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Abstract. Let E be a class of event. Conditionally Expected Util-

ity decision makers are decision makers whose conditional preferences

%E , E 2 E , satisfy the axioms of Subjective Expected Utility theory
(SEU). We extend the notion of unconditional preference that is condi-

tionally EU to unconditional preferences that are not necessarily SEU.

We give a representation theorem for a class of such preferences, and

show that they are Invariant Bi-separable in the sense of Ghirardato

et al.[7]. Then, we consider the special case where the unconditional
preference is itself SEU, and compare our results with those of Fishburn

[6].

1. Introduction

In an interesting paper [6], Fishburn studied decision makers who are
characterized by the property that their conditional preferences obey the

axioms of Subjective Expected Utility (SEU) theory. That is, once they are

informed that the true state lies in a certain subset of the state space, these

decision makers evaluate acts by means of an expected utility criterion. In

his study, Fishburn is motivated by the observation that Savage�s derivation

of SEU theory rests on the assumption that a su¢ ciently "rich" set of acts

be available to the decision maker, but the assumption seems hardly met in

many actual situations. Thus Fishburn, and Luce and Krantz [10] before
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him, proposed the model of conditional EU preferences as a way to remedy

to this situation.

Once the assumption of conditional preferences is made, the problem

becomes that of understanding how these decision makers would evaluate

their options ex-ante, that is before they receive their information. Decision

makers that display conditional EU preferences with respect to a certain

class of events need not obey the SEU axioms ex-ante. An easy example

that shows this point is as follows. Let S denote the state space, and assume

that S is the interval [0; 1] endowed with the usual Borel �-algebra. Consider

a Maxmin Expected Utility decision maker who is described by a set of priors

C = co f�; �g, the convex hull of two probabilities � and �. Assume further
that � has a density with respect to � given by

f =

(
3
2 if x 2 [0; 13)
3
4 if x 2 [13 ; 1]

and that � is the Lebesgue measure on [0; 1] (i.e., � has density g � 1 on

[0; 1]). It is clear that this decision maker satis�es conditional expected

utility with the respect to the family of events E = f[0; 1=3]; [1=3; 1]g while,
by assumption, he is Maxmin Expected Utility ex-ante.

In his paper, Fishburn provides axioms guaranteeing not only that the

ex-ante preference be SEU, but also that the conditional preferences be ob-

tained from the unconditional one by means of Bayes rule. In this paper, we

are concerned with the study of conditional EU decision makers but from

a di¤erent angle. Precisely, we are interested in characterizing all ex-ante

(=unconditional) preferences that are compatible with conditional EU, and

that satisfy certain mild assumptions listed below. Our interest is moti-

vated not only by examples like the one above, but also by the examples

in Fishburn [6, pp. 19-23], which seem to suggest that a variety of non-

EU unconditional preferences might be compatible with conditional EU.

We believe that this study might provide insights into the di¢ cult problem

of updating non-EU functionals, but we do not address this problem here.

Here, we prove the following generalization of Fishburn�s result. Fishburn�s

theorem can be thought of as saying that, under certain conditions, the un-

conditional preference is a "weighted average" of the conditional preferences.

The operation of weighting is described by a probability measure. Here, we

show that under our milder conditions, the unconditional preference is still

a "weighted average" of the conditional preferences, but we allow for a more
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permissive notion of "weighting": Fishburn�s probability is replaced by a

capacity. Resulting unconditional preferences are a subclass of the Invari-

ant Bi-separable Preferences of Ghirardato-Maccheroni-Marinacci [7], that
is they satisfy the �rst �ve axioms in Gilboa-Schmeidler [9]. We then derive
Fishburn�s theorem as a special case of our result. By doing so, we clarify the

role of Fishburn�s axioms, and obtain a better understanding of the struc-

ture of conditional EU preferences. We employ three main tools. A theorem

on the representation of monotone, translation invariant functionals, which

we proved in [1], a theorem of Samet [13] on the characterization of common
priors and a theorem of Phelps [12, Theorem 1] on the uniqueness of the

Hahn-Banach extension.

