plan-switch latency study we used FORCED HIGH trials instead of FREE HIGH 

trials for the calculation of plan-switch latencies (FORCED-FORCED comparison). This 

allowed us to address whether differences in visual input after the GO signal (the number 

of remaining targets) could have an effect on the plan-switching process.  

The population’s mean switch latencies (ms) were calculated using the sliding-

ANOVA method mentioned above. The confidence intervals (CI) at 95 % probability 

(p<0.05) were obtained as ±Z*√E, where Z represents the critical area for the distribution 

of mean switch latencies across trials. Z can be approximated to ±1.96 assuming by the 

central limit theorem (Polya, 1920) that the mean distribution tends to normality with 

large sample sizes. The variable E represents the error variance of the mean and was 

calculated using the expression correcting for overlapping intervals described in Müller 

(1993) (eq. 3.7) and cited elsewhere (Dacorogna et al., 2001; Hansen and Lunde, 2006). 

E = r/N2 * (rR – (r2-1)/3),  

where r = min(m,N), R = max(m,N) and where m is the overlap between intervals and N 

is the number of samples per time interval.  

In our case we have a 50ms window sliding by 5ms bins. Therefore m = 45 and N = 10. 

Because m>N, then r = N and R = m, and the previous expression takes the form: 

E = m – N/3 – 1/3N  

Solving numerically with m = 45 and N=10, we obtain E = 41.7 and therefore 
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CI = ±1.96√41.7 = ±12.6 ≈ ±13ms  

With no overlap m=0, r=0, R =1, N=1 and the error of overlap E = 0. 

 

Computational modeling 

 

The model (Cisek, 2006) is aimed at explaining and predicting systems-level 

phenomena such as response patterns over large population of neurons. It is implemented 

with a set of equations describing the activity of several populations of neurons that 

correspond to specific cortical regions. Each population is organized as a layer of neurons 

that are tuned to spatial directions of potential actions. Each neuron in a layer behaves 

according to an expression that defines how its activity changes over time as a function of 

four terms: passive decay, excitation toward saturation, inhibition and noise. This 

expression can also be called “mean-rate leaky integrator” (Grossberg, 1973) and takes 

the following form: 

dX/dt = –αX + (β-X)γ·E – X·I + θ, (1) 

where X is the mean firing rate of a given neuron, dX/dt is the change in rate over time, E 

is the excitatory input, I is the inhibitory input, α is a decay rate, β is the maximum 

activity of a neuron, γ is the excitatory gain and θ is the Gaussian noise. The connections 

between each layer are hardwired and organized to respect basic neuroanatomical 

connection patterns. Further details concerning connectivity patterns and model behavior 

have been described previously elsewhere (Cisek, 2006). For purposes of the present task 

the model’s “prefrontal” activity was scaled by a signal related to the absolute value of 

each target (low=0.3, medium=0.7, high=1.0). To simulate plan switches, we removed 
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one of the two presented targets (high valued target in FORCED LOW trials) at the 

beginning of the GO epoch. All parameter settings were identical to Cisek (2006), except 

that we used a gradual GO signal that allows the activity in PMd to gradually spill into 

the M1 layer. The gradual GO signal is defined as a multiplicative factor that scales the 

input from PMd to M1 and is zero before the GO instruction. After the GO instruction, it 

grows as 2.5·t where t is the time since the GO instruction. 

Note that the model in its present form is not intended to simulate the movement 

itself. Activity in the model M1 population simply indicates the initial direction of 

movement, computed as the preferred direction of the first M1 cell that crosses a 

threshold of activity equal to 1.75. 

 

BEHAVIORAL RESULTS  

 

In 1T trials the monkey’s success rate was 98%, in 2T FREE it was 99% and in 

2T FORCED it was 96% (in all cases N>60,000). In 2T FREE trials the monkey selected 

the more valuable target 90% of the time, indicating that he understood the meaning of 

the stimulus cues. We found that movement times (MT) were shorter to higher-valued 

targets in 1T trials (400ms to high-value and 416ms to low-value targets). Although the 

difference was small, it was significant (Kolmogorov-Smirnov test (KS), p<0.01). 

Reaction times (RTs) in 1T trials did not depend on target value (KS-test p>0.05 for all 

comparisons). 

We observed an interaction effect between RT and trajectory kinematics in 2T 

trials. Trajectories belonging to short RT trials were generally more curved than 
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trajectories belonging to medium or long RT trials (Figure 2A). This effect was 

accentuated by the value of the unselected target with respect to the value of the selected 

target in the FORCED condition. Trajectories in the FORCED LOW condition (Figure 

2A, rightmost panel) were generally more curved than the ones in the FORCED HIGH or 

FREE HIGH conditions (Figure 2A, left and middle panels). These curved movements 

have an initial launching direction towards the target that vanishes and are corrected later 

to the remaining target. To quantify this we obtained the mean trajectory initial direction 

vector (IDV) across all conditions (Figure 2B). We observed that a great deal of the 

curvature in FORCED LOW trials was due to movements launching to the target that 

becomes unavailable after GO (High value). This effect was particularly strong for short 

RT trials and moderate for intermediate RT trials. Long RT trials were essentially straight 

toward the remaining target (Figure 2B, rightmost panel). We did not see this effect 

when the monkey was forced to move to the high value target or when the monkey was 

free to choose among the two targets, because in either situation the preferred and 

available target were the same. We further investigated the interaction between RT, 

relative value and initial launching direction by comparing raw RT distributions. The 

mean RTs in FREE HIGH (266ms, light-brown dashed histogram), FORCED HIGH 

(271ms, dark-brown dashed histogram) and FORCED LOW (279ms, black dashed 

histogram), were very similar (Figure 2D) with only small differences between the mean 

RTs in FREE HIGH and FORCED LOW distributions (KS test, p<0.01). This could be 

due to the contribution of a higher proportion of correct trials in FREE HIGH than in 

FORCED LOW trials (3% difference). Most importantly we observed that the mean RT 

in FORCED LOW trials with “direct” trajectories (red histogram, 291ms) was 
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significantly longer (21ms difference, KS Test, p<0.01) than the mean RT in FORCED 

LOW trials with “curved” trajectories (blue histogram, 270ms). In comparison, FORCED 

LOW “curved” trials and FORCED HIGH trials did not show RT differences (KS Test, 

p>0.05) (Figure 2D).  

 

NEURAL RESULTS 

PMd activity predicts switching of motor plans ahead of movement onset  

 

Activity was recorded from 327 cells from the arm area of PMd (Figure 1B) of 

which 226 (69%) had significant directional tuning during at least one epoch (DELAY, 

MT, THT) and were considered task-related. Here, we focus on cells with DELAY-

period tuning (181/226, 80%), 52 of which (29%) were modulated by relative value 

combinations during DELAY (1-way ANOVA, p<0.05) and were considered further for 

the plan-switch analyses (relative value, RV cells). In the first variant of this analysis we 

compared neural activity in FORCED LOW versus FREE HIGH conditions (FORCED-

FREE). Figure 3A-C shows three individual cells illustrating the different types of plan-

switch analyses. In a SwitchPT2OT (Figure 3A) we compare trials that had a pre-GO 

plan to PT and a post-GO plan to OT (FORCED LOW PT2OT, green trace) with trials 

that had both a pre-GO and post-GO plan to PT (FREE HIGH PT, red trace). In a 

SwitchOT2PT (Figure 3B) we compare trials with a pre-GO plan to OT and a post-GO 

plan to PT (FORCED LOW OT2PT, blue trace) with trials that had both a pre-GO and 

post-GO plan to OT (FREE HIGH OT, pink trace). In a convergence (CONV) the pre-

GO plan is different for two types of trials (FORCED LOW OT2PT and FREE HIGH PT) 
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but is the same (movement plant to PT) after the GO signal (Figure 3C). Figure 3D-G 

show additional examples that had statistically significant plan switches at the individual 

cell level. Thirty-seven of the 52 (71%) RV cells showed statistically significant 

modulation (sliding ANOVA p<0.05) in at least one plan-switch analysis in the 

FORCED-FREE latency comparison and are referred to as Switch cells. Switches of 

activity of the other cells did not reach statistical significance, often because those cells 

were recorded during only a few trials of each type. 

To address the role of visual input (the number of targets remaining after GO) on 

the plan-switching process, we also compared FORCED LOW versus FORCED HIGH 

conditions (FORCED-FORCED comparison). Figure 3F-G illustrates a single cell 

example in which plan switches were obtained both for the FORCED-FREE comparison 

(Figure 3F) and for the FORCED-FORCED comparison (Figure 3G). Twenty-eight out 

of 52 (54%) RV cells showed statistically significant modulation to plan switches in the 

FORCED-FORCED comparison. Table 1 summarizes the cell counts for the different 

types of switch in both comparisons.  

To test whether the plan-switch pattern observed at the individual cell level also 

held at the population level, we obtained the population profile for plan-switching in 

Switch Cells and all RV cells separately and for both FORCED-FREE (Figure 4A-B) 

and FORCED-FORCED (Figure 4C-D) comparisons. We observed that the latency of 

SwitchPT2OT and SwitchOT2PT for Switch Cells was 155 ± 13ms (95% CI) after the 

GO signal and therefore well before movement onset (300 ± 50ms) in both FORCED-

FREE and FORCED-FORCED comparisons (Figure 4E-F). Convergence to a plan 

occurred later, 190ms ± 13ms after the GO signal, but still well-ahead of movement onset. 
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These results held for both the Switch cell or RV cell populations, although we observed 

that switch latencies in the larger RV cell population were later than in the Switch cell 

population by about 15-20ms (this difference did not reach statistical significance, 

ANOVA p>0.05), and was presumably due to the presence, in the RV population, of cells 

with very few trials resulting in a larger standard error. Table 2 summarizes the latency 

results for each cell population and comparison. 

 

PMd contribution to kinematics prior to movement onset (initial direction) is 

observed in situations where there is no relative value bias   

 

We examined the cell responses in the plan-switch paradigm taking into account 

the initial direction of the reach movements in each trial. By doing so we classified 

trajectories as initially aiming to the selected target (“direct”, to PT or OT) or initially 

aiming to the unselected target (“curved”). We compared both direct and curved 

movements in the conditions that were more likely to provoke curvatures due to plan-

switches, namely the FORCED LOW and FORCED EQUAL conditions. Figure 5A-C 

shows population histograms for Switch cells and RV cells, comparing FORCED LOW 

direct and curved trials. We observed that curvature is not predicted by DELAY activity 

in the FORCED LOW condition. We did not observe statistically significant differences 

either between activity in the FORCED LOW PT2OT direct trials and FORCED LOW 

PT2OT curved trials, or between FORCED LOW OT2PT direct and FORCED LOW 

PT2OT curved (ANOVA, p>0.05 in both cases). However, DELAY activity in the 

FORCED EQUAL conditions does predict whether a trial will be curved or straight. 
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During the 600ms prior to the GO signal, we observed statistically significant differences 

(ANOVA, p<0.05) between FORCED EQUAL direct and FORCED EQUAL curved 

trials, for both Switch cell and RV cell populations (Figure 5D-F). It is noteworthy to 

mention that these differences take place only during DELAY prior to the monkey’s 

knowledge of which target will disappear (GO), and reflect pre-GO selection biases. That 

is, among the FORCED EQUAL trials there are some in which the pre-GO activity 

happens to be strongly biased toward one target, and when that target disappears, the bias 

is likely to cause a curved movement (green and blue traces). 

