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Sommaire

Le Problème de Tournées de Véhicules (PTV) est une clé importante pour gérér efficacement

des systèmes logistiques, ce qui peut entraı̂ner une amélioration du niveau de satisfaction de la

clientèle. Ceci est fait en servant plus de clients dans un temps plus court. En terme général,

il implique la planification des tournées d’une flotte de véhicules de capacité donnée basée à

un ou plusieurs dépôts. Le but est de livrer ou collecter une certain quantité de marchandises

à un ensemble des clients géographiquement dispersés, tout en respectant les contraintes de

capacité des véhicules.

Le PTV, comme classe de problèmes d’optimisation discrète et de grande complexité, a

été étudié par de nombreux chercheurs au cours des dernières décennies. Étant donné son

importance pratique, des chercheurs dans les domaines de l’informatique, de la recherche

opérationnelle et du génie industrielle ont mis au point des algorithmes très efficaces, de nature

exacte ou heuristique, pour faire face aux différents types du PTV. Toutefois, les approches

proposées pour le PTV ont souvent été accusées d’être trop concentrées sur des versions sim-

plistes des problémes de tournées de véhicules rencontrés dans des applications réelles. Par

conséquent, les chercheurs sont récemment tournés vers des variantes du PTV qui auparavant

étaient considérées trop difficiles à résoudre. Ces variantes incluent les attributs et les con-

traintes complexes observés dans les cas réels et fournissent des solutions qui sont exécutables

dans la pratique. Ces extensions du PTV s’appellent Problème de Tournées de Véhicules Multi-

Attributs (PTVMA).

Le but principal de cette thèse est d’étudier les différents aspects pratiques de trois types

de problèmes de tournées de véhicules multi-attributs qui seront modélisés dans celle-ci. En
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plus, puisque pour le PTV, comme pour la plupart des problèmes NP-complets, il est difficile

de résoudre des instances de grande taille de façon optimale et dans un temps d’exécution

raisonnable, nous nous tournons vers des méthodes approchées à base d’heuristiques.

Mots-clés. Problème de tournées de véhicules, Optimisation discrète, Problème de tournées de

véhicules multi-attributs, Heuristique.



Summary

The Vehicle Routing Problem (VRP) is an important key to efficient logistics system manage-

ment, which can result in higher level of customer satisfaction because more customers can be

served in a shorter time. In broad terms, it deals with designing optimal delivery or collection

routes from one or several depot(s) to a number of geographically scattered customers subject

to side constraints.

The VRP is a discrete optimization and computationally hard problem and has been ex-

tensively studied by researchers and practitioners during the past decades. Being complex

problems with numerous and relevant potential applications, researchers from the fields of

computer science, operations research and industrial engineering have developed very efficient

algorithms, both of exact and heuristic nature, to deal with different types of VRPs. However,

VRP research has often been criticized for being too focused on oversimplified versions of the

routing problems encountered in real-life applications. Consequently, researchers have recently

turned to variants of the VRP which before were considered too difficult to solve. These vari-

ants include those attributes and constraints observed in real-life planning and lead to solutions

that are executable in practice. These extended problems are called Multi-Attribute Vehicle

Routing Problems (MAVRPs).

The main purpose of this thesis is to study different practical aspects of three multi-attribute

vehicle routing problems which will be modeled in it. Besides that, since the VRP has been

proved to be NP-hard in the strong sense such that it is impossible to optimally solve the

large-sized problems in a reasonable computational time by means of traditional optimization

approaches, novel heuristics will be designed to efficiently tackle the created models.
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Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is one of the most important combinatorial optimization

and computationally hard problems in the field of Operations Research. It was introduced

by Dantzig and Ramser (1959) and its basic version can be described as follows: a set of

customers having deterministic demands have to be satisfied from a central depot with a fleet

of homogeneous delivery vehicles of known capacity. Usually, the objective of VRPs is to

minimize the total distance traveled by the vehicle fleet, but it is also common to minimize

other objectives like the total transportation costs and the number of used vehicles. Effectively

solving VRPs in a distribution network can result in higher level of customer satisfaction and

substantial savings in the global transportation costs. In other words, better routing decisions

improve the capability of a distribution network, thereby enhancing market competitiveness.

Toth and Vigo (2002) reported that the use of appropriate solution methodologies to efficiently

solve vehicle routing problems in distribution processes often results in savings ranging from

5% to 20% in transportation costs.

The VRP has been a challenging subject for many researchers and a large variety of differ-

ent optimization methods have been proposed and studied. However, VRP research has often

been criticized for being too focused on idealized models with non-realistic assumptions for

practical applications. As a result, researchers have turned to variants of the VRP which before

were considered too difficult to solve. The variants include aspects of the VRP that are essential
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to the routing of vehicles in real problems. These extended problems are called Multi-Attribute

Vehicle Routing Problems (Rieck and Zimmermann (2006)).

Multi-Attribute Vehicle Routing Problems (MAVRPs) incorporate various complicating at-

tributes and constraints found in real-life applications. Among the real-life requirements are

capacity and travel time constraints, time window restrictions, a heterogeneous vehicle fleet

with different travel costs, order/vehicle compatibility constraints, multi-dimensional capac-

ity constraints, orders with multiple pickup and delivery, different start and end locations for

vehicles, and route restrictions for vehicles.

The most common approach when solving such multi-attribute vehicle routing problems is

to either simplify them, or to sequentially solve a series of simpler problems, that are obtained

by fixing or ignoring certain parts of the overall problem. This procedure usually leads to

suboptimal solutions. The current literature is very scarce to offer a satisfactory answer to

this challenge in terms of algorithms able to efficiently tackle multi-attribute vehicle routing

problems. The main goal of this thesis is to contribute toward addressing this challenge.

This thesis consists of three papers, each concerning the development of structured heuris-

tics to efficiently tackle a class of multi-attribute vehicle routing problems. In the first paper, we

study a Multi-Depot Periodic VRP (MDPVRP) as a well-known variant of the multi-attribute

vehicle routing problems. In the considered MDPVRP, a daily plan is computed for a homo-

geneous fleet of vehicles that depart from different depots and must visit a set of customers

for delivery operations over a planning horizon. In this multi-attribute vehicle routing prob-

lem, two kinds of constraints, i.e., maximum route length constraint and an upper limit of the

number of goods that each vehicle can transport, are considered. Moreover, the cost of each

vehicle route is computed through a system of fees depending on the distance that is traveled.

Since the VRP, as a generalization of the famous travelling salesman problem, is NP-hard and

does not admit high-quality polynomial time approximations, a new Path Relinking Algorithm

(PRA) is proposed to find the best possible solutions to this problem. The designed PRA in-

cludes different exploitation and exploration strategies that permit the algorithm to solve the

problem in two different settings: 1) As a stand-alone algorithm, and 2) As a part of a parallel

co-operative search algorithm known as Integrative Cooperative Search (ICS). On the other
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hand, in the second paper, we address the problem of determining the optimal fleet size for

three different MAVRPs, i.e., multi-depot VRP, periodic VRP and multi-depot periodic VRP.

Each of these multi-attribute VRPs incorporates three kinds of constraints that are often found

in reality, i.e., vehicle capacity, route duration and budget constraints. To solve the problems,

we propose a new Modular Heuristic Algorithm (MHA) whose exploration and exploitation

strategies enable the algorithm to produce promising results. Finally, in the third part, we study

a bi-criteria Multi-Depot Periodic VRP where two contradicting objective functions, i.e., total

number of used vehicles and total traveled distance, are to be simultaneously minimized. To

solve the problem, a parallel cooperative search approach called Integrative Cooperative Search

(ICS) is designed to find locally Pareto-optimal frontier of the problem. The developed ICS is

designed based on a new hierarchical decomposition procedure to decompose the problem into

more tractable sub-problems, the integration of elite solutions yielded by the sub-problems,

and an adaptive guidance mechanism.

The remainder of this thesis is organized as follows. The literature survey relevant to the

topic of this thesis is presented in Chapter 2. Chapters 3-5 respectively show the details of the

three papers done in this thesis. Finally, Chapter 6 provides conclusions and the evaluation of

the work.



Chapter 2

Literature review

In this chapter, the literature relevant to the topic of this thesis is reviewed. This chapter consists

of two main sections. Section 2.1 recalls the traditional Capacitated Vehicle Routing Problem

(CVRP) and briefly reviews the most prominent heuristics developed to solve it. Most of

these heuristics are also found in the next section when analysing heuristics for multi-attribute

vehicle routing problems. Section 2.2 focuses on the attribute classification system introduced

by Vidal et al. (2012b) and presents the selected MAVRPs and the corresponding subset of

chosen well-reported heuristics.

2.1 Heuristics for the CVRP

The CVRP, as a fundamental problem in combinatorial optimization with wide-ranging ap-

plications in practice, was introduced by Dantzig and Ramser (1959) under the name ”Truck

Dispatching problem”. We initiate the following section by recalling the CVRP formulation.

We then review the main categories of heuristic solution methods proposed in the past decades

to solve the CVRP.
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2.1.1 Problem statement

In general, the CVRP is defined on a directed complete graph G = (V,A) with one depot (node

0) and n customers indexed from 1 to n. A fleet of K identical vehicles with limited capacity

Q is based at the depot. Each customer has a known demand qi and a non-negative travel cost

cij is associated with each arc (i, j) ∈ A. If the matrix c is asymmetric, the corresponding

problem is called the asymmetric CVRP. Otherwise, we have cij = cji for all (i, j) ∈ A and

the problem is called the symmetric CVRP. The goal is to design a set of routes of minimum

total cost to supply all customers. A route is a cycle performed by one vehicle, starting and

ending at the depot and visiting a subset of customers. Its total load must not exceed the

vehicle capacity. Each customer must be visited by one single route, i.e., split deliveries are

not allowed. In general, the number of routes or vehicles used is not imposed, it is a decision

variable. The mathematical model of the asymmetric CVRP can be written as follows (Toth

and Vigo (2002)).

min
∑
i∈V

∑
j∈V

cijxij (2.1)

S.T

∑
i∈V

xij = 1 ∀j ∈ V \ {0} ; (2.2)∑
j∈V

xij = 1 ∀i ∈ V \ {0} ; (2.3)

∑
i∈V

xi0 = K; (2.4)∑
j∈V

x0j = K; (2.5)

∑
i/∈S

∑
j∈S

xij ≥ r(S) ∀S ⊆ V \ {0} , S 6= �; (2.6)

xij ∈ {0, 1} ∀i, j ∈ V ;(2.7)

Given a set S ⊆ V\{0}, we denote by r(S) the minimum number of vehicles needed to serve

all customers in S, i.e., the optimal solution value of the Bin Packing Problem (BPP) associated
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with item set S. The degree constraints (2.2) and (2.3) impose that exactly one arc enters and

leave each vertex associated with a customer, respectively. Similarly, constraints (2.4) and (2.5)

impose the degree requirements for the depot vertex. The capacity-cut constraints (2.6) impose

both the connectivity of the solution and the vehicle capacity requirements. Finally, constraints

(2.7) represent binary variable xij which takes value 1 if arc (i, j) ∈ A belongs to the optimal

solution and takes value 0 otherwise.

The asymmetric CVRP mathematical formulation can be easily adopted to the symmetric

problem. In the symmetric CVRP, the arc set A is generally replaced by a set of undirected

edges E. Toth and Vigo (2002) represented the mathematical model of the symmetric CVRP as

follows.

min
∑
e∈E

cexe (2.8)

subject to

∑
e∈δ(i)

xe = 2 ∀i ∈ V \ {0} ; (2.9)

∑
e∈δ(0)

xe = 2K; (2.10)

∑
e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ V \ {0} , S 6= �; (2.11)

xe ∈ {0, 1} ∀e /∈ δ(0); (2.12)

xe ∈ {0, 1, 2} ∀e ∈ δ(0); (2.13)

In the model described above, δ(S) is the set of edges e ∈ E that have only one endpoint in

S. The degree constraints (2.9) and (2.10) impose that exactly two edges are incident to each

node associated with a customer and that 2K edges are incident to the depot vertex, respectively.

The capacity-cut constraints (2.11) impose both the connectivity of the solution and the vehicle

capacity requirements by forcing that a sufficient number of edges enter each subset of vertices.

Finally, constraints (2.12) and (2.13) state the domain of decision variables. If single-customer

routes are not allowed, all used variables are binary; otherwise, if e /∈ δ(0), then xe ∈ {0, 1},
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whereas if e ∈ δ(0), then xe ∈ {0, 1, 2}.

A large amount of research results regarding the CVRP have been reported in terms of

theories, methods and algorithms. Generally, solution approaches presented for the CVRP can

be classified into exact methods, heuristics and meta-heuristics. Today, the best exact methods

for the CVRP are still limited to relatively small problems. Consequently, the development

of heuristics and meta-heuristics continues a very active domain in the literature (Vidal et al.

(2012b)). The main categories of such methods are reviewed in the following sections.

2.1.2 Route construction methods

Route construction methods were among the first heuristics implemented to solve the CVRP.

These algorithms gradually build a feasible solution while attempting to keep solution cost

as low as possible. Construction algorithms are divided into sequential and parallel methods.

Sequential algorithms expand only one route at a time, whereas parallel methods consider

more than one route simultaneously. Route construction algorithms are specified by three main

ingredients, namely an initialization criterion, a selection criterion specifying which customers

are chosen for insertion at the current iteration, and an insertion criterion to decide where to

insert the chosen customers into the current routes.

The most prominent heuristic of this group was proposed by Clarke and Wright (1964).

Their suggested algorithm starts with routes only formed by the depot and each node. At every

step of the algorithm, two routes are merged if there is a saving in distance. The procedure

is repeated until a complete feasible solution is achieved. Another classical route construction

heuristic is the sequential insertion algorithm of Mole and Jameson (1976). Their proposed

algorithm generalizes the definition of the savings function (Clarke and Wright (1964)), intro-

ducing two parameters for controlling the savings behaviour. A two-step insertion heuristic was

suggested by Christofides et al. (1979). In the first step, a sequential insertion algorithm is used

to determine a set of feasible routes. The second step is a parallel insertion approach. For each

route determined in the first step, a customer is selected and a set of single-customer routes is

constructed with these customers. The remaining unrouted customers are then inserted using

a regret criterion, where the difference between the best and the second-best insertion cost is
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taken into account, and partial routes are improved by means of a 3-opt procedure.

2.1.3 Two-phase methods

Two-phase methods are based on the decomposition of the CVRP solution process into two

separate phases, i.e., clustering and routing. In the clustering phase, a partition of the customers

into subsets, each corresponding to a route, is determined, whereas in the routing phase, the

sequence of the customers on each subset is obtained.

In cluster-first-route-second methods, customers are first partitioned into different subsets

and the routes are then determined by sequencing the customers within each subset. Gillett

and Miller (1974) proposed the first cluster-first-route-second method, namely the sweep al-

gorithm. The algorithm is applied to a polar coordinate and the depot is considered to be the

centre of the coordinate. The depot is first joined with an arbitrarily chosen node. All other

nodes are sequentially joined to the depot and then aligned by increasing the angles which are

formed by the segment that connects the nodes to the depot. As soon as the current node can-

not be feasibly assigned to the depot, a new subset is initialized with it. Once all nodes are

assigned to subsets, the sequence of the nodes on each subset is separately defined by solving

a TSP. Another early cluster-first-route-second method was suggested by Fisher and Jaikumar

(1981). Their algorithm solves the clustering phase using a Generalized Assignment Problem

(GAP) which determines a minimum cost assignment of items to a given set of bins of ca-

pacity equal to the vehicle’s capacity. Each vehicle is assigned a customer, namely the seed,

and the assignment cost of a customer to a vehicle is equal to its distance to the seed. The

GAP is then solved, by means of either exact or heuristic algorithms, and the final routes are

determined by solving a TSP on each defined cluster. Bramel and Simchi-levi (1995) proposed

another two-phase method in which the number of vehicles is to be considered fix and equal to

m. This algorithm determines route seeds by solving a capacitated location problem, where m

customers are selected by minimizing the total distance between each customer and its closest

seed, and by imposing that the total demand associated with each seed be at most equal to the

vehicle’s capacity. Once seeds have been determined and the single-customer routes are initial-

ized, the remaining customers are inserted in the current routes by minimizing insertion costs.
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A different family of cluster-first-route-second methods is petal algorithms. These methods

generate a large set of feasible routes, namely petals, and select the final subset by solving a set

partitioning model as follows (Balinski and Quandt (1964)).

min
∑
k∈S

ckxk (2.14)

S.T ∑
k∈S

aikxk = 1 ∀i = 1, ..., n; (2.15)

xk ∈ {0, 1} ∀k ∈ S; (2.16)

where S is the set of routes, binary variable xk takes value 1 if and only if k belongs to the

solution, aik is the binary parameter equal to 1 if vertex i belongs to route k and the ck is the

cost of petal k. Foster and Ryan (1976) and Ryan et al. (1993) proposed heuristic rules, called

1-petals, for determining the set of routes to be selected, while Renaud et al. (1996b) described

an extension that considers more involved configurations, called 2-petals, consisting of two

embedded or intersecting routes.

Finally, in route-first-cluster-second methods, a giant TSP tour over all customers is con-

structed in a first phase and subdivided into feasible routes in the routing phase. Examples of

such algorithms are given by Beasley (1983), Haimovich and Kan (1985), and Bertsimas and

Simchi-Levi (1996).

2.1.4 Route improvement methods

Route improvement heuristics are often local search algorithms used to improve initial solu-

tions usually generated by construction heuristics. Starting from a given initial solution, a local

search method applies simple structural modifications to obtain neighbour solutions of possibly

better quality. These local search algorithms may be divided into intra-route neighbourhoods

which operate on a single route at a time, or inter-route neighbourhoods which consider more

than one route simultaneously. The most well-known local search algorithm studied in the lit-

erature is the λ-opt heuristic proposed by Lin (1965) for the TSP, where λ edges are removed
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from the current solution and replaced by λ others. As an alternative, restricted neighbourhoods

characterized by subsets of moves associated with larger λ values can also be used. For ex-

ample, Or-exchanges (Or (1976)) or the 4-opt* neighbourhood of Renaud et al. (1996a) which

considers only a subset of all potential 4-opt exchanges. More complex inter-route neighbour-

hoods are analysed by Thompson and Psaraftis (1993).

2.1.5 Meta-heuristics

Meta-heuristics are a powerful tool to solve combinatorial optimization problems. Different

meta-heuristics have been proposed to solve the CVRP. When compared to the classical heuris-

tics mentioned in the previous section, meta-heuristics perform a more thorough search of the

solution space and are less likely to get trapped in a local optimum. These methods are divided

into two classes, i.e., neighbourhood search and population-based methods.

Neighbourhood search method

Neighbourhood search algorithms explore the solution space by iteratively moving from a so-

lution xt at iteration t to a solution xt+1 in the Neighbourhood N(xt) of xt until a stopping

criterion is met. If f(x) represents the cost of solution x, then f(xt+1) is not necessarily smaller

than f(xt). As a result, mechanisms must be implemented to avoid cycling. A large number of

neighbourhood search heuristics have been produced over the past decades. The first of these

methods is the simulated annealing algorithm, which has been studied by a little number of re-

searchers in the early of 1990s. In simulated annealing, a solution x is drawn, either randomly

or based some principles, from N(xt). If f(x) < f(xt), then xt+1 := x. Otherwise, xt+1 := x with

probability pt or xt+1 := xt with probability 1 - pt, where pt is a decreasing function of t and of

f(x)-f(xt). The most famous simulated annealing algorithm was developed by Osman (1993).

The most interesting features of the proposed algorithm are defining neighbourhoods by means

of a 2-interchange scheme and applying a different rule of temperature changes. This algorithm

produced good solutions but was not competitive enough with the best tabu search implemen-

tations available at the same period. Another well-known simulated annealing-based algorithm

proposed to solve the CVRP is the deterministic annealing strategy. Deterministic annealing
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operates in a way that is similar to the simulated annealing algorithm, except that a determinis-

tic rule is applied for acceptance of a move (Toth and Vigo (2002)). The deterministic annealing

algorithm was first developed for the CVRP by Golden et al. (1998). The proposed method is

a descent algorithm which works based on the record-to-record travel heuristic suggested by

Dueck (1993). In record-to-record travel, a record is the best solution x∗ found during the op-

timization procedure. At iteration t, solution xt+1 is accepted if f(xt+1) < θf(xt), where θ is a

user-controlled parameter.

Another neighbourhood search method considered in this section is the tabu search algo-

rithm. Tabu search starts from an initial solution and moves at each iteration from the current

solution to the best one in its neighbourhood, even this leads to a deterioration of the objective

function value. To avoid cycling, attributes of recently visited solutions are declared tabu for

a certain number of iterations. This process is repeated until a a stopping criterion is satisfied

(Glover and Laguna (2003)). Contrary to simulated annealing, a large variety of tabu search

algorithms have been developed to solve the CVRP. One of the first attempts to apply tabu

search to the CVRP is due to Willard (1989). In the proposed algorithm, the initial solution is

first transformed into a giant tour by replication of the depot, and neighbourhoods are then de-

fined as all feasible solutions that can be reached from the current solution using 2-opt or 3-opt

exchanges. The next solution is determined by the best non-tabu move. Another tabu search

algorithm which is one of the most successful tabu search implementation for the CVRP was

proposed by Taillard (1993). The algorithm uses a 1-interchange mechanism without local re-

optimization, and without allowing infeasibilities. Periodically, routes are reoptimized using

an exact TSP algorithm. The search procedure developed by Taillard employs a decomposi-

tion scheme that lends itself to the use of parallel computing. In planar instances, the set of

customers is first partitioned into sectors centered at the depot, and also into concentric circles.

Search is performed in each subregion by a different processor. The subregion boundaries are

updated periodically to provide a diversification effect. In non-planar problems, regions are

defined through the computation of shortest spanning arborescences rooted at the depot.

In Taburoute (Gendreau et al. (1994)), neighbour solutions are obtained by moving a vertex

from its current route to another route containing one of its closest neighbours. Insertions are

performed simultaneously with a local reoptimization of the route, based on the GENI proce-
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dure (Gendreau et al. (1992)). To limit the neighbourhood size, only a randomly selected subset

of vertices are considered for reinsertion in other routes. Taburoute also uses a continuous di-

versification mechanism. During the course of the search, infeasible solutions are penalized

using a function whose parameters are progressively modified during the optimization process.

Other features of Taburoute include the use of random tabu durations, periodic route reopti-

mizations by means of the US procedure of Gendreau et al. (1992), false starts to initialize the

search, and a final intensification phase around the best known solution.

Rego and Roucairol (1996) developed another tabu search algorithm based on an ejection

chains method involving l levels, or routes, to define neighbourhoods. Ejection Chains are

variable depth methods that generate a sequence of interrelated simple (component) moves

to create a more complex compound move. There are several types of ejection chains, some

structured to induce successive changes in problem variables and others structured to induce

changes in particular types of model components (such as nodes and edges of a graph) (Glover

(1992)). In the proposed algorithm, an ejection chain is considered only if no arc (edge) ap-

pears more than once in the solution, but routes that violate capacity or duration constraints are

accepted. A parallel version of this algorithm was implemented by the authors. Another ejec-

tion chains-based tabu search algorithm was proposed by Xu and Kelly (1996). The suggested

method oscillates between ejection chains and vertex swaps between two routes. The ejection

chains are obtained by solving an auxiliary network flow problem. This method obtains several

good CVRP solutions on benchmark instances but is rather time consuming.

Another tabu search implemented to solve the CVRP was proposed by Bachem et al.

(1996). The proposed heuristic is based on the procedures of trading. The clustering of cus-

tomers into tours is determined by finding matches in a leveled bipartite graph, namely trading

graph. The nodes correspond to either an insertion (buy) of a customer into a tour or a deletion

(sell). The edges represent possible exchanges and the weight of each edge is the gain that is

obtained by the corresponding action. Thus, every matching of the trading graph corresponds

to a number of interchanges of customers. At each iteration, tours are shuffled by choosing

some permutation at random. Then for each tour either a sell or buy action is selected and

finally possible trading matches are evaluated and the best one selected. The approach allows

infeasibilities given certain penalty factors, as well as trading matchings with negative weights
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causing deterioration. Because of this deterioration a tabu list is also added to prevent cycling.

The approach was implemented using two different kinds of parallelizations.

Toth and Vigo (2003) proposed a very interesting tabu search, namely Granular Tabu Search

(GTS). The idea of this algorithm is to permanently remove from consideration long edges that

have only a small likelihood of belonging to an optimal solution. More specifically, a threshold

is defined and the search is performed on the restricted edge set E(V) = {(vi, vj) ∈ E : cij ≤

v} ∪ I, where I is a set of important edges defined as those incident to the depot. The value of

v is set equal to βc̄, where β is called a sparsification parameter, and c̄ is the average edge cost

in a good feasible solution quickly obtained, for example, by the Clarke and Wright (1964)

algorithm.

Population-based methods

This category of meta-heuristics are based on the essence of natural evolution processes, which

involve the reproduction, random variation, competition, and selection of contending individu-

als in a population.

The first type of the population-based meta-heuristics is Genetic Algorithms (GAs). GAs

are an approach to optimization and learning based loosely on principles of biological evolu-

tion. Genetic algorithms maintain a population of possible solutions to a problem, encoded as

chromosomes based on a particular representation scheme. After generating an initial popula-

tion, new individuals for this population are generated via the process of reproduction. Parents

are randomly selected from the current population for reproduction with the better ones (ac-

cording to the evaluation criteria) more likely to be selected. The genetic operators of mutation

and crossover generate children (i.e., new individuals) by random changes to a single parent

or combining the information from two parents respectively (Holland (1975)). Prins (2004)

developed an effective GA combining the two important features of evolutionary algorithms,

i.e., crossover and mutation operations. In the proposed algorithm, solutions are represented as

a giant tour without trip delimiters. To create an offspring from two parents, a chain (1, ..., j)

is first selected from the first parent and the vertices of the second parent are scanned from

position j+1 by skipping those of the chain (1, ..., j). A second offspring is generated in a
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similar way by reversing the roles of the two parents. Offspring are improved by applying a

combination of vertex and edge reinsertions, vertex swaps, combined vertex and edge swaps.

Baker and Ayechew (2003) proposed a GA for the CVRP. The representation of this algorithm

has been influenced by the non-binary representation of Chu and Beasley (1997) for the Gen-

eralised Assignment Problem (GAP). Without specifying explicitly the exact route which each

vehicle should follow but only the assignment of n customers to m vehicles known, the chro-

mosome for an individual solution has the form of a string of length n, with each gene value

in the range [1,m]. Then, a TSP algorithm is applied to each route and a fitness value is asso-

ciated with each population member. Specifically, the initial population consists of structured

solutions generated by employing either the sweep approach of Gillett and Miller (1974) or the

generalized approach of Fisher and Jaikumar (1981).

The second type of the population-based algorithms is Ant Colony Optimization (ACO).

ACO is based on the behavior of real ants and possesses enhanced abilities such as memory of

past actions and knowledge about the distance to other locations. In nature, ants communicate

using a chemical substance called pheromone. As an ant travels, it deposits a constant amount

of pheromone that other ants can follow. Each ant moves in a somewhat random fashion, but

when an ant encounters a pheromone trail, it must decide whether to follow it. If it follows

the trail, the ant’s own pheromone reinforces the existing trail, and the increase in pheromone

increases the probability of the next ant selecting the path. Additionally, an ant using a short

route to a food source will return to the nest sooner and therefore, mark its path twice, before

other ants return. This directly influences the selection probability for the next ant leaving the

nest. Trail selection by ants is a pseudo-random proportional process and is a key element of the

simulation algorithm of ant colony optimization (Dorigo et al. (1999)). The early ant colony

optimization heuristics could not compete with respect to the best available methods. How-

ever, Reimann et al. (2002) developed recently an ant colony optimization algorithm based on

the transformation of the simultaneous tour construction mechanism proposed by Clarke and

Wright (1964) into a rank-based ant colony optimization algorithm. The first step of the pro-

posed algorithm starts with the generation of a list of attractiveness values, sorted in decreasing

order. Then, the probability of visiting vertex uj after vertex ui is computed based on the attrac-

tiveness values computed in the previous step. Each solution is then improved using the 2-opt
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algorithm, separately for each route constructed by the ants. Reimann et al. (2004) proposed

an ant colony optimization approach, namely D-Ants, built on the algorithm developed by the

same authors in (2002). The main advantage of the D-Ants approach is the concept of divide

and conquer, according to which, a decomposition of the set of tours that constitute the com-

plete CVRP into a number of smaller sets of tours with geographically proximity is proposed.

The resulting sub-problems are solved by the algorithm of Reimann et al. (2002).

2.1.6 Parallel algorithms

Parallel computing is a form of computation in which many calculations are carried out si-

multaneously, operating on the principle that large problems can often be divided into smaller

ones, which are then solved concurrently. Parallelism is divided into two main categories, i.e.,

functional and data parallelism. In functional parallelism, different tasks are allocated to differ-

ent processors and run in parallel, possibly exchanging information, while in data parallelism,

the feasible domain of the problem is partitioned and a particular solution approach is used

to tackle the problem of each component of the problem. According to how large the tasks

are, a few instructions or a sizeable part of the algorithm, the parallelization is called fine- or

coarse-grained, respectively (Crainic (2007)).

