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RESUME

Dans ce travail, nous exploitons des propriétés déja connues pour les sys-
temes de poids des représentations afin de les définir pour les orbites des
groupes de Weyl des algebres de Lie simples, traitées individuellement, et nous
étendons certaines de ces propriétés aux orbites des groupes de Coxeter non
cristallographiques. D’abord, nous considérons les points d’une orbite d'un
groupe de Coxeter fini G comme les sommets d"un polytope (G-polytope) cen-
tré a 1'origine d’un espace euclidien réel & n dimensions. Nous introduisons
les produits et les puissances symétrisées de G-polytopes et nous en décrivons
la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-
polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algébres
de Lie simples de tous types sont réduites en l'union d’orbites des groupes de
Weyl des sous-algebres réductives maximales de 1’algébre. Nous listons les ma-
trices qui transforment les points des orbites de 1’algebre en des points des or-
bites des sous-algebres pour tous les cas n < 8 ainsi que pour plusieurs séries
infinies des paires d’algebre-sous-algebre. De nombreux exemples de régles de
branchement sont présentés. Finalement, nous fournissons une nouvelle des-
cription, uniforme et complete, des centralisateurs des sous-groupes réguliers
maximaux des groupes de Lie simples de tous types et de tous rangs. Nous
présentons des formules explicites pour l’action de tels centralisateurs sur les
représentations irréductibles des algebres de Lie simples et montrons qu’elles
peuvent étre utilisées dans le calcul des regles de branchement impliquant ces
sous-algebres.

Mots clés: groupes de Weyl, algebres de Lie simples, sous-algebres réduc-

tives maximales, réduction, matrices de projection, centralisateurs.
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ABSTRACT

In this work, we exploit properties well known for weight systems of repre-
sentations to define them for individual orbits of the Weyl groups of simple Lie
algebras, and we extend some of these properties to orbits of non-crystallographic
Coxeter groups. Points of an orbit of a finite Coxeter group G are conside-
red as vertices of a polytope (G-polytope) centered at the origin of a real n-
dimensional Euclidean space. Products and symmetrized powers of G-polytopes
are introduced and their decomposition into the sums of G-polytopes is des-
cribed. Several invariants of G-polytopes are found. The orbits of Weyl groups
of simple Lie algebras of all types are reduced to the union of orbits of the
Weyl groups of maximal reductive subalgebras of the algebra. Matrices trans-
forming points of the orbits of the algebra into points of subalgebra orbits are
listed for all cases n < 8 and for many infinite series of algebra-subalgebra
pairs. Numerous examples of branching rules are shown. Finally, we present
a new, uniform and comprehensive description of centralizers of the maximal
regular subgroups in compact simple Lie groups of all types and ranks. Expli-
cit formulas for the action of such centralizers on irreducible representations
of the simple Lie algebras are given and shown to have application to compu-
tation of the branching rules with respect to these subalgebras.

Keywords: Weyl groups, simple Lie algebras, maximal reductive subalge-

bras, reduction, projection matrices, centralizers.
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INTRODUCTION

Les groupes de Lie compacts simples, leurs algebres de Lie et leurs repré-
sentations de dimension finie sont 'une des parties des mathématiques qui a
trouvé le plus d’applications au cours du dernier siecle. En effet, on en ren-
contre de nombreuses en physique des particules élémentaires, en physique
atomique et en chimie quantique [24, 25], mais également en génie et en ma-
thématiques a proprement dit [7, 10, 22, 23]. Toutefois, encore aujourd’hui, on
ne comprend pas les racines mémes des diverses applications des groupes de
Lie simples en mathématiques. A titre d’exemple, on a d’abord utilisé les dia-
grammes de Coxeter-Dynkin dans la classification des groupes de Lie et de
leurs groupes de Weyl [10, 23]. Ces mémes diagrammes ont également été
employés dans la classification des carquois (quivers) de type fini et de leurs
représentations indécomposables [12, 17]. Puis, on a découvert que les singu-
larités des fronts d’onde ainsi que celles des structures rayonnées pouvaient
étre classifiées en termes des groupes de réflexion et de leurs diagrammes
[1]. Pour le moment, on ne saisit pas comment les diagrammes de Coxeter-
Dynkin peuvent servir dans des champs d’applications aussi différents. Par
conséquent, tout porte a croire qu’on ne devine pas encore toute la diversité et
la richesse des applications des groupes de Lie et de leurs représentations.

Tout de méme, pendant la deuxieme moitié du 20¢ siecle, les applications
des représentations de dimension finie des groupes de Lie semi-simples ont
progressé remarquablement en mathématiques, en physique et dans les sciences
naturelles en général. De telles représentations sont décrites efficacement par
leurs systemes de poids. Un systeme de poids consiste en une union de plu-

sieurs orbites du groupe de Coxeter associé au groupe de Lie correspondant.
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Déterminer de quelles orbites une représentation particuliére est comprise est
un probléme laborieux pour lequel on a trouvé une solution algorithmique
dans les dernieres décennies [16, 44]. En pratique, il est nécessaire que les cal-
culs impliquant des représentations de grande dimension soient divisés en
opérations sur des orbites individuelles. Sans une telle stratégie, 1’obtention
de certains résultats déja publiés n’aurait pas été possible [19, 38]. Notre mo-
tivation générale pour cette thése s’inscrit dans des contextes de brisure de
symétrie dans différents problemes o1 une symétrie décrite en termes d'un
groupe est réduite a une symétrie décrite en termes d"un sous-groupe. La bri-
sure de symétrie est une approche fréquemment utilisée pour unifier plusieurs
phénomenes physiques qui, autrement, devraient étre considérés séparément.
On en trouve de nombreuses applications en physique nucléaire, en physique
atomique et en physique des particules élémentaires [24, 65]. La brisure de sy-
métrie est presque toujours décrite en termes de représentations des groupes
de Lie. Une description analogue en termes d’orbites individuelles permet plus
de liberté et ouvre de nouvelles possibilités.

Les groupes de réflexions finis non commutatifs sont parmi les groupes les
plus étudiés et les mieux connus en mathématiques. Notre outil principal dans
ce présent travail sera les groupes de réflexions finis dans un espace euclidien
réel de dimension finie n (n > 1), connus sous le nom de groupes de Coxeter
tinis [5, 22, 23]. De tels groupes sont générés par des réflexions par rapport a n
miroirs ayant 1’origine comme point commun, un miroir étant un sous-espace
de dimension n—1 de I'espace euclidien. Le type de groupe est déterminé par
les angles relatifs entre les miroirs. Si les angles relatifs entre les miroirs sont
des multiples rationnels de 27, 'application de toutes les réflexions possibles
a un point quelconque de l'espace produit un ensemble fini de points, appelé
'orbite du groupe de réflexions.

Les groupes de Coxeter finis se divisent en deux classes : les groupes cris-
tallographiques et les groupes non cristallographiques. Les groupes cristallo-
graphiques sont les groupes de Weyl des groupes ou algebres de Lie semi-

simples, et sont notés W. Ils sont les groupes de symétrie des réseaux de R™.
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IIs se divisent en quatre familles dites classiques — A,,, B, Cy,, et D, — avec
cinq exceptions, Eg, E;, Eg, F4, et G,. L'indice n, 6,7, 8, 4 ou 2, est le rang de
l’algebre de Lie correspondante et la dimension de 1'espace euclidien fini dans
lequel les réflexions ont lieu. La principale différence entre les deux types de
groupes qui est d'intérét pour nous est que les réseaux munis des W-symétries
sont cristallographiques, tandis que ceux de type non cristallographique sont
denses partout.

Nous considérons les orbites des groupes de Coxeter finis G, ou G-orbites.
Une G-orbite est un ensemble fini de points de I'espace euclidien réel généré
par les réflexions du groupe de Coxeter fini et ce, a partir d'un seul point. Le
nombre de points de I'orbite divise toujours 1’ordre du groupe correspondant.
Comme les réflexions ont lieu dans des miroirs passant tous par l'origine, les
points d'une méme orbite sont a égale distance de l'origine. Géométriquement,
les points d’une orbite peuvent étre vus comme les sommets d"un polytope
G-invariant de n dimensions centré a 1’origine, n représentant le nombre de
réflexions élémentaires qui génerent G.

Les orbites des groupes de Weyl sont intimement liées aux systemes de
poids des représentations irréductibles de dimension finie des algebres de Lie
semi-simples. En effet, un systeme de poids consiste en une union de plusieurs
orbites du groupe de Weyl correspondant, une orbite spécifique apparaissant
souvent plus d’une fois dans le méme systéme. De quelles orbites une repré-
sentation particuliere est comprise est maintenant connu, et des tables exten-
sives de multiplicités des poids dominants sont présentées dans [6].

Cette these est constituée de cinq chapitres, dont quatre sont des articles
publiés dans le Journal of Physics A : Mathematical and Theoretical [21, 32, 33,
34]. La plupart des résultats du chapitre 4 sont présentés dans [40], et n'ont
donc pas fait I'objet d’un article. Ma contribution dans les quatre articles a été
sensiblement la méme, c’est-a-dire que jai effectué tous les calculs et participé

activement a la rédaction de chacun des quatre articles.



Dans les quatre premiers chapitres, nous exploitons des propriétés déja
connues pour les systemes de poids des représentations [6, 39] afin de les dé-
finir pour les orbites des groupes de Weyl des algebres de Lie simples, traitées
individuellement, et nous étendons certaines de ces propriétés aux orbites des
groupes de Coxeter non cristallographiques.

Le fait de considérer les opérations sur des orbites individuelles plutot
que sur des systémes de poids entiers présente différents avantages. D’abord,
comme nous 'avons déja mentionné, cela permet d’étendre les résultats aux
orbites des groupes non cristallographiques. Ensuite, alors que le nombre de
poids d"un systeme de poids augmente sans cesse avec la dimension de la re-
présentation, le nombre de points d"une orbite individuelle ne dépasse jamais
I'ordre du groupe de Weyl correspondant. Lorsque 1'on travaille avec des re-
présentations de tres grande dimension, on doit souvent séparer le probléme
en petits problemes pour des orbites. De plus, considérer les orbites comme
des polytopes permet de les utiliser dans différents modeles, tels que ceux de
molécules de carbone ou de virus [69]. Finalement, alors que les poids des sys-
temes de poids doivent nécessairement se trouver sur le réseau de poids de
I'algebre de Lie, les points d’une orbite individuelle peuvent étre n’importe
ot dans l'espace euclidien. Cela nous permet d’obtenir des orbites aussi rap-
prochées que nous le désirons, tel que discuté dans [21]. Il serait intéressant
d’étudier la brisure de symétrie qui survient si les points d'une orbite sont
minimalement déplacés. De telles orbites pourraient déterminer des fonctions
spéciales pour des intégrales de Fourier plutdt que pour des séries de Fourier.

La motivation pour notre étude provient de 'exploitation récente des or-
bites des groupes de Coxeter dans 'analyse de Fourier [29, 30, 52, 60], de la
théorie des quasicristaux [9, 50], ainsi que de 1’étude des polyndmes orthogo-
naux [13].

Nous présentons d’abord dans le premier chapitre [21] des opérations sur
les orbites des groupes de Coxeter finis, connues pour les systémes de poids
des représentations des groupes de Lie semi-simples : (i) le produit d’orbites

du méme groupe de Coxeter G et sa décomposition en une somme (union)
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de G-orbites; (ii) la décomposition de k-iemes puissances d’orbites, symétri-
sées par le groupe de permutation de k éléments. Nous introduisons ensuite
certaines caractéristiques numériques, telles que les classes de congruence et
les indices de différents degrés pour les G-orbites, qui refletent des propriétés
similaires des systemes de poids des représentations.

Nous abordons par la suite, dans les trois chapitres suivants, la réduction
d’orbites d'un groupe de Coxeter cristallographique G a une somme ou une
union d’orbites d'un sous-groupe de Coxeter cristallographique G’ de G. En
physique, la réduction d’orbites est souvent appelée calcul des regles de branche-
ment.

La liste des réductions possibles pour les orbites de groupes de Weyl est
le résultat d’une grande classification effectuée il y a plus de 60 ans, alors que
les sous-algebres réductives maximales des algebres de Lie simples ont été dé-
terminées [4, 14]. Nous utiliserons cette classification. Nous considérons la ré-
duction d’orbites du groupe de Weyl d'une algebre de Lie L a des orbites des
groupes de Weyl des sous-algebres réductives maximales L’, semi-simples et
non semi-simples. La réduction W(L) — W(L'), ou L’ est une sous-algebre ré-
ductive maximale de L, est une transformation linéaire de R™ vers R™, ou n
et m sont les rangs de L et L’ respectivement. Les regles de branchement sont
uniques, alors que la matrice de la transformation, appelée matrice de projection,
dépend du choix des bases.

La méthode que nous utilisons pour calculer les régles de branchement
est une extension de la méthode utilisée dans [39, 40, 41, 61] pour calculer
les regles de branchement des représentations irréductibles de dimension fi-
nie des algebres de Lie simples. La réduction d’orbites a déja été abordée dans
la littérature [18, 67, 68], out des méthodes spécifiques sont développées pour
différentes paires d’algebres et sous-algébres. Le principal avantage de la mé-
thode de la matrice de projection est son uniformité, car elle peut étre utilisée
pour n‘importe quelle paire d’algebre et sous-algebre. De plus, bien que nous
ne I'étudions pas ici, elle pourrait étre utilisée pour traiter les réductions im-

pliquant les groupes de Coxeter non cristallographiques.



Les orbites des groupes de Weyl des algebres de Lie simples de tous types
et de tous rangs sont réduites en 1'union d’orbites des groupes de Weyl des
sous-algebres réductives maximales de 'algebre. Nous listons les matrices de
projection qui transforment les points des orbites de I’algebre en des points des
orbites des sous-algebres pour tous les casn < 8 ainsi que pour plusieurs séries
infinies des paires d’algebre-sous-algébre. De nombreux exemples de regles de
branchement sont présentés. Nous ne pouvons malheureusement pas présen-
ter tous les cas possibles de régles de branchement, par manque d’espace. Les
exemples choisis le sont généralement pour leur concision. Le chapitre 2 [34]
présente les résultats ou 1'algebre de Lie est de type A, n > 1. Le chapitre 3
[32] fait de méme, mais dans les cas ot I’algebre de Lie est de type B,,, n > 2,
Cn,n > 2,0uD,, n > 4. Les cas exceptionnels sont finalement traités dans le
chapitre 4.

Les éléments discrets qui apparaissent lors de la réduction des représenta-
tions de dimension finie d'un groupe de Lie simple compact a une somme de
représentations d’un sous-groupe maximal régulier semi-simple, et qui com-
mutent avec le sous-groupe, n’ont encore jamais été explorés dans les applica-
tions. Les centralisateurs des sous-groupes réguliers maximaux, semi-simples
et non semi-simples, des groupes de Lie simples compacts ne sont pas géné-
ralement connus, bien que traités dans la littérature il y a longtemps [4, 15].
En utilisant de nouvelles méthodes, nous avons revisité le probleme et I’avons
rendu plus facile a exploiter dans les applications.

Ainsi, dans le chapitre 5 [33], nous fournissons la structure du centralisa-
teur de tous les sous-groupes réguliers maximaux, semi-simples et non semi-
simples, des groupes de Lie simples compacts de tous types et de tous rangs.
Le centralisateur est soit un produit direct de groupes cycliques finis (dans le
cas maximal régulier semi-simple), un groupe continu de rang 1, ou un pro-
duit, pas nécessairement direct, d'un groupe continu de rang 1 avec un groupe
cyclique fini (dans le cas maximal régulier réductif).

Les valeurs propres de I’action des éléments du centralisateur sur les repré-

sentations irréductibles des algébres de Lie simples peuvent étre utilisées dans
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le calcul des régles de branchement impliquant ces sous-algebres. Les matrices
de projection discutées dans les chapitres 2, 3 et 4 transforment les poids d"une
représentation irréductible d"une algebre de Lie en des poids de représenta-
tions de la sous-algébre. Nous pouvons inclure une étiquette additionnelle, la
valeur propre de I'action d’un élément du centralisateur, servant a décomposer
la représentation de 1’algebre.

L’action du centralisateur permet de séparer les représentations de 1’algebre
en classes d’équivalence, que nous appelons classes de congruence relative. Dans
le chapitre 5, en plus de décrire la structure du centralisateur de tous les sous-
groupes réguliers maximaux, semi-simples et non semi-simples, des groupes
de Lie simples compacts de tous types et de tous rangs, nous fournissons pour
chacun des cas une équation permettant de calculer la classe de congruence

relative d"une représentation.






Chapitre 1

THE RINGS OF N-DIMENSIONAL POLYTOPES

Référence complete : L. Hakovad, M. Larouche et ]. Patera, The rings of n-
dimensional polytopes, Journal of Physics A : Mathematical and Theoretical, 41(49) :
495202, 21, 2008.

Résumé
Les points d"une orbite d'un groupe de Coxeter fini G, générés par n réflexions
a partir d"un seul point, sont vus comme les sommets d"un polytope (G-polytope)
centré a l'origine d’un espace euclidien réel a n dimensions. Nous rappelons
une méthode efficace pour décrire géométriquement les G-polytopes, leurs
faces de toutes dimensions et les éléments qui leur sont adjacents. Nous in-
troduisons les produits et les puissances symétrisées de G-polytopes et nous
en décrivons la décomposition en des sommes de G-polytopes. Plusieurs in-
variants des G-polytopes sont présentés, a savoir les analogues des indices de
Dynkin de degrés 2 et 4, et les classes de congruence des polytopes. Les défini-
tions s’appliquent aux groupes de Coxeter cristallographiques et non cristallo-

graphiques. Des exemples et des applications sont proposés.

Abstract
Points of an orbit of a finite Coxeter group G, generated by n reflections star-
ting from a single seed point, are considered as vertices of a polytope (G-
polytope) centered at the origin of a real n-dimensional Euclidean space. A ge-

neral efficient method is recalled for the geometric description of G-polytopes,
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their faces of all dimensions and their adjacencies. Products and symmetri-
zed powers of G-polytopes are introduced and their decomposition into the
sums of G-polytopes is described. Several invariants of G-polytopes are found,
namely the analogs of Dynkin indices of degrees 2 and 4, anomaly numbers,
and congruence classes of the polytopes. The definitions apply to crystallogra-
phic and non-crystallographic Coxeter groups. Examples and applications are

shown.

1.1. INTRODUCTION

Finite groups generated by reflections in a real Euclidean space R™ of n di-
mensions, also called finite Coxeter groups, are split into two classes : crystallo-
graphic and non-crystallographic groups [23, 26]. The crystallographic groups
are the Weyl groups of compact semisimple Lie groups. They are an efficient
tool for uniform description of the semisimple Lie groups/algebras [5, 22, 59],
and they have proven to be an indispensable tool in extensive computations
with the representations of such Lie groups or Lie algebras (see for example
[19] and references therein).

Underlying such applications are two facts : (i) most of the computation can
be performed in integers by working with the weight systems of the represen-
tations involved in a problem, and (ii) the weight system of a representation
of a compact semisimple Lie group/Lie algebra consists of several Weyl group
orbits of the weights, many of them occurring more than once. Practical impor-
tance of the orbits apparently emerged only in [45, 47], where truly large scale
computations were anticipated.

The crystallographic Coxeter groups are called Weyl groups and denoted
by W. Any finite Coxeter group, crystallographic or not, is denoted by G. A
difference between the two cases which is of practical importance to us is that
lattices with W-symmetries are common crystallographic lattices, while lat-

tices of non-crystallographic types are dense everywhere in R™.
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Non-crystallographic finite Coxeter groups are of extensive use in mode-
ling aperiodic point sets with long-range order (‘quasicrystals’) [9, 42, 50]. Out-
side traditional mathematics and mathematical physics, a new line of applica-
tion of Coxeter group orbits can be found in [28, 69]; see also the references
therein.

Additional applications of Weyl group orbits are found in [2, 3, 18, 67, 68].
Both crystallographic and non-crystallographic Coxeter groups can be used for
building families of orthogonal polynomials of many variables [13].

In recent years, another field of applications of W-orbits is emerging in
harmonic analysis. Multidimensional Fourier-like transforms were introduced
and are currently being explored in [29, 30, 52, 60], where W-orbits are used
to define families of special functions, called orbit functions [60], which serve
as the kernels of the transforms. They differ from the traditional special func-
tions [31]. The number of variables, on which the new functions depend, is
equal to the rank of a compact semisimple Lie group that provides the Weyl
group. Two properties of the transforms stand out : such special functions are
orthogonal when integrated over a finite region F, and they are also orthogo-
nal when summed up over lattice points Fypy C F. The lattices can be of any
density, their symmetries are prescribed by the Lie groups. Application of the
non-crystallographic groups in Fourier analysis is at its very beginning [43].

In this paper we have no compelling reason to distinguish crystallographic
and non-crystallographic reflection groups of finite order. Hence, we consi-
der all finite Coxeter groups although from the infinitely many finite Coxeter
groups in 2 dimensions (symmetry groups of regular polygons), we usually
consider only the lowest few.

An orbit G(A) of a Coxeter group G is the set of points in R™ generated
by G from a single seed point A € R™. G-orbits are not common objects in
the literature, nor is their multiplication, which can be viewed in parallel to

the multiplication of G-invariant polynomials P(A;x) introduced in subsection
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1.6.1 (for more about the polynomials see [13] and the references therein).!
Indeed, the set of exponents of all the monomials in P(A;x) is the set of points
of the orbit G(A).

In this paper, we have adopted a point of view according to which the or-
bits G(A), being simpler than the polynomials P(A;x) or the weight systems of
representations, are the primary objects of study.

The relation between the orbits of W and the weight systems of finite di-
mensional irreducible representations of semisimple Lie groups/algebras over
C, can be understood as follows. The character of a particular representation
involves summation over the weight system of the representation, i.e. over se-
veral W-orbits. As for which orbits appear in a particular representation, this
is a well known question about multiplicities of dominant weights. There is a
laborious but rather fast computer algorithm for calculating the multiplicities.
Extensive tables of multiplicities can be found in [6]; see also the references
therein. Thus one is justified in assuming that the relation between a represen-
tation and a particular W-orbit is known in all cases of interest.

Numerical characteristics, such as congruence classes, indices of various
degrees, and anomaly numbers, introduced here for W-orbits, mirror similar
properties of weight systems from representation theory, which are often used
in applications (for example [18, 39, 66, 67, 68]).

In this paper, we introduce operations on W-orbits that are well known for
weight systems of representations : (i) the product of W-orbits (of the same
group) and its decomposition into the sum of W-orbits; (ii) the decomposition
of the k-th power of a W-orbit symmetrized by the group of permutations of
k elements. New is the introduction of such operations for the orbits of non-
crystallographic Coxeter groups. We intend to describe reductions of G-orbits
to orbits of a subgroup G’ C G in a separate paper [34]. Again, the involvement
of non-crystallographic groups makes the reduction problem rather unusual.

Corresponding applications deserve to be explored.

1. Polynomials in 1.6.1 are the simplest W-invariant ones. We are not concerned about any

other of their properties.
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The decomposition of products of orbits of Coxeter groups, as introduced
here, is the core of other decomposition problems in mathematics, such as the
decomposition of direct products of representations of semisimple Lie groups,
the decomposition of products of certain special functions [60] and the decom-
position of products of G-invariant polynomials of several variables [13]. The
last two problems are completely solved in terms of orbit decompositions. The
first problem requires that the multiplicities of dominant weights in weight
systems of representations [6] be known.

We view the G-orbits from a perspective uncommon in the literature. Na-
mely, the points of a G-orbit are taken to be vertices of an n-dimensional G-
invariant polytope centered at origin, n being the number of elementary re-
flections generating G (at the same time it is the rank of the corresponding
semisimple Lie group). The multiplication of two such polytopes/orbits, say
P; and P, is the set of points/vertices obtained by adding to every point of P;
every point of P,. The resulting set of points is again G-invariant and thusitisa
union (we say ‘sum’) of several G-orbits (we say ‘G-polytopes’). Thus we have
a ring of G-polytopes with positive integer coefficients. We recall and illustrate
a general method of description of n-dimensional reflection-generated poly-
topes [8, 48].

The core of our geometric interpretation of orbits as polytopes is in the pa-
ragraph following equation (1.6.6). A product of orbits is a union of concentric
orbits. Geometrically this can be seen as an ‘onion’-like layered structure of or-
bits of different radii. Unlike in representation theory, where orbit points are
always points of the corresponding weight lattices, in our case the seed point
of an orbit can be anywhere in R™. In particular, a suitable choice of the seed
points of the orbits, which are being multiplied, can bring some of the layers of
the ‘onion’ structure as close or as far apart as desired. Two examples are given

in the last section (see (1.9.4) and (1.9.5)).
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1.2. REFLECTIONS GENERATING FINITE COXETER GROUPS
Let « and x be vectors in R™. We denote by v, the reflection in the (n — 1)-

dimensional ‘mirror” orthogonal to « and passing through the origin. For any

x € R™, we have

o. (1.2.1)

Here (a,b) denotes scalar product in R™. In particular, we have r,0 = 0 and
Tox = —ocso that 12 = 1.

A Coxeter group G is by definition generated by several reflections in mir-
rors that have the origin as their common point. Various Coxeter groups are
thus specified by the set TT(«) of vectors «, orthogonal to the mirrors and cal-
led the simple roots of G. Consequently, G is given once the relative angles
between elements of TT(«) are given.

A standard presentation of G, generated by n reflections, amounts to the
following relations

=1, ()™ =1,  kije{l,...,n},
where we have simplified the notation by setting r,, = 1, and where m;; are
the lowest possible positive integers. The matrix (my;) specifies the group. The
angles between the mirrors of reflections r; and r; are determined from the
values of the exponents my;. Indeed, for my; = p, the angle is t/p, while the
angle between o; and «; is T — 7t/p.

The classification of finite reflection (Coxeter) groups was accomplished in

the first half of the 20th century.

1.21. n=1

There is just one group of order 2. Its two elements are 1 and r. We denote
this group by A;. Acting on a point a of the real line, the group A; generates
its orbit of two points, a and ra = —a, except if a = 0. Then the orbit consists

of just one point, namely the origin.
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1.22. n=2

There are infinitely many Coxeter groups in R?, one for each my, = 2,3,4,. ...
Their orders are 2m;,. In physics literature, these are the dihedral groups.

Note that for m;, = 2, the group is a product of two groups from n = 1.
The reflection mirrors are orthogonal.

Our notation for the lowest five groups, generated by two reflections, and

their orders, is as follows :

mp=2 : A;xA;, 4
mp=3 : Ay, 6
mp=4 : C;, 8
mp2=5 : Hj, 10
mp=6 : G, 12.

1.2.3. General case : Coxeter and Dynkin diagrams

A convenient general way to provide a specific set TT(«) is to draw a graph
where vertices are traditionally shown as small circles, one for each o € I, and
where edges indicate absence of orthogonality between two vertices linked by
an edge.

A diagram consisting of several disconnected components means that the
group is a product of several pairwise commuting subgroups. Thus it is often
sufficient to consider only the groups with connected diagrams.

In this paper, a Coxeter diagram is a graph providing only relative angles
between simple roots while ignoring their lengths. This is done by writing m;;
over the edges of the diagram. By convention, the most frequently occurring
value, my; = 3, is not shown in the diagrams. When my; = 2, the edge is not
drawn, i.e. the nodes numbered i and j are not directly connected.

Consider the examples of Coxeter diagrams of all finite non-crystallographic
Coxeter groups with connected diagrams (Figure 1.1). Note that we simply

write H, when m = 5.
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Hy 0—0—020 H; 0—020 Hym)O™o m=57,879,...
FIGURE 1.1. Coxeter diagrams of the finite non-crystallographic

Coxeter groups.

A Dynkin diagram is a graph providing, in addition to the relative angles,
the relative lengths of the vectors from TT(o). Dynkin diagrams are used for
the crystallographic Coxeter groups, frequently called the Weyl groups. There
are four infinite series of classical groups and five isolated cases of exceptional
simple Lie groups. Figure 1.2 presents a complete list of Dynkin diagrams of

such groups (with connected diagrams) :

An O—0O—0—-—0 n>1 E6O—O—g—O—O

oo O >
D. o—o—{)—g—o n>4 F, O—C—e—e G,C=

FIGURE 1.2. Dynkin diagrams of the finite crystallographic

Coxeter groups.

The names of the groups, as is traditional in Lie theory, are shown on the
left of each diagram. Open (black) circles indicate longer (shorter) roots. The
ratio of their square lengths is (x;, 1) : (&g, ¢5) = 2 : 1 in all cases except
for G, where the ratio is 3 : 1. Moreover, we adopt the usual convention that
(o, 1) = 2. A single, double, and triple line indicates respectively the angle
2n/3, 3nt/4, and 571/6 between the roots, or equivalently, the angles 7/3, 7t/4,
and 71/6 between the reflection mirrors. The absence of a direct link between
two nodes implies that the corresponding simple roots, as well as the mirrors,
are orthogonal. Note that the relative angles of the mirrors of B,, and C,, coin-

cide. Hence their W-groups are isomorphic. Their simple roots differ by length.



Axm>1)|Bh(m>3)|Ch(n>2) | Dy(n>4)| Eg E;
(m+1)! 2™"n! 2™n! 2 Tnl | 273%5 | 2103457
Es F4 G> Hz(m) Hs Hy
21435527 2732 12 2m 120 12072
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TABLE 1.1. Orders of the finite Coxeter groups.

We adopt the Dynkin numbering of nodes. The numbering proceeds from
left to right 1,2, ... In case of D,, and Eg, E, Es, the node above the main line
has the highest number, respectively n, 6, 7, 8.

Orders of the finite Coxeter groups are provided in table 1.1 for groups with
connected diagrams. When a diagram has several disconnected components,

the order is the product of orders corresponding to each subdiagram.

1.3. ROOT AND WEIGHT LATTICES

Information essentially equivalent to that provided by the Coxeter and
Dynkin diagrams is also given in terms of n x n matrices C, called the Car-
tan matrices. Relative angles and lengths of simple roots can be used to form
the Cartan matrix for each group. Its matrix elements are calculated as
2(o, o)

ot o6 (1.3.1)

C:(C)k):( ) , i, ke{l,2,...,n}.