Note that, as shown in Figure 5B, E, when we align activity on the movement 

onset (MO) we can see that the switch of the plan (computed at the population level) 

occurs approximately 150ms before movement onset. This is interesting because in the 

curved trials the monkey still launches to the now nonexistent target. 

 

A biased competition model can reproduce the dynamics of the plan-switch 

 

Cisek (2006) described a “biased competition” model of action selection, in which 

populations of cells along the dorsal stream implement a distributed representation of 

potential actions that compete against each other through lateral inhibition (Figure 6A, 

see methods). The model simulates relative value effects reported previously when 

reward-related biasing signals are introduced into PFC (Pastor-Bernier and Cisek, 2011). 

Here, we used the same model to simulate plan switches by removing one of the two 

presented targets at the beginning of the GO epoch and by letting the activity in PMd to 

gradually spill into the M1 layer (see Methods). Figure 6D shows the activity of a 
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simulated neuron illustrating plan switches from OT2PT, PT2OT and convergence to PT. 

Note that the timing of the PT2OT and OT2PT plan switches occur simultaneously and 

prior to movement onset. This is also the case for convergence to PT. These results are 

compatible with the experimental data and suggest that PMd contains all the information 

concerning the final action plan before movement onset. Figure 6B shows RT 

distributions from FORCED LOW simulations for trials in which the model launched 

toward the target that vanished (blue) or the remaining target (red). We observe that RTs 

are shorter for trials initiated toward the vanishing target, in agreement with behavioral 

data (Figure 2D). Figure 6C shows the distribution of initial launching directions. Note 

that the blue distribution (which comprises the majority of early RT trials) is aimed 

toward the target that vanished, predicting that if the model were equipped with online 

feedback during the movement itself, it would produce curved trajectories as in the 

behavioral data. Figure 6E shows the model’s Parietal, PFC (rostral and caudal), PMd 

(rostral to caudal) and M1 population patterns of activity during a FORCED LOW trial 

where we observe a plan switch that is completed before movement onset. In contrast, in 

the trial shown in Figure 6F, the model launches the movement before the plan switch is 

complete. We observe that the timing of plan switches in all PMd layers is before 

movement onset, in agreement with our experimental results.  

 

DISCUSSION 

 

Recent studies have shown that while a monkey is deciding between two potential 

reaching movements, neural activity in the dorsal premotor cortex (PMd) can specify 
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both movements simultaneously (Cisek and Kalaska, 2002, 2005; Klaes et al., 2011), and 

the neural representations of these movements are modulated by their relative subjective 

desirability (Pastor-Bernier and Cisek, 2011). These findings suggest that decisions 

between reaching actions are made within the same brain regions involved in the 

execution of the actions themselves, in agreement with research on reaching (Cisek, 2007; 

Cisek and Kalaska, 2010; Pesaran et al., 2008) and oculomotor control (for reviews, see 

Glimcher, 2003; Gold & Shadlen, 2007). In fact, decisions about eye movements appear 

to involve even the superior colliculus, a brainstem structure that is just two synapses 

away from the motor neurons that move the eye (Basso and Wurtz, 1998; Carello and 

Krauzlis, 2004; Horwitz et al., 2004; Ignashenkova et al., 2004; Thevarajah et al., 2009). 

However, the finding that decision variables (such as relative value) influence 

neural activity in sensorimotor regions does not necessarily imply that these same cells 

continue to be involved in the on-line guidance of movement. It is plausible that once a 

decision is made and an action is launched toward a given target, the decision-related 

cells fall silent while a separate circuit becomes responsible for guiding movement 

toward the selected target. The results presented here suggest that this is not the case. We 

found that the very same PMd cells previously shown to reflect relative value during a 

delay period continue to update their activity to reflect when the monkey changes its plan 

during situations in which a previously selected action becomes unavailable. This argues 

against the distinction between regions responsible for choosing an action and those 

responsible for its guidance through on-line feedback, and in favor of the hypothesis that 

decisions emerge through a competition within the same circuit that guides movement 

execution (Cisek, 2007). 
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A number of earlier studies provide converging evidence consistent with this 

integrated view. For example, it has been shown that humans and monkeys can quickly 

and smoothly update their movement plans when the location of the reach target suddenly 

and unpredictably changes (Archambault et al. 2009, 2011; Day and Lyon, 2000; 

Desmurget et al., 1999, Georgopoulos et al., 1981, 1983; Gritsenko et al., 2011; Prablanc 

and Martin, 1992), even when they are not consciously aware of the change. During these 

“target jump” experiments, neural activity in fronto-parietal cortex smoothly transitions 

between the original and final motor plan (Archambault et al., 2009, 2011), without any 

“refractory period” for aborting the previous plan before preparing a new one. Among the 

regions tested, the earliest changes in neural activity were found in PMd, in which 50% 

of cells reflected the new plan about 140ms after a target jump, followed by M1 at 180ms 

and dorsal area 5 at 200ms (Archambault et al., 2011). This is comparable to the latency 

of responses to target jumps in earlier studies by Georgopoulos et al. (1983), who 

observed latencies of about 130-150ms in the rostral part of M1. 

Interestingly, the neural latencies to target jumps are comparable to the latencies 

of plan switches observed in PMd in our study – about 155ms for both increases 

(SwitchOT2PT) and decreases of activity (SwitchPT2OT). They are also comparable to 

the latencies reported by Wise and Mauritz (1985) in a study in which the stimulus that 

instructed the plan switches was presented during the delay period, well before the GO 

signal. In that study, it was found that PMd cells reflected the switch with a median 

latency of 140-150ms. In other words, the latency with which neural activity in PMd 

reflects a plan change is approximately 140-150ms after the sensory stimulus which 

instructs that plan change. This holds true regardless of whether that stimulus is the 
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change of a target from one location to another during the delay period (Wise and 

Mauritz, 1985), the displacement of a target during reaction time or movement 

(Archambault et al., 2009, 2011; Georgopoulos et al., 1983), or the offset of a preferred 

target that leaves only a less-desirable one available (present study). Furthermore, we 

found that the latency at which cells became suppressed when their preferred target 

disappeared (SwitchPT2OT) was not statistically different than the latency with which 

their discharge increased when their preferred target, which was initially less desirable, 

suddenly became the only remaining option (SwitchOT2PT). The similarity of these 

neural latencies across different experimental conditions demonstrates that in all cases, 

neural activity in PMd remains sensitive to new information pertinent to available actions 

and their values. This suggests a view whereby sensory information continuously flows 

into the motor system (Cisek 2007; Coles et al., 1985), as opposed to a view of separate 

computational stages involved in canceling one motor program and computing a new one. 

The neural processes of canceling a planned movement have been studied in the 

frontal eye fields (Hanes, 1998), superior colliculus (Pare and Hanes, 2003) and for arm-

reaching studies in the supplementary motor area (SMA), pre-SMA (Scangos and 

Stuphorn, 2010) and PMd (Mirabella et al., 2011) using the countermanding task (Logan 

et al., 1984). In this task, subjects are asked to make a saccade or reach to a target, but to 

inhibit the movement if an infrequent STOP-signal is presented after a variable delay 

following the GO signal. As the delay increases, it becomes increasingly difficult to 

successfully inhibit the movement, making it possible to estimate a given subject’s “stop-

signal reaction time” (SSRT). Although many cortical areas such as motor cortex (M1) 

and supplemental motor areas (pre-SMA and SMA) harbor neurons with DELAY activity 
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related to movement planning (Okano and Tanji, 1987) it is unlikely that these areas are 

involved in processes causally related to movement cancellation because their responses 

to a stop signal take place after the SSRT (Scangos and Stuphorn, 2010). In contrast, 

Mirabella et al. (2011) found that during successful STOP trials, neurons in PMd show 

activity changes prior to the SSRT, making it possible that this region is involved in 

inhibiting the movement. This is consistent with the findings reported here that the 

suppression of PMd activity tuned to the target which vanished (SwitchPT2OT) occurs 

well before movement onset. 

Our behavioral results are compatible with the proposal that at the end of the 

DELAY period, the movement to the higher-valued target is more strongly prepared than 

the movement to the lower-valued target. When the higher target disappears in a 

FORCED LOW trial, then one of two things can happen. If the RT is short, then the 

movement initiates toward the location of the unavailable target and the monkey must 

later turn around (curved trials, Figure 2D blue). If the RT is long, then the monkey 

completes his plan switch and initiates directly to the remaining target (direct trials, 

Figure 1F red). Nevertheless, what is surprising is that in both cases, neural activity in 

PMd already clearly reflects the change of plan more than 150ms before the movement 

onset. This can be seen in Figure 5A and B. For example, the green traces illustrate trials 

in which the monkey initiated the movement toward the PT of recorded cells, which was 

the more valuable of the targets present during the DELAY. However, that target 

vanished and so the monkey curved its movement trajectory and arrived at the remaining 

target. Although the neural activity becomes suppressed within 200ms of the GO signal, 

reflecting the change of plan away from the PT, the initial movement some 100ms later is 
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still launched in the direction of the original plan. This happens most often during trials 

with short reaction times (Figure 1C, F) suggesting that the motor system has a certain 

“inertia” that cannot be easily overcome. That is, movement initiation and muscle 

contraction could be starting to take place shortly after the GO signal despite the 

possibility that the more desirable choice will become unavailable. In this sense, the 

short-RT curved movements would be a natural consequence of the monkey’s 

impulsivity and a strategy of reaching quickly and correcting the trajectory when 

necessary. In FORCED LOW trials, we found no significant difference in PMd activity 

between curved versus direct trials (Figure 5A-C), suggesting that other regions 

(presumably M1) may be more strongly responsible for determining whether the 

movement launches toward the initially selected or not. In FORCED EQUAL trials, we 

did observe differences in PMd activity when comparing curved versus direct movements 

(Figure 5D-F), but we believe this is simply due to selection bias: Curved movements 

(dark blue and green traces) are more likely to occur when the monkey happens to be 

strongly biased during DELAY toward the target that vanished, while direct movements 

could result equally from trials in which DELAY activity is biased to the PT, the OT, or 

neither, and the average DELAY activity of these three groups of trials will lie 

somewhere in the middle (red and cyan traces). 

Cisek (2006) described a model of biased competition between action plans, 

which was originally designed to capture neural data on the simultaneous specification of 

multiple movements (Cisek and Kalaska, 2005) and behavioral data on the distributions 

of initial directions in short-RT pointing tasks (Favilla, 1997; Ghez et al., 1997). That 

same model, without any changes in parameters, was able to simulate more recent data on 
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the modulation of PMd activity by relative subjective desirability (Pastor-Bernier and 

Cisek, 2011). In the model, potential actions are encoded as hills of activity in 

populations of directionally tuned neurons with short-range mutual excitation between 

similarly tuned cells and long-range lateral inhibition among cells with different tuning. 