In parallel algorithms, information must be exchanged among tasks to provide the neces-

sary data for computations or the estimation of the global status of the search. Communications

may be performed synchronously or asynchronously. In the former case, all concerned tasks

have to stop and engage in some form of communication, whereas in the latter case, each task

is in charge of establishing communications with other tasks, according to its internal logic.

There are a large variety of different parallel algorithms implemented to efficiently tackle hard

optimization problems. In this section, we focus our attention to one special type of these par-

allel algorithms successfully implemented to solve the general VRP, i.e., parallel cooperative

search mechanisms.

Cooperative search is a parallelization strategy increasingly used for search methods. Con-

trary to conventional parallelization strategies, the parallel tasks of cooperative procedures are

not obtained from the decomposition of the data or the search program. Most often, these tasks
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are obtained by executing concurrently several search programs using the same data set. These

parallel tasks are said to cooperate with each other because, at run time, search programs ex-

change information on previously explored regions of the solution space. By providing shared

information among search programs, cooperative design aims to improve the performance of

the individual search programs through the reuse of information collected by other programs

(Bouthillier et al. (2005)).

The most famous cooperative search algorithm proposed to solve the CVRP is the Adaptive

Memory Procedure (AMP). An adaptive memory is a pool of good solutions which is updated

by replacing its worst elements with better ones. In order to generate a new solution, several

solutions are selected from the pool and recombined. Rochat and Taillard (1995) introduced for

the first time the concept of AMP for the CVRP, according to which a set of high quality VRP

solutions is stored in a pool that is dynamically updated throughout the optimization process.

Routes of the solutions in the set are extracted periodically, giving a larger weight to those

routes belonging to the best solutions, and are combined to construct a new solution. Since

the result is almost always a partial solution, a constructive heuristic is then used to complete

it. Tarantilis and Kiranoudis (2002) also developed another adaptive memory-based algorithm

called BoneRoute. There are two main differences between the Rochat and Taillard (1995)

and the Tarantilis and Kiranoudis (2002) algorithms. First, BoneRoute provides new starting

solutions through the selection and combination of sequences of nodes, called bones (rather

than vehicle routes). Second, the Rochat and Taillard algorithm selects routes from the pool

probabilistically, while BoneRoute chooses the extracted bones systematically considering the

number of nodes.

2.2 MAVRP classification and state-of-the-art heuristics

The majority of VRP attributes are directly derived from the requirements encountered in real-

life applications. They are the subject of a huge amount of studies, grouping various thousands

of scientific papers. Vidal et al. (2012b) quite recently distinguished three main groups of at-

tributes: the Assignment of customers and routes to resources (ASSIGN), the Sequence choices

(SEQ). and the Evaluation of fixed sequences (EVAL).
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ASSIGN attributes impact assignment of limited resources, e.g., depots, vehicles, and ve-

hicle types, to customer services and routes. Most common ASSIGN attributes consist of

multiple depots, periodic, heterogeneous fleets and split deliveries. On the other hand, SEQ at-

tributes impact directly the structure of the routes. In a backhaul setting, for example, the route

is made up of two sequences of linehaul and backhaul services, respectively. Finally, EVAL

attributes impact a large variety of evaluations and constraints checks that must be performed

once the route contents and orders are selected. The literature is very large on this type of

attributes, some of the most common being time windows and time-dependent route durations

or costs.

Since each of the problems, considered in this thesis, includes a subset of ASSIGN at-

tributes, we focus our attention on reviewing the most prominent heuristics and meta-heuristics

proposed to solve the vehicle routing problems of this group.

2.2.1 Heuristics for VRP variants with ASSIGN attributes

Multi-Depot VRP (MDVRP)- Consider a distribution company with multiple depots. The

number and locations of the depots are predetermined. Each depot is large enough to store

all the products ordered by the customers. A fleet of vehicles with limited capacity is used

to transport the products from depots to customers. Each vehicle starts and finishes at the

same depot. The location and demand of each customer is also known in advance. Each

customer is visited by a vehicle exactly once. This practical distribution problem is denoted

the MDVRP, in which there are three decisions. The decision makers first need to cluster a set

of customers to be served by the same depot, that is, the grouping problem. They then have to

assign customers of the same depot to vehicles such that capacity requirements are enforced.

At last, the decision on delivery sequence of each route is made. Generally, the objective of

the MDVRP is to minimize the total delivery distance or time spent in serving all customers.

Shorter delivery time results in higher level of customer satisfaction. Besides, the objective can

also be the minimization of the number of vehicles needed. Fewer vehicles imply that the total

operation cost is reduced. No matter which type of objective is defined, the ultimate goal of

the MDVRP is to increase the efficiency of the delivery (Salhi and Sari (1997)).
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Several heuristics have been put forward for the MDVRP. Early heuristics, performing

based on simple construction and improvement procedures, have been developed by Tillman

(1969), Tillman and Hering (1971), Tillman and Cain (1972), Gillett and Johnson (1976),

Golden et al. (1977), and Raft (1982).

Cassidy and Bennett (1972) proposed an iterative heuristic for the multi-depot vehicle rout-

ing problem. The proposed method progressively improves the routing arrangements starting

from an initial solution. An interesting feature of the algorithm is the method of data storage,

which is designed to facilitate the alteration of route configurations. The suggested heuristic is

divided in three main steps. In the first step, an initial solution is generated by assigning each

customer to its nearest depot. In the second step, the initial solution obtained from the previ-

ous step is improved by taking each customer in turn and trying to fit it into another position.

Finally in the last step, the algorithm examines all depots in the routes to see if any of them can

be replaced by any of those still having enough capacity. Several years later, Chao et al. (1993)

proposed a search procedure combining the record-to-record local search method for the re-

assignment of customers to different vehicle routes, followed by a 2-opt procedure for the

improvement of individual routes. Salhi and Sari (1997) suggested a multi-level construction-

based composite heuristic for solving a multi-depot fleet mix vehicle routing problem in which

allocating customers to depots, finding the delivery routes and determining the vehicle fleet

composition are simultaneously considered. The main purpose of that paper was to minimize

the total traveled cost where both the vehicle capacity (the largest vehicle in case there are dif-

ferent types of vehicles) and the maximum distance traveled on any route must not be violated.

The proposed heuristic consists of three levels. In the first level, a starting solution is found as

follows: the vehicle fleet mix problem is first solved within each depot with certain customers

left unassigned (borderline customers). Then each of these customers is inserted into an ex-

isting route or an empty route by using a selection-insertion procedure. In the second level,

a composite heuristic, which attempts to improve on the solution found for each depot when

taken separately, is introduced. Finally in the third level, a composite heuristic which considers

all depots is implemented.

Various meta-heuristics have also been developed to tackle the MDVRP. Renaud et al.

(1996c) described a tabu search heuristic in which an initial solution is built by first assigning
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every customer to its nearest depot. A petal algorithm is then used for the solution of the VRP

associated with each depot. The algorithm is completed by an improvement phase using either

a subset of the 4-opt exchanges to improve individual routes, swapping customers between

routes from the same or different depots, or exchanging customers between three routes. The

tabu search approach of Cordeau et al. (1997) is probably the best known algorithm for the

MDVRP. An initial solution is obtained by assigning each customer to its nearest depot and

a VRP solution is generated for each depot by means of a sweep algorithm. Improvements

are performed by transferring a customer between two routes incident to the same depot, or by

relocating a customer in a route incident to another depot. Reinsertions are performed by means

of the GENI heuristic (Gendreau et al. (1992)). One of the main characteristics of this algorithm

is that infeasible solutions are allowed throughout the search. Continuous diversification is

achieved through the penalization of frequent moves. Dondo and Cerdà (2007) studied the

multi-depot vehicle routing problem with time windows. To solve it, they presented a model-

based large-scale neighbourhood search algorithm that steadily improves an initial solution

generated through the three-phase cluster-based hybrid approach. At each iteration, a sequence

of two evolutionary steps is executed. First, a neighbourhood around the starting solution

is generated by using a mixed-integer linear problem that permits the algorithm to exchange

multiple nodes between neighbouring trips. Next, a different neighbourhood is defined by

just allowing relocations of nodes on the same tour. Lau et al. (2010) addressed an MDVRP

in which the objective is to simultaneously optimize both the cost due to the total traveling

distance and that due to the total traveling time. To solve the problem, a genetic algorithm with

fuzzy logic adjusting the crossover rate and mutation rate after ten consecutive generations was

proposed. Finally, Yu et al. (2011) designed a parallel ant colony optimization algorithm for

the MDVRP. In the proposed algorithm, three improved strategies: the coarse-grain parallel

strategy, the ant weight strategy and the local search strategy, were applied.

Periodic VRP (PVRP)- In the PVRP, as in the CVRP, customer locations each with a

certain demand function are given, as well as a set of capacitated vehicles. In addition, the

PVRP has a planning horizon of T periods, a service frequency for each customer, stating how

often within these T periods the customer must be visited, and a list of possible visit-period

combinations. A solution to the PVRP consists of T sets of routes that jointly satisfy the demand
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constraints and the frequency constraints. The objective is to minimize the sum of the costs of

all routes over the planning horizon. Obviously, this problem is at least as hard as the CVRP.

Several variants of the PVRP are described in the literature. A classification of the different

variants of the PVRP can be found in a survey by Mourgaya and Vanderbeck (2006). Different

objective functions are distinguished, such as minimizing the distance traveled, the driving

time, or total transportation cost; also regionalization of routes, an even spread of workload

over the vehicles, the number of vehicles, and service quality can be part of an optimization

function. Differences also occur in the constraints which can be divided in three categories:

constraints concerning (i) the planning of visits (different frequencies, restrictions on certain

periods, etc.), (ii) the type of demand (constant or variable), and (iii) the fleet of vehicles

(homogeneous or heterogeneous).

Solution algorithms proposed to solve the PVRP can be categorized into two main groups,

i.e., classical heuristics, and meta-heuristics. Heuristics have been extensively studied to solve

the PVRP. The majority of these heuristics are multi-phase optimization approaches which try

to solve the problem at hand in a sequential manner. Russell and Gribbin (1991) presented a

multi-phase approach to solve the PVRP. The first phase of the proposed method consists of

a procedure which generates initial solutions by using a generalized network approximation

method. The second phase involves an interchange heuristic that reduces the total traveled cost

through a surrogate traveling salesman problem. In the third phase, the total traveled cost is

further reduced by addressing the actual routes. Finally, a proposed 0-1 integer model is used

to attempt further improvements. Chao et al. (1993) provided a two-phase heuristic. To obtain

an initial solution they solve an integer linear program to assign visit day combinations to the

customers. In a second phase, they use several improvement operators while they relax the

capacity of the vehicles. When getting stuck, re-initializations are performed. Bertazzi et al.

(2004) suggested a heuristic algorithm for a special case of the PVRP namely the periodic trav-

eling salesman problem, in which a single vehicle is used in each period. The algorithm is a

construction type with an embedded improvement procedure. At each iteration, a procedure

selects a not yet processed city, assigns to it a combination of visit days and, for each day of

the combination day, inserts the city to the best position of the current partial tour. The itera-

tion process is temporarily interrupted after a predefined number of iterations and an iterative
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improvement procedure tries to improve the current solution.

These early heuristics are outperformed by more recent meta-heuristic approaches, includ-

ing tabu search, scatter search, and variable neighbourhood search. Cordeau et al. (1997)

proposed a tabu search heuristic for the PVRP that can also be used to solve the Multi-Depot

Vehicle Routing Problem and the Periodic Traveling Salesman Problem (PTSP). The neigh-

bourhood consists of moving a customer from one route to another route of the same day

or assigning a new visit combination to a customer. Insertions and removals of customers

are performed using the GENI operator (Gendreau et al. (1992)). The tabu search algorithm

allows for infeasible solutions during the search process using an adaptive penalty function.

This paper presents an asynchronous parallel metaheuristic for the period vehicle routing prob-

lem (PVRP). Drummond et al. (2001) designed an island-based parallel meta-heuristic for the

PVRP. The proposed algorithm was based on concepts used in parallel genetic algorithms and

local search heuristics. Angelelli and Speranza (2002) presented a tabu search algorithm for

an extension of the periodic vehicle routing problem where the homogeneous vehicles have

the possibility of renewing their capacity at some intermediate facilities. The initial solution

of the proposed tabu search is generated by using a procedure similar to the sweep algorithm

(Gillett and Miller (1974)). Then, the initial solution is improved via an improvement proce-

dure which consists of four move operators, i.e., relocation, changing the visiting schedule of a

customer, redistribution, intersection. To enhance the performance of the proposed algorithm,

the tabu search is permitted to search the solution space by using a tunneling strategy. Be-

sides that, a diversification mechanism is also used. Recently, a scatter search procedure was

developed by Alegre et al. (2007) for solving a problem of periodic pick-up of raw materials

for a manufacturer of auto parts. They use a two-phase approach, that first assigns orders to

days and then constructs the routes of each day. Alonso et al. (2008) proposed a tabu search

for an extension of the periodic vehicle routing problem where each vehicle can service more

than one route per day as long as the maximum delay operation time in not exceeded. Besides

that, there exist some accessibility constraints of the vehicles to the customers in the sense

that not every vehicle can visit every customer. The efficiency of the implemented tabu search

is proved based on some existing and randomly generated test problems. Hemmelmayr et al.

(2009) implemented a variable neighbourhood search for the periodic vehicle routing prob-
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lem. First, for obtaining an initial solution each customer is randomly assigned a visit day

combination. Routes are constructed by solving a vehicle routing problem for each day us-

ing Clarke and Wright savings algorithm (Clarke and Wright (1964)). Then, for the shaking

phase two popular and effective neighbourhoods, i.e., move and cross-exchange, are proposed

in order to enhance the quality of the starting solution in each iteration. Finally, the solution

obtained through shaking is further improved by using a local search procedure based on the

3-opt operator. Pirkwieser and Raidl (2010) proposed a variable neighbourhood search for the

periodic vehicle routing problem with time windows. In that paper, the authors claimed that

using a random VNS often yielded significantly better results than a VNS using a reasonable

fixed ordering of the shaking neighbourhoods. Furthermore, a selectively applied simple inter-

route improvement procedure, 2-opt*, was shown to considerably improve both VNS variants

at nearly no computational cost at all. Gulczynski et al. (2011) developed a new heuristic for

the PVRP that combined integer programming and the record-to-record travel algorithm. The

proposed heuristic produced very high-quality results on standard benchmark instances. The

authors also extended the heuristic to two new variants of the PVRP that involve reassigning

customers to new routes and balancing the workload among drivers across routes.

Multi-Depot Periodic VRP (MDPVRP)- Another MAVRP is the MDPVRP which com-

bines the two above problem settings, asking for the selection of a depot and a visit pattern

for each customer, with services in different periods to the same customer being required to

originate at the same depot (Vidal et al. (2012a)).

The majority of solution methods, targeting the MDPVRP, are divided into two main

groups: 1) Classical heuristics which often solve the problem in a sequential manner, and

2) Sophisticated meta-heuristics and parallel algorithms which tackle the problem by simulta-

neously optimizing all the involved attributes.

We are aware of three heuristics of the first group. Hadjiconstantinou and Baldacci (1998)

formulated the problem of providing maintenance services to a set of customers as the MD-

PVRP with Time Windows (MDPVRPTW). The authors proposed a multi-phase optimization

problem and solved it using a four-phase algorithm. In the developed algorithm, all customers

are first assigned to particular depot. Then, customer visits are successively inserted among
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available periods to obtain feasible visit combinations. At the third phase, each of the depot-

period VRP sub-problems is separately solved using a tabu search algorithm. Finally, at the

last phase, solutions obtained during the optimization process are improved by modifying the

period or depot assignments through a 3-opt procedure. Kang et al. (2005) designed a two-

phase heuristic method to solve the problem considered by Hadjiconstantinou and Baldacci

(1998). In the proposed method, all feasible schedules are first generated from each depot for

each period and, then, the set of routes are determined through using the shortest path prob-

lem. Parthanadee and Logendran (2006) proposed a tabu search heuristic to tackle the problem

considered by Hadjiconstantinou and Baldacci (1998)). In this algorithm, all the initial assign-

ments are built by cheapest insertion, where each customer is assigned to its nearest depot and

is given its most preferred visit pattern. At the improvement phase, a neighbourhood search is

defined by depot and visit pattern interchanges.

We are also aware of two contributions belonging to the second group. The first contribu-

tion was the evolutionary meta-heuristic proposed by Vidal et al. (2012a). The authors devel-

oped a hybrid Genetic Algorithm (GA) to tackle the MDPVRP and two of its special cases,

i.e., the Multi-depot VRP (MDVRP) and the Periodic VRP (PVRP). The most interesting fea-

ture of the proposed GA is a new population-diversity management mechanism which allows

a broader access to reproduction, while preserving the memory of what characterizes good so-

lutions represented by the elite individuals of the population. The second contribution was the

cooperative parallel algorithm designed by Lahrichi et al. (2012). The authors proposed a well

structured cooperative parallel search method, denoted Integrative Co-operative Search (ICS),

to solve highly complex combinatorial optimization problems. The proposed ICS framework

involves problem decomposition by decision sets, integration of elite partial solutions yielded

by the sub-problems, and adaptive guiding mechanism. The authors used the MDPVRPTW to

present the applicability of the developed methodology.

Heterogeneous Fleet VRP (HFVRP)-The Heterogeneous Fleet Vehicle Routing Problem

(HFVRP) is another variant of the MAVRPs where the vehicles do not necessary have the same

capacity, vehicle fixed cost and unit variable cost. We are also given a set of customers, N, a

certain number of vehicle types, M, each of which has a vehicle capacity Qm, a fixed cost

Fm and a unit variable cost am (m = 1,...,M). As in the CVRP, each customer must be served



24

by one vehicle only, each vehicle must start and finish its journey at a central depot and the

capacity of a vehicle and the maximum length of a route must not be exceeded. The objective

of the HFVRP is to minimize the total cost which includes both the vehicle variable and fixed

costs. The idea is not only to consider the routing of the vehicles, but also the composition of

the vehicle fleet. A special case of HFVRP is the fleet size and mix vehicle routing problem

(Golden et al. (1984)) also called the fleet size and composition VRP or the vehicle fleet mix.

The goal of this problem is to determine a fleet of vehicles such that the sum of fixed costs

and travel costs is minimized. This problem is a particular HFVRP for which the number of

vehicles of each type is not limited.

The existing papers in the literature proposed for solving all the HFVRP variants have

focused on developing heuristic algorithms instead of exact solution methods. They can be

broadly grouped into two categories: classical heuristics mostly derived from the classical

CVRP heuristics, and meta-heuristics.

Golden et al. (1984) proposed for the first time a heuristic algorithm to solve the HFVRP.

They created several heuristics based on the savings method of Clarke and Wright (1964), as

well as on the giant tour algorithm of Gillett and Miller (1974). Gheysens et al. (1986) adapted

the generalised assignment heuristic of Fisher and Jaikumar (1981). Desrochers and Verhoog

(1991) proposed a matching based savings heuristic initially proposed by themselves for the

VRP. The most recent heuristic is due to Renaud and Boctor (2002) and is, to date, the one

that produces better quality solutions, but also the one that requires more computing time. This

heuristic starts by generating a large set of routes using different procedures and afterwards

chooses those that satisfy the constraints of the problem at the lowest cost using an exact, but

polynomial, set partitioning algorithm. Among those procedures of producing the initial set

of routes is the petal method used by several authors, including Renaud et al. (1996b), for the

VRP.

More recently, meta-heuristics have been proposed for solving the HFVRP. Gendreau et al.

(1999) and Wassan and Osman (2002), which will be designated from now on as OS, GLMT

and WO, respectively. All these algorithms are based on tabu search. The OS algorithm takes

an initial solution produced by the heuristic of Salhi and Rand (1993), which is then improved
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by a tabu search method with short term memory and with moves defined by a 1-interchange

mechanism. The GLMT algorithm is rather complex and requires the use of GENIUS, devel-

oped by Gendreau et al. (1992) for the travelling salesman problem (TSP), as well as an adap-

tive memory procedure developed by Rochat and Taillard (1995). The WO algorithm comprises

several variants obtained from the selection of different neighbourhood mechanisms, tabu re-

strictions and tabu tenure schemes. Very recently, Paraskevopoulos et al. (2008) considered

the heterogeneous fleet routing problem with time windows where the total distribution costs

are to be minimized. To solve the problem a two-stage algorithm based on a hybridized tabu

search within a novel reactive variable neighbourhood search algorithm is implemented. In the

first stage, several initial solutions are generated by using a semi-parallel construction heuris-

tic. Then, a route elimination procedure is applied to reduce the number of vehicles. Finally,

a subset of high quality solutions is selected to further improve the obtained solution. In the

second stage, a reactive variable neighbourhood tabu search is proposed to minimize the total

distribution costs of the selected initial solutions generated in the first stage. Choi and Tcha

(2007) developed a mathematically based resolution method for the HFVRP. In this method,

the HFVRP is formulated as a set covering problem as it is done for VRP with time windows.

Then, its linear programming relaxation is solved by the column generation technique. This

method could not solve exactly any of the examples tested, but it generated good lower bounds

and upper bounds and, therefore, can be used as a good heuristic method. Imran et al. (2009)

proposed a variable neighbourhood search (VNS) for a heterogeneous vehicle routing problem.

The initial solution is obtained in three steps. First, a giant tour is constructed using the sweep

algorithm (Gillett and Miller (1974)). Then, the constructed tour is improved using the 2-opt

of Lin (1965). Finally, the cost network is constructed and the Dijkstra algorithm is applied

to find the corresponding optimal fleet size. The proposed VNS uses several neighbourhood

structures, i.e. 1-1 interchange, 2-0 shift, 2-1 interchange, and a perturbation mechanism. It

also applies six different local searches, i.e.1-insertion (inter-route and intra-route), 2-insertion

(intra-route), 2-opt (inter-route and intra-route), and swap (intra-route), to improve current so-

lution. A Dijkstra-based method and a diversification procedure are also implemented after the

local search phase to enhance the quality of the solution obtained and explore other unvisited

regions of the solution space. Liu et al. (2009) suggested an effective genetic algorithm for the

fleet and mix vehicle routing problem, in which the fleet is heterogeneous and its composition
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is to be determined. In the proposed algorithm, first, a set of initial solutions is generated by

using two different construction methods, i.e. savings method and sweep algorithm. Each gen-

erated initial solution is converted to its corresponding chromosome representation. Then, for

a predetermined number of iterations, two solutions as parents are randomly selected by using

the tournament selection method to generate offsprings. The desired number of offsrpings is

constructed through the reproduction phase by using two different crossovers, namely order

crossover and single parent crossover. The generated offsprings are then mutated via a series

of local searches, i.e. string relocation, string cross, and string exchange.

Split Delivery VRP (SDVRP)- Another extension of the MAVRPs is the Split Delivery

Vehicle Routing Problem (SDVRP) where a fleet of capacitated homogeneous vehicles has

to serve a set of customers. Each customer can be visited more than once, contrary to what

is usually assumed in the CVRP, and the demand of each customer may be greater than the

capacity of the vehicles. There is a single depot for the vehicles and each vehicle has to start

and end its tour at the depot. The problem consists of finding a set of vehicle routes that serve

all the customers such that the sum of the quantities delivered in each tour does not exceed

the capacity of a vehicle, the demand of each customer is fully satisfied and the total distance

traveled is minimized. In other words, in the SDVRP the restriction that each customer is

visited once is removed. The SDVRP is NP-hard, even under restricted conditions on the costs,

when all vehicles have a capacity greater than two, while it is solvable in polynomial time when

the vehicles have a maximum capacity of two (Dror and Trudeau (1989)).

Like other variants of the VRP, heuristics have been extensively applied to the SDVRP.

Dror and Trudeau (1989) proposed a local search to solve the routing problem with split deliv-

eries. This is a two-stage algorithm that first constructs a feasible VRP solution and from this

generates a feasible SDVRP solution if split deliveries improve the initial VRP solution. The

first stage uses three subroutines: (i) an initial route generator based on the algorithm of Clarke

and Wright (1964), (ii) a node interchange based on a one-node and two-node swap, and (iii) a

route improvement based on a 2-opt procedure. The second stage uses: (i) a 2-split interchange

and (ii) a route addition routine. Given a demand point, the 2-split creates a neighborhood with

all the possible alternatives that remove the demand point and insert it into two other routes

whose combined spare capacity is sufficient for the demand. At each iteration, the candidate
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with the highest saving is selected and the search terminates when improvements cease. Af-

ter this local search, a route addition routine creates new routes to eliminate split deliveries

as long as a reduction in the total routing cost is obtained. Frizzell and Giffin (1992) devel-

oped construction and improvement heuristics for the VRPSD with grid network distances.

Mullaseril et al. (1997) described a feed distribution problem encountered on a cattle ranch in

Arizona. The problem is cast as a collection of capacitated rural postman problem with time

windows and split deliveries. They presented an adaptation of the heuristics proposed by Dror

and Trudeau (1989).

Meta-heuristics have been also proposed to solve the SDVRP. Ho and Haugland (2004) de-

veloped a tabu search to solve instances of the SDVRP with time windows. They constructed

an initial solution by checking customers in sequence and appending the nearest unrouted cus-

tomer to the latest routed customer in feasible routes. If the customer demand exceeds the

capacity, the current route is deemed full loaded, the demand is then split, and a new route is

created to supply the remaining demand. Once the route schedule is constructed, the TS com-

mences. Each iteration, the best feasible candidate among four neighbourhoods is selected and

the neighbouring solution is evaluated for improvements. The neighbourhoods examined are:

relocating a customer between routes, eliminating a split delivery between two routes and in-

troducing a new delivery between the same two routes, exchanging two customers between two

routes, and performing a 2-opt operation between two routes. Archetti et al. (2006) proposed

a tabu search to solve the SDVRP where a customer is removed from a set of routes serving it

and inserted into a new route or into an existing route that has spare capacity. The scheme of

the procedure employs an initial solution procedure, a tabu search, and an improvement phase.

The literature survey presented in this chapter supports the general statement made in Chap-

ter 1 that the MAVRPs are among the VRP variants which did not receive an adequate degree

of attention and the solution algorithms proposed to solve the MAVRPs are scarce. Moreover,

solution methodologies which solve the MAPVRPs as a whole by simultaneously considering

all its attributes are scarcer. To contribute toward addressing these two challenges, we prepared

three different papers, each studying a class of MAVRPs often found in reality and proposing

a sophisticated solution method to efficiently solve it.



Chapter 3

A Path Relinking Algorithm for a

multi-depot periodic vehicle routing

problem

Abstract

In this paper, we consider a variant of vehicle routing problems which is characterized by

the presence of a homogeneous fleet of vehicles, multiple depots, multiple periods and two

kinds of constraints that are often found in reality, i.e., vehicle capacity and route duration

constraints. The objective is to minimize total travel costs. Since the Vehicle Routing Problem

has been proved to be NP-hard in the strong sense, an effective Path Relinking Algorithm

(PRA) is designed for finding the best possible solutions to this problem. The proposed PRA

incorporates several purposeful exploitation and exploration strategies that enable the algorithm

to tackle the problem in two different settings: 1) As a stand-alone algorithm, and 2) As a part of

a co-operative search algorithm called Integrative Co-operative Search (ICS). The performance

of the proposed Path Relinking Algorithm is evaluated, in each of the above ways, based on

various test problems. The computational results show that the developed PRA performs well,

in both solution quality and computational efficiency.
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3.1 Introduction

The vehicle routing problem (VRP), introduced by Dantzig and Ramser (1959), is one of the

most important and widely studied combinatorial optimization problems, with many real-life

applications in distribution and transportation logistics. In the classical VRP, a homogeneous

fleet of vehicles services a set of customers from a single distribution depot or terminal. Each

vehicle has a fixed capacity that cannot be exceeded and each customer has a known demand

that must be fully satisfied. Each customer must be serviced by exactly one visit of a single

vehicle and each vehicle must depart from the depot and return to the depot (Toth and Vigo

(2002)).

Several variations and specializations of the vehicle routing problem, each reflecting vari-

ous real-life applications, exist. However, surveying the literature, one can notice that not all

VRP variants have been studied with the same degree of attention in the past five decades. This

is the case for the problem considered in this study. Moreover, most of the methodological

developments target a special problem variant, the Capacitated VRP (CVRP) or the VRP with

Time Windows (VRPTW), despite the fact that the majority of the problems encountered in

real-life applications display more complicating attributes and constraints. This also applies to

the problem addressed in this paper.

