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SUMMARY

This thesis consists mainly of three papers concerned with Markov additive pro-

cesses, Lévy processes and applications on finance and insurance.

The first chapter is an introduction to Markov additive processes (MAP) and a

presentation of the ruin problem and basic topics of Mathematical Finance. The sec-

ond chapter contains the paper Lévy Systems and the Time Value of Ruin for Markov

Additive Processes [7] written with Manuel Morales and that is published in the Eu-

ropean Actuarial Journal. This paper studies the ruin problem for a Markov additive

risk process. An expression of the expected discounted penalty function is obtained via

identification of the Lévy systems. It is a generalization of results available in the lit-

erature for spectrally-negative Lévy risk processes and Markov-additive risk processes

with phase-type jumps.

The third chapter contains the paper On a Generalization of the Expected Dis-

counted Penalty Function to Include Deficits at and Beyond Ruin [6] that is submitted

for publication. This paper presents an extension of the expected discounted penalty

function in a setting involving aggregate claims modelled by a subordinator, and Brow-

nian perturbation. This extension involves a sequence of expected discounted functions

of successive minima reached by a jump of the risk process after ruin. It has important

applications in risk management and in particular, it is used to compute the expected

discounted value of capital injection.

Finally, the fourth chapter contains the paper The Minimal Entropy Martingale

Measure (MEMM) for a Markov-Modulated Exponential Lévy Model [50] written with

Romuald Hérvé Momeya and that is published in the journal Asia Pacific Financial

Market. It presents new results related to the incompleteness problem in a financial

market, where the risky asset is driven by Markov additive exponential model. These
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results characterize the martingale measure satisfying the entropy criterion. This mea-

sure is used to compute the price of the option and the portfolio of hedging in an

exponential Markov-modulated Lévy model.

Key words: Minimal entropy martingale measure, exponential financial models,

Markov additive processes, Lévy systems, ruin theory, Gerber-Shiu function, risk mod-

els.
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RÉSUMÉ

Cette thèse est principalement constituée de trois articles traitant des processus

markoviens additifs, des processus de Lévy et d’applications en finance et en assurance.

Le premier chapitre est une introduction aux processus markoviens additifs (PMA),

et une présentation du problème de ruine et de notions fondamentales des mathéma-

tiques financières. Le deuxième chapitre est essentiellement l’article Lévy Systems and

the Time Value of Ruin for Markov Additive Processes [7] écrit en collaboration avec

Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie

le problème de ruine pour un processus de risque markovien additif. Une identification

de systèmes de Lévy est obtenue et utilisée pour donner une expression de l’espérance

de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec

changement de régimes. Celle-ci est une généralisation des résultats existant dans la

littérature pour les processus de risque de Lévy et les processus de risque markoviens

additifs avec sauts phase-type.

Le troisième chapitre contient l’article On a Generalization of the Expected Dis-

counted Penalty Function to Include Deficits at and Beyond Ruin [6] qui est soumis

pour publication. Cet article présente une extension de l’espérance de la fonction de

pénalité actualisée pour un processus subordinateur de risque perturbé par un mouve-

ment brownien. Cette extension contient une série de fonctions escomptée éspérée des

minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des

applications importantes en gestion de risque et est utilisée pour déterminer la valeur

espérée du capital d’injection actualisé.

Finallement, le quatrième chapitre contient l’article The Minimal Entropy Martin-

gale Measure (MEMM) for a Markov-modulated Exponential Lévy Model [50] écrit en

collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Fi-

nancial Market. Cet article présente de nouveaux résultats en lien avec le problème de

l’incomplétude dans un marché financier où le processus de prix de l’actif risqué est
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décrit par un modèle exponentiel markovien additif. Ces résultats consistent à char-

actériser la mesure martingale satisfaisant le critère de l’entropie. Cette mesure est

utilisée pour calculer le prix d’une option, ainsi que des portefeuilles de couverture

dans un modèle exponentiel de Lévy avec changement de régimes.

Mots clés: Mesure martingale minimisant l’entropie, modèles exponentiels en fi-

nance, processus markoviens additifs, systèmes de Lévy, théorie de la ruine, fonction

de Gerber-Shiu, modèles du risque.
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INTRODUCTION

Le capital d’une compagnie d’assurance et le prix de nombreux actifs financiers com-

portent des mouvements imprévisibles continus et de grande amplitude qui ne peuvent

pas s’expliquer seulement avec les modèles classiques et continus. La prise en compte

de cette caractéristique a conduit au développement de modèles stochastiques basés

sur des processus de Lévy comportant les modèles aux distributions non-gaussiennes,

asymétriques, à queues épaisses, etc (voir Schoutens [60]). Ceci a mené à étudier les

propriétés des trajectoires du processus de Lévy et des variables associées, ainsi qu’au

developpement de la théorie de la fluctuation sur ce sujet. Cette classe de processus

est à la fois riche pour décrire la réalité des marchés et relativement simple pour per-

mettre un traitement rigoureux et des calculs explicites. En revanche, ces processus ne

peuvent pas expliquer à eux seuls l’influence des évènements macroéconomiques sur les

prix des actifs et les réserves des compagnies d’assurance. En effet, en raison de sur-

venance de certains évènements ou à l’arrivée de nouveaux renseignements importants,

le marché pourrait subir un changement structurel selon une diversité de scénarios. Ce

changement définit différents états ou régimes qui ont un impact non négligeable sur le

rendement et le risque.

Dès lors, la recherche de modèles plus adéquats qui prennent en considération de

tels changements structurels s’est imposée comme une problématique principale dans

la littérature en théorie du risque et comme conséquence, l’on note une apparition de

modèles en assurance et en finance avec changement de régimes (regime-switching).

Dans ces modèles, la dynamique et les paramètres de la variable étudiée sur le marché

dépendent du régime dans lequel ils se trouvent.

Des recherches récentes en finance et en science actuarielle ont commencé à prêter

attention aux modèles avec changements de régime. Hamilton [45] a introduit les

modèles à changement de régime markoviens pour modéliser les évènements macroé-

conomiques qui influent sur le prix des actifs. Di Masi et al [19] ont étudié les options
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européennes pour un modèle de Black-Scholes lorsque l’économie du marché subit un

changement selon un nombre fini d’états. Buffington et Elliot [3] ont discuté des op-

tions américaines dans le même contexte. Yang et Yin [63], et Lu et Tsai [55] ont

considéré le modèle avec changement de régimes markovien pour modéliser le processus

de surplus en assurance. Ces modèles peuvent capter les politiques de financement et

d’assurance qui peuvent s’adapter aux changements des environements économiques ou

politiques.

Pour modéliser un tel changement de régime d’une façon à ce que la flexibilité,

la réalité et la richesse dûs aux propriétés du processus de Lévy soient conservés, la

famille de processus markoviens additifs (PMAs) s’est imposée comme un outil mathé-

matique indispensable. Cette famille de processus est le concept mathématique général

permettant d’analyser rigoureusement les phénomènes aléatoires avec changements de

régimes.

Qu’est ce qu’un processus markovien additif? Il s’agit intuitivement d’un couple de

processus dont le premier est un processus de Markov à espace d’états fini ou dénom-

brable, le deuxième est un processus qui se comporte comme étant un processus de Lévy

ou plus généralement un processus additif (processus à accroissements indépendants)

conditionnellement aux trajectoires du premier. Les premiers travaux sur l’existence

et l’étude du PMA remontent aux années 1970. Plus particulièrement, en 1972, Çinlar

publiait Markov Additive processes I et II ([16] et [17]) portant sur l’existence et la

construction de ce processus. En 1975, Çinlar [18] et Grigelionis [38] ont étudié les

propriétés de trajectoire de cette famille et ont donné beaucoup de résultats importants

qui généralisent ceux du processus additif. Les travaux qui ont suivi ont porté sur les

études des trajectoires et des fluctuations du processus de Lévy avec changement de

régime, un cas particulier très important du PMA qui est adopté récemment dans la

modélisation avec changement de régime. Nous suggérons au lecteur de consulter le

livre de Asmussen [1] où se trouve une étude détaillée de cet exemple du PMA.

Évidemment ce type de PMA se réduit à un processus de Lévy dès qu’on suppose

qu’il y a un seul état de nature. Les résultats de cette thèse développés pour les modèles

du PMA, se projettent sur les modèles unidimensionnels décrits par différentes classes

de processus de Lévy.

Conséquemment, le PMA a commencé à étendre son influence dans le domaine

d’applications d’intérêt pour cette thèse, soit la théorie du risque et les mathématiques

financières.
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La présente thèse contient quatre chapitres, dont trois sont des articles publiés,

acceptés ou soumis pour publication. Le premier chapitre présente un survol des notions

fondamentales connues de la théorie des mathématiques financières et actuarielles.

Le premier chapitre est une introduction aux processus markoviens additifs (PMA),

et une présentation du problème de ruine et de notions fondamentales des mathéma-

tiques financières. On y présente la définition du PMA dans sa forme générale intoduite

par Çinlar [16] et [17] ainsi que quelques exemples, en particulier le processus de Lévy

avec changement de régime.

Ce premier chapitre est suivi de l’article Lévy Systems and the Time Value of Ruin

for Markov Additive Processes [7], écrit en collaboration avec Manuel Morales et qui

paraîtra prochainement dans la revue European Actuarial Journal. Cet article étudie

le problème de ruine pour un processus de risque markovien additif. Nous donnons

une expression pour l’espérance de la fonction de pénalité actualisée, par l’extension

de résultats disponibles dans la littérature. En particulier, nous généralisons certains

résultats dans [40], [41], [11] et [12] qui sont obtenus dans le modèle de risque utilisant

un processus de Poisson composé, un processus de Poisson composé perturbé par un

mouvement brownien et plus généralement, un processus de Lévy spectralement né-

gatif. Cette extension est possible grâce à l’identification de systèmes de Lévy d’un

PMA introduite dans [18]. Ceci nous a permis d’étendre des résultats connus pour les

processus de Lévy à une grande famille de processus additifs de Markov. Nous dis-

cutons aussi comment l’expression de l’espérance de la fonction de pénalité actualisée

peut être obtenue en utilisant la notion de la scale matrix d’un processus de Markov

additif récemment introduite par Klusik et Palmowski [52].

Le troisième chapitre contient essentiellement l’article On a generalization of the

expected discounted penalty function to include deficits at and beyond ruin, récemm-

ment soumis pour publication. Dans cet article, nous proposons un concept élargi de

l’espérance de la fonction de pénalité actualisée qui prend en compte de nouvelles vari-

ables aléatoires liées à la ruine. Nous ajoutons à cette fonction de pénalité classique

introduite par Gerber et Shiu [40], la série de fonctions actualisées espérées des maxima

dus aux sauts du processus de risque après la ruine. Inspiré par les résultats de Huzak et

al [46], et les développements dans la théorie des fluctuations pour les processus de Lévy

spectralement négatifs, nous fournissons une caractérisation pour cette fonction de pé-

nalité généralisée pour un modèle de risque utilisant un subordinateur perturbé par un

mouvement brownien. Nous illustrons comment cette fonction de pénalité généralisée
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peut être utilisée pour calculer la valeur espérée du capital d’injections actualisé pour

un modèle de risque perturbé par un mouvement brownien. Ceci donne en particulier

une forme explicite de la valeur espérée qui devrait être injectée aux moments de dé-

ficits, permettant entre autres à la compagnie d’assurance de survivre et de poursuivre

ses activités.

Le quatrième chapitre contient l’article The Minimal entropy martingale measure

(MEMM) for a Markov-modulated exponential Lévy model [50] écrit en collaboration

avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Markets.

Cet article présente de nouveaux résultats en lien avec le problème de l’incomplétude

dans un marché financier où le processus de prix de l’actif risqué est décrit par un

modèle exponentiel markovien additif. Ces résultats consistent à caractériser la mesure

martingale satisfaisant le critère de l’entropie. Cette mesure est utilisée pour calculer le

prix d’une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel

de Lévy avec changement de régime. Ce modèle est caractérisé par la présence d’un

processus d’arrière-plan qui décrit les mouvements des prix des actifs risqués entre les

différents régimes ou les environnements du marché. Cela permet de souligner la forte

dépendance entre les prix des actifs financiers et les changements structurels dans les

conditions du marché. Les résultats de ce chapitre généralisent des travaux antérieurs

dans la littérature traitant le modèle exponentiel de Lévy et et le modèle exponentiel

additif dans [34] et[35].

Notons que le premier et le troisième article sont l’aboutissement de quelques années

de travail sur la résolution de certains problèmes classiques en finance et en assurance

dans le cadre de changement de régime, lorsque la dynamique de prix d’actifs et l’avoir

d’une compagnie d’assurance sont décrits par un PMA. Ensuite, lors de l’étude du

comportement du processus de risque de Lévy après la ruine, un projet qui ménera

à l’article On a generalization of the expected discounted penalty function to include

deficits at and beyond ruin. Nous souhaitons pouvoir prolonger le résultat de cet article

à un modéle de risque décrit par un PMA dans les projets qui viendront.



Chapter 1

PRELIMINARIES

In this preliminary chapter, we give a brief overview of Markov Additive Processes

(MAPs) which are used in Chapter 2 and 3 to describe respectively the stock price

process and the risk process under different regimes or market environments. Then we

present a summary discussion of the ruin problem involving the Expected Discounted

Penalty Function (EDPF). In particular, we present the most important results charac-

terizing the EDPF for different risk models driven by a Lévy process and MAP which

have been studied recently. Finally, we give a presentation of the general theory of

Mathematical Finance that gives the context our last contribution in Chapter 4 where

we discuss the existence and characterization of Minimal Entropy Martingale Measure

(MEMM) for exponential models.

1.1. A survey of Markov Additive Processes (MAP)

Recent research in finance and actuarial science have started paying attention to

Markov-modulated (or regime-switching) models. The Markov-modulated models were

originally introduced to model the macroeconomic events which influence the asset

price (Hamilton, 1989). Di Masi et al (1994) considered the European options under

the Black-Scholes formulation of the market in which the underlying economy switches

among a finite number of states. Buffington and Elliot (2001) discussed the Ameri-

can options under this set-up. Yang and Yin (2002) considered the Markovian regime

switching formulation to model the insurance surplus process. These models can cap-

ture the economical or political environment changes that can impact the financial

and insurance processes. To model such a regime change, we use the Markov additive

processes (MAPs) which are the mathematical structures behind the regime-switiching

models. Our interest in this section is to give some preliminary tools on MAPs and
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present some examples which have important applications to regime-switching models

in finance and insurance.

Before introducing the notion of MAP, let us recall the basic concepts from the

theory of Markov processes as found in Blumenthal and Getoor (1969) to make this

presentation clear.

1.1.1. Markov Processes

Let (E, E) be a measurable space, where E is a locally compact separable metric

space and E is the Borel σ-algebra (σ-field) that contains all open subsets of E. Note

that (Rm, B(Rm)) is the Euclidean space of dimension m ≥ 1. Let T = [0, T ) or

T = {0, 1, 2, ...} be the time parameter space; where T ∈ (0,∞].

Definition 1.1.1 (Transition probability measure). A function Ps,t(x,A) defined for

s ≤ t ∈ T , x ∈ E, A ∈ E and taking its values in [0, 1] is a transition probability

measure on (E, E) if

• A → Ps,t(x,A) is a probability measure on E, for any (s, t, x) ∈ T × T × E

fixed;

• (t, x)→ Ps,t(x,A) is a measurable function, for each A ∈ E and (s, t) ∈ T ×T

fixed;

• Ps,s(x,A) = δx(A) for s ∈ T , where δx(A) =

 1 if x ∈ A

0 otherwise
• for s ≤ u ≤ t in T and for x ∈ E, A ∈ E

Ps,t(x,A) =
∫
Ps,u(x, dy)Pu,t(y,A). (1.1.1)

A transition probability measure Ps,t(x,A) on (E, E) is temporally homogeneous if

there exists a measurable function Pt(x,A) defined for t > 0, x ∈ E, and A ∈ E such

that

Ps,t(x,A) = Pt−s(x,A) for any s, t, x and A. (1.1.2)

In this case Pt(x,A) is called a temporally homogeneous transition probability mea-

sure on (E, E).

Definition 1.1.2 (Markov process). Let FJt := σ(Js : 0 ≤ s ≤ t) be the natural

filtration of a stochastic process J augmented with P−null sets of Ω.
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1) J is a Markov process if

P
[
Jt ∈ A

∣∣∣FJs ] = P
[
Jt ∈ A

∣∣∣σ(Js)
]
, for all s < t ∈ T and A ∈ E . (1.1.3)

2) If {Gt : t ∈ T } is a filtration with FJt ⊂ Gt,∀t ∈ T , J is a Markov process with

respect to {Gt : t ∈ T } if (1.1.3) holds with FJt replaced by Gt.

Remark 1.1.1. Property 1.1.3 is generally known as the Markov property.

Definition 1.1.3. The process J is a Markov process with transition probability mea-

sure Ps,t(x,A) if

EP
[
f ◦ Jt

∣∣∣FJs ] =
∫
f(y)Ps,t(Js, dy) (1.1.4)

for any s < t ∈ T and f a bounded test function defined on E.

1.1.2. Definition of Markov Additive Processes (MAPs)

Markov additive processes (MAPs) are a class of Markov processes. The state

space of a MAP is bidimensional, so the state space can be split into two components

E×F , one of which, say E, is the Markov component and the other, F , is the additive

component. The corresponding stochastic process can be denoted by (J,X). Generally

speaking, a MAP (J,X) is a Markov process whose transition probability measure is

translation invariant in the additive componentX. To understand the definition clearly,

let us introduce

• (Ω,M, {M}t∈T ,P): the probability space, whereM = {M}t∈T is an incresaing

family of σ-algebras on Ω;

• {Jt, t ∈ T } : Ω 7−→ E is a stochastic process on a measurable space (E, E);

• {Xt, t ∈ T } : Ω 7−→ F is a stochastic process on a measurable space (F,F),

where (F,F) = (Rm,Rm) is a m-dimensional Euclidean space.

Let (J,X) = {(Jt, Xt), t ∈ T } be a Markov process on (E × F, E × F) with respect to

{Mt, t ∈ T }, where the transition function is

Ps,t(i, y;A×B),

for any s < u < t, s, u, t ∈ T , i ∈ E, y ∈ F,A ∈ E , B ∈ F .

Let {Qs,t, s < t, s, t ∈ T } be a family of transition probabilities from (E, E) to

(E × F, E × F).
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Definition 1.1.4 (Çinlar (1972a)).

If the transition function satisfies the following conditions:

(1) The family of transition probabilities {Qs,t, s < t, s, t ∈ T } is a semi-Markov

transition function on (E × F, E × F), i.e.

Qs,t(i, A×B) =
∫
E×F

Qs,u(y,A× (B − z))Qu,t(i, dy × dz), (1.1.5)

for any s < u < t, s, u, t ∈ T , i, y ∈ E, z ∈ F,A ∈ E , B ∈ F and B − z =

{b− z, b ∈ B}.

(2) If the Markov transition function {Ps,t} satisfies

Ps,t(i, y, A×B) = Qs,t(i, A× (B − y)), (1.1.6)

then (J,X) is a MAP with respect to {Mt, t ∈ T }.

The above condition implies that

Ps,t(i, y, A×B) = Ps,t(i, 0, A× (B − y)). (1.1.7)

Under the condition that the information of the Markov process J (Markov chain on

the state E) in any time interval (s, t] is known, the increment of Xt−Xs is independent

of Xs. Definition 1.1.4 becomes:

Definition 1.1.5 (Grigelionis (1978)).

Let (J,X) = {(Jt, Xt), t ∈ T}. Then (J,X) is a Markov additive process with respect

to the filtration {Ft, t ∈ T} if

P
[
Jt ∈ A,Xt −Xs ∈ B

∣∣∣Fs] = P
[
Jt ∈ A,Xt −Xs ∈ B

∣∣∣Js] P-a.s. (1.1.8)

for all 0 ≤ s ≤ t ∈ T and A ∈ E, B ∈ F .

In many cases, the state space of the Markov component is discrete. For this special

case,

• The transition probability should satisfy the condition

P[Js+t = k,Xs+t ∈ A|Js = j,Xs = y] = P[Js+t = k,Xs+t −Xs ∈ A− y|Js = j]

= P[Js+t = k|Js = j]× P[Xs+t −Xs ∈ A− y|Js = j, Js+t = k].

In some sense, the first term of the second line gives the joint distribution of the

Markov component, while the second term gives the conditional distribution of

the additive component.
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• We should remark that because (J,X) is Markov, it follows easily from the

above equation that J is Markov and that X has conditionally independent

increments. Since, in general, X is non-Markovian, this is the reason why we

call J the Markov component andX the additive component of the MAP (J,X).

1.1.3. Examples of (E, T )-MAP

We give here some examples of MAPs. These examples are defined by specifying

some conditions on one or the other component of a MAP. Most of the subjects of this

sub-section are based on the book of Pacheco et al.(2009).

1.1.3.1. E is a single point

In this case (E = {i}):

P[Xs+t ∈ A|Js = i,Xs = y) = P(Js+t = i,Xs+t ∈ A|Js = i,Xs = y]

= P[Js+t = i,Xs+t −Xs ∈ A− y|Js = i]

= P[Xs+t −Xs ∈ A− y]. (1.1.9)

This means X is an independent increment process and then, the MAP can be seen as

the extension of the independent increment process. In general, the additive component

of the MAP does not have independent increments.

1.1.3.2. T is discrete

In this case (T = N), the MAP is a Markov random walk (MRW). A stochastic

process {(Jn, Xn), n ∈ N} on E×Rm is called MRW if its transition probability measure

has the property:

P[Jm+n = i,Xm+n ∈ A|Jm = j,Xm = y) = P(Jm+n = i,Xm+n −Xm ∈ A− y|Jm = j]

= P[Xm+n −Xm ∈ A− y|Jm = j, Jm+n = i]

× P[Jm+n = i|Jm = j].

We note that the additive component can be written as Xn =
∑n
k=1 Yk − Yk−1, which

is like a random walk in the usual sense.
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1.1.3.3. E is finite and T is discrete

In this case (E is finite, T = N), the state space of a MAP is E ×Rm (m ≥ 1) and

the MAP is specified by the measure-valued matrix (kernel) F (dx) with the (i, j)-th

element given by

Fi,j(dx) = Pi,0(J1 = j,X1 ∈ dx|J0 = i,X0 = 0).

This provides a convenient way of simulating a MAP. Since we can simulate the Markov

chain first, and then Z1, Z2, ... by generating Zn = Xn −Xn−1 according to Fi,j when

Jn−1 = i and Jn = j. In a particular case, if m = 1 and Fi,j is concentrated on (0,∞),

the MAP (Jn, Xn) is a Markov Renewal Process (MRP), in which Zn = Xn − Xn−1

can be interpreted as interarrival times.

More generally, MRPs are thus discrete versions of MAPs with the additive part

taking values in Rm
+ (m ≥ 1) and are called a Markov subordinator.

1.1.3.4. E is finite and T is continuous

In this case (E = {1, · · · , N} is finite with N elements and T is continuous), the

most important example that is the most used in literatures is the Markov-modulated

Lévy process. This MAP is defined by (J,X), where J is a Markov process specified by

its intensity matrix Q = (qi,j)i,j∈E and the increments of X are governed by J in the

sense that

Ei,0
[
f(Xt+s −Xt)g(Jt+s)

∣∣∣Ft] = EJt,0
[
f(Xs)g(Js)

]
, (1.1.10)

for any two bounded measurable functions f, g. Here, Ei,0(·) denotes the expectation

under the probability Pi,0(·) = P(·|J0 = i,X0 = 0).

• On an interval [s, s + t) where Js = i, Xs evolves like a Lévy process (with

stationary independent increments) with characteristic triplet (µi, σ2
i , νi(dx))

depending on the state i, i.e. its Lévy exponent is

ψ(i)(α) = αµi + α2σ
2
i

2
+
∫ +∞

−∞
(eαy − 1− αy1|y|≤1)νi(dy). (1.1.11)

• A jump of J from i to j 6= i has probability πi,j (πi,i = 0) of giving rise to a

jump of X at the same time; the distribution of which has some distribution

Bi,j .
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The process X can be written as the sum of two independent processes

Xt = X
(1)
t +X

(2)
t . (1.1.12)

We will specify each term in (1.1.12). The process (X(1)
t ) behaves in law like a Lévy

process with the Laplace exponent given by (1.1.11), when Jt = i.

Now, as for the second term in (1.1.12), let {U (i,j)
n }i,j∈E be i.i.d. random variables

(with U
(i,i)
n = 0), independent of Jt and with a distribution function Bi,j . Moreover,

let us denote the jump times of Jt by {Tn}n∈N (with T0 = 0).

The jump process X(2) is described by

X
(2)
t =

∑
n≥1

∑
i,j∈E

U (i,j)
n 1{J(Tn−1)=i,J(Tn)=j,Tn≤t}. (1.1.13)

According to the path decomposition in (1.3.17), such a MAP which is also called

Markov-modulated Lévy process has two types of behavior. It follows a Lévy process

with characteristic triplet (µi, σi, νi) while Jt remains in state i; and at times when Jt
jumps from state i to state j, it jumps according to a random variable U (i,j). Clearly,

this process has only jumps that can come either from a Lévy process or from the

random variables U (i,j) with distribution Bi,j . We notice that the processes X(1) and

X(2) are fully specified by the characteristics

(qi,j , Bi,j , µi, σi, νi)i,j∈E . (1.1.14)

For a basic review on Markov-modulated Lévy process, see Asmussen (2003), chap-

ter XI. The basic references to MAPs are still Çinlar (1972a and 1972b), and Blumenthal

and Getoor (1969). For recent work on MAPs up to 1991, see Prabhu (1991). A survey

of MRWs and some new results up to 1991 have been given in Prabhu, Tang and Zhu

(1991). The major reference to MRPs is Çinlar (1969). For a review of the literature on

MRPs before 1991, see Prabhu (1991). Markov subordinators are reviewed in Prabhu

and Zhu (1998), where applications to queueing systems are considered.

1.1.4. Matrix Moment Generating Function

We offen suppose that the state space E of the Markov component is finite, which

makes sense in terms of modelling to have a finite set of possible scenarios. To reduce

the complexity due to the two-dimensional structure of the MAP, we will use the matrix

form and then, we shall understand Ey(V ; J(δ)) to be the matrix with (i, j)-th element

Ei,y(V ; J(δ) = j) for any random variable V and random time δ. For an event G,
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Py(G; J(δ)) will be understood in a similar sense as the matrix with (i, j)-th element,

Pi,y(G; J(δ) = j). This matrix notation simplifies the study of the problem of first

passage time of MAP which is needed in Chapter 2. For simplicity, we shall follow the

usual notations that E0(·) = E(·) and P0(·) = P(·).

The MAP can be completely characterized by its Moment Generating Function

which will be expressed below as a matrix. Thus, for a Markov-modulated Lévy process

(J,X), let us consider the matrix form of the generating function, i.e. the matrix Ĝt[α]

with (i, j)−th element

Ĝt[α]i,j = Ei[eαXt ; Jt = j].

Theorem 1.1.1 (Asmussen (2003)).

For a MAP (J,X),

(1) If time is discrete, then Ĝn[α] = (Ĝ[α])n where

Ĝ[α] = Ĝ1[α] =
(
Ei[eαX1 ; Jt = j]

)
i,j∈E = (Ĝ[α]i,j)i,j∈E = (pi,jĤ[α]i,j)i,j∈E .

(2) If time is continuous, then the matrix Ĝt[α] is given by etF [α], where

F [α] = Q+ diag(ψ(1)(α), ..., ψ(N)(α)) + [qij( pijB̂i,j [α]− 1)]i,j∈E . (1.1.15)

Since we suppose pij = 1 for any i 6= j (see Asmussen and Kella (2000)), the

previous formula can be reduced as

F [α] = Q ◦ B̂[α] + diag(ψ(1)(α), ..., ψ(N)(α)), (1.1.16)

where Q ◦ B̂[α] = (qijB̂ij [α])i,j∈E . Where Ĥ[α]i,j and B̂[α]i,j are respectively the

Laplace transforms of Ĥij and B̂ij .

1.1.5. Lévy systems for MAP

The concept of Lévy systems plays a fundamental role in studying the jump struc-

ture of a MAP. This notion is intimately related to the infinitesimal generator of such

processes. We refer to Çinlar (1975) and Maisonneuve (1977) for a basic review on the

existence of Lévy systems. See also Ben Salah and Morales (2012) for more details on

Lévy systems for Markov-modulated Lévy processes.

We now state the following result [Çinlar (1975)] that guarantees the existence of

a Lévy system for a MAP [see also Maisonneuve (1977)].

Theorem 1.1.2. Let {(Jt, Xt) : t ∈ T } be a Markov additive process with J having a

finite state space E and X, a quasi-left continuous process, taking values in the space
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(R,B(R)). There exists a continuous increasing functional (Ht)t∈T of J and a transition

kernel L from (E, E) into (E×R, E ×B(R)) such that, for any non-negative measurable

function f defined on (E × R),

Ei
[ ∑
s≤T

f(Js− , Js, Xs− , Xs)1{Jt− 6=Jt}∪{Xt 6=Xt−}
]

= Ei
[ ∫ T

0
dHs

∫
E×R

L(Js, dz, du)f(Js, z,Xs, Xs + u)
]
, (1.1.17)

for all i ∈ E.

The couple (H,L) is said to be a Lévy system for the MAP (J,X). The kernel L

is often referred to as the Lévy kernel of (J,X) and for any i ∈ E, it satisfies

L(i, {(i, 0)}) = 0, (1.1.18)

∫
R
L(i, {i} × dy)(|y|2 ∧ 1) <∞. (1.1.19)

Theorem 2.2.1 generalizes some results on the existence of Lévy systems for Markov

processes which are identified for certain classes. In fact, if we set

K(i, B) = L(i, (B \ {i} × R)) , B ∈ E , (1.1.20)

then (H,K) is a Lévy system for the Markov process J , that is

Ei
[ ∑
s≤T

g(Js− , Js)1{Js− 6=Js}
]

= Ei
[ ∫ T

0
dHs

∫
E
K(Js, dy)g(Js, y)

]
, (1.1.21)

for any non-negative measurable function g defined on E × E. The existence of the

transition kernel K for the Markov process has been shown in Watanabe (1964).

Remark 1.1.2. Since J is a regular step process with a discrete state space E, then

Ht can be taken to be Ht = t [Çinlar (1975)]. Without loss of generality, we can set Ht

to be equal to t.

For certain classes of additive processes and Lévy processes, Lévy systems are iden-

tified and given explicitly in terms of Lévy measures. Incidentally, these are examples

which motivate the terminology Lévy kernel, Lévy systems. In the following paragraphs

we give explicit expressions of Lévy systems for special cases.

• Recall from Example 1.1.3 that since J is a singleton and X is simply an

additive process (i.e. with independent increments); the continuous additive
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functionnal H can be taken to be Ht = t, and the Lévy kernel then becomes

L(Js, dz, dy) = νs(dy) where νs(.) is the Lévy measure of the process verifying∫ T

0
dt

∫
(|y|2 ∧ 1)νt(dy) <∞. (1.1.22)

For a good review on this subject, see Sato(1999) and Itô (2004).

• If in addition X is a Lévy process (i.e. with stationnary independent incre-

ments), then the Lévy kernel becomes L(Js, dz, dy) = ν(dy), where ν is the

Lévy measure of X verifying∫
(|y|2 ∧ 1)ν(dy) <∞. (1.1.23)

Identity (1.1.17) is reduced to the so-called compensation formula [see Kypri-

anou (2006), Theorem 4.4 and Bertoin (2006)].

When (J,X) is a Markov-modulated Lévy process, we provide in Chapter 3 the identi-

fication of Lévy systems and give its expression in terms of its characteristic given by

(1.1.14). A key concept that we have used is that of Lévy systems which is introduced

in Section 1.1.5 [see Çinlar (1975), Maisonneuve (1977), and Ben Salah and Morales

(2012)] and, indeed, one of the contributions of this chapter is to identify the Lévy

system of a particular case when the MAP is a Markov-modulated Lévy process.

In the following theorem, we shall give a characterization of the transition kernel L

for Markov-modulated Lévy process (J, Y ) defined in Example 1.1.3.4. This is the first

main result of Chapter 2.

Theorem 1.1.3. (Ben Salah and Morales (2012)) Consider the Markov additive pro-

cess (J,X) given in Example 1.1.3.4 of Section 1.1.3 and let (qi,j , Bi,j , σi, ai, νi)i,j∈E
be the characteristics of such a process. Then the following transition kernel L, from

(E, E) into (E × R+, E × B(R)),

L(i, {j}, du) = νi(du)1{i=j} + qi,jBi,j(du)1{i 6=j} , i, j ∈ E , and u ∈ R , (1.1.24)

is the Lévy kernel of (J, Y ) in the sense of Theorem 1.1.2, where Ht = t for t ≥ 0.