The paper unfolds as follows. The formal setting is described in Section

2. In Section 3, we face the conceptual problem of extending the meaning of

conditional expected utility outside the realm of SEU theory and Bayesian

updating. De�nition 1 of Section 3 gives our solution. We conclude that

section by giving an example of a preference relation of Bewley�s type (thus

not SEU) which satis�es the criteria of our de�nition. In Section 4, we

fully characterize those Conditional EU preferences which are, in addition,

monotone and C-independent. In Section 5, we present a set of results which

parallel those of Fishburn [6, pp. 19-23] and that, in fact, have a broader
range of applicability. We discuss the relation between our assumptions and

those of Fishburn [6, pp. 19-23] in Section 6.

2. Setting

In this section, we describe the primitives of the model as well as the

notion of conditional EU preferences. The typical setting of decision making

under uncertainty involves four primitives. The �rst three are:

(1) A measurable space (S;�) �� a �-algebra of subsets of S �which

is called the state space;

(2) A consequence space C, assumed to be a mixture space ([3], [8]);
(3) A set A of alternatives available to the decision maker, which are

viewed as mappings S �! C, and are called acts.

Usually, the fourth is a preference relation % on A. The �rst three

primitives are retained in this paper while the fourth is replaced by a family

of preferences: the conditional preferences. Precisely, we have
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(4) A family E of elements of � and, for each E 2 E , a preference relation
%E on A, which is interpreted as a preference on A conditional on the true

state being in E.

A consequence of this interpretation is that, when E is given, an act

f : S �! C can be viewed as the restriction f jE . Until Proposition 1
Section 5, we do not make any assumption on the family E . In general,
we will be mainly interested in the cases where either E is a (measurable)
partition of S or E is a union of partitions of S. Clearly, this encompasses
the cases of both �-algebras and �-systems, which are of special interest.

In this paper, di¤erently from Fishburn [6], we are not concerned with
"economizing" on the derivation of the SEU theorem. Rather, we are inter-

ested in the model of conditional EU preferences per se and in its relation

with non-necessarily additive unconditional preferences such as those stud-

ied in [14], [9], [7] and [1]. This motivates the following assumption which
implies that the set of acts is "rich".

S0: A contains all measurable simple1 acts f : S �! C.

Assumption S0 is customary in most models of decision making uncer-
tainty and, in fact, it is usually not even stated as an assumption (see, for

instance, [3], [14], [9], [7]). While in the usual setting S0 is fairly uncon-
troversial, it is not so in models of conditional preferences: after all, one of

the motivation of Fishburn [6] and Luce and Krantz [10] was exactly that
of deriving the EU theorem when "few" acts are available to the decision

maker. In Section 6, where we compare our results with Fishburn�s, we will

come back to this issue and we will provide an extensive discussion of the

role played by assumptions like S0 in models of conditional preferences.
Next, we are going to make two assumptions that we are going to main-

tain throughout the paper. The �rst identi�es the scope of this paper as we

are concerned only with conditional preferences satisfying the SEU axioms.

We recall that a preference %E satis�es the Anscombe and Aumann [3]
SEU axioms if and only if (I) it is complete and transitive; (II) satis�es the

Independence Axiom; (III) it is monotone; (IV) satis�es the Archimedean

property; (V) it is non-trivial (see [3] for a formal statement of these axioms).
Thus, we require that

S1: For each E 2 E , %E satis�es the axioms of SEU.

1For a simple act f : S �! C, let fc1; :::; cng be the set of its values in C. The act is
measurable if f�1fcig 2 � for every i.
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As it is well-known, this implies that there exist a utility uE : C �! R
and a unique2 probability charge PE such that

f %E g iff

Z
uE(f)dPE �

Z
uE(g)dPE

It is also clear that because of point (4) above, the charge PE is supported

by E.