Cartan matrices and their inverses are given in many places, e.g. [6, 23].
The Cartan matrices can be defined for any finite Coxeter group by using

formula (1.3.1). For non-crystallographic groups the matrices are

5 2 210 21 31 o1 0
C(H2) = (27), CHy)= (272 x), ClHy= (o 52 _"T> :
T 0 0 —71 2

where 7 is the larger of the solutions of the algebraic equation x* = x + 1, i.e.
T=1(1+5).

In addition to the basis of simple roots («-basis), it is useful to introduce
the basis of fundamental weights (w-basis). Subsequently, most of our compu-

tations will be performed in the w-basis.

x=Cw, w=C«x.
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Note the important relation :

<06k, 06k>
2 )

(o, wj) = O i, kef{l,2,...,n}. (1.3.2)

Ilustrations showing the «- and w-bases of A,, C,, and G, are given in
Figure 1 of [48].
The root lattice Q and the weight lattice P of G are formed by all integer

linear combinations of simple roots, respectively fundamental weights, of G,
Q=Zo1+ -+ Zon, P=Zwi+ -+ Zw,. (1.3.3)

Here Z stands for any integer. For the groups that have simple roots of two dif-
ferent lengths, one may define the root lattice of n linearly independent short
roots, which cannot all be simple. In general, Q C P, with Q = P only for Es,
F4, and G..

If G is one of the non-crystallographic Coxeter groups, the lattices Q and P
are dense everywhere.

Since «- and w-bases are not orthogonal and not normalized, it is some-
times useful to work with orthonormal bases. For crystallographic groups,
they are found in many places, for example [5, 6]. For non-crystallographic

groups, H,, H3 and Hy; see [9, 50].

1.4. THE ORBITS OF COXETER GROUPS

1.4.1. Computing points of an orbit

Given the reflections 1, & € TT(«), of a Coxeter group G, and a seed point
A € R", the points of the orbit G(A) are given by the set of distinct points
generated by repeated application of the reflections 1, to A. All points of an
orbit are equidistant from the origin. The radius of an orbit is the distance of
(any) point of the orbit from the origin.

There are practically important considerations which make it almost impe-
rative that the computation of the points of any orbit of G be carried out in the

w-basis, as follows :
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— Every orbit contains precisely one point with nonnegative coordinates in
the w-basis. We specify the orbit by that point, calling it the dominant
point of the orbit.

— Given a dominant point A of the group G in the w-basis, one readily finds
the size of the orbit G(A), i.e. the number of points in the orbit, using the
order |G| of the Coxeter group and the order of the stabilizer of A in G :

Gl

M= Tsaberv

(1.4.1)

Here Stabg(A) is a Coxeter subgroup of G. To find it, one needs to attach
the w-coordinates of A to the corresponding nodes of the diagram of G.
The subdiagram carrying the coordinates 0 is the diagram of Stabg(A).

— Due to (1.3.2), the reflections (1.2.1) are particularly simple when applied

tow’s:
2<O(k, LU]'>
(0% 0€k>

— Starting from the dominant point of an orbit, it suffices to apply, during

TW; = Wj — o = Wj — dji0t - (1.4.2)

the computation of the orbit points, only reflections corresponding to po-
sitive coordinates of any given weight. All points of the orbit are found

in this way.

1.4.2. Orbits of Az, Cz, Gz, and Hz

We give some examples of orbits. Let a,b > 0.

AZ : G((a,O)) :{(a)0)> (—(1, Cl), (Oy_a)}v
G((O)b)) :{(O)b)> (bv_b)) (—b,O)},
G((a,b)) ={(a,b), (—a,a+b), (b,—a—Db), (a+b,—b),
(—a—Db,a), (=b,—a)}.
In particular, the orbit G((1,1)) = {(1,1), (~1,2), (1,-2), (2,~1), (~2,1), (~1,~1)}

consists of the vertices of a regular hexagon of radius v/2. It is the root system

of Az.
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CZ . G((G,O)) :{j:(a>0)) :t(_a> Cl)},
G((a,b)) ={*(a,b), £(—a,a+b), =(a+ 2b,—a —b),
+ (—a—2b,b)}.
In particular, the orbits G((2,0)) and G((0, 1)) of radii v2and 1 are respectively

the vertices and midpoints of the sides of a square. Together the two orbits

form the root system of C».

G2 : G((a,0)) ={+£(a,0), £(—a,3a), £(2a,—3a)},
G((0,b)) ={£(0,b), £(b,—Db), £(—b,2b)},
G((a,b)) ={*(a,b), £(—a,3a+b), £(2a+b,—3a —b),
+ (—2a—b,3a+2b), =(a+b,—3a — 2b),
+ (—a—b,b)}.
In particular, the orbits G((1,0)) and G((0, 1)) are the vertices of regular hexa-
gons of radii v2 and 2/v/3, rotated relatively by 30°, i.e. they form a hexa-

gonal star. Together the two orbits form the root system of G,. The points of

G((a,av3/v2)), a > 0, are the vertices of a regular dodecahedron of radius
V2a.

Hy @ G((a,0)) ={(a,0), (—a,a1), (a1, —a1), (—at,a), (0,—a)},
G((0,b)) ={(0,b), (bt,—b), (—bT,b1), (b, —b1), (=b,0)},
G((a,b)) ={(a,b), (—a,b + a1), (a1 + bt,—b — a7),
(—at—bt,a+ b1), (b,—a—b1), (a+bT,—b),
(—a—br,at+ b1), (b+ a1, —at — b1),
(b —ar, a), (—b,—a)}.
In particular, the orbits G((a, 0)) and G((0, b)) are the vertices of regular penta-

gons of radii av/2 and bv/2, rotated relatively by 36°. The orbit G((a, a)) forms

a regular decahedron. The orbit G((T,T)) consists of the roots of H,.
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An orbit of A, or H, contains, with every point (p, q) also the point (—q, —p).
Note that in the examples of this subsection the constants a and b do not
need to be integers. All one requires is that they are positive. Effects of spe-

cial choices of these constants are exemplified in (1.9.4) and (1.9.5) below.

1.4.3. Orbits of A3, B3, C3, and H3

We give some examples of orbits. Let a,b > 0.

Az G((a,0,0)) ={(a,0,0), (—a,a,0), (0,—a,a), (0,0,—a)},
G((0,b,0)) ={£(0,b,0), £(b,—b,b), £(—b,0,b)},
G((1,1,0)) ={(1,1,0), (—1,2,0), (2,—T1,1), (1,-2,2), (—2,1,1),
(2,0,—1), (—1,—-1,2), (1,0,-2), (—2,2,—1),

(_]a]a_z)a (0)_2>1)> (O>_1)_])}

B3 : G((G,0,0)) :{:I:(CL,0,0), :i:(_av a)0)> :l:(())_a)za)})
G((Ovbao)) :{i(oab>0)) :l:(bv_baZb)v i(_baOaZb)) i(b>ba_2b)>
+ (—b,2b, —2b), +(2b,—b,0)},

G((0,0,¢)) ={%(0,0,¢), £(0,¢c,—c), =(¢,—c,¢c), £(c,0,—c)}.

C: G((a,0,0)) ={+£(a,0,0), £(—a,a,0), £(0,—a, a)},
G((0,b,0)) ={+£(0,b,0), &(b,—b,b), £(—b,0,b), (b, b, —b),
+ (=b,2b,—b), £(2b,—b,0)},

G((0,0,¢c)) ={£(0,0,¢), =(0,2¢c,—c), =(2¢,—2c,c), =(2¢,0,—c)}.
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Hs; : G((a,0,0)) ={%+(a,0,0), £(—a,a,0), £(0,—a, at), +(0, aT,—aT),
+ (at,—aT,a), +(—at,0,a)},
G((0,0,¢)) ={£(0,0,c), £(0,cT,—c), £(cT,—cT,CcT), =(—CT, 0, CT),
+ (ct, ¢, —cT), £(—cT, ct?, —c71), £(ct?, —c,0),

+ (¢, —ct?, c1?), £(—c1?,¢1,0), £(—c, —cT,cT?)}.

1.5. ORBITS AS POLYTOPES

In this section, we recall an efficient method [8] of description for reflection-
generated polytopes in any dimension.

The idea of the method consists in the following. Suppose we have an orbit
G(A). Consider its points as vertices (faces of dimension 0) of the polytope also
denoted G(A) in R™. Then for any face f of dimension 0 < d < n—1, we identify
its stabilizer Stabg,)(f) in G, which is a product of two Coxeter subgroups of
G:

Stame(f) = G1(f) X Gz(D)

where G;(f) is the symmetry group of the face, and G,(D) stabilizes f point-
wise, i.e. does not move it at all.

Our method consists in a recursive decoration of the diagram of G, provi-
ding at each stage the subdiagrams of G;(f) = G(x) and G,(D) = G(o) for
faces of one type. The recursive decoration is recursive in the dimension d of
the faces. The decoration of the nodes of the diagram indicates to which G(*)
or G(o) subgroups of the stabilizer the corresponding reflections belong. For
turther details, see [8]. A much wider application of this method is described
in [48, 49, 51], including its exploitation in non Euclidean spaces.

We start with an extreme decoration of the diagram. It is equivalent to sta-
ting which coordinates of the dominant weight are positive relative to the w-
basis. The nodes are drawn as either open or black circles, i.e. zero or positive

coordinates respectively.
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Every possible extreme decoration fixes a polytope. There are only two
rules for recursive decoration of the diagrams, starting from one of the extreme
ones : (i) a single black circle is replaced by a star ; (ii) open circles, that become
adjacent to a star by diagram connectivity, are changed to black ones.

Tables 1.2 and 1.3 show the results of the application of the decoration rules
for polytopes in 2D and 3D for all groups with connected diagrams. All poly-
topes for A4, B4, C4, D4, and Hy are described in tables 3 and 4 of [8].

Az | Ca| Ga||Ha|H27) | 1|23
llee|f 6 | 8 [12]10| 14 |V
2|e0|| 3 |46 |5 7 v
3loe|| 3 | 4|6 |5 7 v
4| xe| 3 |4 6|5 7 IV
S5lex|| 34|61 5 7 v v

TABLE 1.2. The number of faces of 2D polytopes with Coxeter
group symmetry. The first three rows specify representatives of G-
orbits of 2D polytopes. A black (open) dot in the second column stands
for a positive (zero) coordinate in the w-basis of the dominant point re-
presenting the orbit of vertices. The number of vertices is listed in the
subsequent five columns. Rows 4 and 5 refer to the edges of the poly-
topes. A star in the second column indicates the reflection generating
the symmetry group of the edge. The number of edges is shown for each
group in subsequent columns. Check marks in one of the last three co-
lumns indicate the faces which belong to the polytope described in that

column.

1.5.1. Explanation of the tables

A description of table 1.2 is given in its caption.
Consider table 1.3. The second column contains short-hand notation for
several diagrams at once. We call them decorated diagrams. No links between

nodes of a diagram are drawn because they would need to be different for each
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Diagram || A3 | B3 |C3 | H3 |12 [|3[4[|5|6]|7

eee 24 |48 | 48 || 120 || v

1

2 ee0 12 124124 || 60 v

3 eoe 12 124124 || 60 v

4 cee 12 124124 || 60 v

5  Joxe 4 166 |12 v

6 ceo 6 |12 12| 30 v

7 coe 4 88| 20 v

12 124 124 || 60 | v v
9 oxe 12 124 124 | 60
10 ®ox 12 124 124 | 60 | v v

@]
X
[ J
[ J

(\
(\
Q\
Q\

11 * @0 6 |12 |12 | 30 v v

12 O ®% 6 (12|12 30 v v
13| *xe 4 |8 |8 20|V |V I V|V I IVI|V

14| xex 6 |12 12| 30 || v v

15 ® X x 4 166 |12 |V Vv V|V ars

TABLE 1.3. The number of faces of dimension 0, 1 and 2 of
3D polytopes with Coxeter group symmetry. Decorated diagrams,
rows 1 to 7, specify the polytopes. The dimension of a face equals the

number of stars in the diagram, rows 8 to 15.

group in subsequent columns. The nodes do not reveal the relative lengths of
roots, their decoration indicates to which of the pertinent subgroup of the sta-
bilizer of G such a reflection belongs. Thus the diagrams of the second column
of the table apply to A3, B3, C3 and Hj; at the same time.

Each line of the table describes one of G-orbits of identical faces. The di-
mension of the face equals to the number of stars in its decorated diagram.
Numerical entries in a row give the number of faces for polytopes of symmetry
groups A3z, B3, C3 and H3, shown in the header of the columns. The top seven

rows show the starting decorations fixing the polytopes, and also the number
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of O-faces (vertices) of the polytopes of each group. The check marks in one of
the last seven columns indicate the faces belonging to the same polytope.
Example 1.5.1.

As an example of how to decipher properties of polytope faces, consider rows num-
ber 5 and 2. The diagram in row 5 conveys the fact that A = aw; with a > 0. The
exact value of a affects only the size of the polytope, not its shape. The stabilizer of A
is given by the subdiagram of open circles, i.e. v, and 3 generate its stabilizer. For A
the subdiagram is of type A,, while for B3 and Cs it is of type C,, and for Hj it is of
type H,. Hence in row 5 the entries give the number of vertices as 24/6, 48/8, 48/8,
120/10 respectively.

The check mark in column 5 and row 5 indicates that faces belonging to our poly-
tope are indicated by other check marks in column 5, namely in rows 11 and 13. The
diagram of row 11 has just one star, hence the face is 1-dimensional (an edge). Its sta-
bilizer (the subdiagram of stars and open circles) is of type Ay x Ay for all four cases.
Hence the number of edges is 24 /4 for A3, 48/4 for B3 and C3, and 120/4 for Hs. The
only type of 2D face is given in row 13. The symmetry group of the face is generated
by vy and . It is of type A, for all four cases. Thus there are 24/6 faces in A3, 48/6
in Bz and Cs, and 120/6 in H3 polytope.

Similarly, row 2 indicates that A = aw; 4+ bwy, a,b > 0. It is stabilized by
the group generated by r3, which is of type Ay for all four cases. Hence the number
of vertices equals half of the order of the corresponding Coxeter group. There are two
orbits of edges given in rows 9 and 11, while the two orbits of 2D faces are given by
the check marks in rows 13 and 15.

Example 1.5.2.

The 2D faces can actually be constructed knowing their symmetry and the seed
point, say (a,0,0). The diagram of the 2D face is x * o, meaning that the symmetry
group of the face is generated by vy and v,. Moreover, it is of the same type (A;) for all

four groups. Then there are just three distinct vertices of the 2D face :
((1,0,0), T](G,0,0), T‘zT’](a,0,0).

The 2D face is formed from the seed point (a,0,0) by application of reflections r, and

T).
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The vertices of the 2D face are different triangles for each group, because they are

given in their respective w-basis :

A3 : ((1,0,0), (_a> Cl,O), (0,-(1, Cl),
B3 : ((1,0,0), (_a> Cl,O), (Oa_a)za)>
C3 : ((1,0,0), (_a> G,O), (Oa_a) Cl),

H3 . (Q,0,0), (_a> G,O), (Oa_ay CLT).

Example 1.5.3.
Let us consider row 2 in further detail. The starting point is A = aw; + bwy,

where a,b > 0. There are two orbits of edges given by their endpoints :
(((l,b,O),T]((l,b,O)), (((l,b,O),Tz(Cl,b,O)),

and two orbits of 2D faces. Consider just the Hz case. The 2D face of row 13 has the
symmetry group generated by 1,72 (A type). It is a hexagon :

(G')b)O)) (—a,a—l—b,()), (a+b)_b)Tb)> (b,—a—b,’t(a—l—b)),

(—a—"b,a,tb), (=b,—a,t(a+Db)).

The 2D face of row 15 has its symmetry group generated by v, 73 (H; type). It is a

pentagon :

(a,b,O), (a—l_b)_b)’rb)) (a—l_b)Tb)_Tb))

(a +1°b,—1b,b), (a+T1%b,0,—b).

In particular, when a = b, the pentagon and the hexagon are both reqular. The polytope
is then the familiar fullerene or “soccer ball’.

Further questions about the structure of polytopes can be answered within
our formalism : How many 2D faces meet in a vertex ? Which 2D faces meet in
an edge ? The higher the dimension, the more questions like these can be asked
and answered. For more information on such questions and others (e.g. dual

pairs of polytopes), we refer to [8].
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1.6. DECOMPOSITION OF PRODUCTS OF POLYTOPES

1.6.1. Multiplication of G-invariant polynomials

The product of G-polytopes together with its decomposition, as defined in
subsection 1.6.2 below, can be simply motivated by its correspondence to the
product of more familiar objects than orbits, namely G-invariant polynomials,
say P(A;x) and P(p;x). Here A and p are dominant points of their orbits and x
stands for n auxiliary independent variables x1,x2, ..., X, whose nature is of
no concern to us here. They can be thought of as, for example, complex or real
variables. We introduce them in order to make sense of the definitions below.

Denote by AV € G(A) the points of the orbit G(A), and by u® € G(n),

where

=) ajwy, p¥=3 bFwg,  T<i<IGN], 1<k [G(u).
p=1 q=1

(1.6.1)
Here |G(A)| and |G (p)| denote the number of points in their orbits. Then we can

introduce the polynomials :

P(A:x) = _Z ‘ Zx SO (1.6.2)

A eGA)
" [G(p)] b(k] b(k) b(k)
P(u;x) = Z xt = Z X' Xyt Xt (1.6.3)
i eG(p) k=1
and their product,
MG bk (1), 4. (K)
P(A;x) @ P x Z Z XS o --xgn o (1.6.4)
i=1 k=1

The latter consists of the sum of |G(A)||G(u)| monomials which can be decom-
posed into the sum of polynomials defined by one G-orbit each.

Finally, consider an example : Let G be the group A, and A = (1,0) and p =
(0,1). Therefore P((1,0);x) = x1+x; ' x2+x; ' and P((0,1);x) = xa+x1%; ' +x7 .
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Their products decompose as follows :

P((1,0);%) @ P((0,1);%) ={x1x2 +x3x5 " 4+ x7'%x3 +X72%2 + x1%52 + %7 %, '} + 3
=P((1,1);x) + 3P((0,0);x),
P((1,0);%) @ P((1,0);%) ={x3 + x72%5 + x5} + 20x2 + %1% +x7 '}

—P((2,0);x) + 2P((0,1);) .

Note that it is equivalent to use formal exponentials instead of polyno-

mials :

Z XA“) P Z ezm(xm,x).
WeG(A) WeG(A)
1.6.2. Products of G-orbits

Suppose we are given two orbits, say G(A) and G(u), of the same Coxeter
group G. Let AV and u(® be the points of G(A) and G(u) respectively, numbe-
red in some way. We define the product of two orbits as

GA) ® G(u) := U (AD 4 ey, (1.6.5)
AV eG), neG(u)
The left side is obviously G-invariant, therefore the right side is also G-invariant.
Hence it can be decomposed into a union of several G-orbits. The highest and

the lowest components of such a decomposition are easily obtained :
GA) @G =GA+wU---UGA+mn). (1.6.6)

Here, A 4 p is the sum of the dominant points of the orbits G(A) and G(p). The
symbol 1t stands for the unique lowest point of G() (all coordinates are non-
positive in the w-basis). Frequently, it happens that A + 1t is not a dominant
point, i.e. the highest point in its orbit, but it still identifies the orbit uniquely.
Note also that A + [t and i + A always belong to the same G-orbit. The lowest
component often appears more than once in the decomposition.

For a geometric interpretation of (1.6.6), recall that all orbits in (1.6.6) are
concentric, having the origin as their common center, and that points of one

orbit are equidistant from the origin. In physics, the product on the left side of
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(1.6.6) can be thought of as a certain ‘interaction” between two orbit-layers, re-
sulting on the right side in an ‘onion’-like structure of several concentric orbit-
layers.

To simplify the notation in the following examples, we write just A instead
of G(A), so that A ® p means G(A) ® G(u).

1.6.3. Two-dimensional examples

Azi (1)O)®(O)1):(1)1)U3(0)0))
(1,0) @ (1,1) = (2,1) U 2(1,0) U 2(0,2),

(D (1,1)=(2,2)u2(1,1)U2(3,0) U2(0,3) U6(0,0).

C,: (1,00®(0,1)=(1,1)uU2(1,0),
(1,0)® (1,1) =(2,1)u2(2,0) U2(0,2) U2(0,1),
(L, (1,1)=(2,2)uU2(2,1)U2(4,0) U2(2,0) U 2(0,3)U

2(0,1) U 8(0,0).

Gy : (1,0)®(0,1)=(1,1)U2(0,2)U2(0,1),
(L,O)® (1,1)=(2,HU(1,2) U (1,1)U2(0,4) U2(0,2) U2(0,1),
(LD ((1,1)=(2,2)U2(1,1)Uu2(1,3)U2(3,0) U2(2,0)U

2(1,0) U 2(0,5)U2(0,4) U2(0,1)U12(0,0).

H, : (1,00®(0,1)=(1,1)U(t—1,T—1)U5(0,0),
(Lo (1) =2,NJ(t,t—1U(t—T1,1)U2(1,0)U
200,t+1),
(Lo ((1,1)=12,2)U2(t,71)U2(t—1,T—1)U2(2+T,0)U

2(2t1—1,0)U2(0,2 + 1) U2(0,2T — 1) U 10(0,0) .
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1.6.4. Three-dimensional examples

AS : (],0,0)@(0,0,]):(1,0,1)U4(0,0,0),

(])O)])®(O)1)O) - (1)1)1)U3(2)0)0)U4(O)])O)U3(O)O)2))

(1,1,0)® (0,0,1) =(1,1,1)U 3(2,0,0) U 2(0,1,0) .
83: (]>O>O)®(O)O)1):(1)0)1)U3(0a0a1)>
(1,0,1)® (0,1,0) = (1,1,1) U 2(2,0,1) U 3(1,0,1) U 2(0,1, 1)U
3(0,0,3) U6(0,0,1),

(1,1,0) ® (0,0,1) = (1,1,1) U 2(2,0,1) U 2(1,0,T) U 2(0,1,1).

CS: (1>070)®(0)0>1):(1)O>1)U2(0a1)0)7
(1,0,1)® (0,1,0) = (1,1,1)U2(2,1,0) U2(1,0,1) U4(2,0,0)U
4(0,2,0)U4(0,1,0) U 3(0,0,2),

(1,1,0) ® (0,0,1) = (1,1,1) U 2(2,1,0) U 2(1,0,T) U4(0,1,0).

Hs;: (1,0,0)®(0,0,1)=(1,0,1) U (0,T—1,T—1)U5(T,0,0)U

3(0,0,T—1).

1.6.5. Decomposition of products of Eg orbits

We say that an orbit is fundamental if its dominant weight in the w-basis
has precisely one coordinate equal to 1 and all others are zero. Thus Eg has 8
fundamental orbits. Their sizes range from 240 to over 17 000.

All 36 different products of fundamental orbits of Es were decomposed in
[19] and are explicitly shown within the tables. They were indispensable in
solving the main problem of [19], namely the decomposition of products of

fundamental representations of Eg.
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1.7. DECOMPOSITION OF SYMMETRIZED POWERS OF ORBITS

1.7.1. Symmetrized powers of G-polynomials

The product of m identical polynomials, say P(A;x), is the subject of the
action of the permutation group S,, of m elements. Thus it can be decomposed
into a sum of components with a specific permutation symmetry. It is well
known from representation theory that the permutation symmetry commutes
with the action of the Weyl group. Consequently, each permutation symmetry
component can be decomposed into a sum of polynomials.

Let [ ] be short-hand notation for a polynomial (1.6.2). The product of two
and more copies of [ ] decomposes into the symmetry components indicated

by their Young tableaux :

D@D:Dj‘f—a, Helel= +2| _+E, (1.7.1)

In general, the square stands for a set of G-invariant items, each square
containing the same items. Those can be monomials of a polynomial, or weights
in the case of the weight system of a representation of a semisimple Lie group/
algebra, or points of a G-orbit. The product of m copies of the same square
decomposes into permutational symmetry components according to the re-
presentations of the group S,,. The components are identified by their Young
tableau. Each of the components is further decomposable into the sum of parts
that are labeled by the orbits of the Coxeter group G.

In order to perform such a two-step decomposition, (i) the items of the
square need to be numbered consecutively in any convenient way. The items
belonging to a particular permutation symmetry component are then deter-
mined according to the inequalities, shown in the next subsection, and more
generally implied by the corresponding Young tableau. Then (ii) items belon-
ging to a particular Young tableau, which are labeled by points transformed
by G, are sorted out into the Coxeter group orbits. Practically it suffices to find

the items labeled by dominant points.
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1.7.2. Symmetrized powers of G-orbits

For simplicity of notation let us continue to label an orbit G(A) by its domi-
nant point A. The product of the same two G-orbits decomposes into its sym-

metric and antisymmetric parts :
AN = (}\z)symm U (Az)cmti (1.7.2)

Each of the two terms of the right side is further decomposable into the
sum of individual orbits. Let A;, A,, ... be the points of the orbit A numbered
in any order. Then the content of the two parts is determined by the following

inequalities, illustrated by their corresponding Young tableau :

Aeymm 3 Ap+Aq, p>gq, LILP] (1.7.3)

Aanti 2 Ap+Aq, P>d, q]. (1.7.4)

The product of 3 copies of A decomposes likewise
AQARAN = (}\3)symmu (As)antiuz(xﬂmixeda (175)

where permutation symmetry components are formed from the N points as

follows :
(A eymm D Ap FAq+As, P>q>s, S1a|P] (1.7.6)
Aanti DAp+Aq+As, P>q>s, S|, (1.7.7)
g
P
(A)mixea 2 Ap +Aqg+As, p>gandp >s, S|, (1.7.8)
q|p

Similarly, any higher power decomposes into permutation symmetry com-

ponents where each is a sum of individual orbits.
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1.7.3. Two-dimensional examples

Azl

Cz:

Gz:

(0,1)3

symm

(0,1)%

anti

(1,1)3

symm

(1,1)%

anti

(1,0)3

symm

(1,0);

anti

(] ) O)fnixed

(0,1);

symm

(0,1);

anti

(1,0)3

symm

(1,03

anti

(1,0);

mixed

(0,1);

symm

(0,13

anti

(1,0)3

symm

(1,03

anti

(1,0);

mixed

=(1,00U(0,2),

= (1,0).
=(2,2)uU(1,1)U(3,0)U(0,3)U3(0,0),
=(1,1)U(3,0)uU(0,3)U3(0,0).
=(1,1)uU(3,0)U(0,0),

=(0,0),

=(1,1)u2(0,0).

=(2,0) U (0,2) U2(0,0),
= (2,0) U 2(0,0).

= (1,1 U (3,00U2(1,0),
= (1,0),

= (1,1)u3(1,0).

= (1,0) U (0,2) U (0,1)U3(0,0),

=(1,0) U (0,1)U3(0,0).
=(1,3)U(3,0)U(2,0)U3(1,0)u2(0,3)U2(0,0),
= (2,0) U2(1,0)U2(0,0),

— (1,3)U2(2,0) U5(1,0) U2(0,3) U4(0,0).
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(0,1)2ymm = (1,00 U (0,2) U (0,T— 1),

0,124 =(t,00U(0,T—1).
(1,0)3mm=2—-7,1U(1,0U(3,0U(t,00U(0,T—1),
(1,002 =(t,00U(0,T—1),

(1,02 iea=2—T, U (1,7) U2(T,0) U2(0,T—1).

1.7.4. Three-dimensional examples

A3I

Cg:

(LO)O)iymm:(])])O)U(3)O)O)U(O)O)])>

(1>O>O)?1nﬁ :(O)O)])>

(1,0,0)3 i eq = (1,1,0) U 2(0,0,1).
(1,0,0)§ymm:(],],O)U(3,0,0)U3(1,0,0)U(0,0,2),
(1>O>O)?1nﬁ :2(1)0)0)U(0)0a2)>

(1,0,0)2 eq = (1,1,0) U5(1,0,0) U 2(0,0,2).
(1>O)O)§ymm:(2)0)0)U(Oa]aO)US(O)OaO)v

(1,0,0)%lnti =(0,1,0) U 3(0,0,0).
(1>O)O)§ymm:(Z)O)O)U(03130)U(O)T_1>O)U6(O)O»O))
(1,0,0)%mti =(0,1,0)U (0,T—1,0)U6(0,0,0).
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1.8. CONGRUENCE CLASSES, INDICES, AND ANOMALY NUMBERS

OF POLYTOPES

Here we introduce numerical characterizations of W-orbits, analogs of si-
milar quantities known for irreducible representations of semisimple Lie groups,

which proved particularly useful in their application.

1.8.1. Congruence classes

Inclusion among the lattices (1.3.3) is an important property of the Weyl
group W. The weight lattice P can be understood as a union of several compo-
nents, each isomorphic to the root lattice Q. The components are shifted rela-
tive to each other by some elements of P. An individual component consists of
points belonging to one congruence class of P. The index of Q in P, denoted |Z],
is the number of distinct congruence classes in P. The value of |Z| reflects other
properties of G. For example, it is the order of the center of G, it is a common
denominator of coordinates of all points of P when given in the basis of simple
roots, etc. One has |Z| > 1 for all G but for the exceptional simple Lie groups of
types Eg, F4, and G,.

The congruence number c is a number attached to points of P. The value
of ¢ is common to all points of the same congruence class. It can be defined
in a number of equivalent ways. Our definition coincides with that of [35]. All
points of any W-orbit belong to the same congruence class. Furthermore, orbits
obtained from the decomposition of a product belong to the same congruence
class, and their congruence number is the sum of the congruence numbers of
the orbits of the multiplication. That is also true for the decomposition of sym-
metrized powers of orbits.