The distance dependence of these lateral interactions is responsible for producing both 

the distance-dependent distributions of initial reach directions (Favilla, 1997; Ghez et al. 

1997) and the distance-dependent influence of the value of one target on the PMd activity 

related to another (Pastor-Bernier and Cisek, 2011). That same model, only slightly 

modified with a gradual GO signal, is also able to reproduce our current results on plan 

switches (Figure 6D) and the distributions and timing of initial launching directions 

(Figure 6B, C). Note, however, that the model makes no attempt whatsoever to explain 

activity after movement onset – it includes no dynamics for producing or guiding 

movement, and its M1 activity should only be interpreted as capturing the initial pattern 

around the time of movement onset. Nevertheless, despite the absence of any movement 

production mechanisms in the present form of the model, it is consistent with models in 

which the movement trajectory is generated through continuous feedback via 

proprioceptive and visual signals (Bullock and Grossberg, 1988, 1998; Burnod et al., 

1999; McIntyre and Bizzi, 1993; Shadmehr and Wise, 2005) and through internal forward 

models (Bullock et al., 1993; Miall and Wolpert, 1996; Shadmehr et al., 2010). The 

model is compatible with general theories proposing that movements unfold as a 

dynamical system that is guided by the continuously updated pattern of activity within a 

distributed sensorimotor map. These patterns of activity can be shaped by a variety of 

processes, including attention (Baldauf and Deubel, 2010; Tipper et al., 1998), decision-
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variables (Cisek, 2007), and continuous spatial information from the dorsal visual stream 

(Day and Lyon 2000; Desmurget et al., 1999; Goodale and Milner, 1992; Milner and 

Goodale, 1995). 

That a relatively simple “biased competition” model can explain this fairly large 

set of data is particularly interesting given that the same mechanism is often used to 

explain the neural mechanisms of spatial attention (Boynton, 2005; Desimone and 

Duncan, 1995). This supports the conjecture (Allport, 1987; Cisek, 2007; Duncan, 2006; 

Neumann, 1990; Rizzolatti et al., 1987) that both attention and decision-making are 

related aspects of a general process of selection necessary to arbitrate between the many 

demands and opportunities for action that animals are continuously faced with in their 

natural environment. In this view, sensory information is continuously winnowed along 

the dorsal stream as it is converted into information specifying potential actions and 

ultimately guiding their execution. In all cases, this winnowing process involves a biased 

competition, but the specific dynamics of the process may be somewhat different in 

different brain regions.  

For example, Louie et al. (2011) showed that activity in LIP was best described as 

outin
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VV

V
RR

++

+
=

σ

β
max , (2) 

where R is the firing rate, Rmax is the maximum firing rate, Vin is the value of targets in 

the , Vout is the total value of targets outside the , and β and σ are the baseline activity and 

semi-saturation terms, respectively (see Reynolds and Heeger, 2009). Note that, as shown 

by Grossberg (1973), the normalization computation described by equation (2) can be 

produced by the steady-state solution of equation (1) if the excitation term E is equal to 

Vin and the inhibition term I is equal to Vout (see Cohen and Grossberg, 1983, for a proof 
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of Lyapunov stability for a general class of such networks). In other words, divisive 

normalization may result from the competitive interactions within neural populations. 

Louie et al. (2011) found that to explain their LIP data, the parameter σ had to be 

large, implying incomplete normalization such that LIP cells exhibited value-related 

modulation even with a single target. In contrast, our results suggest that PMd exhibits 

complete or nearly complete divisive normalization, because in the 1T task we found no 

value-related modulation whatsoever (Pastor-Bernier and Cisek, 2011), as if the σ 

parameter is zero. This raises the intriguing question of whether partial divisive 

normalization is the trend in parietal cortex, which is still far from overt execution, while 

activity is more fully normalized in regions closer to motor output, such as PMd. This 

would make good sense if PMd is most closely related to the process of final arbitration 

between potential actions, but a deeper understanding of these differences between LIP 

and PMd require further investigation. 

To summarize, we found evidence that PMd neurons, which appear to be involved 

in the competition determining the initial selection of action, continue to take part in 

action selection after movement onset, reflecting a change of plan when a selected target 

becomes unavailable. This finding is compatible with previous studies of plan changes 

during the delay period (Wise and Mauritz, 1985) and during target jump paradigms 

(Archambault et al., 2009, 2011; Georgopoulos et al., 1983), as well as with the 

suggestion that PMd activity may be causally involved in the voluntary inhibition of 

movement (Mirabella et al., 2011). Taken together, these results provide support for the 

general hypothesis that the brain mechanisms for selecting between actions involve the 

same circuits that guide the execution of the actions during overt behavior. 
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Figure 1. A. Behavioral task. The task involves moving a cursor from a central circle to 

one of six possible target locations. At the beginning of each trial the monkey placed the 

cursor in the center and two targets appeared. Each target was associated with different 

rewards indicated by different border styles (legend shows the probability of receiving 1 

(red), 2 (green) or 3 (blue) drops of juice for each border style). The monkey had to keep 

the cursor in the center until the targets changed color (GO signal). Then, it moved to one 

of the targets and held the cursor there to get a reward. In one variant of the task, the 

monkey was presented with only one target (1T). In a second variant two targets were 

presented, and the monkey was either free to move to either of them after the GO signal 

(FREE trials), or one disappeared after GO leaving the monkey with only the remaining 

option (FORCED trials). B. The recording locations in PMd. Black crosses indicate 

recording sites. The locations for cells modulated by relative value (RV cells) are shown 

with red circles (N = 52). 
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Figure 2. A. Average trajectories for 2T trials with the unselected target located 120 

degrees clockwise (red) or counterclockwise (green) to the selected target (always on the 

right). The three panels from left to right represent FREE, FORCED HIGH and FORCED 

LOW trials. The line thickness represents trials classified by their RT. Thick lines 

correspond to long RT (>240ms), medium sized lines to intermediate RT (between 180 

and 240ms) and thin lines short RT (<180ms) (See Method sections for details). B. 

Distribution of initial launching directions, with selected target at 0°. The color and line 

thickness code is the same as in Figure 2A. Blue histograms represent 1T trials to the 

selected target. C. Method used to classify trials as direct (red) or curved (blue). The top 

panel shows individual FORCED LOW trials when the remaining target is to the right 

and the vanished target is to the upper left. Small arrows indicate the initial direction 

vectors and the red region indicates the 120° angle around the average, within which 

trials were considered to be “direct”. The bottom panel shows a rose plot of the 

distribution of individual initial direction vectors. D. The RT distributions of FORCED 

LOW (black dash) trials, including FORCED LOW “direct” (red solid) and “curved” 

(blue solid) trials along with the RT distributions of FREE HIGH (light brown dash) and 

FORCED HIGH (dark brown dash). 
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Figure 3. 
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Figure 3. Top-left: The different types of trials are represented in color boxes. Target 

position is indicated by a blue circle in PT or in OT. The target value is indicated by 

circle size. In a “FORCED LOW” condition the most valuable option disappears after the 

GO signal (dashed circles) giving rise to two possibilities: whether the target with the 

larger value (big circle) was the cell’s PT (green box) or the other target (blue box). In 

both cases the monkey is forced to move to the remaining option (small circle). We 

compare these trials with “FREE HIGH” trials, in which the monkey is free to choose the 

target located either in PT or OT (red or pink) and selects the option with higher value 

(FORCED-FREE comparison). We also separately compare FORCED LOW trials with 

“FORCED HIGH” trials in which the target that disappeared after the GO signal was the 

less valuable one (orange and violet) (FORCED-FORCED comparison). In all panels 

bold black arrowheads indicate the selected option. A-G. Examples of the activity of 

individual cells illustrating the switching of movement plans observed between the pre-

GO and the post-GO period. Cell activity is depicted as firing-rate histograms, with 

mean±s.t.e., and rasters in which black marks indicate cue onset, go signal, movement 

onset and offset, with trials sorted by RT. A switch from PT to OT (SwitchPT2OT) is 

seen by comparing trials that have a pre-GO plan to PT and a post-GO plan to OT (green) 

with trials that have both a pre-GO and post-GO plan to PT (red). The time of the switch 

is indicated by a grey vertical bar (only in Figure 1A-C for simplicity). The alignment of 

activity on the GO signal for rasters and firing rate histograms is indicated by a black 

vertical bar in all panels. A switch from OT to PT (SwitchOT2PT) is seen by comparing 

trials that have a pre-GO plan to OT and a post-GO plan to PT (blue) with trials that have 

both a pre-GO and post-GO plan to OT (pink). The time of convergence to a plan in the 

PT direction (CONV) is found by comparing trials with a pre-GO and post-GO plan to 

PT (red) with trials with a pre-GO plan to OT but a post-GO plan to PT (blue). 

Convergence to an OT plan cannot be determined from the activity of cells because 

activity to OT is generally low.  
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Figure 4. Population activity. Cells with statistically significant plan switches (Switch 

Cells, N=37) and all cells discriminating relative values (RV Cells, N=52) were 

examined separately for switch latencies in the FORCED vs. FREE (A-B) and FORCED 

vs. FORCED comparisons (C-D). The grey bar indicates the time range of movement 

onset. The legend has the same color code as in Figure 3. E-F. Comparison of the 

latencies of SwitchPT2OT, SwitchOT2PT and CONV in these two groups of cells in 

FORCED-FREE (blue bars) and FORCED-FORCED comparisons (brown bars). The 

horizontal line above the histograms represent comparisons that were statistically 

significant (ANOVA, p<0.05). 
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Figure 5. Cell responses in the plan switch paradigm taking into account the initial 

direction of the reach movements in each trial.  A-C. Comparison of direct and curved 

movements in the FORCED LOW condition for Switch Cells (A-B) and RV Cells (C). 

Trajectories are classified as curved to PT (blue box), curved to OT (green box), direct to 

PT (orange) or direct to OT (violet). D-F. Comparison of straight and curved movements 

in the FORCED EQUAL condition for Switch Cells (D-E) and RV Cells (F). 

Trajectories are classified as curved to PT (dark blue box), curved to OT (dark green box), 

direct to PT (magenta) or direct to OT (cyan). In panels A, C, D and F the data is aligned 

on GO and the grey bar represents the time range of movement onset. Panels B and E 

replot the data in A and D, respectively, with alignment on movement onset (MO), and 

the grey bar indicates the time range of the GO signal. 
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Figure 6. A. Model of action selection, in which populations of cells along the dorsal 

stream implement a distributed representation of potential actions that compete against 

each other through lateral inhibition. Each population is modeled as a set of tuned 

neurons with “on-center-off-surround” recurrent connectivity. The model includes 

posterior parietal cortex (PPC), prefrontal cortex (PFC), three regions of PMd (rostral to 

caudal) and primary motor cortex (M1). Biasing signals related to absolute reward value 

(High, H or Low, L) enter as independent inputs to particular PFC layers (PFC-H, PFC-

L). B. RT distributions for trials in which the model launched to the target that vanished 

(blue) or to the remaining target (red). C. Initial launching directions toward the 

vanishing target (blue, at position 20) or remaining target (red, at position 50). D. A 

simulated neuron showing activity during four compared conditions: FORCED LOW 

OT2PT (blue), FORCED HIGH OT (purple), FORCED LOW PT2OT (green) and 

FORCED HIGH PT (red). Individual lines represent individual simulated trials. E. 