Our objective is to contribute toward addressing these two challenges. In this paper, we

address a variant of the VRP in which a daily plan is computed for a homogeneous fleet of

vehicles that depart from different depots and must visit a set of customers for delivery opera-

tions in a planning horizon. In this VRP, we consider maximum route duration constraint and

an upper limit of the quantity of goods that each vehicle can transport. Moreover, the cost of

each vehicle route is computed through a system of fees depending on the distance that is trav-

eled. This type of vehicle routing problem is typically called the Multi-depot Periodic Vehicle

Routing Problem (MDPVRP).

To tackle the MDPVRP, we propose a new Path Relinking Algorithm, which incorporates
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exploitation and exploration strategies allowing the algorithm to solve the considered problem

in two different manners: 1) As a stand-alone algorithm, and 2) As a part of a cooperative

search method named as Integrative Cooperative Search (ICS).

The remainder of this paper is organized as follows. The problem statement is introduced

in Section 3.2. The literature survey relevant to the topic of this paper is presented in Section

3.3. Section 3.4 deals with the proposed Path Relinking Algorithm. The experimental results

are reported in Section 3.5. Finally, Section 3.6 provides conclusions and the evaluation of the

work.

3.2 Problem statement

In this section, we formally state the MDPVRP, introducing the notations used throughout this

paper. The MDPVRP can be defined as follows (Vidal et al. (2012a)): Consider an undi-

rected graph G(V,E). The node set V is the union of two subsets V = VC ∪ VD, where

VC = {v1, ..., vn} represents the customers and VD = {vn+1, ..., vn+m} includes the depots.

With each node i ∈ VC is associated a deterministic demand qi. The edge set E contains an

edge for each pair of customers and for each depot-customer combination. There are no edges

between depots. With each edge (vi, vj) ∈ E is associated a travel cost cij . The travel time for

arriving to node j from node i (tij) is considered equal to cij . A limited number (K) of homo-

geneous vehicles of known capacity Q is available at each depot. Moreover, the MDPVRP has

a planning horizon, say T periods. Each customer i is characterized by a service frequency fi,

stating how often within these T periods this customer must be visited and a list Li of possible

visit-period combinations, called patterns. Each vehicle performs only one route per period

and each vehicle route must start and finish at the same depot while the travel duration of the

route should not exceed D. The MDPVRP aims to design a set of vehicle routes servicing all

customers, such that vehicle-capacity and route-duration constraints are respected, and the total

travel cost is minimized.
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3.3 Literature review

In this section, we focus our attention on reviewing papers previously published in the literature

to address the MDPVRP. The objective of this review is first to present what types of solution

methodologies have been proposed to solve the considered problem and second, to distinguish

leading solution approaches that have been proved to be efficient to tackle the MDPVRP.

By surveying the literature, one notices that the most common solution approach for solv-

ing this type of the VRP is to apply a successive-optimization approach which sequentially

solves a series of particular cases instead of considering the problem as a whole. This pro-

cedure usually leads to suboptimal solutions. Solution algorithms, belonging to this category,

can be divided into two groups, i.e., exact methods and heuristics. To the best of our knowl-

edge, the only exact method used to solve the MDPVRP was the one designed by Mingozzi

(2005). In the proposed method, first, an integer programming model which is an extension

of the set partitioning formulation of the CVRP is described. Then, an exact method for solv-

ing the problem, which uses variable pricing in order to reduce the set of variables to more

practical proportions, is proposed. The pricing model is based on the bounding procedure for

finding near optimal solutions of the dual problem of the LP relaxation of the proposed inte-

ger programming model. The bounding procedure is an additive procedure that determines a

lower bound on the MDPVRP as the sum of the dual solution costs obtained by a sequence of

five different heuristics for solving the dual problem, where each heuristic explores a differ-

ent structure of the MDPVRP. Three of these heuristics are based on relaxations, whereas the

two others combine subgradient optimization with column generation. We are also aware of

three heuristic algorithms in this category. Hadjiconstantinou and Baldacci (1998) addressed

the Multi-Depot Periodic VRP with Time Windows (MDPVRPTW). The authors proposed a

multi-phase optimization problem and solved it using a four-phase algorithm. They developed

a tabu search algorithm which solves the VRPTW and improved the solutions obtained during

the optimization process using a 3-opt procedure. The last phase is the only one that modifies

the depot and visit combination pattern assignments. Kang et al. (2005) studied the problem

considered by Hadjiconstantinou and Baldacci (1998). The authors developed a two-phase so-

lution method in which all feasible schedules are generated from each depot for each period
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and the set of routes are determined by solving the shortest path problem. Parthanadee and Lo-

gendran (2006) also solved the problem considered by Hadjiconstantinou and Baldacci (1998)

using a tabu search. In this algorithm, all the initial assignments are built by cheapest insertion.

At the improvement phase, depot and delivery pattern interchanges are used.

Another type of solution approaches more recently used to solve the MDPVRP target the

problem as a whole by simultaneously considering all its characteristics. Crainic et al. (2009)

proposed a well structured parallel cooperative search method, called Integrative Co-operative

Search (ICS), to solve combinatorial optimization problems. The proposed ICS framework

relies on an attribute decomposition approach and its structure is similar to a self-adaptive

evolutionary meta-heuristic evolving several independent populations, where one population

corresponds to the solutions of the main problem whereas the others consist of the solutions

addressing specific dimensions of the problem. The authors used the MDPVRP with time win-

dows to illustrate the applicability of the developed methodology. Vidal et al. (2012a) proposed

a hybrid Genetic Algorithm (GA) to solve the MDPVRP and two of its special cases, i.e., the

Multi-depot VRP (MDVRP) and the Periodic VRP (PVRP). The most interesting feature of the

proposed GA is a new population-diversity management mechanism which allows a broader

access to reproduction, while preserving the memory of what characterizes good solutions rep-

resented by the elite individuals of the population.

This brief review supports the general statement made in Section 3.1 that the MDPVRP

is among the VRP variants which did not not receive an adequate degree of attention and the

solution algorithms proposed to solve the MDPVRP are scarce. Moreover, solution methodolo-

gies which solve the MDPVRP as a whole by simultaneously considering all its characteristics

are scarcer. To contribute toward addressing these two challenges, we develop a Path Relink-

ing Algorithm to efficiently address the MDPVRP as a whole. The proposed Path Relinking

Algorithm is described in the next section.
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3.4 The Path Relinking Algorithm (PRA)

In recent years, meta-heuristic algorithms, especially population-based ones, have been applied

with success to a variety of hard optimization problems. Among the population-based meta-

heuristics, PRA is known as a powerful solution methodology which solves a given problem

using purposeful and non-random exploration and exploitation strategies (Glover et al. (2000)).

The general concepts and principles of a Path Relinking are first described in Section 3.4.1.

Then, the main components of PRA proposed to solve the MDPVRP are explained in details

in Section 3.4.2.

3.4.1 The Path Relinking Algorithm in general

The Path Relinking Algorithm has been suggested as an approach to integrate intensification

and diversification strategies in the context of tabu search (Glover et al. (2000)). PRA can be

considered as an evolutionary algorithm where solutions are generated by combining elements

from other solutions. Unlike other evolutionary methods, such as genetic algorithms, where

randomness is a key factor in the creation of offsprings from parent solutions, Path Relink-

ing systematically generates new solutions by exploring paths that connect elite solutions. To

generate the desired paths, an initial solution and a guiding solution are selected from a so-

called reference list of elite solutions to represent the starting and the ending points of the path.

Attributes from the guiding solution are gradually introduced into the intermediate solutions,

so that these solutions contain less characteristics from the initial solution and more from the

guiding solution as one moves along the path.

Based on the description mentioned above, the main components of the general Path Re-

linking Algorithm are summarized as follows:

1. Rules for building the reference set

2. Rules for choosing the initial and guiding solutions

3. A neighbourhood structure for moving along paths
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Algorithm 1 shows a simple Path Relinking procedure presenting how the above-mentioned

different components interact.

Algorithm 1 The general Path Relinking Algorithm
1: Generate a starting set of solutions.
2: Designate a subset of solutions to be included in the reference list.

While the cardinality of the reference list > 1

• Select two solutions from the reference list;
• Identify the initial and guiding solutions;
• Remove the initial solution from the reference list;
• Move from the initial toward the guiding solution, generating intermediate solutions.
• Update the reference list;

3: Verify stopping criterion: Stop or go to 1.

3.4.2 The proposed Path Relinking Algorithm

General idea

The Path Relinking Algorithm proposed in this paper relies on an easy-to-build and efficient

reference list evolving several independent subsets, where one subset, called complete set, cor-

responds to elite solutions of the main problem while the others, named as partial sets, consist

of elite solutions addressing specific dimensions of the problem. The cooperation between the

sets of the reference list is set up by means of information exchange, through the searching

mechanism of PRA.

To construct such a reference list, the MDPVRP is first decomposed into two VRPs with

fewer attributes, i.e., PVRP and MDVRP, by respectively fixing the attributes ”multiple depots”

and ”multiple periods”. Each of the constructed sub-problems is then solved by a dedicated

solution algorithm which is called partial solver. The main advantage of applying such a de-

composition procedure is that working on selected attribute subsets, instead of considering all

attributes at a time, provides relatively high-quality solutions rapidly. Furthermore, well-known

solution methodologies found in the literature may be used to solve sub-problems.

Elite solutions obtained by each partial solver are sent to a partial set of the reference list.
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The partial sets can be either kept unchanged in the course of PRA or iteratively updated in

order to include better solutions, in terms of both solution quality and diversification level, as

the algorithm reaches the termination criterion. We respectively call these two possibilities as

static and dynamic scenarios. Challenges, advantages and deficiencies of each scenario are

thoroughly discussed in Section 3.5.

The construction of the reference list is finalized by considering the complete set as an

empty list at the beginning of the optimization procedure. The complete set is subject to be re-

peatedly updated by high-quality and diverse solutions found through the searching mechanism

of PRA.

After constructing the initial reference list, the proposed Path Relinking Algorithm starts

to construct high-quality solutions of the main problem by exploring trajectories that connect

solutions selected from different subsets, partial and/or complete, of the reference list. To-

wards this end, several selection strategies, each choosing initial and guiding solutions using

a different strategy, are first implemented. Then, for each selected initial and guiding solu-

tions, a neighbourhood search generates a sequence of high-quality complete solutions using

the information shared by the selected solutions.

Two special variants of the proposed Path Relinking Algorithm explained above can be

obtained by respectively ignoring complete and partial sets. In the former case, PRA generates

complete solutions only based on the information gathered from partial solutions, while, in

the latter case, the developed algorithm is converted to a general Path Relinking whose main

characteristics have been described in Section 3.4.1.

Note that, throughout this paper, we use the term ”partial” for the solutions obtained by the

partial solvers only in order to distinguish between these solutions and the solutions generated

in the Path Relinking Algorithm and it does not imply that these solutions are not complete

and feasible for the main problem, i.e., MDPVRP. Different components of the proposed Path

Relinking Algorithm are described in the following subsections.
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Search space

It is well known in the meta-heuristic literature that allowing the search to enter infeasible

regions may result in generating high-quality and diverse feasible solutions. One of the main

characteristics of the proposed PRA is that infeasible solutions are allowed throughout the

search. Let us assume that x denotes the new solution generated by the searching mechanism.

Moreover, let c(x) denote the travel cost of solution x, and let q(x) and t(x) denote the total

violation of the load and duration constraints, respectively. Solution x is evaluated by a cost

function z(x) = c(x)+αq(x)+βt(x), where α and β are self-adjusting positive parameters. By

dynamically adjusting the values of these two parameters, this relaxation mechanism facilitates

the exploration of the search space and is particularly useful for tightly constrained instances.

Parameter α is adjusted as follows: if there is no violation of the capacity constraints, the value

of α is divided by 1+γ , otherwise it is multiplied by 1+γ , where γ is a positive parameter. A

similar rule applies also to β with respect to route duration constraint.

Solution representation

One of the most important decisions in designing a meta-heuristic lies in deciding how to

represent solutions and relate them in an efficient way to the searching space. Representation

should be easy to decode to reduce the cost of the algorithm. In the proposed Path Relinking

Algorithm, a path representation based on the method proposed by Kytöjoki et al. (2007) is used

to encode the solution of the MDPVRP. The idea of the path representation is that the customers

are listed in the order in which they are visited. To explain this solution representation, let us

consider the following example: Suppose that there are four customers numbered 1-4 which

have to be visited by two depots in two periods. Moreover, let us assume that the two first

customers are served by the first depot, whereas the two last ones are visited by the second

depot. Besides that, all customers need to be visited in each period. Figure 3.1 shows how a

solution of the problem described above is represented.

As depicted in Figure 3.1, in this kind of representation, a single row array of the size equal

to n+1 is generated for each depot in each period. Note that n is the number of customers to
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Figure 3.1: An example of the solution representation

be visited. The first position of the array (index 0) is related to the corresponding depot, while

each of the other positions (index i; 1 ≤ i ≤ n) represents a customer. The value assigned

to a position of the array represents which customer should be immediately visited after the

customer or depot related to that position. For example, in Figure 3.1, the value ”2” has been

assigned to the second position (index 1) of the first array. It means that the second customer

is immediately visited after the first customer by a vehicle departed from the first depot. In

this path representation, negative values indicate the beginning of a new route, 0 refers to the

end of the routes and a vacant position (drawn as a black box in Figure 3.1) reveals that the

customer corresponding to that position is not served by the depot to which the array belongs.

Using this representation, changes to the solution can be performed very quickly. For example,

the insertion of a new customer k between two adjacent customers a and b is done simply by

changing the ”next-values” of k to b and a to k. Similarly, one can delete a customer or reverse

part of a route very quickly ( Kytöjoki et al. (2007)).
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Constructing the initial reference list

The reference list is a collection of high-quality solutions that are used to generate new so-

lutions by way of applying the searching mechanism of the Path Relinking Algorithm. What

solutions are included in the reference list, how good and how diversified they are, have a ma-

jor impact on the quality of the new generated solutions (Ghamlouche et al. (2004)). Based

on the descriptions mentioned at the beginning of this section, the reference list implemented

in PRA consists of three different subsets where the first two subsets are the partial sets, each

keeping elite partial solutions generated by a dedicated partial solver, while the last subset is

the complete set consisting of elite solutions of the main problem. Note that, in the proposed

algorithm, the maximum size of each subset is fixed to a predetermined value shown by Rmax.

For the sake of the following descriptions, let us define first the following notations:

• Φi: the set of partial solutions added to the ith partial set of the reference list,

• Ψi: the set of whole partial solutions generated by the ith partial solver,

• φij : the jth partial solution of Φi,

• ψik: the kth solution of Ψi.

The construction of the initial reference list starts by adding Rmax elite partial solutions

existing in Ψi (i = 1, 2) to the ith partial set of the reference list using the following strategy

whose main aim is to ensure both the quality and diversity of the preserved solutions:

1. First, fill partially the ith partial set (i = 1, 2) with dRmax/2e partial solutions of Ψi

which have the best objective function values. Then, delete the added solutions from Ψi.

We call this part of the partial set as B1.

2. Define ∆(φij , ψ
i
k)(φ

i
j ∈ Φi, ψik ∈ Ψi;∀i, j, k) as the Hamming distance of the jth partial

solution existing in Φi to the kth remaining partial solution of Ψi.

3. Calculate dΦi

k = minφij∈Φi ∆(φij , ψ
i
k)(∀ψik ∈ Ψi).

4. Sort the solutions of Ψi (i = 1, 2) in descending order of dΦi

k .

5. Extend the ith partial set of the reference list (i = 1, 2) with the first bRmax/2c solutions

of Ψi. This part of the partial set is named as B2.
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As mentioned at the beginning of Section 3.4.2, the construction of the reference list is

done by considering its last subset (the complete set) as an empty list which is gradually filled

up by elite complete solutions generated during the Path Relinking Algorithm.

The reference list update method

The constructed reference list is iteratively updated during the Path Relinking Algorithm in

order not to lose high-quality and diverse solutions. Unlike the general Path Relinking Al-

gorithm in which the reference list is updated only when a new solution is generated, in the

proposed PRA, two different kinds of updating method are independently applied as follows:

The first type of updating method, called Internal Update Method (IUM), occurs whenever a

high-quality complete solution is generated by the searching mechanism of the Path Relinking

Algorithm. In IUM, once a feasible complete solution, Snew, is generated, it is directly added

to the complete set of the reference list if the number of elite complete solutions preserved

in this set is less than Rmax; otherwise, the following replacement strategy is implemented.

We first define the diversity contribution of the complete solution Snew to the complete set

of the reference list shown by P, D(Snew, P ), as the similarity between itself and its nearest

neighbour in the complete set, that is:

D(Snew, P ) = minX∈P,X 6=Snew ∆(Snew, X)

where ∆(Snew, X), as mentioned in the previous section, is the Hamming distance. More-

over, let us define OFSnew as the objective function value of Snew. The replacement strat-

egy schematically shown by Figure 3.2 is implemented in three phases as follows: Firstly,

the replacement strategy considers all the complete solutions of the complete set with poorer

objective function values than Snew and finds the one, Smax, which maximizes the ratio of

(objective function value)/(diversity contribution) (Step 1). Then, the new generated solution,

Snew, replaces Smax if the following inequality holds (Step 2):

OFSnew/D(Snew, P − Smax) < OFSmax/D(Smax, P )
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In this way, we introduce into the complete set a solution with better objective function

value and possibly higher contribution of diversity. If the inequality mentioned in the second

step does not hold, the worst solution of the set determined in the first step is replaced by Snew

(Step 3).

Figure 3.2: Proposed replacement strategy

On the other hand, the second type of the updating method, called External Update Method

(EUM), occurs for the ith partial set of the reference list (i = 1, 2) whenever a new partial

solution is obtained by the ith dedicated partial solver. As previously mentioned, the ith partial

set of the reference list (i = 1, 2) consists of a set of high-quality solutions B1 and a set of

diverse solutionsB2. Suppose a new partial solution, xnew, is obtained by the ith partial solver.

EUM updates the corresponding subset of the reference list as follows: First, xnew is examined

in terms of solution quality. If it is better than the worst existing solution in B1, the latter is

replaced by the former. Otherwise, xnew is assessed in terms of solution diversification. In

this case, xnew is added to the list if it increases the distance of B2 to B1. In other words, if

the minimum Hamming distance of xnew to any solution in B1 is greater than the minimum

Hamming distance of the last existing solution in B2 to any solution in B1, the last solution in

B2 is replaced by xnew and all the existing solutions of B2, including xnew, are sorted again.

The main purpose of implementing two different update methods is to simultaneously

maintain the elite partial and complete solutions generated respectively by the partial solvers

and Path Relinking Algorithm.

Choosing the initial and guiding solutions

The performance of the Path Relinking Algorithm is highly dependent on how the initial and

guiding solutions are selected from the reference list (Ghamlouche et al. (2004)). In the pro-

posed Path Relinking Algorithm, four different strategies, each following a different purpose,
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are used to choose the initial and guiding solutions.

The first strategy called Partial Relinking Strategy (PRS) selects two partial solutions, each

from a different partial set of the reference list, and sends them to the neighbourhood search

phase to generate high-quality complete solutions. The main idea involved in implementing

such a selection strategy is to produce complete solutions by integrating the best characteristics

of the chosen partial solutions. Towards this end, the effect of four different sub-strategies, each

generating Rmax pairs of partial solutions, is investigated in order to choose the one having the

most positive impact on the performance of PRA. These four sub-strategies are described as

follows:

PRS1 : The ith pair of the first sub-strategy is constructed by defining the guiding and initial

solutions as the ith best solution of the jth (j = 1, 2) and kth (k = 1, 2, k 6= j) partial

sets, respectively. This sub-strategy is motivated by the idea that high-quality solutions

share some common characteristics with optimum solutions. One then hopes that linking

such solutions yields improved new ones.

PRS2 : The ith pair of the second sub-strategy is generated by determining the guiding solution

as the ith best solution of the jth (j = 1, 2) partial set, while the initial solution is defined

as the ith worst solution of the kth (k = 1, 2, k 6= j) partial set. The purpose of this sub-

strategy is to improve the worst partial solution of a partial set based on the appropriate

characteristics of a high-quality partial solution of the other partial set.

PRS3 : The ith pair of the third sub-strategy is constructed by randomly choosing the guiding

and initial solutions from the jth (j = 1, 2) and kth (k = 1, 2, k 6= j) partial sets, respec-

tively. The aim of this sub-strategy is simply to select the initial and guiding solutions in

a random manner with the hope of choosing those pairs of elite partial solutions which

are not selected using the other sub-strategies explained in this section.

PRS4 : The ith pair of the fourth sub-strategy is generated by defining the guiding solution as

the ith best solution of the jth (j = 1, 2) partial set, whereas the initial solution is chosen

as the solution of the kth (k = 1, 2, k 6= j) partial set with maximum Hamming distance

from the guiding solution. The aim of the fourth sub-strategy is to select the initial and

guiding solutions not only according to the objective function value but also according
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to a diversity, or dissimilarity criterion.

On the other hand, in the second strategy called Complete Relinking Strategy (CRS), two

different high-quality complete solutions are selected from the complete set of the reference list

as the source for constructing a path of new solutions. In other words, in CRS, trajectories that

connect complete solutions generated by the Path Relinking Algorithm are explored to obtain

other high-quality complete solutions. The main purpose of this strategy is to prevent losing

good complete solutions which can be obtained by searching paths constructed between other

complete solutions previously generated by the algorithm. Suppose that the number of existing

complete solutions in the complete set is equal to Ω (Ω ≤ Rmax). In CRS, the effect of the

following three sub-strategies, each generating Ω pairs of complete solutions, is investigated.

CRS1 : The ith pair of the first sub-strategy is constructed by defining the guiding and initial

solutions as the best and ith complete solutions of the complete set, respectively. The

main idea involved in this sub-strategy is to improve each of the existing complete solu-

tion based on appropriate characteristics of the best complete solution found by the Path

Relinking Algorithm.

CRS2 : The ith pair of the second sub-strategy is generated by determining the guiding and

initial solutions as the ith and (i+1)th best solutions of the complete set, respectively.

The idea behind this sub-strategy is exactly the same as the idea of implementing the

first sub-strategy of PRS.

CRS3 : The ith pair of the last sub-strategy is generated as follows: The guiding solution is

selected as the ith best solution of the complete set, whereas the initial solution is chosen

as the solution of the same set with maximum Hamming distance from the selected

guiding solution.

The third strategy called Mixed Strategy (MS) selects two distinct partial and complete

solutions as the inputs of the moving mechanism phase. Using this selection strategy, we hope

to improve the selected partial solution based on good features of the chosen complete solution.

In MS, the effect of two different sub-strategies is investigated. These two sub-strategies are

explained as follows:
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MS1 : The ith pair of the first sub-strategy is constructed by defining the guiding and initial

solutions as the ith best solution of the jth (j = 1, 2) and complete sets of the reference

list, respectively.

MS2 : The ith pair of the second sub-strategy is generated as follows: The guiding solution is

selected as the best solution of the complete set, whereas the initial solution is chosen as

the solution of the jth (j = 1, 2) partial set of the reference list with maximum Hamming

distance from the selected guiding solution.

The last strategy is called Ideal Point Strategy (IPS). For the sake of the following descrip-

tion, let us first consider the following definition:

Definition 1. Ideal Point (IP) is a virtual point whose ith coordinate (i = 1, 2) is made by the

objective function value of the best partial solution of the ith partial set (i = 1, 2).

IPS first selects two different guiding solutions so that the ith guiding solution is the so-

lution kept in the ith coordinate of ideal point. Then, each of the solutions preserved in the

reference list (partial or complete) serves respectively as the initial solution. The main purpose

of choosing multiple guiding solutions is that promising regions may be searched more thor-

oughly in Path Relinking by simultaneously considering appropriate characteristics of multiple

high-quality guiding solutions.

Neighbourhood structure and guiding attributes

In the proposed algorithm, unlike a general Path Relinking, two neighbourhood searches, each

targeting a different goal, are implemented in parallel.

The first neighbourhood search is a memory-based searching mechanism which is done

on each pair of partial solutions selected from the reference list using the partial relinking

strategy. The aim of implementing such a neighbourhood search is to generate a sequence of

high-quality complete solutions through integrating appropriate characteristics shared by the

selected partial solutions.

As previously mentioned, the partial relinking strategy selects a solution (A) from the first



44

partial set of the reference list, as either initial or guiding solution, while the other solution

(B) is chosen from the second partial set. Each of the selected partial solutions shares two

important kinds of information: 1) A depot assignment pattern which shows that each customer

is assigned to what depot, and 2) A visit pattern which reflects that each customer is serviced in

what periods of the horizon. Without loss of generality, let us suppose that the first partial set

of the reference list contains elite partial solutions of the MDVRP, whereas the second partial

set is made up of elite partial solutions of the PVRP. Consequently, the selected solution (A)

is a solution that the partial solver obtained by fixing the attribute ”multiple periods” and by

optimizing based on the attribute ”multiple depots”. Hence, it is reasonable to claim that in

such a solution, each customer is assigned to a good depot, while there is no guarantee that

the customers are visited based on good visit patterns. On the other hand, the chosen solution

(B) is a solution that the other partial solver attained by fixing the attribute ”multiple depots”

and by optimizing based on the attribute ”multiple periods”. Therefore, each customer in this

solution is visited through a good visit pattern, while there is no guarantee that the customers

are served by good depots.

Based on the descriptions mentioned above, we can deduce that the good characteristic of

the selected solution (A) is that each customer is served by a good depot, while the appropriate

characteristic of the chosen solution (B) is that each customer is served based on a good visit

pattern. The following definitions reveal the major idea involved in the proposed neighbour-

hood search:

Definition 2. A customer is called eligible if it is visited: 1) by the depot to which that customer

is assigned in the solution selected from the first partial set, and 2) based on the visit pattern

through which that customer is served in the solution chosen from the second partial set.

Definition 3. A good complete solution generated by the neighbourhood search is a solution

in which all the customers are eligible.

Therefore, the main purpose of the neighbourhood search is to progressively introduce

the properties mentioned in Definition 2 to all the customers of the selected initial solution.

Towards this end, we define an algorithm which is repeated θ iterations where θ is a predeter-

mined positive value. At the ith iteration of the algorithm, a customer of the initial solution
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is randomly selected and its eligibility is investigated based on the properties of Definition 2.

Note that, depending on the partial set from which the initial solution is selected, one of the

criteria mentioned in Definition 2 is always met. For example, if the initial solution is selected

from the first partial set, each of the customers is assigned to a good depot. Consequently, the

first property is always satisfied for all the customers and, thus, the second property should

only be verified for the eligibility of the chosen customer. If the second property is not met and

the selected customer is served by a visit pattern different from its corresponding visit pattern

in the guiding solution, it is considered as an ineligible customer. The neighbourhood search

follows then one of the following situations:

1. Eligible customer: If the customer is eligible, the following operators are successively

applied:

• Intra-route relocate operator- In this operator, the eligible customer is first re-

moved, on each period of its visit pattern, from the route by which it is visited. It is

then re-inserted to the best position, based on the penalty function described at the

beginning of this section, of the same route.

• Inter-route relocate operator- In this operator, the chosen customer is first re-

moved, on each period of its visit pattern, from its current route and, then, it is

re-inserted to the best position of the other routes assigned to the depot by which

the customer is served.

2. Ineligible customer: If the selected customer is ineligible, a neighbourhood search,

based on the relocate operator, is applied to the solution in order to overcome the ineligi-

bility of the customer. To implement the relocate operator-based neighbourhood search,

the following four steps are done in a sequential manner:

(a) The depot to which the selected customer is currently assigned is changed to the

depot by which that customer is served in the solution selected from the first partial

set.

(b) The current visit pattern of the selected customer is changed to the visit pattern

through which the customer is visited in the solution chosen from the second partial

set.
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(c) The customer is removed from the routes by which it is visited.

(d) Finally, on each period of the new visit pattern, the removed customer is re-inserted

to one of the routes assigned to the new depot. Once again, the position to which

the customer is inserted is the position in which the penalty function has the least

value.

The neighbourhood search described above is equipped by a virtual memory whose aim is

to enable the algorithm to search promising regions more thoroughly. Each element preserved

in the implemented memory is represented by three indices (i,D∗, P ∗), where i (i = 1, 2...n)

shows the customer’s index, D∗ and P ∗ represent, respectively, the depot and visit pattern

based on which the ith customer is visited in the best solution generated so far by the Path

Relinking. Suppose, in the course of the neighbourhood search, we select the ith customer

which is an ineligible customer. To describe how the proposed memory works, let us consider

the two following cases:

1. The initial solution has been selected from the first partial set: In this case, if the

visit pattern through which the chosen customer is served is equal to P ∗, the current visit

pattern remains unchanged; otherwise, the visit pattern is changed to the one through

which the customer is visited in the guiding solution.

2. The initial solution has been chosen from the second partial set: In this case, if the

depot to which the selected customer is assigned is equal to D∗, the current depot is not

changed; otherwise, the depot is changed to the one by which the customer is serviced

in the guiding solution.

The main purpose of applying such a mechanism is to keep the structure of the selected

solution as near as possible to the structure of the best solution obtained so far by the algorithm.