Letx = (x1,X2,...,%n) € Pbea point to consider in the w-basis. Its congruence

number c(x) is given by the following formulas :
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A, : c(x) :kak mod (n+1)
k=1

B, : c(x)=x, mod 2
2,
Cn : clx)= Z Xok—1 mod 2
k=1
D, : c(x)=(ci(x) mod 2, c2(x) mod 4),

c1(x) = Xn1 +xn

2x1+2x3+ -+ 2xp 0+ (M —2)X1_1 + X, M odd

ca(x) =
2x1+2x3+ -+ 2xn 3+ (M —2)x_1 + X, TN even
Ee : cx)=x1—%x2+x4—x%x5 mod 3
E; : c(x)=x4+x%xs+x7; mod 2

(1.8.1)

For Eg, F4 and G, there is only one congruence class, namely c(x) = 0 for
all x € P. Note also that the roots of any group belong to the congruence class
c(x) = 0. Hence also the points of the root lattice of any group belong to the
congruence class c(x) = 0.

The points of any single G-orbit belong to the same congruence class be-
cause the difference between any two points of the same orbit is an integer
linear combination of simple roots, as can be derived from (1.4.2).

For the non-crystallographic groups, the congruence classes can be simi-
larly defined, involving their appropriate irrationality. It is important to recall
that, in these cases, P is a dense lattice. The coordinates of x € P, relative to the

w-basis, are the numbers a + tb, with a,b € Z.
H, : c(x)=1tx1+2x, mod5, wheret=3 (1.8.2)
1.8.2. The second and higher indices

The second and higher indices were defined [64] for weight systems of irre-

ducible finite dimensional representations of compact semisimple Lie groups.
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Extensive tables of indices of degree 0, 2 and 4 are found in [39]. The fact that
a weight system is a union of several W-orbits suggests that the indices could
be introduced for individual orbits. Moreover, we introduce them also for non-
crystallographic Coxeter groups with the same formulas.

For any finite Coxeter group G, we define an index 1;2‘“ of degree 2k of a

G-orbit G(A) by

Y= Y (mwr=ANT,  k=0,1,2,..., (1.8.3)
HEG(A)
because points of G(A) are equidistant from the origin. Clearly I;O) =|G(A)|is

the number of points of the orbit G(A) given by (1.4.1).
Higher indices of products of two orbits, G(A1) ® G(A;), are also useful in

calculating the decompositions. Let r be the rank of G.

IP9(GM) @ GIN)) =I5, = Tay, +- -+ 1250 (1.8.4)
osn = Dy L (1.8.5)

Boan, = I 10 + 1017 (18.6)

— 1T (A, A1) + (A \0)) (1.8.7)

19, =110+ 2B pene  qogw g g

Table 1.4 presents examples of indices of degree 0, 2, 4, 6 and 8 for indivi-

dual orbits of A,, C,, G, and H,.

1.8.3. Anomaly numbers

Triangle anomaly numbers were introduced in physics [20, 56, 66] as quan-
tities assigned to irreducible representations of a few compact semisimple Lie
groups and calculated from the weight systems of their representations. Constraints
on possible models in particle physics were imposed in terms of admissible
values of the anomaly numbers of representations involved in a particular mo-
del. Generalization of the concept to all compact semisimple Lie groups and
to higher than third degree anomaly number originates in [62]. Our goal here

is to show that the anomaly numbers can be used also for constituents of the
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A, 10 12 314 91(6) 2718

(1,00 3 | 2| 4 8 16

(2,0 3 | 8| 64 | 512 | 409
(L,1)| 6 | 12| 72 | 432 | 2592
(2,1)] 6 | 28| 392 | 5488 | 76832

C, |I© 1| 214 4106 818

(1,00 4 | 2| 2 2 2
0,1)| 4 | 4| 8 16 32
(2,0)| 4 | 8| 32 | 128 | 512
(0,2)| 4 | 16| 128 | 1024 | 8192
(1,1)| 8 | 20| 100 | 500 | 2500
(2,1)| 8 | 40 | 400 | 4000 | 40000

G, 1] 12| 314 91(6) 271(8)

12 | 56 | 784 | 10976 | 153664
H, 19| 3-7I1@ | (3—1)21W

0,16 | 4| 8 16 32

(1,00 6 | 12| 72 | 432 | 2592
0,2)| 6 | 16 | 128 | 1024 | 8192
(0,3)| 6 | 36| 648 |11664 209952
(2,0)| 6 | 48 | 1152 |27648 | 663552
(1,1)

(1,0)| 5 10 20
(2,0)| 5 40 320
(1,1) | 10 | 20(T +2) 40(t + 2)?
(2,1) | 10 | 10(4T +10) | 10(47 +10)?

TABLE 1.4. Examples of the indices '™ k =0,1,...,4.

weight systems of irreducible representations, namely for W-orbits and more

generally, for the orbits G(A) of any finite Coxeter group.
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The anomaly number I{7" of degree 2k— 1 of the orbit G(A) of the Coxeter

group G is defined as follows,

V=3 (mu', k=12, (1.8.9)
HeG(A)

where u is a special vector chosen in a way that its scalar product with any
weight gives the lowest possible integer. In particular, (") = 0 in all cases. The
anomaly number of physics literature is 1), therefore it is the only one we
consider.

Frequently used property of 13/ is the decomposition of the product of two
orbits, which is the analog of (1.8.6) :

(3) (3) 1(0) (0) 1(3) (3) (3)
Dien, = I Iy, H 0L, =0, +o0 F IA] v (1.8.10)

In general terms, the direction of u can be characterized as follows. Suppose
W in (1.8.9) is the Weyl group of a compact simple Lie group G, and that G has
a maximal reductive subgroup of type U; x G’. Then the direction of u is given
by the direction corresponding to U; in the Euclidean space spanned by the
roots of G.

The first question to answer is when such a maximal subgroup is present.

For a complete list of the cases see below [4] :
AnDAn71xu1 n22

AnDAkXAn7k71xu1 TL23, 1§k§[n7]]

B+ D Bng x Uy n>3
ChD A1 x Uy n>?2
(1.8.11)
D.D A1 x U n>4
D, DDy x U n>>5
Es D D5 x U,
E- D Ee x U4

As long as each orbit of a given group contains with every weight also its ne-

gative, the anomaly numbers are equal to zero. Therefore the interesting cases
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that remain are found in A,,, D1, Eg, and E;. In physics, however, the only
anomaly numbers that we know are used so far are the ones of A, D A,,_; xU;.

Anomaly numbers of H,, H3, and H,4 are also defined by (1.8.9). In those
cases, however, the direction of u has to be determined differently since there
is no U; subgroup. Instead, one can require that u be orthogonal to selected
simple roots : oy for H,, oy and «;, for Hs, and o, &, and «3 for Hs. Anomaly
numbers for H, are zero for all orbits. They will be considered elsewhere [21],

along with the anomaly numbers of other non-crystallographic groups.

1.9. CONCLUDING REMARKS

(1) Useful and interesting objects may turn out to be G-orbits with each
point decorated by a sign [60] according to the following rule. The do-
minant point, say A, and all points obtained from it by an even number
of reflections generating G, carry a positive sign, while all points of the
orbit obtained from A by an odd number of reflections carry a negative
sign. Let us call an S-orbit a decorated orbit of A of G, while the orbits
without the sign decoration, i.e. all positive signs, are called C-orbits of
A of G. In order to avoid ambiguities, it should be stipulated that A of

an S-orbit must have all coordinates positive in w-basis.

Multiplication of such orbits follows simple rules :

C-orbit x C-orbit — C-orbits, (1.9.1)
C-orbit x S-orbit — S-orbits, (1.9.2)
S-orbit x S-orbit — C-orbits. (1.9.3)

In (1.9.1), all coefficients in the decomposition of the product are posi-
tive integers, while in (1.9.2) and (1.9.3), all such coefficients are inte-

gers, but not all may be positive.

The decomposition of many products of C-orbits with lowest nontri-
vial S-orbit can be directly inferred from the tables [6], using the Weyl

character formula.



41

(2) In the examples, we often required that a G-orbit consist of points of the
weight lattice P. Very few properties of the orbits would have been lost,
had we instead allowed A € R™ The congruence classes would not then

be applicable.

Consider the following products of A, orbits as examples :
(a,0)® (,0)=(a+¢&,0)U(a—¢,¢e), O0<exl, a>1, (1.9.4)
(a,0)® (0,a+¢)=(a,a+e)U(0,e), 0<ex1, a>1. (1.9.5)

The radii of the two orbits in the decomposition (1.9.4) can be drawn ar-
bitrarily close by a suitable choice of ¢, and in (1.9.5) they can be pushed
as far apart as desired by the choice of a. The second orbit in (1.9.5) has
a radius equal to e\/g .

(3) For a geometric interpretation of orbits as polytopes, refer to the pa-
ragraph following equation (1.6.6). The ‘interaction” (i.e. product) bet-
ween two concentric orbit-layers results in the layered structure of or-
bits. They are subject to the equality of indices of various degrees, congruence
numbers, relations between anomaly numbers. Speculative interpreta-
tion can go further : Consider 1;2) as the ‘energy’ of the orbit and I%N

as the ‘energy’ of the interacting pair, etc.

(4) Although we did not pursue it here, orbit multiplication can be vie-
wed as an ‘interaction” between two orbits similarly as used in particle
physics to view interacting multiplets of particles. A multiplet is des-
cribed by the weight system of an irreducible representation of the cor-
responding Lie group/algebra. Here, the role of the multiplet would be
given to the set of points of an orbit. In both cases, such interactions
would be governed by the strict equality of indices of various degrees,
congruence numbers, relations between anomaly numbers. But there is
a price to pay for such a reinterpretation of multiplets : the overall in-
variance of the theory with respect to the Lie group would be reduced
to the invariance with respect to the Coxeter group, or to its (discrete)

image ‘lifted” into the Lie group [46].
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(5) It would be useful to ask additional questions about the properties of
indices and anomaly numbers of various degrees. Such questions can
be answered by adaptation of the methods used for the weight system

of representations [62, 64].

(6) In place of finite Coxeter groups, we could have chosen to consider
other finite groups for similar considerations [36]. The immediate mo-
tivations for our choice were recent applications in harmonic analy-
sis, where W-orbits are playing a fundamental role. Equally interes-
ting would be to consider orbits of infinite Coxeter groups. (A Coxe-
ter group with connected diagram is of infinite order if its diagram is
different from those listed in section 1.2.) The orbits of representations
of Kac-Moody algebras would be relatively easily amenable to such a

study.

(7) Similarly, we could consider orbits of two or more seed points. A simple
example is the root system of the group G,. Choosing as the two seed
points one short root and one long root, say o, and «; + 3x,, the orbit

of the pair is a star-like polygon formed by the root system of G,.

(8) An interesting problem appears to be to pursue a similar study of or-
bits of the even subgroups of Coxeter groups, particularly because these

subgroups are not Coxeter groups in general.
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Chapitre 2

BRANCHING RULES FOR THE WEYL GROUP
ORBITS OF THE LIE ALGEBRA Ay

Référence complete : M. Larouche, M. Nesterenko et J. Patera, Branching rules
for the Weyl group orbits of the Lie algebra A.,, Journal of Physics A : Mathema-
tical and Theoretical, 42(48) : 485203, 15, 2009.

Résumé
Les orbites des groupes de Weyl W(A,,) des algebres de Lie simples de type
A, sont réduites en 1'union d’orbites des groupes de Weyl des sous-algebres
réductives maximales de A,,. Les matrices qui transforment les points des or-
bites de W(A,,) en des points des orbites des sous-algebres sont listées pour
tous les cas n < 8 ainsi que pour les séries infinies des paires d’algébre-sous-
algebre suivantes : A, D Ay 1 X Axx Uy, Ayq D By, Agn1 D C, Az D D

De nombreux cas spéciaux sont inclus et plusieurs exemples sont présentés.

Abstract
The orbits of Weyl groups W(A,,) of simple A,, type Lie algebras are reduced
to the union of orbits of the Weyl groups of maximal reductive subalgebras of
A... Matrices transforming points of the orbits of W(A,,) into points of subal-
gebra orbits are listed for all cases n < 8 and for the infinite series of algebra-
subalgebra pairs A, D An k1 X Ay x Uy, Ay D By, Aon1 D Gy, Aot D D

Numerous special cases and examples are shown.
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2.1. INTRODUCTION

Finite groups generated by reflections in an n-dimensional real Euclidean
space R™ are commonly known as finite Coxeter groups [22, 23]. Finite Coxe-
ter groups are split into two classes : crystallographic and non-crystallographic
groups. Crystallographic groups are often referred to as Weyl groups of semi-
simple Lie groups or Lie algebras. They are symmetry groups of some lattices
in R™ There are four infinite series (as to the admissible values of rank n) of
such groups, and five isolated exceptional groups of ranks 2, 4, 6, 7, and 8.
Non-crystallographic finite Coxeter groups are the symmetry groups of regu-
lar 2D polygons (the dihedral groups), and two exceptional groups, for n=3
(the icosahedral group of order 120) and n=4, which is of order 1202.

We consider the orbits of the Weyl groups W(A,,) of the simple Lie alge-
bras of type A, 1 > 1, equivalently the Weyl groups of the simple Lie group
SL(n+1,C), or of its compact real form SU(n+1). The order of such a Weyl
group is (n+1)!. An orbit of W(A,,) is a set of distinct points in R"™, obtained
from a chosen single (seed) point, say A € R™, by application of W(A,,) to A.
Hence, an orbit W) of W(A,,) contains at most (n+1)! points. The points of
W, are equidistant from the origin. It should be noted that the group W(A,,)
is isomorphic to the permutation group of n+1 elements. Although we make
no use of this fact here, it reveals a rather different perspective on our problem
[55].

Geometrically, points of the same orbit can be seen as vertices of a convex
polytope generated from A. There is a method for counting and describing the
faces of all dimensions of such polytopes in the real Euclidean space R™. It uses
an easy recursive decoration of the corresponding Coxeter-Dynkin diagrams
[8].

Weyl group orbits are closely related to weight systems of finite-dimensional

irreducible representations of corresponding Lie algebras. More precisely, the
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weight system is a union of several Weyl group orbits. Which orbits are com-
posed into a particular weight system is in principle known. An efficient al-
gorithm for the computation exists [6]. The representations are finding innu-
merable applications in science. Very often, such applications can be carried
through just by our knowledge of the corresponding weight system. It is concei-
vable that some of the applications would find interesting new possibilities
when working with individual orbits only.

The list of possible reductions of W(A,,) orbits is a result of a major classifi-
cation problem solved more than half a century ago, when the maximal reduc-
tive subalgebras of simple Lie algebras, in particular of A,,, were determined
[4, 14]. We exploit that classification without further reference to it.

In this paper, we consider orbits of W(A,,) and their reduction to orbits of
the Weyl groups of maximal reductive subalgebras of A,,. In the physics litera-
ture, a similar task [39] is often called computation of branching rules. We will
consider two types of maximal reductive subalgebras, maximal reductive sub-
algebras that are not semisimple [4], and subalgebras that are maximal among
reductive subalgebras, but which are in fact semisimple. Thus the second type
of subalgebras are obtained from the list of [14] by eliminating semisimple sub-
algebras that are part of the reductive subalgebras classified in [4].

The present paper can be understood as a continuation of [21], where the
orbits are seen as elements of a ring of reflection generated polytopes in R™.
In that paper, the main problem was to reduce products of Weyl group or-
bits/polytopes into a sum of Weyl group orbits. Here, our problem is to trans-
form/reduce/branch each polytope/orbit into a sum of concentric polytopes
with lower symmetry, and often also with lower dimension.

Until recently, W-orbits were used as an efficient computational tool, par-
ticularly for large-scale computations (see for example [6, 19, 45, 47] and refe-
rences therein). Their appreciation as point sets defining families of W-invariant

special functions of n variables is relatively recent [29, 30, 60]. Other possible
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applications could include an unusual twist of some symmetry breaking pro-
blems in physics, where, rather than breaking down weight systems of repre-
sentations, one would break each orbit independently.

The main advantage of the projection matrices method is the uniformity of
its application as to the different algebra-subalgebra pairs, which makes it par-
ticularly amenable to computer implementation. Thus in [61], branching rules
for representations of dimension up to 5000 were calculated for all simple Lie
algebras of rank up to 8 and for all their maximal semisimple subalgebras. Cor-
responding projection matrices were presented as a computational tool only
later in [41]. Subsequently, the tables [39] were also based on their exploitation.

Particular Weyl group orbit reduction has undoubtedly been addressed on
many occasions in the literature. As a separate subject of interest, orbit bran-
ching rules seem to have been first found in [40], where they are used for reduc-
tion of many representations as well as orbits of the five exceptional simple Lie
algebras. The corresponding projection matrices are shown there too. In [18],
several generating functions for the reduction problem were derived. It is a
very efficient method, in that it solves the problem for all orbits at once. Unfor-
tunately, for each algebra-subalgebra pair, a new generating function needs to
be derived. An independent original approach to orbit-orbit branching rules
can be found in [67, 68], in which essentially combinatorial algorithms are de-
veloped for specific series of algebra-subalgebra pairs. For A,,, an algorithm
for the equal rank subalgebra series of cases can be found there. It should be
compared with subsection 2.4.3 of this paper.

Our problem in this paper is closely related to the computation of bran-
ching rules for irreducible finite dimensional representations of simple Lie
algebras (equivalently, to branching rules for weight systems of representa-
tions). Theoretically, such problems need to be solved while describing sym-
metry breaking in some physical systems. Practically, the orbit branching rules
problem needs to be solved whenever a large-scale computation of branching

rules for representations is undertaken. The similarity of the two problems is in
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the transformation of orbit points (weights) that takes place in both cases. Ho-
wever, there are practically important differences between the two problems.
The orbit branching rules are less constrained than those for representations.
Some of the differences were already pointed out in [21]. Here we underline

just two :

(i) While weight systems grow without limits, the larger the representation
one has to work with, the orbit size (the number of points in an orbit) is al-
ways bounded by the order of the corresponding Weyl group. Without limits,
only the distance of the orbit points from the origin can grow, but not their
number. A weight system of a representation is a union of several W-orbits.
The higher the representation, the more orbits it is comprised of. In general, to
determine the orbits that form the weight system of a representation (equiva-
lently, to compute dominant weights multiplicities in a representation) is often
a difficult and laborious task (see [6] and references therein). Therefore, any
large-scale computation with representations practically imposes the need to
break a large problem for the weight system, into a series of much smaller ones
for individual orbits. Computation of branching rules for the representations
is one such problem, decomposition of products of representations into the di-
rect sum of irreducible representations is another problem, which often needs
to be carried out for relatively large representations, and which is solved enti-

rely using the weight systems, see for example [19].

(ii) A point of a weight system of a representation necessarily belongs to a
weight lattice of the Lie algebra. Its coordinates are integers in a suitably cho-
sen basis of R™, so are the points of orbits after reduction. When we work with
an individual orbit, we are free to choose the orbit, that is, the seed point A,
anywhere in R™, as close or as distant from the origin or from any other lattice
point as one desires. After the reduction, some orbits can be very close, while
some are far apart. Examples of such effects are shown in the Concluding Re-
marks of [21]. The flexibility thus achieved needs yet to be exploited.

The branching rules for W(A,) — W(L), where L is a maximal reduc-

tive subalgebra of A,, is a linear transformation between Euclidean spaces
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R™ — R™, where m is the rank of L. The branching rules are unique, unlike
transformations of individual orbit points, which depend on the relative choice
of bases. In this paper, we provide the linear transformation in the form of an
n x m matrix, the projection matrix. A suitable choice of bases allows one to ob-
tain integer matrix elements in all the projection matrices listed here. Note that

we use Dynkin notations and numberings for roots, weights and diagrams.

2.2. PRELIMINARIES

The general strategy of our approach can be described as follows.

Consider the pair L D L’ of Lie algebras of ranks n and m respectively,
where L is simple and L’ is maximal reductive. In principle, the orbit reduction
problem for the pair W(L) > W(L’) is solved when the n x m matrix P is found,
with the property that points of any orbit of W(L) are transformed/projected
by P into points of the corresponding orbits of W(L’). Computation of the bran-
ching rule for a specific orbit amounts to applying P to the points of the orbit,
and to sorting out the projected points according to the orbits of W(L’).

This task requires that one be able to calculate the points of any orbit of
the Weyl group of any semisimple Lie algebra encountered here. There is a
standard method, but we refrain from describing it here once again. Instead
we refer to [21], the immediate predecessor of this paper, wherein all orbit
points are given relative to the so called w-basis. Geometric relations between
the basis vectors are described by the matrix ((wj, wy)) of scalar products of
the basis vectors. The matrices are found in [6] under the name quadratic form
matrices for all simple Lie algebras.

The Weyl group of the one-parameter Lie algebra U, is trivial, consisting of
the identity element only. This algebra is present in reductive non-semisimple
Lie algebras. Its irreducible representations are all 1-dimensional, hence its or-
bits consist of one element. They are labeled by integers. The symbol (k) may
stand for either the orbit {k, —k} of A, or for the U;-orbit of one point {k}. Dis-
tinction should be made from the context. For example, the orbit (p)(q), where

p € Z7° q € Z, of W(A; x Uy), has two elements, {(p)(q), (—p)(q)}.
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All orbits of W(A,,) have the following symmetry. For each point (a;, a, ..., a,)
that belongs to an orbit, the point (—a,, —an_1,...,—a,, —a;) also belongs to
the same orbit. We say that the orbits of W(A,,) in the following pair are contra-

gredient :

(Qqu»--',an,qn)) (qn> qnf1a--->q2>q1)> qj Z 0 fOl' au ]

Branching rules for contragredient orbits are closely related. They either coin-
cide, or one can be obtained from the other by interchanging qx < qn_«
components of the dominant points. We list only one such pair of branching
rules.

It is known that the fundamental representations, i.e. representations with
highest weight equal to wj, j = 1, ..., n, have weight systems consisting only of
the one Weyl group orbit W,,,. If no other orbits are involved in a branching
rule, that rule coincides with the branching rule for representations.

The number of points in a Weyl group orbit, labeled by its unique dominant
weight (aj, ay,...,ay), is determined by the a;’s that are strictly positive. In
orbits encountered in representation theory, we have a; € Z=°. Since we are
considering a more general setup, we need require only a; € R=°. If all a;’s are
strictly positive, the orbit of W(A,,) contains (n+1)! points.

For simplicity of notation we subsequently identify cases by algebra-subalgebra
symbols rather than by corresponding Weyl groups. In particular, we speak of
an orbit of Ay rather than of an orbit of W(Ay). Subsequently dots in a matrix

denote zero matrix elements.

2.3. CONSTRUCTION OF PROJECTION MATRICES

The projection matrix P for a given pair L O L’ of Lie algebras is calcula-
ted from one known branching rule. The classification of subalgebras amounts
precisely to providing that branching rule. Usually the branching rule is given
for the lowest dimensional representation. Then the matrix is obtained using
the weight systems of the involved representations.

First, make a suitable (Iexicographical) ordering of the weights of L and L'.

Then associate the weights on both sides one-by-one according to the chosen
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order. The matrix is obtained from requiring that each weight of L be transfor-
med to its associate weight of L'.
Example 2.3.1.

Consider the case of A3 D C, of subsection 2.5.2. The lowest orbit of Az contains
4 points. The lowest orbit of C, also contains 4 points. More precisely, there are two
4-point orbits of A3 and two such orbits of C,. Either of the two A3 orbits can be used
for setting up the projection matrix. The two orbits of C, with dominant weights (1,0)
and (0, 1) are different, being related to simple roots of different length. We take the
Aj orbit of the dominant point (1,0,0) and project it onto the C, orbit of the point
(1,0). (See the second option in the last item of Concluding Remarks below.)

(])an)H(]aO)> (_1>1>0)'_)(_]»])>
(Oa_]>]) = (]>_])> (O>O>_1) = (_1>O)

Writing the points as column matrices, the projection matrix of subsection 2.5.2 is

obtained from the first three. Proceeding one column at a time, we have
sy (0) = (1 10 (7)) = (7 101y (%) = (1
(o**)<8>—(o)> (01*)(2))—(1)> (010)(*11)—(71»
Here, stars denote the entries that are still to be determined. The matrix P=(} 9 [) then

automatically transforms the fourth point (0,0, —1) of the A3 orbit as required. This

matrix can be used for projecting points of any Aj orbit.

2.4. EQUIDIMENSIONAL ORBIT BRANCHING RULES

All orbits W(A,,) are n-dimensional except for the trivial one A = 0, which
consists of one point, the origin. Points can be seen as vertices of a polytope
in R™ [21]. Reduction to orbits of the same dimension happens when reduced
orbits have the symmetry of W(A, x A x U;), where r+s+1 = n. Clearly, we
need to consider only the cases r > s. Geometrically, the orbit points are not
displaced in this case ; rather, they are relabeled by the coordinates given in the
standard basis of the subgroup.

In this section, we first consider the lowest special cases in part as trans-
parent illustration and in part because they are most frequently encountered

in physics applications. Lastly, we consider the infinite series of cases for all
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possible values of the rankn (1 < n < o00): W(A,)) D W(A, 1 X A x Uy),

0 <k < [“7’1], where [“7’1] is the integer part of “7’1

2.4.1. Orbit branching rules for A,, D A,,_; x U,
24.1.1. A1 D Uq4

The lowest example is trivial. The Weyl group of A; has two elements ; the
Weyl group of U, is just the identity transformation. An orbit {p, —p} of A,

reduces to two orbits of U; :

(P) D (P)+(—p), peER™

The reduction is accomplished by applying the 1 x 1 projection matrix P = (1)

to each element of the A; orbit.

24.1.2. A; D Ay x Uy

The second lowest example is often used in nuclear and particle physics. In
terms of compact Lie groups it is SU(3) D U(2) = SU(2) x U(1). The reduction
is accomplished by applying to each element of the A, orbit the projection
matrix P = (] ;), and by subsequently regrouping the results into orbits of A x

U;. We find the branching rules for the three types of A; orbits :

(p,0) D (p)(p)+(0)(—=2p),
(0,9) D (q)(—a)+(0)(2q),

(p,a) D (p)(p+2q)+(p+a)(p — a)+(q)(—2p — q),
where p, q € R°.
2413. A3 D A, x Uy

Reduction is achieved by applying to each element of an A3 orbit the pro-

jection matrix

(7 i ) (2.4.1)
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and by subsequently regrouping the results into orbits of A, x U;. For all seven

types of A3 orbits, we find the branching rules :

(p,0,0) > (p,0)(p)+(0,0)(=3p),

(0,4,0) > (0,4q)(2q)+(q,0)(—2q),

(0,0,7) D (0,0)(31)+(0, 1) (1),

(p,a,0) > (p,a)(p+2q)+(p+q,0)(p—2q)+(q,0)(—3p—2q),

(p,0,7) O (p,0)(p+37r)+(p, 7) (p—7)+(0, 7) (=3p—T), (24.2)
(0,4,7) > (0,a)(29+37)+(0, q+7)(2q—7)+(q, 1) (—29—T),

(p,q,7) D (p,a)(p+2q+3r)+(p, g+7) (p+2g—7)

+(p+4q,7)(p—29—7)+(q,1)(-3p—2q—7),

where p, q,7 € R>°.
Example 2.4.1.

Let us illustrate the actual computation of branching rules on the example of A3
orbit (2,0,1) containing 12 points. We write the coordinates of the points as column

vectors :

(2.4.3)

Multiplying each of the points of (2.4.3) by the matrix (2.4.1), one gets the points
of the A, x U, orbits written as column vectors. Rewriting them in the horizontal
form and remembering that the first two coordinates belong to A, orbits, the third
one belonging to U,, we have the set of projected points. It remains to distribute the
points into individual orbits. Practically it suffices to select just the dominant ones (no
negative coordinates) because they represent the orbits that are present. Results are

given by (2.4.2), wherep =2 andr = 1.
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2414. A, DA xU, n>2

The cases listed in 2.4.1.2 and 2.4.1.3 are special cases of the present one.

L 0

1 2 3 ... n—2 n-1 n

Note that, here and everywhere below, I denotes the k x k identity matrix
and 0 represents the zero matrix of appropriate dimensions.
We give branching rules for this case for orbits of A,, of order n+1, (n*+n)/2

and n’+n respectively :

(p,0,0,...,0) D (p,0,0,...,0)(p)+(0,...,0)(—mp),
0,q,0,...,0) 2 (0,q,0,...,0)(29)+(q,0,0,...,0)(—=(n—1)q),
(p,0,...,0,1) O (p,0,0,...,0)(p+nr)+(p,0,0,...,0,7)(p — )

+(0,0,...,0,7)(—mp —1).

Note that, here and everywhere below, p, g, € R~°.

2.4.2. Orbit branching rules for A,, D A, 1 x A x Uy

All the cases so far can be viewed as the special cases of the present one
where k = 0. Here we are considering the cases with general rank n > 3 and

1< k<[5
24.2.1. A3 DA X A1 X U,

The reduction is accomplished by applying to each element of the A; orbit
the projection matrix P = ( : 2 } ), and by subsequently regrouping the results
into orbits of A; x A7 x Uj.
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For all types of A3 orbits, we find :

(,0,0) > (P)(0)(p)+(0)(p) (—Pp),

(0,49,0) > (0)(0)(2q)+(0)(0)(—2q)+(qa)(a)(0),

(0,0,7) 2 (0)(r)(r)+(r)(0) (=),

(p,4,0) > (p)(0)(p+2a)+(p+a)(q)(p)+(a)(p+a)(—p)+(0)(p)(—p—24q),
(p,0,7) D (p)(r)(p+7)+(p+7)(0) (p—7)+(0) (p+7) (r—p)+(v) (p) (—p—7),
(0,9,7) D (0)(r)(2g+r)+(a)(a+7) (r)+(q+7)(q) (=) +(r)(0) (=2q—7),
(p,a,7) O (p)(r)(p+2q+7)+(p+a)(r+a) (p+r)+(p+a+r)(q) (p—)

+(a)(p+a+7)(r—p)+(a+7)(p+a)(=p—1)+(r)(p) (—p—2q—7).

2422, Ay D Ay x A x Uy

In terms of compact Lie groups, this is the case frequently used in particle
physics, namely SU(5) D SU(3) x SU(2) x U(1). The reduction is accomplished
by applying to each element of the A, orbit the projection matrix

1. ..
N
<1
2463

and by subsequently regrouping the results into orbits of A, x A x U,. For the
following types of A, orbits, we find :

(0,4,0,0) > (0, q)(0)(4a)+(q,0)(q)(—q)+(0,0)(0)(—64q),
(p,0,0,7) D (p,0)(r)(2p+37)+(p,7)(0)(2p — 21)

+(0,0)(p+7)(3r = 3p)+(0, 7) (p) (=3p — 2).