Patterns of activity in the model’s Parietal, PFC, PMd (rostral to caudal) and M1 

populations, during a FORCED LOW trial in which the target at position 50 was more 

valuable but vanished at the time of the GO signal, and the plan switch was completed 

prior to movement onset (MO). F. Patterns of activity in another FORCED LOW trial, 

but in which the movement was launched before the plan switch was complete, initiating 

to the target at position 50. 
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Table 1. Classification of cells 
PMd Cell counts N 

Cells with any delay activity 181 
Delay activity only 77 

Movement and Delay activity 104 

  

Discrimination of relative value (RV) 52 
Delay and Movement 30 

Delay only 22 

  

Switch Cells  *FORCED vs FREE 37 
Switch OT2PT 31 

Switch PT2OT 22 

Convergence PT 15 

 
 

 

Switch  **FORCED vs FORCED 28 

Switch OT2PT 24 

Switch PT2OT 17 

Convergence PT 13 

 
* FORCED LOW vs FREE HIGH 

** FORCED LOW vs FORCED HIGH 
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 Table 2. Population latencies obtained with sliding ANOVA  

 SwitchPT2OT SwitchOT2PT Convergence PT 

N:37 POP ANOVA    

FORCED-FREE 155±13* 155 190 

FORCED-FORCED 170 155 190 

    

N:52 POP ANOVA    

FORCED-FREE 170 170 190 

FORCED-FORCED 190 160 190 
 
 
Table 2. Plan switch latencies in PMd cells that discriminate relative values (RV cells, 
N=52) and in a cell subset with individually statistically significant switches (Switch 
cells, N=37). The mean activity for each individual cell was calculated prior to pooling 
the cells together in order to obtain a balanced contribution of each cell. Latency values 
were obtained by a sliding ANOVA on the population profile.  
*CI = 95% confidence interval for latency values at p<0.05. 
 
 
 
 



242 

VII. GENERAL DISCUSSION 

 

1. Recapitulation of results 

 

The work presented in this thesis confirms a number of important predictions 

suggested by the affordance competition hypothesis (Cisek, 2006, 2007) focusing on 

decision making and action planning in PMd during visual guidance of arm movements. 

This hypothesis reads as follows: action selection and specification in PMd involve a 

unified, parallel architecture that uses sensory information to simultaneously 

specify several potential actions while collecting information for selecting among 

them through a biased competition process. This general hypothesis consists of several 

specific hypotheses. The first proposes that action selection entails a biased 

competition process. This hypothesis makes three main predictions. 

The first prediction states that neural activity can represent multiple potential 

actions simultaneously (prediction 1A). Articles 1 and 2 confirmed indirectly that neural 

activity in PMd can simultaneously represent several potential actions in agreement with 

previous studies conducted by the same group (Cisek and Kalaska, 2005). In addition, 

population activity in PMd behaves in agreement with the biased-competition model 

proposed by Cisek in 2006.  

The second prediction states that neural activity in PMd does not represent a 

single decision variable in isolation but integrates all factors that influence choices such 

as expected value and spatial information (angular distance) of the targets (prediction 1B). 

This prediction is consistent with the “subjective desirability” concept proposed by 



 243 

Dorris and Glimcher (2004) for oculomotor decisions in LIP. Articles 1 and 2 showed 

that PMd reflects both EV and the spatial parameters of the actions. Moreover, these two 

studies suggest an interaction between the metrics of the actions and the value 

representations (spatial gain effect).  

The third prediction states that the variables that are associated with a given 

option are always expressed relative to the alternative actions (Prediction 1C). Articles 1 

and 2 show this for PMd and PMv. The results presented in article 2 suggest in particular 

that PMd reflects relative value according to a fully divisive normalization model (Louie 

and Glimcher, 2011), which is a requirement for a structure involved in a decision 

process as opposed to a valuation process (Padoa-Schioppa, 2011). The first two articles 

emphasize the interaction of value and spatial information and substantiate the notion that 

the action metrics can be taken into account in the process of action selection.   

Similar observations are raised for area PMv which is also close to the motor 

output for grasping (article 2).  It is important to mention here the absence of absolute 

value representation in the arm system in contrast with the oculomotor system in PMv or 

LIP (Platt and Glimcher, 1999; Roesch and Olson, 2003, 2004). This difference can be 

interpreted from the point of view of functional differences that exist among these two 

systems. It seems more plausible to represent absolute value in the oculomotor system 

because its role may be more fundamentally related to help find and identify items of 

value (attentional search function) rather than obtaining them as it is the case with 

reaches among two or several edible items. 

The second hypothesis states that biasing information is incorporated 

gradually in the action specification process. This hypothesis predicts that the latency 
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for biasing and spatial information will be different (Prediction 2). In all three articles we 

observed that spatial information in PMd was conveyed to the action specification 

process as early as 75ms after cue onset, presumably through the fast dorsal visual stream, 

meanwhile biasing information such as relative value was incorporated gradually and 

slightly later (starting from 150ms after cue onset). Article 2 addresses the prediction 2 

from a learning perspective. In a novel environment the spatial metrics of the actions 

seem to be already present in PMd. Spatial information is present even in the situation in 

which the animal did not learn the novel associations. However, relative-value appears 

only when the animals start to make behaviorally informed decisions about the value of 

the available options. Both in familiar and novel conditions the value information is 

delayed with respect to spatial information by 75-100ms. These results suggest that the 

fast visual pathways of the dorsal stream provide PMd with all the spatial information 

required for specifying the metrics of actions, while slower learning-dependent ventral 

stream processing is required for the mapping from target feature to abstract value 

representations. 

 The third hypothesis states that the strength of the competition between 

potential actions depends on the similarity between them, and predicts that decisions 

among actions are affected by the metrics of the options (Prediction 3). This prediction is 

verified in articles 1 and 2. Cells show an increased gain in value effects when the targets 

are farther apart than when they are close to each other. This statement may be particular 

to the interaction kernel of PMd cells involved in reach planning as differences have been 

observed between the arm and eye system (Louie et al., 2011). The results for the reach 

system can be interpreted from the point of view of an affordance competition 
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mechanism. When choosing to reach between two nearby targets, the nervous system can 

mix their neural representation and start moving between them. However, when the 

targets are located in diametrically opposed locations the choice has to be all or none. For 

the oculomotor system no such effect can be observed and this can interpreted taking 

account of the following consideration. There may be little value in saccades that land in 

between targets and saccades cannot be smoothly adjusted if a target jumps. Instead one 

might require two or several saccades. However, it is known that the location of 

distractors can affect saccade trajectory (McPeek et al., 2003) so one cannot completely 

rule out the possibility that the arm and oculomotor system might reflect similar features. 

 

The fourth hypothesis states that decisions are made in the same regions that 

guide the actions. This hypothesis predicts that action selection and action specification 

are not two serial but parallel processes (Prediction 4). Article 3 addresses this particular 

prediction and shows that the same cells that guide initial decisions continue to update 

their activities after animals change their mind, further substantiating the notion that 

decisions are made in the same regions that guide the actions. All major findings could be 

reproduced by a computational model (Cisek, 2006). Altogether, these results suggest 

that, although decisions between actions are influenced by variables supplied by 

higher cognitive regions, they are determined by a competition which takes place 

within the sensorimotor circuits themselves. 

 

2. Deciding among actions in PMd 
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Recent neurophysiological studies have shown that when decisions are made 

between actions, the process of action selection involves areas implicated in sensorimotor 

control (Glimcher, 2003; Gold and Shadlen, 2007; Schall et al., 2004b; Schall and Bichot; 

1998). Action selection is a distributed process that takes place in parallel within many 

sensorimotor areas (Cisek, 2007a, b, 2012). Our first article suggests that decision 

variables such as EV influence the outcome of the decisions and this process might be the 

result of a competition between alternative action representations in PMd. Our data 

shows that the effect of EV is always relative and never appeared when there is no choice 

to be made. 

It is however, known that activity reflecting the absolute value of actions has been 

reported in PMv for oculomotor tasks (Roesch and Olson, 2003). The discrepancy 

between our and Olson’s results may be attributed to the well known differences between 

visual guidance of eye and arm movements in these two distinct areas (Boussaoud and 

Wise, 1993; Hoshi and Tanji, 2007). PMd is mainly concerned with goal selection and 

specification processes for arm reaching, meanwhile PMv seems to be involved in 

sensory processes (extrinsic and intrinsic space representations), complex object 

manipulation (grasping) and action-observation representations (“mirror” neurons) 

altogether requiring a different treatment of sensory and value information than PMd 

(Kakei et al., 2001; Rizzolatti et al., 1981, 1988; Rizzolatti and Luppino, 2001). This 

view is substantiated by the distinct pattern of anatomical connections between the two 

areas (Rizzolatti and Luppino, 2001).  

Absolute value representations could arise from prefrontal areas such as DLPFC 

(Kalenscher et al., 2010; Leon and Shadlen, 1999). In particular DLPFC projects heavily 
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to PMv but not to PMd (Carmichael and Price, 1995b; Lu et al., 1994) with exception of 

subregion F7. Despite the compelling anatomical connectivity between DLPFC with area 

F7 and PMv we did not observe absolute value representations in either of the two.  

Alternatively, the absolute value signal present in PMv could be differentially conveyed 

through BG loops, since there is good evidence that both areas receive partially 

segregated projections from the thalamus (Morel et al., 2005; Stepniewska et al., 2007). 

Absolute value representations could also be conveyed indirectly through parietal 

projections since these signals are present in some particular regions such as LIP (Louie 

et al., 2011).  

 

3. Decisions among actions in basal ganglia 

 

It has been proposed that BG might contribute to action selection through a 

competition process between action representations originating from different motor 

systems. According to this idea, the competition is resolved by selectively inhibiting 

unwanted actions through feedback loop projections (Brown et al., 2004; Leblois et al., 

2006; Mink, 1996; Redgrave et al., 1999).  

Leblois et al. (2006) have proposed a model in which information traveling 

through the direct- and the hyperdirect BG pathway interacts via diffuse subthalamic-

pallidal connections, and a competition between action representations takes place across 

these loops. It has been suggested that the dynamics of this competition can explain both 

normal and pathological motor behavior. This is supported by latency studies in the non-

human primate suggesting that action selection can take place earlier in BG than in motor 
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structures (20ms for virtual action plans; Arimura et al., 2010; Yamagata et al., 2010), 

and earlier in SC than in PMd, for arm related tasks (Song et al., 2008).  