The second assumption states that consequences are evaluated indepen-

dently of the conditioning event. Precisely,

S2: The utilities uE : C �! R can be chosen so that uE � u for all

E 2 E .

It is easy to give a behavioral counterpart of assumption S2. For x 2 C
and E 2 E , let xE denote the act such that xE(s) = x for all s 2 E.

Assumptions S0 guarantees that xE is available to the decision maker for
all E 2 E .

S2�: For all x 2 C and for all Ei; Ej 2 E , xEi � xEj .

A similar assumption is made in Luce and Krantz [10]. Assumption S2
is implied by Fishburn�s axioms (A1) to (A6) (see [6, Lemma 6]).

Assumption S2 permits to identify an act f : S �! C with the real-

valued mapping u � f . Correspondingly, we identify the set of acts with the
set of all bounded, �-measurable functions with values in u(C) � R. In fact,
since we are going to restrict (starting with Section 4) to functionals that

are monotone and translation invariant, we will identify the set of acts with

B(�) �the Banach space of all bounded, �-measurable real-valued functions

on S equipped with the sup-norm (see, for instance, [9] for the details of
this procedure). To conclude this section, we only recall that the norm-

dual of B(�) is (isometrically isomorphic to) the space ba(�) of bounded

charges on � equipped with the variation norm. In what follows, the subset

ba+1 (�) � ba(�) of �nitely additive probability measures on � is always

endowed with the weak*-topology produced by the duality (ba(�); B(�)).

3. Unconditional preferences

So far, we have focused on decision makers who are identi�ed by a fam-

ily of SEU preferences f%EgE2E . In this section, we are going to introduce
decision makers who, in addition, have an unconditional preference % on A

2In our setting, uniqueness is a consequence of assumption S0.
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with the property that the preferences f%EgE2E are the conditional prefer-
ences derived from %. In order to do so, we must �rst de�ne what we mean
by conditional preference.

In his paper, Fishburn is concerned only with unconditional SEU prefer-

ences that are conditionally SEU. In that case, the meaning of "conditional

preference" is clear, and one does not need to give a de�nition. Here, be-

cause our interest is not limited to unconditional SEU preferences, we need

to give a general de�nition. In order to understand what kind of de�nition

we should be giving, let us re-consider the SEU case as the notion is clear

there. Let us suppose, for the purpose of illustration, that the family E is
a partition of S. Then, one would say that a SEU unconditional preference

is conditionally SEU with respect to E if the conditional measures can be
computed from the unconditional one by means of Bayes rule. It is clear

that such a de�nition cannot be generalized to the non-EU case. There is

another way, however, of expressing the same requirement. Let f be an act

(identi�ed to an element in B(�)) and suppose that the unconditional SEU

preference is described by the functional I(f) =
R
fdP , P 2 ba+1 (�). Let

S=E denote the quotient of S by the partition E , that is the space whose el-
ements are the cells of the partition. Then, one says that the unconditional

preference is conditionally SEU if for all f 2 B(�) the following holds

(3.1)
Z
S
fdP =

Z
S=E

Z
f jE dPEdP 0

where P 0 is the image (pushforward) measure of P under the canonical

mapping � : S �! S=E , that is P 0(A) = P (��1(A)), E 2 E and the PE are
the conditional measures. If we denote by IE the conditional functionals,

IE(�) =
R
�dPE , this can be re-written as

(3.2) I(f) =

Z
S=E

IE(f)dP
0

Clearly, this de�nition is equivalent to the one given above in terms of up-

dating measures. But, in this form, the de�nition can be generalized to the

non-EU case. To see this, let us begin by introducing the mapping � which

is de�ned by

(3.3) � : f 7�!
�Z

fdPE

�
E2E

= (IE(f))E2E

that is, � associates an act f with the set of all its conditional evaluations (we

wrote f instead of f jE because, as noted above, the charge PE is supported
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by E). Next, notice that there is an obvious identi�cation between the set

S=E and the set fPEgE2E given by E 7�! PE . Hence, the image of f under

� can be thought of as the mapping �(f) : fPEgE2E �! R which associates
the measure PE to the number

R
fdPE , the SEU evaluation of f given E 2 E .