This memory is updated when a new best solution is found and, to diversify search directions,

the above rule is broken if the current best solution is not changed for ε iterations. Note that ε

is a predetermined positive value.

The second neighbourhood search is another memory-based searching mechanism which

explores trajectories connecting initial and guiding solutions selected through one of the other
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selection strategies, i.e., complete relinking, mixed or ideal point strategy. Like various neigh-

bourhood searches implemented for the general Path Relinking Algorithm, the second neigh-

bourhood search tries to gradually introduce best characteristics of either a single or multiple

guiding solutions (based on the strategy used to select initial and guiding solutions) to new solu-

tions obtained by moving away from the chosen initial solution. Similar to the neighbourhood

search proposed above, the second neighbourhood is iterated θ times so that at each iteration,

the eligibility of a randomly selected customer is investigated.

Definition of an eligible customer is different form what was given in the first neighbour-

hood search and is dependent on the strategy used to select initial and guiding solutions. Def-

inition 4 represents the properties of an eligible customer in the cases where initial and single

guiding solutions are selected using either partial relinking or mixed strategy.

Definition 4. A customer is called eligible if it is served based on the depot and visit pattern

through which that customer is visited in the guiding solution.

On the other hand, Definition 5 shows the conditions under which a customer is called

eligible if initial and multiple guiding solutions are chosen using ideal point strategy. Note

that, in Definition 5, without loss of generality, we suppose that the first and second guiding

solutions are respectively selected as the best solutions of the first and second partial sets.

Definition 5. A customer is called eligible if it is served: 1) by the depot to which that customer

is assigned in the first guiding solution, and 2) based on the visit pattern through which that

customer is served in the second guiding solution.

If the chosen customer is considered eligible, two operators described in the first neigh-

bourhood search, i.e., inter- and intra-route relocate operators, are respectively implemented.

Otherwise, to overcome the ineligibility of the chosen customer, a relocate operator-based

neighbourhood search is applied. The proposed neighbourhood search removes first the cus-

tomer from all the routes through which it is currently served. Then, one of the two following

situations occurs:

• If the initial solution has been selected using either complete relinking or mixed strategy,
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the depot and visit pattern of the removed customer are respectively replaced by the depot

and visit pattern based on which the customer is visited in the guiding solution.

• If the initial solution has been chosen using ideal point strategy, the depot and visit

pattern of the removed customer are respectively changed to the depot and visit pattern

of that customer in the first and second guiding solutions.

Finally, on each period of new visit pattern, the removed customer is inserted to one of the

existing routes of new depot. Like the first neighbourhood search, the position to which the

customer is inserted is the one in which the penalty function takes the least value.

Termination criterion

It is a condition that terminates the search process. In this paper, the two following stopping

criteria are simultaneously considered:

• The algorithm is stopped if no improving solution is found for µ successive iterations. µ

is a positive value which is determined at the beginning of the algorithm. Or,

• The algorithm is terminated if it passes a maximum allowable running time.

Skeleton of the proposed PRA

Algorithm 2 represents the skeleton of the Path Relinking Algorithm proposed for the MD-

PVRP.

In Algorithm 2, C∗ is defined as a list representing the best order of selection strategies

to choose initial and guiding solutions at a given iteration. For example, if C∗ is made up as

PRS2 → CRS3 → MS1 → IPS, it means that, at a given iteration, initial and guiding

solutions should be selected using the following order:

1. The second partial relinking sub-strategy.

2. The third complete relinking sub-strategy.
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Algorithm 2 Path Relinking Algorithm
Initialize the search parameters.
Construct the initial reference list.
while the termination criterion is not met do

Set α=1, β=3.
Set ρ=0.
Update the reference list using the External Update Method (EUM).
for i=1...‖C∗‖ do

Set j= The ith element of C∗.
repeat

Select one initial solution, S, and one or multiple guiding solutions according to
selection strategy j.
Set x=S.
Set υ=0.
repeat

Select randomly a customer of x.
Verify the eligibility of the selected customer.
Generate a solution x̄ using the neighbourhood search corresponding to the
chosen selection strategy.
If x̄ is feasible, update the reference list using the Internal Update Method
(IUM).
Compute q(.) and t(.) and update α and β.
Set x=x̄.
Increment υ by 1.

until υ ≤ θ.
Increment ρ by 1.

until ρ ≤ Rmax.
end for

end while
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3. The first mixed sub-strategy.

4. The ideal point strategy.

Note that, in Section 3.5.2, we thoroughly describe how C∗ is built.

3.5 Experimental results

In this section, the performance of the proposed Path Relinking Algorithm is investigated based

on different test problems. The only problem instances existing in the literature are those

proposed by Vidal et al. (2012a). The authors generated 10 problems whose characteristics are

shown by Table 3.1.

Table 3.1: Problem instances
Instance n K m T

pr01 48 1 4 4
pr02 96 1 4 4
pr03 144 2 4 4
pr04 192 2 4 4
pr05 240 3 4 4
pr06 288 3 4 4
pr07 72 1 6 6
pr08 144 1 6 6
pr09 216 2 6 6
pr10 288 3 6 6

To prove the efficiency of the proposed PRA, two different scenarios, each investigating

one special aspect of the algorithm, are independently followed. In the first scenario, called

static scenario, the partial sets of the reference list, initially filled up by the dedicated partial

solvers, remain unchanged during the algorithm. In such a scenario, we aim to study how PRA

performs as a pure stand-alone algorithm without benefiting of the information that are shared

by the partial solvers through updating the partial sets of the reference list. Towards this end,

in each of the above problem instances, a feasible solution is first generated using the local

search proposed by Vidal et al. (2012a). Let us denote the constructed solution by A. Then,

the problem in hand is decomposed into two vehicle routing problems with exactly one less
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attribute, i.e., PVRP and MDVRP. In the PVRP, the attribute ”multiple depots” is considered

fixed by assigning each customer to the depot by which it is served in solution A. On the other

hand, in the MDVRP, the other attribute ”multiple periods” is set to be fixed by allocating

each customer to the visit pattern through which it is visited in solution A. Thereafter, each

of the above sub-problems is solved using the hybrid genetic algorithm proposed by Vidal

et al. (2012a) to generate the required number of partial solutions. Finally, the obtained partial

solutions are sent to the Path Relinking Algorithm in order to generate solutions of the main

problem. Note that, the number of partial solutions fed to PRA is set to 20 and the above

procedure is repeated in 10 different runs for each of the problem instances.

On the other hand, in Scenario 2, called dynamic scenario, the partial sets of the refer-

ence list are updated in the course of the optimization by partial solutions generated through

the Integrative Cooperative Search (ICS) method designed by Crainic et al. (2009). To more

precisely understand how this scenario is built, let us briefly describe the solution methodol-

ogy used in the ICS. In the ICS approach, three fundamental questions are carefully answered:

how to decompose the problem at hand to define sub-problems; how to integrate partial solu-

tions obtained from the decomposition phase to construct and improve solutions of the main

problem and, finally, how to perform and guide the search. In the decomposition phase, the

main problem is first decomposed into several sub-problems by fixing the values of given sets

of attributes. The constructed sub-problems are then simultaneously solved by partial solvers

which can be well-known constructive methods, heuristics, meta-heuristics or exact methods.

The elite partial solutions obtained are sent to the central memory accompanied with context

information (measures, indicators, and memories). Then, in order to construct whole solu-

tions, integrators play their important role. integrators, which could be either exact methods

or meta-heuristics, construct, and possibly improve, solutions to the main problem using solu-

tions from the different partial solution sets. Finally, in order to repeatedly control the evolution

of partial solvers and integrators implemented in the ICS approach, a guiding and controlling

mechanism, namely global search coordinator, guides the global search by sending appropriate

instructions to partial solvers and, eventually, integrators.

In the dynamic scenario, the proposed PRA, in fact, plays the same role as an integrator

which works based on partial solutions generated during the optimization procedure of the ICS.
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Towards this end, a modified version of the ICS method proposed by Lahrichi et al. (2012) is

executed on each problem instance in 10 different runs. In each of the runs, the ICS is inter-

rupted in four different snapshots, i.e., 5, 10, 15 and 30 minutes, and partial solutions obtained

at each snapshot are served to update the partial sets of the reference list using the External Up-

date Method (EUM). Note that, in this scenario, each partial set remains unchanged between

two successive snapshots. The most distinguishable difference between these two scenarios

is that, in the dynamic scenario, we examine how the quality of the proposed Path Relinking

Algorithm is affected when better and more diversified partial solutions are eventually fed to

the algorithm by the ICS solution methodology.

The proposed algorithm has been coded in C++ and executed on a Pentium 4, 2.8 GHz,

and Windows XP using 256 MB of RAM. Different aspects of the experimental results are

discussed as follows: In Section 3.5.1, we first use a well-structured algorithm to calibrate all

the parameters involved in PRA, Then, in Section 3.5.2, we explore the impact of different

combination of selection strategies, mentioned in Section 3.4.2, on the performance of PRA.

Finally, experimental results, on the two considered scenarios, are given in Section 3.5.3.

3.5.1 Parameter setting

Like the most meta-heuristic algorithms, the proposed PRA relies on a set of correlated param-

eters. Table 3.2 provides a summary of all PRA parameters.

Table 3.2: Parameters of PRA
Symbol Description
Rmax Maximum size of each subset of the reference list
α, β Self-adjusting parameters in the penalty function
γ Factor involved in updating the self-adjusting parameters
θ Number of times that each neighbourhood search is iterated
ε Number of iterations after which the memory rule is broken
µ Maximum allowable number of non-improving iterations

There are various different methods in the literature to calibrate parameters used in heuris-

tics and meta-heuristics. In this paper, we use the well-reported four-step calibration method

of Coy et al. (2000) to tune the parameters used in the heuristic algorithm. Coy et al. (2000)
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proposed a procedure based on statistical Design Of Experiments (DOE) and gradient descent

to systematically calibrate parameter values. The proposed parameter setting procedure takes

a small number of the problem instances from the entire problem set, finds high-quality pa-

rameter settings for each problem, and then combines the parameter settings to determine good

parameter values for the entire set of problems. This procedure can be summarized in the

following four steps that are implemented in a sequential manner:

Step 1- In this step, a subset of problems to analyze (analysis set) is chosen from the entire set

of problems. The problems are selected so that most of the structural differences found

in the problem set are represented in the analysis set.

Step 2- In this step, computational experience is used to select the starting level of each pa-

rameter, the range over which each parameter will be varied, and the amount by which

each parameter should be changed. Towards this end, in this paper, a robust calibra-

tion method called Relevance Estimation and VAlue Calibration (REVAC) (Smith and

Eiben (2010)) is used. Technically, REVAC is a heuristic generate-and-test method that

is iteratively searching for the set of parameter vectors of a given EA with a maximum

performance. In each iteration, a new parameter vector is generated and its performance

is tested. Testing a parameter vector is done by executing the EA with the given parame-

ter values and measuring the EA performance. A detailed explanation of REVAC can be

found in Smith and Eiben (2010). 3.3 summarizes the results obtained using REVAC.

Table 3.3: Calibration results of REVAC
Symbol Starting level Range Changing step
Rmax 20 [20,40] 5
α, β 1,1 [1,5], [1,5] 1,1
γ 1 [1,4] 1
θ n [n, 5*n] n/2
ε 5000 [5000,10000] 2500
µ 200000 [200000, 600000] 50000

Step 3- In this step, good parameter settings are selected for each problem in the analysis set

using fractional factorial design and response surface optimization. In this paper, the

half-factorial design is implemented for each selected analysis set.
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Step 4- Finally, in this step, the parameter values obtained in the third step are averaged to

obtain high-quality parameter values. 3.4 represents the selected value of each parameter

as follows:

Table 3.4: Calibration results
Symbol Description
Rmax 30
α, β 1,3
γ 1
θ 4*n
ε 5000
µ 500000

3.5.2 Path Relinking selection strategies

We tested all combinations of selection strategies, mentioned in Section 3.4, in order to identify

the best way to select initial and guiding solutions. The best combination is then used for the

extensive experimental analysis of the Path Relinking Algorithm.

The same 10 problem instances used to calibrate the parameter settings are also used here.

Moreover, each run is repeated 5 times. Thus, since there are 24 possible combinations of

selection strategies (4 partial relinking strategies × 3 complete relinking strategies × 2 mixed

strategies), a total of 1200 runs are performed. The performance of each combination of selec-

tion strategies is measured, in both the static and dynamic scenarios, as the average improve-

ment in solution quality, compared to the best partial solution initially fed to the partial sets of

the reference list. Note that, in the dynamic scenario, the best partial solution found at the first

snapshot, 5 minutes, is used to compare the efficiency of all combinations. The comparative

performances of all combinations of selection strategies, in the static and dynamic scenarios,

are respectively presented in Tables 3.5 and 3.6.

Both of Tables 3.5 and 3.6 identify the combination of strategies PRS4 (The forth Partial

Relinking Sub-strategy), CRS3 (The third Complete Relinking Sub-strategy) and MS2 (The

second Mixed Sub-Strategy) as offering the best results. This set of selection strategies is

therefore retained for our experimental analyses. The choice of this combination confirms the
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Table 3.5: Average improvement in the static scenario (%)
PRS1 PRS2 PRS3 PRS4

(CRS1,MS1) 6.88 6.52 6.41 7.16
(CRS1,MS2) 7.50 7.31 7.12 7.82
(CRS2,MS1) 7.22 7.15 7.01 7.65
(CRS2,MS2) 7.71 7.44 7.29 8.07
(CRS3,MS1) 7.04 6.72 6.60 7.31
(CRS3,MS2) 7.64 7.50 7.34 8.49

Table 3.6: Average improvement in the dynamic scenario (%)
PRS1 PRS2 PRS3 PRS4

(CRS1,MS1) 1.21 1.16 0.97 1.44
(CRS1,MS2) 1.60 1.39 1.30 1.79
(CRS2,MS1) 1.47 1.30 1.18 1.72
(CRS2,MS2) 1.71 1.58 1.41 1.90
(CRS3,MS1) 1.31 1.22 1.03 1.63
(CRS3,MS2) 1.80 1.59 1.44 2.12

importance of selecting initial and guiding solutions non-randomly and also not only according

to the objective function value but also according to a diversity criterion.

3.5.3 Results on MDPVRP instances

Static scenario

We tested PRA on the problem instances described at the beginning of this section. For solving

these problems, the maximum running time is set to 30 minutes. Table 3.7 summarizes the

characteristics of partial solutions fed to PRA using the hybrid genetic algorithm.

In Table 3.7, SP1 and SP2 represent partial solutions sets generated for the MDVRP and

the PVRP, respectively. SP1 + SP2 is the union of all partial solutions obtained by the hybrid

genetic algorithm. Moreover, For each set, worse, average and best partial solutions on 10 runs

are shown. Finally, the last column reveals the Best Known Solution (BKS) reported by Vidal

et al. (2012a).

In each of the problem instances, we carefully answer to the following questions:

1. What percentage of the gap is there between the PRA’s output and the BKS?
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Table 3.8: Average results on MDPVRP instances in the static scenario
PRA HGA

Worst Average Best Time Average Time Gap to Gap to
Instance (sec) (sec) HGA (%) BKS (%)

pr01 2019.07 2019.07 2019.07 30 2019.07 21 0 0
pr02 3547.45 3547.45 3547.45 124 3547.45 89 0 0
pr03 4480.87 4480.87 4480.87 495 4491.08 463.2 -22.73 0
pr04 5155.12 5149.64 5134.17 1389 5151.73 1326 -0.04 0.30
pr05 5672.71 5598.32 5579.43 1800 5605.60 1800 -0.12 0.50
pr06 6618.38 6568.79 6540.66 1800 6570.28 1800 -0.02 0.67
pr07 4502.02 4502.02 4502.02 203 4502.06 131 -0.01 0
pr08 6038.44 6027.51 6023.98 547 6029.58 478 -0.03 0.05
pr09 8341.09 8304.26 8268.88 1800 8310.19 1667 -0.07 0.56
pr10 9987.16 9963.55 9852.30 1800 9972.35 1800 -0.09 1.48

ASD of PRA 0.22%
ASD of HGA 0.26%

2. Can the proposed PRA compete with the state-of-the-art Hybrid Genetic Algorithm

(HGA) of Vidal et al. (2012a), which has been proved as one of the most powerful

solution methodologies to solve the MDPVRP?

3. How much is PRA capable of improving the gap between initial partial solutions and the

BKS?

Table 3.8 shows the results dealing with the two first questions. In this table, the average

results of 10 runs of PRA and HGA, in terms of solution quality and computational time, are

reported in columns 2-6. Moreover, the average error gaps of PRA compared to the HGA and

BKS are respectively shown in the last two columns. Finally, ASD is the Average Standard

Deviation per instance that an algorithm has obtained. Note that, If each of the considered

solution methods (PRA and HGA) give a result equal to the BKS, we indicate the corresponding

value in boldface.

The results shown by Table 3.8 can be interpreted as follows:

1. The average error gap of PRA to the BKS is +0.36% which is very reasonable consid-

ering the problem complexity. PRA results vary clearly depending on the problem diffi-

culty so that the average gap ranges from 0.00% to 1.18%. On four problems (pr01, pr02,

pr03 and pr04), the algorithm seems to always converge toward the BKS, whereas prob-

lems pr08 to pr10, with larger number of depots and periods, seem particularly difficult
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Table 3.9: An example of the Friedman test table
Instance The average results obtained by PRA The average results obtained by HGA

pr01 X11 X12

pr02 X21 X22

pr03 X31 X32

. . .

. . .

. . .

to tackle. Generally, the proposed Path Relinking Algorithm performs well compared to

the BKS even for more challenging instances including a larger number of customers,

depots and periods.

2. The average error gap existing between PRA and HGA is -2.31% which shows the su-

periority of PRA to produce better results. To statistically prove this superiority, the

well-known Friedman test is used. The Friedman test is a non-parametric statistical test

developed by the U.S. economist Milton Friedman. Similar to the parametric repeated

measures ANOVA, it is used to detect differences in treatments across multiple test at-

tempts. The procedure involves ranking each row (or block) together, then considering

the values of ranks by columns. In this paper, the Friedman test table is presented as

Table 3.9. In this table, the first column display instance identifier, while the two other

columns show the average results respectively generated by PRA and HGA.

The characteristics of Friedman test, implemented in this paper, are as follows:

• Assumptions:

– The results over problem instances are mutually independent (i.e., the results

within one instance do not influence the results within other instance)

– Within each problem instance, the objective functions can be ranked.

• Hypotheses:

– H0: There is no significant difference between the outputs of PRA and HGA.

– H1: PRA performs better than HGA.

• Procedure:
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Table 3.10: Friedman test results
Friedman test’s variable Value

A2 49
B2 48.2
T2 36> f0.99,1,9

(a) Rank the results of the both algorithms (PRA and HGA) within each problem

instance, giving 1 to the best and 2 to the worst. Let us define R(Xij) as the

rank assigned to Row i and column j of Table 3.9.

(b) Calculate the total summation of squared ranks, A2, using the following for-

mula:

A2 =
∑10

i=1

∑2
j=1[R(Xij)]

2

(c) Compute the summation of the rank for each algorithm, Rj =
∑10

i=1R(Xij)

for j = 1, 2 and calculate B2:

B2 = 1
10

∑2
j=1R

2
j

(d) The test statistic is given by:

T2 = 9(B2−45)
A2−B2

(e) Reject H0, at the level of significance 0.01, if T2 is greater than the quantile of

the F distribution with K1 = 1 and K2 = 9 degrees of freedom. Table 3.10

summarizes the results of the above five-step procedure.

As shown in Table 3.10, the test static (T2) is greater than f0.99,1,9. This result justifies

that PRA performs significantly better than HGA to produce good results, in terms of

solution quality and computational time.

On the other hand, Table 3.11 represents the results concerning with the third question.

This table indicates how much PRA is able to improve the gap between partial solutions and

the BKS.

As shown in Table 3.11, PRA is considerably powerful to decrease the gap existing between

the BKS and partial solutions of all the sets. This fact, besides the results shown in Table

3.8, reveals that the proposed algorithm plays very well its role as a stand-alone algorithm to

generate high-quality solutions of the considered MDPVRP.
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Table 3.11: Average gap improvement to BKS in the static scenario (%)
SP1 SP2 SP1+SP2

Instance Worst Average Best Worst Average Best Worst Average Best
pr01 6.60 5.05 4.94 17.45 11.61 11.30 17.45 8.08 4.94
pr02 6.67 6.11 5.65 33.71 33.68 33.66 33.71 19.89 5.65
pr03 10.33 8.89 8.38 53.60 43.71 41.45 53.60 26.03 8.38
pr04 10.90 9.34 8.60 71.08 71.08 71.30 71.08 40.21 8.60
pr05 6.94 7.82 7.52 47.70 48.95 49.26 47.70 28.39 7.52
pr06 8.85 10.33 9.04 27.40 28.10 28.07 27.40 19.21 9.04
pr07 7.08 6.68 6.36 20.45 20.43 20.43 20.45 13.56 6.36
pr08 9.66 9.67 9.47 47.54 44.91 39.80 47.54 27.29 9.47
pr09 4.96 5.11 5.09 41.77 42.08 42.40 41.77 23.60 5.09
pr10 7.04 7.03 7.80 45.72 45.84 46.92 45.72 26.43 7.80

Dynamic scenario

In the dynamic scenario, we try to properly answer to the same questions as mentioned in the

previous section. Table 3.12 indicates the main characteristics of partial solutions generated by

the ICS in different snapshots. In each of the problem instances, PRA is executed on partial

solutions of each snapshot and the obtained results on 10 runs is reported in Table 3.13

The average error gap to the BKS is +0.25%, +0.20%, +0.17% and +0.12% at 5, 10, 15 and

30-min snapshot, respectively. These average error gaps reveal that the quality of the proposed

PRA increases by gradually feeding better and more diversified partial solutions by the ICS.

On the other hand, in all the snapshots, the values of error gaps seem reasonable considering

the problem difficulty. On four problem instance (pr01, pr02, pr07 and pr08), PRA always

traps, in all snapshots, on the best partial solution fed by the ICS. This phenomenon seems

inevitable because, in each of these problems, there exists apparently no better solution than

the BKS which is initially sent as a partial solution to PRA by the ICS. On two problems (pr03

and pr10), PRA obtained new best known solutions which are shown as boldface starred values

in the table.

Moreover, the average error gap between PRA and HGA is -2.41%, -2.47%, -2.84% and

-3.15% at 5, 10, 15 and 30-min snapshot, respectively. These average error gaps prove, once

again, better performance of PRA to generate promising results, in terms of solution quality

and computational efficiency. Note that, in this scenario, the average result generated by PRA,



61

Ta
bl

e
3.

12
:C

ha
ra

ct
er

is
tic

s
of

pa
rt

ia
ls

ol
ut

io
ns

in
th

e
dy

na
m

ic
sc

en
ar

io
S
P
1

S
P
2

S
P
1
+S
P
2

In
st

an
ce

Sn
ap

sh
ot

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

5
m

in
.

20
53

.4
3

20
28

.1
4

20
19

.1
7

21
12

.5
1

20
44

.0
5

20
19

.1
7

21
12

.5
1

20
36

.0
9

20
19

.1
7

pr
01

10
m

in
.

20
43

.0
1

20
20

.1
9

20
19

.1
7

20
44

.0
7

20
26

.4
2

20
19

.1
7

20
44

.0
7

20
32

.2
7

20
19

.1
7

15
m

in
.

20
33

.1
9

20
26

.3
8

20
19

.1
7

20
27

.4
8

20
24

.2
6

20
19

.1
7

20
27

.4
8

20
25

.6
1

20
19

.1
7

30
m

in
.

20
22

.8
8

21
21

.8
3

20
19

.1
7

20
23

.9
7

20
21

.7
5

20
19

.1
7

20
23

.9
7

20
21

.9
2

20
19

.1
7

5
m

in
.

36
08

.7
7

35
58

.9
6

35
47

.4
5

36
11

.2
8

35
62

.3
1

35
47

.4
5

36
11

.2
8

35
67

.1
4

35
47

.4
5

pr
02

10
m

in
.

35
95

.1
4

35
52

.1
6

35
47

.4
5

35
95

.1
4

35
50

.5
1

35
47

.4
5

35
95

.1
4

35
53

.2
2

35
47

.4
5

15
m

in
.

35
88

.4
2

35
50

.6
8

35
47

.4
5

35
59

.6
6

35
49

.1
4

35
47

.4
5

35
88

.4
2

35
50

.0
9

35
47

.4
5

30
m

in
.

35
65

.3
1

35
49

.6
6

35
47

.4
5

35
54

.0
4

35
48

.2
3

35
47

.4
5

35
65

.3
1

35
49

.5
3

35
47

.4
5

5
m

in
.

47
21

.4
8

45
37

.0
4

44
81

.9
4

48
53

.3
3

44
86

.8
8

44
81

.9
4

48
53

.3
3

45
07

.5
3

44
81

.9
4

pr
03

10
m

in
.

47
00

.6
2

45
03

.3
7

44
81

.9
4

48
50

.6
6

44
83

.2
3

44
81

.9
4

48
50

.6
6

44
93

.2
8

44
81

.9
4

15
m

in
.

45
64

.7
4

45
23

.1
9

44
80

.8
7

44
86

.4
1

44
83

.3
4

44
80

.8
7

45
64

.7
4

45
03

.1
4

44
80

.8
7

30
m

in
.

45
38

.5
3

45
14

.1
9

44
80

.8
7

44
84

.3
5

44
82

.4
5

44
80

.8
7

45
38

.5
3

44
95

.9
1

44
80

.8
7

5
m

in
.

52
01

.6
9

51
88

.0
6

51
72

.7
6

52
48

.7
2

51
95

.2
6

51
75

.7
7

52
48

.7
2

51
92

.5
9

51
72

.7
6

pr
04

10
m

in
.

51
70

.8
2

51
64

.5
8

51
49

.0
5

51
62

.3
2

51
61

.0
2

51
49

.0
5

51
70

.8
2

51
62

.8
1

51
49

.0
5

15
m

in
.

51
77

.8
3

51
68

.4
2

51
49

.0
5

52
39

.5
5

51
78

.4
4

51
49

.0
5

52
39

.5
5

51
73

.4
7

51
49

.0
5

30
m

in
.

54
42

.7
4

52
39

.4
1

51
44

.4
5

51
52

.9
6

51
49

.7
5

51
44

.4
5

54
42

.7
4

51
99

.3
4

51
44

.4
5

5
m

in
.

59
58

.5
0

57
88

.2
4

56
03

.2
8

59
58

.5
0

57
62

.1
9

56
82

.1
6

59
58

.5
0

57
68

.2
2

56
03

.2
8

pr
05

10
m

in
.

57
20

.8
3

56
87

.2
8

56
42

.9
9

56
83

.1
5

56
64

.2
3

56
42

.9
9

57
20

.8
3

56
65

.1
2

56
42

.9
9

15
m

in
.

57
14

.5
7

56
81

.4
5

56
42

.9
9

59
58

.5
0

57
73

.2
1

56
42

.9
9

59
58

.5
0

57
28

.3
5

56
42

.9
9

30
m

in
.

57
06

.8
1

56
53

.2
3

56
04

.9
5

57
17

.6
9

56
64

.1
2

56
04

.9
5

57
17

.6
9

56
58

.9
2

56
04

.9
5

5
m

in
.

70
85

.2
1

66
75

.2
1

66
08

.9
8

70
47

.2
9

66
63

.2
9

66
08

.9
8

70
85

.2
1

66
69

.5
3

66
08

.9
8

pr
06

10
m

in
.

67
72

.9
5

66
59

.4
1

65
89

.8
8

67
35

.3
8

66
48

.2
1

65
89

.8
8

67
72

.9
5

66
53

.1
2

65
89

.8
8

15
m

in
.

67
44

.3
9

66
38

.7
9

65
89

.8
1

67
35

.3
8

66
26

.4
7

65
89

.8
1

67
44

.3
9

66
30

.2
5

65
89

.8
1

30
m

in
.

65
94

.5
0

65
74

.2
5

65
67

.6
6

65
90

.3
6

65
71

.1
9

65
67

.6
6

65
94

.5
0

65
72

.2
2

65
67

.6
6

5
m

in
.

46
38

.6
0

45
78

.2
9

45
02

.0
2

47
78

.4
2

45
89

.2
3

45
02

.0
2

47
78

.4
2

45
84

.1
8

45
02

.0
2

pr
07

10
m

in
.

45
77

.9
1

45
38

.2
5

45
02

.0
2

45
17

.7
9

45
06

.7
7

45
02

.0
2

45
77

.9
1

45
27

.5
1

45
02

.0
2

15
m

in
.

45
77

.9
1

45
28

.8
4

45
02

.0
2

45
09

.3
6

45
04

.8
7

45
02

.0
2

45
77

.9
1

45
20

.3
6

45
02

.0
2

30
m

in
.

45
09

.9
7

45
04

.9
3

45
02

.0
2

45
04

.4
5

45
03

.3
3

45
02

.0
2

45
09

.9
7

45
03

.6
6

45
02

.0
2

5
m

in
.