Notably, focal inactivation of SC, an area involved in eye-movement target 

selection and execution, causes target selection deficits for reaching movements but no 

deficits for action specification (Song et al., 2011). This is not surprising since the 

circuitry from cortex to SC through BG is shorter than the cortico-basal loop through the 

thalamus (Shires et al., 2010).  

Since somatotopy and space representations are also well represented in the motor 

regions of the basal structures, one would lean towards the idea that biased competition 

between actions can take place in BG rather than in PMd and that that information is 

merely relayed to premotor cortex subsequently. The latency results have to be taken with 

caution. It is noteworthy that modulation by CVML has been reported in frontal lobe 

structures such as PMd, SEF as well as in BG but little difference has been observed in 

latency of the effects across these structures (Brasted and Wise, 2004; Buch et al., 2006; 

Chen and Wise, 1995a, 1995b, 1996; Hadj-Bouziane and Boussaoud, 2003).  

Furthermore, Miller’s group has shown that the latency of information processing 

between sensory-motor and prefrontal structures might largely depend on task design. For 

instance, activity related to action-selection might be reflected earlier in PMd than in PFC 

in a match-non-match task (Cromer et al., 2011), and earlier in FEF than in LIP in a 

search conjunction task (Buschman and Miller, 2007). Antzoulatos and Miller (2011) 

recorded neuronal activity in the prefrontal cortex and caudate nucleus as monkeys 

learned to map visual categories to either a left or right goal for a saccade. They 

confirmed an earlier finding from Pasupathy and Miller (2005), as monkeys learn to map 
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exemplar stimuli to a goal, striatal activity encoded the goal earlier than did cortical 

activity. However, as the monkeys learned to classify many exemplars in each category, 

cortical activity that encoded category-to-goal mappings developed earlier than did 

striatal activity. It is important to mention that this task or feature dependent variability is 

in agreement with the idea that action-selection takes place through a distributed network 

(Cisek, 2007a, b). 

 

4. Representations of value or probability of choice: LIP vs PMd 

 

Platt and Glimcher (1999) were among the first to show that LIP neurons could 

be modulated by the magnitude of expected gain in either forced or free choice trials. In 

their task they presented animals with delay cued saccade trials in which a change in 

the color of a centrally located fixation stimulus instructed the animals to choose among 

two possible eye-movement responses in order to obtain reward. In any given block the 

animals could obtain either a fixed gain for a correct saccade or no reward.  

In their study the value probabilities were manipulated across blocks and not 

across trials, and thus it is hard to tell here if the neural activity changes reflected local 

income or EV. The forced task did not compare RF activity in LIP cells with respect to 

changes in expected gain outside of the RF, since there was only one correct choice 

available so it is also hard to conclude if the expected gain representation was absolute 

or relative. A “free choice” variant in which the animals were not cued the spatial 

location of the correct response was also conducted. In this situation the animals had to 

figure out the expected gain of each of the options by trial and error.   
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The monkey’s choice in the cell’s RF was directly proportional to the value of 

the target in the RF demonstrating good agreement with Herrnstein’s “matching law” 

(Herrnstein, 1961), which implied LIP in value-guided decision making. However, this 

variant also did not address whether LIP could be modulated by different gains between 

target options because there was only one possible “correct” option (i.e reward vs no 

reward) to choose among. 

Later on, Dorris and Glimcher (2004) trained monkeys in a free-choice 

paradigm in which the monkeys were asked to choose between a “safe” target, 

consistently delivering a small reward, and an alternative “risky” target, 

probabilistically delivering a large reward. This type of task is also called inspection 

game (Kreps, 1990), and has no single correct action. Free to choose, rational subjects 

adopt a mixed strategy in which they devote a certain portion of responses to each 

action (Fudenberg, 1994) leading to a Nash equilibrium (Nash, 1950, 1951) in which 

the “subjective desirability” of each of the available actions becomes equivalent. The 

subjective desirability was estimated by the expected utility of each of the actions in the 

gamble. The expected utility is a function of the probability, magnitude and delay of 

reward (Kreps, 1990).  

Dorris and Glimcher (2004) showed that macaque monkeys performed this task 

using a mixed strategy and reached the Nash equilibrium for each of the gambles. Most 

importantly, LIP activity was correlated with the relative subjective desirability of the 

options as opposed to absolute subjective desirability. Relative subjective desirability is 

the subjective estimate of desirability associated with the saccade in the neurons RF 

divided by the sum of the subjective desirability associated with all saccades. The 
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absolute subjective desirability would have LIP activity correlating with the value of 

the targets appearing in the neurons RF without any dependency on the value of targets 

appearing elsewhere. In a sense, Dorris and Glimcher’s result is similar to our study in 

PMd in which delay period activity in PMd reflects the relative expected-value of the 

options and not absolute EV.  

Dorris and Glimcher (2004) also addressed whether the correlate of subjective 

desirability was absolute or relative by doubling the gain equally for both options (safe 

and risky) across different blocks. This is similar to our 2T-EQUAL task variant.  

However, the group failed to see any evidence of absolute value in LIP, 

although these results have to be considered carefully. Simple and double gain trials 

were not interleaved but presented in different blocks and a normalization process 

within each block could explain the lack of modulation across them.  This is different in 

our case, in which we had interleaved reward-equal trials of different absolute 

magnitudes within the same block, so this limitation could be safely ruled out. 

 

5. Absolute and relative value representations: LIP vs PMd 

 

Newsome’s group (Rorie et al., 2010) conducted follow-up experiments on 

Glimcher’s work addressing whether or not LIP contains absolute value representations. 

In their experiments, the animals were presented with two spatial cues followed by a 

delay period after which the cues change color according to the reward magnitude 

associated with each of them (red high, blue low). Subsequently, a dot motion 

discrimination stimulus was presented, and after a variable delay (250-500ms) two 
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decision cues appeared. The animals could be presented with targets with equal high 

value (high-high, HH), equal low value (low-low, LL) or with targets having different 

relative values (high-low, HL, low-high, LH). The absolute and relative value trials 

were randomly interleaved, potentially encouraging a more dynamic representation of 

value, as in our 2T task.  

In this experiment, Rorie et al. (2010) did observe absolute value effects. This is 

in contrast with our results because we did not observe absolute value differences 

between equal-valued targets of different overall magnitudes in PMd or PMv (i.e. 

between LL, medium-medium, MM and HH). However, Rorie’s results are consistent 

with previous work (Sugrue et al., 2004) suggesting that LIP neurons simultaneously 

represent relative value, absolute value and motion coherence.  

Furthermore, Rorie et al. (2010) reported interesting latency differences 

between the observed relative and absolute value effects. LIP neurons initially respond 

with a representation of absolute value (about 100ms after color cue onset), which is 

then modulated by the value of the target outside the response field, and comes to 

represent the target’s relative value (about 150-200ms after color cue onset). Both 

relative and absolute value effects could be detected both at an individual cell and 

population level. Moreover, these relative and absolute value representations fade after 

the movement motion instruction and become modulated only by the monkey’s 

forthcoming choice.  

The representation of choice quickly dominates the LIP response and is 

modulated by the specific coherence of the motion stimulus. As the motion epoch ends, 

the representation of relative value is largely gone, but the representation of absolute 
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value remains. The group concludes that throughout the entire delay epoch, LIP activity 

represents the absolute value of the target in the response field and predominantly 

represents choice of that target, irrespective of the coherence or relative value 

supporting it (Rorie et al., 2010). 

It is important to mention here that the latency for relative value effects is very 

similar to the one we observed in PMd. This observation substantiates the notion of a 

distributed network for value representation through the parieto-frontal cortex. 

However, in Rorie’s experiment relative value representations fade during action 

selection and argue against a simultaneous action selection and planning process for 

oculomotor decision in LIP, although it is important to mention that in Rorie’s task we 

have matching behavior and not free choice behavior.  

Assuming that relative value representations play a role in biased competition 

between options, it is natural that Rorie et al. (2010) would not see any at movement 

time (GO signal), as there is no longer a competition taking place at this point. Rorie’s 

task is different than ours in this respect. In our task the animals were encouraged to 

keep both plans available at the time the GO signal appears, since one of the options 

might randomly disappear 1/3rd of the time (FORCED trials). Accordingly, we 

observed relative value modulation extending well beyond the movement instruction 

and specifying alternative plans, in particular when the best pay off option is gone 

(FORCED LOW trials, article 3). 

A more recent experiment with oculomotor perceptual decision making in free 

choice conditions comes from Glimcher’s lab (Louie et al., 2011). In close agreement 

with our results their work supports the notion that LIP harbors relative value 
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representations that influence the process of action selection. However, in agreement with 

Rorie’s results and in contrast with ours, Louie et al. (2011) reports the existence of 

absolute value signals in LIP and suggests uncomplete value normalization. For example, 

Louie et al. (2011) showed that activity in LIP was best described as 
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where R is the firing rate, Rmax is the maximum firing rate, Vin is the value of targets in 

the , Vout is the total value of targets outside the , and β and σ are the baseline activity and 

semi-saturation terms, respectively (see Reynolds and Heeger, 2009). Our results can be 

explained by a similar expression, except that σ is equal to 0 and normalization is 

therefore complete. 

We can naturally ask what could be the role of absolute value signals. Absolute 

value signals comply with rational, context independent behavior, such as it has been 

claimed in prescriptive neuroeconomics (Von Neumann and Morgenstern, 1944). 

Relative value signals are instead important for adaptative and context-dependent 

choice behavior as it has been proposed in prospect economic theory (Kahneman and 

Tversky, 1979, 1982).  

Louie et al. (2011) showed that modeling activity in LIP was best described by 

an algorithmic expression implying incomplete divisive normalization in order to take 

account of both absolute and relative value representations. In our case, neural activity 

in PMd is best described using a computational model where the activity in PMd is 

reflected as the result of a dynamic interaction between cell populations. In Cisek’s 

model (Cisek, 2006) absolute value signals are inputs to PMd, although the outcome of 
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the decision, a dynamic interaction process, reflects only relative value signals. The cell 

population interaction process can be described as follows: 

 Potential action plans are encoded in hills of activity for populations of 

directionally tuned neurons. Short-range mutual excitation interactions take place 

between similarly tuned cells and long range lateral inhibitions take place among cells 

with different tuning.  

A biased competition between action plans can lead to a steady-state solution 

(Cohen and Grossberg, 1983) in which PMd activity reflects complete divisive 

normalization. The difference between LIP and PMd raises an intriguing hypothesis. 

Partial divisive normalization is the trend for parietal cortex, which is still far from 

overt execution, while activity is more fully normalized in regions close to the motor 

output such as PMd. This would make good sense if PMd is more closely related to the 

process of final arbitration between potential actions, and predict similar behavior in 

closely related areas for eye movements such as FEF (Roesch and Olson, 2003). 