Finally, by denoting the integral on the RHS of (3.2) by V , we can re-write

(3.2) as

(3.4) I(f) = V (�(f))

The factorization property, I = V � �, in (3.4) expresses the crucial prop-
erty of either equation (3.1) or equation (3.2): the unconditional preference

depends only on the conditional ones. This is intuitively sound. If this

requirement were violated, the link between conditional and unconditional

preferences would be too tenuous, and probably nothing interesting could

be said about their relation.

Motivated by this discussion, we give the following de�nition. Let E be
a family of subsets of � (not necessarily a partition). For f 2 B(�), let �

be the mapping de�ned by

� : f 7�!  f

where  f : fPEgE2E �! R is de�ned by  f (PE) =
R
fdPE . It is useful to

stress that the domain of the mappings  f depends on the family E , which
is a primitive of the model. Also, because of the nature of conditional EU,

the probability PE is supported by the set E.

Definition 1. Let E be a family of subsets of �. For a preference rela-
tion % on B(�), denote by I : B(�) �! (Z;�) the functional representing
it, where (Z;�) is some ordered space.3 We say that % satis�es the condi-

tional EU property with respect to E if and only if there exists a functional
V : �(B(�)) �! (Z;�) such that I factors as I = V � k.

By noticing that any preference on B(�) trivially admits a representa-

tion of the form I : B(�) �! (Z;�) (take Z = B(�) and the ordering

de�ned by the preference), the de�nition says in a precise way exactly what

we said above: an unconditional preference is conditionally EU if only if

it depends on the conditional preferences only. We conclude this section

3By an ordered space, we mean a set endowed with a quasi-order. While this is at odds with
current usage (an ordered space is a set with a partial order), it simpli�es the statement
above. At any rate, this terminology is not used in the remainder of the paper.
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with an example of a preference % which satis�es the requirement in the

de�nition.

Example 1. Let E � �, and let f%EgE2E be a family of SEU prefer-

ences. De�ne %on A by

f % g iff  f �  g

where  f �  g means  f (PE) �  g(PE) for all E 2 E or, equivalently,R
fdPE �

R
gdPE for all E 2 E. This preference relation % is incomplete if

E contains more than one element. It is reminiscent of Bewley�s preferences
[4] and of the unambiguous preference relation of Ghirardato et al. [7].

4. D-preferences

With this section, we are going to narrow down the focus of our study. In

doing so, we will exclude from consideration incomplete preferences like the

one seen in the example at the end of the previous section. In order to avoid

duplications, we state our assumptions directly in terms of the properties

of the functionals involved in the representation. Corresponding axioms on

preferences are discussed below, following our representation theorem. For

lack of a better name, the preferences object of our interest will be called

D-preferences. Let E be a family of subsets of �, and let f%EgE2E be the
corresponding family of conditional expected utility preferences. Let the

mapping � be as in the previous section.

Definition 2. A preference relation % on A (= B(�)) is a D-preference
with respect to family E if it satis�es the following properties:

(1) The functional I that represents it factors as I = V � k;
(2) The functional V is real-valued;

(3) The functional V is translation invariant: for all � � 0, � 2 R and
for all  2 �(B(�))

V (� + �1) = �V ( ) + �V (1)

where 1 denotes the function identically equal to 1 on its domain.

(4) The functional V is monotone: for  ;' 2 �(B(�))

 � ' =) V ( ) � V (')

Property (1) simply says that we are still in the realm of preferences

satisfying the conditional EU property. Properties (2) to (4) imply that D-
preferences are complete, transitive and (as we shall see) Archimedean. With
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regard to Property (3), observe that, having identi�ed A with B(�),  2
�(B(�)) implies � + �1 2 �(B(�)). Thus, Property (3) is legitimate. Its
introduction is motivated by the fact that the utility function u : C �! R of
assumption S2 is unique only up to positive a¢ ne transformations. As such,
we consider Property (3) a mild as well as a very reasonable assumption.