2423. An D An 2 x Ay x Uy, foroddn >3

The projection matrix is

1234+ n-3n2 na 1 }1

~~ —
n—2 2

and some of the branching rules are

(p,0,0,...,0) D (p,0,...,0)(0)(p)+(0,...,0)(p)(—Fp),

(0,4,0,...,0) O (0,q,0,...,0)(0)(24)+(q,0,0,...,0)(q)(—53q)
+(0,...,0)(0)(1-)q),

(p,0,...,0,7) D (p,0,...,0)(r)(p+257)+(p,0,...,0,7)(0) (p—T)

+(0,.., 0)(p+)(r—p) 25 +(0, ..., 0,7) (p) (7

2424 AL D A2 x Ay x Uy, forevenm >4

The projection matrix is

55
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and some of the branching rules are

(p,0,0,...,0) > (p,0,...,0)(0)(2p)+(0,...,0) () (T —n)p),

(0,q,0,...,0) 2 (0,q,0,...,0)(0)(49)+(q,0,...,0)(q)((3—m)q)
+(0,...,0)(0)(2(1 —n)q),

(p,0,...,0,1) D (p,0,...,0)(r)(2p+(n— T)r)+(p,0,...,0,7)(0)(2(p — 1))

+(0,...,0)(p+r)((n—=T)(r —p))+(0,...,0,7)(p)(—=2r — (n—1)p).

2.4.3. The general case A, D A, 1 X A x Up: 1< k< [27]

The branching rules of subsection 2.4.2 are important special cases of the

general case. The projection matrix in the general case can be written as :

In—k—1 0 } n—k—1

0 I }k

KH 2(kH) - - - (nkeD)(kH)  (nk)(kH)  k(nk) « - - 2(nk) nk }‘

— ~-
n—k—1 1 k

(9,0,0,...,0)2(p,0,...,0)(0,...,0)((k+1)p)+(0,...,0)(p,0,...,0)((k—n)p),
(0,9,0,...,0) D (0,q,0,...,0)(0,...,0)(2(k+1)q) + (q,0,...,0)(q,0,...,0)((2k+1-n)q)
+(0,...,0)(0,q,0,...,0)(2(k—n)q)
(p,0,...,0,7)2(p,0,...,0)(0,...,0,7)((k+1)p+(n — k)r)
+(p,0,...,0,1)(0,...,0)((k+1)(p — 1))
+(0,...,0)(p,0,...,0,7)((n—k)(r—p))

—I_(O) cee ,O,T’)(p,(), s )O)((_k_ 1)1’—|—(k—n)p)
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2.5. BRANCHING RULES FOR MAXIMAL SEMISIMPLE SUBALGEBRAS

OF Ap

The simple Lie algebras A, contain no semisimple subalgebras of the same
rank n. Hence all orbit branching rules considered in this section have rank
strictly smaller than n. We proceed by increasing rank values until n = 8.
Then we describe the infinite series involving the Weyl groups of classical Lie
algebras, namely W(A,,) D W(B,), n > 3, W(A,,—1) D W(C,), n > 2, and
W(Az—1) DW(Dy,), n >4

We include the low-rank special cases of the three infinite series. We ex-
clude the cases when a subalgebra is maximal among semisimple Lie algebras,
but not among reductive algebras. Projection matrices for the latter cases are
obtained by striking the last line of the corresponding matrices from the pre-

vious section.

2.5.1. Rank 2

There is only one case here, namely A, D A;, which is often specified in
terms of corresponding Lie groups either as SU(3) D O(3), if the groups should
be compact, or SI(3,C) D O(3,C), if the groups have complex parameters.
Their Weyl group orbits are the same. The projection matrix is P = (2 2), so

that we obtain the reductions :

(p,d) D (2p+24)+(2p)+(2q), (p,0) D (2p)+(0), (0,q) D (29)+(0).
(2.5.1)

Example 2.5.1.

Let us underline the geometrical content of the relations (2.5.1). On the left side,
there are points in R? given by their coordinates in w-basis {wi, w,} of A, The
geometric relation of the two basis vectors is given by the 2 x 2 matrix of scalar products
(wj, wy). In A, it happens to be the inverse C~' of the Cartan matrix of the algebra.

1

In particular, for A;, we have C~' = 3 (2 1). It follows that the basis vectors are of

equal length \/2/3, and that Z(w, w,) = 60°.
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On the right side of (2.5.1), there are the A4 orbit points in R! C R2. Applying to
Aj the same rules as previously applied to A,, we have C = (2) so that C~' = (1/2).
Thus the basis vector of A4, say w, has the length 1/+/2.

It remains to clarify what are the relative positions of w;, wy, and w. The theory
leaves us several options. A reasonable choice is built-in into the construction of the
projection matrix in each case. Justification for this is outside the scope of this paper.
For additional information, see [41]. However, the relative positions of basis vectors in

R? and R are established, for example, from
Pw; =(22)(}) =Pw, =2w.

Since equal-length vectors wy and w, are projected into the same point on the w-axis,

the direction of w divides the angle between w1 and w, into equal parts.

2.5.2. Rank 3

There are just two cases to consider. We write only their projection matrices.
A;DCa: (131), AsDAT XA (1321).

Example 2.5.2.

There are 12 points in (2.4.3). Let us transform them by the matrix (1 ;1). Two
dominant points are found when writing the projected points in horizontal form, na-
mely (3,0) and (1,1). Hence we have the A3D>C; rule (2,0,1)D(3,0)+(1,1). The
orbit (3,0) contains 4 points and the orbit (1, 1) contains 8 points.

Geometrically, (2,0, 1) is a tetrahedron with four cut-off vertices. The planar figure
after the projection is the union of the square (3,0) and the octagon (1,1).

Let us underline the difference between the subalgebra A; x A; here and
the one in subsection 2.4.2.1. Using the corresponding projection matrices, we

obtain respectively the reductions
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Ignoring the contribution from U, in the second branching rule, the four orbit

points obtained after the reduction are different in the two cases :

(1,0,0) {(D(M), (=1)(1), (M(=1), (=D)(=1)},
(1,0,0) > {(1)(0), (=1)(0), (0)(1), (O)(=T)}.

There is an obvious subalgebra A, in Ajz. Although it is maximal among
semisimple subalgebras of A3, it is not maximal among reductive subalgebras.

It coincides with A in subsection 2.4.1.3.

2.5.3. Rank 4

There is only one simple and maximal subalgebra of A4 among the reduc-

tive subalgebras :

Ay DCat (7227,

The other two semisimple subalgebras of rank 3 of A4, namely Az and A; x A,,
can be both extended by U; to maximal reductive subalgebras. They are the
special cases n = 4 found in subsections 2.4.1.4 and 2.4.2.4 respectively.

Some branching rules :

(p,0,0,0) D (0,p)+(0,0),
(p,0,0,T) D) (O>p+r)+(0>p)+(o»r)+(2T»p _T)) P > T,

(p,0,0,p) D (0,2p)+2(0,p)+2(2p, 0).

2.5.4. Rank 5

There are four maximal subalgebras in this case. The first two are special
cases of the general inclusions of subsection 2.5.8. The Lie algebras Az and D3
coincide, except that by general convention we agreed not to consider the D3

form. Therefore As D Aj can be read equivalently as As D D3, provided that
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we modify the order of point coordinates as follows : (a,b,c) of Az corres-

ponds to (b, a,c) of Ds.

1.1 1. -1
AsoAss (13351). Asoc (Ti5i0),
AsDAr: (51322) A5DA;x Ay (bi;)

In particular, the branching rules for the A5 orbit of 6 points are :

,

(O,p,O) for A3

(p,0,0) for C
(p,0,0,0,0) O ’ p € R, (2.5.2)

(0,2p) for C;

(p)(p,0)  for A;xA;

\

The first two are special cases of (2.5.5) and (2.5.4) respectively.

2.5.5. Rank 6

The only entry here is a special case of A,, D B,, of subsection 2.5.8, and its

branching rules.

A¢oBs: (11l

(p,0,0,0,0,0) D (p,0,0)+(0,0,0),
(p)O)O)O)O)r) D (p+r)O)O)+(p)0)0)+(r)0)0)+(p _T',T,O), p > T‘)
(p,0,0,0,0,p) D (2p,0,0)+2(p,0,0)+2(0, p,0).

2.5.6. Rank 7

The first two of the three cases are restrictions to n = 7 of the corresponding

general cases of subsection 2.5.8.
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In particular, for A; D A; x A3, we obtain
(,0,0,0,0,0,0) > (p)(p,0,0),
(p,0,0,0,0,0,7) D (p+1)(p,0,7)+(p—7)(p, 0, )+ (p+7)(p—7,0,0), p>T,
(p,0,0,0,0,0,p) > (2p)(p, 0, p)+2(0)(p, 0, p)+4(2p)(0,0,0).

2.5.7. Rank 8

The first case is a special case of (2.5.3).

1 1 1T-11-11-
Ag D By: (:H::H:), Ag DAy x Ay: (i}}'zH:.).
S22 1121

Examples of the branching rules for the second case :
(p)O)O)O)O)O)O)O) D (p)o)(p)o))
(pa Oa Oa Oa O) O) O) T) 0 (p> T) (pa T)+(‘p—1’, O)(p> T)+(p) T) (p—T, O)) P > T,
(,0,0,0,0,0,0,p) D (p,p)(p,p)+3(0,0)(p,p)+3(p, p)(0,0).
2.5.8. Three general rank cases
The cases are presented with examples of branching rules for the orbits
(p,0,...,0) and (p,0,...,0,7), where the parameters p, r are strictly positive
and real. We also assume that p > 1. If p < r the parameters p and r in the

branching rule need to be interchanged. The case p = r often needs to be listed

separately.

AZnDBn/ Tl23

P— Inf1 0 . Enf1

(2.5.3)
0---0[22[0---0

Note that, here and everywhere below, Ey denotes the k x k matrix with units

on the codiagonal.
(paoaoa"' >O)D(p»0) c )O)+(O> . )0))
(p»O» s )O)Y)D(p—I_T)O) cee ,OH‘(P»O» cee ,O)+(T,O, s ,O)—{-(D—T’,T,O, cee ;O)>

(p>o> cee ,O,D)D(ZP,O,. . >0)+2(p>0> cee ,O)—|—2(O,p,0, cee )O)
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A2n71 D) Cn/ n Z 2

P— Infl 0 . Enfl

(2.5.4)
0...0‘1‘0...0
(p,0,0,...,O)D(p,O,...,O),
(p,O,...,O,r)D(p+r,0,...,0)+(p—1‘,1‘,0,...,0),
(pv()))o)p)D(zpaOa)O)+2(O)p»o»)0)
A2n71DDn/ T'LZ4
p—| Ina .0. En (2.5.5)

0---01|2[10---0

(p,0,0,...,0) > (p,0,...,0),
(p»ov---aowr) ) (p+1’,0,...,0)+(p—T,T,O,...,O),

(p>o>---a0ap) ) (2p,0a>0)+2(0>p>0>>0)

2.6. CONCLUDING REMARKS

— The pairs W(L) D W(L’) in this paper involve a maximal subalgebra
L’ in L. A chain of maximal subalgebras linking L and any of its reduc-
tive non-maximal subalgebras L” can be found. Corresponding projec-
tion matrices combine, by the common matrix multiplication, into the

projection matrix for W(L) > W(L").

— Projection matrices of section 2.4 are square matrices with determinant
different from zero. Hence they can be inverted and used in the opposite
direction, as discussed in [11]. The inverse matrix transforms an orbit of
W(L’) into the linear combination of orbits of W(L), where L’ C L. The
linear combination has integer coefficients of both signs in general. We

know of no interpretation of such ‘branching rules’ in applied literature,
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although they have their place in the Grothendieck rings of representa-

tions.

Curious and completely unexplored relations between pairs of maximal
subalgebras, say L’ and L”, of the same Lie algebra L can be found by

combining the projection matrices P(L — L’) and P(L — L") as

P(L' - L") =P(L-L")P (L-L".

The index of a semisimple subalgebra in a simple Lie algebra is an in-
variant of all branching rules for a fixed algebra-subalgebra pair. It was
introduced in [14], see Equation (2.26). It is an invariant also for any pair

W(L) > W(L').

Congruence classes of representations are naturally extended to congruence
classes of W-orbits [21]. Comparing the congruence classes of orbits for
W(L) D W(L') reveals that not all combinations of congruence classes are
present. A relative congruence class is a valid and useful concept which
deserves investigation. Incidentally, relative congruence classes are stu-

died in chapter 5 [33] of this thesis.

Here, the relations between orbits were defined by the classification of
maximal reductive subalgebras in simple type A, Lie algebras. There
exists another relation between such algebras that is not an homomor-
phism. It is called subjoining [53, 63]. Consider an example. The 4-dimensional
representation (1,0, 0) of Az does not contain the 5-dimensional represen-
tation (0, 1) of C,. In spite of that, the projection matrix that maps the hi-
ghest weight orbit of A3 to the orbit (0, 1) of C, can be obtained. Indeed,
020

that projection matrix is (§ 59 ). Classification of maximal subjoinings in

simple Lie algebras is found in [53].
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Chapitre 3

BRANCHING RULES FOR WEYL GROUP ORBITS
OF SIMPLE LIE ALGEBRAS By, Cny AND Dy

Référence complete : M. Larouche et J. Patera, Branching rules for Weyl group
orbits of simple Lie algebras B.,, C,, and D+, Journal of Physics A : Mathematical
and Theoretical, 44(11) : 115203, 37, 2011. Sélectionné pour étre inclus dans IOP
Select, Institute of Physics, United Kingdom.

Résumé
Les orbites des groupes de Weyl W(B,,), W(C,,) et W(D,,) des algebres de
Lie simples B,,, C,, et Dy, sont réduites en "'union d’orbites des groupes de
Weyl des sous-algebres réductives maximales de B,,, C,, et D,,. Les matrices
qui transforment les points des orbites de W(B,,), de W(C,,) et de W(D,) en
des points des orbites des sous-algebres sont listées pour tous les cas n < 8
ainsi que pour les séries infinies des paires d’algebre-sous-algebre suivantes :
B, D Bno1 x U, By D Dy, By D Bk XDy, Byu DAy, Cy D Crk X Cy,
ChDA 1 xU;,, CuDA;, DDA 4 xU;, D, DD,y x Uy, Dy D By,
Dn D Bnx—1 X By, Dyy D Dy X Dy. De nombreux cas spéciaux sont inclus et

plusieurs exemples sont présentés.

Abstract
The orbits of Weyl groups W(B,,), W(C,,) and W(D,,) of the simple Lie alge-
bras B, C, and D,, are reduced to the union of the orbits of Weyl groups of
the maximal reductive subalgebras of B, C,, and D,,. Matrices transforming

points of W(B,,), W(C,,) and W(D,,) orbits into points of subalgebra orbits are
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listed for all cases n < 8 and for the infinite series of algebra-subalgebra pairs :
Bn D Bh1 x Uy, By D Dy, By D Bk x Dy, By D Ay, G D G x Cy,
ChDAnixU, ChDAy, DyD A x Uy, Dy DDy x Uy, Dy D By,
Dn D Bnx—1 X By, Dyy D Dy x Dy. Numerous special cases and examples

are shown.

3.1. INTRODUCTION

This paper is a continuation of [34], in which the analogous problem for Lie
algebras A,, of the special linear group SL(n + 1, C) was considered. Here the
problem is considered for simple Lie algebras B, and D, of orthogonal groups
O(2n + 1) and O(2n) respectively, and for the simple Lie algebra C,, of the
symplectic group Sp(2n).

The motivation for the present paper is the same as in [34]. There are four
important points to note : firstly, orbit branching rules are implicitly requi-
red for the computation of branching rules of representations of the same Lie
algebra-subalgebra pairs. Hence, projection matrices, an essential part of the
method in [34], are used as the main tool in the paper. Secondly, it turns out
that, for any extensive computation with finite-dimensional representations
of simple Lie algebras such as branching rules, the decomposition of tensor
products of representations, or discrete Fourier analysis, it is impracticable
to avoid decomposing the problem into several subproblems for orbits invol-
ved. This is because the dimensions of representations increase without bound,
while Weyl group orbits are of finite size in all cases, their size always being
a divisor of the order of the corresponding Weyl group. Thirdly, an important
property as yet unexploited in applications is the fact that Weyl group orbit
points do not need to belong to a lattice. Weyl group orbits that are not on the
corresponding weight lattice retain most of the valuable properties of orbits
that are on the lattice. In particular, branching rules remain valid even if the
coordinates of the orbit points are irrational numbers. Recent interest in special
functions defined by Weyl group orbits [29, 30] is based on knowledge of orbit

properties. Branching rules for orbit functions can be extended to branching
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rules for polynomials [54]. Finally, it should also be noted that Lie algebras of
type B,, Cr, and D,, are amenable for a different choice of basis than that used
in this paper, namely the orthonormal basis. For some problems, this choice
may offer a simplifying advantage in terms of computation. We refrain from
using it here in favour of the non-orthogonal root and weight bases, because
these offer a remarkable uniformity of computation methods for semisimple
Lie algebras of all types.

The paper contains projection matrices for all cases of maximal inclusion for
Lie algebras of types B,,, Cy,, and Dy, for ranks n < 8, with examples of bran-
ching rules for specific orbits. In addition, projection matrices and examples of
branching rules for infinite series of selected cases are given. Included are all
cases where a maximal reductive subalgebra is of the same rank as B, C,,, and
Di.

Branching rules for Weyl group orbits of exceptional simple Lie algebras
Ee, E7, Eg, F4, and G are found in [40] among many other results.

The branching rules for W(L) > W(L’), where L’ is a maximal reductive
subalgebra of L, is a linear transformation between Euclidean spaces R™ —
R™, where n and n’ are the ranks of L and L’ respectively. The branching rules
are unique, unlike transformations of individual orbit points, which depend
on the relative choice of bases. We provide the linear transformation in the
form of an n’ x n matrix, the projection matrix. A suitable choice of bases allows
one to obtain integer matrix elements in all the projection matrices listed here.
Note that we use Dynkin notations and numberings for roots, weights and
diagrams.

The method we use here is an extension of the method used in [39, 40, 41,
61] for the computation of reductions of representations of simple Lie alge-
bras to representations of their maximal semisimple subalgebras. Orbit-orbit
branching rules have been discussed for one of the first times in the litera-
ture in [40]. They were then addressed in [18, 67, 68], where specific methods
were developed for different algebra-subalgebra pairs. The main advantage

of the projection matrix method is its uniformity, as it can be used for any
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algebra-subalgebra pair. We include here, as we did in [34], all the cases when
the maximal reductive subalgebra is non-semisimple, i.e when it contains the
1-parametric ideal denoted here U;.

It should be underlined that each of the numerous examples of orbit bran-
ching rules shown here is valid for an infinity of cases. For example, an or-
bit labeled by (a,0,...,0), refers to an uncountable number of orbits with
0 < a € R. Orbits that do not belong to a weight lattice should be of im-
portance in Fourier analysis when considering Fourier integrals rather than
Fourier series.

The number attached to each representation of a simple Lie algebra and
called the second degree index is an invariant of the representation which has
been occasionally used in applications [66]. Its useful properties remain valid
also for Weyl group orbits. The index of a semisimple subalgebra in a simple
Lie algebra is an invariant of all branching rules for a fixed algebra-subalgebra
pair. It was introduced in [14], see Equation (2.26). It is defined using the se-
cond degree indices of representations. We give its value for all our cases, but
its properties would merit further investigation, particularly when the orbit

points are off the weight lattices.

3.2. PRELIMINARIES

Finite groups generated by reflections in an n-dimensional real Euclidean
space R™ are commonly known as finite Coxeter groups [23]. Finite Coxeter
groups are split into two classes : crystallographic and non crystallographic
groups. Crystallographic groups are often referred to as Weyl groups of se-
misimple Lie groups or Lie algebras. In R™ they are the symmetry groups of
root lattices of the simple Lie groups. There are four infinite series (as to the
admissible values of rank n) of such groups, namely A,,, B,, C,,, Dy, and five
isolated exceptional groups of ranks 2, 4, 6, 7, and 8. The non crystallographic
finite Coxeter groups are the symmetry groups of regular 2D polygons (the
dihedral groups), with two exceptional groups, one of rank 3 — the icosahedral

group of order 120 — and one of rank 4, which is of order 1207
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B, n>2 Ch, n>2
O—Og—of
1 2 n—-1 n 0 1 2 n—-1 n

D, m>4
b0 0bo
1 2 3 N .n73 n—2 n-—I1
FIGURE 3.1. The Coxeter-Dynkin diagrams of types B, C,, and
D The circular nodes stand for the simple roots, with the convention
that open (resp. filled) circles indicate long (resp. short) roots. The dot-
ted node is the negative highest root denoted . A link between a pair

of roots indicates that the roots are not orthogonal. The Dynkin numbe-

ring of the nodes is shown.

We consider orbits of the Weyl groups W(B,,), W(C,,) and W(D,) of the
simple Lie algebras of type B,, n > 2, C,, n > 2 and D, n > 4, respectively
(Fig. 3.1). The order of such Weyl groups is 2"n! for W(B,,) and W(C,,), while it
is 2" 'n! for W(D,,). An orbit W), of the Weyl group W(L), where L is of rank n,
is a finite set of distinct points in R"™, all equidistant from the origin, obtained
from a single point A € R"™ by application of W to A. Hence, an orbit of W(B,,)
or W(C,,) contains at most 2™n! points, and an orbit W, of W(D,,) contains at
most 2" 'n! points.

Consider the pair W(L) D W(L’), where L’ is a maximal reductive subal-
gebra of a simple Lie algebra L. The orbit reduction is a linear transformation
R™ — R™, where n’ is the rank of L’. Hence the orbit reduction problem is
solved when the n’ x n matrix P is found with the property that points of
any orbit of W(L) are projected by P into points of the corresponding orbits of
W(L’). Computation of the branching rule for a specific orbit of W(L) amounts
to applying P to the points of the orbit, and to sorting out the projected points

into a sum (union) of orbits of W(L’).
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Typically the result of the reduction of an orbit W) of W(L) is a union of
several orbits of W(L’). Geometrically the points of W) can be understood as
vertices of a polytope in R™ A union of several obits is then an onion-like
formation of concentric polytopes [21].

The projection matrix P is calculated from one known branching rule. The
classification of maximal reductive subalgebras of simple Lie algebras [14, 4]
provides the information to find that branching rule. The projection matrix is
then obtained using the weight systems of the representations, by requiring
that weights of L be transformed by P to weights of L’. Since any ordering of
the weights is admissible, the projection matrix is not unique. We choose the
natural lexicographical ordering of the weights. The projection matrix obtained
can then be used to project points of any orbit of W(L) into points of orbits of
W(L'). At the end of this section, we consider an example of the construction
of a projection matrix for the case W(B3) D W(G,).

To compute the branching rule for a specific orbit of W(L), all the points
of that orbit are listed and then multiplied by the projection matrix. A stan-
dard method to calculate points of an orbit of any finite Coxeter group is given
in [21], where the points are given in the corresponding basis of fundamen-
tal weights, called the w-basis. All of the orbits appearing here are given in
the w-basis of the corresponding group, linked to the basis of simple roots by
the Cartan matrix of the group. Since every orbit contains precisely one point
with nonnegative coordinates in the w-basis, the orbit can be identified by that
point, called the dominant point of the orbit. Hence when referring to an orbit,
one does not have to list all of the points it contains. The example at the end
of this section illustrates the actual computation of branching rules for the case
W(B3) > W(G,).

The Weyl group of the one-parameter Lie algebra U, is trivial, consisting of
the identity element only. Its irreducible representations are all 1-dimensional,
hence its orbits consist of one element. They are labeled by integers, which can
also take negative values. The symbol (k) may stand for either the orbit {k, —k}
of W(A,), or for the W(U,;) orbit of one point {k}. Distinction should be made
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from the context. Since we are working with orbits of the Weyl group of U; and
the compactness of the Lie group is of no interest to us here, we can allow the
orbits of W(U;) to take real values.

The second degree index for weight systems of irreducible finite dimensio-
nal representations of compact semisimple Lie groups was defined in [64]. It
was then introduced for individual orbits in [21]. The second degree index I;\z)

of the orbit W, is

17 = 3 (wlw) = AN)WA,

pHeEW,
where W, is the size of the orbit and (-|-) is the standard inner product of R™.
The second equality comes from the fact that all points of W) are equidistant
from the origin. If W), and W,, are two orbits of W, then the index of their

sum (or union) and the index of their product are given by

(2) (2) (2)

I?\l A T 17\1 + I)\z
Do = Dy Wl + 15 Wa | (3.2.1)
= Wi, [ IWh,| ((A1A1) + (A2A2)) - (3.2.2)

Simple calculations show that if W} and W3, are two orbits of two different
Weyl groups W' and W2, the second degree index of the orbit A; xA; of W1 x W?
is also given by (1) and (2).

For a fixed pair W(L) D W(L’) of Weyl groups of an algebra L and its se-
misimple subalgebra L’, the ratio of second degree indices is invariant and is
called the index of L’ in L. For any orbit W(L), reduced to the sum of orbits

Z W(L'),, there exists a positive number y =y 1+ such that
0

2
1P =y > 1.
o

We give that number v 1/ for all such pairs of Weyl groups W(L) D W(L').

To alleviate notation, we will simply write L instead of W(L) to refer to the
Weyl group of the Lie algebra L, and A instead of W), to refer to the orbit of the
dominant point A of the Weyl group W. Subsequently dots in a matrix denote

zero matrix elements.
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Let us finally consider an example to illustrate how to construct a projection
matrix and how to calculate a particular branching rule.
Example 3.2.1.

Consider the case of B3 D G, of subsection 3.3.2. From the classification of maxi-
mal reductive subalgebras, we know that the lowest orbit of B3, the orbit of the domi-
nant point (1,0,0), contains 6 points and is projected onto the G,-orbit of the point
(0,1), that also contains 6 points. We order the points of the two orbits, and require
that points of the first one be transformed into points of the second one in the following

manner :
(1,0,0) — (0, 1), —1,1,0) — (1,—1), (0,—1,2) — (—1,2),
(0,1,-2) — (1,—-2), (1,—1,0) — (—=1,1), (—1,0,0) — (0,—1).

Writing the points as column matrices, the projection matrix of subsection 3.3.2 is

obtained from the first three. Proceeding one column at a time, we have
1 1 0
B:0(9) = () =) w(g)=0),

where stars denote the entries that are still to be determined. The matrix P= (9} 9) then
automatically transforms the three last points of the Bz-orbit as required. This matrix
can then be used for projecting points of any Bsz-orbit. For example, to calculate the
reduction of the Bs-orbit of (0,2,0), one has to write the coordinates of the 12 points

of the orbit as column vectors :

(3).(2)-(9)-(2).(5).(3).
(3).(3)-(2).(3).(2). (3).

Multiplying each of the points of (3.2.3) by the matrix P, one gets the points of the G-

(3.2.3)

orbits written as column vectors. Rewriting them in the horizontal form, we have the
set of projected points. To distribute the points into individual orbits, one only has to
select the dominant points (no negative coordinates) because they represent the orbits

that are present. Hence one gets the following branching rule for that case :

(0,2,0) D (2,0) +(0,2).
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3.3. REDUCTION OF ORBITS OF THE WEYL GROUP OF B,

In this section we first consider all cases of dimension (rank of the Lie al-
gebra) up to 8. In the last subsection, 3.3.8, we present infinite series of cases
which occur for all values of rank starting from a lowest one. For each case, the
projection matrix is given, together with examples of the corresponding reduc-
tions/branching rules. For cases involving Weyl groups of a simple algebra L
and a maximal reductive semisimple algebra L', we provide the indexy = vy 1/

of L’in L.

3.3.1. Rank 2

The Lie algebras B, and C; and their Weyl groups are isomorphic. A practi-
cal difference between the two cases is in our numbering convention of simple
roots (Fig. 1). In this subsection we work with B,.

The branching rules for the case B, D A; x U, are determined by the pro-
jection matrix (2 1). In particular, for the two lowest orbits each containing 4
points, we have (1,0) D (2)(0) + (0)(2) + (0)(—2) and (0, 1) D (1)(1) + (1)(—T1).
More generally :

(a,0) D (2a)(0) + (0)(2a) + (0)(—2a),
(0,b) D (b)(b) + (b)(—Db), a,beR®
(a,b) D (2a+b)(b) + (2a+b)(—b) + (b)(2a+b) + (b)(—2a—Db).

Note that the corresponding branching rules for irreducible representations are
different in all cases but (0, 1).

The maximal subalgebra A; C B, is different than the subalgebra A; in
A x U; C By. Indeed, the projection matrix for the case B, D Ajis (43) and

yields the following branching rules for the orbits :

(a,0) O (4a) + (2a),
(0,b) D (3b) + (b),

a,beR®
(a,b) D (4a+3b) + (2a+3b) + (4a+b) + (|2a—b]),

(a,2a) D (10a) + (8a) + (6a) + 2(0) .
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The index of A;in Byisy =7vg, A, = 1/5.
For the B, D 2A; case, the projection matrix (] ') applied to the three non

zero orbits gives the following branching rules :

(a,0) D (a)(a),
(0,b) D (b)(0) + (0)(b), a,be R
(a,b) D (a+b)(a) + (a)(a+b).

The index of 2A;in By isy =vg, 24, = 1.

Note that in all cases the branching rules hold even if a and b are not inte-

gers.

3.3.2. Rank 3

There are four cases to consider. The first one is a special case of the general
case of subsection 3.3.8.1, except that it implies a renumbering of simple roots

C, — B, and a corresponding rearrangement of the projection matrix.

)
)X

As an example, we give the branching rules for the orbits of B of size 6, 12,

BgDCzXLhZ(?%;), BgDAgZ(?-

]
]
B3DG2:(i?i), BgD3A]Z<}i

8 and 48 respectively. We also give the index y = vy - whenever L’ is semi-

simple.