1.2. Risk Models and Expected Discounted Penalty Function

Different formulations are used in literature to model the insurance surplus process

and capture certain properties of the insurance portfolio. In the classical insurance risk

model, the premium is assumed to be a constant and the claim process is assumed to
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follow a compound Poisson process where the claim sizes are i.i.d. random variables

and the number of claims is assumed to be Poisson process. This model is far from

being realistic. There is a large amount of papers in the literature devoted to the

generalization of the classical model in different ways. For more detailed discussions on

the ruin problems under classical risk models and various extensions, see Gerber (1979),

Grandell (1991, 1997), Rolski et al. (1999), Asmussen (2000), Biffis and Morales (2010),

Biffis and Kyprianou (2010), Breuer and Badescu (2012) and the references therein.

Three important questions of interest in the classical ruin problem are the time of

ruin, the deficit at ruin, and the surplus immediately before ruin. From a mathematical

point of view, a crucial role is played by the functional involving these three quantities.

This functional defines the Expected Discounted Penalty Function (EDPF) introduced

in the classical papers of Gerber and Shiu (1997, 1998a). Since the EDPF operates on

a function of the deficit at ruin and surplus prior to ruin, applications in the context

of insurance and financial mathematics are quite natural. For example, the EDPF can

be used to determine the initial capital required by an insurance company to avoid

insolvency. Similarly, the EDPF can be used as a pricing device for American options

or reset guarantees [e.g. Gerber and Shiu (1998b)]. First, we introduce the risk model,

the time of ruin and give the definition of EDPF. Then we provide the ruin probability

and the characterization of EDPF for classical risk model and Lévy risk model. Next,

we introduce the Lévy-modulated risk models and discuss some particular examples

recently used. Finally, we describe the Markov additive risk process which is used in

Chapter 2.

1.2.1. Risk process

A risk process (Rt)t≥0, as defined in broad terms, is a model for the time evolution

of the reserves of an insurance company. We denote the initial reserve by x = R0 ≥ 0.

The probability θ(x) of ultimate ruin is the probability that the reserve ever drops

below zero,

θ(x) = P
[
inf
t≥0

Rt < 0|R0 = x
]
. (1.2.1)

The probability of ruin before time T is

θ(x, T ) = P
[

inf
0≤t≤T

Rt < 0|R0 = x
]
. (1.2.2)
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We also refer to θ(x) and θ(x, T ) as ruin probabilities with infinite and finite horizon,

respectively.

For mathematical purposes, it is frequently more convenient to work with the claim

surplus process (also called the aggregate loss process) (Yt)t≥0 defined by Yt = x − Rt
and then the risk process can be represented as

Rt = x− Yt, for t ≥ 0. (1.2.3)

Letting

τx = inf{t ≥ 0, Rt < 0} = inf{t ≥ 0, Yt > x}, (1.2.4)

be the time of the ruin, the ruin probabilities can then alternatively be written as

θ(x) = P
[
τx <∞

]
, (1.2.5)

θ(x, T ) = P
[
τx < T

]
. (1.2.6)

1.2.2. Expected Discounted Penalty Function EDPF

Let us start by introducing some quantities related to the problem of ruin, the deficit

at ruin −Rτx = Yτx − x and the surplus prior to ruin Rτ−x = x−Yτ−x . The combination

of these two quantities with the time of ruin τx defines the Expected Discounted Penalty

Function (EDPF) at ruin as

P (q, x) = E
[
e−qτxw(Yτx − x, x− Yτ−x ); τx <∞

]
, (1.2.7)

where the penalty w is a non-negative function of the surplus prior to ruin and of the

deficit at ruin.

The concept of EDPF has been introduced by Gerber and Shiu (1997) and (1998a).

This so-called Gerber-Shiu function is a functional of the ruin time, the surplus prior

to ruin, and the deficit at ruin. The EDPF can be used to determine the initial capital

required by an insurance company to avoid insolvency with a minimum level of confi-

dence and for fixed penalization of the ruin event. Similary, the EDPF can be used as

a pricing device for American options [Gerber and Shiu (1998b)].

The expression P (q, x) is usually referred to as the Gerber-Shiu function. Clearly,

for w = 1 and q = 0, (1.2.7) reduces to the ruin probability θ(x), and for w = 1 and

q > 0 one arrives at the Laplace transform of the time to ruin τx. Alternatively, if

q = 0 and w is the bivariate Dirac-delta function, (1.2.7) represents the joint density of
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the surplus prior to ruin and of the deficit at ruin. The parameter q can be interpreted

either as a discount rate or as the Laplace transform argument.

The EDPF has been extensively studied and generalized to various scenarios. In

the following sections, we will introduce the classical risk prosess and the Lévy risk

model for which expressions of the EDPF are available.

1.2.3. Compound Poisson model

The risk process (1.2.3) reduces to the Compound Poisson model or the Classical

risk model when the premium is assumed to be a constant c and the aggregate claim

process is assumed to follow a compound Poisson process where the claim sizes are

i.i.d. random variables. The number of claims is assumed to follow an homogeneous

Poisson process (Nt)t≥0 with intensity λ. We denote (Zn)n≥1 the claim sizes which are

independent of (Nt)t≥0, positive and iid random variables with distribution function F

and first moment µ. The insurance surplus process is given by

Rt = x+ ct−
Nt∑
i=1

Zi, (1.2.8)

where x is the initial capital and c < λµ. The premium rate c is assumed to satisfy

the net profit condition used to avoid the possibility that R becomes negative almost

surely, that is precisely c < λµ.

We denote by δq the unique nonnegative root of the so-called Lundberg fundamental

equation

q + λ− cξ = λ

∫ ∞
0

e−ξyF (dy). (1.2.9)

Theorem 1.2.1 (Gerber and Shiu (1998)).

The Gerber-Shiu function P (q, x) in the compound Poisson model given by (1.2.8),

satisfies the defective renewal equation

P (q, x) =
∫ x

0
P (q, x− y)g(y)dy + h(x), (1.2.10)

where

g(y) = λ

c
eδqx

∫ ∞
y

e−δquF (du) (1.2.11)

and

h(x) = λ

c
eδqx

∫ ∞
x

∫ ∞
u

e−δqvw(u, v − u)F (dv)du. (1.2.12)
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Note that for two integrable functions f and g defined on [0,∞), the convolution

of f and g is the function

f ∗ g(x) =
∫ x

0
f(y)g(x− y)dy, x ≥ 0.

Equation (1.2.10) can be written more concisely as

P (q, x) = P (q, x) ∗ g + h. (1.2.13)

The solution of (1.2.13) can be expressed as an infinite series of functions (Neumann

series),

P (q, x) =
∞∑
n=0

g∗n ∗ h(x), x ≥ 0, (1.2.14)

where g∗n (n ≥ 1) denotes the n-fold convolution of g with itself and and g∗0 is the

distribution function corresponding to the Dirac measure at zero. See Gerber and Shiu

(1998) for more details.

The definition of P (q, x) and the derivation of its properties for compounded Poisson

model go back to Gerber and Shiu (1997 and 1998).

1.2.4. Lévy risk model

The risk process (1.2.3) reduces to the Lévy risk process with no positive jumps

when the claim surplus process (Yt) is assumed to be a spectrally positive Lévy process

(Stochastic process with independent and stationary increments that can only have

positive jumps). with characteristic triplet (µ, σ2, ν), i.e. its Laplace exponent is given

by

ψ(α) = log E[exp(−αY1)]

= −αµ+ α2σ
2

2
+
∫
(0,∞)

[e−αy − 1 + αy1{0<y≤1}]ν(dy) , (1.2.15)

where
∫
(0,∞)(1 ∧ |y|2)ν(dy) <∞.

The net profit condition, that is to say a necessary and sufficient condition to insure

that Yt drifts to ∞, is precisely E[Y1] < 0, which necessarily requires that∫
(1,∞)

yν(dy) < µ, (1.2.16)

and then the process Y has a negative drift such that E[Y1] < 0 in order to avoid the

possibility that R becomes negative almost surely. This condition is often expressed in

terms of a safety loading. Indeed, it is standard to write the drift component within Y

as a loaded premium.
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Many risk processes are in fact special Lévy risk processes with no positive jumps.

The classical compound Poisson risk process perturbed by a Brownian motion is one

of them. More generally, some models have used the classical compound Poisson risk

process perturbed by a Lévy process as their risk process. [See for instance Furrer

(1998), Yang and Zhang (2001), Huzak et al. (2004), Garrido and Morales (2006), and

Biffis and Morales (2010)].

Before discussing the ruin problem for the Lévy risk model, we will first introduce

breifly the concept of scale function and show that will be needed to characterize the

EDPF.

1.2.4.1. Scale function

For the right inverse of ψ we shall write φ on [0,∞), that is to say, for each q ≥ 0,

φ(q) = sup{α ≥ 0 : ψ(α) = q}. (1.2.17)

Note that the properties of the Laplace exponent ψ given by (1.2.15) of the spectrally

positive Lévy process Y , imply that φ(q) > 0 for q > 0. Furthermore, φ(0) = 0, since

ψ′(0) = −c+
∫
(0,∞) yν(dy) ≤ 0.

Note that we may define the probability measure Pφ(q) by

dPφ(q)

P

∣∣∣
Ft

= e−φ(q)Yt−qt (1.2.18)

where φ(q) is the right inverse of ψ (the positive solution of the Lundberg equation

ψ(α) = q ) defined in (1.2.17). Under the measure Pφ(q), the process Y introduced in

(1.2.15) is still a spectrally positive Lévy process, and still drifts to −∞. We denote by

νφ(q) the Lévy measure of Y under the measure change Pφ(q) and then,

νφ(q)(du) = e−φ(q)uν(du), for u > 0. (1.2.19)

The change of measure above, known as the Esscher transform, has the important

property that the process Y under Pφ(q) is still a spectrally positive Lévy process. This

fact will play a crucial role in the analysis Lévy risk models. For more details about

measure change of Lévy process, see for example Asmussen and Albrecher (2010), and

Kyprianou (2006).

We now define the so-called scale functions {W (q); q ≥ 0} of the spectrally negative

process −Y . For every q ≥ 0, there exists a function W (q) : R −→ [0,∞) such that
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W (q)(y) = 0 for all y < 0, absolutely continuous on (0,∞) satisfying∫ ∞
0

e−λyW (q)(y)dy = 1
ψ(λ)− q

, for λ > φ(q), (1.2.20)

where φ(q) is the largest solution of ψ(β) = q defined in (1.2.17). W (q) is called the

q-scale function and for short, we shall write W (0) = W . The 0-scale function under

Pφ(q), which we write as Wφ(q), is related to the q-scale function under P, that is to say

W (q), via the relation

W (q)(y) = eΦ(q)yWφ(q)(y). (1.2.21)

The reader is otherwise referred to the classical references for Lévy process [Bertoin

(1996) and Sato (1999), and Kyprianou (2006)].

The theorem below (see Asmussen and Albrecher (2010)), provides an analytical

characterization of the EDPF given by 1.2.7 in terms of scale functions.

Theorem 1.2.2. Suppose that Y is a spectrally positive Lévy process. The EDPF

defined by (1.2.7), is given by

P (q, x) =
∫ ∞
0

∫ ∞
0

w(v, u)
(
e−φ(q)vW (q)(x)−W (q)(x− v)

)
ν(du+ v)dv (1.2.22)

where w is a bounded measurable function satisfying w(·, 0) = 0.

Remark 1.2.1. Note that the assumption w(·, 0) = 0 simply restricts the EDPF to the

case where ruin happens through jumps. If ruin is caused by diffusion, then it is known

from the general phenomenon of creeping of Lévy processes that Yτx = Yτ−x = x and

this occurs with probability

E
[
e−qτx ;Yτx = x

]
= σ2

2
[
W (q)′(x)− φ(q)W (q)(x)

]
(1.2.23)

[see Pistorius (2005)].

The previous theorem is given in more general form in Biffis and Kyprianou (2010),

when the EDPF also includes the size of the last minimum before ruin, see also Biffis

and Morales (2010) for a convolution type approach. In fact, Biffis and Morales (2010)

extended the EDPF given by (1.2.7) to include the last minimum of the surplus before

ruin. The new EDPF obtained is given by

P̃ (q, x) = E
[
e−qτxw(Yτx − x, x− Yτ−x , x− Y τ−x

); τx <∞
]
, (1.2.24)

where Y t = sups≤t Yt and w is a non-negative bounded measurable function such that

w(0, ·, ·) = 0. A defective renewal equation for (1.2.24) is obtained in Biffis and Morales

(2010) for a subordinator risk model perturbed by a spectrally negative Lévy process.
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More generally, when the risk process is driven by a spectrally negative Lévy process,

Biffis and Kyprianou (2010) provided an explicit characterization of (1.2.24) in terms

of q-scale functions. The generalized EDPF (1.2.24) is given by the following theorem.

Theorem 1.2.3 (Biffis and Kyprianou (2010)). Suppose that Y is a spectrally positive

Lévy process. The EDPF defined by (1.2.24), is given by

P̃ (w, q, x) =
∫
(0,∞)3

1{v≥y}w(u, v, y)K(q)
x (du, dv, dy) (1.2.25)

where K(q)
x (du, dv, dy) = e−φ(q)vW (q)(x− dy)ν(du+ v)dv.

1.2.5. Markov additive risk model

We find that Markov additive risk models have been recently studied in the litera-

ture on insurance risk although not at the same level of generality. In this section we

give a brief presentation of existing MAP models in the risk theory literature.

1.2.5.1. Markov additive risk model with phase-type

The first application of the class of MAP in risk theory seems to be due to Breuer

(2010). He considered the risk model of the form (1.2.3) where the net aggregate

claims process is a MAP with phase-type jumps. The risk reserve R = {x− Yt; t ∈ T }

is modelled by a Markov-modulated Brownian motion with phase-type claims (Y, J)

(See the case (1.1.3.4) of Section 1.1.3), where J is an irreductible Markov process with

finite state space E and x is the initial surplus.

Each phase i ∈ E signifies a certain state of market conditions which may affect

the intensity and severity of claims. Claims may occur in two ways. First, when J is

in phase i, claims occur at constant rate λi ≥ 0. The size of such a claim shall have a

phase-type (PH) distribution with parameters α(ii) and T (ii). Second, at time of phase

changes from i to j 6= i, a claim may occur with probability pij . The size of such a claim

shall have a PH distribution with parameters α(ij) and T (ij). Note that η(ij) = −T (ij)1

is the exit rate vector of the PH(α(ij), T (ij)) distribution, where 1 denotes the vector

with entries 1. We refer to Breuer (2008 and 2010), and Badescu and Breur (2011) for

additional details on this result and related definitions.

The claim surplus Y is supposed to be a MAP with phase-type jumps with charac-

teristic triplet (ci, σ2
i , νi(dx)) depending on the state i of J ; i.e. Y evolves like a Lévy
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process with Laplace exponent

κ(i)(α) = −αci + α2σ
2
i

2
+
∫ +∞

0
(eαx − 1− αy1{0<y≤1})νi(dy)

during intervals when the phase equals i ∈ E, where the Lévy measure

νi(dy) = λi1{y>0}α
(ii)eT

(ii)yη(ii)dy. (1.2.26)

[See the Example1.1.3.4 of Section 1.1.3].

For this risk model described above, Breuer (2010) determined the joint distri-

bution of the surplus prior to ruin (undershoot), the deficit at ruin (overshoot), the

maximal level before ruin, the time of attaining this maximum and the time between

the maximum and ruin. Breuer and Badescu (2012) applied this result to derive a gen-

eralized EDPF, in particular, they gave an explicit formula for the generalized expected

discounted measure

E
[
e−αGτx−β(τx−Gτx );Yτx − x ∈ du, x− Yτx− ∈ dv, x− Y τx− ∈ dy

]
,

where τx is the first time passage over x ≥ 0 (time of ruin), α, β ≥ 0 are the time

discounting factors, Y τx− = sup0≤t<τx Yt is the supremum of Y before ruin and Gτx is

the time of attaining this supremum.

1.2.5.2. Spectrally positive Markov additive risk model

The family of Markov additive risk processes introduced in Section 1.2.5.1 [see

Breuer (2010), and Breuer and Badescu (2012)] have been extended in Chapter 2 [see

Ben Salah and Morales (2012)]. Indeed, we have studied the EDPF under a general

model of the form (1.2.3) where the net aggregate claims process is a spectrally posi-

tive MAP (MAP that can only have positive jumps). This more general setting allows

for the introduction of long-term market conditions that change over time following a

finite-state continuous-time Markov process modeling different environment scenarios.

We consider a very general setup that generalizes the previous models. The model

discussed in Chapter 2 is

Rt := x− Yt , t ≥ 0 , (1.2.27)

where x ≥ 0 is the initial surplus and Y = {Yt; t ∈ T } is a right-continuous spectrally

positive Markov-modulated Lévy process with modulating process J = {Jt; t ∈ T }

taking values on a finite state space E. Y represents the claim process of an insurance
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company and J is a background process that describes the environment in which claims

occur. Let us denote by Y (1) and Y (2) the path components of Y , as defined in (1.1.12),

and let (qi,j , Bi,j , ci, σi, νi)i,j∈S be the characteristics of such processes (See the case

(1.1.3.4) of Section 1). We assume the process Y to have a negative drift ai < 0 for all

i ∈ E.

Recall from (1.1.12) that the claim surplus process Yt can be written as the sum of

two independent processes

Yt = Y
(1)
t + Y

(2)
t . (1.2.28)

The first term {Y (1)
t } in (1.2.28) evolves like a spectrally positive Lévy process with

Laplace exponent given by

ψ(i)(α) = αci + α2σ
2
i

2
+
∫
(0,∞)

[e−αy − 1 + αy1{0<y≤1}]νi(dy) , (1.2.29)

where
∫
(0,∞)(1 ∧ |y|2)νi(dy) <∞.

Now, as for the second term in (1.2.28), let {U (i,j)
n }i,j∈E be i.i.d. positive random

variables (with U (i,i)
n = 0) which are independent of Jt and have a distribution function

Bi,j(·) with support on [0,∞). Moreover, let us denote the jump times of Jt by {Tn}n∈N

(with T0 = 0). The jump process {Y (2)
t } is described by

Y
(2)
t =

∑
n≥1

∑
i,j∈E

U (i,j)
n 1{J(Tn−1)=i,J(Tn)=j,Tn≤t}. (1.2.30)

During the time intervals where J is in state i, claims occur with the positive jumps

of Lévy component Y (1) with characteristic triplet (ai, σi, νi) introduced previously. At

time of state changes from i to j 6= i a claim occurs with size U (i,j) which has a

distribution function Bi,j(·).

We study in Chapter 2 [Ben Salah and Morales (2012)] the ruin problem for Markov

additive risk models given by (1.2.27). In the context of fluctuations and exit problems,

this family of the Markov additive risk processes has been recently studied in Kypri-

anou and Palmowski (2008), Klusik and Palmowski (2011), and Ivanovs and Palmowski

(2011). We give in Chapter 3 a characterization of the EDPF for the Markov additive

risk process defined by (1.2.7). A key concept that we have used is that of Lévy systems

which is introduced in Section 1.1.5 [see Çinlar (1975), Maisonneuve (1977), and Ben

Salah and Morales (2012)] and, indeed, one of the contributions of this chapter is to

identify the Lévy system of a particular case when the MAP is a Markov-modulated

Lévy process. A second concept that is key to our analysis is that of a scale matrix [see

Kyprianou and Palmowski (2008) and Ivanovs and Palmowski (2011)] that generalizes
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the well-studied notion of scale function for spectrally-positive Lévy processes. These

two elements allow us to give a characterization of the EDPF that generalizes the re-

sults developed in Biffis and Kyprianou (2010) and Biffis and Morales (2010) for Lévy

insurance risk processes. Moreover, our approach provides a connection with some of

the concepts introduced in Kyprianou and Palmowski (2008) where they have partial

answers to the same problems discussed in Chapter 3. We also generalize in Chapter

3 the results from Breuer and Badescu (2012) where a similar problem is solved for

MAPs with phase-type jumps. More explicitly, the expressions for the EDPF obtained

in Chapter 3 are given in terms not only of the Lévy system of the process but also in

terms of the so-called q-potential measure of the risk process killed at exit.

1.3. No-Arbitrage, Fundamental Theorem and Minimal Entropy Mar-

tingale Measure

In this subsection, we present the main concept of the theory of arbitrage following

Delbaen and Schachermayer (2006), and Cont and Tankov (2004).

1.3.1. Financial Model and No-Arbitrage

The notions of arbitrage and of risk-neutral valuation are crucial to modern fi-

nancial theory. It is the corner-stone of the option pricing theory due to Black and

Scholes (1973), and Merton (1973). An arbitrage opportunity is the possibility to

make a profit in a financial market without risk and without net investment of capital.

The arbitrage-free argument is a mathematical assumption that is needed in order to

develop the modern theory of mathematical finance. It turns out that it has an eco-

nomical interpretation and that economically speaking, the idea of arbitrage is related

to the question of information and the theory changes completely when the different

agents have different information. These arguments should convince the reader that

no-arbitrage principle is economically very appealing. Hence a mathematical model of

a financial market should be designed in such a way that it does not permit arbitrage.

The mathematical tool formalizing the no-arbitrage (NA) concept is the general

theory of stochastic analysis and martingale theory. The central piece of the theory

that turns the NA arguments into a comprehensive theory is the so-called Fundamental

Theorem of Asset Pricing which is the central result of the theory of pricing and hedg-

ing by NA. The proof of this theorem is due to Harison and Pliska (1981) and more

rigorously to Delbaen and Shachermayer (1994).
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In this section we will attempt to explain the fundamental concepts behind the ab-

sence of arbitrage, incompleteness of market, risk-neutral pricing and equivalent mar-

tingale measures.

Consider a market whose possible evolution between 0 and T is described by a

probability space (Ω,F) where F contains all statements which can be made about

behavior of the prices on the period [0, T ]. We refer to Delbaen and Schachermayer

(2006) for more details on description of financial model.

The stochastic asset value can be described by a process

S : [0, T ]× Ω −→ Rd+1

(t, ω) 7−→ (S0
t (ω), S1

t (ω), ..., Sdt (ω)),

where Sit(ω) represents the value of asset i at time t in the market scenario ω, for

0 ≤ i ≤ d+ 1. Note that S0
t is a numéraire and S0

t = exp(rt) is a typical example of a

cash account with interest rate r.

We denote by (Ft)0≤t≤T the information generated by the history of all assets up to t.

F0 contains no information and FT = F is the history of all assets up to T .

Definition 1.3.1. A model of financial market is an Rd+1-valued stochastic process

(S0
t , S

1
t , ..., S

d
t )t∈[0,T ] , based on the filtered probability space (Ω,F , (Ft)t∈[0,T ],P). We

shall assume that the zero coordinate S0 satisfies S0
t > 0 for all t ∈ [0, T ] and S0

0 = 1.

Definition 1.3.2. A trading strategy H = (Ht)t∈[0,T ] = (H0
t , H

1
t , ...,H

d
t )t∈[0,T ] is an

Rd+1-valued process which is predictable, i.e. Ht is Ft−-measurable.

The interpretation is that during the infinitesimal interval [t, t+dt], the agent holds

a quantity equal to H i
t+dt of asset i. The decision is taken at time t and therefore, Ht

is required to be Ft-measurable. We represent the capital accumulated between 0 and

t by following the strategy H, by the stochastic integral

∫ t

0
HudSu,

where St is the Rd+1-vector given by (S0
t , S

1
t , ..., S

d
t ), t ∈ [0, T ].

A portfolio is a vector describing the amount of each asset held by the investor:

(H,S). The value of a such portfolio at time t is then given by V = (Vt)t∈[0,T ], where

Vt = (H · S)t =
d∑
i=0

H i
tS

i
t .
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A strategy H = (Ht)t∈[0,T ] is said to be self-financing if for every t ∈ [0, T ], the value

Vt of portfolio is equal to the initial capital value plus the capital gain between 0 and t

Vt =
∫ t

0
HudSu = (H · S)0 +

∫
(0,t]

HudSu. (1.3.1)

The equation (1.3.1) means that the only source of variation of the portfolio’s value

is the variation of asset values: by changing the portfolio from Ht to Ht+dt, there is no

input/outflow of money.

1.3.2. Martingale Measures and the Fundamental Theorem

Let us introduce the discounted risky asset values S̃ = (S̃t)t∈[0,T ] = (S̃1
t , ..., S̃

d
t )

where

S̃it = S̃it

S̃0
t

for i = 1, ..., d. (1.3.2)

Hence the discounted value Ṽt of portfolio is

Ṽt = Vt
S0
t

= (V
0
t

S0
t

,
V 1
t

S0
t

, ...,
V d
t

S0
t

) for i = 0, ..., d and t ∈ [0, T ].

Recall that on the probability space (Ω,F ,P), Q and P are said to be equivalent

measures (Q ∼ P), if they define the same set of possible and impossible events. Math-

ematically, this means

Q ∼ P : for any A ∈ F , Q(A) = 0 if and only if P(A) = 0.

Definition 1.3.3. A probability measure Q is called an equivalent martingale mea-

sure for S̃, if Q ∼ P and S̃ is a martingale under Q, i.e., EQ[S̃t|Fs] = S̃s for

0 ≤ s ≤ t ≤ T .

We denote byMe(S̃) the set of equivalent martingale measures. After having fixed

some preliminary results, we may give the first crucial result of the theory of pricing

and hedging by NA, often referred to as the Fundamental Theorem of Asset Pricing

[see Delbaen and Schachermayer (1998 and 2006)].

Theorem 1.3.1 (Fundamental Theorem of Asset Pricing).

A financial market model defined by (Ω,F , (Ft),P) and asset prices (St)t∈[0,T ] is arbitrage-

free (NA) if and only if there exists a probability measure Q ∼ P such that the discounted

assets (S̃t)t∈[0,T ] are martingales with respect to Q.

We refer to Harrison and Pilska (1983), and Delbaen and Schachermayer (1998 and

2006) for more details on this topic. This theorem establishes an equivalence between

the financial concept of NA and the mathematical notion of equivalent martingale
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measure. As equally important to this theorem is the fact that in order to price a

contingent claim in this market, we need to take expectations under the equivalent

martingale measure Q and not P .

1.3.3. Market completeness

Besides the absence of arbitrage, another important concept originating in the

Black-Scholes model is the concept of perfect hedge: a self-financing strategy (Ht) is

said to be perfect hedge (or a replication strategy) for a contingent claim C (i.e. a

stochastic variable that only depends on the value ST of the stock price at the final

time) if

C = V0 +
∫ T

0
HtdSt P- a.s. . (1.3.3)

By absence of arbitrage, if a replicating strategy exists, then V0 is unique since two

replicating strategies with different initial capital could lead to an arbitrage.

Definition 1.3.4.

A financial market is said to be complete if any contingent claim C admits a replicating

portfolio, i.e. for any contingent claim C there exists a self-financing strategy (Ht) such

that (1.3.3) holds.

If (1.3.3) holds, it also holds Q-a.s. for any equivalent martingale measure Q ∼ P.

The discounted value then verifies

C̃ = V0 +
∫ T

0
HtdS̃t Q- a.s. . (1.3.4)

Taking expectations with respect to Q and assuming that (
∫ t
0 HudS̃u)t∈[0,T ] is a mar-

tingale (for example, (Ht) is bounded), we obtain

EQ[C̃] = V0 (1.3.5)

The relation (1.3.5) is sometimes called a risk-neutral pricing formula: the initial capital

of hedging strategy is given by the discounted expectation of pay-off under Q. Since

this is true for any equivalent martingale measure Q, we conclude that in a complete

market there is only one way to define the value of a contingent claim: the value of any

contingent claim is given by the initial capital to get up a perfect hedge for C.

Let us now give the second result of the theory of pricing and hedging by NA,

sometimes called: the second Fundamental Theorem of Asset Pricing.
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Theorem 1.3.2 (Second Fundamental Theorem of Asset Pricing).

A financial market defined by (Ω,F , (Ft),P) and asset prices (St)t∈[0,T ] is complete if

and only if there is a unique martingale measure Q equivalent to P.

This theorem establishes an equivalence between the financial notion of market

completeness and the uniqueness of equivalent martingale measure. A rigourous for-

mulation of this theorem can be found in Delbaen and Schachermayer (1998).

1.3.4. Minimal Entropy Martingale Measure

In recent years, there has been many results in the area of characterization of mar-

tingales measures in incomplete markets. The mainstream of this research is concerned

with the projection-based methods in which one looks at the "closest" (in some sense)

martingale measure to the physical or real world probability measure relative. For ex-

ample, Föllmer and Sondermann (1986), Föllmer and Schweizer (1991) and Schweizer

(1991,1996) use quadratic or L2-distance; Chan (1999), Miyahara (1999) and Frittelli

(2000) use relative entropy which leads to the so-called Minimal Entropy Martingale

Measure (MEMM).

Many arguments play in favor of the MEMM. Firstly, due to the fact that it comes

from the minimization of relative entropy with respect to the real probability measure it

retains every information we know about the randomness structure underlying the mar-

ket thus it is consistent with the efficient market hypothesis. Secondly, the well-known

duality relationship [See Fritelli (2000) and references therein] between minimization of

the relative entropy and maximization of exponential utility makes the minimal entropy

martingale measure economically meaningful. Thirdly, if the minimal entropy martin-

gale exists, it is always equivalent to the objective probability measure unlike some other

martingale measures such as the minimal variance martingale measure which may not

be equivalent to the objective probability measure. Many authors have studied this

equivalent martingale measure in different contexts. For example, Chan (1999) has

studied the problem of pricing contingent claims in a Lévy model and provided a solu-

tion based on the MEMM. Frittelli (2000) has looked at the problem of existence and

uniqueness of the MEMM in a general incomplete market model and he has provided its

economical interpretation in terms of exponential utility functions. Miyahara (1999),

Fujiwara and Miyahara (2003) have obtained some results on the characterization of

the MEMM in the geometric Lévy models. Fujiwara (2009) has extended these results

to the case where the geometric Lévy process is replaced by an exponential additive
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process. Recently, Momeya and Ben Salah (2012) have extended the result of Fujiwara

(2009) to a general Markov-modulated exponential Lévy model whose main feature is

the presence of a modulator factor which changes the characteristic of the dynamics of

the risky asset under different regimes. In particular, they characterized the MEMM

generated by an exponential Lévy model and an exponential additive model; then they

discussed it for a Markov-modulated exponential Lévy model.

In this section, we introduce the notion of relative entropy which is often used as

measure of proximity of two equivalent probability measures. In particular, we recall its

definition and give the characterization of the MEMM generated by an exponential Lévy

model and an exponential additive model; we then discuss it for a Markov-modulated

exponential Lévy model.

Recall that (Ω,F , (Ft),P) is a filtered probability space and let G be a sub σ-algebra

of F . We denote by P the set of probability measures on (Ω,G).

Definition 1.3.5. For Q ∈ P(Ω,G), the relative entropy of Q with respect to P is

defined as:

HG(Q,P) :=


EQ
[

log
(
dQ
dP

∣∣∣
G

)]
if Q << P on G

+∞ otherwise
(1.3.6)

where dQ
dP |G denotes the Radon-Nikodym derivative of Q with respect to P on G.

Moreover, it verifies the following

• HG(Q,P) ≥ 0 and HG(Q,P) = 0 if and only if Q = P;

• The functional Q 7−→ HG(Q,P) is strictly convex.

Definition 1.3.6. The minimal entropy martingale measure (MEMM) is a probability

measure Q? ∈Me(S̃) such that

HGT (Q?,P) = min
Q∈Me(S̃)

HGT (Q,P). (1.3.7)

where Me(S̃) is the set of equivalent martingale measures and Ma(S̃) the set of local

martingale measures.

If the MEMM exists, by definition it is unique. Moreover [see Fritelli 2001, Theorem

2.2], under the assumption

inf
Q∈Me(S̃)

HGT (Q,P) <∞, (1.3.8)

it is equivalent to P.
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The MEMM has been extensively studied and generalized to various scenarios and

there is now a wide range of models for which expressions of the MEMM are available.

All of these models incorporate different levels of complexity into the picture. In the

following, we study the MEMM for different exponential models. When it exists, we

give an expression of MEMM for the exponential Lévy model and exponential addi-

tive model. We discuss the existence and the characterization of the MEMM for the

Markov-modulated exponential Lévy model which is the main contribution of Chapter

4 [Momeya and Ben Salah (2012)].

1.3.4.1. Exponential Lévy model

Let S = (St)t∈[0,T ], be a geometric Lévy process defined on the probability space

(Ω,F ,P), that is, S is a stochastic process of the form

St = eYt (1.3.9)

where S0 > 0 is a constant and Y = (Yt)t∈[0,T ] is a one-dimensional Lévy process with

Y0 = 0. Let (σ2, ν, b) be the characteristic triplet of Y . By Lévy-Itô decomposition, Y

has the representation:

Yt = σWt + bt+
∫
(0,t]

∫
{|x|≤1}

xÑ(du dx) +
∫
(0,t]

∫
{|x|>1}

xN(du dx), (1.3.10)

where (Wt) is a standard Brownian motion, N(du dx) is the Poisson random measure

and Ñ(du dx) is the compensated measure of N(du dx) defined by

Ñ(du dx) = N(du dx)− ν(dx)du. (1.3.11)

For a detailed study of the theory of Lévy processes and that of stochastic calculus

based on Poisson random measures, we refer to Sato (1999) and Jacod and Shirayev

(2003).

As a financial model, we consider (St) as the price of a stock. For a constant r ∈ R, we

set Bt = ert which denotes the price of a bank account with interest r.