Property (4) in combination with Property (1) postulates that if an act f

is better than an act g for each of the possible conditioning events, then

f should be preferred to g unconditionally. Again, we consider this a very

mild assumption.

Next, we are going to provide a representation for D-preferences. We
�rst need an easy lemma. Set C = fPEgE2E � ba+1 (�) and let ~C =

�
co(C) be

the weak*-closed convex hull of C. For f 2 B(�), denote by  f and ~ f the
mappings de�ned by

 f (P ) =

Z
S
fdP ; P 2 C and ~ f ( ~P ) =

Z
S
fd ~P ; ~P 2 ~C

and let � : f 7�!  f and ~� : f 7�! ~ f .

Lemma 1. Let V : �(B(�)) �! R be a functional satisfying properties
(3) and (4) above. Then, there exists a unique functional ~V : ~�(B(�)) �! R
such that V ( f ) = ~V (~ f ), for all f 2 B(�). Moreover, ~V satis�es properties
(3) and (4).

Proof. By properties (3) and (4),
�
supC  f

�
V (1) � V ( f ) �

�
infC  f

�
V (1).

Hence, for each  f there exists �( f ) 2 [0; 1] such that V ( f ) = [�( f ) infC  f+
(1� �( f )) supC  f ]V (1). Now, observe that

inf
C
 f = inf

~C
~ f and sup

C
 f = sup

~C

~ f

and that the mapping  f 7�! ~ f from �(B(�) �! ~�(B(�)) is clearly one-

to-one and onto. Hence, we can de�ne ~� : ~�(B(�)) �! [0; 1] by ~�(~ f ) =

�( f ). Then, ~V : ~�(B(�)) �! R de�ned by ~V (~ f ) = [~�(~ f ) infC ~ f + (1�
~�(~ f )) supC ~ f ]V (1) is the unique functional satisfying V ( f ) = ~V (~ f ), for

all f 2 B(�). The second part is immediate. �

By means of the lemma, the problem of representing V is transformed

into that of representing ~V . The advantage of doing so is that the domain

of ~V is the space A( ~C) of all weak*-continuous a¢ ne functions on the con-
vex, weak*-compact set ~C. Moreover, ~� is the canonical linear mapping
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B(�) �! A( ~C). Thus, the characterization of D-preferences becomes an
easy consequence of a theorem that we proved in [1].

Theorem 1. A preference relation % on A (= B(�)) is a D-preference
with respect to the family E if and only if there exists a capacity4 � on
~C = �

co fPEgE2E such that, 8f 2 B(�)

I(f) = V (�(f)) = ~V (~�(f)) =

Z
~C

~�(f)d�

where the integral is taken in the sense of Choquet.

Proof. Let  ;' 2 ~�(B(�)) = A( ~C). If  and ' are non-constant, then
 and ' are comonotonic if and only if they are isotonic [1, Prop. 2]. In
such a case, there exist � > 0 and � 2 R such that ' = � + �1. Then, by

property (3)

~V ( + ') = ~V ((1 + �) + �) = ~V ( ) + ~V (')

Combined with the previous observation, this implies that ~V is comonotonic

additive on its domain. By property (4), ~V is monotone as well. By [1, Cor.
1], these functionals can be represented by Choquet integrals. The converse

statement �that any preference de�ned by
Z

~C
~�(f)d� is a D-preference �

follows immediately from the properties of the Choquet integral. �

It is now easy to provide a behavioral foundation for D-preferences. We
recall that a preference relation % on A is an Invariant Bi-separable (IB)

preference if it satis�es the axioms of (I�) completeness and transitivity; (II�)

Constant-independence; (III�) Archimedean property; (IV�) Monotonicity;

and (V�) Non-triviality (see Ghirardato et al. [7] for a formal statement).
The next corollary states that D-preferences are a sub-class of IB prefer-

ences.