B3O Cyx Ut
(a,0,0) S (0,a)(0) + (0,0)(2a) + (0,0)(—2a),
(0,b,0) D (2b,0)(0) + (0, b)(2b) + (0,b)(—2b)
(0,0,¢) D (c,0)(c) + (c,0)(—c),
(a,b,¢) O (2b+c, a)(c) + (2b+c, a)(—c) + (¢, a+b)(2b+c) + (¢, at+b)(—2b—c)

+ (c,b)(2a+2b+c) + (c,b)(—2a—2b—c),
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B; D A;3:
(a,0,0) D (0,a,0),
(0,b,0) D (b,0,b),
(0,0,¢) D (0,0,¢) + (c,0,0),
(a,b,c) D (b,a,b+c) + (b+c,a,b),

y=1,

B: D Gy
(a,0,0) D (0,a),
(0,b,0) D (b,0) + (0,b),
(0,0,c) D (0,c) +2(0,0),

(a,a,a) D (a,2a) +2(2a,0) + (a,a) + 2(a,0),

(a,b—a) ifa<b
(a,b,a) D (b,2a) +2(a+b,0) + (a,b) + »

(b, a—b) ifa>b

(2a,c—a) ifa<c
(a,a,c) D (a,a+c) + (a,c) + 2(a,0) + ,
(a+c,a—c) ifa>c
(a+b,c—a) ifa<c (a,b—a) ifa<b
(a,b,c) D (b, a+c) + +
(b+c,a—c) ifa>c (b, a—b) ifa>Db
(a,b+c—a) if a < b+c

+ )
(b+c,a—b—c) if a > b+c

Y =13/2,
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B3 D 3A;:
(a,0,0) D (a)(a)(0) + (0)(0)(2a),
(0,b,0) D (b)(b)(2b) + (2b)(0)(0) + (0)(2b)(0),
(0,0,¢) D (0)(c)(c) + (c)(0)(c),
(a,b,¢) O (a+b)(a+b+c)(2b+c) + (b)(b+c)(2a+2b+c) + (a)(at2b+c)(c)
+ (a+b+c)(atb)(2b+c) + (b+c)(b)(2a+2b+c) + (a+2b+c)(a)(c)

Y =3/4,

where a,b,c € R™°.

B3 does not contain the principal 3-dimensional subalgebra A; as a maxi-
mal subalgebra. The corresponding A; occurs in the exceptional chain B3 D
G2 D A;. Hence the reduction from B3 D A; has to be done by multiplying the

projection matrices for B; D G, and G, D A;, namely :
(106)(;15)=1"(6106).

The projection matrix obtained is the same as the one we would get from the

matrix (3.3.1) of the subsection 3.3.8.8 with n = 3.

3.3.3. Rank 4

There are six cases to consider. The first two are special cases of the ge-
neral rank of B, in subsections 3.3.8.1 and 3.3.8.2 respectively. The next two,
Bs D Az x Ajand B4 D C, x 2A;, are also special cases of subsections 3.3.8.3
and 3.3.8.4 respectively, except that they imply a renumbering of simple roots,
A3 — Dz and C; — By, and a corresponding rearrangement of the projec-
tion matrices. The projection matrix and one example of branching rule in the
case of the principal 3-dimensional subalgebra are given for the general rank,

B, D A;, in subsection 3.3.8.8.

1. .. 11
B4383xu1:(j?2i>, B4DD4:(jH:>, B4DA3><A1I(HM>»
R .11 - 21
1
1

2
B4DC2><2A1:(?“'>, BsDA;:(8141810) BsD2A :(3341).
11 -
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We bring here some examples of branching rules for the B, > A; and B4 D
2A; cases, for orbits of size 8, 24, 32 and 16 respectively, together with their

corresponding indices y.

BiDA;:
(a,0,0,0) D (8a) + (6a) + (4a) + (2a),
(0,b,0,0) D (14b) + (12b) +2(10b) + (8b) + 2(6b) + 2(4b) + 3(2b),
(0,0,¢,0) D (18¢c) + (16¢) + (14c) 4+ 2(12¢c) + 2(10c) + (8c) + 2(6¢)
+2(4c) +2(2¢) + 4(0)
(0,0,0,d) D (10d) + (8d) + (6d) + 2(4d) + 2(2d) + 2(0),
y=1/15,
Bs D 2A4:
(a,0,0,0) D (2a)(2a) + (0)(2a) + (2a)(0),
(0,b,0,0) D (2b)(4b) + (4b)(2b) + (2b)(2b) + (0)(4b) + (4b)(0)
+2(0)(2b) + 2(2b)(0),
(0,0,¢,0) D (4c)(4c) + (0)(6c) + (6¢)(0) + (2¢)(4c) + (4¢)(2c)
+2(0)(4c) +2(4¢)(0) + (0)(2c) + (2¢)(0) +4(0)(0),
(0,0,0,d) D (d)(3d) + (3d)(d) + 2(d)(d),

vy =1/3,

where a,b,c,d € R>°.

For cases of rank 5 to 8, we give the projection matrices which are all, except
for the B; D Az and B; D C, x A; ones, special cases of the general rank
section. We refrain to give the branching rules here, except for the B; D A3z and
B; D C, x A cases, since they can easily be found in the general rank section,

with maximally a minor renumbering of simple roots (A3 — Dz and C, — B,).
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3.3.4. Rank 5
We give the projection matrices for the six cases to consider. Examples of

branching rules can be found in the corresponding subsections of the general

rank section 3.3.8.

1. - .- 1. . ..
Bs D By x Uy :H:zi, Bs O Ds: (:H;:),

SRR S

1. ... 1. ...
BsOB3x2A1: (' 21), BsDDixAs: (1}}1)

- 111 o021
Bs D A3 x Cs: ?Hiz}’ Bs DA;: (1018242815) .
3.3.5. Rank 6

We give the projection matrices for the seven cases to consider. Examples of
branching rules can be found in the corresponding subsections of the general

rank section 3.3.8.

1. .. .. 1. .. ..
BeDBsx Uy | 2 00 ], BeDDe: | 17|,
o021 T
..... 1 .. .11
1. .. .. 1. . . ..
Be DBax2A5: | 0155, BeDDsx Ayt | 10990 |,
1T o111
o111 - 21
11 . . 1. . . ..
P RS
BeDBsxAz: | 57|, BeDDaxCo:| 7751,
11 .. cee 21
o111 11

Bs D Aq:(122230364021) .
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3.3.6. Rank 7
We give the projection matrices of the ten cases to consider. Examples of

branching rules for the first eight cases can be found in the corresponding sub-

sections of the general rank section 3.3.8.

A A T
R R
B7OBex Uiz -1 ], B7oD7:of o1
..... 21 A
...... 1 e a1
1. . . ... 1. . ...
111 17
----- 21 111
1.« .. 1. ..
..... 21 11 -
R S111
T
L
B; D Dy x Bs: S B B; D Aq:(14263644505428) ,
11
..... 21
1-11-21 . .22443
B7:)A31<~121321>) B7:)C2x1A1:<1z1211->.
1213221 2242241

We give here some examples of branching rules for the B; > A3 and B; D
C, x A cases, for orbits of size 14, 84 and 128 respectively, together with their

corresponding indices .

Bs D Aj3:
(a,0,0,0,0,0,0) D (a,0,a)+ 2(0,0,0),
(0,b,0,0,0,0,0) D (0,b,2b) + (2b,b,0) + 2(0,2b,0) +4(b,0,b) ,
(0,0,0,0,0,0,¢c) D 2(c,c,c) +4(0,0,2c) +4(2c,0,0) + 8(0,c,0),

y=7/12,
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B> Cyx Aq:

(a,0,0,0,0,0,0) > (0,a)(2a) + (0,a)(0) + (0,0)(2a),

(0,b,0,0,0,0,0) D (2b,0)(4b) + 2(2b,0)(2b) + 3(2b,0)(0) + (0,2b)(2b)

(0,0,0,0,0,0,¢) D (3¢,0)(c) + (¢,c)(3¢) + 2(c,c)(c) + (c,0)(5c) + 3(c,0)(3c)

+ (0,2b)(0) + (0,b)(4b) + (0,b)(2b) + 2(0,b)(0) + 2(0,0)(4b)

+4(0,0)(2b),

+5(c,0)(c),

y=7/16,

where a,b,c € R™°.

3.3.7. Rank 8

We give the projection matrices for the nine cases to consider. Examples of

branching rules can be found in the corresponding subsections of the general

rank section 3.3.8.

Bs D By x Uy

Bs D D7 x Aq:

Bs D Dgx Cy:

Bs D D5 x B3 :

Bs D A;q

1. . ...
A
R I
R
R )
..... 1. .
...... 21
....... 1
) [P
A
R I
R

R [ )
..... 11
----- 111
...... 21
|
P T
R I
11 .
..... 11 )
----- 111
...... 21
.. 11 . .
|
11 -
R I
..... 11 -
..... 111 )
11 ...
11
...... 21

1 (1630425260667036) .

Bg D Dg:

Bg D Bg x 2A;:

Bgs D Bs x Az:

Bs D B4 x Dy
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3.3.8. The general rank cases

In this section we consider infinite series of cases where the ranks of the
Lie algebras take all the consecutive values starting from a lowest one. For
each case, we give the corresponding projection matrix and some examples of
branching rules. When the maximal reductive subalgebra of B,, is semisimple,

we provide also its index y in the Lie algebra B.,.

3.3.8.1. B, D B,_1 x Uy, (T\. > 3)

Note that, here and everywhere below, I, denotes the k x k identity matrix,

0 represents the zero matrix, and a, b, c € R

(a,0,0,...,0) D (a,0,...,0)(0)+ (0,...,0)(2a) + (0,...,0)(—2a)
(0,b,0,...,0) D (0,b,0,...,0)(0) + (b,0,...,0)(2b) + (b,0,...,0)(—2b)

(0,0,...,0,¢) D (0,...,0,¢c)(c)+ (0,...,0,c)(—c)

Note that, here and everywhere below, in the case of B, (0,b,0,...,0) be-
comes (0, 2b).

3382. B,OD, n>4
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(a,0,0,...,0) D (q,0,...,0)

(0,b,0,...,0) D (0,b,0,...,0)

3383. B D D1 xA;, n>5

I3 0
1 1

0 |1 1 1
- 201

Yy=n/(n+1)

3.384. B, DB, xA; X A, n> 4

4 0
1 1 .
- 201
0 1 1 -
1 1 1

...,0,¢,0)
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3385 B,DOB,3xA3 n>6

I—6 0
1 1 . .
. 1 1 .
|
0 - 11
1 1 .
- -1 11

(a,0,0,...,0) D (qa,0,...,0)(0,0,0) + (0,...,0)(0,a,0)
(0,b,0,...,0) > (0,b,0,...,0)(0,0,0) + (b,0,...,0)(0,b,0) + (0,...,0)(b,0,b)
(0,0,...,0,¢) D (0,...,0,¢)(c,0,0)+ (0,...,0,¢)(0,0,c)

v =1
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338.6. ByDOBLxxDy, n—k>k>4

Iank 0
11..
..11
11 -
<201
0 11.- .
1 1
1 1
1 1 1

3387. BpDODnxxBy, n—k>k>2 n—-k>4

Lok 0
1 1 . .
1
11
11 1
0 1 1 . .
11
11 -
. . 2 1
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3388 B,DA;, n>4

The projection matrix for that case is given by

(IJ] P2 P3 ... Pna Pn) (3.3.1)

pr=k(2Zn—k+1), 1>k>n—1; Pn=M+2)(n—1)/24+1.
We bring one example of branching rule for that case, together with the

indexy =vg, A, :

(a,0,...,0) D (2na) + ((2n—2)a) + ((2n—4)a) + - -- + (6a) + (4a) + (2a),
y=n/(2) i%).
i=1

3.4. REDUCTION OF ORBITS OF THE WEYL GROUP OF C,

In this section, as in the previous section, we first consider all cases of
dimension up to 8. In the last subsection, 3.4.8, we present infinite series of
selected cases. For each case of the section the projection matrix is given to-
gether with examples of the corresponding reductions/branching rules. For
cases involving Weyl groups of a simple algebra L and a maximal reductive

semisimple algebra L', we provide the indexy =y s of L"in L.

3.4.1. Rank 2

Since the Lie algebras B, and C; and their Weyl groups are isomorphic, the
projection matrices and the branching rules for the C; case can be found in sub-
section 3.3.1. A practical difference between the two cases is in our numbering

convention of simple roots (Fig. 3.1). Hence one only needs to interchange the
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two columns of the projection matrices of B,, and to switch the two coordinates

of the orbits in the branching rules of B, to obtain the results for C,.
3.4.2. Rank 3

There are four cases to consider. The first three are special cases of the ge-

neral cases presented in the subsections 3.4.8.2, 3.4.8.3 and 3.4.8.5 respectively.

),

C3DA;: (589), C3D2A:: (1, 1).

C3DAxUs: (:}%), C3DCrxAq: <]1

—_—

For all four cases, we give the branching rules for the orbits of C3 of size 6,
12, 8 and 48 respectively. We also give the index y = vy - whenever L' is

semisimple.

CsDAx Uys:
(a,0,0) D (a,0)(a) + (0,a)(—a),
(0,b,0) D (b, b)(0) + (0,b)(2b) + (b,0)(—2b),
(0,0,¢) D (0,2¢)(c) + (2¢,0)(—c) + (0,0)(3c) + (0,0)(—3c),
(a,b,¢) D (a+b,b+2c)(a+c) + (b+2c, a+b)(—a—c) + (b, a+b+2c)(c—a)
+ (a+b+2¢,b)(a—c) + (@, b)(a+2b+3c) + (b, a)(—a—2b—3c)
+ (a,b+2¢)(a+2b+c) + (b+2¢c, a)(—a—2b—c),
C3DCyxA;:
(a,0,0) D (a,0)(0) + (0,0)(a),
(0,b,0) 2 (0,b)(0) + (b,0)(b),
(0,0,¢) > (0,¢c)(c),
(a,b,c) D (a,b+c)(c) + (a+b,c)(b+c) + (b, c)(atbtc),

y=1,
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C3DA;:
(a,0,0) D (5a) + (3a) + (a),
(0,b,0) D (8b) + (6b) + 2(4b) + 2(2b),
(0,0,¢) D (9¢c) + (7c) + (3c) + (c),
v =3/35,
C3 D2A;:
(a,0,0) D (a)(2a) + (a)(0),
(0,b,0) D (0)(4b) + (2b)(2b) + (2b)(0) + 2(0)(2b),
(0,0,¢) > (c)(4c) + (3¢)(0) + (c)(0),

vy =3/11.

For cases of rank 4 to 8, we give the projection matrices for all cases. Whe-
never a reduction is a special case of the general rank section, we refrain to give
the branching rules and the corresponding index y here since they can easily

be found in section 3.4.8.

3.4.3. Rank 4

We give the projection matrices of the five cases to consider. Examples of
branching rules for the first four cases can be found in the corresponding sub-

sections of the general rank section 3.4.8.

11 - - 1. 11 -
C4DA3><U1:<:H.2), C4DC3><A1:<:H'), C432Cz:(:i}?),
1.1 - ..

CsDA7:(7121516) , C4D3A1:<i%

We give here some examples of branching rules for the C4 D 3A; case, for

orbits of size 8, 24 and 16 respectively, together with the index vy = yc, 3a,.
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CsD3A;:
(a,0,0,0) > (a)(a)(a),
(0,b,0,0) D (0)(2b)(2b) + (2b)(0)(2b) + (2b)(2b)(0) + 2(2b)(0)(0)
+2(0)(2b)(0) + 2(0)(0)(2b),
(0,0,0,¢) D (2¢)(2c)(2c) + (0)(0)(4c) + (0)(4c)(0) + (4¢)(0)(0) +2(0)(0)(0),

y=1/3.
3.4.4. Rank 5

We give the projection matrices of the five cases to consider. Examples of
branching rules for the first four cases can be found in the corresponding sub-

sections of the general rank section 3.4.8.

11 .. 1. . ..
Cs D Agx Uy : ({;]%'g), Cs D Cax As: <;?m>,
1-1-1 |

1. ...
Cs5DC3xCy: (1111>, CsDA: (916212425) ,
CsDCrxAg: (}21)

We give here some examples of branching rules for the C5s D C, x A; case, for

orbits of size 10, 40 and 32 respectively, together with the index vy = v¢, c,xA, -

C5DCyx Ay:
(a,0,0,0,0) > (0,a)(a) + (0,0)(a),
(0,b,0,0,0) D (0,2b)(0) + (2b,0)(2b) + (0, b)(2b) + 2(2b, 0)(0) + 2(0, b)(0)
+2(0,0)(2b),
(0,0,0,0,¢) D (4c,0)(c) + (0,2¢)(3¢) + (0,2¢)(c) + (0,0)(5¢) + (0,0)(3¢c)
+2(0,0)(c),
vy =5/13.
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3.4.5. Rank 6
We give the projection matrices of the seven cases to consider. Examples

of branching rules for the first five cases can be found in the corresponding

subsections of the general rank section 3.4.8.

CeDAsxUy: | 312, CeDCsxAy:| Ty ],
1T Ce 1
1-1.-1-/  \..... 1
1. ... 11. .
LT R
CeDCaxCor | 95|, CeD2C3: | 37000 |,
o011 o011
..... 1 A |
o 1212
CeDA1:(112027323536) , Ce DAsx A 121555,
1-1-12

121212
CGDCZXA1:(-~1121>.
224224

We give here some examples of branching rules for the C¢ D Az x A; and
Ce D C, x A cases, for orbits of size 12, 60 and 64 respectively, together with

their corresponding indices vy.

Ce DAz X Ay:
(a,0,0,0,0,0) D (0,a,0)(a),
(0,b,0,0,0,0) D (0,2b,0)(0) + (b,0,b)(2b) + 2(b,0,b)(0) + 3(0,0,0)(2b),
(0,0,0,0,0,c) D (2¢,0,2c)(2c) + (0,0,4c)(0) + (4c,0,0)(0) + (0,2¢,0)(4c)
+2(0,2c¢,0)(0) + (0,0,0)(6c) 4 3(0,0,0)(2c),

y=1/3,
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CeDCaxA:
(a,0,0,0,0,0) D (a,0)(2a) + (a,0)(0),
(0,b,0,0,0,0) D (2b,0)(2b) + (0, b)(4b) 4+ 2(0,b)(2b) + (2b,0)(0) + 3(0, b)(0)
+2(0,0)(4b) +4(0,0)(2b)
(0,0,0,0,0,¢) D (2¢,c)(4c) + (0,3¢)(0) + (2¢,¢)(0) + (0, c)(8¢c) + 2(0, c)(4c)
+3(0,¢)(0),

y=3/11.

3.4.6. Rank 7

We give the projection matrices of the six cases to consider. Examples of
branching rules for the first five cases can be found in the corresponding sub-

sections of the general rank section 3.4.8.

C;DAgx Uy :::;i1.2 , C;DCex A ::.i;:: ,
-1 S e 11
L P T e N 1
1. ... .. 1. . ...
11 1111

C;DCsxCy: 1111 y C;DCyxCs: 1111 ,
11- e 1
...... 1 e
i

CrDA1:(13243340454849) , C;DBsx Ay 125.4).
1T-1-7-1

We give here some examples of branching rules for the C; D B3 x A; case, for

orbits of size 14, 84 and 128 respectively, together with the indexy = vc, B, xA, -
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Cs; DBz x Aq:
(a,0,0,0,0,0,0) D (a,0,0)(a) + (0,0,0)(a),
(0,b,0,0,0,0,0) D (2b,0,0)(0) + (0,b,0)(2b) + 2(0,b,0)(0) + (b,0,0)(2b)
+2(b,0,0)(0) + 3(0,0,0)(2b),
(0,0,0,0,0,0,c) D (0,0,4c)(c) + (0,2¢,0)(3c) + (0,2¢,0)(c) + (2¢,0,0)(5¢)
+ (2¢,0,0)(3c) + 2(2¢,0,0)(c) + (0,0,0)(7c) + (0,0,0)(5¢c)
+3(0,0,0)(3c) + 3(0,0,0)(c),

Yy=7/19.

3.4.7. Rank 8

We give the projection matrices of the eight cases to consider. Examples
of branching rules for the first six cases can be found in the corresponding

subsections of the general rank section 3.4.8.

11 .. ... 1T
ST 1 e 1. ... ..
ot AT

CsDAyxUrz | 515, CeDCorx Ay | iy 000,

11| ... 1
110 ... 11
1.1-1-.1-/ \....... 1
T 1T
1. ... 1.

CsDCexCo:| i lyqii ], CsDCsxCa: | i 91
...... 11 11. ..
..... 11 . |
....... 1
11 .. ...

T
o1
CsD2Cs: | =y 211, CsDA1:(1528394855606364) ,
R
..... 11 .
....... 1
R R

CeDDaxAy:| - -"1212], CsDCr:(1%353%78).

1-1.1°72

We give here some examples of branching rules for the Cs D D4 x A; and

Cg D C; cases, for orbits of size 16, 112 and 256 respectively, together with
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their corresponding indices .

CsDO Dy xAq:
(a,0,0,0,0,0,0,0) D (a,0,0,0)(a),
(0,v,0,0,0,0,0,0) D (2b,0,0,0)(0) + (0,b,0,0)(2b) + 2(0,b,0,0)(0)
+4(0,0,0,0)(2b),
(0,0,0,0,0,0,0,c) D (0,0,2c,2c)(2c) + (0,0,0,4¢)(0) + (0,0,4c,0)(0)
+(0,2¢,0,0)(4c) + 2(0,2¢,0,0)(0) + (2¢,0,0,0)(6c)
+ 3(2¢,0,0,0)(2c¢) + (0,0,0,0)(8¢c) +4(0,0,0,0)(4c)
+6(0,0,0,0)(0),
y=1/3
Csg D Cy:
(a,0,0,0,0,0,0,0) D (a,a)+ 2(a,0),
(0,v,0,0,0,0,0,0) D (4b,0) + (0,3b) + 3(2b,b) + 6(2b,0) +4(0,2b) + 2(0,b)
+4(0,0),
(0,0,0,0,0,0,0,c) D (6¢,2c) + 2(8¢,0) + 3(4c, 2¢c) + 2(2c,4c) + 4(6¢,0)
+ (0,6c¢) + 6(2¢,2c) + 6(4c,0) + 5(0,4c) + 10(2c, 0)
+9(0,2c¢) 4+ 12(0,0),

y=1/3.

3.4.8. The general rank cases

In this section, we consider infinite series of cases where the ranks of the
Lie algebras take all the consecutive values starting from a lowest one. For
each case, we give the corresponding projection matrix and some examples of
branching rules. When the maximal reductive subalgebra of C,, is semisimple,

we also provide its index y in the Lie algebra Ci,.
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3481. Copn DAy xU;, n> 1

1 1 - -
o101
1 1 .
.1 2
o101 -
1 1 -
1 1 .
1 1 1 1 1 1

(a,0,0,...,0) D (a,0,...,0)(a)+ (0,...,0,a)(—a)
(0,b,0,...,0) D (b,0,...,0,b)(0) + (0,b,0,...,0)(2b) + (0,...,0,b,0)(—2Db)

(0,0,...,0,¢) D (0,...,0,2¢,0,...,0)(0) +(0,...,0,2¢,0,...,0)(2c)

n—1 n—1 n n—2

+(0,...,0,2¢,0,...,0)(—2¢c)+ (0,...,0,2¢,0,...,0)(4c)

n-2 n e e

.. .3,0,20, 0,.. .1,0)(—40) +...+(0,...,0,2¢c)((2n—2)c)
n— n+

+ (2¢,0,...,0)(—(2n—2)c) + (0,...,0)(2nc) + (0,...,0)(—2nc)

3482. Cony1 DA XU, n>1
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(a,0,0,...,0) D (qa,0,...,0)(a)+ (0,...,0,a)(—a)
(0,b,0,...,0) D (b,0,...,0,b)(0) + (0,b,0,...,0)(2b) + (0,...,0,b,0)(—2b)

(0,0,...,0,¢) 2 (9,...,0,2¢,0,...,0)(c) + (0,...,0,2¢,0,...,0)(—c)

+ (O,...1,0,2c,0,...2,0)(3c) + (O,...Z,O,ZC,O,...1,O)(—3C)
n+ n— n— n+

+...+(0,...,0,2¢)((2n—T)c) + (2¢,0,...,0)(—(2n—T)c)

+(0,...,0)((2Zn+1)c) + (0,...,0)(—(2n+T)c)

3.4.83. C,, D Chg XAy, (TL > 2)
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3484. CL,DCyxxCyy, n—k>k>2

In—Zk 0

3485 C,DA;, n>2

The projection matrix for that case is given by

(m P2 P3 ... Pnoi pn> pr = k(2n — k), 1>k>n.

We bring one example of branching rule for that case, together with the index

Y =YCu A ¢

(a,0,...,0) D ((2Zn—1)a) + ((2n—3)a) + ((2n—5)a) +--- + (5a) + (3a) + (a),
y=n/) (2i-1)%.
i=1

3.5. REDUCTION OF ORBITS OF THE WEYL GROUP OF D,

As in the two previous sections, we first consider all cases of dimension

up to 8, and we present infinite series of selected cases in 3.5.7. For each case,
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the projection matrix is given together with examples of the corresponding
branching rules. For cases involving Weyl groups of a simple algebra L and a
maximal reductive semisimple algebra L', we provide the index y =y 1’ of L'

in L.

3.5.1. Rank 3

Since the Lie algebras D3 and A3z and their Weyl groups are isomorphic,
the projection matrices and some examples of branching rules for the D3 case
can be found in [34]. A practical difference between the two cases is in our
numbering convention of simple roots (Fig. 3.1).

For cases of rank 4 to 8, we give the projection matrices for all cases. Whe-
never a reduction is a special case of the general rank section, we refrain to give
the branching rules and the corresponding index y here since they can easily
be found in section 3.5.7, with maximally a minor renumbering of simple roots

(A3 — D3 and Cz — Bz)

3.5.2. Rank 4

We give the projection matrices of the five cases to consider. Examples of
branching rules for the first three cases can be found in the corresponding sub-

sections of the general rank section 3.5.7.

; D43331<?H;>, D4DC2XA1Z<???-

11 .
D43A3XU1Z(:i'? 17

1.

N———

D434A1:(;
1

—
e — e

N———

L DiD A (1510,

We give here some examples of branching rules for the D4, D 4A;and D4 D A,
cases, for orbits of size 8, 24 and 8 respectively, together with their correspon-

ding indices .

).
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D4 D4A;:
(a,0,0,0) O (a)(a)(0)(0) + (0)(0)(a)(a),
(0,b,0,0) D (b)(b)(b)(b) + (2b)(0)(0)(0) + (0)(2b)(0)(0) + (0)(0)(2b)(0)
+ (0)(0)(0)(2b),
(0,0,0,¢) > (0)(c)(c)(0) + (c)(0)(0)(c),
y=1,
DsDA;:
(a,0,0,0) D (a,a) +2(0,0),
(0,,0,0) > (0,3b) + (3b,0) + 3(b,b),
(0,0,0,c) D (c,c) +2(0,0),

Yy =2/3.

3.5.3. Rank 5

We give the projection matrices of the seven cases to consider. Examples
of branching rules for the first five cases can be found in the corresponding

subsections of the general rank section 3.5.7.

11 - - 1. .. .

Ds D Ag x Uy : <]:11> Ds D Dy x Uy : (1}”>
2-2-11 a1
1. . .. 1. . ..

D5 D By: <:H::), Ds D B3 x Ay (IT‘zii),
o1 e 11
<2211 ii”j

Ds D 2C,: (1]11>, Ds D Az x 2A5: 1}1} ,
ST 1T

DsDCo: (27%71).

We give here some examples of branching rules for the D5 D A3 x 2A; and

D5 D C; cases, for orbits of size 10, 40 and 16 respectively, together with their
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corresponding indices .

Ds D Az x 2A;
(a,0,0,0,0) D (0, a,0)(0)(0) + (0,0,0)(a)(a),
(0,b,0,0,0) D (0,b,0)(b)(b) + (b,0,b)(0)(0) + (0,0,0)(2b)(0) + (0,0, 0)(0)(2b),
(0,0,0,0,¢) D (0,0,¢)(c)(0) + (c,0,0)(0)(c),
y=1,
D5 D Cy:
(a,0,0,0,0) D (2a,0) + (0,a) +2(0,0),
(0,b,0,0,0) D (2b,b) + (0,2b) + 3(2b,0) 4+ 4(0,b),
(0,0,0,0,¢) D (c,c) +2(c,0),

Yy=5/6.

3.5.4. Rank 6

We give the projection matrices of the nine cases to consider. Examples of
branching rules for the first six cases can be found in the corresponding sub-

sections of the general rank section 3.5.7.

11. . .. 1. ... .
11 1
D63A5><u1:(:::iﬂ), D¢ D DsxUp:| 215 )
11 - . o111
1-1-1- cee e 1T
1i---- 1i----
Cee a1 1
1. .. .. 11]
11 .. .
oe211 ), DeDDax2A: | - 114 ],
BEERS. SRRl

11
D632A3:(j;i
1

Dg DBy x Cy:

1.
}I?)» D6D3A1i<i
i

DeD C3x Ay
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We give here some examples of branching rules for the last three cases, for
orbits of size 12, 60 and 32 respectively, together with their corresponding in-

dices .