We will show that, under the assumption (C) below, the MEMM exists for the

geometric Lévy process S̃. We will see also that the density process of the MEMM

with respect to P can be represented explicitly.

Before giving a characterization of MEMM for model (1.3.9), let us state the following

condition:
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Condition 1.3.3. There exists a constant β∗ ∈ R that satisfies the following

(i) ∫
{x>1}

exeβ
∗(ex−1)ν(dx) <∞; (1.3.12)

(ii)

b+ (1
2

+ β∗)σ2 +
∫
{|x|≤1}

(
(ex − 1)eβ∗(ex−1) − x

)
ν(dx)

+
∫
{|x|>1}

(ex − 1)eβ∗(ex−1)ν(dx) = r. (1.3.13)

Theorem 1.3.4 (Fujiwara and Miyahara (2003)).

Suppose that Condition 1.3.3 holds. Then the MEMM denoted by P∗ exists and has a

density process defined by:
dP∗

dP
|Ft := eβ

∗Ŷt−b∗t, (1.3.14)

where

Ŷt = Yt + 1
2
σ2t+

∫
(0,t]

∫
R{0}

(ex − 1− x)N(dudx) (1.3.15)

and

b∗ = β∗

2
(1 + β∗)σ2 + β∗b+

∫
R{0}

(
eβ
∗(ex−1) − 1− β∗x1{|x|≤1}

)
ν(dx). (1.3.16)

The previous theorem is the main result of Fujiwara and Miyahara (2003) [Theorem

3.1], which gives the existence and the characterization of the MEMM for exponential

Lévy process, and involves an explicite representation of the density process.

1.3.4.2. Exponential additive model

We will show in this section how the previous result (Theorem 1.3.4) on exponen-

tial Lévy processes can be extended to those on exponential additive processes. Let

Y = (Yt)t∈[0,T ] be an additive process like those discussed in Section 1.1.3, that is, a

stochastic process which has independent increments, defined on a probability space

(Ω,F ,P). We assume that additive processes are quasi-left continuous semimartingales

with value 0 at time 0.

Let (At, η(du dx), Ct) be the characteristic triplet of Y . Note that (Ct) is continuous

and η({t}, dx) = 0 for all t ≥ 0, since we assume that Y is quasi-left continuous. The
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additive process Y have an explicit representation called the canonical decomposition:

Yt = Gt + Ct +
∫
(0,t]

∫
{|x|≤1}

xÑ(du dx) +
∫
(0,t]

∫
{|x|>1}

xN(du dx). (1.3.17)

Here, (Gt) is a continuous local martingale with quadratic variation At, N(du dx)

denotes the counting measure of the jump of (Yt)

N((0, t], A) = #{u ∈ (0, t]; ∆Yu = Yu − Yu− ∈ A} for A ∈ B(R{0}), (1.3.18)

where B(R{0}) is the Borel σ-field on R{0}. Note that N(du dx) is a Poisson measure

with the compensator (intensity measure) η(du dx) and that∫
(0,t]

∫
R{0}

(|x|2 ∧ 1)η(du dx) <∞.

Also, Ñ(du dx) := N(du dx) − η(du dx). We refer to Itô (2004) and Sato (1999) for

basic concepts about additive processes and Jacod and Shiryaev (2003) for those about

semimartingales.

As a typical example of additive processes, we will consider the following one, in

which the characteristics are absolutely continuous with respect to Lebesgue measure

du:

At =
∫ t

0
audu, Ct =

∫ t

0
cudu, η((0, t], dx) =

∫ t

0
νudu.

If all of au, cu and νu are independent of u, then Y is reduced to a Lévy process.

As in Section 1.3.4.1, let (St = eYt)t∈[0,T ] be an exponential additive process on

the additive process Y with charateristics (At, η(du dx), Ct).We assume that S0 is a

positive constant. We denote by (St) the price process of a risky asset. As the price of

a non-risky asset, we consider Bt = eRt , where (Rt) is a continuous function with finite

variation.

Before moving to the main result, we propose the following condition 1.3.5 for S̃,

which is described by the characteristic triplet (At, n(dudx), Ct) of the additive process

(Yt) of (1.3.17) and (Rt).

Condition 1.3.5. There exists a càglàd function β∗u, u ∈ (0, T ], that satisfies the fol-

lowing conditions:

(i) ∫
(0,T ]

∫
{x>1}

exeβ
∗
u(ex−1)η(du dx) <∞; (1.3.19)
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(ii)

Ct +
∫
(0,t]

(1
2

+ β∗u)dAu +
∫
(0,t]

∫
R{0}

[
(ex − 1)eβ∗u(ex−1) − x{|x|≤1}

]
η(du dx)+ = Rt.

(1.3.20)

Theorem 1.3.6 (Fujiwara (2009)).

Suppose that Condition 1.3.5 holds. Then the MEMM denoted by P∗ exists and has a

density process defined by:

dP∗

dP
|Ft := exp

[ ∫
(0,t]

β∗udŶt − K̂t(β∗u)
]
, (1.3.21)

where

Ŷt = Gt + Ĉt +
∫
(0,t]

∫
{|x|≤1}

(ex− 1)Ñ(du dx) +
∫
(0,t]

∫
{|x|>1}

(ex− 1)N(du dx) (1.3.22)

with

Ĉt = 1
2
At + Ct +

∫
(0,t]

∫
{|x|≤1}

(ex − 1− x)η(du dx), (1.3.23)

and

K̂t(β∗u) = 1
2

∫
(0,t]

(β∗u)2dAu + 1
2

∫
(0,t]

β∗udAu +
∫
(0,t]

β∗udBu

+
∫
(0,t]

∫
R{0}

[
eβ
∗
u(ex−1) − 1− β∗ux1{|x|≤1}

]
n(dudx). (1.3.24)

The previous theorem is the main result of Fujiwara (2009) [Theorem 3.1], which

gives the existence and a characterization of the MEMM for an exponential additive

process.

1.3.4.3. Markov-modulated exponential Lévy model

In this section, we will present a general model which can be viewed as an extension

of the exponential-additive model described in Section 1.3.4.2, the Markov-modulated

exponential Lévy model. As in the previous section, we consider a financial market

with two primary securities, the money market account B and the stock price S which

are traded continuously over the time horizon [0, T ]. Furthermore, we will add to this

set-up a filtration which specifies the flow of information available to the investors.

Let J := {Jt : t ∈ [0, T ]} denote an irreducible homogeneous continuous-time

Markov chain on (Ω,F ,P) with finite state space E = {e1, e2, ..., eM} ⊂ RM and char-

acterized by a rate (or intensity) matrix Q := {qij : 1 ≤ i, j ≤ M}. The entry qij of

matrix Q represents the transition rate at which the process J jumps from state i to
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state j [See Example 1.1.3.4 of Section 1.1.3]. We can identify S with the basis set of

the linear space RM and we set ei = ei := (0, 0, ..., 1︸︷︷︸
i−th

, ..., 0).

Let rt denote the instantaneous interest rate of the money market account B at

time t. We suppose that rt := r(t, Jt) = 〈r, Jt〉 where 〈·, ·〉 is the usual scalar product

in RM and r = (r1, r2, ..., rM ) ∈ R+
M . The price dynamics of B is given by

Bt = B0 exp
( ∫ t

0
rsds

)
, B0 = 1; t ∈ [0, T ]. (1.3.25)

Let µt and σt denote the appreciation rate and the volatility of the stock S at time

t; we suppose that

µt = 〈µ, Jt〉, σt = 〈σ, Jt〉,

where µ = (µ1, µ2, ..., µM ) ∈ RM and σ = (σ1, σ2, ..., σM ) ∈ R+
M .

The stock price process S is described by the following Markov modulated expo-

nential Lévy process

St = S0 exp(Yt), S0 > 0, (1.3.26)

with

Yt =
∫ t

0

(
µs −

1
2
σ2
s

)
ds+

∫ t

0
σsdWs +

∫ t

0

∫
R\{0}

xÑX(ds, dx)

−
∫ t

0

∫
R\{0}

(ex − 1− xI|x|<1)ρX(dx)ds. (1.3.27)

In expression (4.2.3), we have defined

ÑJ(dt, dx) :=

 NJ(dt, dx)− ρX(dz)dt if |x| < 1,

NJ(dt, dx) if |x| ≥ 1,
(1.3.28)

with NJ(dt, dx) denoting the differential form of a Markov-modulated random measure

on [0, T ]×R\{0}. We recall from Elliott and Osakwe (2006) and Elliott and Royal (2006)

that a Markov-modulated random measure on T × R\{0} is a family {NJ(dt, dx;ω) :

ω ∈ Ω} of non-negative measures on the measurable space ([0, T ] × R\{0},B([0, T ]) ⊗

B(R\{0})), which satisfy NJ({0},R\{0};ω) = 0 and has the following compensator, or

dual predictable projection

ρJ(dx)dt :=
M∑
i=1
〈Jt− , ei〉ρi(dx)dt. (1.3.29)
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ρi(dx) is the Lévy measure for the jump size when the Markov chain X is in state ei,

i.e a σ-finite Borel measure on R\{0} with the property∫
R\{0}

min(1, x2) <∞. (1.3.30)

Let W := (Wt)t∈[0,T ] denote the standard Brownian motion on (Ω,F ,P) which is

supposed to be independent of J and NJ . However, we will assume that a switch of

J from state ej to state ek and a jump of Y do not happen simultaneously, a.s. This

assumption is made to simplify the model structure. Otherwise, one should specify

the nature (and distribution) of jumps of Y which are concomitant with those of the

Markov chain J and this would increase the number of calculations.

This model (Markov-modulated exponential Lévy model) is characterized by the

presence of a background process modulating the risky asset price movements between

different regimes or market environments. This allows to stress the strong dependence

of financial assets price with structural changes in the market conditions.

The existence and characterization of the MEMM for this model will be discussed

in chapter 4 [Momeya and Ben Salah (2012)]. However, we will see how the previous re-

sults on exponential Lévy processes and exponential additive processes of Fujiwara and

Miyahara (2003) and Fujiwara (2009) can be extended to those on Markov-modulated

exponential Lévy processes. In particular, we will give an expression, when it exists, for

the MEMM for a general Markov-modulated exponential Lévy model which minimizes

effectively the unconditional relative entropy. The starting point of our approach is

the fact that given a MAP, it is always possible to decompose the Radon-Nikodym

derivative relative to an equivalent measure as a product of two terms depending of the

MAP. This enables us to work in an exponential additive setting and hence to use the

result of Fujiwara (2009).





Chapter 2

LÉVY SYSTEMS AND THE TIME VALUE OF RUIN

FOR MARKOV ADDITIVE PROCESSES

Abstract

In this chapter we study the ruin problem for an insurance risk processes driven by a

spectrally-positive Markov additive process. Particular attention is given to the family

of spectrally-positive Markov-modulated Lévy processes. We give an expression for the

expected discounted penalty function by extending results available in the literature. In

particular, we generalize some results in Biffis and Kyprianou (2010) to a more general

setting provided by the theory of Markov additive processes. This natural extension is

possible thanks to the concept of Lévy systems that allows us to generalize well-known

results for Lévy processes to a larger family of Markov additive processes. We also

discuss how more compact expressions for the expected discounted penalty function

can be obtained using the notion of scale matrix of a Markov additive process.

Keywords: Lévy systems, scale matrices, ruin problem, spectrally-positive Markov ad-

ditive processes, first-passage time, Gerber-Shiu function.

2.1. Introduction

In a now classical paper, Gerber and Shiu (1998) introduced the concept of Ex-

pected Discounted Penalty Function (EDPF). This so-called Gerber-Shiu function is a

functional of the ruin time (i.e., the first time the reserve level of a firm becomes nega-

tive), the surplus prior to ruin, and the deficit at ruin. The EDPF has been extensively

studied and generalized to various scenarios and there is now a wide range of models
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for which expressions of the EDPF are available. All of these models incorporate dif-

ferent levels of complexity into the picture. In this paper, we study the ruin problem

for Markov additive risk models. The family of Markov additive processes have been

extensively studied in the context of financial applications [see Momeya and Ben Salah

(2012) and references therein]. In insurance, we find that Markov additive risk models

have been recently studied in Kyprianou and Palmowski (2008) and Breuer (2008, 2010)

although not at the same level of generality that we aim at in this paper. In particular,

we characterize the joint distribution of surplus and deficit at ruin, and the expected

discounted penalty function when the insurance risk process is driven by a Markov

additive process (MAP). A key concept that we use is that of Lévy systems [see Çinlar

(1975) and Maisonneuve (1977)] and, indeed one of the contributions of this paper is

to identify the Lévy system of a particular case when the MAP is a Markov-modulated

Lévy process. A second concept that is key to our analysis is that of a scale matrix

[Kyprianou and Palmowski (2008) and Ivanovs and Palmowski (2011)] that generalizes

the well-studied notion of scale function for spectrally-negative Lévy processes. These

two elements allow us to give a characterization of the discounted penalty function that

generalizes the results developed in Biffis and Kyprianou (2010) and Biffis and Morales

(2010) for spectrally-negative Lévy insurance risk processes. Moreover, our approach

provides a connection with some of the concepts introduced in Kyprianou and Pal-

mowski (2008) where they have partial answers to the same problems discussed in this

paper. We also generalize the results in Breuer (2010) where a similar problem is solved

for Markov-additive processes with phase-type jumps. More explicitly, our expressions

for the EDPF are given in terms not only of the Lévy system of the process but also

in terms of the so-called q-potential measure of the risk process killed at exit.

The main object of study of this paper is a generalized Cramer-Lundberg model of

the form,

Rt := x− Yt , t ≥ 0 , (2.1.1)

where x ≥ 0 is the initial surplus and Y = {Yt; t ∈ T } is a suitable process modeling

the net aggregate claims (see Asmussen and Albrecher (2010) for a thorough discussion

on the ruin problem). Associated with this model we find the so-called Expected

Discounted Penalty Function which is an object, originally introduced in Gerber and

Shiu (1998), containing relevant information regarding how ruin occurs. If we let τx
denote the first passage time of R below zero when R0 = x, then we can write out the
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EDPF as follows,

φ(x;w; q) := E
[
e−qτxw (Rτx−,−Rτx) I{τx<∞}|R0 = x

]
, (2.1.2)

where q ≥ 0 and w is a bounded measurable function on R2
+ satisfying w(0, 0) = w0 > 0.

In Gerber and Shiu (1998), the authors studied the ruin event in the compound Poisson

case by analyzing the joint law of τx, the deficit at ruin, −Rτx , and the surplus before

ruin, Rτx− in one single object, the EDPF in (2.1.2). Indeed, other than the ruin time

τx, we have at least two other quantities that characterize the first downward passage

of R below zero and that contain relevant information on the ruin event from a risk

management perspective, namely:

• the deficit at ruin, −Rτx ;

• the surplus immediately prior to ruin, Rτx−.

The joint law of the above random variables has been studied in Doney and Kyprianou

(2006) as part of the so-called quintuple law at first passage. We refer to Kyprianou

(2006) for additional details on this result and related definitions.

All of these quantities encapsulate relevant knowledge about the ruin event. Clearly,

a risk manager would be interested in gaining information regarding the probability

of ruin P(τx < ∞) which gives information on how likely the reserve is to face all

claims. Even more valuable information can be found in the distribution of the deficit

at ruin (depleting the risk reserve by a few dollars rather than by a couple of millions

have certainly different implications for an insurance company). Information about the

distribution of the reserve level just prior to ruin sheds light on the structure of the

paths leading to ruin.

Following the same order of ideas, we study the EDPF under a general model of

the form (2.1.1) where the net aggregate claims process is a Markov additive process.

This more general setting allows for the introduction of long-term market conditions

that change over time following a finite-state continuous-time Markov process modeling

different environment scenarios.

The paper is organized as follows. In Section 2.2, we introduce the basic notions

related with Lévy systems and MAP’s. We believe this somewhat lengthy section is

to a certain extent a secondary contribution of this paper. Indeed, to the best of our

knowledge, it is the first time that these concepts have been brought forward to study

the ruin problem. In Section 2.3, we give the definition of our model and present the

main results. In particular, we define a risk process driven by a spectrally-negative MAP
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and we introduce a family of expected discounted penalty functions that generalize the

original notion introduced in Gerber and Shiu (1998). Moreover, we provide an explicit

characterization for these functions in terms of Lévy systems and q-potential measures.

Indeed, one of our contributions is to identify the Lévy system for a spectrally-negative

Markov risk process which in turn allows us to give expressions for the EDPF. The

expressions that we develop are rather general and not fully explicit. Thus, Section 2.4

discusses how more compact expressions can be worked out. Indeed, we investigate in

more detail these expressions for the EDPF which, in fact, boils down to identifying

the q-potential measure associated with the process using the concept of scale matrix

introduced in Kyprianou and Palmowski (2008) and Ivanovs and Palmowski (2011). A

final section summarizes the conclusions.

2.2. Preliminaries

In this section, we give a brief overview of the main notions and results of

the theory of Markov additive processes (MAP). This large class of processes give the

mathematical framework for our discussion. In particular, we define these processes and

give some of their fundamental properties used throughout this paper. At this point,

we need to lay down the standard notation that is used in this section. Following

the notation in Çinlar (1975), let (F,F) and (G,G) be two measurable spaces then we

write f ∈ F/G to mean that f is a mapping from F into G which is measurable with

respect to F and G. By transition kernel N from (F,F) into (G,G) we mean a mapping

N : F×G → R+ such that the mapping A→ N(x,A) is a σ-finite measure on G for each

fixed x ∈ F and that x → N(x,A) is in F/B(R+) for each fixed A ∈ G. Throughout

this section we set T := [0, T ] with T ∈ (0,∞].

2.2.1. Markov additive processes and Lévy systems

The mathematical theory of Markov additive processes can be traced back to the

works of Çinlar (1972a), (1972b) and Grigelionis (1978). A cornerstone of this theory

is found in Çinlar (1975) where the author establishes a result characterizing the Lévy

system for Markov additive processes. As it turns out, a Lévy system gives all the

information about the jump properties of strong Markov processes. Indeed, Benveniste

and Jacod (1973) had shown the existence of a Lévy system for any quasi-left continuous

strong Markov process. That is, let {(Zt) : t ∈ T } be a strong Markov process which

is quasi-left continuous with respect to a right-continuous filtration F := {Ft : t ∈ T }
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on a probability space (Ω,F ,P) such that Z = {Zt : t ∈ T } takes its values in a

measurable space (S,S). Then there exists, both a transition kernel K into itself

having K(y, {y}) = 0 for all y ∈ S and an (increasing) continuous additive functional

H of Z, such that for any non-negative Borel measurable function f on S× S,

E
[∑
s≤t

f(Zs−, Zs) 1{Zs− 6=Zs}
]

= E
[ ∫ t

0
dHs

∫
S
K(Zs, dy)f(Zs, y)

]
, (2.2.1)

for all t ≥ 0.

The kernel K is called a Lévy kernel and the pair (H,K) is called a Lévy system

for Z. Intuitively, when time is reckoned according to the random clock H, so that the

clock reads Ht when the time is t, then K(y,A) can be seen as the expected number per

unit time of the jumps Z makes from y into A ∈ S. The name Lévy system is motivated

by the fact that if Z is a process with independent and stationary increments then Ht

can be taken to be equal to t and K(z, dy) = ν(dy − z) where ν is the jump measure

of the process Z [see Çinlar (1975) and Maisonneuve (1977) for a detailed discussion].

In Çinlar (1975), we find a result that characterizes a Lévy system for a Markov

additive process. This will be crucial to our discussion and so we include here a brief

presentation of the family of Markov additive processes.

Intuitively, a Markov additive process is a bivariate process (J,X) such that J is

a Markov process and X is a process with conditionally independent increments given

the paths of J . This is formally stated as follows [see Grigelionis (1978)].

Definition 2.2.1. Consider a bivariate stochastic process {(Jt, Xt) : t ∈ T } adapted

to a right-continuous filtration F := {Ft : t ∈ T } on a probability space (Ω,F ,P). This

pair is such that the component X = {Xt : t ∈ T } takes its values in (R,B(R)) and

is continuous from the right with limits on the left; whereas the component J = {Jt :

t ∈ T } takes its values in a measurable space (S,S). This pair is called a Markov

additive process (or MAP) with respect to F if for any Borel set A ∈ B(R), B ∈ S and

0 ≤ s < t ≤ T we have,

P{Xt −Xs ∈ A, Jt ∈ B|Fs} = P{Xt −Xs ∈ A, Jt ∈ B|Js} , a.s. (2.2.2)

The concept of Lévy systems plays a fundamental role in studying the jump struc-

ture of a MAP. This notion is intimately related to the infinitesimal generator of such

processes [see Çinlar (1975)]. In this paper, we only make use of a result that guarantees

the existence of a Lévy system for a MAP.
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We now state the following result [Çinlar (1975)] that will be key in our analysis

[see also Maisonneuve (1977)].

Theorem 2.2.1. Let {(Jt, Xt) : t ∈ T } be a Markov additive process with J having a

measurable state space S and X, a quasi-left continuous process, taking values in the

space (R,B(R)). There exists a continuous increasing functional of J and a transition

kernel from (S,S) into (S × R+,S × B(R)) such that, for any non-negative function

f ∈ S × S × B(R)× B(R)/B(R),

Ei
[ ∑
s≤T

f(Js− , Js, Xs− , Xs)1{Jt− 6=Jt}∪{Xt−6=Xt−}
]

= Ei
[ ∫ T

0
dHs

∫
S×R

K(Js, dz, du)f(Js, z,Xs, Xs + u)
]
,

for all i ∈ S.

The couple (H,K) is said to be a Lévy system for (J,X). The kernel K is often

referred to as the Lévy kernel of (J,X) and for any i ∈ S, it satisfies

K(i, {(i, 0)}) = 0, (2.2.3)∫
R
K(i, {i} × dy)(|y|2 ∧ 1) <∞. (2.2.4)

Moreover, if we set

Λ(i, B) = K(i, (B{i} × R)) , B ∈ S, (2.2.5)

then (H,Λ) is a Lévy system for J ; that is

Ei
[ ∑
s≤T

g(Js− , Js)1{Js− 6=Js}
]

= Ei
[ ∫ T

0
dHs

∫
S
Λ(Js, dy)g(Js, y)

]
, (2.2.6)

for any non-negative Borel measurable function g defined on S× S.

Remark 2.2.1. Since J is a regular step process with a discrete state space S, then Ht

can be taken to be Ht = t [Çinlar (1975)].

In this paper we consider only Markov additive processes (MAP) with a J compo-

nent taking values within a finite state space S = {s1, ..., sN} ⊂ RN . We further assume

that X is quasi-left-continuous with respect to F := {Ft : t ∈ T } and satisfies X0 = 0.

In such a case, we set Ht to be equal to t and the defining property (2.2.2) of a MAP

can be written in a different form. We can say that {(Jt, Xt) : t ∈ T } is a MAP (with

a finite state space) if [see Asmussen (2003)],

Ei,0
[
f(Xt+s −Xt) g(Jt+s)

∣∣∣Ft] = EJt,0
[
f(Xs)g(Js)

]
, (2.2.7)
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for any two bounded F-measurable functions f, g. Here, Ei,0(.) denotes the expectation

under the probability Pi,0(.) = P(.|J0 = i,X0 = 0). Equation (4.3.35) makes it clear

why we refer to a MAP as having conditionally independent increments.

2.2.2. Spectrally-positive Markov additive process

The class of Markov additive processes as given in Definition 2.2.1 is very large. In

this paper we focus on a subclass of this family often referred to as Markov-modulated

Lévy processes. In this subclass, the pair (J, Y ) is such that J is a finite-state Markov

chain and Y is a process with conditionally independent and stationary increments. In

other words, conditionally on Jt = i (some i in the state space of J), the process Y

behaves in law like a Lévy process. In the rest of the paper we work with the subclass

of spectrally positive Markov-modulated Lévy processes (J, Y ) for which now give a

more detailed structure. Following the notation in Asmussen (2003), consider a MAP

{(Jt, Yt) ; t ∈ T } as defined in equation (4.3.35), i.e. a quasi-left continuous process

with respect to its right-continuous filtration F := {Ft : t ∈ T } and with finite-state

space S. We say that Y = {Yt; t ∈ T } (Y0 = 0) is a right continuous spectrally positive

Markov-modulated Lévy process with modulating process J = {Jt; t ∈ T } if,

• Jt is a right-continuous, ergodic, finite-space, continuous-time Markov chain,

with intensity matrixQ = (qi,j)i,j∈S and stationary distribution π = (π1, . . . , πN ),

• the process Y can be written as the sum

Yt = Y
(1)
t + Y

(2)
t , (2.2.8)

where the independent processes Y (1)
t and Y (2)

t are defined below.

Let us specify the first term in (2.2.8). For each i ∈ S, let Y {i}t be a spectrally

positive Lévy process with triplet (ai, σ2
i , νi), i.e. its Laplace exponent is given by

ψ(i)(α) = log E(exp(−αY {i}1 ))

= −αai + α2σ
2
i

2
+
∫
(0,∞)

[e−αy − 1 + αy1{0<y≤1}]νi(dy) , (2.2.9)

where
∫
(0,∞)(1∧ |y|2)νi(dy) <∞. We denote by Y (1)

t the process which behaves in law

like Y {i}t , when Jt = i.

Now, as for the second term in (2.2.8), let {U (i,j)
n }i,j∈S be i.i.d. random variables

(with U (i,i)
n = 0) which are independent of Jt and have a distribution function Bi,j(.)

with support on [0,∞). Moreover, let us denote the jump times of Jt by {Tn}n∈N (with

T0 = 0).
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The jump process Y (2) is described by

Y
(2)
t =

∑
n≥1

∑
i,j∈S

U (i,j)
n 1{J(Tn−1)=i,J(Tn)=j,Tn≤t}. (2.2.10)

According to the path decomposition in (2.2.8), a spectrally positive Markov-

modulated Lévy process has two types of behavior. It follows a spectrally positive Lévy

process Y {i}t while Jt remains in state i; and at times when Jt jumps from state i into

state j, it jumps according to a positive random variable U (i,j). Clearly, such a process

has only positive jumps that can come either from a spectrally positive Lévy process

or from the positive random variables U (i,j) with distribution Bi,j . We notice that the

processes Y (1) and Y (2) are fully specified by the characteristics (qi,j , Bi,j , σi, ai, νi)i,j∈S.

Moreover, (J, Y (1)) and (J, Y (2)) are also MAP’s with Lévy kernels denoted respec-

tively by K(1) and K(2) such that for i, j ∈ S, K(1)(i, {j}, .) = K(i, {j}, .)1{i 6=j} and

K(2)(i, {j}, .) = K(i, {i}, .)1{i=j}, where K is the Lévy kernel of (J, Y ) introduced in

Theorem 2.2.1 [see Çinlar (1975) for details].

For a thorough description and characterization of these processes we refer to the

original works of Çinlar (1975) and Chapter XI in Asmussen (2003). Notice that if

N = 1, in other words if S is a singleton, then Y becomes a spectrally positive Lévy

process and its properties reduce to those given in Bertoin (1996) and Kyprianou (2006).

Also, at this point, we would like to make a comment regarding notation. We always

write vectors in their row form and write the usual MT to mean the transpose of the

matrix M .

Let B̂ denote the matrix of Laplace transforms of B defined by B̂(α) with (i, j)-th

elements given by

E[exp(−αU (i,j)
n )] =

∫
(0,∞)

e−αyBi,j(dy).

We now define the matrix cumulant generating function of (J, Y ) as follows,

F (α) = Q ◦ B̂(α) + diag(ψ(1)(α), ..., ψ(N)(α)) , α ≥ 0 , (2.2.11)

where the matrix (i, j)-th element of F (α) satisfies

E[exp(−αYt) ; Jt = j |Y0 = 0, J0 = i] = eFi,j(α)t (2.2.12)

and Q ◦ B̂(α) is the matrix with (i, j)-th elements given by qi,jB̂i,j(α).

We make use of the fact that, by Perron-Frobenius theory [see Section I.6 and

Section II.4.d in Asmussen (2003)], the matrix F (α) has a real eigenvalue with maximal

absolute value. We label this value by κ(α) in order to indicate its dependence on α.
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We denote by v(α) and h(α) respectively the left and right 1 × N -eigenvectors of the

matrix F (α) corresponding to the eigenvalue κ(α). Similarly, we label with h(α) the

corresponding right 1×N -eigenvector. Notice that h(0) = 1 where 1 is a 1×N vector

consisting of a row of ones.

In the following, we use a subscript to denote the i-th element of a vector, i.e. hi(α)

is the i-th entry of vector h(α).

Another well-known fact [Chapter XI in Asmussen (2003)] is that the eigenvalue

κ(α) is a convex function such that κ(0) = 0, κ(∞) = ∞. Moreover, [Chapter XI in

Asmussen (2003)] κ′(0) > 0 is the asymptotic drift of the process Y in (2.2.8). In other

words, for each i ∈ S, we have that

lim
t→∞

E(Yt|J0 = i, Y0 = 0)t = −κ′(0) . (2.2.13)

Indeed, the sign of κ′(0) determines the asymptotic behavior of Y . It is clear from

(2.2.13) that when κ′(0) > 0 the process Y drifts to −∞ whereas when κ′(0) < 0 the

process Y drifts to ∞. Equation (2.2.13) allows us to establish the net-profit condition

when we use a MAP risk model like (2.1.1) as we will see in Section 2.3.

We now let Φ denote the right inverse of κ on [0,∞) i.e, for each q ≥ 0,

Φ(q) = sup{α ≥ 0 : κ(α) = q} . (2.2.14)

The convexity properties of κ [see Asmussen (2003)] imply that Φ(q) > 0 for q > 0.

Furthermore, Φ(0) = 0 if and only if κ′(0) ≥ 0, whereas if κ′(0) < 0 we have that

Φ(0) > 0. As we will now discuss, equation (3.3.21) and the values κ(α) and h(α) can

be used to define a change of measure which turns out to be key in our analysis.

Recall first that the MAP {(Jt, Yt) ; t ∈ T }, as given in equation (2.2.2), is defined

with respect to a filtered probability space (Ω,F ,F := {Ft : t ∈ T },P). Let us denote

by {Pi,x : i ∈ S, x ∈ R} the set of conditional probabilities {P(· | Jt = i , Yt = x) : i ∈

S, x ∈ R}. Following the notation in Asmussen (2003), we can now define a new family

of conditional probabilities {Pγi,x : i ∈ S, x ∈ R} through the following density process,

dPγi,x
dPi,x

∣∣∣
Ft

= e−γ(Yt−x)−κ(γ)t
hJt(γ)
hi(γ)

, (2.2.15)

for γ such that κ(γ) <∞. Recall that κ(γ) is the largest eigenvalue of the matrix cu-

mulant generating function F (γ) in (2.2.11) and h(γ) is the corresponding eigenvector.

Notice that in the definition of the density process (2.2.15), the function κ(γ) plays

a similar role as the Laplace exponent of Lévy process in an exponential (or Esscher)
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change of measure. In fact, (2.2.15) is a generalization of a Wald martingale normalized

to have mean 1 so that it can define a probability measure Pi,x [see Asmussen (2003)

for more details about this change of measure and the existence of Pi,x].

This type of measure change has been previously studied in Palmowski and Rolski

(2002) and Kyprianou and Palmowski (2008). And as it turns out, it can be shown

that under the new probability measure Pγi,x induced by (2.2.15), the process Y is

again a spectrally positive MAP. The associated matrix cumulant generating function

matrix F γ(α) is well defined and finite for α ≥ −γ [see Palmowski ans Rolski (2002)

and Kyprianou and Palmowski (2008)]. Moreover, if F γ(α) has a largest eigenvalue

denoted by κγ(α) and its associated eigenvector is denoted by hγ(α), then the triple

(F γ(α), κγ(α), hγ(α)) is related to the original triple (F (α), κ(α), h(α)) via

F γ(α) = ∆−1
h(γ)F (α+ γ)∆h(γ) − κ(γ)I , (2.2.16)

κγ(α) = κ(α+ γ)− κ(γ) , (2.2.17)

where I is the N ×N identity matrix and ∆h(γ) is a diagonal matrix given by

∆h(γ) := diag(h1(γ), ..., hN (γ)) . (2.2.18)

After all the relevant elements regarding the MAP have been introduced we are now

in a position to discuss our contribution. But before a word about notation is in order.

In the rest of this paper we work with matrix notation, i.e. for a given random variable

V and a stopping time δ, we shall understand Ex(V ; Jδ) to be the matrix whose (i, j)-th

entry is Ei,x(V ; Jδ = j). Similarly, for some G ∈ F , the probability Px(G; Jδ) should

be understood as the matrix whose (i, j)-th elements are given by Pi,x(G; Jδ = j). For

simplicity we follow the usual convention that E0(.) = E(.) and P0(.) = P(.).

2.3. Main results

We consider a very general setup that generalizes the standard Cramer-Lundberg

model. The model discussed in this paper is,

Rt := x− Yt , t ≥ 0 , (2.3.1)

where x ≥ 0 is the initial surplus and Y = {Yt; t ∈ T } is a right-continuous spectrally

positive Markov-modulated Lévy process with modulating process J = {Jt; t ∈ T } tak-

ing values on a finite state space S. The process Y represents the net aggregate cash
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inflow of an insurance company and J is a background process that describes the envi-

ronment in which claims occur. Let us denote with Y (1) and Y (2) the path components

of Y , as defined in (2.2.8), and let (qi,j , Bi,j , σi, ai, νi)i,j∈S be the characteristics of such

processes.