Corollary 1. D-preferences are IB preferences.

Proof. If % is a D-preference with respect to some family E , then it is
represented by a real-valued functional that factors as I = V � k. Since � is
linear, the translation invariance of V implies the translation invariance of

I. If f; g 2 B(�) are such that f � g, then �(f) � �(g) and monotonicity

4By a capacity � on ~C = �
co fPEgE2E we mean a capacity on the Borel �-algebra generated

by the weak*-topology on ~C.
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of V implies I(f) � I(g), that is I is monotone. The following well-known

argument shows that I is sup-norm continuous. For f; g 2 B(�), one has

f = g + f � g � g + kf � gk

g = f + g � f � f + kf � gk

Hence, by monotonicity and translation invariance

jI(f)� I(g)j � kf � gk I(1)

which is the sup-norm continuity of I. From this, the Archimedean property

follows immediately. Thus, D-preferences satisfy axioms (I�) to (V�) above.
�

By virtue of the corollary, we then have

Corollary 2. A preference relation % on A is a D-preference if and
only if it satis�es axioms (I�) to (V�) above plus assumptions S1 and S2�.

Note that general IB-preferences are not necessarily D-preferences as the
preferences conditional on E 2 E (however de�ned) need not be SEU.

5. SEU unconditional preferences

In this section, we are going to restrict further the class of preferences

under consideration, and focus on D-preferences that are unconditionally
SEU preferences. In the next section, we are going to compare our results

with Fishburn�s. To begin, let us consider the case in which the family E is
a �nite partition of S, E = fE1; :::; Eng. As a corollary to Theorem 1, we

have

Corollary 3. Let E = fE1; :::; Eng be a �nite partition of S. A D-
preference with respect to E is a SEU preference i¤ V is linear. In such

a case, I has the representation I(f) =
R
s fdP�, P� 2 ba+1 (�) and for all

f 2 B(�) it holds thatZ
S
fdP� =

nX
i=1

P�(Ei)

Z
fdPEi

Proof. Clearly, a D-preference is SEU if and only if the functional I

representing it is linear. Since ~� is a linear mapping, ~V must be a linear

functional on A( ~C). By Hahn-Banach, ~V can be extended to a linear func-

tional on C( ~C), the Banach space of all weak*-continuous functions on the
compact, convex set ~C endowed with the sup-norm. It then follows from the
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Riesz representation theorem that the capacity � in the theorem is a Borel

probability measure on ~C. By [11, Proposition 1.1], � has a unique barycen-
ter P� 2 ~C. That is, P� is such that  (P�) =

R
 d� for every continuous

a¢ ne function  on ~C. Thus, by Theorem 1

I(f) =

Z
~C

~�(f)d� = ~�(f)(P�) =

Z
S
fdP�

Since P� 2 ~C = �
co fPEig

n
i=1, P� can be written as a convex combination of

the PEi�s: P� =
nP
i=1
P"(PEi)PEi , where P"(�) is a probability measure on the

set of extreme points of ~C, that is on the set fPEig
n
i=1 (recall that Ei�s are

pairwise disjoint). De�ne a mapping K : fPE1 ; :::; PEng �! fE1; :::; Eng =
S=E by K(PEi) = Ei. Clearly, K is a bijection. Let P 0 be the image measure

of P" under K. De�ne Q� =
nP
i=1
P 0(Ei)PEi ; then Q� de�nes a continuous

linear functional on B(�). It is easy to check that this coincides with the

continuous linear functional de�ned by P� for all simple functions. Since

the set of all simple functions is norm dense in B(�), the two functionals

coincide on B(�) and we have Q� = P� =
nP
i=1
P 0(Ei)PEi . Finally, since PEi

is supported by Ei, we conclude that P�(Ei) = P 0(Ei) for each i. �

A useful, yet trivial, observation that emerges from the proof of Corollary

3 is recorded below. Notice, however, that Corollary 4 is Fishburn�s theorem

[6, Theorem 1] specialized to the case of a partition.