 

6. Absolute and relative value representations: FEF vs PMd 

 

Studies in area FEF provide different insights to the process of valuation and 

decision than area LIP. For instance, Leon and Shadlen (1999) trained animals in an 

oculomotor working memory task in which the animals were required to remember the 

location of a briefly lit target and to shift their gaze to its location upon extinction of the 

fixation point. During the task a change in the color of the fixation point indicated 

whether the animals would receive a small or a large reward at the end of the trial. 
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Although this is not a decision task, since the animals are forced to saccade to a single 

location in space, the task is similar to the 1T condition we explored in our articles. 

Leon and Shadlen (1999) recorded in area FEF and DLPFC, and observed that 

cells in FEF were not sensitive to the magnitude of the reward. This observation is in 

agreement with our finding that no absolute value was observed in PMd in the 1T task. 

The results in FEF could still be confounded by the block design as normalization could 

take across trials in the 1T block since the experimenters did not attempt to randomize 1T 

trials with choice trials as in our task, in which this confound could be ruled out.  

Despite this problem, there is some confidence that normalization due to task 

design was not taking place, or if it was the case it would be only locally since the same 

group reported absolute value modulation in the nearby area 46 of DLPFC. We can 

interpret these results in reference to the properties of area FEF. The FEF like PMd is an 

area that is relatively closer to the motor output than DLPFC and LIP. Based on the 

anatomy and physiology one would expect these two areas to be more involved in taking 

part in decision rather than in valuation processes. It is possible that despite receiving 

absolute value signals the network dynamics reflects exclusively relative and not absolute 

value information, as it is only the former that is required for decisions. 

 

7. Distribution of effects in PMd and comparison with human tasks  

 

Comparatively little is known about differences within subregions of PMd in 

action selection in species other than rhesus macaques. It is known for instance, that the 

rostral and caudal portion of PMd, namely areas F7 and F2 described in macaques, have 
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functional and anatomical homologues in humans (Abe and Hanakawa, 2009; Boussaoud, 

2001; Geyer et al., 2000; Rizzolatti et al., 1998; Wise and Murray, 2000). Area F7 is 

called pre-PMd and area F2, PMd-proper (Picard and Strick, 2001) and both areas share 

the connectivity pattern of the prefrontal-premotor-parietal network identified in 

monkeys (Tomassini et al., 2007). Furthermore, rostro-caudal gradients for cognitive to 

executive functions have also been reported within PMd in both monkeys and humans 

(Boussaoud, 2001; Simon et al., 2002).  

In fMRI studies conducted by Toni et al. (1999) and Hanakawa et al. (2006) 

humans were tested with instructed delay visuo-motor tasks involving choice within a 

single limb (index or middle finger flexion) or across different limbs (right or left hand). 

In both cases pre-PMd and PMd-proper were modulated after cue onset by the instruction 

specifying the type of movement. However, pre-PMd seemed to be more active during 

the early delay period meanwhile PMd proper was more active after GO instruction and 

movement epoch. In particular, PMd-proper was the only area among the two that 

reflected choice effector (right or left hand) during execution. These results could be to 

some extent task-dependent, since it is known that in monkeys the difference in cell 

tuning properties for left and right arm reaches is modest at best in PMd, in contrast with 

M1 which shows clear contralateral preferences during the movement epoch (Cisek et al., 

2003).  

Hanakawa’s results (2006) could be seen in light of the observed differences 

between humans and other primates concerning laterality or handedness (Zhao et al., 

2012). It is plausible that functional differences between human and macaque PMd could 

be attributed to the different role of the forelimb in the two species (Annett, 2002; Porac 
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and Coren, 1981). It is also plausible that laterality effects might have been overlooked in 

monkeys since those subtle effects are normally larger in complex bimanual coordinated 

tasks compared to less demanding unimanual tasks (Fagot and Vauclair, 1991).  

Studies in a number of primate species are providing evidence in support of the 

task complexity view of primate hand preference, although there might be other factors at 

play such as variability of these effects across primates species such as Cebus abella 

(Lilak and Phillips, 2008; Spinozzi, 1998; Westergaard and Suomi, 1996), Gorilla gorilla 

(Byrne and Byrne, 1991) and Pan troglodytes (Colell et al., 1995).  

In summary, human experimental studies suggest that pre-PMd plays a more 

important role in visual attention and memory aspects of action planning and selection 

meanwhile PMd-proper is more involved in the executive aspects of action planning and 

selection.  In our study however, we observed no differences in the distribution of effects 

between the analog area of pre-PMd (F7) and PMd-proper (F2). 

 

8. Competition among action representations takes place in the same areas involved 

in guidance of movements 

 

Another important implication of our findings is that the site where the 

competition takes place is also the site that specifies and executes the chosen actions. 

Traditionally, it has been accepted that decision-related modulations are made in 

“upstream” regions (OFC, DLPFC) which are clearly involved in decisions among 

abstract goods (Padoa-Schioppa, 2012; Wallis and Miller, 2003a, b). However, our 

results argue against this traditional view. Namely, we found that the dynamics of 
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competition that determines decision among actions appears to be done in the 

sensorimotor system because it takes account of the geometry of the environment and the 

effector used. These spatial effects appear in PMd cell activity as soon as the cells 

respond to visual stimuli, further implying that the competition between actions take 

place throughout the fast sensorimotor dorsal visual stream (Cisek, 2007; Cisek and 

Kalaska, 2010).   

 

9. Simultaneous action and specification extends beyond the time a movement is 

instructed  

 

In agreement with previous studies, our results suggest that decisions between 

reaching actions are made within the same brain regions involved in the execution of the 

actions themselves (Cisek, 2007; Cisek and Kalaska, 2010; Glimcher, 2003; Gold and 

Shadlen, 2007; Pesaran et al., 2008). Our results suggest that once a decision is made, the 

decision related population in PMd continues to be involved in the on-line guidance of 

movement. 

This argues against the traditional cognitive view where action selection, 

specification and execution are serially connected and non-overlapping processes. The 

alternative view proposes that decisions among actions emerge through a competition 

process within the same circuit that guides movement execution, implying that these 

processes are integrated and can largely overlap (Cisek, 2007).  

A growing body of evidence suggests that such integrated processes are best 

suited to deal with dynamic changes of the environment, allowing us to quickly and 
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smoothly update movement plans and even change decisions in-flight (Archambault et al., 

2009, 2011; Day and Lyon, 2000; Desmurget, 1999; Georgopoulos et al., 1981, 1983; 

Gritsenko et al., 2011; Mirabella et al., 2011; Prablanc, 1992; Scangos and Stuphorn, 

2010; Wise and Mauritz, 1985). In our case, PMd neurons that are involved in the 

competition determining the initial selection of an action continue to take part in action 

selection, and start to reflect a plan toward an alternative action once the previous one 

becomes unavailable.  

These findings are in agreement with previous PMd studies of switch of plans 

during the delay period (Wise and Mauritz, 1985), during target jump paradigms 

(Archambault et al., 2009, 2011; Georgopoulos et al., 1983) and voluntary inhibition of 

movements (countermanding task; Mirabella et al., 2011). Moreover, the same model that 

was used to simulate neural data on simultaneous specification of alternative action plans 

and subjective desirability of the options during the delay period (Cisek and Kalaska, 

2005; Pastor-Bernier and Cisek, 2011b; Pastor-Bernier et al., 2012) could be used 

without major parameter changes in order to reproduce the results of plan switches. 

Altogether, this data substantiate the notion that the brain mechanisms involved in 

decisions among actions involve the same circuits that guide the execution of the actions 

during overt behavior. 
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VIII. FUTURE PERSPECTIVES 

 

1. Action cost during action selection: interaction between context and value 

 

When choosing between actions, the spatial layout of the environment directly 

specifies the options and is of critical importance for evaluation what is the best choice in 

terms of payoff and cost. If the value of the options is equal, humans select the actions 

that are least demanding biomechanically (Cos et al., 2011). Concerning the spatial 

effects described in our studies, it could be thought that choosing among distant targets is 

intrinsically more effortful than choosing among two close ones. This is because it takes 

a larger amount of commitment to move to either of the far targets than it does when the 

targets are close by, because in the latter case one can start moving between them and 

determine the concrete decision later.  

Animals choose the course of an action not simply on the basis of the expected 

value but also on the potential action costs (Charnov, 1976; Croxson et al., 2009; Hull, 

1943; Stephens and Krebs, 1986). In terms of foraging, this may involve deciding 

between harvesting now an impoverished source of food nearby, or travel further to reach 

a better source and harvest later (spatio-temporal choice). For instance, South African 

baboons (Papio ursinus) walk by less desirable food patches in order to get more 

desirable food further (Noser and Byrne, 2007). Action costs might also imply choosing 

between a high or a low energy mode for locomotion, such as flying or walking, 

depending on the value of the expected reward (Bautista et al., 2001; Janson, 1998; 

Kacelnik, 1997; Tinbergen, 1951; Stevens, 2005).  
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 Several subjective representations of action costs have been proposed, namely 

biomechanical, emotional or ultimate metabolic cost. However, all these representations 

have in common the willingness that the animal has to trade off the commodity and effort 

in order to obtain reward. Therefore, it is still unclear today if cost has a common 

neurobiological currency.  For instance, decision making in birds reflects an estimation of 

both the value and the metabolic cost of an action (Bautista et al., 2001). Rats and 

monkeys maximize the reward rate by taking account of both the reward magnitude and 

the effort entailed by repetitive number of lever presses required for each of the options 

(Walton et al., 2006). Humans take account of the biomechanical context of potential 

actions when choosing among them (Cos et al., 2011).   

It is also common to observe a trade off between the cost of an action and its 

temporally discounted value. However, temporal discounting has been traditionally 

studied in isolation within the framework of very particular inter-temporal choice tasks.  

Within this context, both rats, pigeons, monkeys and humans typically prefer smaller 

rewards that occur earlier over larger rewards occurring later (Ainslie, 1974; Richards et 

al., 1997; Rodriguez and Logue, 1988). However, animals often employ ecologically 

rational decision strategies (Todd and Gigerenzer, 2007), and take account of the actions 

costs depending on the environment (spatial context). For instance, Stevens et al. (2005) 

has shown that spatio-temporal choice and temporal discounting can be dissociated 

behaviorally across different primate species. Tamarins (Saguinus oedipus) travel farther 

for large rewards than marmosets (Callithrix jacchus), and attend more to the ratio of 

reward differences between the options rather than their absolute values. The converse 

can be observed in a temporal task for these two species. When the spatial context is not 
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important, marmosets are normally more patient than tamarins for large rewards 

indicating that they discount the temporal delay less steeply than tamarins.  

These results are in agreement with a number of pharmacological, lesion and 

imaging studies (Aoki et al., 2006a, b; Denk et al., 2005; Prevost et al., 2010; Rudebeck 

et al., 2006) indicating that temporal discounting and spatio-temporal cost decisions 

depend on partially separable neural systems. For instance, dorsal ACC lesions in rats 

lead to impairments in cost decisions and not temporal discounting meanwhile lesions in 

OFC explicitly impair the ability to sustain reward expectations across a delay 

(discounted value) but does not affect effort-based decisions (Kennerley et al., 2011; 

Roesch et al., 2006; Rudebeck et al., 2006; Schoenbaum and Roesch, 2005). 