We assume the process Y to have a negative drift ai < 0 for all i ∈ S. Moreover we

must impose the condition E[Y1] < 0 in order to avoid the possibility that R becomes

negative almost surely. This condition is often expressed in terms of a safety loading.

Indeed, it is standard to write the drift component within Y as a loaded premium.

For instance, notice that we can recuperate the classical Cramer-Lundberg model if

the state space S is a singleton and Yt = St − c t where c := (1 + θ)E[S1] and S is

a compound Poisson process modeling aggregate claims. The drift c, with a positive

safety loading θ > 0, is the collected premium rate. We do not use the concept of

safety loading in this paper in order to simplify notation but we stress the fact that this

concept is implicitly considered within the drift of Y when we impose the condition

E[Y1] < 0.

One of the advantages of considering a general Markov-modulated Lévy risk model

like (2.3.1) is that we can use the tools developed for the larger class of Markov additive

processes. Indeed, the model in (2.3.1) contains the classical Cramer-Lundberg model as

a particular case allowing for a more comprehensive understanding of the ruin problem.

Moreover, the process in (2.3.1) models the aggregate claims as having a fundamentally

different behavior over different market and environment scenarios that are described

by the Markov processes J . We recall that, unlike a Lévy risk process, the Markov-

modulated model in (2.3.1) is not time homogeneous and it can be used to model

situations where frequency and severity of the claims are time dependent.

Now, one of the main objects of interest in ruin theory is the ruin time, τx, repre-

senting the first passage time of R below zero when R0 = x, i.e.

τx := inf{t > 0 : Yt > x} , (2.3.2)

where we set τx = +∞ if Rt ≥ 0 for all t ≥ 0.

Associated with the ruin time τx, we have at least two other quantities that contain

relevant information on the ruin event from a risk management perspective, namely the

deficit at ruin −Rτx = Yτx − x and the surplus immediately prior ruin Rτx− = x− Yτ−x .

In Gerber and Shiu (1998), the authors studied the ruin event in the compound

Poisson case by analyzing the joint law of all these quantities in one single object, the
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EDPF. Following the same order of ideas, we study the EDPF under the general model

(2.3.1) which takes a matrix form in this new context. More precisely, in this paper we

set out to study the following EDPF for the model (2.3.1).

Definition 2.3.1. Let w be a non-negative Borel-measurable function on R+ × R+

such that w(., 0) = 0. For q ≥ 0, the Matrix Expected Discounted Penalty Function

(MEDPF) associated with the risk process (2.3.1) is defined as

φ(x;w; q) = E
[
e−qτxw(x− Yτ−x , Yτx − x)1{τx<∞}; Jτx

]
, (2.3.3)

where we should understand φ(w, x; q) to be the matrix with (i, j)-th entry given by

Ei
[
e−qτxw(x− Yτ−x , Yτx − x)1{τx<∞}; Jτx = j

]
, i, j ∈ S .

Note that the condition w(., 0) = 0 excludes the event {Yτx = x}. This possibility

is known as creeping and we chose not to consider it in our analysis. For simplicity, we

assume that the function w assigns a zero penalty when ruin occurs by continuously

crossing over zero. Notice that for a model like (2.3.1), this only happens when ruin is

caused by the Brownian motion component of the process Y .

Notice that the MEDPF in (2.3.3) contains all relevant information as to how ruin

occurs. Indeed, each entry of (2.3.3) gives the expected penalty function (EDPF) of

the risk process (2.3.1) for those paths where the modulating Markov chain J starts

from state i, at time zero and then finds itself in state j at ruin time τx.

By construction, the surplus process defined in (2.3.1) encompasses previously exist-

ing models, among others, when N = 1, (2.3.1) becomes the Lévy insurance risk process

studied in Biffis and Morales (2010) and Biffis and Kyprianou (2010) and φ(w;x; q) is

the standard EDPF or Gerber-Shiu function as introduced in Gerber and Shiu (1998).

Just like in these cases where the risk process is driven by a spectrally positive Lévy

process, the problem of giving an expression for the MEDPF (2.3.3) can be reformu-

lated in terms of a first-exit problem for the process Y in (2.3.1). This implies that

some of the standard notions of potential theory need to be extended in this new setting

where Y is a MAP.

Thus, we must define the q-bivariate potential measure matrix U (q)
x for a spectrally

positive Markov additive process (J, Y ) killed on exiting (−∞, x].

Definition 2.3.2. The q-bivariate potential measure matrix U (q)
x for a Markov additive

process (J, Y ) is a matrix whose (i, j)-th entries are given by

U (q)
x (i, j, dy) =

∫ ∞
0

e−qtdtPi(Yt ∈ dy, τx > t ; Jt = j), (2.3.4)
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for q ≥ 0.

This definition mimics the concept of q-potential measure as found in potential

theory of Lévy processes [Kyprianou (2006)] and it will be key in our analysis of the

MEDPF (2.3.3). For the sake of consistency, we also use the convention that U (0)
x = Ux

is the potential measure matrix of (J, Y ) killed on exiting (−∞, x].

Notice that when S is a singleton (N = 1) the process (Yt) becomes a spectrally

positive Lévy process and its properties and all above definitions reduce to those given

in Bertoin (1996) and Kyprianou (2006).

Now, let us define the running supremum and the running infimum of a given

process Y , respectively, by

Y t := sup
0≤s≤t

Ys , Y t := sup
0st

Ys .

Then, just like in the single state case (N = 1), we can write the q-potential mea-

sure (2.3.4), for any independent exponentially distributed random variable eq with

parameter q > 0, as

U (q)
x (i, j, dy) = 1

q
Pi(Yeq ∈ dy, Y eq ≤ x ; Jeq = j) , (2.3.5)

where i, j ∈ S and y ∈ R.

Moreover, if a density for U (q)
x (i, j, dy) exists with respect to Lebesgue’s measure

for each x ≥ 0, then we call it the bivariate potential density and label it u(q)
x (i, j, y),

with u
(0)
x = ux. Note that u(q)

x (y) is the potential density matrix of U (q)
x (i, j, y) with

(i, j)-th elements given by u(q)
x (i, j, y). When N = 1 and then Y is spectrally positive

Lévy process, it turns out that not only does a potential density exist, but it can be

written in semi-explicit terms [see Theorem 8.7. in Kyprianou (2006)]. In general, the

q-potential measure U (q)
x cannot be readily identified but only in a few special cases.

Analogously, we define the q-bivariate potential measure matrix without killing for

(J, Y ) as the matrix U (q)(.) with (i, j)-th entries U (q)(i, j, .) given by

U (q)(i, j, dy) =
∫ ∞
0

e−qtdtPi(Yt ∈ dy ; Jt = j). (2.3.6)

Further, we denote by Û (q)(β) the Laplace transform of U (q), given by

Û (q)(β) =
∫

R
e−βyU (q)(dy), (2.3.7)

where (2.3.7) must be understood as the matrix whose (i, j)-th entries are given by∫
R
e−βyU (q)(i, j, dy) ,
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for β ≥ 0.

We can identify the q-bivariate potential measure matrix via its Laplace transfor-

mation Û (q)(β). Indeed, with the help of Fubini’s theorem we have that∫
R
e−βyU (q)(dy) =

∫ ∞
0

e−qtdtE[exp(−βYt); Jt] =
∫ ∞
0

e−qteF (β)tdt, (2.3.8)

where F is the matrix cumulant generating function (2.2.11) of the net aggregate claims

process (J, Y ).

By the previous equality, we note that Û (q)(β) is a resolvent [see Theorem 1.43 in

El-Maati (2005)] and hence equal to

Û (q)(β) = (qI − F (β))−1 , (2.3.9)

where β < φ(q). This gives a characterization of U (q) in terms of its Laplace transform.

Notice that an analogous characterization is not available for the q-potential measure

killed at exit U (q)
x .

The model in (2.3.1) is a MAP and all the results from the previous section apply.

This allows us to give a more detail analysis of the associated MEDPF (2.3.3). As we

discuss in a previous section, the Lévy system of a MAP contains all relevant infor-

mation about how jumps occur which, as it turns out, is a key element in our study

of (2.3.3). Another key element is the so-called potential measure (2.3.4) of a MAP

killed at exit. In the following sub-section, we give a preliminary result that specifies

the Lévy system for the net aggregate claim process Y in (2.3.1). This will allow us to

finally write an expression for the MEDPF (2.3.3) in terms of the Lévy system and the

q-potential measure killed at exit of the net aggregate process Y in (2.3.1).

2.3.1. Lévy system for a MAP risk process

In the following theorem, we shall characterize the transition kernel L for the

spectrally positive Markov additive process (J, Y ) representing the aggregate claims

in (2.3.1). This is the first main result of this paper.

Theorem 2.3.1. Consider the spectrally positive Markov additive process (J, Y ) given

in the definition of the risk process (2.3.1) and let (qi,j , Bi,j , σi, ai, νi)i,j∈S be the char-

acteristics of such a process. Then the following transition kernel L, from (S,S) into

(S× R+,S × B(R)),

L(i, {j}, du) = νi(du)1{i=j} + qi,jBi,j(du)1{i 6=j} , i, j ∈ S , and u ∈ (0,∞) ,

(2.3.10)
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is the Lévy kernel of (J, Y ) in the sense of Theorem 2.2.1.

Proof. Since (J, Y ) is a MAP, by Theorem 2.2.1, we have the existence of a Lévy

kernel from (S,S) into (S×R+,S ×B(R)). Now, a Lévy kernel only takes into account

the information contained in the jump sizes of Y and so, in order to identify it, we only

need to verify that (2.3.10) is such that

Ei
[ ∑

0<s≤T
f(Js− , Js, Ys − Ys−)1{Jt− 6=Jt}∪{Yt− 6=Yt}

]

= Ei
[ ∫ T

0
ds

∫
S×(0,∞)

L(Js, dz, du)f(Js, z, u)
]
, i ∈ S , (2.3.11)

for any given function f ∈ S × S × B(R+)/B(R).

Since S is finite, (2.3.11) is equivalent to

Ei
[ ∫ T

0
ds
∑
j∈S

∫
(0,∞)

L(Js, {j}, du)f(Js, z, u)
]

= Ei
[ ∫ T

0
ds
∑
j∈S

∫
(0,∞)

L(Js, j, du)f(Js, j, u)
]
, (2.3.12)

where, if we allow for an abuse of notation, we write L(i, j, du) to denote L(i, {j}, du),

for any i, j ∈ S and u ∈ (0,∞).

Now, the proof consists in identifying the kernel L(du) in (2.3.12) as the matrix

with (i, j)-th element given by (2.3.10). In order to do this, we make use of the path

decomposition of Y in terms of Y (1) and Y (2) as given by (2.2.8).

In light of decomposition (2.2.8) we can write the process Y as the sum Y (1) +Y (2).

Now, because each jump of Y (2) belongs to J and they can not coincide with the jumps

of Y (1), we can write for any i ∈ S,

Ei
[ ∑

0<s≤T
f(Js− , Js, Ys − Ys−)1{Jt− 6=Jt}∪{Yt− 6=Yt}

]
= Ei

[∑
z∈S

∑
0<s≤T

f(Js− , z, Y (1)
s − Y (1)

s− )1{Js−=z}1{Js=z}1{Y (1)
s −Y

(1)
s−

>0}

]
+Ei

[∑
z∈S

∑
0<s≤T

f(Js− , z, Y (2)
s − Y (2)

s− )1{Js− 6=z}1{Js=z}1{Y (2)
s −Y

(2)
s−

>0}

]
.(2.3.13)

We now analyze each term in the right-hand side of Equation (2.3.13) starting with

the first term. Recall from Section 2.2.2 that the pair (J, Y (1)) is a Markov additive

process and therefore, Y (1) is a conditionally additive process given FJ = σ(Js, s ≥ 0).

Because Y (1) is a conditionally additive process then first term on the right-hand of
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Equation (2.3.13) can then be written as [see Section I in Itô (2004) or Section IV in

Cont and Tankov (2004)],

Ei
[∑
z∈S

( ∫ T

0

∫
(0,∞)

f(z, z, u)1{Js−=z}N(ds, du)
]
, (2.3.14)

where N(ds, du) is the Poisson random measure

N((0, t], A) =
∑
s∈(0,t]

1{Y (1)
s −Y

(1)
s−
∈A} , A ∈ B(R) ,

having intensity measure given by dt × νJt(du) at (t, u) . In other words, this is the

Poisson random measure of Y (1) given FJT = σ(Js, 0 ≤ s ≤ T ) which allows us to finally

write the first term in Equation (2.3.13) as

Ei
[∑
z∈S

( ∫ ∞
0

ds

∫
(0,∞)

f(z, z, u)νz(du)1{Js=z}
]
. (2.3.15)

As for the second term in the right-hand side of equation (3.5.20), recall from

Section 2.2.2 that the pair (J, Y (2)) is also a Markov additive process and therefore,

Y (2) is a conditionally additive process given FJ . Therefore, it can be written as

Ei
[∑
z∈S

(
Ei
[ ∑
s≤T

f(Js− , z, Y (2)
s − Y (2)

s− )1{Js− 6=z}1{Js=z}1{Y (2)
s −Y

(2)
s−

>0}

∣∣FJ)]
= Ei

[ ∑
s≤T

∫
(0,∞)

f(Js− , Js, u)1{Js− 6=Js}BJs− ,Js(du)
)]
. (2.3.16)

The last equality in equation (2.3.16) follows from the fact that, at a given jump time

ξ of J , the process Y (2) jumps by an amount whose conditional distribution, given FJ ,

is of the form BJs− ,Js(.).

Now, recall from (2.2.6) of Theorem 2.2.1 that the process J has itself a Lévy kernel,

this means that there exists a kernel Λ from (S, S) into itself satisfying,

Ei
[ ∑
s≤T

g(Js− , Js)1{Js− 6=Js}
]

= Ei
[ ∫ T

0
ds
∑
z∈S

Λ(Js, {z})g(Js, z)
]
, (2.3.17)

for any non-negative Borel measurable function g defined on S× S.

By using the previous equation for g(Js− , Js) =
∫
(0,∞) f(Js− , Js, u)1{Js− 6=Js}BJs− ,Js(du),

we can write (2.3.16) as,

Ei
[∑
z∈S

( ∫ ∞
0

ds

∫
(0,∞)

f(Js, z, u)1{Js 6=z}Λ(Js, {z})BJs,z(du)
)]
. (2.3.18)
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The rest of the proof focuses in identifying the Lévy kernel Λ(j, {z}) in terms of the

entries of the intensity matrix of J . In fact, we will show that the kernel Λ(j, {z}) = qj,z

(j, z ∈ S) is the Lévy kernel of J in the sense that it satisfies (2.3.17).

In order to do this, we follow a similar argument as the one in Watanabe (1964).

First, we need to prove that qj,z (j, z ∈ S) satisfies

Ei
[ ∑
s≤T

g(Js− , Js)1{Js− 6=Js}
]

= Ei
[ ∫ T

0
ds
∑
z∈S

qJs,zg(Js, z)
]
, (2.3.19)

for any given non-negative Borel measurable function g, defined on S× S, such that

g(y, z) =
∑
j∈S

gj(y)1{z=j} , gj ∈ C(S) , (2.3.20)

where C(S) is the set of bounded and continuous function on S. It is clear that any

arbitrary Borel measurable function f on S× S can be approximated with a sequence

of simpler functions of the form in (2.3.20). Then the statement in (2.3.19) can be

extended for an arbitrary Borel measurable function using a standard limiting argument

and dominated convergence.

Hence, let us start by defining a sequence of stopping times for any ε > 0,

σε1 = inf(s > 0, |Js − Js− | > ε) ,

and

σεn+1 = σεn + inf(s > σεn, |Js − Js− | > ε) ,

for n ≥ 1. These are nothing but an ordered sequence of times at which the process J

has jumps larger than ε and the following equality holds

Ei
[ ∑
s≤T

g(Js− , Js)1{|Js−Js− |>ε}
]

= Ei
[ ∑
σεn≤T

g(Jσε−n , Jσεn)
]
, (2.3.21)

for any given ε > 0.

Notice that when ε → 0, the sequence {σεn}n≥0 coincides with the jump times of

J . Now, let us define a second sequence of stopping times slightly less refined than

the first one. For η > 0 let {τ (η)
m }m∈N be a sequence of stopping times for every j ∈ S

defined by

τ
(η)
0 = 0 ,

and

τ (η)
m = inf(t > τ

(η)
m−1|gj(Jt)− gj(Jτ (η)

m−1
)| > 1

2η
).
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Notice that this is also an ordered sequence of times at which the process J has jumps

larger than 1/2η as measured by the function g. This new sequence of stopping times

is such that when η →∞ it also coincides with the jump times of J .

It is a straight-forward exercise to show that, for every j (a.s.) and for every

s, t ∈
[
τ

(η)
m−1, τ

(η)
m
)
,

|gj(Jt)− gj(Js)| ≤
1
η
. (2.3.22)

Using (2.4.17), we can now see that, for every j∣∣∣ ∑
σεn≤T

gj(Jσε−n )1{Jσεn=j} −
∑

τ
(η)
m ≤T

gj(Jτ (η)
m−1

)
∑

τ
(η)
m−1<σ

ε
n≤τ

(η)
m

1{Jσεn=j}

∣∣∣ ≤ 1
η

∑
σεn≤T

1{Jσεn=j} .

(2.3.23)

Now, for a fix i ∈ S, it follows from (2.3.23), from the asymptotic behavior of the

sequences {σεn}n∈N and {τηm}m∈N and from the dominated convergence theorem that

we can write

Ei
[ ∑
s≤T

g(Js− , Js)1{Js 6=Js−}
]

= lim
η→∞,ε→0

∑
j∈S

Ei
[ ∑
τ

(η)
m ≤T

gj(Jτ (η)
m−1

)
∑

τ
(η)
m−1<σ

ε
n≤τ

(η)
m

1{Jσεn=j}
]

=
∑
j∈S

Ei
[

lim
η→∞

∑
τ

(η)
m ≤T

gj(Jτ (η)
m−1

)1{J
τ

(η)
m

=j}
]

=
∑
j∈S

Ei
[

lim
η→∞

∑
τ

(η)
m ≤T

gj(Jτ (η)
m−1

)Ei
[
1{J

τ
η
m

=j}|Jτ (η)
m−1

]]

=
∑
j∈S

Ei
[

lim
η→∞

∑
τ

(η)
m ≤T

gj(Jτ (η)
m−1

)Pi(Jτ (η)
m

= j|J
τ

(η)
m−1

)
]

=
∑
j∈S

Ei
[

lim
η→∞

∑
τ

(η)
m ≤T

gj(Jτ (η)
m−1

)qJ
τ

(η)
m−1,j

(τ (η)
m − τ (η)

m−1)
]
,

(2.3.24)

for any function g of the form (2.3.20). In the last equality, we have used the description

of transition probability in terms of intensity matrix elements. That is, in infinitesimal

terms we have that the probability of a transition from Js to j before s+ ds is qJs,jds

and we can write

Pi(Jτ (η)
m

= z|J
τ

(η)
m−1

= y) = qy,z(τ (η)
m − τ (η)

m−1)

on Js 6= z as η goes to ∞. In standard o(.) notation, this means that the probability

of transition to j before t+ h is qJs,jh+ o(h) [see Section II-3 in Asmussen (2003) for

details].



55

The term inside the expectation in equation (2.3.24) is a Riemann sum and so

letting η →∞ we can write

Ei
[ ∑
s≤T

g(Js− , Js)1{Js 6=Js−}
]

=
∑
j∈S

Ei
[ ∫ T

0
gj(Js)qJs,jds

]

= Ei
[ ∫ T

0

∑
j∈S

gj(Js)qJs,jds
]

= Ei
[ ∫ T

0
ds
∑
z∈S

qJs,zg(Js, z)
]
, (2.3.25)

for any function g of the form (2.3.20) and all i ∈ S. Using a standard limiting argument,

equation (2.3.25) can be extended from the space of functions of the form (2.3.20) to

the space of all Borel measurable functions on S× S. In order to conclude it is enough

to compare equation (2.3.25) against (2.3.17) so we can readily identify the kernel Λ

for the process J

Now, by a straight-forward substitution of Λ(Js, {z}) = qJs,z, equation (2.3.18) can

be written as,

Ei
[∑
z∈S

( ∫ T

0
ds

∫
(0,∞)

f(Js, z, u)1{Js 6=z}qJs,zBJs,z(du)
)]
. (2.3.26)

Finally, we now can substitute equations (2.3.15) and (2.3.26) into (3.5.20) yielding

Ei
[ ∑
s≤T

f(Js− , Js, Ys − Ys−)1{Jt− 6=Jt}∪{Yt− 6=Yt}
]

= Ei
[∑
z∈S

( ∫ T

0
ds

∫
(0,∞)

f(Js, z, Ys, Ys− + u)νz(du)1{Js=z}
]

+Ei
[∑
z∈S

( ∫ T

0
ds

∫
(0,∞)

f(Js, z, u)1{Js− 6=z}qJs,zBJs,z(du)
)]

= Ei
[∑
z∈S

( ∫ T

0
ds

∫
(0,∞)

f(Js, z, u)
[
νz(du)1{Js=z} + qJs,zBJs,z(du)1{Js 6=z}

])]
.

(2.3.27)

This shows that the transition kernel L in (2.3.10) can be identified to be the Lévy

kernel of (J, Y ); where L(du) is to be understood as the matrix with (i, j)-th element

given by (2.3.10). �
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2.3.2. Joint law under a change of measure

At this point, we recall that the main objective of this paper is to write an expression

for the MEDPF in (2.3.3) and so from now on we work under an infinite-time horizon

T =∞. But before we can write out such an expression we need one more intermediate

result that has to do with the change of measure defined through the density process

in (2.2.15).

Consider a spectrally positive MAP (J, Y ) representing the aggregate claims in

(2.3.1). In particular, we can define a new probability measure through

dPΦ(q)
i

dPi

∣∣∣
Ft

= e−Φ(q)Yt−qthJt(Φ(q))
hi(Φ(q))

, (2.3.28)

where Φ(q) the right inverse of κ defined in (3.3.21).

Moreover, recall from Section 2.2.2, that under PΦ(q)
i the process (J, Y ) in (2.3.1), is

still spectrally positive MAP drifting to −∞. Let τx be the ruin time (3.2.5) of the MAP

risk process (2.3.1). Notice that, on {Jτ−x = Jτx} (a.s.), either x−Yτ−x = Yτx −x = 0 or

x− Yτ−x > 0 and Yτx − x > 0. In the case of downward creeping across x, i.e. the case

when {x− Yτ−x } = {Yτx − x = 0}, this only occurs when the first passage of Y across x

is due to the continuous additive component of Y [see Çinlar (1975)].

In the following theorem, we shall characterize the triple law of (Jτ−x , x−Yτ−x , Yτx−x)

under the probability measure PΦ(q)(.; Jτx) in terms in terms of q- bivariate potential

measure matrix and the Lévy kernel L associated with the net aggregate claims process

in (2.3.1).

Recall that in Theorem 2.3.1 we have identified the transition kernel matrix L of

(J, Y ) in terms of its characteristics introduced in Section 2.2.2 and that L(du) should

be understood as the matrix of (i, j)-th element given by (2.3.10). In light of which,

the following theorem is a somewhat explicit characterization of this triple law in terms

of the q-potential measure (2.3.4) and notions introduced in Section 2.2.2 for spectrally

positive MAP’s. This would be the second main contribution of this paper that extends

similar results in Biffis and Kyprianou (2010).

Theorem 2.3.2. Let (J, Y ) the spectrally-positive Markov additive process described in

2.3.1 and let L denote its associated Lévy kernel as given in Theorem 4.2.3. Then, for

q , x ≥ 0 and i ∈ S, the double law of (x − Yτ−x , Yτx − x) under the probability measure

PΦ(q)(.; Jτx) is given by
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PΦ(q)(x− Yτ−x ∈ dv, Yτx − x ∈ du; Jτx)

= ∆−1
h(Φ(q))e

−Φ(q)(x+u)U (q)
x (x− dv)L(v + du)∆h(Φ(q)) , (2.3.29)

for u > 0 and v ≥ 0.

The q-bivariate potential measure U (q)
x (x − dv) and the Lévy kernel L(v + du) are

respectively the matrices with (i, j)-th entries given by

U (q)
x (i, j, x− dv) and L(i, j, du+ v),

for each i, j ∈ S. Moreover, we write ∆h(φ(q)) to denote diagonal matrix with with

entries {hi(Φ(q))}i∈S.

Proof. The idea of the proof is to derive an expression for

EΦ(q)
i

[
f(x− Yτ−x , Yτx − x); Jτx = j

]
,

for any given function f and from where we can readily identify the probability measure

PΦ(q)(. ; Jτx).

Let f be an arbitrary positive Borel measurable function on S×R+×R+ such that

f(., 0) = 0. Using the density process (2.3.28) we can write, for any i, j ∈ S,

EΦ(q)
i

[
f(x− Yτ−x , Yτx − x); Jτx = j

]
(2.3.30)

= Ei
[
eΦ(q)(Yτx )−qτx hj(Φ(q))

hi(Φ(q))
f(x− Yτ−x , Yτx − x); Jτx = j

]
(2.3.31)

= Ei
[∑
s>0

eΦ(q)(Ys−+∆Ys)−qshj(Φ(q))
hi(Φ(q))

1{Y s−≤x,Ys−+∆Ys>x}

×f(x− Ys− , Ys− + ∆Ys − x)1{Js=j}
]
. (2.3.32)



58

Now, using Theorem 2.3.1, equation (2.3.32) can be written as

hj(Φ(q))
hi(Φ(q))

Ei
[ ∫ ∞

0
e−qsds

∫
(0,∞)

1{Y s≤x,Ys+y>x}e
−Φ(q)(Ys+y)L(Js, j, dy)

×f(Js, x− Ys, Ys + y − x)
]

(2.3.33)

= hj(Φ(q))
hi(Φ(q))

Ei
[ ∫ ∞

0
e−qsds

∫
(0,∞)

1{τx>s,Ys+y>x}e
−Φ(q)(Ys+y)L(Js, j, dy)

×f(x− Ys, Ys + y − x)
]

(2.3.34)

= hj(Φ(q))
hi(Φ(q))

∫ ∞
0

e−qsds

∫
R×(0,∞)

1{z≤x,z+y>x}
∑
k∈S

Pi(Ys ∈ dz, τx > s, Js = k)

×e−Φ(q)(z+y)L(k, j, dy)f(x− z, z + y − x) . (2.3.35)

If we now make the following change of variables u = z + y − x and v = x − z, then

(2.3.35) can be written as

hj(Φ(q))
hi(Φ(q))

∑
k∈S

∫
R×R

1{z≤x,z+y−x>0}e
−Φ(q)(x+u)U (q)

x (i, k, dz)

×L(k, j, dy)f(x− z, z + y − x) (2.3.36)

=
∫
[0,∞)×R

1{v≥0,u>0}f(v, u)hj(Φ(q))
hi(Φ(q))

e−Φ(q)(x+u)∑
k∈S

U (q)
x (i, k, x− dv)

×L(k, j, du+ v) . (2.3.37)

We have shown that the expectation (2.3.30) can be written as the integral in (2.3.37)

for any arbitrary function f . Since hj(Φ(q))
hi(Φ(q))

∑
k∈S U

(q)
x (i, k, x− dv)L(k, j, du+ v) are the

(i, j)-entries of ∆−1
h(Φ(q))U

(q)
x (x − dv)L(du + v)∆h(Φ(q)), the statement of the theorem

follows. �

2.3.3. Expected discounted penalty function for a MAP risk process

In this section, we are finally in a position to present the third and main contribution

of this paper. In the following theorem, we give an expression for the MEDPF defined

by (2.3.3). This expression is given in terms of the q-bivariate potential measure and

the Lévy kernel associated with the Markov additive aggregate net claim process (J, Y )

in (2.3.1). Recall that w is a non-negative Borel measurable function from R+ × R+

such that w(., 0) = 0.

Theorem 2.3.3. Consider the risk model in (2.3.1) where the net aggregate claims

process is described by a spectrally-positive Markov additive process (J, Y ). For q ≥ 0,



59

the MEDPF φ(w; q;x), as introduced in Definition 2.3.3, is given by,∫
[0,∞)

∫
(0,∞)

w(v, u)U (q)
x (x− dv)L(du+ v) , x ≥ 0 .

This is, the MEDPF itself is a matrix with the (i, j)-th entry given by,

∑
k∈S

∫
[0,∞)

∫
(0,∞)

1{v≤x}w(v, u)U (q)
x (i, k, x−dv)

[
νk(du+v)1{k=j}+qk,jBk,j(du+v)1{k 6=j}

]
.

Proof. Let w a positive Borel measurable function on R+×R+ such that w(., 0) = 0.

Using the density process (2.3.28) we can write, for any i, j ∈ S, the (i, j)-th entry of

MEDPF as

φ(w; q;x)i,j = Ei
[
e−qτxw(x− Yτ−x , Yτx − x)1{τx<∞}; Jτx = j

]
(2.3.38)

= hi(Φ(q))
hj(Φ(q))

EΦ(q)
i

[
eΦ(q)Yτxw(x− Yτ−x , Yτx − x)1{τx<∞}; Jτx = j

]
(2.3.39)

= hi(Φ(q))
hj(Φ(q))

∫
[0,x]×(0,∞)

w(v, u)eΦ(q)(x+u)

×PΦ(q)
i (x− Yτ−x ∈ dv, Yτx − x ∈ du; Jτx = j) .

If we now use Theorem 2.3.2, we can write an explicit form for the probability

PΦ(q)(.; Jτx) yielding

φ(w; q;x)i,j =
∑
k∈S

∫
[0,∞)×(0,∞)

w(v, u)U (q)
x (i, k, x− dv)L(k, j, du+ v)

=
∫
[0,∞)

∫
(0,∞)

w(v, u)
∑
k∈S

U (q)
x (i, k, x− dv)

[
νk(du+ v)1{k=j}

+ qk,jBk,j(du+ v)1{k 6=j}
]
.

�

2.4. Scale and potential measure matrices

The results in Theorems 2.3.1 and 2.3.3 are very general statements that give ex-

pressions for the MEDPF. However these expressions are not explicit enough since they

are given in terms of the q-potential measure U (q)
x . One of the main issues lies in iden-

tifying this q-potential measure U (q)
x that appears in all expressions of the MEDPF.

In this section we study this question in more detail using the concept of scale matrix

for MAP’s introduced in Kyprianou and Palmowski (2008) and Ivanovs and Palmowski

(2011).
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In this section we consider a risk model defined in (2.3.1). Recall that the net aggre-

gate claims process Y is a spectrally positive MAP with characteristics (qi,j , Bi,j , σi, ai, νi)i,j∈S

as defined in Section 2.2.2. Formally speaking, consider a spectrally positive Markov

additive processes (J, Y ) as defined in Section 2.2.2 and let Y (1) and Y (2) denote the

two elements in the path decomposition (2.2.8). Recall that the second term Y (2), as

defined in (2.2.10), contains the jumps that occur at jump times of the Markov chain

J and which are determined by a sequence of positive i.i.d random variables denoted

by {U (i,j)
n }n>0 for every i, j ∈ S. Let us denote with T

(i,j)
n the n-th jump time of J

from state i to state j. These form a family of sequences of jump times {T i,jn }n>0 of J

indexed by any two i, j ∈ S.

It turns out that for this model, we can work out expressions for the q-potential

matrix measure killed at exit. In this section, we characterize the bivariate potential

measure given by (2.3.4) for a spectrally-positive Markov additive process. These results

are based on recent contributions on fluctuations and exit problems for Markov additive

processes developed in Kyprianou and Palmowski (2008), and Ivanovs and Palmowski

(2011). But before we can characterize the q-potential measure matrix U (q)
x defined in

(2.3.4) for this family of processes, we need to introduce further notation concerning

the time reversal version of a MAP (J, Y ) and its intensity matrix under a change of

measure.

In the remaining of the section we base our discussion on results from Kyprianou

and Palmowski (2008). Let (Ĵ , Ŷ ) denote the time-reversed version of the process (J, Y )

from a fixed time t in the future when J has the stationary distribution π. Formally,

for a fixed t,

Ĵs := J(t−s)− and Ŷs = Yt − Y(t−s)− , 0 ≤ s ≤ t ,

under Pπ =
∑
i∈S πiPi

The time-reversed process (Ĵ , Ŷ ) is a MAP and we denote its characteristics by using

a hat over the existing notation for the characteristics of (J, Y ), i.e. (q̂i,j , B̂i,j , σ̂i, âi, ν̂i)i,j∈S.

Moreover, we recall that the intensity matrix Q̂ of Ĵ can be written in terms of the

original matrix Q as follows [see Kyprianou and Palmowski (2008)]

Q̂ = ∆−1
π QT∆π ,

where ∆π is the diagonal matrix whose entries are given by the vector of stationary

probabilities π and QT denotes the transpose of the matrix Q. It is a straight-forward
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exercise to verify that the cumulant matrix F̂ (α) of Ĵ can be written in terms of the

original cumulant matrix (2.2.11) as follows

F̂ (α) = ∆−1
π F (α)T∆π .