62
46

.7
8

61
67

.3
2

60
24

.2
4

65
77

.0
4

63
21

.8
7

60
24

.2
4

65
77

.0
4

62
44

.2
5

60
24

.2
4

pr
08

10
m

in
.

62
46

.7
8

60
97

.4
4

60
23

.9
8

64
85

.5
6

62
99

.4
1

60
23

.9
8

64
85

.5
6

62
26

.0
9

60
23

.9
8

15
m

in
.

62
46

.7
8

60
77

.2
9

60
23

.9
8

60
69

.1
2

60
44

.6
5

60
23

.9
8

62
46

.7
8

60
60

.4
3

60
23

.9
8

30
m

in
.

62
46

.7
8

60
54

.3
8

60
23

.9
8

60
25

.2
1

60
24

.4
6

60
23

.9
8

62
46

.7
8

60
44

.6
1

60
23

.9
8

5
m

in
.

85
70

.6
4

84
33

.1
2

83
26

.5
8

85
31

.5
5

84
17

.1
7

83
16

.9
5

85
70

.6
4

84
25

.6
2

83
16

.9
5

pr
09

10
m

in
.

83
12

.4
0

83
04

.9
9

82
96

.4
2

83
05

.6
5

83
01

.4
4

82
96

.4
2

83
12

.4
0

83
02

.7
8

82
96

.4
2

15
m

in
.

83
07

.9
4

83
01

.4
5

82
96

.0
9

83
05

.6
5

82
99

.5
2

82
96

.0
9

83
07

.9
4

83
00

.2
7

82
96

.0
9

30
m

in
.

84
24

.4
9

83
49

.5
1

82
93

.3
3

83
00

.3
4

82
97

.4
4

82
93

.3
3

84
24

.4
9

83
24

.6
6

82
93

.3
3

5
m

in
.

12
62

6.
90

10
85

7.
44

10
12

8.
8

13
34

0.
10

11
19

0.
51

10
12

8.
8

13
34

0.
10

13
15

2.
27

10
12

8.
8

pr
10

10
m

in
.

10
48

9.
30

10
22

7.
44

99
93

.9
4

10
40

2.
10

10
20

0.
36

99
93

.9
4

10
48

9.
30

10
21

4.
77

99
93

.9
4

15
m

in
.

10
16

9.
20

10
13

4.
98

99
93

.9
4

10
05

9.
70

10
03

2.
46

99
93

.9
4

10
16

9.
20

10
08

1.
33

99
93

.9
4

30
m

in
.

10
09

1.
90

10
04

9.
77

99
93

.9
4

12
19

2.
90

10
10

4.
71

99
93

.9
4

12
19

2.
90

10
07

0.
14

99
93

.9
4



62

Table 3.13: Average results on MDPVRP instances in the dynamic scenario
PRA

Worst Average Best Time Gap to Gap to
Instance Snapshot (sec) HGA (%) BKS (%)

5 min. 2019.07 2019.07 2019.07 15 0 0
pr01 10 min. 2019.07 2019.07 2019.07 15 0 0

15 min. 2019.07 2019.07 2019.07 15 0 0
30 min. 2019.07 2019.07 2019.07 15 0 0
5 min. 3547.45 3547.45 3547.45 65 0 0

pr02 10 min. 3547.45 3547.45 3547.45 65 0 0
15 min. 3547.45 3547.45 3547.45 65 0 0
30 min. 3547.45 3547.45 3547.45 65 0 0
5 min. 4480.87 4480.87 4480.87 242 -22.73 0

pr03 10 min. 4480.87 4480.87 4480.87 242 -22.73 0
15 min. 4480.87 4479.29∗ 4472.22∗ 242 -26.25 -0.03
30 min. 4480.87 4478.12∗ 4472.22∗ 242 -28.86 -0.06
5 min. 5155.32 5148.42 5134.17 300 -0.07 0.27

pr04 10 min. 5149.05 5148.09 5134.17 300 -0.07 0.27
15 min. 5149.05 5147.81 5134.17 300 -0.07 0.27
30 min. 5148.45 5147.75 5134.17 300 -0.07 0.26
5 min. 5597.12 5595.24 5581.10 300 -0.18 0.44

pr05 10 min. 5603.28 5592.91 5581.10 300 -0.22 0.40
15 min. 5596.73 5589.04 5581.10 343 -0.29 0.33
30 min. 5594.94 5585.16 5581.10 343 -0.36 0.26
5 min. 6573.29 6560.44 6540.66 300 -0.14 0.54

pr06 10 min. 6566.46 6547.08 6540.66 300 -0.35 0.33
15 min. 6566.46 6546.19 6538.91 512 -0.37 0.32
30 min. 6549.57 6541.80 6538.60 512 -0.43 0.25
5 min. 4502.02 4502.02 4502.02 101 -0.009 0

pr07 10 min. 4502.02 4502.02 4502.02 101 -0.009 0
15 min. 4502.02 4502.02 4502.02 101 -0.009 0
30 min. 4502.02 4502.02 4502.02 101 -0.009 0
5 min. 6023.98 6023.98 6023.98 225 -0.09 0

pr08 10 min. 6023.98 6023.98 6023.98 225 -0.09 0
15 min. 6023.98 6023.98 6023.98 225 -0.09 0
30 min. 6023.98 6023.98 6023.98 225 -0.09 0
5 min. 8312.14 8303.89 8268.88 300 -0.07 0.56

pr09 10 min. 8292.23 8291.08 8268.88 300 -0.22 0.40
15 min. 8292.23 8288.44 8268.88 494 -0.26 0.37
30 min. 8286.01 8279.55 8268.88 494 -0.37 0.26
5 min. 9995.29 9890.22 9852.30 300 -0.82 0.73

pr10 10 min. 9886.34 9875.78 9852.30 300 -0.97 0.58
15 min. 9886.34 9856.30 9811.3∗ 750 -1.16 0.39
30 min. 9871.06 9839.07 9811.3∗ 750 -1.36 0.21

ASD of PRA 22% 22% 20% 19%
(5-min) (10-min) (15-min) (30-min)
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in each problem instance and each snapshot, is equal or better than the corresponding value in

the static scenario. Consequently, we do not need to use the Friedman test and the significant

difference between PRA and HGA is automatically proved.

Table 3.14 reports the improvement percentage on the gap between the BKS and partial

solutions initially sent to PRA. Note that, pr01, pr02, pr07 and pr08 are ignored in 3.14 because,

as mentioned above, the ICS always sends, in these problems, the BKS as a partial solution to

PRA.

Studying the results obtained in the static and dynamic scenarios, we deduce that the pro-

posed PRA can be used as a competitive solution method in the both of its considered settings,

i.e., as a stand-alone algorithm and as an integrator in the ICS solution methodology.

3.6 Conclusions

This paper presented a new Path Relinking Algorithm to efficiently tackle the multi-depot pe-

riodic vehicle routing problem, for which few efficient algorithms are currently available. The

proposed algorithm was designed based on prominent exploration and exploitation strategies

which enable the algorithm to solve the problem in two different ways: 1) As a pure stand

alone algorithm, and 2) As an integrator in the ICS solution framework.

To validate the efficiency of PRA, different test problems, existing in the literature, were

solved. The computational results revealed that the proposed Path Relinking Algorithm per-

forms considerably well, in all the problem instances.

The proposed PRA, as a fairly general-purpose solver, opens the way to experimentations

and sensitivity analyses of local search and meta-heuristic components on a wide range of

structurally different problems. Finally, perspective of research involve the generalization of

the method towards a wider variety of multi-objective and stochastic settings.
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Chapter 4

Fleet-sizing for multi-depot and

periodic vehicle routing problems

using a modular heuristic algorithm

Abstract

In this paper, we address the problem of determining the optimal fleet size for three vehicle

routing problems, i.e., multi-depot VRP, periodic VRP and multi-depot periodic VRP. In each

of these problems, we consider three kinds of constraints that are often found in reality, i.e.,

vehicle capacity, route duration and budget constraints. To tackle the problems, we propose a

new Modular Heuristic Algorithm (MHA) whose exploration and exploitation strategies enable

the algorithm to produce promising results. Extensive computational experiments show that

MHA performs impressively well, in terms of solution quality and computational time, for the

three problem classes.

keywords: Multi-depot periodic vehicle routing problem, Fleet-sizing, Modular heuristic

algorithm.
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4.1 Introduction

In the classical Vehicle Routing Problem (VRP), a homogeneous fleet of vehicles services a

set of customers from a single distribution depot or terminal. Each vehicle has a fixed capacity

that cannot be exceeded and each customer has a known demand that must be fully satisfied.

Each customer must be serviced by exactly one visit of a single vehicle and each vehicle must

depart from the depot and return to the depot (Dantzig and Ramser (1959)).

During the past five decades, the vehicle routing problem and its variations have been ex-

tensively studied. However, surveying the literature, one can perceive that not all VRP variants

have been addressed with the same degree of attention. This is the case for the problem classes

considered in this paper. On the other hand, most of the methodological developments tar-

get a special problem variant, the Capacitated VRP (CVRP) or the VRP with Time Windows

(VRPTW), despite the fact that the majority of the problems encountered in real-life applica-

tions display more complicating attributes and constraints. This also applies to the problem

addressed in this paper. Moreover, the literature survey underlines that, the problem classes

studied in this study have been often set up with objective functions other than the minimiza-

tion of the fleet size, despite the fact that there are many real-life applications in which it is

more crucial to give more importance to the minimization of the fleet size in comparison with

other existing objectives as the total traveled distance. This situation may occur when important

factors such as high vehicle fixed costs exist.

Our objective is to contribute toward addressing the above three challenges. In this paper,

we propose a modular heuristic algorithm capable of successfully dealing with three VRP

variants: Multi-depot VRP, MDVRP, Periodic VRP, PVRP, and Multi-depot Periodic VRP,

MDPVRP. In each of these problems, the goal is to determine the optimal fleet size where three

practical constraints, i.e., vehicle capacity, maximum route duration and budget constraints,

should be satisfied. The proposed heuristic algorithm incorporates different exploration and

exploitation strategies to produce good results, in terms of solution quality and computational

efficiency.

The remainder of this paper is organized as follows: Section 4.2 gives the problem state-
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ment. In Section 4.3, the literature survey relevant to the topic of this study is presented.

Different aspects of the proposed heuristic algorithm are described in Section 4.4. The ex-

perimental results are given in Section 4.5. Finally, Section 4.6 provides conclusions and the

evaluation of the work.

4.2 Problem statement

In this section, we formally state each of the problem classes, introducing the notations used

throughout this paper.

MDVRP- Consider an undirected graph G(V,E). The node set V is the union of two subsets

V = VC ∪ VD, where VC = {C1, ...,CN} represents the customers and VD = {D1, ...,DM}

includes the depots. With each node i ∈ VC is associated a deterministic demand qi. The edge

set E contains an edge for each pair of customers and for each depot-customer combination.

There are no edges between depots. With each edge (vi, vj) ∈ E is associated a travel cost

cij . The travel distance for arriving to node j from node i (dij) is considered equal to cij . Each

vehicle performs only one route and each vehicle route must start and finish at the same depot.

(Cordeau et al. (1997)).

PVRP- In the PVRP, the undirected graph G(V,E) is modified by fixing the value of M to

one and by introducing a planning horizon of T periods. In such a graph, each customer i is

characterized by a service frequency fi, stating how often within these T periods the customer

must be visited and a list Ωi of possible visit-period combinations. Moreover, Ω is defined as

the set of subsets of T , giving all the allowable patterns, that is: Ω = ∪Ni=1Ωi (Vidal et al.

(2012a)).

MDPVRP- Finally, the Multi-Depot Periodic VRP (MDPVRP) combines the two above

problem settings, asking for the selection of a depot and a visit pattern for each customer, with

services in different periods to the same customer being required to originate at the same depot

(Vidal et al. (2012a)).
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In each problem class, the goal is to determine the optimal fleet size subject to the following

three practical constraints:

1. The vehicle capacity constraint: This constraint states that the total demand of the cus-

tomers on any route should not exceed the vehicle capacity Q.

2. The route duration constraint: This constraint reveals this fact that the total duration of a

route does not exceed a preset value D.

3. The budget constraint: In many logistical systems, one is usually faced with budgetary

constraints that come from the fact that a limited investment budget is available for a

certain area or a certain period of time. Although it is quite easy to understand the prac-

tical aspect of these constraints, budget considerations are almost always ignored when

dealing with VRPs. In this paper, we consider a Travel-Distance Budget (TDB) con-

straint which imposes a threshold on the total distance traveled by vehicles for delivery

operations. The TDB constraint is defined using two different rules, each realizing an

important managerial challenge in real-life distribution and logistical systems. In the

first rule (R1), we set a bound on the total distance that vehicles are permitted to travel

over the planning horizon. On the other hand, the second rule (R2) aims to reflect the

situations in which, due to geographical and operational constraints, the total distance

traveled by vehicles assigned to a depot cannot exceed a limit in a period.

Depending on how we model the TDB constraint, each of the above problem classes can

be expressed by one of the following mathematical programming models.

(R1) min K (4.1)

subject to

F (x,K) = b (4.2)

τ ≤ ε (4.3)

In the above model, K is the total number of used vehicles (Fleet size) over the planning

horizon which is to be minimized. Constraint (4.2) corresponds to the vehicle-capacity and
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route-duration restrictions described above. Constraint (4.3) imposes that the total traveled dis-

tance (τ ) is limited by a positive value ε.

(R2) min K (4.4)

subject to

F (x,K) = b (4.5)

τtj ≤ εtj ∀t ∈ T, ∀j ∈ D; (4.6)

where τtj is the total distance traveled by the vehicles assigned to depot j in period t and

εtj is a positive upper bound which is set on τtj .

Cordeau et al. (1997) showed that the formulation of a generalized PVRP includes the

MDVRP as a special case by associating a different period to each depot, such that the ith

customer has a frequency fi=1 and can be visited in any period. Vidal et al. (2012a) extended

this result by proving that an MDPVRP with T periods and D depots can be transformed

into a generalized PVRP by associating a period to each (period, depot) pair, such that the ith

customer, having a list Ωi of L patterns, is visited fi times over the planning horizon using

one of the D × L patterns. We rely on these two transformations in the development of the

proposed modular heuristic algorithm.

4.3 Literature review

In this section, we focus on reviewing papers formerly published in the literature to solve

the PVRP, the MDVRP and the MDPVRP. The aim of this review is first to present the most

recently proposed heuristic and meta-heuristic algorithms for the considered problems and, to

discern leading solution approaches which have been demonstrated to be impressive to address

the three problem settings.
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Several heuristics have been put forward for the MDVRP. Early heuristics, performing

based on simple construction and improvement procedures, have been developed by Tillman

(1969), Tillman and Hering (1971), Tillman and Cain (1972), Golden et al. (1977), and Raft

(1982).

Cassidy and Bennett (1972) proposed an iterative heuristic for the multi-depot vehicle rout-

ing problem. The proposed method progressively improves the routing arrangements starting

from an initial solution. An interesting feature of the algorithm is the method of data storage,

which is designed to facilitate the alteration of route configurations. The suggested heuristic is

divided in three main steps. In the first step, an initial solution is generated by assigning each

customer to its nearest depot. In the second step, the initial solution obtained from the previ-

ous step is improved by taking each customer in turn and trying to fit it into another position.

Finally in the last step, the algorithm examines all depots in the routes to see if any of them can

be replaced by any of those still having enough capacity. Several years later, Chao et al. (1993)

proposed a search procedure combining the record-to-record local search method for the re-

assignment of customers to different vehicle routes, followed by a 2-opt procedure for the

improvement of individual routes. Salhi and Sari (1997) suggested a multi-level construction-

based composite heuristic for solving a multi-depot fleet mix vehicle routing problem in which

allocating customers to depots, finding the delivery routes and determining the vehicle fleet

composition are simultaneously considered. The main purpose of that paper was to minimize

the total traveled cost where both the vehicle capacity (the largest vehicle in case there are dif-

ferent types of vehicles) and the maximum distance traveled on any route must not be violated.

The proposed heuristic consists of three levels. In the first level, a starting solution is found as

follows: the vehicle fleet mix problem is first solved within each depot with certain customers

left unassigned (borderline customers). Then each of these customers is inserted into an ex-

isting route or an empty route by using a selection-insertion procedure. In the second level,

a composite heuristic, which attempts to improve on the solution found for each depot when

taken separately, is introduced. Finally in the third level, a composite heuristic which considers

all depots is implemented.

Various meta-heuristics have also been developed to tackle the MDVRP. Renaud et al.

(1996c) described a tabu search heuristic in which an initial solution is built by first assigning
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every customer to its nearest depot. A petal algorithm is then used for the solution of the VRP

associated with each depot. The algorithm is completed by an improvement phase using either

a subset of the 4-opt exchanges to improve individual routes, swapping customers between

routes from the same or different depots, or exchanging customers between three routes. The

tabu search approach of Cordeau et al. (1997) is probably the best known algorithm for the

MDVRP. An initial solution is obtained by assigning each customer to its nearest depot and

a VRP solution is generated for each depot by means of a sweep algorithm. Improvements

are performed by transferring a customer between two routes incident to the same depot, or by

relocating a customer in a route incident to another depot. Reinsertions are performed by means

of the GENI heuristic (Gendreau et al. (1992)). One of the main characteristics of this algorithm

is that infeasible solutions are allowed throughout the search. Continuous diversification is

achieved through the penalization of frequent moves. Dondo and Cerdà (2007) studied the

multi-depot vehicle routing problem with time windows. To solve it, they presented a model-

based large-scale neighbourhood search algorithm that steadily improves an initial solution

generated through the three-phase cluster-based hybrid approach. At each iteration, a sequence

of two evolutionary steps is executed. First, a neighbourhood around the starting solution

is generated by using a mixed-integer linear problem that permits the algorithm to exchange

multiple nodes between neighbouring trips. Next, a different neighbourhood is defined by

just allowing relocations of nodes on the same tour. Lau et al. (2010) addressed an MDVRP

in which the objective is to simultaneously optimize both the cost due to the total traveling

distance and that due to the total traveling time. To solve the problem, a genetic algorithm with

fuzzy logic adjusting the crossover rate and mutation rate after ten consecutive generations was

proposed. Finally, Yu et al. (2011) designed a parallel ant colony optimization algorithm for

the MDVRP. In the proposed algorithm, three improved strategies: the coarse-grain parallel

strategy, the ant weight strategy and the local search strategy, were applied.

Solution algorithms proposed to solve the PVRP can be categorized into two main groups,

i.e., classical heuristics, and meta-heuristics. Heuristics have been extensively studied to solve

the PVRP. The majority of these heuristics are multi-phase optimization approaches which try

to solve the problem at hand in a sequential manner. Russell and Gribbin (1991) presented a

multi-phase approach to solve the PVRP. The first phase of the proposed method consists of
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a procedure which generates initial solutions by using a generalized network approximation

method. The second phase involves an interchange heuristic that reduces the total traveled cost

through a surrogate traveling salesman problem. In the third phase, the total traveled cost is

further reduced by addressing the actual routes. Finally, a proposed 0-1 integer model is used

to attempt further improvements. Chao et al. (1993) rovided a two-phase heuristic. To obtain

an initial solution they solve an integer linear program to assign visit day combinations to the

customers. In a second phase, they use several improvement operators while they relax the

capacity of the vehicles. When getting stuck, re-initializations are performed. Bertazzi et al.

(2004) suggested a heuristic algorithm for a special case of the PVRP namely the periodic trav-

eling salesman problem, in which a single vehicle is used in each period. The algorithm is a

construction type with an embedded improvement procedure. At each iteration, a procedure

selects a not yet processed city, assigns to it a combination of visit days and, for each day of

the combination day, inserts the city to the best position of the current partial tour. The itera-

tion process is temporarily interrupted after a predefined number of iterations and an iterative

improvement procedure tries to improve the current solution.

These early heuristics are outperformed by more recent meta-heuristic approaches, includ-

ing tabu search, scatter search, and variable neighbourhood search. Cordeau et al. (1997)

proposed a tabu search heuristic for the PVRP that can also be used to solve the Multi-Depot

Vehicle Routing Problem and the Periodic Traveling Salesman Problem (PTSP). The neigh-

bourhood consists of moving a customer from one route to another route of the same day

or assigning a new visit combination to a customer. Insertions and removals of customers

are performed using the GENI operator (Gendreau et al. (1992)). The tabu search algorithm

allows for infeasible solutions during the search process using an adaptive penalty function.

This paper presents an asynchronous parallel metaheuristic for the period vehicle routing prob-

lem (PVRP). Drummond et al. (2001) designed an island-based parallel meta-heuristic for the

PVRP. The proposed algorithm was based on concepts used in parallel genetic algorithms and

local search heuristics. Angelelli and Speranza (2002) presented a tabu search algorithm for an

extension of the periodic vehicle routing problem where the homogeneous vehicles have the

possibility of renewing their capacity at some intermediate facilities. The initial solution of the

proposed tabu search is generated by using a procedure similar to the sweep algorithm (Gillett
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and Miller (1974)). Then, the initial solution is improved via an improvement procedure which

consists of four move operators, i.e., relocation, changing the visiting schedule of a customer,

redistribution, intersection. To enhance the performance of the proposed algorithm, the tabu

search is permitted to search the solution space by using a tunneling strategy. Besides that, a

diversification mechanism is also used. Recently, a scatter search procedure was developed by

Alegre et al. (2007) for solving a problem of periodic pick-up of raw materials for a manufac-

turer of auto parts. They use a two-phase approach, that first assigns orders to days and then

constructs the routes of each day. Alonso et al. (2008) proposed a tabu search for an extension

of the periodic vehicle routing problem where each vehicle can service more than one route

per day as long as the maximum delay operation time in not exceeded. Besides that, there exist

some accessibility constraints of the vehicles to the customers in the sense that not every vehi-

cle can visit every customer. The efficiency of the implemented tabu search is proved based on

some existing and randomly generated test problems. Hemmelmayr et al. (2009) implemented

a variable neighbourhood search for the periodic vehicle routing problem. First, for obtaining

an initial solution each customer is randomly assigned a visit day combination. Routes are con-

structed by solving a vehicle routing problem for each day using Clarke and Wright savings

algorithm (Clarke and Wright (1964)). Then, for the shaking phase two popular and effective

neighbourhoods, i.e., move and cross-exchange, are proposed in order to enhance the quality of

the starting solution in each iteration. Finally, the solution obtained through shaking is further

improved by using 3-opt procedure as a local search. Pirkwieser and Raidl (2010) proposed

a variable neighbourhood search for the periodic vehicle routing problem with time windows.

In that paper, the authors claimed that using a random VNS often yielded significantly better

results than a VNS using a reasonable fixed ordering of the shaking neighbourhoods. Further-

more, a selectively applied simple inter-route improvement procedure, 2-opt*, was shown to

considerably improve both VNS variants at nearly no computational cost at all. Gulczynski

et al. (2011) developed a new heuristic for the PVRP that combined integer programming and

the record-to-record travel algorithm. The proposed heuristic produced very high-quality re-

sults on standard benchmark instances. The authors also extended the heuristic to two new

variants of the PVRP that involve reassigning customers to new routes and balancing the work-

load among drivers across routes.
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The majority of solution methods, targeting the MDPVRP, are divided into two main

groups: 1) Classical heuristics which often solve the problem in a sequential manner, and

2) Sophisticated meta-heuristics and parallel algorithms which tackle the problem by simulta-

neously optimizing all the involved attributes.

We are aware of three heuristics of the first group. Hadjiconstantinou and Baldacci (1998)

formulated the problem of providing maintenance services to a set of customers as the MD-

PVRP with Time Windows (MDPVRPTW). The authors proposed a multi-phase optimization

problem and solved it using a four-phase algorithm. In the developed algorithm, all customers

are first assigned to particular depot. Then, customer visits are successively inserted among

available periods to obtain feasible visit combinations. At the third phase, each of the depot-

period VRP sub-problems is separately solved using a tabu search algorithm. Finally, at the

last phase, solutions obtained during the optimization process are improved by modifying the

period or depot assignments through a 3-opt procedure. Kang et al. (2005) designed a two-

phase heuristic method to solve the problem considered by Hadjiconstantinou and Baldacci

(1998). In the proposed method, all feasible schedules are first generated from each depot for

each period and, then, the set of routes are determined through using the shortest path prob-

lem. Parthanadee and Logendran (2006) proposed a tabu search heuristic to tackle the problem

considered by Hadjiconstantinou and Baldacci (1998)). In this algorithm, all the initial assign-

ments are built by cheapest insertion, where each customer is assigned to its nearest depot and

is given its most preferred visit pattern. At the improvement phase, a neighbourhood search is

defined by depot and visit pattern interchanges.

We are also aware of two contributions belonging to the second group. The first contribu-

tion was the evolutionary meta-heuristic proposed by Vidal et al. (2012a). The authors devel-

oped a hybrid Genetic Algorithm (GA) to tackle the MDPVRP and two of its special cases,

i.e., the Multi-depot VRP (MDVRP) and the Periodic VRP (PVRP). The most interesting fea-

ture of the proposed GA is a new population-diversity management mechanism which allows

a broader access to reproduction, while preserving the memory of what characterizes good so-

lutions represented by the elite individuals of the population. The second contribution was the

cooperative parallel algorithm designed by Crainic et al. (2009). The authors proposed a well

structured cooperative parallel search method, denoted Integrative Co-operative Search (ICS),
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to solve highly complex combinatorial optimization problems. The proposed ICS framework

involves problem decomposition by decision sets, integration of elite partial solutions yielded

by the sub-problems, and adaptive guiding mechanism. The authors used the MDPVRPTW to

present the applicability of the developed methodology.

This brief review supports the general statements made in Section 4.1 that the problem

classes of this study, especially the MDPVRP, are among the VRP variants which did not

receive an adequate degree of attention and the solution algorithms proposed to solve them

are scarce. Moreover, to the best of our knowledge, there is no significant contribution in the

literature dealing with the minimization of the fleet size for the problem settings considered

in this paper. To contribute toward addressing these three challenges, we develop a Modular

Heuristic Algorithm (MHA) to efficiently address the PVRP, the MDVRP and the MDPVRP.

The proposed MHA is described in the next section.

4.4 The proposed Modular Heuristic Algorithm (MHA)

In this section, we propose a new modular heuristic algorithm which solves each of the consid-

ered problems in three sequential phases, each targeting one special dimension of the problem.

The general concepts and structure of the heuristic algorithm are first described in Section

4.4.1. Then, the main components of the MHA are explained in details in Sections 4.4.2-4.4-5.

4.4.1 The general structure of MHA

The Modular Heuristic Algorithm (MHA) that we propose is based on the sequential opti-

mization paradigm, but it includes a number of advanced exploration and exploitation features

which contribute to its high performance level, in terms of solution quality and computational

efficiency.

The general scheme of the proposed heuristic algorithm is displayed in Algorithm 3. MHA

consists of three different steps that sequentially address the decisions to be made. These

decisions are: the visit pattern assignment, the depot assignment and the detailed route design.
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These three steps can be performed in different orders depending on the problem in question.

Our experiments show that the order generating the best results, in terms of solution quality

and computational time, is:

1. The visit pattern assignment: In this step, each of the customers is assigned to one of the

possible visit patterns.

2. The depot assignment: In this step, customers of each period are assigned to depots.

3. The routing problem: Finally, in this step, the routes are established for each period and

depot.

These three steps are iteratively repeated until MHA reaches its pre-defined stopping crite-

ria. In this study, the following two stopping criteria are simultaneously considered:

• MHA is stopped if no improving solution is found for Ψ successive iterations. Ψ is a

positive value which is determined at the beginning of the algorithm. Or,

• MHA is terminated if it passes a maximum allowable running time.

One of the most important characteristics of MHA is to use an elitism strategy which en-

ables the algorithm not to lose good and diverse solutions obtained in the course of the opti-

mization. Towards this end, MHA keeps all generated high-quality and diverse solutions in a

list called the reference set. The reference set has the size equal to a predetermined positive

value γ and consists of two different subsets. The first subset, B1, preserves d3 × γ/4e high

quality solutions, while the second subset, B2, is made up of bγ/4c diverse solutions. The ref-

erence set is initially set as an empty list and is subject to be iteratively updated. Suppose a new

solution, xnew, is obtained by the algorithm. The reference set is updated using the following

two steps:

1. xnew is first investigated in terms of solution quality. In this case, xnew is directly added

to B1 if the number of solutions preserved in B1 is less than d3 × γ/4e; otherwise, if

xnew is better than the worst existing solution in B1, the latter is replaced by the former.
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2. If none of the conditions mentioned in Step 1 are not met, xnew is assessed in terms of

solution diversification. In this case, xnew is directly added to B2 if the number of solu-

tions existing in B2 is less than bγ/4c; otherwise, the following replacement strategy is

implemented. We first define the contribution to diversity of solution S to the first subset

of the reference set, D(S,B1), as the similarity between itself and its nearest neighbour

in B1, that is:

D(S,B1) = minX∈B1,X 6=S ∆(S,X)

where ∆(S,X) is the Hamming distance. Moreover, let us define OFS as the objective

function value of solution S. The replacement strategy is implemented in three phases as

follows: Firstly, the replacement strategy considers all the solutions of B2 with poorer

objective function values than Snew and finds the one, Smax, which maximizes the ratio

of (objective function value)/(contribution of diversity) (Step 1). Then, the new generated

solution, Snew, replaces Smax if the following inequality holds (Step 2):

OFSnew

D(Snew, B1 − Smax)
<

OFSmax

D(Smax, B1)
(4.7)

In this way, we introduce into B2 a solution with better objective function value and

possibly higher contribution to diversity. If Inequality (4.7) does not hold, the worst

solution of the set determined in the first step is replaced by Snew (Step 3).