Dg D 2A3:

(a,0,0,0,0,0) O (0,0,0)(0,a,0) + (0,a,0)(0,0,0),

(0,b,0,0,0,0) O (0,b,0)(0,b,0) + (0,0,0)(b,0,b) + (b,0,b)(0,0,0),

(0,0,0,0,0,¢) D (0,0,¢)(0,0,¢) + (c,0,0)(c,0,0),

vy=1,

D6 D 3A;:

(a,0,0,0,0,0) > (2a)(a)(a) + (0)(a)(a),

(0,b,0,0,0,0) D (4b)(2b)(0) + (4b)(0)(2b) + 2(4b)(0)(0) + (2b)(2b)(2Db)
+2(2b)(2b)(0) + 2(2b)(0)(2b) + (0)(2b)(2b) + 4(2b)(0)(0)
+3(0)(2b)(0) + 3(0)(0)(2b)

(0,0,0,0,0,¢) > (4¢c)(c)(0) + (2c)(c)(2¢) + 2(2c)(c)(0) 4 (0)(3¢)(0)

+ (0)(c)(2¢) + 3(0)(c)(0),

Y =3/7,

DD C3 x Ay :

(a,0,0,0,0,0) D (a,0,0)(a),

(0,b,0,0,0,0) D (0,b,0)(2b) + (2b,0,0)(0) +2(0,b,0)(0) + 3(0,0,0)(2b),

(0,0,0,0,0,¢) D (0,¢,0)(c) + (0,0,0)(3¢) +3(0,0,0)(c),

y=1.

3.5.5. Rank 7

We give the projection matrices of the eleven cases to consider. Examples

of branching rules for the first eight cases can be found in the corresponding
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subsections of the general rank section 3.5.7.

il T
AP I R [

D;D Agx Uj: ]]1 , D; D Dg x Uy : 1] ,
11 . 11 1

2.2.2-11/ \-.... 1 -1
L )

D;DBe: | i1y 0], D;DoBsx Ay |1y 0],
R oo o 211
..... 11 B I
1.« .. .. 11 -« . .
LTI PR

D7DBaxCox | 0 0557, D;D2Bs: | ;7.5 1],
..... 11 o171
11--/  \: .. 11
1. ... 11 . . ..
11] 11]]

D, D D5 x 2A;: .~}11 , D; D> D4 x Az ~~~H~1 ,
1111 11 .
11 1111
-1 -1 11

D75 Ca: (333411), D; 5 Ca: (i1,1311),

We give here some examples of branching rules for the last three cases, for or-

bits of size 14, 84 and 64 respectively, together with their corresponding indices

Y.
D; D> Cy:
(a,0,0,0,0,0,0) > (0,2a) + (2a,0) + (0, a) +2(0,0),
(0,v,0,0,0,0,0) D (2b,2b) + (0,3b) + 2(2b, b) + (4b,0) + 3(0,2b) + 5(2b,0)
+5(0,b),
(0,0,0,0,0,0,¢) D (3c,c¢) + (c,2¢) + 2(3¢,0) + 3(c, c) +4(c,0),
y=1/2,
D; > Cs:

(a,0,0,0,0,0,0) 5 (0,a,0) +2(0,0,0),
(0,b,0,0,0,0,0) > (b,0,b) +2(2b,0,0) +4(0,b,0),
(0,0,0,0,0,0,¢) > (c,¢,0) +2(0,0,¢) +4(c,0,0),

Yy=7/6,
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D, > Gy:
(a,0,0,0,0,0,0) D (a,0) + (0,a) +2(0,0),
(0,b,0,0,0,0,0) O (b,b) + (0,3b) 4+ 2(0,2b) + 4(b,0) + 5(0, b)
(0,0,0,0,0,0,¢) D (c,c) +2(0,2¢) 4 2(c,0) +4(0,c) +4(0,0),

vy=7/8.
3.5.6. Rank 8

We give the projection matrices of the twelve cases to consider. Examples
of branching rules for the first nine cases can be found in the corresponding

subsections of the general rank section 3.5.7.

11. . . 1. .. ..
....11.i 1]
DgDA7;x Uy | o370 |, DgDDyx Uy | 200070 )
110 0 ... 1 .
11 ... 4 ... 11 1
1111/ ... 11
| |
.1i ..... .1i .....
DSDB7I l1 s DgDB6XA]I l1 ,
..... 1. . e 211
...... 11 e
) I 1.« .
1i ..... 1111
------ 11 o1
m.--/ N\ 1
| |
1. 11
DsDDgx2A7:| - 01, DsDODsxAsz:| 1],
----- 11 11
. 1111 11 .
. 11- . 1111
11 . . . ..
11
R RN
DgD2D4: | 177 000, DgDBa:| 57 M 03,
NS I IO 1-12121
..... 11 -
----- 11
12121221 R
DgDZCzZ 1};%;} , D83C4XA]Z -~~11ii1 .
LU R 121212-1

We give here some examples of branching rules for the last three cases, for
orbits of size 16, 112 and 128 respectively, together with their corresponding

indices .
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Dg D By
(a,0,0,0,0,0,0,0) D (0,0,0,a),
(0,b,0,0,0,0,0,0) > (0,0,b,0) +2(0,b,0,0) +4(b,0,0,0),
(0,0,0,0,0,0,0,¢) D (0,0,¢,0) +2(0,¢,0,0) + (2¢,0,0,0) +4(c,0,0,0)
+8(0,0,0,0),
y=1,
Dg D 2C,:
(a,0,0,0,0,0,0,0) D (a,0)(a,0),
(0,b,0,0,0,0,0,0) D (2b,0)(0,b) + (0,b)(2b,0) + 2(0,b)(0,b) 4 2(2b,0)(0,0)
+2(0,0)(2b,0) +4(0,b)(0,0) +4(0,0)(0,b),
(0,0,0,0,0,0,0,c) D (c,c)(c,0) + (c,0)(c,c) +4(c,0)(c,0),
y=1,
Dg D> Cy x Ay
(a,0,0,0,0,0,0,0) D (a,0,0,0)(a),
(0,b,0,0,0,0,0,0) D (0,b,0,0)(2b) + (2b,0,0,0)(0) + 2(0,b,0,0)(0)
+4(0,0,0,0)(2b),
(0,0,0,0,0,0,0,c) > (0,0,c,0)(c) + (c,0,0,0)(3c) + 3(c,0,0,0)(c),

vy=1.

3.5.7. The general rank cases

In this section we consider infinite series of cases where the ranks of the
Lie algebras take all the consecutive values starting from a lowest one. For

each case, we give the corresponding projection matrix and some examples of



103

branching rules. When the maximal reductive subalgebra of D, is semisimple,

we provide also its index v in the Lie algebra D,.

3571. Dyn DAy x Uy, n> 2

1 1 -
-1 1
1 1 .
.. 0
o101 -
1 1 .
1 1 ..
1 1 1 1 1 1

(a,0,0,...,0) D (a,0,...,0)(a) + (0,...,0,a)(—a)

(0,b,0,...,0) > (b,0,...,0,b)(0) + (0,b,0,...,0)(2b) 4 (0,...,0,b,0)(—2D)

;

0,...,0,¢,0,...,0)(0) +(0,...,0,¢,0,...,0)(2c)

n—1 n—1 n+1 n—3

+(0,...3,0,0,0,...1,0)(—2(:) + (O,...3,0,c,0,...5,0)(4c)
n— n+ n+ n—

+(0,...,0,¢,0,...,0)(—4c) + ...

n—>5 n+3
+(0,...,0,¢,0)((n—2)c) + (0,¢,0,...,0)(—(n—2)c)
+(0,...,0)(nc) +(0,...,0)(—mc) n even

0,...,0,¢,0,...,0)(0) + (0,...,0,¢,0,...,0)(2¢)

n—1 n—1 n+1 n—3
...,0,¢,0,...,0)(—2¢)+ (0,...,0,¢,0,...,0)(4c)

n—3 n+1 n+3 n—5

,0,¢,0,...,0)(—4¢c)+ ...+ (0,...,0,¢c)((n—=1)c)

n—-5 n+3

+(c,0,...,0)(=(n—1)c) n odd
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35.72. Dony1 DA xU;, n>2

1 1 .
: 1 1
11 -
. 1
..11 .
1 1 -
1 1 .
2 - 2 - 2 2 -2 - 2 -1 1

(a,0,0,...,0) D (q,0,...,0)(2a) + (0,...,0,a)(—2a)

(0,b,0,...,0) D (b,0,...,0,b)(0) + (0,b,0,...,0)(4b) + (0,...,0,b,0)(—4b)

(0,...,O,c,0,...1,0)(c)+ (O,...Z,O,c,O,...1,O)(—3c)
n n— n— n+
+,...,0,¢,0,...,0)(5¢) + (0,...,0,¢,0,...,0)(—7c)

n+2 n—3 n—4 n-+3

+...4+(c,0,...,0)(—(2n—T1)c) + (0,...,0)((2n+1)c) neven

0,...,0,¢,0,...,0)(c)+ (0, ... .

n n—1 n—2 n+1

+(O,...2,O,C,O,...3,O)(50)+(O,..;,O,C,O,...B,O)(—7c)
n+ n— n— n+

|+t (0,...,0,¢)((2n—T)c) + (0,...,0)(—=(2n+T1)c) nodd

35.73. Dp O Dy xU;, n>5

I3 0
1

0 |1 1 1
-1 A
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(a,0,0,...,0) > (a,0,...,0)(0) + (0,...,0)(2a) + (0, ...,0)(—2a)
(0,b,0,...,0) D (0,b,0,...,0)(0) + (b,0,...,0)(2b) + (b,0,...,0)(—2b)

(0,0,...,0,¢) D (0,...,0,c,0)(c) + (0,...,0,c)(—c)

35.74. DpnO By, n>4

(a,0,0,...,0) D (a,0,...,0)+2(0,...,0)

Yy=n/(n—1)

35.75. Do O Bhax Ay, n>4

I3 0
2 1 1
0 1 1
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3576. Dy DBk 1 xXBy, n—k—1>k>2 n>5

| BN 0

(a,0,0,...,0) O (a,0,...,0)(0,...,0)+(0,...,0)(a,0,...,0) +2(0,...

(0,b,0,...,0) > (b,0,...,0)(b,0,...,0) +(0,b,0,...,0)(0,...

+(0,...,0)(0,b,0,...,0) +2(b,0,...,0)(0,...

y=n/(n—1)

3577. DaDDpaoax A xA;,, n>6

I.5 0
1 1 . .
. . 1 1 .
0 1 - 1
11 1 1
1 1
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3578. Dhn D> Dp3xA3 n>7

I~ 0

1 1 .....

. 1 1 .

1 1
0 -1 -1

1 1

1 1 . . .

1 1 1 1

(a,0,0,...,0) D (q,0,...,0)(0,0,0) + (0,...,0)(0,a,0)
(0,b,0,...,0) > (0,b,0,...,0)(0,0,0) + (b,0,...,0)(0,b,0) + (0,...,0)(b,0,b)
(0,0,...,0,¢) D (0,...,0,¢)(0,0,¢) + (0,...,0,c,0)(c,0,0)

v =1
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3579. DO DpyxxDy, n—k>k>4

Iank 0
1 1 - -
o101
1 1
1 1 1 1
0 1 1 - - R
1 1
1 1 -
1 1

3.6. CONCLUDING REMARKS

— The pairs W(L) D W(L’) in this paper involve a maximal subalgebra
L"in L. A chain of maximal subalgebras linking L and any of its reduc-
tive non-maximal subalgebras L” can be found. Corresponding projec-
tion matrices combine, by common matrix multiplication, into the pro-

jection matrix for W(L) D W(L").

— Projection matrices of W(L) D W(L') when the ranks of L and L’ are the
same, are square matrices with determinant different from zero. Hence
they can be inverted and used in the opposite direction, as discussed in
[11]. The inverse matrix transforms an orbit of W(L’) into the linear com-

bination of orbits of W(L), where L’ C L. The linear combination has
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integer coefficients of both signs in general. We know of no interpreta-
tion of such ‘branching rules’ in applied literature, although they have

their place in the Grothendieck rings of representations.

Weyl group orbits retain most of their useful properties, such as decom-
position of their products and branching rules, even when their points
are off the weight lattice. Two applications of such orbits can be anticipa-
ted. First they could serve as models of molecules that have full Weyl
group symmetry without having the rigid regularity of distances bet-
ween their points/atoms. Another application is undoubtedly Fourier
analysis, when Fourier integral expansions are studied rather than dis-

crete ones.

Curious and completely unexplored relations between pairs of maximal
subalgebras, say L’ and L”, of the same Lie algebra L can be found by

combining the projection matrices P(L D L’) and P(L D L") as
P(L' L") =P(LDOL")P (LD L.

Here L’ must be of the same rank as L for P(L D L’) to be invertible.
We write L’ — L” instead of L’ D L" here because L” is obviously not a

subalgebra of L'.

Congruence classes of representations are naturally extended to congruence
classes of W-orbits [21]. Comparing the congruence classes of orbits for
W(L) D W(L’) reveals that not all combinations of congruence classes are
present. A relative congruence class is a valid and useful concept which
deserves investigation. Incidentally, relative congruence classes are stu-

died in chapter 5 [33] of this thesis.

Following the experience gained from applications of finite dimensional
representations of semisimple Lie algebras, one could also study, in the
case of Weyl group orbits, their anomaly numbers [58, 62] and indices of

higher than second degree [37, 57, 64].
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— Subjoining among semisimple Lie resembles inclusion because it allows
one to calculate ‘branching rules’. Projection matrices are perfectly ade-
quate for this task [63]. But it is not an homomorphism, therefore it is a
different relation. All maximal subjoinings have been classified [53].
Consider an example of subjoining. The 4-dimensional representation
(1,0,0) of Az does not contain the 5-dimensional representation (0, 1) of
C,. In spite of this, the projection matrix that maps the highest weight
orbit of Az (and any other orbit of Aj3) into the orbit (0,1) of C, can be

obtained. Indeed, that projection matrixis (239).
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Chapitre 4

REDUCTION D’ORBITES DES GROUPES DE
WEYL DES GROUPES DE LIE EXCEPTIONNELS

4.1. INTRODUCTION

Les régles de branchement des orbites des groupes de Weyl des algebres de
Lie classiques a I'union d’orbites des groupes de Weyl des sous-algebres réduc-
tives maximales, calculées a 1'aide des matrices de projection, ont été traitées
dans les deux chapitres précédents. Afin de proposer un document complet
sur la réduction des orbites des groupes de Weyl des algebres de Lie, nous pré-
sentons, de maniére succinte, les matrices de projection ainsi que des regles de
branchement des orbites des groupes de Weyl des algebres de Lie exception-
nelles. Dans le but de limiter les répétitions, nous nous abstenons d’expliquer
a nouveau les concepts liés aux regles de branchement et aux matrices de pro-
jection, et référons plutot le lecteur aux chapitres 2 et 3.

Les matrices de projection pour les cas exceptionnels sont listées dans [40],
mais les régles de branchement qui y sont présentées sont celles des systémes
de poids des représentations des algebres de Lie exceptionnelles, plutdt que
celles d’orbites individuelles.

Pour chacun des cas exceptionnels ou la sous-algebre est réductive maxi-
male, nous donnons la matrice de projection et listons les regles de branche-
ment pour différentes orbites de R™. Nous incluons, comme 1'un des cas spé-
ciaux, I’orbite qui représente le poids le plus élevé de la représentation adjointe

de l'algebre exceptionnelle.
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Il est a noter que dans toutes les matrices du présent chapitre, un point dans

une matrice représente 1’'élément matriciel 0.

4.2. REDUCTION D’ORBITES DU GROUPE DE WEYL DE Eg¢

Les matrices de projection pour les huit sous-algebres réductives maxi-

males de Eg sont :

T I 11
--i--1 BERRE
EeDDsxUr: | 20 177 0], EcDAsx A |5 0],
11 - . . . A I
1T—-1-1-1- 111 -1
111111
ST 12055
E¢D3AL: | 3110 |, Ee DA xGo:| 1579,
o111 1-1-11
111 ..
E¢DCqa: (155771, |l O T T
..... 1 1. -1-
. (225521 (-1 -1 -1
EcDA:(5523354), E6 D G2:(325251) -

Nous donnons des exemples de regles des branchement pour les orbites du
groupe de Weyl de E¢ d’ordre 27, 216, 720 et 72 respectivement. Ici, et jusqu’a

la fin du présent chapitre, a, b, c et d sont dans R~°.

E¢ D Ds x Uy :
(a,0,0,0,0,0) D (0,0,0,0,a)(a) + (a,0,0,0,0)(—2a) + (0,0,0,0,0)(4a),
(0,b,0,0,0,0) > (b,0,0,0,b)(—b) + (0,0,b,0,0)(2b) + (0,b,0,0,0)(—4b)
+(0,0,0,0,b)(5b),
(0,0,¢,0,0,0) > (c,0,c,0,0)(0) + (0,¢,0,¢,0)(3c) + (0,¢,0,0,c)(—3c)
+(0,0,¢,0,0)(—6¢) + (0,0,¢,0,0)(6c),

(0,0,0,0,0,d) > (0,d,0,0,0)(0) + (0,0,0,d,0)(3d) + (0,0,0,0,d)(—3d),
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Ee D As X Ay
(a,0,0,0,0,0) D (0,0,0,a,0)(0) + (a,0,0,0,0)(a),
(0,b,0,0,0,0) D (b,0,0,b,0)(b) + (0,0,b,0,b)(0) + (0,b,0,0,0)(2b)
+ (2b,0,0,0,0)(0),
(0,0,¢,0,0,0) D (c,0,c,0,¢)(c) + (0,¢,0,c,0)(2¢c) + (0,¢c,0,0,2c)(0)
+ (2¢,0,0,c,0)(0) + (0,0, 2¢,0,0)(0) + (0,0,c,0,0)(3c),
(0,0,0,0,0,d) > (0,0,d,0,0)(d) + (d,0,0,0,d)(0) + (0,0,0,0,0)(2d),
E¢ D 3A;:
(a,0,0,0,0,0) D (a,0)(0,0)(0,a) + (0,a)(0,a)(0,0) + (0,0)(a,0)(a,0),
(0,b,0,0,0,0) D (b, b)(0,b)(0,b) + (b,0)(b,0)(b,b) + (0,b)(b, b)(b,0)
+ (2b,0)(0,0)(b,0) + (b,0)(0,2b)(0,0) + (0,2b)(b,0)(0,0)
+ (0,b)(0,0)(0,2b) + (0,0)(2b,0)(0,b) + (0,0)(0, b)(2b,0),
(0,0,¢,0,0,0) D (c,c)(c,c)(c,c) + (2¢,¢)(0,¢)(c,0) 4 (2¢,0)(c,0)(2¢c,0)
+ (2¢,0)(0,2¢)(0,¢) + (c,2¢)(c,0)(0,c) + (c,0)(c, 2c)(c,0)
+ (0, 2¢)(2¢,0)(c, 0) + (c,0)(0, c)(2¢c, c) + (c,0)(2c, 0)(0, 2¢c)
+ (0, 2¢)(0, ¢)(0, 2¢) + (0, ¢)(0, 2¢)(2¢, 0) + (0, ¢)(2¢, ¢)(0, ¢)
+(0,¢)(c,0)(c,2c) + (3¢, 0)(0,0)(0,0) + (0,3¢)(0,0)(0,0)
+(0,0)(3¢,0)(0,0) 4 (0,0)(0,3c)(0,0) + (0,0)(0,0)(3c, 0)
+(0,0)(0,0)(0,3c),
(0,0,0,0,0,d) > (d,0)(0,d)(d,0) + (0,d)(d,0)(0,d) + (d, d)(0,0)(0,0)
+(0,0)(d, d)(0,0) + (0,0)(0,0)(d,d),
Es D Ay x Gy
(a,0,0,0,0,0) O (a,0)(0,a) + (0,2a)(0,0) + 2(a,0)(0,0),
(0,b,0,0,0,0) D (2b,0)(b,0) + (0,b)(0,2b) + 2(0,b)(b,0) + (b,2b)(0, b)

+3(2b,0)(0,b) +2(0,b)(0,b) + 2(b, 2b)(0,0) + 2(0,b)(0,0),
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(0,0,¢,0,0,0) D (c,c)(c,c) + (2c,2c)(c,0) + (0,3¢)(0,2¢) + (3¢,0)(0, 2c)
+(0,0)(0,3c) +2(0,3c)(c,0) + 2(3c,0)(c,0) + 2(c,c)(0, 2¢c)
+3(0,0)(c,c) + 3(2c,2¢)(0,c) + 2(c, c)(c,0) + 2(0,3¢)(0,c)
+2(3¢,0)(0,c) +6(0,0)(c,0) + 2(c,c)(0,c) +2(0,3c)(0,0)
+2(3c,0)(0,0) +3(0,0)(0,c),
(0,0,0,0,0,d) D (d,d)(0,d) + (0,0)(d,0) + 3(0,0)(0,d) + 2(d, d)(0,0),
EcD Cy:
(a,0,0,0,0,0) D (0,a,0,0) + 3(0,0,0,0),
(0,b,0,0,0,0) D (b,0,b,0) + 3(0,0,0,b) + 3(2b,0,0,0) + 2(0,b,0,0),
(0,0,¢,0,0,0) D (0,0,2¢,0) + (2¢,0,0,c) + 2(0,¢,0,c) + 2(2¢, ¢, 0,0)
+2(c,0,¢,0) +6(0,0,0,c) +6(2¢,0,0,0),
(0,0,0,0,0,d) > (0,0,0,d) + (24,0,0,0) +2(0,d,0,0),
Ec D Fs:
(a,0,0,0,0,0) D (0,0,0,a) 4+ 3(0,0,0,0),
(0,v,0,0,0,0) > (0,0,b,0) +3(b,0,0,0) + 2(0,0,0,b) ,
(0,0,¢,0,0,0) D (0,¢,0,0) + 2(c,0,0,¢c) + 2(0,0,¢,0) 4+ 6(c,0,0,0),
(0,0,0,0,0,d) > (d,0,0,0) 4+ 2(0,0,0,d),
Ec D Ay
(a,0,0,0,0,0) D (2a,2a) + (0,3a) + (3a,0) + 2(a,a) + 3(0,0),
(0,,0,0,0,0) D (2b,5b) + (5b,2b) + 3(3c,3c) + (6b,0) + (0,6b) + 5(b, 4b)
+5(4b,b) 4+ 4(2b,2b) + 7(0,3b) + 7(3b,0) + 8(b, b) + 6(0,0),
(0,0,¢,0,0,0) D (5b,5b) + 3(3b, 6b) 4 3(6b,3b) + (0,9b) + (9b,0)
+4(4b,4b) 4 5(b,7b) + 5(7b,b) + 8(5b,2b) + 8(2b,5b) + 6(0, 6b)
+9(3b,3b) 4 6(6b,0) + 14(b,4b) + 14(4b, b) + 8(2b, 2b) + 15(0, 3b)

+15(3b,0) + 14(b,b) + 12(0,0),
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(0,0,0,0,0,d) D (b,4b) + (4b,b) + 2(2b,2b) + 3(3b,0) + 3(0,3b) + 5(b, b),
Ee¢ D Gy:

(a,0,0,0,0,0) D (0,2a) + (a,0) +2(0,a) + 3(0,0),

(0,b,0,0,0,0) D (b,2b) + (2b,0) + 3(0,3b) + 5(b, b) +4(0, 2b) + 7(b, 0)
+8(0,b) +6(0,0),

(0,0,c,0,0,0) D (0,5¢) + (3¢,0) + 3(c, 3c) + 5(2¢c, c) +4(0,4c) + 8(c, 2¢)
+6(2¢,0) + 9(0,3c) + 14(c,c) + 8(0,2¢) + 15(c,0) + 14(0, c)
+12(0,0),

(0,0,0,0,0,d) D (d,d) + 2(0,2d) + 3(d,0) +5(0,d).

4.3. REDUCTION D’ORBITES DU GROUPE DE WEYL DE E»

Les matrices de projection pour les onze sous-algebres réductives maxi-
males de E; sont listées ci-dessous. La premiere matrice E; — A; est celle de la
sous-algebre principale de E, alors que la deuxiéme est celle de la sous-algébre

sous-principale de E;.

E7DE6XU]Z 1111 , E7DA7: 1]1 ,
1. .. ... o111
11 1T
111111 11
SERENS REERE
E; D A5 X Ay SRR E; D Dgx Ay SERRERE I
B I I TP L 1.
11 111
1111 T ..
T-111- - S IR R
E;DC3x Gy -1}i~.] , E;DFi x Ay 1}1]] ,
121121 21211
EyDszA]-<i}l4}?}> E, D Ay:(491110667)
2445413/ 4611 764/
E;D2A:(21915128¢%8%), E; DA : (34669 75522749) ,

E; D Aq:(26507257402137) .
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Nous donnons des exemples de regles des branchement pour les orbites du

groupe de Weyl de E; d’ordre 126 et 56 respectivement :
E-DEgx Uy
(a,0,0,0,0,0,0) >(0,0,0,0,0,a)(0) + (0,0,0,0,a,0)(2a)
+ (a,0,0,0,0,0)(—2a),
(0,0,0,0,0,b,0) O (b,0,0,0,0,0)(b) + (0,0,0,0,b,0)(—Db)
+(0,0,0,0,0,0)(3b) +(0,0,0,0,0,0)(—-3b),
E;D A;:
(a,0,0,0,0,0,0) D (0,0,0,a,0,0,0) + (a,0,0,0,0,0,a),
(0,0,0,0,0,b,0) > (0,b,0,0,0,0,0) + (0,0,0,0,0,b,0),
E;DAsx Ay:
(a,0,0,0,0,0,0) D (a,0,0,0,a)(0,0) + (0,a,0,0,0)(0, a)
+(0,0,0,a,0)(a,0)+(0,0,0,0,0)(a, a),
(0,0,0,0,0,b,0) > (0,0,b,0,0)(0,0) + (b,0,0,0,0)(b,0) + (0,0,0,0,b)(0,b),
E; D Dgx Ay
(a,0,0,0,0,0,0) D (0,4a,0,0,0,0)(0) + (0,0,0,0,a,0)(a)
+(0,0,0,0,0,0)(2a),
(0,0,0,0,0,b,0) > (0,0,0,0,0,b)(0) + (b,0,0,0,0,0)(b),
E; D C3 x Gy
(a,0,0,0,0,0,0) > (0,a,0)(0,a) + (0,0,0)(a,0) + (2a,0,0)(0,0)
+2(0,a,0)(0,0) +3(0,0,0)(0,a),
(0,0,0,0,0,b,0) D (b,0,0)(0,b) 4 (0,0,b)(0,0) + 2(b,0,0)(0,0),
E;DFs x Aq
(a,0,0,0,0,0,0) D (a,0,0,0)(0) + (0,0,0,a)(2a) + 2(0,0,0,a)(0)
+3(0,0,0,0)(2a),

(0,0,0,0,0,b,0) > (0,0,0,b)(b) + (0,0,0,0)(3b) + 3(0,0,0,0)(b),
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E; D Gy X A

(a,0,0,0,0,0,0) O (0,2a)(2a) + (a,0)(2a) + (0,2a)(0) + (0, a) (4a)
+2(a,0)(0) +3(0, a)(2a) + 4(0, a)(0) + (0,0)(4a) +5(0,0)(2a),

(0,0,0,0,0,b,0) D (b,0)(b) + (0,b)(3b) + 2(0,b)(b) + (0,0)(3b)
+3(0,0)(b),

E; D A;:

(a,0,0,0,0,0,0) O (4a,4a) + (5a,2a) + (2a,5a) + (6a,0) + 2(3a, 3a)
+(0,6a) + 2(4a, a) + 2(a,4a) + 3(2a,2a) + 3(3a,0) + 3(0, 3a)
+5(a,a),

(0,0,0,0,0,b,0) D (6b,0) + (0,6b) + (4b,b) + (b,4b) + 2(2b, 2b) + 2(3b,0)
+2(0,3b) + 2(b,b) + 2(0,0),

E; D 2A;:

(a,0,0,0,0,0,0) D (4a)(6a) + (6a)(4a) + (8a)(2a) + (2a)(6a) + 2(4a)(4a)
+2(6a)(2a) + (8a)(0) + (0)(6a) + 3(2a)(4a) + 4(4a)(2a)
+2(6a)(0) +3(0)(4a) + 5(2a)(2a) + 4(4a)(0) + 6(0)(2a)
+6(2a)(0),

(0,0,0,0,0,b,0) D (6b)(3b) + (2b)(5b) + (4b)(3b) + (6b)(b) + (0)(5b)
+2(2b)(3b) + 2(4b)(b) + 2(0)(3b) + 3(2b)(b) + 3(0)(b),

E; D A, (principale) :

(a,0,0,0,0,0,0) D (34a) + (32a) + (30a) + (28a) + 2(26a) + 2(24a)
+3(22a) + 3(20a) + 4(18a) +4(16a) + 5(14a) + 5(12a) 4+ 6(10a)
+6(8a) + 6(6a) + 6(4a) + 7(2a),

(0,0,0,0,0,b,0) D (27b) + (25b) + (23b) + (21b) + (19b) + 2(17b) + 2(15b)

+2(13b) + 2(11b) + 3(9b) + 3(7b) 4+ 3(5b) + 3(3b) + 3(b),
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E; O A, (sous-principale) :

(a,0,0,0,0,0,0) D (26a) + (24a) + 2(22a) + 2(20a) + 3(18a) + 4(16a)
+5(14a) +5(12a) + 7(10a) + 7(8a) + 8(6a) + 8(4a) + 9(2a)
+2(0),

(0,0,0,0,0,b,0) O (21b) + (19b) + (17b) + 2(15b) + 2(13b) + 3(11b)

+3(9b) + 3(7b) + 4(5b) + 4(3b) + 4(b) .

4.4. REDUCTION D’ORBITES DU GROUPE DE WEYL DE Eg

Les matrices de projection pour les onze sous-algebres réductives maxi-
males de Eg sont listées ci-dessous. La premiére matrice Eg — A; est celle de la
sous-algebre principale de Es, alors que la deuxiéme est celle de la sous-algebre

sous-principale de Eg.

111111 11112211
o111 11171- -1
T SRR R

Es D Ag: Sl 111 . , E832A4 : 111711 ,
111 . .. 11111
11 11111 - -
111 11111
o111 1 |
11 . . .. 1. . ...
R I R T
EsODg: | i 51|, EsDE, xAp | oo

1T 11
o1 11 - -
11 .. ... R T |
N I I R
1111 111 .. ..
LT SERREEE

EsDEex A | 75|, EsDFaxGa: |33 377 0|,
| . 1. .1
11111 1121121 -
1111
14 4 6 8 423

EsDA XA:<11465423> EgDC, :(2881216846

8 2 ! 61014162216812/ 8 2 (3378 9sae),

Eg D Aq: (58114168 220 270 182 92 136 ) ,
Eg D Aq: (4690132172210 142 72 106 ) ,

Eg D Aq: (3874108142174 118 60 83 ) .