Let (−Y, J) denotes the spectrally negative MAP. The first passage time of −Y over

level x, where x ≥ 0, is defined by

τ̂x = inf{t ≥ 0; −Yt > x}.

We denote the intensity matrix of J with Λ which satisfies

P[Jτ̂x ] = eΛx.

We also know that under the change of measure defined through the density process

(2.2.15), a MAP remains within the same class of processes. Thus, under PΦ(q), we

denote the intensity matrix of J and Ĵ respectively with Λq and Λ̂q for q ≥ 0. For

more details about properties of the intensity matrix under time-reversal and changes

of measure we refer to Asmussen (2003).

2.4.1. Scale matrix

We first turn our attention to the concept of scale matrix. From Kyprianou and

Palmowski (2008), there exists a unique continuous function W : [0,∞) −→ RN × RN

such that W (x) is invertible for all x > 0,∫ ∞
0

e−αxW (x)dx = F (α)−1 (2.4.1)

for sufficiently large α. In addition,

W (x) = e−ΛxL(x) , (2.4.2)

where L(x) is a matrix of expected occupation times at 0 up to the first passage over x.

Definition and properties of L(x) can be found in Section 4 of Ivanovs and Palmowski

(2011). Note that L(x) tends to L, the matrix of expected occupation times at 0,

as x −→ ∞. W (x) is called the scale matrix associated with the spectrally-negative

Markov additive process −Y and the probability measure P.

We interpret WΦ(q)(x) to be the scale matrix associated with (−Y,PΦ(q)), which is

characterized by its Laplace transform∫ ∞
0

e−αxWΦ(q)(x)dx = FΦ(q)(α)−1, (2.4.3)
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for sufficiently large α.

Let us introduce the q-scale matrix which is denoted by W (q)(x) and given by

W (q)(x) = ∆h(Φ(q))e
Φ(q)xWΦ(q)(x)∆−1

h(Φ(q)). (2.4.4)

By a simple manipulation of (2.4.3) and (2.4.4), the Laplace transform of q-scale matrix

is ∫ ∞
0

e−αxW (q)(x)dx = (F (α)− qI)−1, (2.4.5)

for sufficiently large α. Formally, W (q)(x) is a matrix analogue to the q-scale function

of Lévy process. According to (2.4.2) and (2.4.4), the q-scale matrix can be written as

W (q)(x) = ∆h(Φ(q))e
(Φ(q)I−Λq)xL(q)(x)∆−1

h(Φ(q)), (2.4.6)

where L(q)(x) is the matrix of expected occupation times at 0 to the first passage τ̂x
under the probability PΦ(q). Note that L(q) be the matrix of expected occupation times

under PΦ(q), which is the limit of L(q)(x), as x −→∞.

Let us define the second scale matrix M (q)(x) which is characterized by its Laplace

transform∫ ∞
0

e−αxM (q)(dx) = (F (α)− qI)−1(I− α∆−1
v(Φ(q))

([
Φ(q)I − Λ̂q

]−1)T∆v(Φ(q)))(qI−Q),

(2.4.7)

for sufficiently large α. For x ≥ 0, M (q)(x) is given by [see Theorem 3, Kyprianou and

Palmowski (2008)]

M (q)(x) = E
[
e−qτx ; Jτx

]
. (2.4.8)

Note that the existence and properties of scale matrices W (q)(x) and M (q)(x) are also

given by Theorem 3 of Kyrianou and Palmowski (2008). In the following proposition,

we give M (q)(x) in terms of the q-scale matrix.

Proposition 2.4.1. The matrix M (q)(x) is given by

M (q)(x) = I−
[ ∫ x

0
W (q)(y)dy −W (q)(x)∆h(Φ(q))C(q)

]
(Q− qI) (2.4.9)

and then

M (q)(dx) =
[
−W (q)(x)dx+W (q)(dx)C(q)

]
(Q− qI), (2.4.10)

where C(q) is the matrix given by

C(q) = ∆h(Φ(q))(L(q))−1(Φ(q)I− Λ(q))−1L(q)∆−1
h(Φ(q)). (2.4.11)
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Proof. Note that under PΦ(q), the process Y is still a spectrally positive MAP and

M (q)(x) can be written as

M (q)(x) = eΦ(q)x∆h(Φ(q))E
Φ(q)
−x

[
eΦ(q)Yτ0 ; Jτ0

]
∆−1
h(Φ(q))

= eΦ(q)x∆h(Φ(q))
[
e−Φ(q)xI−

∫ x

0
eΦ(q)yWΦ(q)(y)dy(q −QI)

−WΦ(q)(x)L(q)−1(Φ(q)I− Λ(q))−1L(q)(q −QI)
]
∆−1
h(Φ(q)), (2.4.12)

where in the last equality we have used Corollary 4 in Ivanovs and Palmowski (2011).

By using (2.4.4), the last term reduces to

I−
[ ∫ x

0
W (q)(y)dy −W (q)(x)∆h(Φ(q))C(q)

]
(Q− qI) ,

where C(q) = ∆h(Φ(q))L(q)−1(Φ(q)I− Λ(q))−1L(q)∆−1
h(Φ(q)).

We then finally obtain (2.4.9) and (2.4.10).

�

2.4.2. Identifying the q-potential matrix measure

We can now state a result where we give a more explicit expression for the q-

potential matrix measure U (q)
x in terms of q-scale matrix, this is given in the form

of the following theorem. Recall that eq denotes an independent exponential random

variable with parameter q > 0.

Theorem 2.4.1. Let (J, Y ) be a spectrally-positive MAP. For y ≤ x, the bivariate

potential measure matrix U (q)
x (dy) with (i, j)-th entries defined in (2.3.4), is given by

U (q)
x (dy) =

∫ x

y

[
−W (q)(z)dz +W (q)(dz)C(q)

][
K(q)(dy − z)

]T
, (2.4.13)

where C(q) is the N ×N matrix given by (2.4.11) and K(q) is the density matrix with

Laplace transform∫ ∞
−∞

eαuK(q)(du) = I− α∆v(Φ(q))
[
(Φ(q) + α)I− Λ̂(q)

]−1∆−1
v(Φ(q)) , α ∈ R. (2.4.14)

Proof. Let i, j ∈ S and y ≤ x. From equation (2.3.5) we can write,

U (q)
x (i, j, dy) = 1

q
Pi(Yeq ∈ dy , Y eq ≤ x ; Jeq = j)

= 1
q

∫
[y,x]

∑
k∈S

Pi(Y eq ∈ dz , Y eq − Yeq ∈ z − dy |JGeq = k)

×Pi(Jeq = j |JGeq = k)Pi(JGeq = k) , (2.4.15)
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where

Gt = sup{s < t, Y s = Ys} .

Now, invoking the Weiner-Hopf factorization, specifically using the fact that Yeq −

Y eq and −Y eq are conditionally independent on JGeq
[see Theorem 1 in Klusik and

Palmowski (2011)], we have that

U (q)
x (i, j, dy) = 1

q

∑
k∈S

∫ x

y
Pi(Y eq ∈ dz |JGeq )Pi(Y eq − Yeq ∈ z − dy |JGeq )

×Pi(Jeq = j |JGeq = k)Pi(JGeq = k) . (2.4.16)

By duality and analysis of the time reversed path, we can write,

Pi(Y eq − Yeq ∈ z − dy |JGeq = k) = Pj(−Ŷ eq ∈ z − dy |ĴGeq = k) , (2.4.17)

and

Pk(Jeq−Geq = j) = Pk(Jeq−Geq = j)

= πk
πj

Pk(ĴGeq = j) . (2.4.18)

Hence (2.4.16) is equal to

1
q

∫ x

y

∑
k∈S

Pi(Y eq ∈ dz ; JGeq = k)πkPj(−Ŷ eq ∈ z − dy ; JGeq = k) 1
πj
, (2.4.19)

and then the q-potential matrix can be written as

U (q)
x (dy) = 1

q

∫ x

y
P(Y eq ∈ dz ; JGeq )∆

−1
π P(−Ŷ eq ∈ z − dy ; ĴGeq )

T∆π

= 1
q

∫ x

y
P(Y eq ∈ dz ; Jeq)∆−1

π

[
P(Ŷ eq ∈ dy − z ; Ĵeq)Î(q)−1]T∆π .

(2.4.20)

In the last equality we have used Theorem 1, (ii) of Klusik and Palmowski (2011). In

addition, by comparing (2.4.7) with E[eαY eq ; Jeq ], we deduce that

1
q

P(Y eq ∈ dz ; Jeq) = M (q)(dz)(Q− qI)−1 ; z ≥ 0 , (2.4.21)

and then

U (q)
x (dy) =

∫ x

y
M (q)(dz)(Q− qI)−1∆−1

π

[
P(Ŷ eq ∈ dy − z ; Ĵeq)Î(q)−1]T∆π .

(2.4.22)

Setting

K(q)(dx) = ∆π
[
P(Ŷ eq ∈ dx , Ĵeq)Î(q)

−1]∆−1
π , (2.4.23)
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the density matrix K(q) can be characterized via its Laplace transform as follows [see

Theorem 1, (ii), Klusik and Palmowski (2011)]∫ ∞
−∞

eαyK(q)(dy) = I− α∆v(Φ(q))
[
(Φ(q) + α)I− Λ̂(q)

]−1∆−1
v(Φ(q) . (2.4.24)

Substituting (2.4.10) in (2.4.22), the q-potential matrix measure can be simply written

as

U (q)
x (dy) =

∫ x

y

[
−W (q)(z)dz +W (q)(dz)C(q)

][
K(q)(dy − z)

]T
, (2.4.25)

and the statement of the theorem follows. �

Remark 2.4.1. The results of Proposition 2.4.1 and Theorem 2.4.1 generalize known

expressions for spectrally positive Lévy processes established in Section 8 of Kyprianou

(2006). Moreover, when combined with Theorem 2.3.3, these give more compact and

somewhat more explicit expressions for the EDPF in this setting.

2.4.3. Spectrally-negative risk processes

It is interesting to point out that we can recover well-known results when the number

of states is N = 1, i.e. when the process J is irrelevant. In this case, the process Y is

simply a spectrally-positive Lévy process. Hence, Q = 0 and C(q) = 1
Φ(q) and we have,

with the help of Proposition 2.4.1 that,

M (q)(z) = q

∫ z

0
W (q)(y)dy − q

Φ(q)
W (q)(z). (2.4.26)

It follows that

M (q)(dz) = qW (q)(z)dz − q

Φ(q)
W (q)(dz) , (2.4.27)

where for every q ≥ 0, W (q)(x) : R −→ [0,∞) denotes the so-called q-scale function

for spectrally-negative Lévy process −Y , such that W (q)(x) = 0 for all x < 0 and,

otherwise, is absolutely continuous on (0,∞) satisfying,∫ ∞
0

e−λxW (q)(x)dx = 1
ψ(λ)− q

, for λ > Φ(q) , (2.4.28)

where ψ(λ) = log E(e−λY1) and Φ(q) becomes simply the largest solution to the equation

ψ(θ) = q [for a review on this subject, see Chapter 8 in Kyprianou (2006) and Kyprianou

et al. (2011)].
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In addition, in this case (N = 1), we have that Λ(q) = Λ̂(q) = 0 and (2.4.14)

reduces to

∫
R
e−αuK(q)(du) = Φ(q)

Φ(q) + α
. (2.4.29)

As a consequence,K(q) is exponentially distributed with parameter Φ(q) and it coincides

with the distribution of −Y eq . By using (2.4.27), we may develop further the expression

for (2.4.13) as follows,

U (q)
x (dy) =

( ∫ x

y
e−Φ(q)zW (q)(dz)− Φ(q)W (q)(z)dz

)
eφ(q)(y)dy

=
[
e−Φ(q)xW (q)(x)− e−Φ(q)yW (q)(y)

]
eφ(q)(y)dy

=
[
e−Φ(q)(x−y)W (q)(x)−W (q)(y)

]
dy. (2.4.30)

This shows that there exists a density, u(q)
x (y), for the measure U (q)

x (dy) and that it is

given by

u(q)
x (y) = e−Φ(q)(x−y)W (q)(x)−W (q)(y) , (2.4.31)

as expected.

As we have seen, when the process Y is a spectrally-positive Lévy process, we can

give more detailed expressions for the q-potential measure U (q) and for the Lévy kernel

L. In this case, Theorems 2.3.2 and 2.3.3 reduce to well-known results in the literature

for spectrally-negative Lévy risk processes [see Biffis and Kyprianou (2010) and Biffis

and Morales for results on the EDPF for spectrally-negative Lévy risk processes].

Indeed, if S is a singleton then the q- potential measure defined in (2.3.4) becomes

U (q)
x (dy) =

∫ ∞
0

e−qtdtP(Yt ∈ dy, τx > t) ,

and the Lévy kernel is simply given by

L(dy) = ν(dy) ,

where ν is the Lévy measure of Y .

In this special case, recall that there is a version of the density of the measure

U
(q)
x (dy) that we denote with u(q)

x (s) given by (2.4.31). Then, the MEDPF in Theorem
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3.4.1 reduces to the EDPF and can be written as

φ(w, q, x) = E
[
e−qτxw(x− Yτx−, Yτx − x)1{τx<∞}]

=
∫
[0,∞]

∫
(0,∞)

w(v, u)U (q)
x (x− dv)ν(du+ v)

=
∫
[0,∞]

∫
(0,∞)

w(v, u)u(q)
x (x− v)ν(du+ v)dv . (2.4.32)

We know that from (2.4.31) the density u(q)
x can be given in terms of the so-called scale

function.

After substituting (2.4.31) in (2.4.32), the EDPF can be written out in terms of the

q-scale functions W (q) as follows,

φ(w, q, x) =
∫ ∞
0

∫ ∞
0

w(v, u)
[
e−φ(q)vW (q)(x)−W (q)(x− v)

]
ν(du+ v)dv. (2.4.33)

The identity (3.4.11) is given in a more general form in Biffis and Kyprianou (2010),

when the EDPF also includes the size of the last minimum before ruin x− Y τx−.

2.5. Conclusion

In this paper we have studied a risk model driven by a spectrally-positive Markov

additive process. The motivation is that such a model is no longer time-homogeneous

and it allows for market conditions changing over the long term. This is modeled via

a background finite-state continuous in time Markov chain that represents different

macroeconomic scenarios. For such a model, we derive expressions for the Expected

Discounted Penalty Function (EDPF) in terms of the characteristics and the q-potential

measure of the risk processes. This is a first step towards obtaining tractable examples

for which the EDPF can be computed. The main contributions of this paper are found

in Theorems 2.3.1, 2.3.2 and 2.3.3. These three results give expressions for the EDPF in

a Markov additive process setting. The expressions are not completely explicit and so

we have studied further the problem of identifying q-potential measure. This is another

contribution that can be found in Theorem 2.4.1. In all, further work is needed in order

to study the numerical tractability of these results and to identify examples for which

these expressions can be computed with ease.





Chapter 3

ON A GENERALIZATION OF THE EXPECTED

DISCOUNTED PENALTY FUNCTION TO INCLUDE

DEFICITS AT AND BEYOND RUIN

Abstract

In this chapter we propose an extended concept of the expected discounted penalty

function (EDPF) that takes into account new ruin-related random variables. We add

to the EDPF, which was introduced in classical papers [Gerber and Shiu (1997), (1998)

and Gerber and Landry (1998)], a sequence of expected discounted functions of new

record minima reached by a jump of the risk process after ruin. Inspired by results of

Huzak et al. (2004) and developpements in fluctuation theory for spectrally negative

Lévy processes, we provide a characterization for this extended EDPF in a setting

involving a cumulative claims modelled by a subordinator, and Brownian perturbation.

We illustrate how the extended EDPF can be used to compute the expected discounted

value of capital injections (EDVCI) for Brownian perturbed risk model.

3.1. Introduction

The concept of Expected Discounted Penalty Function (EDPF) has been introduced

in classical papers [Gerber and Shiu (1997), (1998)]. This so-called Gerber-Shiu function

is a functional of the ruin time (i.e., the first time the reserve level of a firm becomes

negative), the surplus prior to ruin, and the deficit at ruin. The EDPF has been

extensively studied and generalized to various scenarios and there is now a wide range

of models for which expressions of the EDPF are available. Since the EDPF operates

on a random cashflow at ruin, where the cashflow is a function of the deficit at ruin and

the surplus prior to ruin, applications in the context of insurance and finance are quite
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natural. For example, the EDPF can be used to determine the initial capital required

by an insurance company to avoid insolvency with a minimum level of confidence and

for fixed penalization of the ruin event. Similary, the EDPF can be used as a pricing

device for American options [Gerber and Shiu (1998b)].

In oder to have a more valuable Gerber-Shiu function for the management of in-

surance risks and the monitoring of the solvency of a firm, Biffis and Morales (2010)

extended the EDPF to include path-dependent penalties. In particular, they general-

ized the definition of EDPF to include a new random variable, the last minimum of the

surplus before ruin. They obtained a defective renewal equation for this generalized

EDPF. The representation is obtained for a subordinator risk model perturbed by a

spectrally negative Lévy process. More generally, when the risk process is driven by

a spectrally negative Lévy process, Biffis and Kyprianou (2010) provided an explicit

characterization of this generalized EDPF in terms of scale functions, extending results

available in literature. One of the reasons for the limited use of such EDPF is that the

last minimum of the surplus before ruin, the surplus prior to ruin and the deficit at

ruin, only characterize the surplus before and in a neighborhood of the ruin time. In

other words, none of the arguments in the EDPF can be used as a predictive tool for

successive deficit times after ruin. The situation would change if a penalty could apply

after ruin, for example by acting on relevant characteristics of the paths of the risk

process that may lead to successive minima after ruin, and not just on its level before,

at, or immediately prior to ruin.

In this chapter we show how to extend the EDPF to include these new random

variables. In particular, we generalize the EDPF to include the sequence of successive

record minima reached by a jump of the risk process after ruin. We obtain a new form

of EDPF which gives characteristics of the paths of the risk process after ruin and not

only before, and in a neighborhood of, ruin time. There are practical applications of

this extended EDPF in the context of insurance and reinsurance. For example, it can

be used to determine the capital required by an insurance company to survive not only

in the neighborhood of ruin, but also after ruin when the risk process continuous to

jump downwards, that is it continues to pay out claims. Similary, this extended EDPF

can be used by insurance company or government institutions to determine the capital

which should be injected at each deficit time at and after ruin that will allow it to

continue its operations. At the time of ruin, the insurance company could have access

to other reserves allowing it to survive and pay to the customers claims made after
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ruin. It is at this time that the company might need the capital injections that will

allow the net aggregate cash inflow to return to pre-ruin levels. This ruin cycle may

occur several times and requires repeated interventions with capital injections. Thus,

it would be interesting to add to the EDPF the expectation of a sequence of discounted

functions of the successive minima reached by claims of the risk process after ruin.

This extended EDPF is needed to determine the Expected Discounted Value of Capital

Injection (EDVCI) for a subordinator risk model perturbed by a Brownian motion.

Moreover, our approach provides a connection with some of the works in Einsenberg

and Schmidli (2011) where they have studied the EDVCI for the classical risk model.

Consequently, we generalize some results in Einsenberg and Schmidli (2011) where a

similar problem is solved for the classical risk model.

We use the results of Huzak et al. (2004) and developments in fluctuation theory for

spectrally negative Lévy processes to give an explicit characterization of this extended

EDPF. The characterization is obtained for a subordinator risk model perturbed by a

Brownian motion.

The chapter is organized as follows. In Section 3.2, we describe a perturbed subor-

dinator risk model and define our extended EDPF. In Section 3.3 and we review and

provide some results that are needed in our derivations. In particular, we briefly review

some results in Huzak et al. (2004) about fluctuation theory for spectrally negative

Lévy processes, and we give some preliminary results for first-passage times of a sub-

ordinator risk process perturbed by a Brownian motion under a change of measure.

In section 4, we provide the expression of the extended EDPF in terms of convolution

product of densities which are identified in Section 2. In section 5, we show how the

results of section 4 can be used to give explicitly the EDVCI for a subordinator risk

model perturbed by a Brownian motion, and how it can be used to recuperate the ex-

pression of the EDVCI for the classical risk model [see Einsenberg and Schmidli (2011)].

Finally, Section 6 offers some concluding remarks.

3.2. Risk model and the Expected Discounted Penalty Function

Let (Ω,F,P) be a filtered probability space on which all random variables will be

defined. Let us define S = (St)t≥0 to be a subordinator (i.e., a Lévy process of bounded

variation and nondecreasing paths) without a drift. Let ν be the Lévy measure of S;

that is, ν is a σ-finite measure on (0,∞) satisfying
∫
(0,∞)(1 ∧ y)ν(dy) <∞.
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We define the spectrally negative (i.e. a Lévy process with negative jumps) process

X = (Xt)t≥0 as

Xt = ct− St + Zt , (3.2.1)

where Z is a multiple of a standard Brownian motion, we write

Zt = σBt,

with B a standard Brownian motion independent of S. Let F := (Ft)t≥0 be the

filtration obtained by σ(Ss, Bs, s ≥ 0).

We consider a very general setup that generalizes the standard Cramér-Lundberg

model. The model discussed in this paper is,

Rt := x− Yt , t ≥ 0 , (3.2.2)

where Y = (Yt)t≥0 is a spectrally positive Lévy process (i.e. a Lévy process with positive

jumps) defined by Yt = −Xt, where Xt is given by (3.2.1). As introduced previously,

note that the risk process given by

Rt = x+ ct− St + Zt , (3.2.3)

is on the same spirit as the original perturbed model in Dufresne and Gerber (1991).

The constant x > 0 represents the initial surplus, while the process Y represents the

cash outflow of an insurance company. The subordinator S represents cumulated claims,

and this is why we need it to be increasing since the jumps represent claims paid out.

The Brownian motion Z accounts for any fluctuations affecting the components of the

risk process dynamics, such as claims arrivals, premium income and investment returns;

c t represents premium inflow over the interval of time [0, t].

The premium rate c is assumed to satisfy the net profit condition, precisely E[S1] <

c, which requires ∫
(0,∞)

yν(dy) < c . (3.2.4)

The condition in equation (3.2.4) implies that the process Y has a negative drift in

order to avoid the possibility that R becomes negative almost surely. This condition

is often expressed in terms of a safety loading. Indeed, it is standard to write the drift

component within Y as a loaded premium. For instance, notice that we can recuperate

the classical Cramér-Lundberg model if σ = 0 where c := (1 + θ)E[S1] and S is a

compound Poisson process modeling aggregate claims. The drift c, with a positive

safety loading θ > 0, is the collected premium rate. We do not use the concept of safety
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loading in this paper in order to simplify the notation but we stress the fact that this

concept is implicitly considered within the drift of Y when we impose the condition in

equation (3.2.4). The classical compound Poisson model can be incorporated in this

framework by setting ν(dy) = λK(dy), where λ is the Poisson arrival rate and K is a

diffuse claim distribution.

We refer to Asmussen (2000) for an account on the classical risk model, and to

Furrer and Schmidli (1994), Yang and Zhang (2001), Huzak et al. (2004) and Biffis

and Morales (2010) for different generalizations and studies of model (3.2.2).

Now, one of the main objects of interest in ruin theory is the ruin time, τx, repre-

senting the first passage time of Rt below zero when R0 = x, i.e.

τx := inf{t > 0 : Yt > x} , (3.2.5)

where we set τx = +∞ if Rt ≥ 0 for all t ≥ 0.

Associated with the ruin time τx, we have at least two other quantities that contain

relevant information on the ruin event from a risk management perspective, namely the

deficit at ruin −Rτx = Yτx − x and the surplus immediately prior ruin Rτx− = x− Yτ−x .

Gerber and Shiu (1998) studied the ruin event in the compound Poisson case by

analyzing the joint law of all these quantities in one single object, the EDPF. In the

following, we define the EDPF under the model (3.2.2).

Definition 3.2.1. Let w be a non-negative Borel-measurable function on R+×R+ such

that w(., 0) = 0. For q ≥ 0, the EDPF associated with the risk process (3.2.2) is defined

as

φ(w;x; q) = E
[
e−qτxw(x− Yτ−x , Yτx − x)

]
. (3.2.6)

Note that the condition w(·, 0) = 0 excludes the event {Yτx = x}. This possibility

is known as creeping and we chose not to consider it in our analysis. For simplicity, we

assume that the function w assigns a zero penalty when ruin occurs by continuously

crossing over zero. Notice that for a model like (3.2.2), this only happens when ruin is

caused by the Brownian motion component of the process Y .

Following the same order of ideas, we study the EDPF under the general context

which gives relevant informations on and after the ruin event. More precisely, we

generalize the EDPF defined in (3.2.6) to include the quantities associated with the

ruin time τx and times sequence of successive minima reached by a claim of the risk

process (3.2.2) after ruin. This implies that some of notations related to record minima

need to be introduced .
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Thus, we must define the first new record time of the running supremum

τ := inf{t > 0, Yt > Y t−} , (3.2.7)

and the sequence of times corresponding to new records of Y reached by a jump of S

after the ruin time. More precisely, let

τ (1) := τx, (3.2.8)

and inductively on {τ (n) <∞},

τ (n+1) := inf{t > τ (n), Yt > Y t−}. (3.2.9)

Recall from Theorem 4.1 of Huzak et al. (2004) that the sequence (τ (n))n≥1 is discrete,

and, in particular, neither time 0 non any other time is an accumulation point of those

times. More precisely, τ > 0 a.s. and τ (n) < τ (n+1) a.s. on {τ (n) < ∞}. As a

consequence, we can order the sequence (τ (n))n≥1 of times when a new supremum is

reached by a jump of a subordinator as 0 < τ (1) < τ (2) < · · · a.s.

Let us introduce the random number N given by

N := max{n : τ (n) <∞}, (3.2.10)

which represents the number of new records reached by a claim of the risk process

(3.2.2). In the following, we study the EDPF in a new context involving the deficits

at times (τ (n))n≥1. More precisely, in this paper we set out to study the following

extended EDPF for the model (3.2.2)

Definition 3.2.2. Let F = (Fn)n≥0 be a sequence of non-negative measurable functions

from R+×R+ to R, x and q ≥ 0. The discounted penalty associated with the risk process

(3.2.2), F and q is defined as

P (F, q, x) = E
[ N∑
n=1

e−qτ
(n)
Fn(Yτ (n−1) , Yτ (n)); τx <∞

]
. (3.2.11)

We assume in the previous definition that τ (0) = τ−x and

F1(·, x) = 0. (3.2.12)

Note that the condition given by (3.2.12) is used to exclude from calculation the event

{Yτx = x}. P (F, q, x) is an extension of the classical EDPF defined in (3.2.6). In

particular, it reduces to φ(w;x; q) since we suppose that F1(u, v) = w(x−u, v−x) and

Fn = 0 for n ≥ 2.
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3.3. Preliminary results

In this section, we will give some preliminary results for first-passage times of the

risk process defined in (3.2.2) under change of measure. These results are based on

the works in Huzak et al. (2004) where the ruin probability has been studied for a

subordinator risk model perturbed by a spectrally negative Lévy process. This allows

us to give a more detailed analysis of the extended EDPF defined in (3.2.11).

Recall from Section 3.2 that S is a subordinator defined on the filtred probability

space (Ω,F,P). The Laplace exponent of S is defined by

ψS(α) =
∫
(0,∞)

[eαy − 1]ν(dy) , (3.3.1)

where

E[exp(αSt)] = exp(tψS(α)) . (3.3.2)

Note that

E[S1] = ψ,S(0+) =
∫
(0,∞)

yν(dy) =
∫ ∞
0

ν(y,∞)dy , (3.3.3)

where the last equality follows from integration by parts. As explained before, we

assume throughout that E[S1] <∞.

The Laplace exponent ψ of X defined in (3.2.1) is defined by the relation

E[exp(βXt)] = exp(tψX(β)),

(3.3.4)

where

ψX(β) = cβ + ψS(−β) + ψZ(β)

= ψS(−β) + Z̃(β) β ≥ 0 ,

where Z̃t = ct+Z and ψ
Z̃
(β) = cβ+ψZ(β). The last equality is due to the independence

of S and Z. We refer to Bertoin (1996), Sato (1999) and Kyprianou (2006) for a

comprehensive account on Lévy process.

Let us introduce the distribution function G of − inft≥0(Z̃t) = supt≥0(−ct − Zt).

Using a method similar to Yang and Zhang (2001) (see also Huzak et al. (2004)), the

Laplace transform of G can be shown to be given by

Ĝ(β) =
∫ ∞
0

e−βyG(dy)

= cβ

ψZ(β)
. (3.3.5)
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That is,

Ĝ(β) = cβ

cβ + σ2β2

2
, (3.3.6)

since Zt = σBt is a multiple of a standard Brownian motion. Then, G is given explicitly

as an exponential distribution function with parameter 2c/σ2, i.e. G has density

G(dy) = 2c
σ2 e

− 2c
σ2 ydy . (3.3.7)

We also introduce the parameter

ρ := E[S1]
c

= 1
c

∫
(0,∞)

yν(dy) ∈ (0, 1) . (3.3.8)

We denote by Y the supremum given by Y t = sups≥t Ys, for t ≥ 0.

Let us introduce the density of the overshoot at time τ which is defined by

H(du) = P(Yτ − Y τ− ∈ du; τ <∞) , (3.3.9)

where u > 0. We shall give in the following proposition the density H(·) in terms of

Lévy measure and the premium rate.

Proposition 3.3.1. Let Y the spectrally-positive Lévy process defined in (3.2.3).

1-The distribution of Yτ − Y τ− on the set τ <∞ is given by

H(du) = 1
c

∫ ∞
0

ν(du+ y)dy ; u > 0 . (3.3.10)

2- The distribution of Yτ is given by

P(Yτ ∈ du; τ <∞) = H ∗G(du) ; u > 0 , (3.3.11)

where H ∗G(·) denotes the convolution of H(·) with G(·) defined by∫
A
f(u)H ∗G(du) =

∫
{y+v∈A}

f(y + v)H(dy)G(dv) ,

for all Borel set A of R× R.

Proof. 1- Let us suppose that f is a nonegative bounded Borel function. We prove

firstly that

E[f(Yτ − Y τ−); τ <∞] = E
[ ∫ τ

0
f̃(Y t − Yt)dt

]
, (3.3.12)

where f̃(y) =
∫
(0,∞) f(u − y)1{u>y}ν(du). The proof of (3.3.12) follows by an applica-

tion of the compensation formula [see Bertoin(1996) p.9 or Theorem 4.4. of Kyprianou
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(2006)] applied to the Poisson random measure, with intensity measure dt , ν(du) asso-

ciated to the jump of Y . We have

E[f(Yτ − Y τ−); τ <∞] = E[
∑
t>0

f(Yt − Y t−)1{Yt>Y t−,t≤τ}]

= E[
∫ ∞
0

∫
[0,∞)

f(u− Y t + Yt)1{u>Y t−Yt,t≤τ}]dtν(du)

= E[
∫ τ

0

∫
(0,∞)

f(u− (Y t − Yt))1{u>Y t−Yt}]dtν(du)

= E
[ ∫ τ

0
f̃(Y t − Yt)dt

]
. (3.3.13)

Hence, from Proposition 4.3. of Huzak et al. (2004), the expected occupation time

measure of (3.3.13) is given by

E
[ ∫ τ

0
f̃(Y t − Yt)dt

]
= P(τ =∞)

c− E[S1]

∫ ∞
0

f̃(y)dy. (3.3.14)

Since P(τ = ∞) = 1 − P(τ < ∞) = 1 − ρ [see Corollary 4.5. of Huzak et al. (2004)],

(3.3.14) is equal to

1− ρ
c− E[S1]

∫ ∞
0

f̃(u)du = 1
c

∫ ∞
0

∫
(0,∞)

f(u− y)1{u>y}ν(du)dy

= 1
c

∫
(0,∞)

f(u)
∫ ∞
0

ν(du+ y)dy. (3.3.15)

Equating the left-hand side of (3.3.12) and (3.3.15) implies that

P(Yτ − Y τ− ∈ du; τ <∞) = 1
c

∫
(0,∞)

∫ ∞
0

ν(du+ y)dy , (3.3.16)

and the statement 1 of Proposition 3.3.1 follows.

2- Using the conditional independence of Yτ − Y τ− and Y τ− given τ <∞,

P(Yτ ∈ du ; τ <∞) = P(Yτ ∈ du| τ <∞)P(τ <∞) (3.3.17)

= P(Yτ − Y τ− + Y τ− ∈ du| τ <∞)ρ (3.3.18)

= H ∗G(du) , (3.3.19)

where G(du) is the conditional distribution P(Y τ− ∈ du| τ < ∞). From corollary 4.6

of Huzak et al. (2004), G(du) is equal to unconditionnal distribution P(Y τ− ∈ du).

Corollary 4.10 of Huzak et al. (2004) implies that

P(Y τ− ∈ du) = P(sup
t≥0

(−ct− σBt) ∈ du), (3.3.20)

from which it immediately follows that G = G. Thus we have proved the the statement

2 of proposition. �
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For the right inverse of ψ, we shall write φ on [0,∞). That is to say, for each q ≥ 0,

Φ(q) = sup{α ≥ 0 : ψ(α) = q}. (3.3.21)

Note that the properties of ψ for such a Lévy process X, imply that φ(q) > 0 for q > 0.