 

2. Neural encoding of action costs 

2.1. Basal ganglia  

 

The BG’s dopaminergic system, which is implicated in the modulation of goal-

directed behavior, motivation and reward expectation (Berridge and Robinson, 1998; 

Ikemoto and Panksepp, 1999; Salamone and Correa, 2002; Schultz et al., 1992, 1993; 

Wise and Rompre, 1989) also seems to mediate effort-related behavior in the rat 

(Salamone et al., 1994, 2003).  

Salamone’s group (1994) presented animals with two different reward-cost 

options in a T-maze barrier paradigm. One of the options consisted in scaling a wall in 

one of the arms of the T-maze in order to obtain a large reward (High reward - High 

effort). The other option was to follow the alternative unobstructed arm of the T-maze 
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and obtain a low reward (Low reward - Low effort). Salamone et al. (1994, 2003) showed 

that dopamine depletion in nucleus accumbens biased rats away from choosing the high 

reward high effort option, leading them to prefer instead the low reward in the 

unobstructed arm of the T-maze. 

In a further study (Cousins et al., 1996) Salomone injected rats systemically with 

haloperidol (a dopamine receptor antagonist) and tested them on a similar T-maze barrier 

task where identical large barriers were present in both the high-reward and low reward 

T-maze arms. In this situation there was a small but significant switch away from 

choosing the high reward arm, even though selecting the low reward arm entailed the 

same cost as for the high-reward arm but with half the concomitant reward.  

This suggests that dopamine could be involved in the motivation aspects of the 

action options rather than the comparative cost among them. Since the dopaminergic 

system is fundamentally related to motivation (Evenden and Robbins, 1984; Horvitz and 

Ettenberg, 1988; Liao and Fowler, 1990; Ungerstedt, 1971), anti-psychotic drugs 

targeting the dopaminergic system might influence primarily the motivational aspect of 

the options  (Ho et al., 1999; Mobini et al., 2000a, b; Wise and Rompre, 1989) . 

 

2.2. Anterior cingulate cortex 

 

There is a growing body of evidence suggesting ACC as an important region 

involved in cost-based decisions (Kennerley et al., 2011; Walton et al., 2002, 2003). This 

area is also known to be implicated in action selection (Picard and Strick, 2001) and is 

connected to other areas involved in action selection such as premotor cortex (Beckmann 
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et al., 2009). Of particular interest are the series of recent studies conducted by the groups 

of Wallis, Kennerley and Walton (Kennerley et al., 2009; Kennerley and Wallis, 2009; 

Wallis and Kennerley, 2011; Walton et al., 2002, 2003). To investigate directly the role 

of rat ACC in effort-related decision making, Walton et al. (2002, 2003) started by 

comparing the choice performance of rats in the T-maze barrier task both before and after 

lesions to this region. As described in Salamone’s studies (1994, 2003), the animals 

typically chose to do more work for an increased quantity of food (High reward - High 

cost). However, following lesions to ACC there was a complete reversal in behavior and 

the animals always selected the response involving less work and smaller reward (Low 

reward - Low cost).  

However, the biases obtained as a result of the lesions were still contingent on the 

magnitude of the cost (barrier height) and the animals would start choosing the high 

reward option when the effort was equated by addition of an identical barrier on the low 

reward and low cost maze arm (Walton et al., 2003). This suggests that the animals were 

not impaired on the perception of (absolute) cost itself but had maybe altered a relative 

cost representation, thus changing the decision criterion and making them less willing to 

overcome the work constraints to gain a high reward.  

Complementary electrophysiological and imaging studies suggest that ACC 

reflects the interaction of both expected reward and effort costs in decision making tasks 

both in humans (Croxon et al., 2009) and monkeys (Kennerley et al., 2011) pointing 

further towards a specific role of this structure in comparative cost evaluation. Although 

action cost representations in decision making seem to be emerging in ACC, action cost 

is still hard to dissociate from motivation in humans. Patients with bilateral ACC lesions 
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result in akinetic mutism, a wakeful state characterized by prominent apathy, indifference 

to painful stimulation, lack of motor and psychological initiative (Tekin and Cummings, 

2002). Apathy (and depression) for instance, is often present in patients with subcortical 

brain lesions (involving BG and dopaminergic system) but it is more commonly found in 

those with prefrontal, mainly ACC lesions (Kurniawan et al., 2011; Van Reekum et al., 

2005). It is therefore, plausible that both ACC and the dopaminergic system participate in 

the mechanisms underlying evaluation of cost in overt behavior. 

 

2.3. Premotor cortex 

 

It could be plausible to observe effort signals in other structures than ACC or BG. 

For instance, effort signals could be relayed from either of these two areas to PMd given 

the existent connectivity between them (Arikuni et al., 1994; Beckmann et al., 2009; 

Kelly and Strick, 2004). From a theoretical point of view it is also plausible for these 

effort signals to be involved in action selection processes.  

The affordance competition hypothesis predicts that neural activity in PMd does 

not represent a single decision variable in isolation but integrates all factors that 

influence the choices. This observation is in agreement with observations in which other 

sensory-motor areas such as LIP and ACC integrate value, cost and other factors 

affecting the subjective desirability of the options and constitute the “biases” of a 

decision (Kennerley et al., 2009; Platt and Glimcher, 1999). The generality of this 

assumption predicts that we will see effort-biases in PMd in a similar way we already 

observed value biases.  



 267 

It could be plausible to oberve effort biases in other premotor areas such as in 

PMv, in particular concerning actions involving tool usage or different types of grasp. It 

has been shown that non human primates such as chimpanzees (Pan troglodytes) 

represent the cost associated with tool usage in potential future actions (Frey and 

Povinelli, 2012). Area PMv (F5) is particularly known for treating hand-tool information 

during action execution and observation (Gallese et al., 1996; Rizzolatti et al., 1988, 1996; 

Rochat et al., 2010) and context-specific grasping (Fluet et al., 2010; Fogassi et al., 2001;  

Gentilucci et al., 1983; Murata et al., 1997). These cost representations could also 

participate in action selection since PMv has also been related to action selection in 

perceptual decision tasks such as tactile stimuli discrimination (Acuna and Pardo-

Vazquez, 2011; Pardo-Vazquez et al., 2011; Romo et al., 2004).  

Based on these observations it could be reasonable to expect some degree of 

involvement of PMv in cost-based action selection mechanisms, particularly in cases in 

which the actions involve different types of graps or grasping-specific tools. In general, 

one could examine these effort signals in either PMd during reaching tasks or PMv 

during grasping tasks in order to further assess the valididty of predictions made by the 

affordance competition hypothesis. 

 

3. The cognitive debate in neuroeconomics 

 

The debate for the allocation of cognitive functions to specific areas continues 

until today. It has been proposed that economic choice and compliant decision variables 

such as economic value are found in particular cortical areas (Padoa-Schioppa, 2011).  
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Economic choice is the behavior observed when individuals make choices solely 

on the basis of subjective preferences and is closely related to decision making, as 

originally conceived by the prescriptive economic theory, a branch in economics that 

addresses rational decision making (Simon, 1947, 1983).  

Prescriptive economic theories have initially proposed that humans tend to 

maximize “utility” in rational choice behavior, although it has been shown that humans 

can display irrational behavior as well (Allais, 1953; Ellsberg, 1961) and maximize utility 

only in certain circumstances (Simon, 1997), just as other simpler organisms are also able 

to do (Harper’s mallard duck forage experiment; Harper, 1982).  

Human non-transitive behavior (Kahneman and Tversky, 1979, 1982; Güth et al., 

1982) supports the notion that decisions are not made according to the classic economic 

choice, but through a combination of utility (economic value) and other variables 

representing the desirability of the options (subjective relative desirability) such as risk 

and cost (Glimcher et al., 2005). This general framework for decision making is predicted 

by the prospect theory of economics (Kahneman, 1979).  

Neural correlates of utility (economic value) have been found in the OFC of non-

human primates (Padoa-Schioppa, 2011). Padoa-Schioppa and Assad (2006) presented 

animals with a free-choice task in which it was encouraged to trade between commodity 

(taste) and reward amount. The experimenters observed that OFC contained three main 

types of task related neurons: offer value cells, taste cells and chosen value cells.  

Offer value cells encode the subjective value of only one of the options presented, 

irrespectively of whether either of the options is actually chosen or not. Conversely, taste 
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cells encode the binary result of the choice process and reflect the outcome of the 

decision (Padoa-Schioppa and Assad, 2006).  

The chosen value cells reflect the combined subjective value of the two options. 

These cells had a typical U-shaped response pattern as a function of value for two given 

option gambles, and do not reflect the process of selection itself but the subjective value 

of the gambles themselves. Chosen value cells are particularly interesting because they 

also reflect transitivity (Padoa-Schioppa and Assad, 2008) and encode the value of a 

gamble per-se independently of the physical property of each of the offers (type of juice).  

Subsequent studies showed that cells in OFC comply with the "rationality" 

axioms proposed by the prescriptive economic theory: the Von Neumann–Morgenstern 

utility theorem (Von Neumann and Morgenstern, 1944). In fact, OFC neurons encode the 

absolute value of an outcome, not the relative value, thus respecting value transitivity 

(Padoa-Schioppa and Assad, 2008). OFC neurons adjust their gain to reflect the full 

range of values on a given block of trials (range adaptation;  Padoa-Schioppa, 2009) and 

are independent of the sensory-motor contingencies of the task (Kennerley et al., 2009; 

Kennerley and Wallis, 2009; Padoa-Schioppa, 2007, 2009; Padoa-Schioppa and Assad, 

2006, 2008).  

It is also known that OFC represents other economic variables as well, such as 

risk (O'Neill and Schultz, 2010), economic cost (Sloan et al., 2010) and social reward 

(Watson and Platt, 2008). In addition, different cortical areas share some of the economic 

variables found in OFC. For instance, ACC is modulated by the economic value of the 

options (Cai and Padoa-Schioppa, 2012; Kennerley et al., 2011; Wallis and Kennerley, 
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2011) and the dopaminergic system reflects both risk (uncertainty) and range adaptation 

(Fiorillo et al., 2003; Tobler et al., 2005).  

In a recent study conducted by Kennerley et al. (2011) neural activity was 

recorded in area ACC and OFC in a task paradigm in which monkeys were asked to 

choose between pairs of stimuli associated with different risk (probability of reward), 

payoff (reward amount), or action cost (effort represented as the number of lever presses 

needed to obtain reward). ACC neurons primarily integrated several decision parameters 

(effort, cost and reward amount) in contrast with OFC in which this was not prevalent. In 

addition, neurons in ACC that integrated all the decision parameters also encoded reward 

prediction errors. In contrast, OFC did not encode reward prediction errors but reflected 

the chosen value relative to the recent trial history.  

The complementarity between OFC and ACC extends beyond economic valuation. 