Algorithm 3 Modular heuristic algorithm
-Initialize the search parameters.
-Determine the upper limit of the budget constraint.
-Set the initial reference set as an empty list.
while the termination criterion is not met do

-Assign a possible visit pattern to each customer.
-Assign each customer to a depot in each period of the

selected visit pattern.
-Design routes visiting customers assigned to the same

depot using the three-phase heuristic.
-Update the reference list.

end while

In the following sections, each of the steps used in MHA is described in details.
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4.4.2 Solution representation

The first step in designing an algorithm for a particular problem is to devise a suitable solution

representation scheme. In the proposed heuristic algorithm, the path representation proposed

by Rahimi-Vahed et al. (2012a) is used. The idea of this path representation is that the cus-

tomers are listed in the order in which they are visited. In this kind of representation, a single

row array of the size equal to N+1 is generated for each depot in each period, where N is

the number of customers to be visited. The first position of the array (index 0) is related to

the corresponding depot, while each of the other positions (index i; 1 ≤ i ≤ N ) represents a

customer. The value assigned to a position of the array represents which customer should be

immediately visited after the customer or depot related to that position. In this path representa-

tion, negative values corresponds to the beginning of the next route index, 0 refers to the end of

the routes and a vacant position reveals that the customer corresponding to that position is not

served by the depot with which the array is associated. For a detailed description of the above

solution representation, readers should refer to Rahimi-Vahed et al. (2012a).

4.4.3 Visit pattern assignment

The modular heuristic algorithm, as depicted in Algorithm 3, first assigns, at each iteration,

a possible visit pattern to each customer. There exist a very scarce number of contributions

in the literature that use systematic and non-random methods to assign customers to visit pat-

terns. For example, Tan and Beasley (1984) extended the generalized assignment problem of

Fisher and Jaikumar (1981) to assign a customer to an allowable visit pattern. Christofides and

Beasley (1984) developed a median problem to establish an initial assignment of customers

to visit patterns that meets customer service requirements. Russell and Gribbin (1991) de-

signed a generalized network approximation method to assign visit patterns to customers. The

proposed method was represented by a tripartite transshipment graph with source nodes (cus-

tomers), transshipment nodes (allowable visit patterns), and sink nodes (periods of the planning

horizon).

In this study, we also propose a non-blind and non-random algorithm to systematically
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assign customers to their possible visit patterns. In the proposed algorithm, we first locate a

single point, called reference point, for each period of the planning horizon and, then, using a

new Integer Programming Model (IPM), customers are assigned to visit patterns so as to min-

imize the sum of customer-to-reference point distances. The proposed IPM, unlike the similar

models existing in the literature, is governed by some parameters whose values are dynam-

ically adjusted in the course of the optimization. This feature enables IPM to assign better

visit patterns to customers as MHA evolves. The integer programming model is formulated as

follows:

min
N∑
i=1

∑
k∈Ωi

[
T∑
t=1

akt{(xi − xνt )2 + (yi − yνt )2}]uik (4.8)

subject to

∑
k∈Ωi

uik = 1 ∀i ∈ V ; (4.9)

LBν
t ≤

N∑
i=1

∑
k∈Ωi

aktqiuik ≤ UBν
t ∀t ∈ T ; (4.10)

uik ∈ {0, 1} ∀i ∈ V,∀k ∈ Ωi; (4.11)

In the above model, (xi, yi) is the location of customer i and (xνt , y
ν
t ) is the location of a

reference point which is generated, in iteration ν of the algorithm, for period t. Moreover, the

parameter akt equals 1 if period t is in pattern k, and 0 otherwise. The decision variable of this

model is uik, which is equal to 1 if customer i is assigned to pattern k, and 0 otherwise. Finally,

LBν
t and UBν

t are respectively lower and upper limits that bound the total number of demands

which should be satisfied in period t and iteration ν. As it can be seen in this mathematical

formulation, the aim is to assign possible visit patterns to customers so that the total squared

Euclidean distance between the customers and reference points is minimized. Constraints (4.9)

impose that each customer is assigned to exactly one feasible pattern. Constraints (4.10) show

that the demands serviced in a given period must be within an imposed interval.

One of the most crucial parameters affecting the strength of the above integer programming

model is the reference points’ locations. In this paper, the reference points’ locations are gen-
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erated using a memory-based algorithm as follows: We first enumerate all the customers that

can be serviced in period t (t=1,2...T ). That is: It={i ∈ Vc | ∃k ∈ Ωi: akt = 1}. Then, the

coordinates of the reference point is calculated using the two following formulas:

xνt =

∑
i∈It witxi∑
i∈It wit

∀ν = 1, 2...,∀t ∈ T ; (4.12)

yνt =

∑
i∈It wityi∑
i∈It wit

∀ν = 1, 2...,∀t ∈ T ; (4.13)

In the above equations, wit is defined as a self-adjusting positive weight which reflects the

desirability of visiting customer i in period t. The values of these weights are dynamically

adjusted, at each iteration, based on the information gathered from the reference set. The

adjusting procedure is summarized as follows: If customer i is visited in period t in more

than θ% of the solutions existing in the reference set, the value of wit is multiplied by 1+ϕ,

otherwise it remains unchanged, where ϕ is a positive parameter. It should be noted that,

this adjusting procedure starts after the modular heuristic passes a preliminary phase called

Warming-up Stage (WS). In WS, the algorithm is repeated in λ successive iterations, λ ≥ γ,

so that, at each iteration, the weights involved in equations (4.12) and (4.13) are randomly

generated in the interval (0,1].

The other important parameters having key roles in the integer programming model are the

bounds considered in constraints (4.10). In this paper, LBν
t and UBν

t are considered as two

parameters which are iteratively adjusted based on the information obtained from elite solutions

kept in the reference set. Towards this end, LBν
t and UBν

t are respectively defined, in iteration

ν, as the minimum and maximum required capacity for period t observed in elite solutions

existing in the reference set. It should be noted that, in the Warming-up Stage described above,

Constraints (4.10) are relaxed by respectively setting LBν
t and UBν

t to 0 and∞.

4.4.4 Depot assignment

The proposed heuristic continues by assigning the customers of each period to depots. The

assignment algorithm that we propose in this step belongs to a category of assignment problems
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which is called assignment by clusters. In this type of assignment problems, a cluster is defined

as the set of points consisting of a depot and the customers assigned to it. The algorithms in this

class try to build compact clusters of customers for each depot. When a customer is assigned

to a cluster it means that this customer is assigned to that cluster’s depot. In this study, the way

in which customers are incorporated in a cluster is defined by an integer programming model

which is mathematically expressed as follows:

min
T∑
t=1

∑
i∈Πt

M∑
j=1

bijt{(xi − xDj )
2 + (yi − yDj )

2}ωijt (4.14)

subject to

M∑
j=1

ωijt = 1 ∀t ∈ T, ∀i ∈ Πt; (4.15)

ωijt ∈ {0, 1} ∀t ∈ T, ∀i ∈ Πt, ∀j ∈ D; (4.16)

In the above model, (xDj , yDj ) is the location of depot j and Πt is the set of customers

to be visited in period t. The decision variable of this model is ωijt, which is equal to 1 if

customer i is assigned to depot j in period t, and 0 otherwise. Moreover, the parameter bijt is

defined as the penalty of assigning customer i to depot j in period t. In fact, the higher bijt is,

the more desirable customer i is not assign to depot j in period t. The objective of the above

integer programming model is to assign customers to depots so that the total weighted squared

Euclidean distance between the customers and depots is minimized. Moreover, constraints

(4.15) force that each customer to be assigned to exactly one depot in a period.

The strength of the integer programming model is dependent on the penalties involved in

the objective function. In this paper, these penalties are considered as self-adjusting parameters

which are iteratively updated based on the information obtained from the reference set. The

adjusting procedure is summarized as follows: If customer i is assigned to depot j in period t

in more than θ% of the solutions kept in the reference set, the value of bijt is divided by 1+µ,

otherwise it is multiplied by 1+µ, where µ is a positive parameter. This updating procedure

enables the algorithm to assign customers to better depots as the heuristic gets closer to the
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termination criteria. It should again be noted that, in the Warming-up Stage, the penalties

involved in the objective function are randomly generated in interval (0,1].

4.4.5 Route design

In this phase, customers assigned to the same depot, in each period, are divided into different

routes. Towards this end, a heuristic algorithm, consisting of the following three phases, is

implemented in a sequential manner:

1. Construction phase- In the first phase, customers of each depot are assigned to a giant

tour using the GENIUS heuristic to solve the corresponding treveling salesman problem.

GENIUS, proposed by Gendreau et al. (1992), consists of two phases that are imple-

mented in a sequential manner. In the first phase, called GENI, a Hamiltonian cycle is

progressively generated by inserting vertices (i.e., customers) one at a time. More pre-

cisely, GENI starts with a partial solution consisting of three arbitrarily chosen vertices

and, at each iteration, it includes any given vertex between two of its p closest neighbors

on the partial cycle. While making an insertion, GENI performs a local reoptimization

of the partial cycle. Once all vertices have been inserted, the second phase, named US, is

executed as a post-optimization heuristic which successively removes each vertex from

the cycle, and reinserts it using GENI.

2. Splitting phase- In the second phase, using the optimal splitting procedure proposed by

Prins (2004), each constructed giant tour is split into shorter routes, each satisfying the

vehicle capacity constraint. In other words, by relaxing the route duration restriction and

budget constraint, each giant tour is split to least possible number of shorter routes.

3. Improving phase- Finally, in the third phase, a heuristic consisting of two exchange pro-

cedures is implemented on each constructed route in order to reduce the route’s length

and, accordingly, to improve the total traveled distance. One of the main characteristics

of the proposed heuristic method is that infeasible solutions are allowed throughout the

search. Let us assume that X denotes the new solution generated by the search mecha-
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nism. Moreover, let τ (X) denote the total traveled distance of solution X, and let A(X)

and B(X) denote the total violation of the route-length and ε- constraints, respectively.

Solution X is evaluated by a function, z(X) = τ(X) + αA(X) + βB(X), where α and β

are self-adjusting positive parameters. By dynamically adjusting the values of these two

parameters, this relaxation mechanism facilitates the exploration of the search space and

is particularly useful for tightly constrained instances. Parameter α is adjusted as fol-

lows: if there is no violation of the route-length constraints, the value of α is divided by

1+Λ , otherwise it is multiplied by 1+Λ , where Λ is a positive parameter. A similar rule

applies also to β with respect to route duration constraint. The two proposed exchange

procedures are described as follows:

• SWAP procedure: The first exchange procedure, called SWAP, is performed by

choosing two distinct customers i and j, where i= 1,2...nk-1 and j=i+1, i+2...nk

(nk is the number of customers that are visited in the kth route), and then exchang-

ing their positions within the route. If the swapping procedure results in a better

solution according to the penalty function described above, the positions are ex-

changed, otherwise the solution remains unchanged. The procedure stops when no

more exchanges that result in an improving solution are possible.

• INSERT procedure: The second exchange procedure, called INSERT, is based on

removing a customer from one route and inserting it into another route. Towards

this end, we first randomly select a customer from the longest route of a depot

whose length is defined as tmax. Then, the selected customer is removed from its

current position and is re-inserted to a new route using the two following methods:

(a) Inter-depot method: In this method, the removed customer is re-inserted into

either one of the existing routes or a new route of the same depot from which

the customer has been removed.

(b) Intra-depot method: In this method, the depot to which the customer is con-

currently assigned is changed to another one and the customer is re-inserted

into either one of the existing routes or a new route of the new depot.

Note that, in both cases, an insertion is called feasible if: 1) It does not violate

the vehicle’s capacity constraint, and 2) It does not produce a route longer than



85

tmax. The position to which the customer is inserted is the one that satisfies the

two above conditions and results in the best improvement in the penalty function.

This procedure is repeated for a predetermined number of iterations, denoted by σ.

4.5 Experimental results

In this section, the performance of the proposed MHA is investigated based on three different

sets of test problems. The first two sets, each including 10 problem instances, have been

developed by Cordeau et al. (1997) for the PVRP and the MDVRP, respectively, while the last

set includes 10 different test problems which have been designed by Vidal et al. (2012a) for the

MDPVRP. Note that, in all the considered problem instances, the number of vehicles assigned

to a depot, which was originally set as a limited and fixed parameter, is ignored. Detailed

information on these sets are provided in Subsection 4.5.2.

The efficiency of the developed heuristic is tested in two different settings that are defined

according to how the budget constraint is formulated: either using Rule R1 or Rule R2 defined

in Section 4.2. Recall that, in Rule R1, an upper limit is imposed on the total distance traveled

over the planning horizon. As for Rule R2, an upper bound is enforced on the total distance

traveled by the vehicles assigned to each depot in each period.

In both of the above cases, values assigned as the upper bound of the budget constraint may

have a major impact on the performance of the proposed modular heuristic algorithm. In this

paper, the upper bounds of both rules (R1 and R2) are initially set based on the information

extracted from the Best Known Solution (BKS) reported by Vidal et al. (2012a) for the consid-

ered problems. More precisely, the values of ε, in Rule R1, is set to the total traveled distance

of the BKS, whereas the value of εtd, in Rule R2, is fixed to the total distance traveled by the

vehicles assigned to depot d in period t of the BKS. Then, we systematically vary the values of

the upper bound, set on the budget constraint, to investigate how the performance of MHA is

affected by tightening or widening the budget constraint.

The proposed algorithm is ran on each problem instance, for both budget constraint rules,

and its efficiency, in terms of solution quality and computational time, is compared to the
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Unified Tabu Search (UTS) implemented in Lahrichi et al. (2011). Note, however, that this

algorithm was modified to handle the objective considered in this paper, i.e., minimization of

the fleet size. Furthermore, the penalty function used in the algorithm was also modified to

include budget constraint violations. Both algorithms have been coded in C++ and executed on

a Pentium 4, 2.8 GHz, and Windows XP using 256 MB of RAM.

Different aspects of the experimental results are discussed as follows: In Section 4.5.1,

we first use a well-structured algorithm to calibrate all the parameters involved in the heuristic

algorithm. Then, in Section 4.5.2, computational results are given in details.

4.5.1 Parameter setting

Like most heuristic and meta-heuristic algorithms, the proposed heuristic method has several

parameters that need to be tuned before it can reach good results. The problem then turns into

finding best parameter setting for the heuristic to solve the considered problems efficiently and

timely. Table 4.1 provides a summary of all the parameters involved in the algorithm.

Table 4.1: Parameters of the heuristic algorithm
Symbol Description
γ Maximum size of the reference set
θ Threshold defined in Sections 4.3 and 4.4
ϕ Factor involved in updating wit
λ Number of times that WS is repeated
µ Factor involved in updating bijt
α, β Self-adjusting parameters in the penalty function
Λ Factor involved in updating α and β
σ Number of times that INSERT is repeated
Ψ Maximum allowable number of non-improving iterations

There are various different methods in the literature to calibrate parameters used in a heuris-

tic or meta-heuristic algorithm. Coy et al. (2000) designed a procedure based on statistical

Design Of Experiments (DOE) that systematically selects high-quality parameter values. The

parameter setting procedure has four steps that are implemented in a sequential manner. In the

first step, a subset of problems to analyze is chosen from the entire set of problems. In the

second step, computational experience is used to select the starting level of each parameter,
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the range over which each parameter will be varied, and the amount by which each parameter

should be changed. In the third step, good parameter settings are selected for each problem

in the analysis set using fractional factorial design and response surface optimization. Finally,

in the fourth step, the parameter values obtained in the third step are averaged to obtain high-

quality parameter values. The proposed approach does not use higher-order models (such as

quadratic) since different response surfaces are averaged over all considered instances. The

authors acknowledged that their method will perform poorly if the representative test prob-

lems are not chosen correctly or if the problem class is so broad that it requires very different

parameter settings. For a detailed description, see Coy et al. (2000).

In this paper, we adopt the above four-step calibration method to tune the parameters used

in the heuristic algorithm. The calibration results for each class, along with the final choice of

parameter values, are reported in Table 4.2.

Table 4.2: Calibration results
Symbol PVRP MDVRP MDPVRP Final choice
γ 30 40 50 40
θ 0.2 0.3 0.4 0.3
ϕ 1 1 1 1
λ dN∗M∗T

5 e dN∗M∗T
5 e dN∗M∗T

5 e dN∗M∗T
5 e

µ 1 1 1 1
α, β 1, 1 1, 1 1, 1 1, 1
Λ 1 1 1 1
σ N N N N
Ψ N*M*T N*M*T N*M*T N*M*T

4.5.2 Computational results

We tested the proposed modular heuristic algorithm on the problem instances described at

the beginning of this section using the two rules described in Section 4.2, Rules R1 and R2.

Detailed computational results on each fold are given in the following subsections.
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Rule R1

In Rule R1, both the modular heuristic and UTS are run 10 times on each problem instance.

Moreover, the maximum running time of both algorithms for the PVRP and MDVRP instances

is set to 20 minutes, while for the MDPVRP instances, due to their greater difficulty, the maxi-

mum running time is fixed to 30 minutes.

Results on PVRP instances are presented in Table 4.3. The first four columns of this table

respectively display instance identifier, number of customers, number of depots and number

of periods. Moreover, in Column 5, different values of the upper bound, set on the budget

constraint, are shown. In this column, ε∗ refers to the total traveled distance of the BKS. The

results of the proposed heuristic method are shown in Columns 6 and 7 as the average fleet size

and computational time on 10 independent runs. We compare the performance of our heuristic

algorithm to the results obtained with the modified version of the UTS implementation of

Lahrichi et al. (2011) (UTS in Columns 8 and 9). Finally, the average percentage gap of the

modular heuristic with respect to UTS, on each problem instance and for each value considered

for ε, is reported in Column 10 (a negative value means a better performance of the modular

heuristic).

As shown in Table 4.3, the proposed modular heuristic algorithm always produces either

equivalent or better results compared to UTS. However, the average percentage gap between

two algorithms clearly varies depending on values set as the upper bound of the budget con-

straint. In the case where the ε value is set to ε∗, the average percentage gap is -3.7% indicating

that the modular heuristic performs significantly better than UTS. On the other hand, in the

cases where the budget constraint is tightened by fixing the ε value to 0.8ε∗ and 0.9ε∗, both

algorithms face a more challenging task to produce good results and, consequently, their per-

formance slightly worsens. However, the results show that the tighten the budget constraint is,

the more the modular heuristic shows its superiority to produce better results. These results

reveal this fact that the proposed heuristic algorithm has better capability, compared to UTS,

to solve PVRP instances, especially for those problems having more restricted search space.

The average percentage gaps between the two algorithms respectively increase to -6.3% and

-5.6%, for 0.8ε∗ and 0.9ε∗ cases. Contrary, increasing the upper bounds to 1.1ε∗ and 1.2ε∗
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Table 4.3: Results on PVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 3 0.19 3 0.37 0
0.9ε∗ 3 0.18 3 0.35 0

pr01 48 4 4 ε∗ 2 0.18 2 0.35 0
1.1ε∗ 2 0.16 2 0.35 0
1.2ε∗ 2 0.16 2 0.33 0
0.8ε∗ 5 0.52 5 0.94 0
0.9ε∗ 5 0.48 5 0.85 0

pr02 96 4 4 ε∗ 4 0.46 4 0.80 0
1.1ε∗ 4 0.42 4 0.75 0
1.2ε∗ 4 0.39 4 0.71 0
0.8ε∗ 7 4.73 7 6.69 0
0.9ε∗ 7 4.27 7 6.13 0

pr03 144 4 4 ε∗ 6 3.81 6 5.56 0
1.1ε∗ 6 3.27 6 5.38 0
1.2ε∗ 5 3.12 6 5.09 -17
0.8ε∗ 9 8.33 10 9.57 -10
0.9ε∗ 9 8.13 9 9.12 0

pr04 192 4 4 ε∗ 7 7.42 8 8.19 -13
1.1ε∗ 7 7.13 8 8.10 -13
1.2ε∗ 7 6.75 8 7.92 -13
0.8ε∗ 12 15.80 14 19.91 -14
0.9ε∗ 12 15.51 14 19.72 -14

pr05 240 4 4 ε∗ 10 14.73 10 18.22 0
1.1ε∗ 10 14.23 10 17.71 0
1.2ε∗ 9 13.79 10 17.24 -10
0.8ε∗ 14 16.45 16 19.36 -13
0.9ε∗ 13 16.02 16 19.29 -19

pr06 288 4 4 ε∗ 12 15.51 14 19.11 -14
1.1ε∗ 12 15.32 13 18.72 -8
1.2ε∗ 12 15.27 13 18.33 -8
0.8ε∗ 4 1.29 4 1.89 0
0.9ε∗ 4 1.21 4 1.84 0

pr07 72 6 6 ε∗ 3 1.15 3 1.72 0
1.1ε∗ 3 1.11 3 1.65 0
1.2ε∗ 3 1.06 3 1.57 0
0.8ε∗ 7 5.64 8 7.50 -13
0.9ε∗ 7 5.12 7 7.39 0

pr08 144 6 6 ε∗ 6 4.76 6 7.23 0
1.1ε∗ 6 4.55 6 7.14 0
1.2ε∗ 6 4.31 6 7.11 0
0.8ε∗ 11 17.12 11 18.99 0
0.9ε∗ 10 16.70 11 18.96 -10

pr09 216 6 6 ε∗ 10 16.22 11 18.89 -10
1.1ε∗ 10 16.17 11 18.69 -10
1.2ε∗ 10 16.09 11 18.44 -10
0.8ε∗ 14 19.02 16 19.54 -13
0.9ε∗ 14 18.95 16 19.23 -13

pr10 288 6 6 ε∗ 12 18.88 12 19.01 0
1.1ε∗ 12 18.75 12 18.86 0
1.2ε∗ 12 18.43 12 18.77 0
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results in producing better solutions by both algorithms. In these cases, the average percentage

gaps respectively change to -3.1% and -5.8%. Figure 4.1 schematically shows how the average

percentage gap varies when changing the ε value.

Figure 4.1: Average percentage gap in the PVRP instances

Results on MDVRP instances are displayed in Table 4.4, where, as shown in Table 4.3,

Columns 2-4 represents respectively instance identifier, number of customers, number of de-

pots and number of periods. The results obtained by the heuristic algorithm are compared, once

again, to the modified version of the unified tabu search of Lahrichi et al. (2011), in terms of

solution quality and computational time.

The main conclusions derived from Table 4.4 are similar to those stated above for the PVRP.

The modular heuristic clearly outperforms the unified tabu search on the majority of problem

instances. Figure 4.2 represents how the average percentage gap of two algorithms changes

when varying the ε value.

Results on MDPVRP instances are finally summarized in Table 4.5 whose structure is

similar to that of Tables 4.3 and 4.4. Once again, the results produced by the heuristic algorithm

are compared to UTS in order to assess the efficiency of the algorithm, in terms of solution

quality and computational time.

Table 4.5 show that the proposed modular heuristic algorithm is considered as a competitive

solution methodology, able to produce high quality solutions in a reasonable time. As for the

two previous problems, the relative performance of two algorithms, measured by the average
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Table 4.4: Results on MDVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.13 5 0.15 0
0.9ε∗ 5 0.11 5 0.15 0

pr01 48 4 4 ε∗ 4 0.09 4 0.14 0
1.1ε∗ 4 0.08 4 0.14 0
1.2ε∗ 4 0.16 4 0.13 0
0.8ε∗ 8 0.41 9 0.81 -11
0.9ε∗ 8 0.35 9 0.74 -11

pr02 96 4 4 ε∗ 7 0.31 8 0.69 -13
1.1ε∗ 7 0.30 8 0.62 -13
1.2ε∗ 7 0.29 8 0.60 -13
0.8ε∗ 13 1.06 14 1.52 -7
0.9ε∗ 13 1.02 13 1.44 0

pr03 144 4 4 ε∗ 12 0.55 12 1.39 0
1.1ε∗ 12 0.51 12 1.30 0
1.2ε∗ 12 0.48 12 1.26 0
0.8ε∗ 16 3.88 17 4.68 -6
0.9ε∗ 16 3.82 17 4.60 -6

pr04 192 4 4 ε∗ 15 3.77 16 4.51 -6
1.1ε∗ 15 3.70 16 4.46 -6
1.2ε∗ 15 3.64 16 4.39 -6
0.8ε∗ 21 7.50 22 9.51 -5
0.9ε∗ 21 7.44 22 9.32 -5

pr05 240 4 4 ε∗ 20 7.29 20 9.16 0
1.1ε∗ 20 7.22 20 9.09 0
1.2ε∗ 20 7.16 20 9.03 0
0.8ε∗ 25 8.94 27 9.62 -7
0.9ε∗ 25 8.90 27 9.56 -7

pr06 288 4 4 ε∗ 24 8.77 24 9.44 0
1.1ε∗ 24 8.71 24 9.37 0
1.2ε∗ 24 8.63 24 9.28 0
0.8ε∗ 7 0.30 7 0.55 0
0.9ε∗ 7 0.28 7 0.54 0

pr07 72 6 6 ε∗ 6 0.26 6 0.51 0
1.1ε∗ 6 0.24 6 0.47 0
1.2ε∗ 6 0.22 6 0.41 0
0.8ε∗ 13 1.68 13 1.97 0
0.9ε∗ 13 1.66 13 1.93 0

pr08 144 6 6 ε∗ 12 1.57 12 1.89 0
1.1ε∗ 12 1.51 12 1.83 0
1.2ε∗ 12 1.47 12 1.79 0
0.8ε∗ 20 7.77 22 8.84 -9
0.9ε∗ 20 7.73 22 8.78 -9

pr09 216 6 6 ε∗ 19 7.68 20 8.71 -5
1.1ε∗ 19 7.60 20 8.64 -5
1.2ε∗ 19 7.55 20 8.59 -5
0.8ε∗ 25 8.80 26 9.73 -4
0.9ε∗ 25 8.72 26 9.64 -4

pr10 288 6 6 ε∗ 24 8.65 24 9.57 0
1.1ε∗ 24 8.60 24 9.51 0
1.2ε∗ 24 8.53 24 9.46 0
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Table 4.5: Results on MDPVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.32 5 0.43 0
0.9ε∗ 5 0.29 5 0.42 0

pr01 48 4 4 ε∗ 4 0.25 4 0.40 0
1.1ε∗ 4 0.22 4 0.38 0
1.2ε∗ 4 0.20 4 0.36 0
0.8ε∗ 5 0.86 5 1.39 0
0.9ε∗ 5 0.81 5 1.34 0

pr02 96 4 4 ε∗ 4 0.73 4 1.28 0
1.1ε∗ 4 0.69 4 1.26 0
1.2ε∗ 4 0.64 4 1.19 0
0.8ε∗ 9 4.88 9 6.41 0
0.9ε∗ 9 4.79 9 6.33 0

pr03 144 4 4 ε∗ 8 4.72 8 6.23 0
1.1ε∗ 8 4.55 8 6.13 0
1.2ε∗ 7 4.48 8 6.09 -13
0.8ε∗ 9 13.73 10 15.66 -10
0.9ε∗ 8 13.62 9 15.58 -10

pr04 192 4 4 ε∗ 7 13.56 8 15.52 -13
1.1ε∗ 7 13.50 8 15.44 -13
1.2ε∗ 7 13.41 8 15.37 -13
0.8ε∗ 13 20.58 14 24.33 -7
0.9ε∗ 13 20.53 14 24.17 -7

pr05 240 4 4 ε∗ 12 20.44 12 24.09 0
1.1ε∗ 12 20.37 12 23.88 0
1.2ε∗ 12 20.29 12 23.82 0
0.8ε∗ 14 17.41 16 21.45 -13
0.9ε∗ 13 17.32 15 21.34 -13

pr06 288 4 4 ε∗ 12 17.22 14 21.25 -14
1.1ε∗ 12 17.16 13 21.20 -8
1.2ε∗ 12 17.08 13 21.11 -8
0.8ε∗ 7 1.46 7 2.06 0
0.9ε∗ 7 1.39 7 1.98 0

pr07 72 6 6 ε∗ 6 1.35 6 1.96 0
1.1ε∗ 6 1.30 6 1.91 0
1.2ε∗ 6 1.24 6 1.84 0
0.8ε∗ 7 5.25 8 8.04 -13
0.9ε∗ 7 5.14 7 7.97 0

pr08 144 6 6 ε∗ 6 5.06 6 7.91 0
1.1ε∗ 6 5.03 6 7.88 0
1.2ε∗ 6 4.98 6 7.82 0
0.8ε∗ 13 20.42 13 24.19 0
0.9ε∗ 13 20.31 14 24.12 -7

pr09 216 6 6 ε∗ 12 20.19 13 23.96 -8
1.1ε∗ 12 20.10 13 23.89 -8
1.2ε∗ 12 19.89 13 23.81 -8
0.8ε∗ 19 23.14 20 26.79 -5
0.9ε∗ 19 23.04 20 26.71 -5

pr10 288 6 6 ε∗ 18 22.88 18 26.53 0
1.1ε∗ 18 22.76 18 26.49 0
1.2ε∗ 18 22.70 18 26.41 0
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Figure 4.2: Average percentage gap in the MDVRP instances

percentage gap, depends upon the on values assigned to ε. Figure 4.3 depicts how different ε

values affect the average percentage gap.