Further φ(0) = 0, since ψ′(0) = c− E[S1] ≥ 0.

Let us define the probability measure P̃ by the density process

dP̃
dP

∣∣∣
Ft

= e−Φ(q)Yt−qt (3.3.22)

where Φ(q) is the right inverse of ψ defined in (3.3.21). Note that under P̃ the process

Y introduced in (3.2.1), is still a spectrally positive Lévy process, and still drifts to −∞

[see Kyprianou (2006)]. In addition, the process Y keeps the same form under P̃ and

then, Yt = −c̃t+St−σB̃t, where c̃ = c+σ2Φ(q) and B̃t = Bt−σΦ(q)t are respectively

the premium rate and the standard Brownian motion under the probability measure P̃.

We denote by ν̃ the Lévy measure of S under the change of measure P̃ and then,

ν̃(du) = e−Φ(q)uν(du). (3.3.23)

Let

ρ̃ = Ẽ[S1]
c̃

=
∫
(0,∞) ye

−Φ(q)yν(dy)
c+ σ2Φ(q)2

, (3.3.24)

then by (3.2.4), 0 < ρ̃ < 1 and the net profit condition is well preserved under P̃. Note

that the distribution function of − inft≥0(Zt) = supt≥0(−ct − σBt) under the change

of measure, is denoted by G̃. Recall from (3.3.6) that the density G̃ is given via its

Laplace transform by ∫ ∞
0

e−βyG̃(dy) = c̃β

c̃β + σ2β2

2
, β > 0; (3.3.25)

and then, G̃ is given explicitly as an exponential distribution function with parameter

2c̃/σ2. We denote by H̃ the distribution of Yτ − Y τ− under the probability measure P̃,

i.e

H̃(du) = P̃(Yτ − Y τ− ∈ du ; τ <∞), for u > 0. (3.3.26)

Moroever, since the characteristics of the risk process are preserved under the change

of measure, we can derive a result analogous to Proposition 3.3.1 under P̃ as:
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Proposition 3.3.2. Let Y be a spectrally positive Lévy process defined in (3.2.3).

1-The distribution of Yτ − Y τ− on the set τ < ∞ under the probability measure P̃ is

given by

H̃(du) = 1
c̃

∫ ∞
0

ν̃(du+ y)dy

= e−Φ(q)u

c+ Φ(q)σ2

∫ ∞
0

e−Φ(q)yν(du+ y)dy ; u > 0. (3.3.27)

2- The distribution of Yτ under the probability measure P̃ is given by

P̃(Yτ ∈ du ; τ <∞) = H̃ ∗ G̃(du) ; u > 0. (3.3.28)

In the following paragraph, we shall give the ruin probability under the change of

measure defined by (3.3.22).

We denote by θ̃(x) the ruin probability under the probability measure P̃, that is

θ̃(x) = P̃(sup
t≥0

Yt < x) , x ≥ 0.

For q ≥ 0, the following proposition gives the Pollazek-Hinchin formula for the survival

probability under the change measure P̃.

Proposition 3.3.3. The survival probability of the general perturbed risk process in-

troduced in (3.2.2) is given by

1− θ̃(x) = (1− ρ̃)
∞∑
n=0

(
L̃∗(n) ∗ G̃∗(n+1))(x)ρ̃n ; (3.3.29)

where

L̃(dy) = 1
c̃
ν̃(y,∞)dy1{y>0} ,

and G̃(·) is an exponential distribution function with parameter 2c̃/σ2, f∗n (n ≥ 1)

denotes the n-fold convolution of f with itself and f∗0 is the distribution function cor-

responding to the Dirac measure at zero.

Proof. Using a similar method to that in Huzak et al. (2004), we have by taking limits

in the Laplace transform of the infimum evaluated at an independant exponential time

eq with parameter q > 0 [see chapter VIII in Kyprianou (2006)] ,

Ẽ[eβX∞ ] = Ẽ[e−βY∞ ]

= ψ̃′(0+) β

ψ̃(β)
, for β > 0. (3.3.30)
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Let us now compute (3.3.30) in terms of ρ̃, ̂̃L and ̂̃G, where ρ̃ is the parameter given

by (3.3.24), and ̂̃L and ̂̃G are respectively the Laplace transforms of L̃ and G̃. Equation

(3.3.30) is equal to

d̃

c̃

̂̃
G(β)

1− ρ̃ ̂̃G(β) ̂̃L(β)
= (1− ρ̃) ̂̃G(β)

∞∑
n=0

(
ρ̃
̂̃
G(β) ̂̃L(β)

)n
. (3.3.31)

By inverting the Laplace transform (3.3.31), we obtain

P̃(Y∞ ≤ x) = 1− θ̃(x) = (1− ρ̃)
∞∑
n=0

ρ̃n
(
G̃∗(n+1) ∗ L̃∗n

)
(x). (3.3.32)

�

We now introduce the so-called q-scale function {W (q), q ≥ 0} of the process X.

For every q ≥ 0, there exists a function W (q) : R −→ [0,∞) such that W (q)(y) = 0 for

all y < 0 and otherwise absolutely continuous on (0,∞) satisfying∫ ∞
0

e−λyW (q)(y)dy = 1
ψ(λ)− q

, for λ > Φ(q) , (3.3.33)

where Φ(q) is the largest solution of ψ(β) = q defined in (3.3.21).

For short, we shall write W (0) = W . Let us introduce the 0-scale function under P̃,

which we write as WΦ(q), related to the q-scale function of X, W (q), via the relation

W (q)(y) = eΦ(q)yWΦ(q)(y). (3.3.34)

The reader is otherwise referred to Bertoin (1996) and Chapter 8 of Kyprianou (2006)

for a fuller account.

In the following, we shall describe the discounted penalty function introduced in

Definition 3.2.2 in terms of densities G̃, H̃ and q-scale function of the spectrally negative

process X which we have briefly introduced above.

3.4. Extension of the Expected Discounted Penalty Function

At this point, we recall that the main objective of this paper is to write an expression

for the extended EDPF in (3.2.11). But before we can write out such an expression we

need one more intermediate result that has to do with the change of measure defined

through the density process in (3.3.22).

Let us start by giving the standard EDPF defined in (3.2.6) in terms of the convolu-

tion product of two functions depending on Lévy measure ν and q-scale function which

is defined by (3.3.33). Recall that w is a non-negative bounded measurable function on

R× R such that w(·, 0) = 0.
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Lemma 3.4.1. Consider the risk model in (3.2.2).

(1) The distribution of the overshoot at τx, T̃x, is given by

T̃x(du) =
∫ ∞
0

∫ v

0
e−Φ(q)uν(du− x+ v)W ′Φ(q)(x− y)dydv , (3.4.1)

where T̃x(du) = P̃(Yτx ∈ du; τx <∞).

(2) For q ≥ 0, the EDPF φ(w, q, x), as introduced in Definition 3.2.1, is given by,

f1 ∗ f2(x) , (3.4.2)

where

f1(x) = eΦ(q)xW ′Φ(q)(x)

= W ′(q)(x)− Φ(q)W (q)(x) , (3.4.3)

and

f2(x) = eΦ(q)x
∫ ∞
x

e−Φ(q)v
∫
(0,∞)

w(u, v)ν(du+ v)dv , (3.4.4)

for u > x, v > 0 and 0 < y < x ∧ v.

Proof. 1). Follow the method used in Biffis and Kyprianou (2010) [see also the end of

Section 8.4 of Kyprianou (2006)] and recalling that X drifts to∞ (and hence Φ(0) = 0),

we know that

P(Yτx − x ∈ du, x− Yτ−x ∈ dv; τx <∞) = ν(du+ v)[W (x)−W (x− v)]dv

= ν(du+ v)
∫ v

0
W ′(x− y)dydv ,

(3.4.5)

for u > 0, v > 0 and 0 < y < x ∧ v, where W ′ is a version of the density of W .

Using the previous equality under the change of measure P̃, we obtain the identity

P̃(Yτx − x ∈ du, x− Yτ−x ∈ dv ; τx <∞) = ν̃(du+ v)
∫ v

0
W ′Φ(q)(x− y)dydv

= e−Φ(q)(u+v)ν(du+ v)

×
∫ v

0
W ′Φ(q)(x− y)dydv ,

(3.4.6)
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for u > 0, v > 0, 0 < y < x ∧ v and then

E
[
e−qτxw(Yτx − x, x− Yτ−x ); τx <∞

]
= Ẽ

[
eΦ(q)Yτxw(Yτx − x, x− Yτ−x ); τx <∞

]
=

∫
(0,∞)

∫
(0,∞)

eΦ(q)(u+x)w(u, v)

×P̃(Yτx − x ∈ du, x− Yτ−x ∈ dv; τx <∞)

=
∫ x

0
eΦ(q)(x−y)W ′Φ(q)(x− y)e

Φ(q)y

×
∫ ∞
y

e−Φ(q)v
∫
(0,∞)

w(u, v)ν(du+ v)dvdy

= f1 ∗ f2(x) , (3.4.7)

where

f2(x) = eΦ(q)x
∫ ∞
x

e−Φ(q)v
∫
(0,∞)

w(u, v)ν(du+ v)dv. (3.4.8)

By using (3.3.34) we get,

f1(x) = eΦ(q)xW ′Φ(q)(x)

= W ′(q)(x)− Φ(q)W (q)(x) , (3.4.9)

from which, statement in 1) holds.

2). From (3.4.6), we deduce (3.4.1) by writing,

T̃x(du) = P̃(Yτx − x ∈ du− x; τx <∞)

=
∫ ∞
0

∫ v

0
e−Φ(q)uν(du− x+ v)W ′Φ(q)(x− y)dydv, (3.4.10)

for u > x, v > 0 and 0 < y < x ∧ v. �

Remark 3.4.1. Equation (3.4.2) is equivalent to the following equality which describes

the Gerber-Shiu function in terms of scale function of risk process;

φ(w, q, x) =
∫
(0,∞)

∫
(0,∞)

e−Φ(q)(x−v)w(u, v)ν(du+ v)
[
WΦ(q)(x)−WΦ(q)(x− v)

]
dv

=
∫ ∞
0

∫ ∞
0

w(v, u)
[
e−φ(q)vW (q)(x)−W (q)(x− v)

]
ν(du+ v)dv , (3.4.11)

by using (3.3.34), where w is a bounded measurable function such that w(·, 0) = 0.

Identity (3.4.11) is given in more general form in Biffis and Kyprianou (2010), where

the EDPF also includes the size of the last minimum before ruin x− Y τx−.

Recall that from Section 3.3 that N is the random number given by (3.2.10). We

give in the following proposition the distribution of N under the probability measure

defined by (3.3.22).
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Proposition 3.4.1. The distribution of N on {τx <∞} is given by

P̃(N = n, τx <∞) = (1− ρ̃)ρ̃n(1− θ̃(x)) ; (3.4.12)

where n ≥ 0.

Proof. By the strong Markov property of Y under P̃, we can identify the distribution

of N on {τx <∞} as

P̃(N = 0, τx <∞) = P̃(τ (1) =∞|τx <∞)P̃(τx <∞)

= P̃(τ =∞)(1− θ̃(x))

= (1− ρ̃)(1− θ̃(x)) , (3.4.13)

where in the last equality we have used Corollary 4.5 of Huzak et al. (2004) under the

probability measure P̃.

For n ≥ 1,

P̃(N = n, τx <∞) = P̃(τ (n+1) =∞|τ (n) <∞)P̃(τ (n) <∞|τ (n−1) <∞)×

...× P̃(τ (1) <∞|τx <∞)P̃(τx <∞)

= P̃(τ =∞)P̃(τ <∞)n(1− θ̃(x))

= (1− ρ̃)ρ̃n(1− θ̃(x)). (3.4.14)

�

Now, we are finally in a position to present the first and main contribution of

this paper. In the following theorem, we give an expression for the extended EDPF

P (F ; q;x) given in Definition 3.2.2. This expression is given in terms of the q-scale

function, Lévy measure, and the densities G̃ and H̃ which are introduced in Section

3.3. Recall that F = (Fn)n≥0 is a sequence of non-negative measurable functions from

R+ × R+ to R such that F0(., x) = 0.

Theorem 3.4.1. Consider the risk model in (3.2.2). For q ≥ 0, the EDPF P (F, q, x),

as introduced in Definition 3.2.2, is given by,

φ(w, q, x) +
∞∑
n=1

∫
(x,∞)

∫
(0,∞)

eΦ(q)(u+v)Fn+1(v, u+ v)

H̃ ∗ G̃(du)H̃∗n ∗ G̃∗n ∗ T̃x(dv) , (3.4.15)
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where w is a mesurable Borel-function satisfying w(u, v) = F1(x−v, u−x) for u, v ≥ 0

and

φ(w, q, x) = E
[
e−qτxw(x− Yτ−x , Yτx − x) ; τx <∞

]
. (3.4.16)

Proof. We prove the result in three steps. Let us suppose F = (Fn)n≥1 is a sequence

of non-negative measurable functions from R+ × R+ to R, x and q ≥ 0.

Step 1: We prove in this step that

P̃(Yτ (k) − Yτ (k−1) ∈ dy|τ (k) <∞) = 1
ρ̃
H̃ ∗ G̃(dy); (3.4.17)

where k ≥ 2 and y ≥ 0. The proof of (3.4.17) follows by an application of Theorem 4.7,

Huzak et al (2004). Recall that under the measure change P̃, Y has the same form and

it can be written as Yt = −c̃t+ St − σB̃t. By using the Markov proprety of Y at τ (k)

P̃(Yτ (k) − Yτ (k−1) ∈ dy|τ (k) <∞) = P̃(Yτ ∈ dy|τ <∞)

= 1
ρ̃
H̃ ∗ G̃(dy), (3.4.18)

where in the last equality we have used Equation (3.3.28) and the identity P̃(τ <∞) = ρ̃

[see Corollary 4.6, Huzak et al. (2004)].

Step 2: Next we prove that

P̃(Yτ (k) ∈ dy|τ (k) <∞) = 1
ρ̃k(1− θ̃(x))

(H̃∗k ∗ G̃∗k ∗ T̃x)(dy), (3.4.19)

where k ≥ 2 and y ≥ 0.

P̃(Yτ (k) ∈ dy|τ (k) <∞) = P̃(Yτ (k) − Yτ (k−1) + ...+ Yτ (1) − Yτx + Yτx ∈ dy|τ (k) <∞)

= 1
ρ̃k

(H̃∗(k) ∗ G̃∗(k) ∗ T̃x)(dy)
1

1− θ̃(x)
, (3.4.20)

by using the independent increments of Y and (3.4.17), where T̃x(dy) = P̃(Yτx ∈

dy ; τx <∞).
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Step 3: Before using the conclusions of step 1 and step 2, let us write P (F, q, x) as

an expansion under P̃,

P (F, q, x) =
∞∑
n=0

E
[ n∑
k=0

e−qτ
(k)
Fk+1(Yτ (k) , Yτ (k+1)) ;N = n; τx <∞

]
= E

[
e−qτxF1(Yτ−x , Yτx ;N = 0; τx <∞)

]
+
∞∑
n=1

E
[ n∑
k=0

e−qτ
(k+1)

Fk+1(Yτ (k) , Yτ (k+1)) ;N = n; τx <∞
]

= E
[
e−qτxF1(Yτ−x , Yτx) ;N = 0; τx <∞

]
+
∞∑
n=1

(
E
[
e−qτxF1(Yτ−x , Yτx) ;N = n; τx <∞

]

+
n∑
k=1

E
[
e−qτ

(k+1)
Fk+1(Yτ (k) , Yτ (k+1)) ;N = n , τx <∞

])
, (3.4.21)

where in the last equality we have used Proposition 3.4.1. Then P (F, q, x) is equal to

Ẽ
[
eΦ(q)YτxF1(Yτ−x , Yτx)

∣∣∣τx <∞](1− ρ̃)(1− θ̃(x))
+
∞∑
n=1

(
E
[
e−qτxF1(Yτ−x , Yτx)

∣∣τx <∞)
]
+

n∑
k=1

Ẽ
[
Fk+1(Yτ (k) , Yτ (k+1))|τ (k+1) <∞

])
(1− ρ̃)ρ̃n(1− θ̃(x)) (3.4.22)

= Ẽ
[
F1(Yτ−x , Yτx)

∣∣∣τx <∞)
]
(1− θ̃(x))(1− ρ̃)[1 +

∞∑
n=1

ρ̃n]

+
∞∑
n=1

( n∑
k=1

Ẽ
[
eΦ(q)Y

τ(k+1)Fk+1(Yτ (k) , Yτ (k+1))
∣∣∣τ (k+1) <∞

])
(1− ρ̃)ρ̃n(1− θ̃(x))

= φ(q, w, x) +
∞∑
n=1

[ n∑
k=1

∫
(0,∞)

∫
(0,∞)

eΦ(q)(u+v)Fk+1(v, u+ v)

P̃(Yτ (k+1) − Yτ (k) ∈ du, Yτ (k) ∈ dv|τ (k+1) <∞)
]
(1− ρ̃)ρ̃n(1− θ̃(x)) (3.4.23)

(3.4.24)

= φ(q, w, x) +
∞∑
n=1

∫
(0,∞)

∫
(0,∞)

eΦ(q)(u+v)Fn+1(v, u+ v)

×P̃(Yτ (n+1) − Yτ (n) ∈ du
∣∣∣τ (n+1) <∞)P̃(Yτ (n) ∈ dv|τ (n+1) <∞)

)
ρ̃n+1(1− θ̃(x))

(3.4.25)
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= φ(q, w, x) +
∞∑
n=1

∫
(0,∞)

∫
(0,∞)

eΦ(q)(u+v)Fn+1(v, u+ v)(H̃ ∗ G̃)(du)

(H̃∗(n) ∗ G̃(∗(n) ∗ T̃x)(dv)

(3.4.26)

where in the last equality we have used (3.4.17) and (3.4.19). �

Remark 3.4.2. Let F = (Fn)n≥1 be a sequence of bounded measurable functions.

If F satisfies F1(u, v) = w(x − u, v − x) and Fn = 0 for n ≥ 2, where w is a

measurable function such that w(·, 0) = 0, then P (F, q, x) reduces to the classical EDPF

defined by (3.4.2) and then,

P (F, q, x) = φ(w, q, x)

= E
[
e−qτxw(x− Yτ−x , Yτx − x); τx <∞

]
, (3.4.27)

which is completely characterized in terms of Lévy measure and scale function in Lemma

3.4.1 and Remark 3.4.1.

3.5. Capital injections

In this subsection, we introduce the Expected Discounted Value of Capital Injections

(EDVCI), which are necessary to keep the reserve process R above 0. In our context,

if R goes under 0 by jumping, we must apply control to prevent the process staying in

(−∞, 0). In fact, we should inject capital only when the risk process becomes negative

and only when, the new record infimum under 0 (undershoot) is reached by a jump of

a subordinator.

Recall that in Theorem 3.4.1 we have identified the extended EDPF P (F ; q;x)

defined by (3.2.2) in terms of the q-scale function, Lévy measure, and the densities G̃

and H̃ introduced in Section 3.3. Using the connection with the result of Theorem

3.4.1, we will characterize the EDVCI for the risk process defined in (3.2.2). We will

study more explicitly the classical case driven by the Cramér-Lundberg risk model [see

Einsenberg and Schmidli (2011)].

3.5.1. Expected discounted value of capital injections (EDVCI)

Recall that R is the risk process defined in (3.2.2) by

Rt := x− Yt , t ≥ 0 , (3.5.1)



87

where Yt = −ct+ St − σBt.

We denote by Ct the cumulative capital injections up to time t. The controlled risk

process RC is given by

RCt := x− Yt + Ct , t ≥ 0 . (3.5.2)

We have to inject the first capital when the risk process falls below zero. Let

τ (1) = τx = inf{s > 0, Rs < 0}

denote the time of first ruin, and

C1 = Rτ1 − x

denote the first injection. At time τ (1) the controlled risk process RC starts with initial

capital equal to zero.

For n ≥ 1, let

τ (n+1) = inf{t ≥ τ (n), Rt− < Rt}

denote the time of the n-th injection. The size of the n-th injection becomes

Cn = Rτ (n) −Rτ (n+1)

= Yτ (n+1) − Yτ (n) , for n ≥ 1. (3.5.3)

The accumulated injections can be described as

Ct =
N∑
i=n

Cn1{τ (n)≤t}.

Let us define the expected discounted value of capital injections (EDVCI) as

V (q, x) = E
[ N∑
n=0

e−qτ
(n+1)

Cn
]
. (3.5.4)

Let introduce κ(q, x) as

κ(q, x) = E
[
e−qτx ; τx <∞

]
, (3.5.5)

and

ϕ(q, x) = E
[
e−qτx(Yτx − x); τx <∞

]
. (3.5.6)

From Lemma 3.4.1, we can give an expression for (3.5.5) and (3.5.6) in terms of q-scale

function and then

ϕ(q, x) = f1 ∗ h(x) (3.5.7)
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and

κ(q, x) = f1 ∗ t(x); (3.5.8)

where

h(x) = eΦ(q)x
∫ ∞
x

e−Φ(q)v
∫
(0,∞)

uν(du+ v)dv

= eΦ(q)x
∫ ∞
x

e−Φ(q)v
∫
(v,∞)

(u− v)ν(du)dv, (3.5.9)

and

t(x) = eΦ(q)x
∫ ∞
x

e−Φ(q)vν(v,∞)dv. (3.5.10)

Recall that in Theorem 3.4.1 we have identified the extended EDPF introduced in

Definition 3.2.2 in terms of the q-scale function, Lévy measure and notions introduced

in Section 3.3 for the model (3.2.2). By using connection with Theorem 3.4.1, the

following theorem is an explicit characterization of the EDVCI defined by (3.5.4). This

would be the second main contribution of this paper that extends similar results in

Einsenberg and Schmidli (2011).

Theorem 3.5.1. The Expected Discounted Value of Capital Injections EDVCI intro-

duced in (3.5.4) is given by

V (q, x) = ϕ(q, x) + δ(q, σ)
1− ξ(q, σ)

κ(x, σ) , (3.5.11)

where ξ(q, σ) and δ(q, σ) are given, respectively, by

ξ(q, σ) = (1 + Φ(q)σ2

2c+ Φ(q)σ2 )
[
1−

q + σ2

2 Φ(q)
Φ(q)(c+ σ2

2 Φ(q))
]
, (3.5.12)

and

δ(q, σ) = 2c
Φ(q)(2c+ Φ(q)σ2)

[ 2q
Φ(q)(2c+ Φ(q)σ2)

+ ρ− 1
]
. (3.5.13)

Equation (3.5.11) gives an explicit formula of the expected value which should be in-

jected at each deficit time at and after ruin that will allow the insurance company to

survive and continue its operations when the risk process continuous to jump down-

wards.

Proof. Let us consider the sequence of functions F = (Fn)n≥1 as defined above. Since

we suppose F1(v, u) = u − x and Fn(v, u) = u − v for u ≥ 0, v ∈ R and n ≥ 2, then
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the extended EDPF associated with F and q, P (F, q, x), defined in (3.2.2), is equal to

V (q, x). By using Theorem 3.4.1, we can easly derive (3.5.11) and then

V (q, x) = E
[
e−qτx(Yτx − x); τx <∞

]
+

∞∑
n=1

∫
(x,∞)

∫
(0,∞)

eΦ(q)(u+v)u(H̃ ∗ G̃)(du)(H̃∗n ∗ G̃∗n ∗ T (q)
x )(dv)

= ϕ(q, x) +
∫
(0,∞)

eΦ(q)uu H̃ ∗ G̃(du)

∞∑
n=0

∫
(x,∞)

eΦ(q)vH̃∗n ∗ G̃∗n ∗ T̃x(dv)

= ϕ(q, x) +
∫
(0,∞)

eΦ(q)uu H̃ ∗ G̃(du)
∞∑
n=0

∫
(x,∞)

eΦ(q)vT̃x(dv)∫
(0,∞)

eΦ(q)vH̃∗n ∗ G̃∗n(dv)

= ϕ(q, x) +
∫
(0,∞)

eΦ(q)uu H̃ ∗ G̃(du)︸ ︷︷ ︸
I

∞∑
n=0

∫
(x,∞)

eΦ(q)vT̃x(dv)︸ ︷︷ ︸
II[ ∫

(0,∞)
eΦ(q)vH̃ ∗ G̃(dv)︸ ︷︷ ︸

III

]n
.

(3.5.14)

Recall that P̃(Yτx ∈ dv τx <∞) = T̃x(dv), for v > x, hence by (3.3.22), (II) is equal

to

Ẽ
[
eΦ(q)Yτx ; τx <∞] = E

[
e−qτx ; τx <∞]

= κ(q, x). (3.5.15)

(III) is equal to∫
(0,∞)

eΦ(q)u H̃ ∗ G̃(du) =
∫
(0,∞)

eΦ(q)u H̃(du)
∫
(0,∞)

eΦ(q)u G̃(du) , (3.5.16)

where ∫
(0,∞)

eΦ(q)u H̃(du) =
∫
(0,∞)

1
c+ Φ(q)σ2

∫ ∞
0

e−Φ(q)y ν(du+ y)dy

= 1
c+ Φ(q)σ2

∫ ∞
0

e−Φ(q)y ν(y, ∞)dy. (3.5.17)

Recall that

ψ(Φ(q)) = q , (3.5.18)
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by using integration by part, (3.5.18) is equivalent to

cΦ(q) + σ2Φ(q)2

2
− Φ(q)

∫ ∞
0

e−Φ(q)y ν(y, ∞)dy = q (3.5.19)

and then,

∫ ∞
0

e−Φ(q)y ν(y,∞)dy = c+ σ2Φ(q)
2

− q

φ(q)
. (3.5.20)

We have

∫
(0,∞)

eΦ(q)u G̃(du) =
∫
(0,∞)

2c̃
σ2 e

−( 2̃c
σ2−Φ(q))ydy

= 1 + φ(q)σ2

2c+ φ(q)σ2 = α(q, σ). (3.5.21)

By substituting (3.5.20) in (3.5.16), we conclude that

∫
(0,∞)

eΦ(q)u H̃ ∗ G̃(du) = α(q, σ)
c+ σ2Φ(q)

(
c+ σ2Φ(q)− q

Φ(q)
)

= α(q, σ)
[
1−

q + σ2

2 Φ(q)
Φ(q)(c+ σ2

2 Φ(q))
]

= ξ(q, σ). (3.5.22)
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(I) is equal to∫
(0,∞)

eΦ(q)uu H̃ ∗ G̃(du) =
∫
(0,∞)

eΦ(q)u[ ∫
(0,∞)

(u+ v)eΦ(q)vG̃(dv)
]
H̃(du)

=
∫
(0,∞)

eΦ(q)u[ ∫
(0,∞)

(u+ v)eΦ(q)vG̃(dv)
]
H̃(du)

=
∫
(0,∞)

eΦ(q)u[u ∫ ∞
0

2c̃
σ2 e

−( 2̃c
σ2−Φ(q))vdv

+
∫ ∞
0

2c̃
σ2 ve

−( 2̃c
σ2−Φ(q))vdv

]
H̃(du)

=
∫
(0,∞)

eΦ(q)u[α(q, σ)(u+ σ2

2c+ Φ(q)σ2 )
]
H̃(du)

= α(q, σ) 1
c+ Φ(q)σ2

[ σ2

2c+ Φ(q)σ2

∫
(0,∞)

e−Φ(q)y ν(y,∞)dy

+
∫ ∞
0

∫
(0,∞)

ue−Φ(q)y ν(du+ y)dy
]

= α(q, σ) 1
c+ Φ(q)σ2

[ σ2

2c+ Φ(q)σ2

∫
(0,∞)

e−Φ(q)y ν(y,∞)dy

+ 1
Φ(q)

[ ∫ ∞
0

ν(y,∞)dy −
∫ ∞
0

e−Φ(q)yπ(y,∞)dy
]]

= α(q, σ) 1
c+ Φ(q)σ2

[( σ2

2c+ Φ(q)σ2 −
1

Φ(q)
)

∫
(0,∞)

e−Φ(q)y ν(y,∞)dy + 1
Φ(q)

E[S1]
]
.

(3.5.23)

Using (3.5.20), the last equality can be written as

α(q, σ) 1
c+ Φ(q)σ2

[ −2c
Φ(q)(2c+ Φ(q)σ2)

(
c+ σ2Φ(q)

2
− q

φ(q)
)
+ c

Φ(q)
ρ
]

= α(q, σ)c
Φ(q)(c+ Φ(q)σ2)

[ 2q
Φ(q)(2c+ Φ(q)σ2)

+ ρ− 1
]

= δ(q, σ) (3.5.24)

and then (I) is equal to ∫
(0,∞)

eΦ(q)uu H̃ ∗ G̃(du) = δ(q, σ). (3.5.25)

In addition, by using the identification above of (II) and (III), (3.5.14) is equal to

ϕ(q, x) + δ(q, σ)
∞∑
n=0

κ(x, σ)ξ(q, σ)n

= ϕ(q, x) + δ(q, σ)
1− ξ(q, σ)

κ(x, σ) (3.5.26)
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and the theorem follows. �

In the next subsection, we illustrate the previous result by a specific example of

Cramér-Lundenberg risk model when the Brownian component vanishes.

3.5.2. Classical risk model

Let us consider the classical risk model. The number of claims is assumed to follow

a Poisson process (Nt)t≥0 with intensity λ. We denote by (Zn)n≥1 the claim sizes

which are independant of (Nt)t≥0, positive and iid with distribution function K and

first moment µ. The aggregate claim process is given by

Rt = x+ ct−
Nt∑
i=1

Zi, (3.5.27)

where x is the initial capital and c is the premium rate.

The surplus process introduced by (3.5.2) then has the form

RCt := x+ ct−
Nt∑
i=1

Zi + Ct , t ≥ 0 . (3.5.28)

Note that St =
∑Nt
i=1 Zi and then E[S1] = λµ. However, the net profit condition (3.2.4)

becomes c > λµ and then ρ = λµ/c. Since σ = 0, it follows from Theorem 3.5.1 that

the EDVCI for classical model introduced above is given by

V (q, x) = ϕ(q, x) + δ(q, 0)
1− ξ(q, 0)

κ(x, 0), (3.5.29)

where

ξ(q, 0) = 1− q

Φ(q)c
, and δ(q, 0) = 1

Φ(q)

[ q

Φ(q)c
+ ρ− 1

]
= q − (c− λµ)Φ(q)

cΦ(q)2
.

(3.5.30)

Since the Brownian component vanishes, Y is a process with bounded variation and

then, from Kyprianou (2006), WΦ(q)(dx) =
∑∞
n=0 η

∗n(dx), where

η(dx) = 1
c
ν̃(x,∞)dx

= 1
c

∫
(x,∞)

e−Φ(q)uν(du) dx. (3.5.31)

Note that Equation (3.4.9) reduces to

f1(x) = λ

c

∞∑
n=0

∫
(x,∞)

e−Φ(q)uK(du), (3.5.32)
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when in the last equality, we have used the identity ν(du) = λK(du). In addition

Equations (3.5.9) and (3.5.10) reduce to

h(x) = λ

c
eΦ(q)x

∫ ∞
x

e−Φ(q)v
∫
(v,∞)

(u− v)K(du)dv (3.5.33)

and

t(x) = λ

c
eΦ(q)x

∫ ∞
x

e−Φ(q)v(1− F (v))dv. (3.5.34)

Consequently, Equation 3.5.29 reduces to the expression of the EDVCI for classical

model (3.5.27) given in Einsenberg and Schmidli (2011).

3.6. Conclusion

In this paper we have generalized the Expected Discounted Penality Function

(EDPF) indroduced by Gerber and Shiu (1997, 1998) to include the successive minima

reached by the risk process because claim after ruin. In addition to the surplus before

ruin and the deficit at ruin, we have added to the EDPF the expectation of a sequence

of discounted functions of minima in the context of subordinator risk model perturbed

by a Brownian motion. By using some results in Huzak et al (2004) and developments

in theory of fluctuations for spectrally negative Lévy processes, we have derived an

expicit expression of this extended EDPF.

Our generalization of the EDPF includes information on the path behavior of the

risk process not only in a neighborhood of the ruin time, but also after ruin. Such

information is relevant for risk management process aimed at preventing successive

occurences of the insolvency events. In addition to the classical EDPF introduced

by Gerber and Shiu (1997, 1998), the new extension of EDPF contains a sequence of

expected discounted functions of successive minima reached by jumps after ruin. This

sequence of EDPF has many interesting potential applications. For example, it could

be used as a predictive tool for successive deficit times after ruin. In particular, we

have used this extended EDPF to derive explicitly the Expected Discounted Value of

Capital Injections EDVCI which are necessary to keep the risk process above zero.

Inspired by results of Huzak et al. (2004) and developpements in fluctuation theory

for spectrally negative Lévy processes, we provide a characterization for this extended

EDPF in a setting involving a cumulative claims modelled by a subordinator, and

spectrally negative perturbation. We illustrate how the ESDPF can be used to compute

the expected discounted value of capital injections (EDVCI) for Brownian perturbed

risk model. The main contributions of this paper are found in Theorems 3.4.1 and
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3.5.1. These two results give expressions for the extended EDPF given by Definition

3.2.2, and the EDVCI introduced in Subsection 3.5.1. These expressions can be easily

computed by considering particular examples of subordinators.