For instance, the groups of Platt (Chang et al., 2012) and Duhamel (Azzi et al., 2012) 

have recently shown a differential coding of egocentric and allocentric reward outcomes 

during social interaction in the primate ACC and OFC. ACC neurons reflect 

predominantly the outcome for reward delivered to other monkeys (allocentric), whereas 

OFC neurons reflect self-delivered reward (egocentric). 

Together, these results suggest a complementary interaction between OFC and 

ACC both in valuation and decision processes. The comparison of OFC with ACC is 

particularly interesting because the latter structure supports economic choice in a task-

dependent manner. A recent study by the group of Padoa-Schioppa (Cai and Padoa-

Schioppa, 2012) has shown that ACC contain chosen-value and taste-value cells with 
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identical properties as reported in OFC, including range adaptation, thus reflecting 

economic value.  

However, in another context in which the options have different action-cost 

requirements, decisions in ACC seem to violate the Von-Neumann prescriptive economic 

axioms. In fact, ACC cells are spatially selective and can be also modulated by 

movement direction and physical effort (Amiez et al., 2006; Hayden and Platt, 2010; 

Hillman and Bilkey, 2010; Kennerley et al., 2009; Kennerley and Wallis, 2009). Thus, 

ACC harbors both absolute and relative value representations substantiating either 

transitive or non-transitive behavior in a situation of uncertainty, risk or conflict (Cai and 

Padoa-Schioppa, 2012; Coricelli et al., 2005; Fujiwara et al., 2009; Hayden et al., 2011a).  

Decision making in a risky or uncertain environment can be dependent on context 

(Kacelnik, 1997) and influence foraging behavior (Charnov, 1976). For instance, Hayden 

et al. (2011b) trained primates in a oculomotor stay-or-switch task that contains elements 

of foraging theory (Charnov, 1976; Stephens and Krebs, 1986). In this type of task the 

animals were encouraged to select consistently one of the targets (stay and harvest a food 

resource, also called “patch”) and obtain reward within a short intertrial delay or select an 

alternative target obtaining no reward and suffering a long delay (switch or leave a patch). 

After a given choice on a given target, the monkey received a constant amount of water. 

However, on subsequent choice on the same target (“stay” target) the reward decreased 

by 19µl. If the monkey continued to choose the ‘stay’ option, its value would eventually 

reach 0 and remain 0 thereafter. This setting encouraged the animals to switch to the 

alternative target once the stay target was “depleted”. The alternative target does not yield 

reward and imposes a long time delay (proportional to the size of the target) but it resets 



272 

the value of the depleted one. This setting introduces a trade off between staying and 

obtaining a gradually decreasing reward, or switching and resetting the value of the 

options with an associated effort (traveling time in foraging theories).  

Hayden et al. (2011b) found that neurons in ACC encoded a decision variable 

signaling the relative value of leaving a depleting resource for a new one. In fact, 

neurons fired during each sequential decision to stay in a patch and, for each travel time, 

these responses reached a fixed threshold for patch-leaving. Longer travel times reduced 

the gain of neural responses for choosing to stay in a patch and increased the firing rate 

threshold mandating patch-leaving. These modulations closely matched the behavioral 

decisions.  

All these results lead to the following observations: decisions are highly affected 

by context (action cost, uncertainty, risk and social weight of the options). Several 

predictions can be derived from this observation: first, decisions are better explained by a 

prospect economic theory (Kahneman, 1979) and an affordance competition mechanism 

(Cisek, 2007a) than by prescriptive economy axioms (Von Neumann and Morgenstern, 

1944) addressing exclusively rational behavior. Second, the affordance competition 

mechanism can take account of all variables that explain adaptative behaviour including 

action costs. In fact, an affordance competition mechanism includes all factors that affect 

the subjective desirability of the options and influence the choices (Dorris and Glimcher, 

2004).   
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4. Recent models for decision making 

 

Padoa-Schioppa (2011) has recently proposed a “” model for decisions. In this model, 

all of the factors relevant for a decision are integrated in the OFC producing a unified 

representation of the economic value of potential offers. These values are compared and 

once the larger one is chosen, the appropriate action plan is released for execution. This 

model predicts that sensorimotor regions begin to prepare movements only after decisions 

are made (Padoa-Schioppa, 2012). However, many studies have shown that neurons in both 

parietal and frontal cortices can represent multiple potential targets and/or actions long 

before the animal decides between them (Baumann et al., 2009; Cisek and Kalaska, 2005; 

Cui and Andersen, 2007; Hoshi and Tanji, 2007; Klaes et al., 2011; Pastor-Bernier and 

Cisek, 2011a; Platt and Glimcher, 1997; Scherberger et al., 2007).  

A claim that these are not true motor representations is difficult to reconcile with 

behavioral results. In particular, the trajectories observed in a variety of reach  (Chapman et 

al., 2010; Ghez, 1997; Tipper, 2000; Song and Nakayama, 2008b; Welsh et al., 1999) and 

saccade tasks (McPeek et al., 2003) strongly suggest simultaneous processing of multiple 

actions in parallel. For instance in McPeek’s study saccadic eye movements are made in a 

search task that requires selecting a target from distractors and the movements show greater 

curvature in their trajectories than similar saccades made to single stimuli. The group 

performed single-unit recording and microstimulation experiments in the superior 

colliculus (SC). They found that saccades that ended near the target but curved toward a 

distractor were accompanied by increased presaccadic activity of SC neurons coding the 

distractor site. The magnitude of increased activity at the distractor site was correlated with 
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the amount of curvature toward the distractor. In contrast, neurons coding the target 

location did not show any significant difference in discharge for curved versus straight 

saccades. The stimulation in SC location where the distractor was presented mimicked the 

activity recorded for curved saccades in search, and the subsequent saccades to the visual 

target showed curvature toward the location coded by the stimulation site. These results 

support the hypothesis that the increased saccade curvature observed in search arises from 

competitive interaction between two simultaneously attended options. 

 

Additionally, it is unclear how the brain could compute action costs without having 

at least some representation of the potential actions. Cos et al. (2011) showed that when 

faced with two equal-valued actions, humans strongly preferred the one that is 

biomechanically easier. Because the biomechanical costs are similar at the beginning of 

the movement the subjects had to take account of the future biomechanical properties of 

both choices in order to select the easier one. Moreover, OFC cannot explain economic 

choice when action cost takes part in the decision of the process (eg. climb a small or 

large obstacle in order to obtain a reward). Growing evidence suggests in fact that ACC 

may have a specialized role in influencing effort-based decision making. Lesions in ACC 

bias animals toward actions that are associated with less effort even when a more 

rewarding option is available (Floresco and Ghods-Sharifi, 2007; Schweimer et al., 2005; 

Walton et al., 2002, 2003). In contrast, OFC lesions impair delay-based decision making, 

but not effort-based decision making (Rudebeck et al., 2006).  

A  model does not explain why neural activities in sensorimotor regions are 

modulated by decision variables. Such modulation has now been consistently observed in 
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parietal, frontal, and subcortical components of both the oculomotor and skeletomotor 

systems (Cisek and Kalaska, 2010; Gold and Shadlen, 2007; Hernandez et al., 2010; 

Kable and Glimcher, 2009; Kim and Basso, 2008; Sugrue et al., 2005; Thevarajah et al., 

2010), including M1 (Michelet et al., 2010). There is good evidence that subjective 

values are being represented in sensorimotor areas that are modulated by attentional 

percepts or impending actions such as PMd, LIP, SMA, SEF, SC and even M1 (Amador 

et al., 2000; Bestmann et al., 2012; Ikeda and Hikosaka, 2003; Louie and Glimcher, 2010; 

Pastor-Bernier and Cisek, 2011b; Roesch and Olson, 2003; Sugrue et al., 2004; 

Thevarajah et al., 2010). It has even been demonstrated that the gain of mid-latency 

reflexes is modulated by the sensory evidence used to make perceptual judgements, 

suggesting that the decision process could very well change the limb preparatory state at 

the corticospinal level (Selen et al., 2012).  

As an answer to the “goods-based” model, Cisek (2012) has proposed an alternative 

framework for the decision process that addresses some of the issues of the goods model 

for decisions that are made among actions. In Cisek’s proposal the decision is the result of 

a competition process (affordance competition) that takes place at multiple levels in 

parallel. Assuming these processing levels are reciprocally connected, biases that may 

arrive from a variety of sources are shared among them and encourage decision through a 

“distributed consensus”. For example, when choosing between two ways to obtain the same 

piece of fruit, the decision is determined at a lower level due to the influence of action cost 

biases. In contrast, when deciding between exploiting nearby resources versus exploring 

other parts of the environment, the particular actions are not explicitly specified and the 

decision is resolved at a higher level. Finally, when choosing between two prey one must 
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weigh abstract factors such as their value (e.g. amount of food) as well as concrete 

sensorimotor contingencies (e.g. distance to target). In this situation the decision taken is 

the outcome of a weighted competition between the different biases (Cisek, 2012). 
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IX. CONCLUSIONS 

 

The work presented in this thesis confirms a number of important predictions 

suggested by the affordance competition hypothesis (Cisek, 2006, 2007), focusing on 

decision making and action planning of the PMd in visual guidance of arm movements. 

This hypothesis reads as follows: action selection and specification in PMd involve a 

unified, parallel architecture that uses sensory information to simultaneously specify 

several potential actions while collecting information for selection among them through a 

biased competition process.  

We confirmed that neural activity can simultaneously represent several potential 

actions in agreement with previous studies conducted in the same group (Cisek and 

Kalaska, 2005). We showed more specifically (Pastor-Bernier and Cisek, 2011b) that 

neural activity in PMd does not represent a single decision variable in isolation but 

integrates all factors that influence choices such as expected value and spatial information 

(angular distance) of the options and this observation is consistent with the “subjective 

desirability” concept proposed by Dorris and Glimcher (2004) for oculomotor decisions 

in LIP.  The spatial information in PMd was conveyed to the action specification process 

relatively early (75ms after cue onset), presumably through the fast dorsal visual stream, 

meanwhile biasing information such as relative value was incorporated gradually and 

slightly later (150ms after cue onset).  

We also found evidence that the strength of the competition between potential 

actions depends on the similarity between them. Two spatially dissimilar targets affect 

both the behavioral (initial movement directions) and neural correlates (cell modulation) 



278 

of a decision more than two close-by targets. Namely, when choosing to reach between 

two nearby targets the nervous system can mix their neural representation and start 

moving between them. However, when the targets are located in diametrically opposed 

locations the choice has to be all or none. The same cells that guide initial decisions 

continue to update their activities after the animals change their mind, further 

substantiating the notion that decisions are made in the same regions that guide the 

actions (Pastor-Bernier et al., 2012).  

This observation implies that action selection and action specification are not two 

serial processes but they occur in parallel. These findings could be reproduced by a 

computational model (Cisek, 2006; Pastor-Bernier and Cisek, 2011b; Pastor-Bernier et al., 

2012) further substantiating these notions. Altogether these results suggest that, although 

decisions between actions are influenced by variables supplied by higher cognitive 

regions, they are determined by a competition which takes place within the sensorimotor 

circuits themselves. 
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