Figure 4.3: Average percentage gap in the MDPVRP instances

Rule R2

In Rule R2, we investigate how the algorithm reacts when an upper bound is imposed on the

total distance that all vehicles assigned to each depot are permitted to travel in each period. The

specifications of how the algorithms are applied in the case of Rule R2 is exactly the same as

in the case of Rule R1 (i.e., the same number of runs is applied as well as identical maximum

allotted run-times for the algorithms are considered for each problem).
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Tables 4.6-4.8 display the results obtained by the heuristic algorithm on the PVRP, MDVRP

and MDPVRP problems, respectively. Each of these tables use the same structure considered

for the tables of the previous subsection. It should be noted that, in these tables, ε∗ is a T ×D

matrix, in which εtd corresponds to the total distance traveled by vehicles assigned to depot d

in period t of the BKS. The performance of the heuristic algorithm is compared, on each set

of test problems, to the modified version of the unified tabu search implementation of Lahrichi

et al. (2011).

As shown in Tables 4.6-4.8, the proposed modular heuristic algorithm performs impres-

sively well relative to the UTS, in terms of solution quality and computational time. For each

of the problems considered, we investigated how the existing average percentage gap of two

algorithms is affected by different ε values. The results obtained are shown by Figure 4.4.

Figure 4.4: Average percentage gap

Moreover, the results displayed by Tables 4.6-4.8 reveal this fact that restricting the search

space through bounding the total distance allowed to be traveled by vehicles assigned to a depot

in each period may result in decreasing the quality of the heuristic algorithm.

The results of Tables show that restricting the search space through bounding the total

distance allowed to be traveled by vehicles assigned to a depot in each period may result in a

decrease of the quality of the heuristic algorithm.
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Table 4.6: Results on PVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 3 0.20 3 0.39 0
0.9ε∗ 3 0.19 3 0.36 0

pr01 48 4 4 ε∗ 2 0.19 2 0.35 0
1.1ε∗ 2 0.17 2 0.34 0
1.2ε∗ 2 0.17 2 0.33 0
0.8ε∗ 5 0.54 5 0.94 0
0.9ε∗ 5 0.49 5 0.85 0

pr02 96 4 4 ε∗ 4 0.47 4 0.82 0
1.1ε∗ 4 0.44 4 0.77 0
1.2ε∗ 4 0.40 4 0.73 0
0.8ε∗ 7 4.12 8 6.38 -13
0.9ε∗ 7 3.92 8 6.16 -13

pr03 144 4 4 ε∗ 6 3.83 6 5.59 0
1.1ε∗ 6 3.70 6 5.48 0
1.2ε∗ 6 3.43 6 5.32 0
0.8ε∗ 9 8.39 10 9.61 -10
0.9ε∗ 9 8.19 10 9.24 -10

pr04 192 4 4 ε∗ 8 7.44 8 8.25 0
1.1ε∗ 7 7.31 8 8.19 -13
1.2ε∗ 7 7.08 8 7.95 -13
0.8ε∗ 12 15.93 14 20.19 -14
0.9ε∗ 12 15.24 14 18.95 -14

pr05 240 4 4 ε∗ 10 14.82 11 18.39 -9
1.1ε∗ 10 14.73 11 18.11 -9
1.2ε∗ 10 14.22 11 17.78 -9
0.8ε∗ 14 16.54 16 19.50 -13
0.9ε∗ 14 16.09 16 19.42 -13

pr06 288 4 4 ε∗ 13 15.61 14 19.32 -7
1.1ε∗ 13 15.45 14 18.80 -7
1.2ε∗ 12 15.39 13 18.53 -7
0.8ε∗ 4 1.29 4 1.93 0
0.9ε∗ 4 1.24 4 1.86 0

pr07 72 6 6 ε∗ 3 1.18 3 1.77 0
1.1ε∗ 3 1.14 3 1.69 0
1.2ε∗ 3 1.11 3 1.60 0
0.8ε∗ 7 5.79 8 7.53 -13
0.9ε∗ 7 5.19 7 7.44 0

pr08 144 6 6 ε∗ 6 4.82 6 7.39 0
1.1ε∗ 6 4.60 6 7.22 0
1.2ε∗ 6 4.49 6 7.16 0
0.8ε∗ 11 17.19 12 19.12 0
0.9ε∗ 10 16.76 12 19.04 -17

pr09 216 6 6 ε∗ 10 16.29 11 18.96 -10
1.1ε∗ 10 16.20 11 18.78 -10
1.2ε∗ 10 16.11 11 18.53 -10
0.8ε∗ 14 19.07 16 19.61 -13
0.9ε∗ 14 18.99 16 19.44 -13

pr10 288 6 6 ε∗ 12 18.94 13 19.10 -8
1.1ε∗ 12 18.83 13 18.97 -8
1.2ε∗ 12 18.53 13 18.86 -8
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Table 4.7: Results on MDVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.14 5 0.17 0
0.9ε∗ 5 0.12 5 0.17 0

pr01 48 4 4 ε∗ 4 0.10 4 0.16 0
1.1ε∗ 4 0.09 4 0.14 0
1.2ε∗ 4 0.07 4 0.14 0
0.8ε∗ 9 0.43 10 0.84 0
0.9ε∗ 9 0.36 9 0.77 -10

pr02 96 4 4 ε∗ 8 0.33 8 0.72 0
1.1ε∗ 8 0.31 8 0.66 0
1.2ε∗ 8 0.30 8 0.62 0
0.8ε∗ 13 1.08 14 1.55 -7
0.9ε∗ 13 1.04 13 1.45 0

pr03 144 4 4 ε∗ 12 0.59 12 1.44 0
1.1ε∗ 12 0.59 12 1.35 0
1.2ε∗ 12 0.48 12 1.29 0
0.8ε∗ 17 3.90 18 4.72 -6
0.9ε∗ 17 3.85 18 4.66 -6

pr04 192 4 4 ε∗ 16 3.80 17 4.60 -6
1.1ε∗ 16 3.74 17 4.52 -6
1.2ε∗ 16 3.70 17 4.47 -6
0.8ε∗ 21 7.53 22 9.59 -5
0.9ε∗ 21 7.49 22 9.35 -5

pr05 240 4 4 ε∗ 20 7.34 21 9.33 -5
1.1ε∗ 20 7.29 21 9.19 -5
1.2ε∗ 20 7.22 21 9.14 -5
0.8ε∗ 25 9.01 27 9.84 -7
0.9ε∗ 25 8.97 27 9.60 -7

pr06 288 4 4 ε∗ 24 8.80 25 9.49 -4
1.1ε∗ 24 8.75 25 9.40 -4
1.2ε∗ 24 8.69 25 9.33 -4
0.8ε∗ 7 0.33 7 0.64 0
0.9ε∗ 7 0.29 7 0.59 0

pr07 72 6 6 ε∗ 6 0.27 6 0.54 0
1.1ε∗ 6 0.25 6 0.49 0
1.2ε∗ 6 0.24 6 0.46 0
0.8ε∗ 13 1.73 13 2.04 0
0.9ε∗ 13 1.69 13 1.99 0

pr08 144 6 6 ε∗ 12 1.62 12 1.95 0
1.1ε∗ 12 1.56 12 1.88 0
1.2ε∗ 12 1.50 12 1.84 0
0.8ε∗ 20 7.88 22 8.91 -9
0.9ε∗ 20 7.79 22 8.84 -9

pr09 216 6 6 ε∗ 19 7.77 21 8.79 -10
1.1ε∗ 19 7.66 21 8.74 -10
1.2ε∗ 19 7.59 21 8.63 -10
0.8ε∗ 25 8.85 26 9.82 -4
0.9ε∗ 25 8.80 26 9.72 -4

pr10 288 6 6 ε∗ 24 8.70 25 9.65 -4
1.1ε∗ 24 8.64 25 9.55 -4
1.2ε∗ 24 8.59 25 9.48 -4
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Table 4.8: Results on MDPVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.35 5 0.50 0
0.9ε∗ 5 0.31 5 0.47 0

pr01 48 4 4 ε∗ 4 0.28 4 0.44 0
1.1ε∗ 4 0.25 4 0.41 0
1.2ε∗ 4 0.22 4 0.37 0
0.8ε∗ 5 0.89 5 1.43 0
0.9ε∗ 5 0.84 5 1.38 0

pr02 96 4 4 ε∗ 4 0.77 4 1.31 0
1.1ε∗ 4 0.71 4 1.28 0
1.2ε∗ 4 0.67 4 1.22 0
0.8ε∗ 9 4.89 10 6.46 0
0.9ε∗ 9 4.83 10 6.41 -10

pr03 144 4 4 ε∗ 8 4.75 9 6.29 -11
1.1ε∗ 8 4.62 9 6.18 -11
1.2ε∗ 8 4.53 9 6.11 -11
0.8ε∗ 9 13.76 9 15.70 0
0.9ε∗ 9 13.69 9 15.66 0

pr04 192 4 4 ε∗ 8 13.62 8 15.64 0
1.1ε∗ 7 13.56 8 15.49 -13
1.2ε∗ 7 13.45 8 15.53 -13
0.8ε∗ 13 20.65 14 24.55 -7
0.9ε∗ 13 20.59 14 24.48 -7

pr05 240 4 4 ε∗ 12 20.53 13 24.33 -8
1.1ε∗ 12 20.42 13 23.94 -8
1.2ε∗ 12 20.35 13 23.85 -8
0.8ε∗ 14 17.47 16 21.51 -13
0.9ε∗ 14 17.35 16 21.40 -13

pr06 288 4 4 ε∗ 13 17.30 14 21.34 -7
1.1ε∗ 13 17.41 14 21.29 -7
1.2ε∗ 13 17.23 14 21.20 -7
0.8ε∗ 7 1.49 7 2.09 0
0.9ε∗ 7 1.44 7 2.06 0

pr07 72 6 6 ε∗ 6 1.40 6 2.01 0
1.1ε∗ 6 1.34 6 1.97 0
1.2ε∗ 6 1.29 6 1.89 0
0.8ε∗ 7 5.28 8 8.09 -13
0.9ε∗ 7 5.19 7 8.04 0

pr08 144 6 6 ε∗ 6 5.18 6 7.95 0
1.1ε∗ 6 5.11 6 7.94 0
1.2ε∗ 6 5.04 6 7.88 0
0.8ε∗ 14 20.45 15 24.22 -7
0.9ε∗ 14 20.35 15 24.17 -7

pr09 216 6 6 ε∗ 13 20.31 13 24.12 0
1.1ε∗ 13 20.23 13 23.95 0
1.2ε∗ 13 20.07 13 23.87 0
0.8ε∗ 19 23.19 20 26.86 -5
0.9ε∗ 19 23.12 19 26.76 0

pr10 288 6 6 ε∗ 18 22.94 18 26.69 0
1.1ε∗ 18 22.83 18 26.57 0
1.2ε∗ 18 22.77 18 26.46 0
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4.6 Conclusions

This paper presented a new modular heuristic algorithm for addressing several classes of multi-

depot and periodic vehicle routing problems. In each of the considered problem classes, the

goal is to determine the optimal fleet size when three constraints, i.e., vehicle capacity, route

duration and budget constraints, are to be satisfied.

This paper introduced several methodological contributions, particularly, a self-learning

mechanism that leads the algorithm to assign better visit patterns to customers, and also to

assign customers to better depots as the solution process evolves. This learning mechanism,

in addition to other components of the algorithm, provided the capability of the heuristic algo-

rithm to reach high quality solutions.

To validate the efficiency of the proposed heuristic algorithm, different test problems, ex-

isting in the literature, were solved. The computational results showed that the proposed algo-

rithm performs very well, for all problem instances.
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Chapter 5

An integrative cooperative search

approach for a bi-objective vehicle

routing problem

Abstract

In this paper, we address a bi-criteria multi-depot periodic vehicle routing problem where two

conflicting objectives, i.e., total number of used vehicles and total traveled distance, are to be

simultaneously optimized. To solve the problem, we design an algorithmic framework that is

based on a parallel cooperative search approach called Integrative Cooperative Search (ICS).

The proposed algorithm combines several exploration and exploitation strategies which result

in producing good and diverse solutions. Extensive computational experiments show that the

algorithm performs impressively well, in terms of solution quality, diversification level and

computational efficiency.

keywords: Bi-criteria multi-depot periodic vehicle routing problem, Cooperative parallel

methods, Integrative cooperative search, Multi-objective algorithms.
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5.1 Introduction

The Vehicle Routing Problem (VRP) is one of the most important and widely studied combina-

torial optimization problems, with many real-life applications in distribution and transportation

logistics. Its basic version can be described as follows: a set of customers having deterministic

demands have to be satisfied from a central depot with a fleet of homogeneous delivery vehicles

of known capacity. Usually, the objective of VRPs is to minimize the total distance traveled by

the vehicle fleet, but it is also common to minimize other objectives like the total transportation

costs and the number of used vehicles (Toth and Vigo (2002)).

The VRP has been a challenging subject for many researchers since it was introduced by

Dantzig and Ramser (1959) for solving the truck dispatching problem. A large variety of

different optimization methods have been proposed and studied. However, VRP research has

often been criticized for being too focused on idealized models with non-realistic assumptions

for practical applications. As a result, researchers have turned to variants of the VRP which

before were considered too difficult to solve. The variants include aspects of the VRP that

are essential to the routing of vehicles in real problems. These extended problems are called

Multi-Attribute VRPs (MAVRPs) (Rieck and Zimmermann (2006)).

In the last decade, different variations and specializations of MAVRPs, each reflecting var-

ious real-life applications, have been studied. However, surveying the literature, one can notice

that: 1) the most MAVRPs have been often set up with a single objective function, which does

not necessarily reflect the problems encountered in practical settings, and 2) the most common

way to deal with MAVRPs, either single- or multi-objective, is the sequential approach. Ac-

cording to this method, one solves the problem one dimension at a time instead of addressing

it comprehensively. It is well-known that this leads to suboptimal solutions.

Our objective is to contribute toward addressing the above two challenges by addressing a

variant of the MAVRP in which a daily plan is computed for a homogeneous fleet of vehicles

that depart from different depots and must visit a set of customers for delivery operations in

a planning horizon. In this MAVRP, we consider maximum route duration constraint and an

upper limit of the quantity of goods that each vehicle can transport. Moreover, two practical
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contradicting objectives often found in reality, i.e., total number of used vehicles and total

traveled distance, are to be simultaneously minimized. To solve the problem, we propose an

algorithmic framework that works based on the principles of a cooperative parallel algorithm

namely Integrative Cooperative Search (ICS).

The remainder of this paper is organized as follows: Section 5.2 gives the problem state-

ment. In Section 5.3, the literature survey relevant to the topic of this study is presented. The

different components of the proposed ICS algorithm are described in Section 5.4. The ex-

perimental results are given in Section 5.5. Finally, Section 5.6 provides conclusions and the

evaluation of the work.

5.2 Problem statement

In this section, we formally state the bi-objective MDPVRP, introducing the notations used

throughout this paper. The MDPVRP can be defined as follows (Cordeau et al. (1997), Vi-

dal et al. (2012a)): Consider an undirected graph G(V,E). The node set V is the union of

two subsets V = VC ∪ VD, where VC = {v1, ..., vn} represents the customers and VD =

{vn+1, ..., vn+m} includes the depots. With each node i ∈ VC are associated a deterministic

demand qi and a service time si. The edge set E contains an edge for each pair of customers

and for each depot-customer combination. There are no edges between depots. With each

edge (vi, vj) ∈ E is associated a travel cost cij . The travel distance for arriving to node j from

node i (tij) is considered equal to cij . A homogeneous fleet of vehicles of known capacity Q

is available at each depot. Moreover, the MDPVRP has a planning horizon, say T periods.

Each customer i is characterized by a service frequency fi, stating how often within this T pe-

riods this customer must be visited and a list Li of possible visit-period combinations, called

patterns. Each vehicle performs only one route per period and each vehicle route must start

and finish at the same depot given that the travel duration of the route should not exceed D.

The MDPVRP aims to design a set of vehicle routes servicing all customers, such that vehicle-

capacity and route-duration are respected, and two conflicting objectives, i.e., total number of

used vehicles and total traveled distance, are simultaneously minimized.
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To formulate the bi-objective MDPVRP as a mixed-integer linear program, we use the

notations introduced in Vidal et al. (2012a) as follows:

• Parameters

– arl: A binary constant which equals to 1 if period l belongs to visit pattern r ∈ Li,

otherwise 0.

• Variables

– xijklo: A binary variable which equals to 1 if customer j is immediately visited after

customer i by vehicle k departing in period l from depot o, otherwise 0.

– yiro: A binary variable which equals to 1 if visit pattern r ∈ Li and depot o are

assigned to customer i, otherwise 0.

– Klo: An integer variable which shows the number of vehicles assigned in period l

to depot o.

The mathematical formulation of the bi-objective MDPVRP explained above can be sum-

marized as follows:

Min f1 = max
l=1,...,T

{
∑
vo∈VD

Klo} (5.1)

Min f2 =
∑
vi∈V

∑
vj∈V

∞∑
k=1

T∑
l=1

∑
vo∈VD

tijxijklo (5.2)



103

S.T

∑
r∈Li

∑
vo∈VD

yiro = 1 (vi ∈ VC);(5.3)

∑
vj∈V

∞∑
k=1

xijklo −
∑
r∈Li

arlyiro = 0 (vi ∈ VC ; vo ∈ VD; l = 1, ..., T ); (5.4)

∑
vj∈V

xjiklo −
∑
vj∈V

xijklo = 0 (vi ∈ V ; vo ∈ VD; k = 1, 2, ...; l = 1, ..., T );(5.5)

∑
vj∈V

xojklo ≤ 1 (vo ∈ VD; k = 1, 2, ...; l = 1, ..., T ); (5.6)

∑
vj∈V

xijklo = 0 (vi ∈ VD; vo ∈ VD; vi 6= vo; k = 1, 2, ...; l = 1, ..., T ); (5.7)

∞∑
k=1

∑
vj∈V

xojklo = Klo (l = 1, ..., T ; vo ∈ VD); (5.8)

∑
vi∈V

∑
vj∈V

qixijklo ≤ Q (vo ∈ VD; k = 1, 2, ...; l = 1, ..., T ); (5.9)

∑
vi∈V

∑
vj∈V

(tij + si)xijklo ≤ D (vo ∈ VD; k = 1, 2, ...; l = 1, ..., T );(5.10)

∑
vi∈S

∑
vj∈S

xijklo ≤ |S| − 1(S ∈ VC ; |S| ≥ 2; vo ∈ VD; k = 1, 2, ...; l = 1, ..., t);(5.11)

xijklo ∈ {0, 1} (vi ∈ V ; vj ∈ V ; vo ∈ VD; k = 1, 2, ...; l = 1, ..., T ); (5.12)

yiro ∈ {0, 1} (vi ∈ V ; r ∈ Li; vo ∈ VD); (5.13)

In the above model, the first objective function (f1) attempts to minimize the total number

of vehicles used over the planning horizon, while the second objective function (f2) minimizes

the total traveled distance. Constraints (5.3) show that only one visit pattern and one depot

should be assigned to each customer. Constraints (5.4) ensure that each customer is visited in

the periods corresponding to the assigned visit pattern by a vehicle departing from the chosen

depot. Constraints (5.5) guarantee that when a vehicle arrives at a customer on a given period,

it also leaves that customer on the same period. Constraints (5.6) impose that each vehicle

is used at most once every period. Constraints (5.7) enforce the compatibility issues between

depot assignments and and route starting and ending points. Constraints (5.8) show the number

of vehicles assigned to each depot in each period. Constraints (5.9) and (5.10) define respec-

tively the capacity and maximum route duration restrictions. Finally, Constraints (5.11) are the
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standard subtour elimination constraints.

5.3 Literature review

In this section, we focus the literature review on the MDPVRP. The aim is to present the

different solution approaches that have been developed to solve both the single- and multi-

objective versions of the MDPVRP and, in doing so, identify which of these methods are the

most efficient.

By studying the literature, one can perceive that the solution methods, targeting the MD-

PVRP, are divided into three main groups: 1) Exact methods, which are limited in the size of

instances they may handle, 2) classical heuristics, which often solve the problem in a sequential

manner, and 3) Sophisticated meta-heuristics and parallel algorithms, which tackle the problem

by simultaneously optimizing all the involved attributes.

To the best of our knowledge, the only exact method, belonging to the first group, was

the one designed by Mingozzi (2005). In the proposed method, first, an integer programming

model which is an extension of the set partitioning formulation of the CVRP is described.

Then, an exact method for solving the problem, which uses variable pricing in order to reduce

the set of variables to more practical proportions, is proposed. The pricing model is based

on the bounding procedure for finding near optimal solutions of the dual problem of the LP

relaxation of the proposed integer programming model. The bounding procedure is an additive

procedure that determines a lower bound on the MDPVRP as the sum of the dual solution costs

obtained by a sequence of five different heuristics for solving the dual problem, where each

heuristic explores a different structure of the MDPVRP. Three of these heuristics are based on

relaxations, whereas the two others combine subgradient optimization with column generation.

We also aware of three heuristic algorithms in this category.

We are aware of three heuristics in the second group. Hadjiconstantinou and Baldacci

(1998) formulated the problem of providing maintenance services to a set of customers as the

MDPVRP with Time Windows (MDPVRPTW). To solve the problem, the authors proposed

a four-phase algorithm. In the developed algorithm, all customers are first assigned to partic-
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ular depot. Then, customer visits are successively inserted among available periods to obtain

feasible visit combinations. In the third phase, each of the depot-period VRP sub-problems is

separately solved using a tabu search algorithm. Finally, in the last phase, solutions obtained

during the optimization process are improved by modifying the period or depot assignments

through a 3-opt procedure. Kang et al. (2005) designed a two-phase heuristic method to ad-

dress the same problem. In the proposed method, all feasible schedules are first generated from

each depot for each period and, then, the set of routes are determined through using the shortest

path problem. Parthanadee and Logendran (2006) proposed a tabu search heuristic to tackle the

problem considered by Hadjiconstantinou and Baldacci (1998). In this algorithm, all the ini-

tial assignments are built by cheapest insertion, where each customer is assigned to its nearest

depot and is given its most preferred visit pattern. In the improvement phase, a neighbourhood

search is defined by depot and visit pattern interchanges.

We are also aware of two contributions belonging to the third group. The first contribution

was the evolutionary meta-heuristic proposed by Vidal et al. (2012a). The authors developed

a hybrid Genetic Algorithm (GA) to tackle the MDPVRP and two of its special cases, i.e.,

the Multi-depot VRP (MDVRP) and the Periodic VRP (PVRP). The main of the proposed GA

is a new population-diversity management mechanism which allows a broader access to re-

production, while preserving the memory of what characterizes good solutions represented by

the elite individuals of the population. The second contribution was the cooperative parallel

algorithm designed by Lahrichi et al. (2012). The authors proposed a structured cooperative

parallel search method, called Integrative Co-operative Search (ICS), to solve highly complex

combinatorial optimization problems. The proposed ICS framework involves problem decom-

position by decision sets, integration of elite partial solutions yielded by the sub-problems, and

adaptive guiding mechanism. The authors used the MDPVRP to present the applicability of

the developed methodology.

Vehicle routing problems have also been studied as a multi-objective problem. Jozefowiez

et al. (2008) provided a comprehensive overview of the research into vehicle routing problems

with several objectives. The authors presented that the most methodological developments

in multi-objective VRPs target a special problem type, the CVRP or the VRPTW and other

variants including more complicated attributes have not been addressed with the same degree
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of attention. Table 5.1 provides a general overview of the multi-objective VRP contributions

reported by Jozefowiez et al. (2008).

This brief literature survey supports the general statements mentioned in the first section

that: 1) the MDPVRP is among the MAVRP variants which did not receive adequate degree

of attention, even as a single-objective problem, 2) solution algorithms capable of efficiently

solving the single-objective MDPVRP as a whole by simultaneously considering all attributes

are scarce, and 3) to the best of our knowledge, there is no significant contribution in the

literature tackling the multi-objective MDPVRP. These three remarks motivated us to develop

an ICS approach to solve the considered bi-objective MDPVRP. The details of the proposed

ICS algorithm are given in the following section.

5.4 The integrative cooperative search for the bi-objective MD-

PVRP

The solution approach that we propose performs based on the integrative cooperative search

paradigm designed by Lahrichi et al. (2012) but includes some advanced and well-structured

features which enable the algorithm to generate good and diverse non-dominated solutions as

near as possible to the true Pareto frontier. We initiate this section by introducing the fundamen-

tal concepts underlying the general ICS methodology, particularly the decision-set attribute-set

decomposition and the ICS algorithmic structure. Then, concepts, challenges, and different

components of the ICS algorithm, designed in this paper to tackle the bi-criteria MDPVRP, are

thoroughly discussed.

5.4.1 The general ICS methodology

The ICS methodology, as a multi-thread cooperative search method, was designed by Lahrichi

et al. (2012) to efficiently address multi-attribute combinatorial optimization problems. The

general structure of ICS consists of three main building blocks, i.e., decomposition, integration,

and global search coordination, which cooperate using the central-memory cooperative search
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paradigm.

ICS initiates solving a problem by decomposing it into some more tractable and easier sub-

problems, each defined by suitably selected subsets of decision-set attributes of the problem.

By decision-set attributes, we mean the sets of decisions defining the particular problem setting.

Lahrichi et al. (2012) enumerated various reasons for using such a decomposition which pri-

marily include several computational benefits in terms of both reliability and algorithm speed,

the enhancement of parallel and distributed computing, reduced programming and debugging

effort, and the possibility of employing different solution techniques for the different decom-

posed sub-problems. Following the initial decomposition of the original problem, each result-

ing sub-problem is addressed by one or several solution methods, called partial solvers. Each

partial solver may be a simple constructive method, exact or meta-heuristic algorithm and aims

to generate and send a set of elite partial solutions to a partition of the central-memory, namely

partial set. In the general ICS, a guidance mechanism, called Local Search Coordinator (LSC),

is usually embedded to each partial solver to locally monitor the performance of the partial

solver and to act when this performance becomes unsatisfactory through sending appropriate

instructions. The LSC can force a partial solver to restart from a suitable solution in memory,

modify the search parameters, or even change the solution method.

Concurrently with partial solver activities, some integrators combine the elite partial so-

lutions of the partial set into complete ones and, eventually, improve them. (Note that, all

solutions in the ICS are complete; the terms ”partial” and ”complete” solutions are used, how-

ever, to distinguish between solutions generated in the decomposition and integration phases).

Integrators play an essential role in the ICS methodology. While partial solvers address a sin-

gle aspect of the original problem, integrators build complete solutions by mixing elite partial

solutions with promising features. Similarly to the partial solvers, integrators can be very sim-

ple procedures or sophisticated exact and meta-heuristic algorithms. All the elite complete

solutions found by integrators are sent to another partition of the central-memory, called the

complete set.

Another component of the ICS methodology is a controlling mechanism, namely Global

Search Coordinator (GSC), which guides the global search by sending appropriate instructions
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to partial solvers and, eventually, integrators. The GSC guides the search by monitoring the

central-memory and through statistical information, memories, on the evolution of solutions in

the complete and partial sets, the contribution of solutions and their components to the evolu-

tion of the search, and relative performances of partial solvers. One possible implementation

of the ICS methodology described above is depicted by Figure 5.1.

Figure 5.1: The integrative cooperative search scheme

5.4.2 The proposed ICS algorithm

The goal of this section is to present and discuss the proposed bi-objective ICS concepts, its

structure, main building blocks, and operating principles. We first thoroughly present how the

ICS works in the decomposition phase. Then, we proceed with detailed discussions of the

integration phase. Thereafter, the proposed guiding mechanism is described in details. Finally,

the termination criteria are given.
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Decomposition phase

As previously mentioned, the underlying idea of following the decomposition phase in the

ICS is to simplify an original and relatively difficult problem as a collection of auxiliary and

comparably easier sub-problems that can be solved separately and properly by dedicated partial

solvers. Therefore, an important question to answer is how to perform this decomposition. A

straightforward approach often used in the general ICS is to use the decision-set attribute-

based decomposition. Recall that, in this decomposition, the objective-set remains unchanged

for each sub-problem and only the decision-set attributes not part of the sub-problem definition

are simply fixed (Note that by objective-set, we mean the set of the objective functions defined

for a problem). In our opinion, this approach has the drawback, while dealing with an multi-

objective problem, of creating multi-objective sub-problems that may be as challenging as the

original problem to solve. We therefore propose a decomposition scheme which takes into

account the decision-set as well as the objective-set to split the main problem. Towards this

end, a new Hierarchical Decomposition Procedure (HDP) is proposed to decompose the bi-

objective MDPVRP.