In oder to make these results as explicit as possible, we have used the risk model

driven by Brownian perturbed subordinator process. Further work is needed in order

to give these results for more general risk processes driven by a spectrally negative Lévy

process.



Chapter 4

THE MINIMAL ENTROPY MARTINGALE MEASURE

(MEMM) FOR A MARKOV-MODULATED

EXPONENTIAL LÉVY MODEL

Abstract

This paper deals with the characterization problem of the minimal entropy martingale

measure (MEMM) for a Markov-modulated exponential Lévy model. This model is

characterized by the presence of a background process modulating the risky asset price

movements between different regimes or market environments. This allows to stress

the strong dependence of financial assets price with structural changes in the market

conditions. Our main results are obtained from the key idea of working conditionally on

the modulator-factor process. This reduces the problem to studying the simpler case of

processes with independent increments. Our work generalizes some previous works in

the literature dealing with either the exponential Lévy case or the exponential-additive

case.

4.1. Introduction

Regime-switching models were originally introduced in order to model the macroe-

conomic events which influence asset prices (Hamilton 1989). These cycles are modeled

by an underlying Markov chain that drives the asset prices through structurally differ-

ent market scenarios (due to trades or to arrival of significant new information). In the

context of derivative pricing these models lead to incomplete markets and therefore,

there are in general infinitely many equivalent (local)martingale measures (EMM) or

equivalently there is no unique preference-independent price for options.
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In recent years there have been many papers in the area of characterization of mar-

tingales measures in incomplete markets. The mainstream of this research is concerned

with the projection-based methods in which one looks at the "closest" (in some sense)

martingale measure to the physical or real world probability measure relative. For

example, Föllmer and Sondermann (1986), Föllmer and Schweizer (1991), Schweizer

(1991,1996) use quadratic or L2-distance; Chan (1999), Miyahara (1999) and Frittelli

(2000) use Kullback-Leibler distance (or relative entropy) which leads to the so-called

minimal entropy equivalent martingale measure.

Many arguments play in favor of the MEMM. Firstly, due to the fact that it comes

from the minimization of relative entropy with respect to the real probability measure it

retains every information we know about the randomness structure underlying the mar-

ket thus it is consistent with the efficient market hypothesis. Secondly, the well-known

duality relationship [See Fritelli (2000) and references therein] between minimization of

the relative entropy and maximization of exponential utility makes the minimal entropy

martingale measure economically meaningful. Thirdly, if the minimal entropy martin-

gale exists, it is always equivalent to the objective probability measure unlike some

other martingale measures such as the minimal variance martingale measure which

may not be equivalent to the objective probability measure.

Many authors have studied this equivalent martingale measure in different contexts.

For example, Chan (1999) has studied the problem of pricing contingent claims in a

Lévy model and provided a solution based on the MEMM. Frittelli (2000) has looked at

the problem of existence and uniqueness of the MEMM in a general incomplete market

model and provided its economical interpretation in terms of exponential utility func-

tions. Miyahara (1999), Fujiwara and Miyahara (2003) have obtained some results on

the characterization of the MEMM in the geometric Lévy models. Recently, Fujiwara

(2009) has extended these results to the case where the geometric Lévy process is re-

placed by an exponential additive process.

In this chapter, we extend the result of Fujiwara (2009) to a general Markov-

modulated exponential Lévy model whose a main feature is the presence of a mod-

ulator factor which changes the characteristic of the dynamics of the risky asset under

different regimes. There are few results in the literature for the problem of deter-

mination of MEMM for the regime-switching models in continuous time. The only

at our knowledge is given by Elliott et al. (2005) which in the setting of a Markov-

modulated Black-Scholes model showed that the equivalent martingale measure defined
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by a regime-switching Esscher transform minimizes the conditional relative entropy

with respect to the historic measure. Our main contribution here consists in giving an

expression, when it exists, for the minimal entropy equivalent measure for a general

Markov-modulated exponential Lévy model which minimizes effectively the uncondi-

tional relative entropy.

The chapter is organized as follows. In Section 4.2, we describe the model set-up

and give some preliminaries tools. In particular, we recall some facts on the theory

of Markov additive processes (MAP) which are the mathematical structures behind

regime-switching models. The main problem is discussed in Section 4.3. The starting

point of our approach is the fact that given a Markov additive process defined on a

probability space, it is always possible to decompose the Radon-Nykodym derivative

relative to an equivalent measure as a product of two terms depending of the MAP.

This enables us to work in an exponential additive setting and hence to use the result

of Fujiwara (2009). Section 4.4 contains an example which illustrates the feasibility of

the results obtained and Section 4.5 concludes the chapter.

4.2. Model description and preliminaries

In this section, we present a general model which can be viewed as an extension

of the exponential-Lévy model described in Cont and Tankov (2003, p.283) where a

factor of modulation is introduced to allow for more flexibility, especially for the time-

inhomogeneity property. Also, we describe the main properties of the theory of Markov

additive processes which will be useful to obtain our main result.

4.2.1. The model set-up

We consider a financial market with two primary securities, namely a money

market account B and a stock S which are traded continuously over the time horizon

T := [0, T ], where T ∈ (0,∞) represents the maturity time for investment. To formalize

this market, we fix a complete probability space (Ω,F ,P), where P is the real-world

probability. Further, we will add to this set-up a filtration which specifies the flow of

informations available for the investors.

Let X := {Xt : t ∈ T } denote an irreducible homogeneous continuous-time Markov

chain on (Ω,F ,P) with finite state space S = {s1, s2, ..., sM} ⊂ RM and characterized

by a rate (or intensity) matrix A := {aij : 1 ≤ i, j ≤ M}. The entry of the aij-matrix

represent the transition rates at which the process X jumps from state i to state j.
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Following Elliott (1993), we can identify S with the basis set of the linear space RM .

From now on, we set si = ei := (0, 0, ..., 1︸︷︷︸
i−th

, ..., 0).

Let rt denotes the instantaneous interest rate of the money market account B at

time t. We suppose that rt := r(t,Xt) = 〈r,Xt〉 where 〈·, ·〉 is the usual scalar product

in RM and r = (r1, r2, ..., rM ) ∈ R+
M . The price dynamics of B is given by:

Bt = B0 exp
( ∫ t

0
rsds

)
, B0 = 1; t ∈ T . (4.2.1)

Let µt and σt denote the appreciation rate and the volatility of the stock S at time

t, we suppose respectively that:

µt = 〈µ,Xt〉, σt = 〈σ,Xt〉,

where µ = (µ1, µ2, ..., µM ) ∈ RM and σ = (σ1, σ2, ..., σ2) ∈ R+
M .

The stock price process S is described by the following Markov modulated expo-

nential Lévy process:

St = S0 exp(Yt), S0 > 0, (4.2.2)

with

Yt =
∫ t

0

(
µs −

1
2
σ2
s

)
ds+

∫ t

0
σsdWs +

∫ t

0

∫
R\{0}

zÑX(ds, dz)

−
∫ t

0

∫
R\{0}

(ez − 1− zI|z|<1)ρX(dz)ds. (4.2.3)

In the expression (4.2.3) we have defined

ÑX(dt, dz) :=

 NX(dt, dz)− ρX(dz)dt if |z| < 1,

NX(dt, dz) if |z| ≥ 1,
(4.2.4)

with NX(dt, dz) denotes the differential form of a Markov-modulated random measure

on T ×R\{0}. We recall from Elliott and Osakwe (2006) and Elliott and Royal (2006)

that a Markov-modulated random measure on T × R\{0} is a family {NX(dt, dz;ω) :

ω ∈ Ω} of non-negative measures on the measurable space (T ×R\{0},B(T )⊗B(R\{0})),

which satisfy

NX({0},R\{0};ω) = 0 and has the following compensator, or dual predictable projec-

tion:

ρX(dz)dt :=
M∑
i=1
〈Xt− , ei〉ρi(dz)dt. (4.2.5)
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ρi(dz) is the Lévy measure for the jump size when the Markov chain X is in state ei,

i.e a σ-finite Borel measure on R\{0} with the property∫
R\{0}

min(1, z2) <∞. (4.2.6)

W := (Wt)t∈T denote the standard Brownian motion on (Ω,F ,P) which is supposed to

be independent of X and NX . However, we will assume that a switch of X from state

ej to state ek and a jump of Y do not happen simultaneously, a.s. This assumption is

made to simplify the model structure. Otherwise one should specify the nature (and

distribution) of jumps of Y which are concomitant with those of the Markov chain X

and this would increase the calculations.

For future calculations, we will need an another representation of S throughDoléans-

Dade (or stochastic) exponential. Indeed, by using Itô formula

St = S0E(Ŷt), (4.2.7)

with the process {Ŷt : t ∈ T } defined by

Ŷt =
∫ t

0
µsds+

∫ t

0
σsdWs +

∫ t

0

∫
R\{0}

(ez − 1)ÑX(ds, dz). (4.2.8)

Also, sometimes we will use the following process (R̃t) introduced in Fujiwara and

Miyahara (2003)

R̃t :=
∫ t

0

1
S̃s−

dS̃s, (4.2.9)

where

S̃t := St
Bt

= e−
∫ t

0 rsdsSt. (4.2.10)

From (4.2.2) and (4.2.11), it is easy to see that

R̃t = Ŷt −
∫ t

0
rsds. (4.2.11)

4.2.2. Some preliminaries

We review here some notions related to the Markov additive processes (MAP)

which are the mathematical object behind Markov-modulated exponential Lévy models.

In particular, we define this object and give some of its fundamental properties.
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4.2.2.1. Markov additive Processes

The mathematical theory of Markov additive processes can be traced back to the

works of Ezhov and Skorokhod (1969a,1969b), Çinlar (1972a,b) and Grigelionis (1978).

We now recall some useful results from this theory. Throughout this section, T := [0, T ]

with T <∞.

Definition 4.2.1.

Consider a stochastic process {(Jt, Zt) : t ∈ T } which is adapted to a right-

continuous filtration F := {Ft : t ∈ T } on a probability space (Ω,F ,P) such that

the component Z = {Zt : t ∈ T } takes its values on (Rm,B(Rm)) and is continuous

from the right with limits at the left whereas the component J = {Jt : t ∈ T } takes its

values on a measure space (D,D). The pair (J, Z) will be called a Markov additive

process with respect to F if for any Borel set A ∈ B(Rm), B ∈ D and 0 ≤ s < t ≤ T

we have almost surely (a.s)

P[Zt − Zs ∈ A, Jt ∈ B|Fs] = P[Zt − Zs ∈ A, Jt ∈ B|Js], (4.2.12)

or, more generally, for any bounded random variable η that is measurable with respect

to the σ-algebra σ
{
(Zt − Zs, Jt) : t ∈ [s, T ]

}
and s ∈ T we have almost surely

EP
[
η
∣∣∣Fs] = EP

[
η
∣∣∣Js]. (4.2.13)

In the following, we introduce for 0 ≤ s ≤ twith s, t ∈ T

• FJs,t := σ(Ju;u ∈ T , s ≤ u ≤ t);

• FJt := FJ0,t;

• FZt := σ(Zu;u ∈ T , 0 ≤ u ≤ t);

• Gt := FJt ∨ FZt ;

• Gt = FJT ∨ FZt .

Remark 4.2.1. The two filtrations G := {Gt : t ∈ T } and G := {Gt : t ∈ T } are of

particular importance for our model. The filtration G could be seen as the information

set given the present and the future of the Markov chain J .

We now state a fundamental property of Markov additive process {(Jt, Zt) : t ∈ T }.

Theorem 4.2.1 (Grigelionis 1978). The component Z is a process with conditional

independent increments with respect to the σ-algebra FJT , i.e., for any A ∈ B(Rm) and
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0 ≤ s ≤ t, with s, t ∈ T we have almost surely

P[Zt − Zs ∈ A|Gs] = P[Zt − Zs ∈ A|FJT ], (4.2.14)

or equivalently, for 0 ≤ s ≤ t with s, t ∈ T and y ∈ Rm we have almost surely

EP
[
exp i(y, Zt − Zs)

∣∣∣Gs] = EP
[
exp i(y, Zt − Zs)

∣∣∣FJT ]. (4.2.15)

Proof. The proof of this theorem is obtained by using lemma 1 in Grigelionis (1978).

�

Remark 4.2.2. This last property highlights a feature of the MAP which will be very

useful in the sequel. Indeed, if we work on a suitable stochastic basis (Ω,F ,P) allow-

ing the existence of some regular version of the conditional probability P[·|FJT ] which

will be noted P̂(ω, ·) for an ω ∈ Ω, then one can switch for the new probability space

(Ω,F , P̂(ω, ·)) under which the component Z is an additive process (i.e., has indepen-

dent increments).

From now on, we assume the above mentioned setting and thus we set Ω to be the

canonical space DT (Rm) of càdlàg functions

β : t ∈ [0, T ]→ β(t) ∈ Rm,

endowed with the Skorohod topology such that D(Rm) be its Borel σ-field. The fil-

tration taken on that space is the family D(Rm) = {Dt(Rm) =
⋂
u>tD0

u(Rm)}, where

D0
u(Rm) denotes the σ-field generated by all maps : β  β(s) for s ≤ t.

Let (J, Z) = {(Jt, Zt) : t ∈ T } be a Markov additive process defined on (Ω,D(Rm),D(Rm),P)

with Z denoting its additive part. Ω defined as DT (Rm) is a Polish space, hence we

have this lemma

Lemma 4.2.1 (Çinlar 1972a).

There exists a regular version P̂ of the conditional probability P{·|FJT } on the σ-algebra

Gt i.e. for P−almost all ω ∈ Ω, P̂(ω, ·) is a probability measure on GT and P̂(ω,A) is a

version of P[A|FJT ] for every A ∈ GT .

Proof. See Çinlar (1972a). �
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The following proposition, formulated by Grigelionis (1978) gives a characterization

criterion of a Markov additive process:

Theorem 4.2.2 (Grigelionis 1978).

A stochastic process {(Jt, Zt) : t ∈ T } adapted to a complete right-continuous filtration

F := {Ft : t ∈ T } is a Markov additive process (MAP) if and only if the following

conditions are satisfied:

(1) The component Z has an expansion Zt = Z
′
t + Z

′′
t where Z ′ is continuous from the

right with limits at the left and such that for all t ∈ T , Z
′
t is FJT -measurable and

Z
′′ is an (G,P)-semimartingale whose the spot-characteristics triplet (At, νt, γt) are

FJT -measurable;

(2) The component J has the Markov property with respect to the filtration G = {Gt : t ∈ T }

i.e.„ for any 0 ≤ s < t ≤ T and B ∈ D we have almost surely

P[Jt ∈ B|Gs] = P[Jt ∈ B|Js], (4.2.16)

With all the ingredients above we now state the first result of this contribution

that allows us, when we have a MAP, to decompose the density process associated to

a change of measure into some useful components related to this MAP.

Theorem 4.2.3.

Let Q be an arbitrary probability measure such that Q
loc
� P i.e., Q|Gt � P|Gt for each

t ∈ T . We denote by ΛJ,Z the Radon-Nikodym density process defined by

ΛJ,Zt = dQ
dP

∣∣∣
Gt
. (4.2.17)

Then the following holds P-almost surely:

ΛJ,Z admits the unique(up to P-null sets) decomposition

ΛJ,Zt = ΛZt . ΛJT , for t ∈ T , (4.2.18)

where

• ΛZ =
{
dQ̂(ω,·)
dP̂(ω,·)

∣∣∣
Gt

; t ∈ T
}

is the Radon-Nikodym density process of a regular version

Q̂(ω, ·) of Q[·|FJT ] with respect to a regular version P̂(ω, ·) of P[·|FJT ];

• ΛJT = dQ
dP

∣∣∣
G0

(
= dQ

dP

∣∣∣
FJT

)
is the Radon-Nikodym derivative characterizing a change of

measure under which the Markov chain is modified.

Proof. 1)Let Q be an arbitrary probability locally absolutely continuous with respect

to P. Let ΛJ,Zt be a version of the Radon-Nikodym derivative of Q|Gt w.r.t P|Gt . By



103

lemma (4.2.1) we have that for P−almost all ω ∈ Ω, there exists a regular version of

P[·|FJT ] and Q[·|FJT ] which we will denote respectively by P̂(ω, ·) and Q̂(ω, ·).

Since Q
loc
� P, we have that for P−almost all ω ∈ Ω, Q̂(ω, ·) is also locally absolutely

continuous with respect to P̂(ω, ·).

Indeed, for each A ∈ Gt satisfying P̂(ω,A) = 0 we have

Q̂(ω,A) := EQ[1A|FJT ](ω)

= EP[ΛJ,Zt .1A|FJT ](ω)× 1
EP[ΛJ,Zt |FJT ](ω)

(by Bayes’ rule)

= EP̂(ω,·)
[
ΛJ,Zt .1A

]
× 1

EP
[
ΛJ,Zt

∣∣∣FJT ](ω)
(by definition of EP̂(ω,·)[·])

= 1
EP
[
ΛJ,Zt

∣∣∣FJT ](ω)
×
∫
Ω

ΛJ,Zt (ω′)1A(ω′)P̂(ω, dω′)

= 0. (4.2.19)

Since Q̂(ω, ·)|Gt is absolutely continuous with respect to P̂(ω, ·)|Gt , by theorem III-3.4

of Jacod and Shiryaev (2003) there exists for P−almost all ω ∈ Ω, a density process ΛZ
such that

ΛZt =
dQ̂(ω, ·)|Gt
dP̂(ω, ·)|Gt

, ∀0 ≤ t ≤ T. (4.2.20)

By definition, ΛZ is a G-martingale under P̂(ω, ·) also under P.

For each A ∈ Gt we have for P−almost all ω ∈ Ω

Q̂(ω,A) = EP̂(ω,·)[ΛZt .1A]

= EP[ΛZt .1A|FJT ](ω), (4.2.21)

otherwise,

Q̂(ω,A) = EQ
[
1A
∣∣∣FJT ](ω)

= EP
[
ΛJ,Zt .1A

∣∣∣FJT ](ω) 1
EP
[
ΛJ,Zt

∣∣∣FJT ](ω)
(by Bayes’ rule).

(4.2.22)

By setting

ΛJT = EP
[
ΛJ,Zt

∣∣∣FJT ], (4.2.23)
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and taking the above two expressions of Q̂(ω,A), we obtain that either

EP
[
ΛZt ΛJT .1A

∣∣∣FJT ](ω) = EP
[
ΛJ,Zt .1A

∣∣∣FJT ](ω), (4.2.24)

or

EP
[(

ΛZt ΛJT − ΛJ,Zt
)
.1A
∣∣∣FJT ](ω) = 0. (4.2.25)

Taking expectation in the both sides, we have for P a.s

ΛJ,Zt = ΛZt ΛJT ∀t ∈ [0, T ]. (4.2.26)

Now we have to show that ΛJT is the Radon-Nikodym derivative (FJT -measurable) char-

acterizing a change of measure under which the Markov chain is modified.

Indeed, by (4.2.23)

ΛJT := EP
[
ΛJ,Zt

∣∣∣FJT ] = EP
[
ΛJ,Zt

∣∣∣G0
]

= ΛJ,Z0 (by martingale property for ΛJ,Z), (4.2.27)

= dQ
dP

∣∣∣
G0

= dQ
dP

∣∣∣
FJT
.

(4.2.28)

By setting

ΛJt := EP
[
ΛJT
∣∣∣FJt ] ∀t ∈ [0, T ], (4.2.29)

we define a (FJ ,P) martingale process such that EP[ΛJt ] = 1 hence ΛJ is a density

process under which the Markov chain would be eventually modified. �

Remark 4.2.3. The process (X,Y ) defined in Section 4.2.1 is a Markov additive pro-

cess. In particular the log-return process Y is a conditional additive process given the

σ-algebra FXT ; hence, from (4.2.3) we have this canonical decomposition for Yt associ-

ated with the truncation function h(x) := xI{|x|≤1}:

Yt =
∫ t

0

(
µs −

1
2
σ2
s

)
ds−

∫ t

0

∫
R\{0}

(ez − 1− h(z))ρX(dz)ds+
∫ t

0
σsdWs

+
∫ t

0

∫
R\{0}

h(z)ÑX(ds, dz) +
∫ t

0

∫
R\{0}

(z − h(z))NX(ds, dz). (4.2.30)

Hence its spot-characteristic triplet (At, νt, γt) is given by

At :=
∫ t

0
σ2
sds, (4.2.31)

νt(dy) :=
∫ t

0
ρX(dy)ds, (4.2.32)
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and

γt :=
∫ t

0

(
µs −

1
2
σ2
s

)
ds−

∫ t

0

∫
R\{0}

(ez − 1− h(z))ρX(dz)ds. (4.2.33)

4.3. Minimal entropy equivalent martingale measure for Markov-

modulated Lévy process

In this section, we address the main aim of our study: existence and characterization

of the minimal entropy equivalent martingale measure for the Markov-modulated Lévy

model. It is known that the financial market described by equations (4.2.2) and (4.2.1)

is incomplete, so neither existence nor uniqueness of equivalent martingale measures

are assured. Nevertheless, we show in this section that under mild conditions there is

a MEMM and its uniqueness results from the strict convexity of the relative entropy

operator.

4.3.1. Preliminaries

Let G be a sub σ-algebra of GT and P the set of probability measures on (Ω,G).

Definition 4.3.1. For Q ∈ P(Ω,G), the relative entropy of Q with respect to P is

defined as:

HG(Q,P) :=


EQ
[

log
(
dQ
dP

∣∣∣
G

)]
if Q << P on G

+∞ otherwise
(4.3.1)

where dQ
dP |G denotes the Radon-Nikodym derivative of Q with respect to P on G.

Moreover, it verifies the following

• HG(Q,P) ≥ 0 and HG(Q,P) = 0 if and only if Q = P;

• The functional Q 7−→ HG(Q,P) is strictly convex.

Now we recall a lemma (See Fujiwara and Miyahara (2003)) which is useful in what

follows.

Lemma 4.3.1. Let K be a sub σ-field of a σ-algebra GT and Q an element of P(Ω,G)

which is absolutely continuous with respect to P. Then we have the following equivalence

(a) ∼ (b) ∼ (c)

• (a) HG(Q,P) ≥ 0;
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• (b)Let P1 ∈ P(Ω,G) be equivalent to P on G and log
(
dP1
dP

∣∣∣
G

)
be integrable with respect

to Q, then

HG(Q,P) ≥
∫
Ω

log
(dP1
dP

∣∣∣
G

)
dQ.

• (c)If K ⊂ G, then

HK(Q,P) ≤ HG(Q,P).

In particular, from statement (c) the relative entropy HK(Q,P) is nondecreasing on

the elements of a filtration.

Now we define several spaces that will be useful in the sequel.

• Ma(S̃) :=
{

Q
loc
� P : (S̃t) is a (G,Q)-local martingale

}
;

• Me(S̃) :=
{

Q loc∼ P : (S̃t) is a (G,Q)- martingale
}
;

Elements ofMe(S̃) are called equivalent martingale measures (EMMs) for S̃.

Definition 4.3.2. The minimal entropy martingale measure is a probability measure

Q? ∈Me(S̃) such that

HGT (Q?,P) = min
Q∈Ma(S̃)

HGT (Q,P). (4.3.2)

If the MEMM exists, by definition it is unique. Moreover [see Fritelli 2001, Theorem

2.2], under the assumption

inf
Q∈Me(S̃)

HGT (Q,P) <∞ (4.3.3)

it is equivalent to P.

4.3.2. Main results

Before moving on with our discussion and main results, we need to state and

label the following condition:

Condition (H)

There exists a FXt -adapted process with càglàd path (θXt ){t∈T } that satisfies the

following

(i) ∫ T

0

∫
{z>1}

ezeθ
X
s (ez−1)ρX(dz)ds <∞ P (a.s), (4.3.4)
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(ii) for almost all t ∈ T ,

µt + θXt σ
2
t +

∫
R\{0}

(
eθ
X
s (ez−1) − 1

)
(ez − 1)ρX(dz)ds = rt P (a.s). (4.3.5)

In view of Theorem 4.2.3 and some previous results in the literature about the

MEMM, we claim that for the Markov-modulated exponential Lévy model the MEMM

will be constructed as product of two terms. Precisely, we have this definition

Definition 4.3.3. Let {θXt : t ∈ T } be a process satisfying the condition (H). We define

a probability measure QθX on (Ω,GT ) such that

∀A ∈ Gt, QθX (A) := EP[Lt.IA], (4.3.6)

where Lt = ΛθXt . UT with

ΛθXt :=
exp

( ∫ t
0 θ

X
s dR̃s

)
EP
[
exp

( ∫ t
0 θ

X
s dR̃s

)∣∣∣FXT ] (4.3.7)

and UT be a FXT -measurable positive function such that EP[UT ] = 1.

Remark 4.3.1. The probability measure QθX defined above is absolutely continuous

with respect to P and by theorem (4.2.3) it admits the decomposition

dQθX

dP

∣∣∣
Gt

= dQ̂θX

dP̂

∣∣∣
Gt
. UT , (4.3.8)

where

dQ̂θX

dP̂

∣∣∣
Gt

:=
exp

( ∫ t
0 θ

X
s dR̃s

)
EP
[
exp

( ∫ t
0 θ

X
s dR̃s

)∣∣∣FXT ] . (4.3.9)

Proposition 4.3.1.

The probability measure QθX defined above is an element ofMe(S̃).
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Proof. We only need to show that (S̃t) is a (G,Q)- martingale.

So, using Bayes’ rule we have ∀ 0 ≤ s ≤ t ≤ T

EQθX
[
S̃t
∣∣∣Gs] =

EP
[
ΛθXt UT S̃t

∣∣∣Gs]
EP
[
ΛθXt UT

∣∣∣Gs] ,

= EP
[
ΛθXt
ΛθXs

e−
∫ t

0 ruduSse
∫ t
s
dYu

∣∣∣∣∣Gs
]

= S̃sEP
[
ΛθXt
ΛθXs

e−
∫ t
s
rudue

∫ t
s
dYu

∣∣∣∣∣Gs
]
. (4.3.10)

The proposition is proved if under the conditions (4.3.4)-(4.3.5) we have

EP
[
ΛθXt
ΛθXs

e−
∫ t
s
rudue

∫ t
s
dYu

∣∣∣∣∣Gs
]

= 1, ∀0 ≤ s ≤ t ≤ T. (4.3.11)

From proposition VIII-22 in Cont and Tankov (2005),

Yt = Ŷt−
1
2

∫ t

0
σ2
sds−

∫ t

0

∫
R\{0}

(
ez−1−z

)
ÑX(ds, dz)−

∫ t

0

∫
R\{0}

(
ez−1−z

)
ρX(dz)ds,

(4.3.12)

Then

ΛθXt
ΛθXs

e−
∫ t
s
rudue

∫ t
s
dYu =

exp
{
K̂s(θX)− K̂t(θX)−

∫ t

s
rudu−

1
2

∫ t

s
σ2
udu−

∫ t

s

∫
R\{0}

(
eθ
X
u (ez−1) − 1− θXu (ez − 1)

)
ρX(dz)du

}
︸ ︷︷ ︸

I

×exp
{∫ t

s
(θXu + 1)µudu+

∫ t

s
(θXu + 1)σudWu +

∫ t

s

∫
R\{0}

(
z + θXu (ez − 1)

)
ÑX(du; dz)

}
︸ ︷︷ ︸

II

(4.3.13)

where [See Appendix A]

K̂t(θX) :=
∫ t

0

[
θXs µs+

1
2
(θXs )2σ2

s

]
ds+

∫ t

0

∫
R\{0}

(
eθ
X
s (ez−1)−1−θXs (ez−1)

)
ρX(dz)ds, ∀ t ∈ [0, T ].

(4.3.14)

Noting that the term I in (4.3.13) is Gs-measurable, we obtain
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EP
[
ΛθXt
ΛθXs

e−
∫ t
s
rudue

∫ t
s
dYu

∣∣∣∣∣Gs
]

= EP
[

exp
{∫ t

s
(θXu + 1)µudu+

∫ t

s
(θXu + 1)σudWu

+
∫ t

s

∫
R\{0}

(
z + θXu (ez − 1)

)
ÑX(du; dz)

}∣∣∣∣∣Gs
]

×exp
{
K̂s(θX)−K̂t(θX)−

∫ t

s
rudu−

1
2

∫ t

0
σ2
udu−

∫ t

0

∫
R\{0}

(
eθ
X
u (ez−1)−1−θXu (ez−1)

)
ρX(dz)du

}
.

(4.3.15)

After some algebra and using theorem (4.2.1) we have

EP
[
ΛθXt
ΛθXs

e−
∫ t
s
rudue

∫ t
s
dYu

∣∣∣∣∣Gs
]

= exp
{∫ t

s
(µu − ru + θXu σ

2
u)du

+
∫ t

s

∫
R\{0}

(
eθ
X
u (ez−1) − 1

)
(ez − 1)ρX(dz)du

}
, (4.3.16)

Hence, using the condition (4.3.5) we have the result. �

Remark 4.3.2. Condition (4.3.4) is useful to assure integrability of some expressions

used in the proof. In the literature, (4.3.5) is known as Martingale condition because

the probability measure QθX defined from the process θX is a martingale measure for

the discounted price process of risky asset.

For pricing purposes, we need to know the dynamics of price process of the risky

asset under the martingale probability measure QθX . The following proposition states

a result in this direction.

Proposition 4.3.2.

Under risk-neutral probability measure QθX ,

(1) the log-return process Y is expressed as

Yt = γ̂t+M̂t+
∫ t

0

∫
R\{0}

h(z)ÑX(ds, dz)+
∫ t

0

∫
R\{0}

(z−h(z))NX(ds, dz) for t ∈ T ,

(4.3.17)

where

• (γ̂t) is a FXT -measurable continuous process defined by

γ̂t :=
∫ t

0

(
rs −

1
2
σ2
s

)
ds−

∫ t

0

∫
R\{0}

(ez − 1− h(z))ρθX (dz)ds, (4.3.18)
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• (M̂t) is a continuous Gaussian process with independent increments under Q̂θX (ω, ·),

defined by

M̂t :=
∫ t

0
σsdW

θX

s , (4.3.19)

with W θX denoting the standard Brownian motion under QθX ;

• ÑX is the compensated measure of NX under QθX defined by

Ñ
X(ds, dz) = NX(ds, dz)− ρθX (dz)ds, (4.3.20)

with ρθX (dz) = eθ
X(ez−1)ρX(dz).

Also, Ŷ admits the following expansion

Ŷt =
∫ t

0
rsds+

∫ t

0
σsdW

θ
s +

∫ t

0

∫
R\{0}

(ez − 1)ÑX(ds, dz) for t ∈ T . (4.3.21)

(2) Let Ut := dQθX

dP

∣∣∣
FXt

for all 0 ≤ t ≤ T . If (Ut) is a multiplicative functional (See

Asmussen (2003)) and U0 = 1 then X has the Markov property with respect to the

filtration

G = {Gt, 0 ≤ t ≤ T}.

Proof. 1) For P a.s. ω ∈ Ω, ΛθXt = dQ̂θX (ω,·)
dP̂(ω,·)

|Gt = eD
θX

t where DθX
t =

∫ t
0 θ

X
s dŶs −

log K̂t(θ) i.e.,

DθX

t =
∫ t

0
σsθ

X
s dWs −

1
2

∫ t

0
σ2
s(θXs )2ds+

∫ t

0

∫
R\{0}

θXs (ez − 1)ÑX(ds, dz) (4.3.22)

−
∫ t

0

∫
R\{0}

(
eθ
X
s (ez−1) − 1− θXs (ez − 1)

)
ρXs(dz)ds. (4.3.23)

By Itô’s formula,

ΛθXt = eD
θX

t = 1 +
∫ t

0
ΛθXs− θ

X
s σsdWs −

∫ t

0

∫
R\{0}

ΛθXs−
(
eθ
X
s (ez−1) − 1

)
ÑX(ds, dz)

(4.3.24)

Thus, by setting Mt :=
∫ t
0 σsdWs which is a local martingale under P we have

[M,ΛθX ]t =
∫ t

0
ΛθXs− θ

X
s σ

2
sds

=
∫ t

0
ΛθXs θXs σ

2
sds, (4.3.25)
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so from Protter (2003, thm III-39) we have that the process M̂ defined by

M̂t = Mt −
∫ t

0

d[M,ΛθX ]s
ΛθXs

=
∫ t

0
σsdWs −

∫ t

0
θXs σ

2
sds, (4.3.26)

is a continuous local martingale under Q̂θX (ω, ·) and we could write M̂t =
∫ t
0 σsdW

θX
s

where W θX
t = Wt −

∫ t
0 θ

X
s σsds.

Also, from the theorem 4.2.3 we have the decomposition

dQθX

dP
|Gt = ΛθXt UT ,

and

[W,ΛθXUT ]t =
∫ t

0
ΛθXs UT θ

X
s σsds.

Hence, using theorem III-39 of Protter (2003) W θX
t = Wt −

∫ t
0
d[W, ΛθXU ]s

ΛθXt UT
is a locally

martingale under QθX .

Also

[W θX ,W θX ]t = [W,W ]t = t

and by the Lévy characterization theorem, W θX is the standard Brownian motion un-

der QθX and consequently M̂t =
∫ t
0 σsdW

θX
s is a continuous Gaussian process with

independent increments under Q̂θX (ω, ·).