Nous donnons des exemples de regles des branchement pour les orbites du
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groupe de Weyl de Eg d’ordre 240 :

Eg D Ag:

(a,0,0,0,0,0,0,0) D (0,0,q,0,0,0,0,0) + (0,0,0,0,0, a,0,0)

+(a,0,0,0,0,0,0,a),
Es D 2A,:

(a,0,0,0,0,0,0,0) D (a,0,0,0)(0,0,a,0) + (0,a,0,0)(a,0,0,0)
+(0,0,a,0)(0,0,0,a) +(0,0,0,a)(0,a,0,0) + (a,0,0,a)(0,0,0,0)
+(0,0,0,0)(a,0,0,a),

Es D Dg:
(a,0,0,0,0,0,0,0) D (0,0,0,0,0,0,0,a) + (0,a,0,0,0,0,0,0),
Es D E;x Ay

(a,0,0,0,0,0,0,0) D (a,0,0,0,0,0,0)(0) + (0,0,0,0,0,a,0)(a)

+(0,0,0,0,0,0,0)(2a),
Es DEgx Ay

(a,0,0,0,0,0,0,0) > (0,0,0,0,0,a)(0,0) + (a,0,0,0,0,0)(a,0)

+(0,0,0,0,a,0)(0,a) +(0,0,0,0,0,0)(a, a),
Es D F4 x Gy

(a,0,0,0,0,0,0,0) > (0,0,0,a)(0,a) + (a,0,0,0)(0,0) + 2(0,0,0, a)(0,0)

+(0,0,0,0)(a,0) +3(0,0,0,0)(0,a),
Es DAy x Ay:

(a,0,0,0,0,0,0,0) D (a,a)(6a) + (3a,0)(4a) + (0,3a)(4a) + (2a,2a)(2a)
+3(a,a)(4a) + 2(3a,0)(2a) + 2(0,3a)(2a) + (2a,2a)(0)
+2(0,0)(6a) +5(a, a)(2a) + 2(3a,0)(0) + 2(0,3a)(0) +4(0,0)(4a)

+6(a,a)(0) +8(0,0)(2a) + 2(0,0)(0),
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EsD Cy:

(a,0,0,0,0,0,0,0) O (2a,3a) + (6a,0) + (0,4a) + 2(4a, a) + 3(2a, 2a)
+4(0,3a) +4(4a,0) + 6(2a, a) + 6(0,2a) 4 9(2a,0) + 10(0, a)
+4(0,0),

Es O A; (principale) :

(a,0,0,0,0,0,0,0) D (58a) + (56a) + (54a) + (52a) + (50a) + (48a)
+2(46a) + 2(44a) + 2(42a) + 2(40a) + 3(38a) + 3(36a) + 4(34a)
+4(32a) +4(30a) + 4(28a) + 5(26a) + 5(24a) + 6(22a) + 6(20a)
+6(18a) + 6(16a) + 7(14a) + 7(12a) + 7(10a) + 7(8a) + 7(6a)
+7(4a) + 8(2a),

Es O A; (sous-principale) :

(a,0,0,0,0,0,0,0) D (46a) + (44a) + (42a) + (40a) + 2(38a) + 2(36a)
+3(34a) + 3(32a) + 3(30a) + 4(28a) + 5(26a) + 5(24a) + 6(22a)
+6(20a) + 7(18a) + 7(16a) + 8(14a) + 8(12a) + 9(10a) + 9(8a)
+9(6a) + 9(4a) + 10(2a) + 2(0)

Es DA :

(a,0,0,0,0,0,0,0) O (38a) + (36a) + 2(34a) + 2(32a) + 2(30a) + 3(28a)

+4(26a) + 4(24a) + 6(22a) + 6(20a) + 7(18a) + 8(16a) + 9(14a)

+9(12a) +10(10a) + 10(8a) + 11(6a) + 11(4a) + 12(2a) +4(0) .
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4.5. REDUCTION D’ORBITES DU GROUPE DE WEYL DE F4

Les matrices de projection pour les cinq sous-algébres réductives maxi-

males de F4 sont :

o111 - 11 -
F432A21(i%}i), F4DB4:(?i::)>
171 R

-1

F4DC3XA]Z(E%?:>, F4DG2XA]Z<
2321

Fs D A7:(22423016) .

Nous donnons des exemples de regles des branchement pour les orbites du

groupe de Weyl de F4 d’ordre 24, 96, 96, et 24 respectivement :

F4 D 2A5:
(a,0,0,0) > (0,2a)(a,0) + (2a,0)(0,a) + (0,0)(a,a),
(0,b,0,0) D (2b,2b)(b,b) + (0,2b)(2b, b) + (2b,0)(b, 2b) + (4b,0)(b,0)
+(0,4b)(0,b) + (0,0)(3b,0) + (0,0)(0,3b),
(0,0,¢,0) D (c,c)(c,c) + (2¢,¢)(c,0) + (c,2¢)(0,c) + (0,¢)(2¢c,0)
+ (¢,0)(0,2¢) + (0,3¢)(0,0) + (3¢,0)(0,0),
(0,0,0,d) > (d,0)(d,0) + (0,d)(0,d) + (d, d)(0,0),
Fs D Bs:
(a,0,0,0) D (0,a,0,0),
(0,b,0,0) D (b,0,b,0),
(0,0,¢,0) D (c,0,0,c) +(0,0,c,0),
(0,0,0,d) o (0,0,0,d) + (d,0,0,0),
Fs D Csx Ay
(a,0,0,0) 2 (0,0,a)(a) + (2a,0,0)(0) + (0,0,0)(2a),

(0,b,0,0) D (0,0,b)(3b) + (0,2b,0)(2b) + (2b,0,b)(b) + (0,0, 2b)(0),
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(0,0,¢,0) ©(0,¢,0)(2¢c) + (c,c,0)(c) + (c,0,c)(0),
(0,0,0,d) D (d,0,0)(d) + (0,d,0)(0),
FsD Gy xAs:
(a,0,0,0) D (0,a)(4a) + (a,0)(0) + (0,a)(0),
(0,b,0,0) D (b, b)(4b) + (b,0)(8b) + (0,3b)(0) + (b, b)(0) + 2(b,0)(4b)
+ (0,b)(8b) + (0,b)(0) ,
(0,0,¢,0) D (c,0)(4c) + (0,2¢)(2c) + (0,c)(6c) + 2(c,0)(2c) + (0,2¢)(0)
+ (0,c)(4c) + (0,c)(2c) 4+ 2(0,0)(6c) + 2(0,0)(0),
(0,0,0,d) D (0,d)(2d) + (0,d)(0) + (0,0)(4d) + 2(0,0)(2d),
FaDA:
(a,0,0,0) D (22a) 4 (20a) + (18a) + (14a) + (12a) +2(10a) + (8a) + (6a)
+ (4a) +2(2a),
(0,b,0,0) D (42b) + (40b) + (38b) + (36b) + 2(34b) + (32b) + 4(30D)
+ (28b) + 4(26b) + 3(24b) + 2(22b) + 3(18b) 4 3(16b) + 4(14Db)
+ (12b) + 2(10b) + 2(8b) + 6(6b) + (4b) + 3(2b) + 4(0),
(0,0,¢,0) D (30c) + (28c) + 2(26¢) + 3(24c) + 2(22¢) + 3(20c) + 5(18c¢)
+3(16¢) +3(14c) +4(12¢) + 4(10c) + 2(8c) + 4(6¢) + 4(4c)
+ 3(2c) + 8(0),

(0,0,0,d) D (16d) + (14d) + (12d) + (10d) + 2(8d) + 2(6d) + 2(4d) + 2(24d) .

4.6. REDUCTION D’ORBITES DU GROUPE DE WEYL DE G;

Les matrices de projection pour les trois sous-algebres réductives maxi-

males de G, sont :
GzDAzIH?), GzDZA]I(;}), GzDA]Z(]O6).

Nous donnons des exemples de regles des branchement pour les orbites du
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groupe de Weyl de G, d’ordre 6, 6 et 12 respectivement :
G2 DA
(a,0) D (a,a),
(0,b) D (b,0) + (0,b),
(a,b) D (a+b,a)+ (a,a+b),
G, D 2A:
(a,0) D (a)(3a) + (2a)(0),,
(0,b) D (b)(b) + (0)(2b),
(a,b) D (a+b)(3a+b)+ (2a+b)(b) + (a)(3a+2b),
G2 DA
(a,0) D (10a) + (8a) + (2a),
(0,b) D (6b) + (4b) 4 (2Db),
(a,a) D (16a) + 2(14a) + (10a) + (6a) + 2(0),
(a,b) D (10a + 6b) + (10a +4b) + (8a + 6b) + (8a + 2b) + (2a + 4b)

+ (2la —bl).
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Résumé
Dans cet article, nous fournissons une nouvelle description, uniforme et com-
pléte, des centralisateurs des sous-groupes réguliers maximaux des groupes de
Lie simples de tous types et de tous rangs. Le centralisateur est soit un produit
direct de groupes cycliques finis, un groupe continu de rang 1, ou un produit,
pas nécessairement direct, d'un groupe continu de rang 1 avec un groupe cy-
clique fini. Nous présentons des formules explicites pour l'action de tels cen-

tralisateurs sur les représentations irréductibles des algébres de Lie simples.

Abstract
In the paper we present a new, uniform and comprehensive description of cen-
tralizers of the maximal regular subgroups in compact simple Lie groups of

all types and ranks. The centralizer is either a direct product of finite cyclic
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groups, a continuous group of rank 1, or a product, not necessarily direct, of
a continuous group of rank 1 with a finite cyclic group. Explicit formulas for
the action of such centralizers on irreducible representations of the simple Lie

algebras are given.

5.1. INTRODUCTION

Let G be a connected simple Lie group with corresponding Lie algebra de-
noted by L. Let L’ be a maximal regular semisimple Lie subalgebra of L with
corresponding subgroup G’. The goal of this paper is to study the centralizer
of G’ in G and its action on the representations of the Lie algebra L. In general
these centralizers are abelian subgroups of G. The first complete description of
the continuous centralizers, whenever they exist, was given by Borel and de
Siebenthal [4], while the cases of discrete centralizers were first described by
Dynkin and Onisc¢ik [15].

In this paper we reformulate the results of [4] and [15] in a more acces-
sible manner, using tools which were not available to the original authors. The
existence and structure of the centralizer is made immediately visible from a
decoration of the extended Dynkin-Coxeter diagram. In addition we provide
explicit formulas for the actions of these centralizers on the finite-dimensional
irreducible representations of L and apply this information to the branching
rules of L with respect to L. We observe in particular that the centralizer of
G’ in G is either a direct product of finite cyclic groups (in the maximal regular
semisimple case), a continuous group of rank 1 or a product, not necessarily di-
rect, of a continuous group of rank 1 with a finite cyclic group (in the maximal
regular reductive case).

The eigenvalues of these operators serve to decompose the irreducible re-
presentations of L into representations of L’. Projection matrices provided in
[32, 34, 40] transform the weights of an irreducible representation of L into
weights of the representations of the subalgebra. We can include, as an addi-

tional label, the eigenvalue of the action of the centralizer vector that serves
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to decompose the irreducible representation of L into a direct sum of repre-
sentations of L’. Note that the representation of L’ corresponding to a fixed
eigenvalue may not be irreducible.

In physics the importance of the centralizers has been recognized for a long
time. One of the best known examples occurs in the case SU(3) D SU(2) x U;.
Here the centralizer is a continuous 1-parametric subgroup denoted U;. The
existence, structure and application of the centralizers in specific representa-
tions is not as well known. As two of the lowest examples one can point out
the cyclic groups Z, and Z3 in Sp(2) D SU(2) x SU(2) x Z, and G, D SU(3) x Z3
respectively. One of the consequences of the presence of a centralizer Z,, is that
it splits irreducible representations of the subalgebra/subgroup into n equiva-
lence classes. Undoubtedly such classes would find a physical interpretation
in some cases. We call them relative congruence classes in this paper.

Discrete centralizers of maximal regular semisimple subalgebras are found
in all simple Lie algebras except A, (1 <n < oo0). In all cases they are formed
as a product of up to three cyclic groups. Continuous centralizers of maximal
regular reductive subalgebras appear in all simple Lie algebras, except in G,
F4, and Eg.

Note that we use Dynkin notations and numberings for roots, weights and

diagrams.

5.2. THE CENTER OF G

We start by reviewing the well-known results concerning the center of the
simple Lie groups. We use the standard notation to identify the simple Lie
groups G and their corresponding simple Lie algebras, namely there are four
infinite classes denoted A,, (n > 1), B, (n > 2), C,, (n > 2) and D,, (n > 4)
as well as five exceptional groups/algebras denoted by E¢, E;, Es, F4 and G,.
The structure and properties of these Lie groups and their corresponding Lie
algebras is encoded in their so-called decorated extended Dynkin diagrams
(see Figure 5.1). The node in these diagrams labelled by 0 denotes «, the ne-

gative of the highest root of the algebra. The remaining nodes represent the
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simple roots {«y, ..., &} of the algebra. The mark my on the simple root & for
k = 1,..., 1 denotes the coefficient of xy in the expansion of the highest root
—otp in terms of the simple roots «; (see Figure 5.1). The mark on «, by conven-
tion, is 1. Note that the algebras B, and C, are isomorphic, and the extended
Dynkin diagram of B, is the same as the one of C,, with the only difference
being in the numbering of the nodes : the roots «; and «; are interchanged.
From [27] we know that the conjugacy classes of elements of finite order in
G of rank n are specified in a bijective fashion by the set of all (n+1)-tuples of
relatively prime non-negative integers. To each such (n+1)-tuple [so, 81, . .., Sy
with s; € Z>o we associate the point X in the fundamental region of G given by
S1 Sn

X=2L e
Mw1+ —I—M

Wn
where M = 5o+ ) ' ; m;s; and the w{s denote the fundamental weights of the
algebra. The order of the element of G corresponding to such an X is M.

The elements of the center Z(G) of the simple Lie group G are in one-to-
one correspondence with the nodes of the corresponding extended diagram
that carry marks equal to 1. They are in fact associated with the corners of the
fundamental region of G. The extension node, which always has its mark equal
to 1, refers to the identity element of G. Explicitly, if {®;/i = 1,...,n} denotes
the basis of the Cartan subalgebra H of L which is dual to the base of simple
roots {«i/i = 1,...,m} of H* in the sense that o;(®;) = 8;;, then the elements
of the center of G consist of all elements e2™® where &y has mark my = 1. In
table 5.5, for each simple Lie group admitting a non-trivial center, we list for
reference the group structure as well as a generator of the center.

For any irreducible representation of the group G the central elements act
as multiples of the identity. The collection of all finite-dimensional irreducible
representations can then be partitioned according to the action of the central
elements. Each equivalence class of irreducible representations with respect to
this equivalence is called a congruence class. The concept of congruence classes
has application in the decomposition of representations such as tensor pro-

ducts of irreducible representations, see for example [35].
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Let us consider an irreducible finite-dimensional representation of G ha-
ving highest weight A = Y ', miw;. Let z = e?™® be a non trivial element of

the center Z(G). Then the eigenvalue of z acting on this representation is given

by e2A @),
If we write
-] n
@j = E ; ri&i
where {&, ..., &y} is the basis of H dual to the basis of fundamental weights
(w1, ..., wn}ie wi(®;) = 6, and where C is the determinant of the Cartan

matrix of G, we have that

Since the eigenvalue of the central element z is e?™A®;)

, we are really in-
terested in the value of A(®0;) mod Z, which is uniquely determined by (, :=
Z{; r;m; mod C. The values (, are listed in table 5.5 for each non-trivial cen-
tral element of G. By convention, we list the value (., where z = e?m® next
to the j* node in the extended Dynkin diagram of G. We write 1 next to the

extension node since it represents the identity of G.

5.3. BRANCHING RULES AND PROJECTION MATRICES

Reduction of weight systems of irreducible finite-dimensional representa-
tions of simple Lie algebras to weight systems of representations of their maxi-
mal reductive subalgebras has been addressed several times in the literature
[39, 40, 41, 61]. In physics that problem is often referred to as the computation of
branching rules.

The branching rule for L O L', where L’ is a maximal reductive subalgebra
of L, is a linear transformation between Euclidean spaces R* — R™, where n
and m are the ranks of L and L’ respectively. This linear transformation can
be expressed in the form of an m x n matrix, the projection matrix. A suitable
choice of bases allows us to obtain integer matrix elements in all the projection

matrices we use here. The main advantage of the projection matrix method is
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the uniformity of its application as to the different algebra-subalgebra pairs,
which makes it particularly amenable to computer implementation.

The projection matrix method, used in [39, 40, 41, 61], can also be extended
to compute the branching rules of orbits of Weyl groups W(L) of semisimple
Lie algebras L. An orbit of W(L) is a finite set of points of R,, obtained from
the action of W(L) on a single point of R,,. Weyl group orbits are closely rela-
ted to weight systems of finite-dimensional irreducible representations of se-
misimple Lie algebras. Indeed a weight system consists of many orbits of the
corresponding Weyl group, a specific orbit often appearing more than once.
Which orbits a particular representation is comprised of is well known, and ex-
tensive tables of multiplicities of dominant weights can be found in [6]. Consi-
dering the reduction of individual orbits rather than of entire weight systems
offers some advantages, one of which is computational : while the number
weights of a weight system grows without limits with the dimension of the
representation, the number of points of an individual orbit is at most the order
of the corresponding Weyl group. When dealing with large-scale computation
for representations, one often needs to break down the problem into smaller
ones for individual orbits. Orbit-orbit branching rules are computed with the
projection matrix method for orbits of W(A,,) in [34] and for orbits of W(B,,),
W(C,) and W(D,,) in [32].

The projection matrix P for a particular pair L O L’ is calculated from one
known branching rule. The classification of maximal reductive subalgebras of
simple Lie algebras [4, 14] provides the information to find that branching rule.
The projection matrix is then obtained using the weight systems of the repre-
sentations, by requiring that weights of L be transformed by P to weights of
L’. Since any ordering of the weights is admissible, the projection matrix is not
unique. However, by ordering the weights of L by levels and by doing the same
with the weights of L’, the projection matrix obtained is convenient for large-
scale computation, because dominant weights of L’ will always be in the first
half of the weights found by multiplying the weights of L. Hence the problem
is already reduced by half.
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The projection matrices we will use in this paper are the ones provided by
[34] for reductions involving the Lie algebra A,,, by [32] for reductions invol-
ving the Lie algebras B,,, C,, and D,,, and by [40] for the ones involving the

exceptional Lie algebras.

5.4. DISCRETE CENTRALIZERS

Let G be a connected simple Lie group with its corresponding Lie algebra of

rank n denoted by L. Any maximal regular semisimple subalgebra of L having
rank n can be realized in terms of the extended Dynkin diagram of L. In fact
any such subalgebra L', with corresponding subgroup G’, corresponds to the
Dynkin diagram resulting from deleting one node having prime mark from
the extended Dynkin diagram of L. Clearly such maximal regular semisimple
subalgebras occur for all simple Lie algebras except A,, (1 < n < o0). Since
G’ is a maximal regular semisimple subgroup of G the centralizer C;(G’) of
G’ in G consists of all elements e?™™ where h € ‘H has the property that for all
roots B of the subalgebra L’ we have e?™P(" = 1 or equivalently B(h) € Z. It
follows that the centralizer is a discrete abelian subgroup of the group G. In
fact, the centralizer contains the center Z(G) of the group G, the center Z(G’)
of the group G’ as well as the group generated by the element e%(bk, where
o denotes the deleted node with prime mark my and @y is the element of
the Cartan subalgebra H of L such that o;(®y) = dix foralli = 1,...,n. This
situation could be complicated by the fact that these three discrete groups have
a non trivial intersection, but the following lemma simplifies it.
Lemma 5.4.1. Let G be a connected simple Lie group, with corresponding Lie algebra
L, and G be a maximal reqular semisimple Lie subgroup of G with corresponding
subalgebra L'. Let o denote the deleted node from the extended Dynkin diagram of G,
having prime mark my. Then

(i) Cc(G")/Z(G) = Z, and

(i) Cg(G') = Z(G').
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PROOF. (i) From the construction of G’ from the Dynkin diagram of G, it is

clear that

and that
7(G") C <Z(G), e%f‘t’k> .
By combining those two observations, we thus find
CalG') = (Z(G), e ™)
and we have the first result
Ca(G")/Z(G) = Zm, .

(ii) To prove the second result, it suffices to find an element in the center of

G’ which is not in the center of G. Suppose such an element x exists :
Ix € Z(G')N\Z(G) = (x + Z(G)) = Zn,

since Z, is a simple group and has no proper subgroup. But from (i) we have

that

Zm, = Cg(G")/Z(G)

k
and thus find

Z(G') = Cg(G').

Now, it remains to demonstrate that such an element x exists in all cases. It
is easy to see that in all cases except for the D4 D A1 @ A @ A; & Ay case, whe-
never a node having prime mark is deleted from the extended diagram of G, a
new node in the diagram of G’ has its mark equal to 1. Hence a new element is
added to the center of G'. Inthe D4 D A1 &A1 DA, B A, case, all the remaining
nodes after the deletion already had their marks equal to 1 in the diagram of
G = D4. However, the extended node, the &, node, which corresponded to the
identity in G = D4, becomes a non trivial elementin G’ = A1 &A1 DA B A,

and so is the element x we were looking for. O
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5.4.1. Discrete centralizers and representations

Let ¢(G) be an irreducible finite-dimensional representation of G, acting
as a set of linear transformations in V,,. An element z = e™ of the centralizer
Cg(G’) of G’ in G acts on any finite-dimensional irreducible representation

$A(G’), arising during the restriction of a representation ¢(G) to the subgroup :
G(G) =P P(G) = (L) =P L)
A A

as a multiple of the identity matrix :
b(2)P(G)d(z™") = db(2) (6]9 4»(@’)) d(z7") =P adalG).
A A

If zN =1, the eigenvalues k, are N-th roots of 1.

A discrete centralizer C;(G’) is a product of cyclic groups. Hence it consists
of elements of G which are of finite order. For our task it suffices to describe
just one element which generates each cyclic subgroup in the centralizer. More
precisely, we need to determine the eigenvalues k) of such elements on every
dA(G).

We are interested, within each G-conjugacy class, by its unique element
represented by a diagonal matrix in every V. A general method of describing
diagonal representatives of conjugacy classes of elements of finite order in G is
found in [45]. Here we use it just for the elements of the centralizers.

Suppose ¢(z) is the diagonal matrix representing the element z = e™* €
G in V. Suppose further that V;, is decomposed into the sum of its weight

subspaces :
V=) Velw.
w

Then for any vector v € V() we have

d(z)v = Kkyv

where

_ oinx)
Ky = et
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2mi
For example, if we take z to be the element e™« ®ec c(G’), then the ei-
genvalue k, can be calculated in the same fashion as in section 5.2. If p =

Y i, miw;, by writing @y in terms of the &;’s, we get :

where C is the determinant of the Cartan matrix of G, and therefore have that

pow 1 &
— _ka;rlml'

Again, we are really interested in the value of %k") mod Z, which can be gi-

ven by a congruence equation of the form > ' ; rym; mod myC.

5.4.2. Relative congruence classes and branching rules

The decomposition of an irreducible representation of L into a sum of irre-
ducible representations of L is known as the branching rule for the pair L O L".
In general, if we start with a finite-dimensional representation of G then the
elements in the centralizer of G’ can be used to provide partial invariants for
the summands in the branching rule. The sets of weights of L on which the cen-
tralizer elements take on constant values are called relative congruence classes.

Example 5.4.2 below illustrates the use of relative congruence classes in

branching rules.

5.4.3. Explanation of tables 5.6 and 5.7

Tables 5.6 and 5.7 present the structure of the centralizers and the relative
congruence classes for all maximal regular semisimple subalgebras in classi-
cal and exceptional simple Lie algebras, respectively. For each such algebra-
subalgebra pair L D L’, with associated groups G D G’, we give the structure
of the centralizer of G'in G, C¢(G'), which is always a product of cyclic groups.

Since Cg(G’) = Z(G’), we give the generators of the centralizer by compu-
ting the generator of the center of each simple part of the subgroup G’. The em-
bedding we choose for our task is the one provided by the corresponding pro-

jection matrix, which can be found in [32] for the classical cases and in [40] for
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the exceptional ones. As it was discussed in section 5.3, this particular choice
offers computation efficiency. Assume that {«;, ..., x,} are the simple roots of
the simple Lie algebra L and let —x, denote the highest root. A maximal regu-
lar semisimple subalgebra L’ of L can be realized as the subalgebra with simple
roots {o, x1, ..., &n} \ {xx} where «y is a simple root of L with prime mark m,..
We saw in Lemma 5.4.1 that the centralizer of G’ in G is generated by the center

of the Lie group G together with the element

Znia)
emk <,

In order to relate this information in the context of projection matrices we note
that there exists a Weyl automorphism o of L which transforms the subalgebra
L’ to the corresponding subalgebra L” used to produce the projection matrix
for the branching rule for L D L”. If G” is the Lie group associated with L”, it
follows that the centralizer of G” in G is generated by the center of G together
with

.
o ioldy)

As explained in subsection 5.4.1, the eigenvalue of the action of an element
of Cg(G')onap =) ", mw; weight subspace is uniquely determined by the
value of its exponent, which can be given in the form of a congruence equa-
tion. In tables 5.6 and 5.7, for each pair L D L', we provide a generator of
the center of each simple part of L’ as a congruence equation. Furthermore,
we give the structure of the quotient C¢(G’)/Z(G) and an element that gene-
rates it. More precisely, if Cg(G')/Z(G) = (x + Z(G)), we give the element x,
again as a congruence equation. That particular equation is really the relative
congruence equation, as it provides the new partial invariants for the summands
in the branching rule. Since the element associated to the deleted node o is

(a\)“), where o is the automorphism

27
certainly a suitable x, we take x to be e™« “
corresponding to the projection matrix.

Note that for all cases where the index k appears in table 5.6, for example

Bn D By @ Dy, the inequality k > n — k holds.
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Example 5.4.1.
Let us consider the case F4 D A, @ A,. In this case the simple root o, with mark
3 is deleted from the extended Dynkin diagram, where the dotted node represents the

extension (&) :

First we determine the Weyl automorphism o, which transforms the subalgebra
(A2 A;)" having coroots {Ro, &1} and {®3, R4} to the corresponding subalgebra A, &
A, used to produce the projection matrix for the branching rule for F4 D Ay @& Ay,

This can accomplished by noting from the projection matrix [40]
< 0011 )
0210
1211
1710

0(Ro) = R3+R4; 0(R1) = 2R82+83; 0(R3) = R1+2R+R3+R4; 0(R4) = R +R2+R3.

—NNO

that

Therefore the coroots of A, ® A, in our chosen embedding are
(&3 + ®4; 28, + R3}5{®1 + 28 + Rz + Ra; &1 + &2 + K3} .

Applying the results of table 5.5 for A, to the case n = 2, we know that the
eigenvalue of the action of a generator of Z(A,) on a representation of highest weight

1= myw; + myw, is given by the congruence equation
m;+2m,; mod 3.

In our situation, this information can be easily translated : the eigenvalue of the action
of a generator of the center of the first Ay ona w = Y, myw; weight subspace is

given by the congruence equation
(M3 +m4) +2(2my +m3) =my+my mod 3.
Similarly, for the second A, we find
(my 4+ 2my +m3+my) +2(my +my +m3) =my+my mod 3.
Therefore, if we define a := m; + m4 mod 3, we have that

Cr,(A2®Ay) =Z3=(a).
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Now, since the center of F4 is trivial, we already know that
Cr, (A2 ® A2)/Z(F4) = Z3 = (a).

However, let us present a uniform method to compute a generator of the quotient. We

want to find the action of e3 °®2)_ First, we compute
WDy =30 +6& + 48R3+ 204 .
Since ®g = —2&1 — 3®, — 283 — &4 we conclude that
o0(&) =—& — 3%, — 283 — Q4.
Therefore, by substitution, we have

0'(@2) = —2&2 — 3&3 — 2&4

. 4 .. .
®2) on a weight w= Y|, myw; is given in

From this we have that the action of e’3 ol
modular form by
a:mp;+my mod 3
and so that
Cr, (A2 ® A2)/Z(F4) = Z3 = (q).

In particular we have the branching rule
(1,0,0,0) > (0,0)(1,1)[0] + (0,2)(1,0)[1] + (2,0)(0, D[2] + (1,1)(0, 0)[0]

where the term in square brackets is the relative congruence class and is to be interpre-
ted modulo 3.
Example 5.4.2.

Consider B3 D As. We know from [32] that the projection matrix for that case is

010
P:(mo),
011

and from table 5.6 (from the line B,, D Dy, n odd, with n = 3) that the relative

congruence equation is

a:=2mj;+3m3; mod4.

Now consider the branching rule for the irreducible B3 representation with highest

weight wy = (1,0,0). We have :
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Weight

2mq +3m3 mod 4

Image under P

(1,0,0)
(-1,1,0)
(0-1,2)
(0,0,0)
(0,1,-2)
(1,-1,0)
(-1,0,0)

S T S R O S LS )

(0,1,0)

(1-1,1)
(-1,0,1)
(0,0,0)

(1,0,-1)
(-1,1-1)
(0,-1,0)

TABLE 5.1. The irreducible B3 representation with highest

weight (1,0,0).

and we can conclude that the relative congruence classes split entirely the two repre-

sentations of Az here. The branching rule is

(1,0,0) > (0,1,0)(2] + (0,0, 0)[0]

where the term in square brackets is to be interpreted modulo 4.