The HDP, used in this paper, is the process of breaking down the original problem into suc-

cessive layers of more manageable and comprehensive pieces. More precisely, the HDP creates

two different layers. In the first layer, the MDPVRP is decomposed into two bi-objective ve-

hicle routing problems with exactly one less attribute, i.e., PVRP and MDVRP, by respectively

fixing the depot and period decision sets. In other words, in the PVRP, the pair (customer,

depot) is set to be fixed, whereas in the MDVRP, the pair (customer, visit combination) is con-

sidered as a frozen pair. Since the simultaneous minimization of two contradicting objective

functions, in each of the sub-problems generated in the first layer, is a challenging task, each

sub-problem is decomposed once again into two simpler problems, each constructed using the

well-known ε-constraint method. The ε-constraint method generates single objective problems,

called ε-constraint problems, by transforming all but one objectives into constraints. The upper

bounds of these constraints are given by the ε-vector and, by varying it, the exact Pareto front

can theoretically be generated (Bérubé et al. (2009)). The main advantage of applying such a

decomposition procedure is that working on sub-problems having smaller number of objectives
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and attributes, instead of considering a large-size multi-objective problem, provide relatively

high quality and diverse solutions rapidly. On the other hand, well-known single-objective op-

timization methods, existing in the literature, may be used to solve each of the sub-problems.

Figure 5.2 shows the HDP scheme.

Figure 5.2: The decomposition scheme

In Figure 5.2, f1 and f2 respectively represent the first and second objective functions de-

fined in the mathematical programming model of Section 2. Ax ≤ b is the union of Constraints

3-11 and X shows the set of decision variables 12-13. Moreover, Xp and Xd are defined as

the set of decision variables, in which the period and depot decision sets are respectively fixed.

Once the decomposition and the sub-problem hierarchy have been defined, the sub-problems

of the second layer are simultaneously solved by some partial solvers. For the sub-problems

where the total traveled distance is considered as the objective function, there exist various ef-

ficient optimization algorithms, i.e., exact, heuristic and meta-heuristic methods. Each of these

algorithms can be directly applied as a solver to generate partial solutions. In this paper, we

used the Unified Tabu Search (UTS) implemented in Lahrichi et al. (2011). On the other hand,

in the other sub-problems where the total number of used vehicles is to be minimized, there are

very limited number of papers previously published in the literature. In this study, we use the

three-phase heuristic algorithm developed by Rahimi-Vahed et al. (2012b). The details of the

above partial solvers are described in Section 5.5.
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Each of the above partial solvers solves a dedicated sub-problem in α different runs, each

considering a different value for ε. To modify the value of ε, from one run to another, a Local

Search Coordinator (LSC) is assigned to each partial solver. The LSC, implemented in this

paper, is an adaptive updating procedure similar to the one proposed by Laumanns et al. (2005).

In this updating procedure, ε is first set to a large value, denoted by ∆, in order to obtain the

lower bound on the value of Pareto solutions. Then, ∆ iteratively decreases to generate other

solutions of the Pareto front. For more detailed explanations, readers refer to Laumanns et al.

(2005). Note that, the whole procedure, described in this section, is repeated for β successive

iterations. Algorithm 4 schematically shows how the ICS works in the decomposition phase.

Algorithm 4 The decomposition phase
ε← ∆.
Set ν as an empty list.
for i=1...β do

Fix the value of the corresponding decision-set attribute.
for j=1...α do

Solve the constructed sub-problem by the dedicated partial solver.
Add the solution obtained by the partial solver to ν.
Update the ε value using LSC.

end for
end for
Report the solutions of ν as the corresponding partial solutions.

After each of the partial solvers generates its corresponding partial solution set, obtained

elite partial solutions are sent to the partial set of the central memory. The partial set plays a

key role on the performance of the developed ICS. What solutions are included in the partial

set, how good and how diversified they are, have a major impact on the quality of new solutions

generated by the ICS. More precisely, the partial set is the union of four different subsets, each

preserving elite partial solutions sent by a partial solver. In this phase, it should be carefully

determined how each of these subsets are initially constructed and how they are iteratively

updated in the course of the optimization procedure.

In this paper, the maximum size of each subset is fixed to a predetermined positive value

denoted by b. Moreover, each subset consists of two different parts. The first part includes high

quality solutions, while diverse solutions are kept in the second part. To construct the ith subset

of the partial set, the partial solutions generated by the ith partial solver are first partitioned into



113

different Pareto fronts using the non-domination sorting algorithm. Note that, the first front is

formed by non-dominated partial solutions, the second front covers all those partial solutions

which are dominated by each solution of the first front and dominate all solutions of the other

fronts, and so on. Then, db/2e solutions that have lower front numbers are successively added

to the first part.The construction procedure continues by computing the minimum Hamming

distance of each remaining partial solution to the solutions added to the first part. Finally, the

second part is filled up by the bb/2c solutions that have larger minimum Hamming distance val-

ues. Note that, the Hamming distance is used as a measure to diversify the solution space. This

measure is the number of positions in two strings of equal length for which the corresponding

elements are different. Put another way, it measures the number of substitutions required to

change one into the other. Figure 5.3 schematically depicts how the partial set is constructed.

Figure 5.3: The partial set

Integration phase

As previously described at the beginning of this section, the decomposition of a complex prob-

lem very often needs to be coupled with an integration task, i.e., an algorithmic manner to

use the solutions obtained from the sub-problems to build a solution of the original problem

(Lahrichi et al. (2012)). This necessitates the development of an integrator which should ad-

dress three, possibly contradictory, challenges: 1) using an efficient way to select partial solu-
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tions from the partial set, 2) generating high quality complete solutions to the original problem

by combining selected partial solutions, and 3) being computationally efficient.

The integrator that we proposed is inspired by a swarm intelligence-based method, called

Shuffled Frog-Leaping Algorithm (SFLA). The SFLA is a population-based meta-heuristic

proposed to perform an informed and non-blind heuristic search to seek prominent solutions of

a combinatorial optimization problem. This meta-heuristic works based on evolution of memes

carried by the interactive individuals, and a global exchange of information among themselves

(Eusuff et al. (2006)). In the SFLA, the population consists of a set of frogs (solutions) that is

partitioned into sub-populations referred to as memeplexes. The different memeplexes are con-

sidered as different cultures of frogs, each performing a local search. Within each memeplex,

the individual frogs hold ideas, that can be influenced by the ideas of other frogs, and evolve

through a process of memetic evolution. After a defined number of memetic evolution steps,

ideas are passed among memeplexes in a shuffling process. The local search and the shuffling

processes continue until predefined stopping criteria are met.

Compared to well-known evolutionary meta-heuristics, genetic algorithm for example, the

advantages of the SFLA are that it is easy to implement and there are few parameters to adjust.

Moreover, The prominent features of the SFLA, such as escaping from local optima traps,

global optimization, good robustness, simple mechanism and fast convergence, make the SFLA

as a promising optimization approach. These advantages and benefits motivated us to develop

a SFLA-based integrator to re-create solutions of the bi-objective MDPVRP using the partial

solutions of the partial set as the initial solutions.

The proposed integrator initiates by dividing partial solutions of the partial set into different

sub-populations, each independently evolving to search the solution space in different direc-

tions. Towards this end, all the partial solutions preserved in the partial set are first copied into

a virtual list and, then, are ordered, within the list, in non-domination sense. Finally, partial

solutions of the ith front are sent to the ith sub-population. The idea involved in such a sub-

populations construction is to search different regions (not only promising ones which include

non-dominated solutions) to avoid quickly trapping on local Pareto optimal solutions.

The integrator continues by implementing a neighbourhood search within each constructed
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sub-population. The neighbourhood search, often used in a general SFLA, selects the worst and

best solutions of a sub-population and generates a single new solution by modifying the struc-

ture of the worst solution based on the characteristics of the best solution. This neighbourhood

search is very computationally efficient but, based on our experiments, it is very hard to handle

and often fails to produce good results when the selected solutions are structurally very differ-

ent. The neighbourhood search that we implemented generates a path of δ solutions (δ > 1)

connecting the selected worst and best solutions and tries to eventually introduce good char-

acteristics of the best solution into the new generated solutions. The proposed neighbourhood

search performs similar to the Complete Relinking Strategy (CRS) proposed by Rahimi-Vahed

et al. (2012a). The CRS is a moving mechanism that the authors proposed in their Path Re-

linking Algorithm (PRA) to generate high quality solutions of a single-objective MDPVRP.

All the components of our neighbourhood search are the same as designed in Rahimi-Vahed

et al. (2012a), except the two following modifications (For more details, readers should refer

to Rahimi-Vahed et al. (2012a).):

1. The neighbourhood search is not permitted to generate infeasible solutions.

2. The criteria based on which a new generated solution is accepted or rejected are modified

as follows:

• If the new generated solution is infeasible, the old solution remains unchanged.

• If the new solution is feasible and dominates the old solution, the old solution is

replaced by the new one.

• If the new solution is feasible and dominated by the old solution, the old solution

remains unchanged.

• If the new solution is feasible and the two solutions are non-dominated, the old

solution is replaced by the new one if the crowding distance of the old solution is

less than or equal to the crowding distance of the new solution

If the above neighbourhood search fails to locally improve a selected worst solution within

a sub-population, the integrator improves it globally. Towards this end, the integrator applies
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the same neighbourhood search on the selected worst solution and improves it, this time, based

on the characteristics of the best solution of the entire search space.

After the neighbourhood search is repeated for λ successive iterations within each sub-

population, the search space is forced to be shuffled and sub-populations are re-created. This

shuffling procedure helps to construct better sub-populations reflecting more promising regions

of the search space. The whole procedure, described in this section, is repeated γ iterations.

Algorithm 5 shows how the proposed integrator works.

Algorithm 5 The integrator
Divide partial solutions of the partial set into different sub-populations.
for i=1...γ do

For each sub-population:
for j=1...λ do

Determine the position of the best and worst solutions of the sub-population.
Set the worst solution as the current solution.
for k=1...δ do

Apply the neighbourhood search on the current solution and generate a new
solution.
if the new solution is feasible and better than the current solution. then

Set the new solution as the current solution.
Update the complete set.

end if
end for
if the neighbourhood search does not generate any improving feasible solution. then

Go to the globally improving phase.
end if
Upgrade the sub-population.

end for
Shuffle the search space and re-construct sub-populations.

end for

Guiding phase

As previously mentioned in this section, the optimization procedure of the designed ICS is

controlled by a guiding mechanism called Global Search Coordinator (GSC). The GSC, imple-

mented in this paper, repeatedly guides the global search through learning the partial solvers

and, eventually, the integrator how to assign better depot and visit pattern to each customer as

the ICS reaches its termination criteria. Towards this end, the GSC uses a two-phase algorithm
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whose details are summarized as follows:

1. Information extracting phase: In this phase, the GSC extracts the required informa-

tion from the non-dominated solutions of the complete set using a Pattern Identification

Mechanism (PIM). The PIM is a simple procedure performing based on the inclusion

of pairs (customer, depot) and (customer, visit pattern) in the solutions of the complete

set. More precisely, the goal of the PIM is to recognize the most frequent depot and visit

pattern based on which each of the customers has been visited in the complete set. A pair

(customer, depot) ((customer, visit pattern)) with the highest inclusion frequency reflect

this fact that the corresponding customer may be serviced by that depot (visit pattern) in

a Pareto-optimal solution. We call a depot (visit pattern) with the highest frequency as

potentially good depot (visit pattern).

2. Information evaluating phase: In this phase, the GSC evaluates the extracted informa-

tion in order to send appropriate instructions to the partial solvers. Towards this end,

the GCS successively selects the customers and investigates the following criteria: If the

selected customer is visited by its potentially good depot (visit pattern) in more than %θ

of the solutions existing in the complete set, the GSC enforces all the partial solvers to

assign that customer to its potentially good depot (visit pattern). Otherwise, the GCS re-

ports the lack of sufficient information and, in such a case, each partial solver assigns the

corresponding customer to a depot (visit pattern) using its own assignment mechanism.

Algorithm 6 summarizes the global search coordinator used in the ICS.

Termination criterion

It is a condition that terminates the optimization procedure. In this paper, the two following

stopping criteria are considered:

• The algorithm is stopped if no new non-dominated solution is added to the complete set

for µ successive iterations. µ is a positive value which is determined at the beginning of

the ICS. Or,



118

Algorithm 6 The GSC
for i=1...n do

-Information extracting phase:
Select customer i.
Determine depot (visit pattern) by which customer i is visited the most in
non-dominated solutions
of the complete set.
R← The number of solutions in which customer i is visited by the chosen depot (visit
pattern).

-Information evaluating phase:
if R ≥ %θ× the complete set size then

Fix the selected depot (visit pattern) for customer i in all partial solvers.
end if

end for

• The algorithm is terminated if it passes a maximum allowable running time.

5.5 Computational results

In this section, we evaluate the performance of the proposed ICS algorithm based on different

test problems. The only MDPVRP instances existing in the literature are those proposed by

Vidal et al. (2012a). The authors created 10 different problems whose main characteristics are

presented in Table 5.2.

Table 5.2: Problem instances
Instance n m T

pr01 48 4 4
pr02 96 4 4
pr03 144 4 4
pr04 192 4 4
pr05 240 4 4
pr06 288 4 4
pr07 72 6 6
pr08 144 6 6
pr09 216 6 6
pr10 288 6 6

The ICS is executed on each of the above problems and its performance is compared, based

on some comparison metrics, with two algorithms existing in the literature:
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1. A modified version of the Unified Tabu Search (UTS) implemented in Lahrichi et al.

(2011): The original UTS, developed by Lahrichi et al. (2011), was proposed to solve a

single-objective MDPVRP, where the objective is the minimization of the total distance

traveled over the planning horizon. We modified this algorithm to make it applicable to

the bi-objective problem addressed in this paper. In our implementation, the UTS tackles

the problem using an ε-constraint method, where the total traveled distance remains as

the objective and the total number of used vehicles is added into the constraints set and

bounded by a positive ε value. All the components of our algorithm are the same as

developed by Lahrichi et al. (2011), except the penalty function that was modified to

handle ε-constraint violations. Moreover, the procedure used to update the ε value is

similar to the one proposed by Laumanns et al. (2005).

2. The Modular Heuristic Algorithm (MHA) of Rahimi-Vahed et al. (2012b): The MHA is

a three-phase optimization algorithm that the authors proposed to address three single-

objective vehicle routing problems, i.e., multi-depot VRP, periodic VRP and multi-depot

periodic VRP. In each of these problems, the total number of used vehicles was set as

the objective function and three kinds of constraints, i.e., vehicle capacity, route duration

and budget constraints, were considered. The authors defined the budget constraint as

a Travel-Distance Budget (TDB) constraint which imposes a threshold ε on the total

distance traveled by vehicles for delivery operations. The only difference between our

implementation and the original MHA is that the ε value is not considered as a fixed

parameter and it is iteratively updated using the same updating procedure proposed by

Laumanns et al. (2005) in order to generate different solutions of the Pareto front.

The experimentation of the proposed ICS algorithm has been conducted on quad-core

AMD Opteron 248 processors, with 2,2 GHz clock speed. The procedure has been coded

in C++, with the communication layer written in OpenMP 2.0.

Different aspects of the experimental results are discussed as follows: In Section 5.5.1, we

first use a well structured algorithm to calibrate all the parameters involved in the ICS. Then, in

Section 5.5.2, all the comparison metrics, used to investigate the performance of the ICS, and

computational results are given in details.
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5.5.1 Parameter setting

Like the most optimization algorithms, the developed ICS relies on a set of related parameters.

Table 5.3 presents a summary of all the parameters used in the ICS.

Table 5.3: Parameters of the heuristic algorithm

Symbol Description
α The number of times that ε is modified
β The number of iterations that attributes are fixed in the first layer of HDP
b The maximum size of each subset in the partial set
λ The number of times that the neighbourhood of the integration phase iterates within each

sub-population
γ The number of iterations that the integrator is repeated
µ Maximum allowable number of iterations that the complete set can remain unchanged

There are various robust methods in the literature to tune parameters used in a optimization

algorithm. Recently, Smith and Eiben (2010) developed a sophisticated calibration method

called Relevance Estimation and VAlue Calibration (REVAC) which is capable of finding good

parameter values for a set of problems. The REVAC method provides an information theoretic

measure on how sensitive a parameter is to the choice of its value. This can be used to estimate

the relevance of parameters, to choose between different possible sets of parameters, and to

allocate resources to the calibration of relevant parameters. Technically, REVAC is a heuristic

generate-and-test method that is iteratively searching for the set of parameter vectors of a given

EA with a maximum performance. In each iteration a new parameter vector is generated and its

performance is tested. Testing a parameter vector is done by executing the EA with the given

parameter values and measuring the EA performance. A detailed explanation of REVAC can

be found in Smith and Eiben (2010).

In this paper, we adopted this method to calibrate the parameters used in the ICS. Table 5.4

shows the calibration results together the range of values we estimated to be appropriate for

each of the involved parameters.
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Table 5.4: Calibration results
Symbol Range Value
α [5, 50] 10
β [5, 100] 10
b [10, 100] 20
λ [10, 40] 16
γ [50, 300] 100
µ [500, 5000] 1000

5.5.2 Comparative results

In this section, we first introduce the five comparison metrics that we used to validate the good

performance of the proposed ICS algorithm:

• The Number of Non-Dominated Solutions (N.N.D.S)- This metric shows the number

of non-dominated solutions that each algorithm is able to find.

• Spacing Metric (SM)- The spacing metric allows us to measure the uniformity of the

spread of non-dominated solutions found by the ICS. The definition of this metric is the

following:

SM = [
1

N − 1
×

N∑
i=1

(d̄− di)2] (5.14)

where N is the total number of found non-dominated solutions, di is the Euclidean dis-

tance between non-dominated solution i and the closest belonging to the complete set,

and d̄ is the mean value of all di.

• Diversification Metric (DM)- This metric measures the spread of found non-dominated

solutions. Its definition is the following:

DM =

√√√√ N∑
i=1

d′i (5.15)

where d′i is the Euclidean distance between non-dominated solution i and the farthest
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solution existing in the complete set.

• Quality Metric (QM)- This metric is simply measured by putting together the non-

dominated solutions found by two algorithms, i.e. A and B, and reporting the ratio of the

number of non-dominated solutions which are generated by algorithm A to the number

of non-dominated solutions which are found by algorithm B.

• Time Metric (TM)- This metric simply shows the execution time of each algorithm.

We tested the developed ICS algorithm on the problem instances described at the beginning

of this section. To solve these problems, the maximum running time is set to 30 minutes. Table

5.5 shows the average number of non-dominated solutions that each algorithm was able to find

in 10 independent runs.

Table 5.5: Number of non-dominated solutions found by the algorithms
Instance ICS MHA UTS

pr01 6 6 6
pr02 8 8 8
pr03 11.25 10.66 10.21
pr04 14.77 12.05 11.36
pr05 13.31 11.80 9.74
pr06 16.29 13.45 11.73
pr07 8 7.12 6.62
pr08 10.22 7.29 6.14
pr09 19.91 14.72 12.27
pr10 22.45 17.12 15.49

As shown in Table 5.5, the proposed ICS algorithm produces more non-dominated solu-

tions compared to the other algorithms. The obtained results show that if the ICS is used as a

decision support tool, it may generate more solution alternatives for the decision maker. The

average gap between the ICS and each of the two benchmark algorithms vary clearly depend-

ing on the problem difficulty. On two problems (pr01 and pr02), all three algorithms seem

to generate always the same results, while for problems pr08 to pr10, with larger number of

depots and periods, the ICS seems considerably to be more efficient to produce better results.
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Table 5.6 represents the average results on the spacing metric obtained for each algorithm

in 10 different runs.

Table 5.6: Comparison of spacing metric obtained for different algorithms
Instance ICS MHA UTS

pr01 3.42 3.42 3.42
pr02 5.12 5.12 5.12
pr03 2.45 2.92 3.21
pr04 2.84 3.33 4.01
pr05 4.29 5.71 5.18
pr06 1.12 2.63 3.38
pr07 0.79 1.12 1.09
pr08 2.19 4.41 3.77
pr09 4.19 6.62 9.15
pr10 8.73 11.04 10.18

As shown in Table 5.6, the average values of the spacing metric generated by the ICS are

lower than those obtained by the HMA and the UTS in the most problem instances. These

results reveal that non-dominated solutions generated by the ICS are scattered more uniformly

on the non-dominated solutions frontier, compared to the other considered algorithms. This

fact shows the promising capability of the ICS to produce different non-dominated solutions

from different zones of the frontier and to avoid being trapped on a limited number of local

non-dominated solutions.

Table 5.7 reports the average values of the diversification metric obtained by each of the

algorithms.

By studying Table 5.7, one can notice that the proposed ICS algorithm is considerably

able to produce more diverse non-dominated solutions, specially for the large-sized problem

instances. These results show that non-dominated solutions found by the ICS cover the optimal

frontier with a higher diversification level.

Table 5.8 shows the average values of the quality metric produced by each of the algorithms.

The results of Table 5.8 clearly presents the superiority of the developed ICS algorithm,

compared to the benchmark algorithms, to generate better non-dominated solutions. In other

words, in the majority of problem instances, non-dominated solutions obtained by the ICS are
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Table 5.7: Comparison of diversification metric obtained for different algorithms
Instance ICS MHA UTS

pr01 6.21 6.21 6.21
pr02 7.75 7.75 7.75
pr03 5.91 5.45 5.08
pr04 5.44 5.29 5.19
pr05 9.31 8.23 7.92
pr06 6.16 5.52 5.29
pr07 3.18 3.04 3.15
pr08 7.49 4.14 4.92
pr09 5.51 3.02 2.88
pr10 5.01 2.29 2.87

Table 5.8: Comparison of quality of solutions obtained for different algorithms
Instance ICS:MHA ICS:UTS

pr01 1:1 1:1
pr02 1:1 1:1
pr03 5.60:4.40 5:75:4.25
pr04 6.62:3.38 6.25:3.75
pr05 6.04:3.96 6.24:4.76
pr06 6.35:3.65 6.88:3.12
pr07 5.89:4.11 5.62:4.38
pr08 6.37:3.63 6.88:3.12
pr09 7.25:2.75 7.44:2.54
pr10 7.07:2.93 7.14:2.86

nearer to the true Pareto frontier than those solutions produced by the HMA and the UTS. This

fact reveals that the ICS gives a better image of the Pareto frontier, specially for those problem

instances having larger number of customers, depots and periods.

Finally, Table 5.9 represents the average computational times consumed by each algorithm.

These results illustrate that the average computational time of the ICS is short, barely higher

than the other benchmark algorithms, and suitable for many operational decisions.

To sum up, we can deduce that the proposed cooperative parallel algorithm is a competitive

and powerful solution methodology which is able to find diverse non-dominated solutions, truly

reflecting the Pareto-optimal frontier, in a reasonable execution time.
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Table 5.9: The average values of computational times (min.)
Instance ICS MHA UTS

pr01 0.62 0.19 0.37
pr02 1.28 0.53 0.95
pr03 7.92 4.73 6.69
pr04 11.41 8.35 9.55
pr05 21.34 15.80 18.81
pr06 23.19 16.44 19.38
pr07 2.37 1.30 1.89
pr08 9.15 5.64 7.50
pr09 23.91 17.14 18.99
pr10 25.16 19.02 19.54

5.6 conclusions

This paper presented a new algorithmic framework, performing based on a cooperative parallel

algorithm, namely integrated cooperative search, to efficiently solve a bi-criteria multi-depot

periodic vehicle routing problem, for which no efficient algorithm is currently available. The

developed algorithm was designed based on a new hierarchical decomposition procedure, the

integration of elite partial solutions yielded by the sub-problems, and an adaptive guiding mech-

anism. To validate the performance of the proposed algorithm, in terms of solution quality and

diversity level, various test problems were examined. Further, the efficiency of the algorithm,

based on various useful metrics, was compared against two prominent algorithms existing in

the literature. Our experimental results indicated that the designed algorithm outperforms the

benchmark algorithms and improved the quality of the obtained solutions, especially for large-

sized problems.
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Chapter 6

Conclusions

The VRP, as a well-known combinatorial NP-hard problem, has drawn huge interest from many

researchers during the past decades because of the vital role it plays in the planning of distri-

bution systems and logistics in many real-life applications such as garbage collection, mail

delivery, and task sequencing. Due to the significant economic benefits that can be achieved

by optimizing routing problems in practice, more and more attention has been given to various

extensions of the VRP that arise in reality. These extensions are often called Multi-Attribute

Vehicle Routing Problems (MAVRPs). Contrary to the research of the classical VRP that fo-

cuses on the idealized models with unrealistic assumptions, the research on MAVRPs considers

those complicated attributes and constraints encountered in the real-life planning and provides

solutions that are executable in practice.

In this thesis, we studied the models and solution methods of three practical MAVRPS.

Each of them involves special practical issues that are only considered in very few papers.

The models and methods proposed in the thesis are general and can be applied to practical

routing problems arising in many other distribution companies as well. We first considered a

Multi-Depot Vehicle Routing Problem (MDVRP) in which a fleet of homogeneous vehicles,

departing from different depots, are responsible of visiting a set of geographically dispersed

customers over a planning horizon. In this problem, two practical constraints, often found in

reality, i.e., maximum route duration constraint and an upper limit of the quantity of goods that
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each vehicle can transport, are considered. The goal of the considered MDPVRP is to mini-

mize the total distance traveled by all the vehicles over the planning horizon. We presented a

mathematical model and proposed a Path Relinking (PR) heuristic to solve it. The proposed

PR was developed based on purposeful exploration and exploitation strategies which permit

the algorithm to solve the problem in two different ways: 1) As a pure stand alone algorithm,

and 2) As an integrator in a parallel cooperative solution framework. To prove the ability of

the PRA in generating high-quality and diverse solutions, various test problems, derived from

the literature, were solved. The experimental results showed that the designed Path Relinking

Algorithm performs impressively well, on all the problem instances. In the second part of this

thesis, we proposed a new modular heuristic algorithm for addressing the MDPVRP studied

in the first part and two of its special variants, i.e., Multi-Depot VRP (MDVRP) and Periodic

VRP (PVRP). In each of the considered problems, the goal was to determine the optimal fleet

size when three constraints, i.e., vehicle capacity, route duration and budget constraints, were

to be satisfied. The proposed heuristic algorithm introduced several methodological contri-

butions, particularly, a self-learning mechanism that leads the algorithm to assign better visit

patterns to customers, and also to assign customers to better depots as the solution process

evolves. This learning mechanism, in addition to other components of the algorithm, provided

the capability of the heuristic algorithm to reach high quality solutions. To show that the MHA

is a highly efficient solution method, in producing good solutions, several test problems were

solved. The computational results revealed that the MHA performs considerably well, in terms

of both solution quality and computational efficiency. Finally, in the last part, we addressed the

bi-objective MDPVRP studied in the second part, including the same set of constraints and ob-

jective functions. To solve the problem, we designed a parallel cooperative solution methodol-

ogy, performing based on the principles of the Integrative Cooperative Search (ICS) paradigm.

The developed solution method was designed based on some well-structured searching mech-

anisms, particularly including a new hierarchical decomposition procedure, the integration of

elite partial solutions yielded by the sub-problems, and an adaptive guiding mechanism. To

prove the efficiency of the proposed ICS, in terms of solution quality and diversity level, dif-

ferent test problems were tested. Moreover, the performance of the solution method, based on

several useful metrics, was compared to two state-of-the-art algorithms existing in the litera-

ture. Our experimental results showed the superiority of the designed ICS in generating good
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and diverse non-dominated solutions better reflecting the true Pareto-optimal frontier compared

to the benchmark algorithms.

We conclude this chapter by highlighting some research perspectives. As this thesis il-

lustrated, a number of heuristic methods are widely acknowledged for their performance on a

variety of MAVRPs. Given how differently these methods define and explore the search space,

they are very likely to lead to effective hybrid algorithms and parallel cooperative methods.

It appears that most successful heuristics are not determined by a single factor but are the re-

sult of a good balance between several elements: the use of different search spaces, variable

neighbourhoods, short-, medium- and long-term memories, trade-off between diversification

and intensification, and cooperation. We believe that working on each of these elements in or-

der to build an efficient heuristic is an extremely challenging research field, particularly given

the trend toward problem settings including a continuously increasing number of attributes and

solutions methods capable of simultaneously addressing these attributes.
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