Now, we will construct the compensated measure of NX with respect to the family

G = {Gt, 0 ≤ t ≤ T} and the probability measure QθX .

Let ÑX be the process defined for any A ∈ B(R\{0}) (Fujiwara 2009) by

Ñ
X
t (A) := NX

(
(0, t], A

)
−
∫ t

0

∫
R\{0}

IA(z)ρX(dz)ds

=
∫ t

0

∫
R\{0}

IA(z)ÑX(ds, dz) (4.3.27)

we have
[
Ñ
X(A),ΛθXUT

]
t
=
∫ t
0
∫
R\{0} IA(z)ΛθXs−UT

(
eθs(e

z−1) − 1
)
NX(ds, dz).

Since ρX(dz)dt is the predictable projection of the Poisson measure NX(dt, dz),

< Ñ
X(A),ΛθUT >t=

∫ t

0

∫
R\{0}

IA(z)Λθs−UT
(
eθs(e

z−1) − 1
)
ρXs(dz)ds (4.3.28)

So, by theorem III-3.11 of Jacod and Shiryaev (2003), the new process Ñ defined by

Ñ
X
t (A) = Ñ

X
t −

∫ t

0

d < Ñ
X(A),ΛθUT >s
Λθs−UT

(4.3.29)

= NX
(
(0, t], A

)
−
∫ t

0

∫
R\{0}

IA(z)eθs(ez−1)ρX(dz)ds
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is also a locally martingale under QθX .

EQθX
[
[Ñ , Ñ ]t

]
= EQθX

[ ∫ t
0
∫
R\{0} IA(z)eθs(ez−1)ρX(dz)ds

]
<∞ by condition (4.3.4).

Then by corollary II-3 of Protter (2003), ÑX is a martingale under QθX with respect

to family G = {Gt, 0 ≤ t ≤ T}, hence it is the compensated measure of NX under

QθX i.e.,

Ñ
X(ds, dz) = NX(ds, dz)− ρθX (dz)ds (4.3.30)

where ρθX (dz) := eθs(e
z−1)ρX(dz).

From decomposition 4.2.3 and using the results above and condition (4.3.5), we

obtain this expression of Y under QθX :

Yt = γ̂t + M̂t +
∫ t

0

∫
R\{0}

h(z)Ñ(ds, dz) +
∫ t

0

∫
R\{0}

(z − h(z))NX(ds, dz) for ∀t ∈ T

(4.3.31)

where γ̂ is a continuous FXT -measurable process defined by

γ̂t :=
∫ t

0

(
rs −

1
2
σ2
s

)
ds−

∫ t

0

∫
{0<|z|≤1}

(ez − 1− z)ρθX (dz)ds−
∫ t

0

∫
{|z|>1}

(ez − 1)ρθX (dz)ds

(4.3.32)

The expression of Ŷ is obtained straightforwardly as we do for Y .

2) Let (Px)x∈S a family of probabilities defined on (Ω,GT ) and associated to the Markov

semi-group (Pt(x, .)) which characterizes X under P. We define another family of

probabilities (QθX
x )x∈S on (Ω,GT ) such that

QθX

x = QθX [A|X0 = x], A ∈ GT . (4.3.33)

QθX
x is locally absolutely continuous with respect to Px and

dQθX
x

dPx

∣∣∣
FXt

= Ut, t ∈ T . (4.3.34)

The Markov property for X under (P,G) could be written as

EPx
[
Zt ◦ τs

∣∣∣Gs] = EPXs
[
Zt
]
, ∀s ≤ t ≤ t+ s ≤ T (4.3.35)
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for any FXt -measurable Zt and where τt is the shift operator (see Asmussen 2003).

We want to prove that X is also Markov under (QθX ,G).

For any FXt -measurable Zt and x ∈ S, we have

EQθXx
[
Zt ◦ τs

∣∣∣Gs] =
EPx

[
Ut+sZt ◦ τs

∣∣∣Gs]
EPx

[
Ut+s

∣∣∣Gs] , ( by Bayes’ rule)

=
EPx

[
Us.(Ut ◦ τs).(Zt ◦ τs)

∣∣∣Gs]
EPx

[
Us.(Ut ◦ τs)

∣∣∣Gs]

=
EPx

[
(Ut.Zt) ◦ τs

∣∣∣Gs]
EPx

[
Ut ◦ τs

∣∣∣Gs]

=
EPXs

[
Ut.Zt

]
EPXs

[
Ut
] , (by 4.3.35)

= EPXs
[
Ut.Zt

]
= EQθXXs

[
Zt
]
. (4.3.36)

where we have used the fact that U is a multiplicative functional which verifies EPx [Ut] =

1, ∀x ∈ S. �

Remark 4.3.3. Theorem 4.2.2 and proposition 4.3.2 imply that (X,Y ) remains a

Markov additive process under the risk-neutral measure QθX .

Let ω ∈ Ω such that P̂(ω, ·) denotes a regular version of the conditional probability

P(.|FXT ). We have seen above that the log-return process Y is an additive process under

(Ω,G, P̂(ω, ·)), thus we can apply the existence result of MEMM for exponential additive

processes of Fujiwara (2009). The following theorem is adapted from this result.

Proposition 4.3.3.

Under condition (H) we have that for all Q ∈ Ma(S̃), if Q̂(ω, ·) and P̂(ω, ·) denote

respectively some regular versions of the conditional probability Q(.|FXT ) and P(.|FXT )

Then

HGT (Q̂, P̂) ≥ HGT (Q̂θX , P̂) P (a.s), (4.3.37)

where Q̂θX is defined by (4.3.9).
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Proof.

Let Q ∈Ma(S̃) be arbitrary. By theorem (4.2.3), Q admits the decomposition

dQ
dP

∣∣∣
Gt

= ΛYt ΛXT , for all 0 ≤ t ≤ T (4.3.38)

where we set ΛYt := dQ̂
dP̂

∣∣∣
Gt

with Q̂ and P̂ denoting the regular versions of Q(.|FXT )

and P(.|FXT ) respectively. On the other hand, we have from Theorem III-33 of Protter

(2003) that {R̃t : 0 ≤ t ≤ T} and {
∫ t
0 θ

X
s dR̃s : 0 < t ≤ T} are (G)−local martingale

under Q since {1/S̃−t : 0 ≤ t ≤ T} and {θXt : t ∈ T } are càglàd. Therefore, there

exists a sequence (Tn)n≥0 of stopping times such that Tn ↗ T as n −→ +∞ and

{
∫ t∧Tn
0 θXs dR̃s : 0 ≤ t ≤ T} is an (G)-martingale under Q.

Now, by using lemma 4.3.1 we have P a.s

HGT (Q̂|P̂) ≥ HGTn (Q̂|P̂) (since GTn ⊂ GT )

= EQ
[
log

(dQ̂
dP̂

∣∣∣
GTn

)∣∣∣FXT ]
≥ EQ

[
log

(dQ̂θX

dP̂

∣∣∣
GTn

)∣∣∣FXT ] (4.3.39)

where

dQ̂θX

dP̂

∣∣∣
GTM

:=
exp

( ∫ Tn
0 θXs dR̃s

)
EP
[
exp

( ∫ Tn
0 θXs dR̃s

)∣∣∣FXT ] (P a.s), (4.3.40)

and

EQ
[

log
(
dQ̂
dP̂

∣∣∣∣∣
GTn

)∣∣∣∣∣FXT
]

= EQ
[ ∫ Tn

0
θXs dR̃s − K̂Tn(θ) +

∫ Tn

0
θXs rsds

∣∣∣∣∣FXT
]
. (4.3.41)

But

EQ
[ ∫ Tn

0
θXs dR̃s

∣∣∣∣∣FXT
]

= EQ
[ ∫ Tn

0
θXs dR̃s

∣∣∣∣∣G0

]
= 0 (P a.s),

since
{ ∫ t∧Tn

0 θXs dR̃s : 0 ≤ t ≤ T
}
is a G-martingale under Q. Hence because {rt : 0 ≤

t ≤ T} and {K̂t(θ) : 0 ≤ t ≤ T} are FXT −measurable, we then have P a.s

EQ̂
[

log
(dQ̂θ

dP̂

∣∣∣∣∣
GTn

)]
=
∫ Tn

0
θXs rsds− K̂Tn(θ), ∀n ∈ N. (4.3.42)
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On the other side, we have by Dominated Convergence Theorem:

lim
n→+∞

{∫ Tn

0
θXs rsds− K̂Tn(θ)

}
=
∫ T

0
θXs rsds− K̂T (θ) (P a.s). (4.3.43)

Thus from (4.3.39), for all Q ∈Ma(S̃)

HGT (Q̂|P̂) ≥
∫ T

0
θXs rsds− K̂T (θ) (P a.s). (4.3.44)

But, we have that (
∫ t
0 θ

X
s dR̃s)0≤t≤T is a G-martingale under QθX [See Appendix B]

and therefore

EQθX
[ ∫ T

0
θXs dR̃s

∣∣∣∣∣FXT
]

= EQθ
[ ∫ T

0
θXs dR̃s

∣∣∣∣∣G0

]
= 0 (P a.s). (4.3.45)

Hence, we have

HGT (Q̂θX , P̂) := EQθX
[ ∫ T

0
θXs dR̃s +

∫ T

0
θXs rsds− K̂T (θ)

∣∣∣∣∣FXT
]

= EQθX
[ ∫ T

0
θXs rsds

∣∣∣∣∣FXT
]
− EQθ

[
K̂T (θ)

∣∣∣∣∣FXT
]

=
∫ T

0
θXs rsds− K̂T (θ) (P a.s),

Thus

HGT (Q̂, P̂) ≥ HGT (Q̂θX , P̂) (P a.s), (4.3.46)

for all Q ∈Ma(S̃) and we can conclude that

HGT (Q̂, P̂) ≥ HGT (Q̂θX , P̂)

=
∫ T

0
θXs rsds− K̂T (θ) (P a.s). (4.3.47)

This ends the proof of proposition 4.3.3. �

In the previous proposition, we showed the optimality under certain conditions of

one component of the decomposition of QθX . Specifically, this component is optimal

among all "projections" on the σ-algebra FXT of probability measures Q ∈ Ma(S̃). So,

to obtain a global result we need to add some conditions on the other component. This

is the subject of next section.
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4.3.3. An optimization problem

Theorem 4.2.3 tells us that the density process related to a probability measure

Q ∈ Ma(S̃) can be decomposed as a product of a density process associated to the

conditional probabilities given FXT and a Radon-Nikodym derivative associated to the

change of measure of the Markov chain X. This decomposition is crucial because it

permits to reduce with Proposition 4.3.3 the problem of finding a MEMM for a Markov-

modulated Lévy model to an optimization problem involving only the characteristics

of the Markov chain component X.

In particular, we need to know how the Markov chain changes through a change of

measure. So, we begin by giving a procedure to characterize this change of measure,

namely by using a Girsanov-type theorem. In this setting we set the optimization

problem and give the conditions for the existence of a solution.

4.3.3.1. Girsanov’s change of measure for the continuous-time Markov chain

The Markov chain X is completely characterized under P by (Π0,A), where Π0 is

the initial probability distribution and A := (aij)1≤i,j≤N is the intensity matrix. We

recall that an intensity matrix (for X) is a square matrix M := (mij)1≤i,j≤N with

elements mij which satisfy the following conditions

(1) ∀i, j = 1, 2, ..., N with i 6= j, mij > 0;

(2)
∑M
i=1mij = 0, so mii < 0.

In the sequel, we suppose without loss of generality that the change of measure modifies

only the intensity matrix. Now, we introduce some notations as in Dufour and Elliott

(1999).

• Let a :=
(
a11, a22, ..., aNN

)′
∈ RM and A0 := A −Diag(a), where Diag(a) is

a diagonal matrix with the elements given by the vector a;

• Let C :=
{
(cij)1≤i,j≤N where cij verifies conditions (1)-(2) above

}
the set of all

possible intensity matrix for X;

• For A, C ∈ C we define D := C/A the matrix defined by D := (cij/aij)1≤i,j≤N ;

• 1 := (1, 1, ..., 1)′ ∈ RM and I the identity matrix.
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We have assumed that X is irreducible so aij 6= 0 and thus D is well defined. Now,

consider a vector of counting process N := {Nt : t ∈ T } with

Nt =
∫ t

0

(
I−Diag(Xs−)

)
dXs (4.3.48)

Its component Nt(i) counts the number of times the chain X jumps to state si during

the time interval [0, t] for i = 1, 2, ..., N.

Dufour and Elliott (1999) showed that the process defined by

Ñt := N(t)−
∫ t

0
A0Xu−du, t ∈ T (4.3.49)

is a ({FXt }t∈T ,P)−martingale. Hence, we can state

Proposition 4.3.4. The process ΛC := {ΛCt : t ∈ T } defined by

ΛCt = 1 +
∫ t

0
ΛCu− [D0Xu− − 1]′dÑu (4.3.50)

is a ({FXt }t∈T ,P)−martingale under some regularity conditions on the coefficients of

D.

Also, by setting

dQC

dP

∣∣∣
FXt

:= ΛC(t) (4.3.51)

we define an absolutely continuous probability measure QC w.r.t P under which X is a

Markov chain characterized by the intensity matrix C.

For the proof, we refer to Dufour and Elliott (1999).

An explicit expression of this likelihood ratio is given by the following proposition

Proposition 4.3.5.

dQC

dP

∣∣∣
FXt

:= exp
{
−
∫ t

0
[D0Xs− − 1]′A0Xs−ds

} ∏
0<s≤t

(
1 + [D0Xs− − 1]′∆Ns

)
(4.3.52)

Furthermore,

dQC

dP

∣∣∣
FXt

:=
∏

1≤i 6=j≤M
exp

{
−
∫ t

0
(λ̂ijs − λijs )ds+

∫ t

0
log

( λ̂ijs
λijs

)
dN ij

s

}
(4.3.53)

with for i 6= j,

• N ij
t :=

∑
0<s≤t〈Xs− , ei〉〈Xs, ej〉 the number of times where X jumps from ei to ej

during the time interval [0, t] (dN ij
t denotes its differential notation);

• λijt := aij〈Xt− , ei〉〈Xt, ej〉;

• λ̂ijt := cij〈Xt− , ei〉〈Xt, ej〉
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Proof. See Appendix C. �

To simplify notation, we set for 1 ≤ i 6= j ≤ M and s ∈ [0, T ] in the expression

(4.3.53)

αijs := log
( λ̂ijs
λijs

)
, (4.3.54)

then we have

ΛCT =
∏

1≤i 6=j≤M
exp

{
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

}

= exp
{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

)}
. (4.3.55)

In the sequel, we will denote ΛCT by ΛαT .

For a given process θX := {θXt : t ∈ [0, T ]} satisfying condition (H) and α := {αijt :

1 ≤ i 6= j ≤M ; t ∈ [0, T ]} we introduce the functional F (α) defined by

F (α) := EP
[{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1− αijs )ds

)
+
∫ T

0
θXs rsds− K̂T (θX)

}

× exp
{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

)}]
(4.3.56)

Let Q(α, θX) a probability measure absolutely continuous with respect to P on GT and

characterized by the Radon-Nikodym derivative

dQ(α, θX)

dP

∣∣∣
GT

:= ΛθXT . ΛαT (4.3.57)

Lemma 4.3.2. Under the probability measure Q(α, θX) defined above, the functional

F (α) admits a simple expression

F (α) =
∑

1≤i 6=j≤M
αijEQ(α, θX )[N ij

T

]

+
M∑
j=1

[
1
2
θ2
jσ

2
j+
∫

R\{0}

(
e−θj(e

z−1)−1+θj(ez−1)
)
ρθ
j
(dz)−

M∑
i=1
i 6=j

aij(eαij−1)
]
EQ(α, θX )[

τj
]

(4.3.58)

where we have set
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• τi the occupation time of the Markov chain X in the state ei during the time interval

[0, T ];

• αijt := αij〈Xt− , ei〉〈Xt, ej〉;

• θXt =
∑M
j=1 θj〈Xt− , ei〉

• ρθ
j
(dz) := eθj(e

z−1)ρj(dz);

Proof. See Appendix D. �

Now, we are in situation to state the main result concerning the characterization

of the MEMM for the Markov-modulated exponential Lévy model.

Theorem 4.3.1. If it exists a matrix α̃ := {α̃ij : 1 ≤ i 6= j ≤ M} solution of the

problem

min
α
F (α) (4.3.59)

Then the minimal entropy equivalent martingale measure for the model (4.2.1)-(4.2.2)

exists and is defined by

dQ(α̃, θX)

dP

∣∣∣
Q(α̃, θX )

:= ΛθXT . Λα̃T (4.3.60)

Proof. Let Q be an arbitrary probability of Ma(S̃). By proposition 4.2.3 we can

always write that

dQ
dP

∣∣∣
GT

= ΛYT ΛαT (4.3.61)
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where ΛαT = dQ
dP

∣∣∣
FXT

and ΛYT = dQ̂
dP̂

∣∣∣
GT

. By an easy calculation we obtain

HGT (Q|P) = EP
[
ΛαT log(ΛαT )EP[ΛYT |FXT ] + ΛαTEP[ΛYT log(ΛYT )|FXT ]

]
= EP

[
ΛαT log(ΛαT ) + ΛαTEP[ΛYT log(ΛYT )|FXT ]

]
since EP[ΛYT |FXT ] = 1,

= EP
[
ΛαT log(ΛαT ) + ΛαTHGT (Q̂, P̂)

]
≥ EP

[
ΛαT log(ΛαT ) + ΛαTHGT (Q̂θX , P̂)

]
(by proposition 4.3.3),

= EP
[{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1− αijs )ds

)
+
∫ T

0
θXs rsds− K̂T (θX)

}

× exp
{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

)}]
= F (α).

If we admit the existence of α̃ := argmin F (α), then

F (α) ≥ F (α̃)

= EQ(α̃, θX )[ log(Λα̃T ) + log(ΛθXT )
]

= HGT (Q(α̃, θX)|P).

�

Remark 4.3.4. The above result tells us that once the Esscher parameter θX is found,

the search of the MEMM consists in minimizing the functional F (α) over the space of

matrices α := {αij : 1 ≤ i 6= j ≤ M}. In order to have an explicit result, we need an

expression for EQ(α, θX )
[
τj
]
and EQ(α, θX )

[
N ij
T

]
which we do not have since T is finite.

However, by considering the asymptotic case (T → ∞) and with the hypothesis that

X admits a stationary distribution Π under Q(α, θX) the problem may be solved using

Lagrange multipliers.

4.4. Example

We work out some examples to illustrate how to implement the results developed

in previous Sections.
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4.4.1. The Regime-switching Black-Scholes model

We take the most simple example of Markov-modulated Lévy model namely the

regime-switching Black-Scholes model. This model is recovered from the general set-

ting described in Section ?? by imposing N(., .) = 0 in equation (4.2.2). For ease of

exposition, we take M = 2 (two-regimes case).

In this case, the condition (H) yields a unique process θ := { rt−µt
σ2
t

: t ∈ T} and thus

we have to minimize the functional

F (α) =
∑

1≤i 6=j≤2
αijE

Q(α, θX )[N ij
T

]

+
2∑
j=1

[1
2
(rj − µj

σ2
j

)2σ2
j −

2∑
i=1
i 6=j

aij(eαij − 1)
]
EQ(α, θX )[

τj
]

(4.4.1)

If we suppose that X admits a stationary distribution Π = (π1, π2) under Q(α, θX), then

by the ergodic theorem we have the following approximations as T →∞

EQ(α, θX )[
τj
]
≈ πjT, j = 1, 2

EQ(α, θX )[N ij
T

]
≈ aije

αijπjT, 1 ≤ i 6= j ≤ 2. (4.4.2)

Moreover, the optimization problem (4.3.59) is equivalent to

min
(Π, α)

{ ∑
1≤i 6=j≤2

αije
αijaijπjT +

2∑
j=1

[
1
2
(rj − µj)2 −

2∑
i=1
i 6=j

aij(eαij − 1)
]
πjT

}
(4.4.3)

under the constraints

π1 + π2 = 1

π2a21e
α21 − π1a12e

α12 = 0 (4.4.4)

This problem can be easily solved using Lagrangian techniques for optimization. Indeed,

we can prove that the solution (Π, α) is such that:

π1 = a12e
α12

a12eα12 + a21eα21

π2 = a21e
α21

a12eα12 + a21eα21
(4.4.5)
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where (α12, α21) is the solution of the system of equations

a2
21e

2α21α12 + a2
12e

2α12α21 = 0 (4.4.6)

a21α21e
α21(a12e

α12 + a21e
α21) =

[
(1− α21)a21e

α21 − (1− α12)a12e
α12

+ a12 − a21 −
1
2
(r1 − µ1)2 + 1

2
(r2 − µ2)2

]
a12e

α12 (4.4.7)

which can be obtained numerically.

4.4.2. A Regime-switching Jump-diffusion model

We consider a two-state Markov-modulated Lévy model where the Lévy measure

ρX is given by ρXt (dz) =
∑2
j=1〈Xt− |ej〉cjρj(dz) with c = (c1, c2) ∈ R∗+ × R∗+ and

ρj (j = 1, 2) a probability measure on R.

For example,

ρj(dz) = 1
2
δ−xj + 1

2
δxj (4.4.8)

where xj > 1; j = 1, 2 and δx is the Dirac distribution at x.

In this case, the condition (H) yields to θX = (θ1, θ2) as the unique solution of

µj + θjσ
2
j + 1

2
cj
[(
eθj(e

−xj−1) − 1
)
(e−xj − 1) +

(
eθj(e

xj−1) − 1
)
(exj − 1)

]
− rj = 0

j = 1, 2. (4.4.9)

Which can be retrieve numerically. Then, the functional which we have to minimize is

given by

F (α) =
∑

1≤i 6=j≤2
αijE

Q(α, θX )[N ij
T

]

+
2∑
j=1

[
1
2
θ2
jσ

2
j + cj

2

((
e−θj(e

−xj−1) − 1 + θj(e−xj − 1)
)
eθj(e

−xj−1)

+
(
e−θj(e

xj−1) − 1 + θj(exj − 1)
)
eθj(e

xj−1)
)
−

2∑
i=1
i 6=j

aij(eαij − 1)
]
EQ(α, θX )[

τj
]

(4.4.10)

Hence, by arguing as previous in Equations 4.4.3-4.4.7 we obtain the results.
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4.5. Concluding remarks

In this paper, we showed how the minimal entropy martingale measure can be

determined for a general Markov-modulated Lévy model. Our technique follows those

developed by Fujiwara and Miyahara (2003) for geometric Lévy processes and Fujiwara

(2009) for exponential additive processes. For our case, we use the particular properties

of the Markov additive processes to overcome some difficulties.
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4.6. Appendix

4.6.1. Appendix A

We have to show that ∀ t ∈ [0, T ],

K̂t(θX) := EP
[
exp

( ∫ t

0
θXs dŶs

)∣∣∣FXT ]
=

∫ t

0

[
θXs µs + 1

2
(θXs )2σ2

s

]
ds+

∫ t

0

∫
R\{0}

(
eθ
X
s (ez−1) − 1− θXs (ez − 1))

)
ρX(dz)ds.

(4.6.1)

Proof. Formally, we can write by using Itô’s Formula:

exp
( ∫ t

0
θXs dŶs

)
= 1 +

∫ t

0
exp

( ∫ s

0
θXs dŶs

)[
θXs µs +

∫
R\{0}

θXs (ez − 1)ÑX(ds; dy)
]
ds

+
∫ t

0
exp

( ∫ s

0
θXs dŶs

)
θXs σsdWs + 1

2

∫ t

0
exp

( ∫ s

0
θXs dŶs

)
(θXs )2σ2

sds

+
∫ t

0

∫
R\{0}

exp
( ∫ s

0
θXs−dŶs

)(
e
θX
s−

(ez−1) − 1− θXs−(ez − 1)
)
NX(ds, dz), (4.6.2)

or,

exp
( ∫ t

0
θXs dŶs

)
= 1 +

∫ t

0
exp

( ∫ s

0
θXs dŶs

)
θXs σsdWs

+
∫ t

0

∫
R\{0}

exp
( ∫ s

0
θXs dŶs

)(
eθ
X
s (ez−1) − 1

)
ÑX(ds; dy)

+
∫ t

0
exp

( ∫ s

0
θXs dŶs

)[
θXs µs + 1

2
(θXs )2σ2

s +
∫

R\{0}

(
eθ
X
s y − 1− θXs (ez − 1)

)
ρX(dz)

]
ds.

(4.6.3)

Conditioning both sides of (4.6.3) on FXT ,

EP
[
exp

( ∫ t

0
θXs dŶs

)∣∣∣FXT ] =

1 +
∫ t

0

[
θXu µu + 1

2
(θXu )2σ2

u

]
EP
[
exp

( ∫ u

0
θXs dŶs

)∣∣∣FXT ]du
+
∫ t

0

∫
R\{0}

(
eθ
X
u (ez−1) − 1− θXu (ez − 1)

)
ρX(dz)EP

[
exp

( ∫ u

0
θXs dŶs

)∣∣∣FXT ]du. (4.6.4)

Where we have used the fact that W and ÑX(.; .) are martingales.
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Then, by solving (4.6.4) we obtain

EP
[
exp

( ∫ t

0
θXs dŶs

)∣∣∣FXT ] = exp
[ ∫ t

0

(
θXs µs + 1

2
(θXs )2σ2

s

)
ds

+
∫ t

0

∫
R\{0}

(
eθ
X
s (ez−1) − 1− θXs (ez − 1)

)
ρX(dz)ds

]
. (4.6.5)

�

So we deduce an explicit expression for

ΛθXt =
exp

( ∫ t
0 θ

X
s dR̃s

)
EP
[
exp

( ∫ t
0 θ

X
s dR̃s

)∣∣∣FXT ] , t ∈ [0, T ] (4.6.6)

as

ΛθXt = exp
[ ∫ t

0
θXs σsdWs −

1
2

∫ t

0
(θXs )2σ2

sds+
∫ t

0
θXs (ez − 1)ÑX(ds, dz)

−
∫ t

0

∫
R\{0}

(
eθ
X
s (ez−1) − 1− θXs (ez − 1)

)
ρX(dz)ds

]
. (4.6.7)

4.6.2. Appendix B

Indeed, it follows from (4.2.11) and (4.3.21)∫ t

0
θXs dR̃s =

∫ t

0
θXs σsdW

θ
s +

∫ t

0

∫
R\{0}

θXs (ez − 1)ÑX(ds, dz),

and

a) -
{ ∫ T

0 θXs σsdW
θ
s : 0 ≤ t ≤ T

}
is a continuous local martingale with his predictable

quadratic variation which verifies

EQθ
[〈 ∫ T

0
θXs σsdW

θ
s

〉
T

]
= EQθ

[( ∫ T

0
θXs σsdW

θX

s

)2]
= EQθX

[
EQθX

[( ∫ T

0
θXs σsdW

θ
s

)2∣∣∣FXT ]]
= EQθX

[ ∫ T

0
(θXs )2σ2

sds
]

< ∞. (4.6.8)

so by corollary II-3 of Protter (2003)
{ ∫ T

0 θXs σsdW
θX
s : 0 ≤ t ≤ T

}
is a G-continuous

martingale under QθX .
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b)- Also, condition (4.3.4) implies that ∀t ∈ T ,

EQθX
[ ∫ t

0

∫
R\{0}

θXs (ez − 1)ρX(dz)ds
]
≤ EQθX

[ ∫ T

0

∫
R\{0}

ezeθ
X
s (ez−1)ρX(dz)ds

]
<∞,

(4.6.9)

hence by corollary II-3 of Protter (2003),{ ∫ t
0
∫
R\{0} θ

X
s (ez − 1)ÑX(ds, dz)) : 0 ≤ t ≤ T

}
is a G-martingale under QθX .

4.6.3. Appendix C

We give a proof for the proposition (4.3.5).

Proof. For the first part, we just have to prove that

ΛCt = exp
{
−
∫ t

0
[D0Xs − 1]′A0Xsds

} ∏
0<s≤t

(
1 + [D0Xs − 1]′∆Ns

)
. (4.6.10)

It follows from a simple application of the Doléans-Dade exponential formula (See,

Dufour and Elliott (1999)). For the second part, we have to show that

ΛCt =
∏

1≤i 6=j≤M
exp

{
−
∫ t

0
(λ̂ijs − λijs )ds+

∫ t

0
log

( λ̂ijs
λijs

)
dN ij

s

}
. (4.6.11)

First, we remark that for k = 1, 2, ..., N

D0Xt− =
( c1k
a1k
〈Xt− , ek〉, ..., 0︸︷︷︸

k−th

, ...,
cNk
aNk
〈Xt− , sk〉

)′
,

and

A0Xt− =
(
a1k〈Xt− , ek〉, ... 0︸︷︷︸

k−th

, ..., aNk〈Xt− , ek〉
)′
,

hence,

[D0Xs− − 1]′A0Xs− =
M∑
i=1

M∑
j=1,i 6=j

〈Xs, ei〉
(
cij〈Xs− , ej〉 − aij〈Xs− , ej〉

)
, (4.6.12)

so,

[D0Xs− − 1]′A0Xs− =
M∑
i=1

M∑
j=1,i 6=j

(
λ̂ijs − λijs

)
. (4.6.13)
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Also, by noting that ∆Ns := Ns −Ns− we have that ∆Ns = (0, ..., 1︸︷︷︸
j−th

, 0, ..., 0)′ when

〈Xs− , ei〉〈Xs, ej〉 = 1, for i 6= j; i, j = 1, ..., N and 0 < s ≤ t ≤ T.

Thus, we obtain

∏
0<s≤t

(
1 + [D0Xs− − 1]′∆Ns

)
=

M∑
i=1

M∑
j=1,i 6=j

∫ t

0

( cij〈Xs, ei〉〈Xs− , ej〉
aij〈Xs, ei〉〈Xs− , ej〉

)
dN ij

s

=
M∑
i=1

M∑
j=1,i 6=j

∫ t

0

( λ̂ijs
λijs

)
dN ij

s , (4.6.14)

and hence,

∏
0<s≤t

(
1 + [D0Xs− − 1]′∆Ns

)
= exp

{∫ t

0
log

( λ̂ijs
λijs

)
dN ij

s

}
. (4.6.15)

�

4.6.4. Appendix D

By definition,

F (α) := EP
[{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1− αijs )ds

)
+
∫ T

0
θXs rsds− K̂T (θX)

}

× exp
{ ∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

)}]
, (4.6.16)

so, by taking into account the expressions of ΛθXT , ΛαT and K̂(θX)

F (α) = EP
[
EP
[
ΛαTΛθXT log

(
ΛαTΛθXT

)∣∣∣∣∣FXT
]]

= EQ(α, θX )
[

log
(
ΛαTΛθXT

)]

= EQ(α, θX )
[

log ΛαT

]
+ EQ(α, θX )

[
log ΛθXT

]
. (4.6.17)

Using the expressions from (4.3.2) and (4.3.58) we have

log ΛαT =
∑

1≤i 6=j≤M

(
−
∫ T

0
λijs (eα

ij
s − 1)ds+

∫ T

0
αijs dN ij

s

)

=
∑

1≤i 6=j≤M

(
− aij(eαij − 1)τj + αijN ij

T

)
, (4.6.18)
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log ΛθXT =
∫ T

0
θXs σsdW

θX

s + 1
2

∫ T

0
(θXs σs)2ds+

∫ T

0

∫
R\{0}

θXs−(ez − 1)ÑX(ds, dz)

+
∫ T

0

∫
R\{0}

(
e−θ

X
s (ez−1) − 1 + θXs (ez − 1)

)
ρX(dz)ds. (4.6.19)

Thus, since {W θX
t : t ∈ T } and {ÑX(t, ·) : t ∈ T } are local-martingales under

Q(α, θX) we obtain the expression of F (α) given by lemma 4.3.2.
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CONLUSION

A generalization of the risk process and the exponential financial process in terms

of Markov additive processes (MAPs) is considered in this work. Our first goal is to use

MAPs in a finance and insurance context with regime changes that the market could

undergo. From this new perspective, we extend the theory related to paths of MAPs

to study more general models than those used previously in finance and insurance.

Lévy Systems and the Time Value of Ruin for Markov Additive Processes [7] and The

Minimal Entropy Martingale Measure (MEMM) for a Markov-Modulated Exponential

Lévy Model [50] illustrate the potential of Markov additive modeling as a tool yet to be

fully explored in financial and insurance mathematics. A topic of future research is to

explore further the consequences of introducing MAPs, for instance modeling reserves

and asset prices in the presence of different macroeconomic scenarios.

In On a Generalization of the Expected Discounted Penalty Function to Include

Deficits at and Beyond Ruin [6], we have studied the behavior of a family of Lévy risk

processes not only in the neighborhood of the ruin time, but also after. This study

allows an extension of the concept of EDPF that gives important applications in risk

management and particulary, in capital injections. It also remains to generalize this

study for a large family of Markov additive risk processes.

These three chapters can be viewed as individual contributions in their own. In

particular, they studied MAPs to model the risk process and the asset price in a general

context taking into account the regime change. We hope to have established grounds

for future research that will lead to new insights in finance and insurance modeling.
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