The same exercise with the irreducible B3 representation with highest weight w3 =

(0,0,1) gives us :

Weight

2m; +3m3 mod 4

Image under P

0,0,1)
0,1,-1)
(1-1,1)
(-1,0,1)
(1,0,-1)
(-1,1-1)
(0-1,1)
(0,0,-1)

W W W R kR =R W

0,0,1)
(1,0,0)
(-1,1,0)
(0-1,1)
0,1,-1)
(1,-1,0)
(-1,0,0)
(0,0,-1)

TABLE 5.2. The irreducible B3 representation with highest

weight (0,0, 1).
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and again we can conclude that the relative congruence classes split entirely the two

representations of As. The branching rule is
(0,0,1) 5 (0,0,1)[3] + (1,0,0)1]

where the term in square brackets is to be interpreted modulo 4.

The difference in labels in the two cases — 0 and 2 for the first one, 1 and 3 for
the second — is caused by the fact that these two representations of Bz belong to two
different congruence classes : in the first case mz = 0 mod 2 whereas in the second

case m3 =1 mod 2.

5.5. CONTINUOUS CENTRALIZERS

The maximal regular reductive subalgebras of a simple Lie algebra L can
again be easily described in terms of the Dynkin diagram of L. Explicitly any
such subalgebra arises as the semisimple Lie algebra having its Dynkin dia-
gram given by deleting one node of the Dynkin diagram of L having mark
equal to 1 direct sum with the 1-dimensional subalgebra Ch, consisting of the
intersection of the kernels of the remaining roots. If &y denotes the node of
mark 1 deleted from the Dynkin diagram of L, we observe that the centralizer
Cs(G’) of G'in G is generated by the center Z(G) of G, the center Z(G’) of G’
together with the rank 1 subgroup Uy := (e®®« | @ € R). In all cases it is easily
verified that the center Z(G’) of G’ is contained in the subgroup Z(G) x U,.
The centralizers of maximal regular reductive subalgebras separate into two
types. Either e?™® generates the center of G in which case the centralizer of

G’in G is U; or e*™® generates a proper subgroup of Z(G) in which case the

centralizer properly contains U; —in fact, we have
Ca(G")/U;y ~ Z(G)/ (™)

In some cases this second type of centralizer cannot be expressed as a direct
product of subgroups.
The definition of relative congruence classes introduced in subsection 5.4.2 is

also true for maximal regular reductive subalgebras.
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5.5.1. Explanation of table 5.8

Table 5.8 presents the structure of the centralizers and the relative congruence
relations for all maximal regular reductive subalgebras in classical and excep-
tional simple Lie algebras, whenever such a subalgebra is present.

For each such algebra-subalgebra pair L O L', with associated groups G D
G’, we give the structure of the centralizer of G’ in G, Cg(G’), which is either a
continuous group of rank 1 or a product, not necessarily direct, of a continuous
group of rank 1 with a finite cyclic group. Furthermore, if L’ = L"®H; and G’ =
G” x U,, we give the modular relations associated with the centers Z(G) and
Z(G"), the structure of H; as well as the relative congruence relation provided
by the centralizer C(G').

As we did for the discrete centralizers in section 5.4, the embedding of the
subalgebra L’ we choose for our task is the one provided by the corresponding
projection matrix, which can be found in [32, 34, 40].

Assume that {«;, ..., a} and {wy, ..., w,} are the simple roots and the fun-
damental weights of the simple Lie algebra L, respectively. The semisimple
part L” of a maximal regular reductive subalgebra L’ of L (i.e. L' = L” & H;)
can be realized as the subalgebra with simple roots {o, . . ., o} \ {x} where o

is a simple root of L with mark m; = 1. We have
Uy = (e |9 € R)

or equivalently
Hp:=C(dy) .

In order to present this information in terms of the embedding provided
by the projection matrix we first note that there exists a Weyl automorphism
o of L which transforms the subalgebra L” to the corresponding subalgebra
L" used to produce the projection matrix for the branching rule for L > L"".
We can then determine the simple roots of L", with associated Lie group G",
and write them in terms of the fundamental weights w;’s. To compute the H;
summand, one only has to find the element of the Cartan subalgebra that is in

the intersection of the kernels of these weights. This in turn provides a relative
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congruence relation. The net effect of all these calculations is that the projection
matrix of L O L” & H; should be written as the projection matrix of L > L"”
with an additional row at the bottom — when a weight of an irreducible repre-
sentation of L is multiplied by this projection matrix, the last coordinate will
yield the relative congruence value for the weight.

Now, we know the continuous rank 1 group U, is contained in the centra-

lizer of G” x U; in G, because
Cao(G" x Uy) =(Z(G), Z(G" x Uy),Uy) .
And since it is easy to show that
Z(G" x Uy) C(Z(G), W),

it remains to determine whether or not the center of G is contained in U; to be
able to finally give the structure of the centralizer.
Example 5.5.1.

Let us consider the case E¢ D D5 @ Hy. We first note from [40] that the projection

matrix for E¢ D D5 is given by

011100
000001
P={|o001000].
000110
110000

(Note that we could use directly the projection matrix for Eg O Ds@®H,, also presented
in [40], but we choose to show here the reasoning behind that last line of the matrix.)
Since all of the roots of Eg have the same length we can see that the base of simple

roots for D5 is given by

{otr+oz+0s, g, &3, Xa+&s5, X1+ ).
Writing the roots in terms of the fundamental weights of Ee, we get
{—wi1twr+ws—ws—wg, —W3+2We, —Wr+2W3—Wsa—Wg, —W3+Ws+Ws, W1+Wr—wW3}.

We can determine the element of the Cartan subalgebra that is in the intersection of the
kernels of these weights by simply solving a homogeneous system of linear equations,
and we find :

Hy =C(& — &+ & — &s) .
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Using table 5.5 we find that the center of Eg is generated by

27T, 270 (A& +5&; +6&3 +484 +285 +38 )

e =€ .

It follows that the congruence class of an irreducible representation with highest weight

A=Y % miw; is determined by the value
mp;+2my+my+2ms=m;—my+my —ms mod 3.

Again from table 5.5 we have that the center of Ds is generated by

o 27 (2(82 83+ )+285 +3(84 +85 ) +5(&1 +8&2))

which reduces to the modular condition
m+3m+my+3ms=m;—my+my—ms mod 4.
Finally we observe that the continuous rank 1 group
Uy = (e®& &) | g ¢ R)

is contained in the centralizer of Ds x Uy in Eg and further that the center of Eg is
contained in U, (take © = %”) and that the center of Ds is contained in U, (take
0 = ZF). So we naturally have that the centralizer of Ds x Uy is equal to Uy. For this

embedding the relative congruence condition can be written as
m;—my+ my —MmMs.

Note that the effect of having the center of Eg in U, is that all weights in an ir-
reducible Eg representation will yield relative congruence values, i.e. the values of
my—my+mg—ms, that will be congruent modulo 3. In other words if the E¢ irre-
ducible representation has congruence class 0 then all the relative congruence values
on the weights of this representation will be congruent to 0 modulo 3 (0,+3,+6, ...).

All these calculations imply that the projection matrix of E¢ O Ds @ H; should
be written as the projection matrix of E¢ O Ds with an additional row at the bottom
given by

(1-101-10) .
When a weight of an irreducible representation of E¢ is multiplied by this projection

matrix, the last coordinate will yield the relative congruence value for the weight.
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Now consider the branching rule for the irreducible 27-dimensional Eg representa-

tion with highest weight w, = (1,0,0,0,0,0). We have :

Weight my—my+ma—ms | Image under P
(1,0,0,0,0,0) 1 (0,0,0,0,1)
(-1,1,0,0,0,0) -2 (1,0,0,0,0)
(0,-1,1,0,0,0) 1 (0,0,1,0,-1)
(0,0,-1,1,0,1) 1 (0,1,-1,1,0)
(0,0,0,-1,1,1) -2 (-1,1,0,0,0)
(0,0,0,1,0,-1) 1 (1,-1,0,1,0)
(0,0,0,0,-1,1) 1 (0,1,0,-1,0)
(0,0,1,-1,1,-1) -2 (0,-1,1,0,0)
(0,0,1,0,-1,-1) 1 (1-1,1,-1,0)
(0,1,-1,0,1,0) -2 (0,0,-1,1,1)
(1,-1,0,0,1,0) 1 (-1,0,0,1,0)
(0,1,-1,1,-1,0) 1 (1,0,-1,0,1)
(-1,0,0,0,1,0) -2 (0,0,0,1,-1)
(1,-1,0,1,-1,0) 4 (0,0,0,0,0)
(0,1,0,-1,0,0) -2 (0,0,0,-1,1)
(1,-1,1,-1,0,0) 1 (-1,0,1,-1,0)
(-1,0,0,1,-1,0) 1 (1,0,0,0,-1)
(-1,0,1,-1,0,0) -2 (0,0,1,-1,-1)
(1,0,-1,0,0,1) 1 (-1,1-1,0,1)
(-1,1,-1,0,0,1) -2 (0,1,-1,0,0)
(1,0,0,0,0,-1) 1 (0,-1,0,0,1)
(0,-1,0,0,0,1) 1 (-1,1,0,0,-1)
(-1,1,0,0,0,-1) -2 (1,-1,0,0,0)
(0,-1,1,0,0,-1) 1 (0,-1,1,0,-1)
(0,0,-1,1,0,0) 1 (0,0,-1,1,0)
(0,0,0,-1,1,0) -2 (-1,0,0,0,0)
(0,0,0,0,-1,0) 1 (0,0,0,-1,0)

TABLE 5.3. The irreducible Eg representation with highest
weight (1,0,0,0,0,0).
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and we can conclude that the relative congruence classes split entirely the three repre-

sentations of Ds here. The branching rule is
(1,0,0,0,0,0) > (0,0,0,0,1)[1] + (1,0,0,0,0)[-2] + (0,0,0,0,0)[4]

where the term in square brackets is the relative congruence class.
Finally, we discuss an example where the centralizer of the maximal regular

reductive subalgebra is of the second type, i.e. where e?™®x

generates a proper
subalgebra of Z(G) in which case the centralizer properly contains U,.
Example 5.5.2. Let us consider the case D4 D A3®Hy. We use directly the projection

matrix for D4 D Az @ Hy, that can be found in [32] :

00
- (343
10

Since all of the roots of D4 have the same length we can see that the base of simple

—_e O —
Oo—=OC—

roots for Az is given by

{142, otg, o +a3} .

Writing the roots in terms of the fundamental weights of D4, we get
{Witwr—wz—ws, —wWr+2wW4, —W1+wWr+W3—wWa} .

We can determine the element of the Cartan subalgebra that is in the intersection of the
kernels of these weights by simply solving a homogeneous system of linear equations,
and we find :

H] = C(&1 + &3) .
Using table 5.5 we find that the center of D4 is generated by

p2midy _ e%(zaﬁ 128, +&3+84)
and

2midy, _ ezgi (&) +28 +&3+284)

e

It follows that the congruence class of an irreducible representation with highest weight

A=Y 1 miw; is determined by the values

msz+my mod 2
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and

mj;+msz mod 2.
Aguain from table 5.5 we have that the center of A3 is generated by

e%((@ +8)+284+3(82+83)) _ e%(@ +48 +383 +284)

which reduces to the modular condition
mi+3mz+2my mod 4.
Finally we observe that the continuous rank 1 group
Uy = (e®®1%) ] g € R)

is contained in the centralizer of A3 x Uy in D4 and further that the center of A3 is
contained in Z(D4) x U, (take e*™ ™ and 6 = 27“). However, the center of Dy is not
contained in U, : instead, we have that Z(D4) NU; is a proper subgroup of Z(D4) that

yields the modular condition

mj;+ms mod 2.

In short, we know that
Cp, (A3 x Uq) = (Z(D4), Uy)

and that

Z(Dy4) =7y X 73,
and thus using the fact that

Z(Dy)NUy =7Z;,
we find that

CD4(A3 X U1) = U1 X Zz.

For this embedding the relative congruence condition can be written as
my + ms,

which coincides with the last line of P.
Note that the effect of not having the center of D4 contained in U, is that kno-

wing the relative congruence value does not tell us which congruence class we are
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dealing with. For example the modules with highest weights (1,0,0,0) and (0,0, 1,0)
will both have odd relative congruence labels but these two modules are in different
congruence classes —mz+m4s =0 mod 2 for (1,0,0,0), and mz+ms =1 mod 2
for (0,0,1,0) — and hence their weight spaces must be distinguished by the action of
the whole centralizer. However when trying to reduce a representation of D, the only
information that can help splitting the A representations is the relative congruence
condition.

Let us consider the branching rule for the irreducible 8-dimensional D4 represen-

tation with highest weight w, = (1,0,0,0). We have :

Weight | mi+ms | Image under P
(1,0,0,0) 1 (1,0,0)[1]
(-1,1,0,0) -1 (0,0,D[-1]
0,-1,1,1) 1 (-1,1,0)[1]
0,0,-1,1) -1 (0,1,-1DI-1]
0,01,-1) 1 (0,-1,1)[1]
0,1,-1,-1) -1 (1,-1,0)[-1]
(1,-1,0,0) 1 (0,0-1[1]
(-1,0,0,0) -1 (-1,0,0)[-1]

TABLE 5.4. The irreducible D, representation with highest
weight (1,0,0,0).

and we can conclude that the relative congruence classes split entirely the two repre-

sentations of Az here. The branching rule is

where the term in square brackets is the relative congruence class (and the value of the
H; term).
Finally, the branching rule for the irreducible 28-dimensional D4 representation

with highest weight w, = (0,1,0,0) is

(0,1,0,0) D (1,0, 1)[0] + (0,1,0)[2] + (0,1,0)[—2] + (0,0, 0)[0] .
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We have here an example where the representation of Az corresponding to a fixed ei-
genvalue is not be irreducible : the As representations with highest weights (1,0,1)

and (0,0, 0) share the same relative congruence label [0].
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Dynkin Numbering Marks

Ca cC—®—--—e—D cC—®—--—e—D
0 1 n—1 n 1 2 2 1
0 n—1 1 1
Dy oo "o
2 n—2 2 2
1 n 1 1
0 1
6 2
Ee
1 2 3 4 5 1T 2 3 2 1
o—o—o—i7—o—o—o o—o—o—iz—o—o—o
E;
0 1 2 3 4 5 6 1T 2 3 4 3 2 1

F,4 o—0—C—9—e o—0o—C—o—@
0o 1 2 3 4 1 2 3 4 2

G, o—C—» o——»
0o 1 2 1 2 3

FIGURE 5.1. The Dynkin numbering of the extended diagrams

with marks.
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n(my +2my + - +nmy,) modn + 1
A,

Center = Z,,;

Generator : exp 2@,

(n—1)(my +2my +---+nmy) modn+1

2(my +2my + - +nmy) modn + 1
mi +2my + - +nmy modn + 1
1 m, mod 2 1
Bn Cn
Center = 7, : :  Center=7,

Generator : exp 27ti®; Generator : exp 27,

m; +m3 +ms+... mod2

For n even: Center = 7Z, X Z» For n odd : Center = Z,

Generators : exp 27, exp 2mid, Generator : exp 2mid®d,,

1 Z>07 4(3<sz1 +2mz+---+nmpu_7 + (n—2)m, mod4
Mn_1 + My mod 2 2m

+2mz+--- 4+ (n—2)mp_1 + nm, mod 4

m4 + Mg + my mod 2

mi + 2my + myg + 2ms mod 3

E6 E7

1
Center = Z3 Center = 7,
Generator : exp 27i®; Generator : exp 2middg

2mq + my + 2my + ms mod 3

TABLE 5.5. Eigenvalues of central elements z = exp 27ti®; on an

irreducible representation of highest weight A = > ' ; myw;.



150

LOL Ca(G) e
B, DA © A, Zy x Zy = {a,b) Z;
Aq a:mj +mymod2 a
Aq b:mymod?2
Bn D Bn2 ®A; BA; 73 x 73 = (a,b) Z»
Bn2 a:mymod?2
A b:mp_2+mu_7 +mymod2 b
Aq atb:my_> +my_1 mod2
BiDAI B A3 Z4 = (a) Z;
A4 2a:mymod2 a
A3z a:2my + 3my mod4
Bn DBn3® A3 Z4 ={a) Z;
Bn_3 2a:m, mod?2 a
Az a:2my_4 +2mpu_3 + 3m,, mod4
Bn DD, (n odd) Z4 = {a) Z>
D. a:2my+2mz+---+2my_2 + nmy mod4 a
B, D Dn (n even) Zy X Zy = {a,b) Z;
Dn a:m;+mz+---+my_1+ 5m,; mod2 a
and b:m,; mod2
Bn D Dno1 @A (n odd) Zy x Zy = {a,b) Z;
| D J a:mj;+msz+---+MmMp_2+MmMp_1
+"T*1mn mod2 and b:m, mod2 a
Aq b:m, mod?2
BhnDDno1 @A (n even) Zs4 = (a) Z;
Dn_1 a:2my+2mz+---+2mp_3+ (n—1)m,y mod 4 a
Aq 2a:m,, mod?2
Bn DB ®Dn_x (n—k even) Zy X Zy = {a,b) Z>
By a:mymod2
(n—k—4)/2
Dn_x aandb: Z (M2k—n44it2 + M2k—n14i43) b

i=0
+Mp_2 +Mp_7 + %mn mod 2

TABLE 5.6. Discrete centralizers and relative congruence classes

of irreducible representations of the classical simple Lie algebras.




Cs(G)
LOL/ Cg(G) E(G)
Bn DBk ® Dk (n—k odd) Z4 ={a) Z>
By 2a:my mod2
m—k—3)/2
Dnx a: Z 2(Mok—n+air2 + Mok—ni4ait3) a
i=0
+(n —k)m,, mod4
Bn DDk ®Bn_x (Tl, k Odd) Ly = <C1> Z>
(2k-n—3)/2
Dy a: Z 2moiqg
i=0
(n—k—2)/2
+ Z 2(Mok—nt4j + Mok—nt4j+1) a
j=0
+km, mod 4
Bn_x 2a: m, mod 2
Bn DDk ®Bn_x (n even, k odd) Z4 = (a) Z>
2k-n—2)/2
Dy a: Z 2maiy
i=0
(n—k—3)/2
+ Z 2(M2k—ny4ajr2 + Mok nidjr3) a
i=0
+km,, mod4
Bn_x 2a: m, mod 2
Bn DDk & Bk (n, k even) Zy x 7y ={a,b) Z>
2k—n—2)/2
Dy a:mpymod2 and b: Z Mot
i=0
(n—k—2)/2
+ Z (M2k—n+4j42 + M2k—n+4j+3) b
i=0
—I—%mn mod 2
Bn x a:my mod?2
B DDk ®Bn_x (n odd, k even) Zy x Zy ={a,b) Z>
2k—n—3)/2
Dy a:mpymod2 and b: Z M2it1
i=0
(n—k—1)/2 '
+ Z (M2k-—nt4j + M2knraj11) b
j=0
—I—%mn mod 2
Bn x a:my mod?2

TAB. 5.6. (continued)
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Lol Ca(G) SEr
ChDCh1 @A, (n even) Zy x Zy = {a,b) Z>
Cn_1 a:m;+msz+---+my_q +m, mod?2 a
Aq b:mymod?2
ChDChl1 @A, (n odd) Zy x Z3 = {a,b) 7
Cn_i a:mj;+mz+---+m,_o,mod2 a
Ajq b:m, mod2
ChDCik®Chx (Tl,k Odd) Lo X Uy = <Cl,b> Z>
2k—ni1)/2
Cy a: Z mai—1
i=1
(n—%)/2
+ Z (M2k—n+4j—1 + M2k—n+4j) mod 2 a
j=1
(n—%k)/2
Cnx b: (Mak—n+4j—2 + M2k—n+4j—1) mod 2
j=1
ChDCr®Crx (n, k even) Zy x Zy = {a,b) Z>
2k—m)/2
Cy a: Z moi—1
i=1
(n—k)/2
+ Z (M2k—n+4j—3 + M2k—n+t4aj—2) mod 2 a
=1
(nlfk)/z
Cn—x b: (Mok—n+4j—2 + Max—ny45—1) mod 2
=1
ChDCk®dCrx (neven, kodd) Z;xZ;={a,b) Z;
2k—m)/2
Cy a: Z mai—1
i=1
(n—k+1)/2 '
+ Z (M2k—n+4j—3 + Mok—n+4j—2) mod 2 a
j=1
m—k—1)/2
Chn—k b: Z (Mak—nt4j—2 + Mok—n+4j—1)
j=1

+m,, mod 2

TAB. 5.6. (continued)




LoL Co(G) Sier
ChDCrk®Chx (nodd, keven) Z; x Z; ={(a,b) Z>
(2k—m+1)/2
Cxk a: Z m2i—1
(n—k=1)/2 =
+ (Mak—n+4j—1 + M2k—n+45) mod 2 a
(;:qu)/z
Cnx b: (Mak—niaj—2 +Mak_nyiaj—1)
=1
+m, mod 2
D4 D A1BA1BA1DA, Zy X7y xZy; ={a,b,c) Z;
Aq a:my + mzmod2
Aq b:my + my mod 2 b
Aq c:my 4+ my + msz + mygmod 2
Ajq a+b+c:m; +mymod2
D, DODn2® A1 ®A; | (neven) Zy X7y xZy ={a,b,c) Z;
Dn_2 a:myg+mz -+ +Mpy5+ My 2+ FMpy g
+(1+ 5)mymod 2 a
and b:m,_;+m,mod2
Aq C:Mmp_3+mpy_2+my_7+m,mod?2
Ajq b+c:mn_3+ m,_»mod?2
DhoDODnh2dA1 DA | (nodd) Z4 X 73 ={a,b) Z>
D> a:2my+2mz+ -+ 2mpy_g +2my_3
+nm,_1 + (n—2)m, mod 4 a
Aq b:my 3+my_2+m,_1 +m,; mod2
A 2a+b:mp_3 + mp_rmod2
D¢ D A3 D A3 Z4 X Zy = {a, a+b) 7>
A3z a:2m; + 2msz + ms + 3mg mod 4 a
A3 b:2m; +2m; + 3ms + 3mg mod 4
DnDDn 3@ A3 (n even) Z4 X Zy = (a, a+b) Z>
Dn._3 a:2m;+2mz+---4+2m,_7+2my g4+
2my, 3+ (n—1)mu_1 + (n+ 1)m, mod 4 a
A3z b:2m, s5+2my 4 +3mpy_7 +3m,mod4

TAB. 5.6. (continued)
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LOL’

Cg(G')

Dn D an3 ) AS

(n odd) Zy x Zs = (a,b)

Dn73

a:my+ms+---+Mp_g+Mp_5+mMp_2
+2 myq + 2l m, mod 2

and 2b:mu_7+ m,mod2

Az

b:2m, 5+ 2my 4 +3my_7 +3m,, mod4

Dn D) Dk 57 ank

(n, k odd) Z4 X 73 = {a,b)

Z;

Dy

(2k—n+1)/2

a: Z

i=1

2mpiq

(n—k—2)/2
+ Z 2(Mak—nt4j—1 + Mok—n+4j)
=1

+k(mn_7 + mn)mod4

2a:my_1+mymod2 and

(n—k—2)/2
oY
=1

+Mn_2 + 252 my g + 5 Em, mod 2

(M2k—nt4j—2 + M2k—n+4j—1)

Dy DD ®d Dk

(n, k even) Zy x Ly X Zy = {a,b,c)

Z;

Dy

a:mp_1+mymod2 and b:

(n—k)/2
+ Z (Mok—n+4j—3 + Mok—n+4j—2)
i1

+%(mn_1 + mu ) mod 2

a:mp_1+mymod2 and
(n—k—2)/2

c: (Makntdj—2 + Mok niaj—1)

—_

j

+MmMn_s + “7;‘*2 Mn_1 + “T*kmn mod 2

Dy DD ® Dk

(neven, kodd) Z4 x Z; = {a,a+b)

Z

Dy

+ 2(Mox—n44j—3 + Mok—n+4j—2)

+k(mn_7 + m,)mod4

(n—k—1)/2
b: Z 2(Mok—nyaj—2 + Mak_niaj—1)
=1

+(n—k—2)m,_1 + (n—k)m, mod 4

TAB. 5.6. (continued)




Co(G’
LOL Cc(G') G
Dna DD ® Dk (nodd, keven) Z; x Zs ={a,b) Z>
(2k—n+1)/2
Dy a: Z mai—1
i=1
(n—k—1)/2 h
+ (Mok—n+aj—1 + Mok—n+4j) a
=1
+%(mn_1 +mp)mod2 and 2b:m,_; +m, mod2
m—k—1)/2
Dn_x b: 2(Mok—n+aj—2 + Mok—nyaj—1)

=1
+(n—k—2)m,_7 + (n—k)m,, mod 4

TAB. 5.6. (continued)
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LOL Ca(G) e
Es D As @ Ay Zs ={a) Z;
As a:4mg +5my +3m3 + my + 2ms + 3mgmod 6 3a
Ajq 3a:my + m3 + my + mgmod 2
Es DA BAL DA, 73 x Z3 = (a,b) Zs
Ay a:mj +ms + mgmod 3
A b:2m,; +my + ms + 2mgmod 3 b
Az 2a+b:2my + 2m, + my + mgmod 3
E;DAs DA Zs = (a) Z3
As a:2my; +my +4ms + 3mg + 5my mod 6 a
Az 2a:2m; + my4 + ms + 2m7y mod 3
E; DAy Z4 = (a) Z;
Az a:2mg +2my + my + mg + 3my mod 4 a
E; D Ds® A4 Zy X Zy = {a,b) Z;
Dsg a:my;+m3+mgmod2 and
b :my4 + mg + my mod 2 b
Ajq a+b:m; + msz + my + my mod 2
Es O Dg Z = (a) Za
Dg a:mq +my 4+ ms +mgmod2 (and Omod 2) a
Es D Ag Z3 = (a) Z3
Ag a:my 4+ my + 2mg + 2my; + mg mod 3 a
Es DE; d Ay Zy; ={a) Z;
E, a:ms + mg mod2 a
Ajq a:ms + mgmod2
Es D Ag @ Ag Zs = (a) Zs
Ay a:mg +3my +mz +4mg + 4my 4+ 2mg mod 5 a
Ay 3a:3my +4m;y + 3mz + 2mg + 2my + mg mod 5
Es DEs DA Z3 = (a) Z3
Eg a:ms+ 2my + mgmod 3 a
Az a:msz+2my + mgmod3

TABLE 5.7. Discrete centralizers and relative congruence classes

of irreducible representations of the exceptional simple Lie alge-

bras.




LOL Co(G) ot
G2 DA DA Z; ={a) Z;
Aq :my +my mod 2 a
Ajq :my + mymod 2
G, DA Z3 = {a) Z3
Al a:mymod3 a
FaDA®A; Z3 ={a) Z3
Az :my + my mod 3 a
A :my + my mod 3
F4 D By Zy =(a) Ly
B4 :m3 + my mod 2 a
F4s D C3d A4 Z; ={a) Z;
Cs :my + my mod 2 a
Ajq :my + mymod 2

TAB. 5.7. (continued)
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A, DA DA k1D Hy Co(G')=Ur x Z(An)

Co(G)/Uy =Zgq, d=gcd(k+1,n+1)

Z(AL) my +2m; + -+ - + nmy, mod (n+1)

Z(Ax) my +2my + - -+ + kmy mod (k+1)

Z(An_x_1) My42 +2mi43 + - - - + (n—k—1)m,, mod (n—k)
K+ n—k—1
H; C%—H ((nk) Z iR + (k+1) Z (nki)&k+1+i>
k+1 = n—k l1 :

Relative congruence relation

(n—k)Ziml + (k+1) Z n—k—1)my 144
i i=1

B, DBy 10H; Ce(G)=U,
Z(Bn) my, mod 2
Z(Bn-1) m,, mod 2
Hy C3 (&n)
Relative congruence relation Mn
ChDAL 18 H; Cs(G)=U
Z(Cn) my +m3+-~-+m2[%]71m0d2
Z(An_1) my —I—m3—|—~~~+mz[nT+1}7]modn
Hy C3 (&1 + &3+ + gy )
Relative congruence relation My M3 A+ My
D,DA,19H, (n even) Co(G')Y=Uy x Z>
Z(Dy) Mn_1+mMomod2 and
my+mz+---+my 3+ (1+3)my 1 + 3my mod 2
Z(An_1) my+mz+ -+ my 3+ (1+5)my 1 + Fmymodn
H; Cl(@1+8&3+ +8& 1)
Relative congruence relation my +m3+ -+ mp_q
Dn D An1®Hy (n odd) Ce(G) = U,
Z(Dy) 2my +2m3 + -+ 2mp_2 + (n—2)mu_1 + nm,y mod4
Z(An_1) my+ms 4 Mmoo+ 25t my g + 2l m, modn
H, Cy (281 +283+ -+ 2&11,2 —®n 1+ &)
Relative congruence relation 2my 4+ 2ms+ -+ 2mpy 2 — My + My

TABLE 5.8. Continuous centralizers and relative congruence

classes of irreducible representations of the simple Lie algebras.
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D,O>D,1¢H; (n even) Cg(G)Y=Uy x2Z>
Z(Dy) mn_1+m,ymod2 and
my+mz+---+myo3+ (1+3)my 1 + Fmy mod 2
Z(Dn_1) 2my +2mz + -+ 2my 3 + (n—1)(Mn_7 + M, ) mod 4
H; CI (Bn-1 — &n)
Relative congruence relation Mp_1 — Mp

Dn D anl D Hl

(T\. Odd) Cg(G/) =1y x Z(Dn)

Cg(G')/Uy =7,

Z(Dy) 2my +2m3 + -+ 2mn_> + (n—2)m,_7 + nm,, mod 4
Z(Dn_1) mMn_1+m,mod2 and
my+ms+ -+ mpoo + 25 (me o + my) mod 2
H; CS (Bn—1— &)
Relative congruence relation Mn_1 — My
E¢ D D5 @ Hy Ce(G) = U,y
Z(Eg) mi; — my + my — ms mod 3
Z(Ds) mi — my + my — ms mod 4
Hy CI (& — &2+ &4 — @&s)

Relative congruence relation

m; —my + My —Ms

E; D Es ® Hy Cg(G') =4
Z(E7) my4 + mg + my mod 2
Z(Eg) m4 + Mg + my mod 3

Hy C3 (B4 + &6 + &7)

Relative congruence relation

my + Mg + my

TAB. 5.8. (continued)
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