Corollary 4. Let E be a �nite partition E = fE1; :::; Eng of S, and
let f%EgE2E be a family of conditional preferences satisfying the axioms of
SEU. Then, there always exists an unconditional SEU preference % such

that all the %E are the conditional preferences derived from % by means of

Bayes�rule.

Proof. Take any P 2 co fPEig
n
i=1. From the proof of Corollary 3, it

follows that the unconditional SEU preference de�ned by

f % g iff

Z
fdP �

Z
gdP

satis�es the desired property. �

When we consider, as Fishburn does, families E more general then those
in Corollary 4, we should expect that the requirements for the existence of

an unconditional SEU preference with the assigned conditional properties
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become more stringent. Let P be the measure representing an uncondi-

tional SEU preference, and suppose that the family E contains a partition
fE1; :::; Eng of S. We have seen that P satis�es the assigned conditional

properties if and only if P 2 co fPEig
n
i=1. With this in mind, the next

proposition comes easily. It parallels an observation made by Samet [13] in
the context of games with incomplete information. For E a class of events,
let � be the collection of all �nite partitions of S which consist of events

belonging to E .

Proposition 1. Let E be a class of events which is closed under comple-
mentation, and let f%EgE2E be a family of conditional preferences satisfying
the axioms of SEU. For � 2 �, denote by fP�ig the corresponding collection
of conditional probabilities. Then, there exists an unconditional SEU pref-

erence % such that all the %E are the conditional preferences derived from
% if and only if

\
�2�

co fP�ig 6= ?

In such a case, if P 2 \�2�co fP�ig, then for every � 2 �, � = fE1; :::; Eng,
and every f 2 B(�) we have

(5.1)
Z
S
fdP =

nX
i=1

P (Ei)

Z
fdPEi

Proposition 1 delivers the same statement as Fishburn�s Theorem 1,

although it is established under a di¤erent set of assumptions. Notice, how-

ever, that the proposition not only covers the case where E is an arbitrary
algebra, as in Fishburn, but also more general cases. For instance, E could
be a �-system, a case of special interest in the study of unambiguous events

(see [2])

Proof. Since E is closed under complementation, any E 2 E belongs to
at least one �. If P 2 \�2�co fP�ig, then P satis�es (5.1) for every � 2 �
and every f 2 B(�) by Corollary 4. Conversely, we are going to show that if
\�2�co fP�ig = ?, then no P in ba+1 (�) can satisfy the assigned conditional
properties. Let P 2 ba+1 (�). Since \�2�co fP�ig = ?, there exists a � 2 �
such that P =2 co fP�ig. By the separation theorem, there exists a weak*-
continuous linear functional L on ba(�) such that L(P ) > L( ~P ) for all
~P 2 co fP�ig. By de�nition, this means that 9f 2 B(�) (which can be

taken to be valued in u(C)) such that
R
fdP >

R
fd ~P for all ~P 2 co fP�ig.
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Thus, for such an f (5.1) fails asZ
S
fdP >

nX
i=1

P (Ei)

Z
fdPEi

That is, if \�2�co fP�ig = ?, then no P 2 ba+1 (�) can satisfy (5.1) �

It is possible to extend the above results to the case of in�nite (non-

necessarily countable) partitions by adding some measurability conditions.

These do not appear in Fishburn because his statements apply to �nite

partitions only. To see why additional conditions are necessary, notice that

in the in�nite case the condition
R
S fdP =

nP
i=1
P (Ei)

R
fdPEi reads as

(5.2)
Z
S
fdP =

Z
S=E

Z
fdPEidP

0

which makes sense only if the integral on the RHS exists. Clearly, this

requires that the mapping S=E �! R de�ned by Ei 7�!
R
fdPEi be a mea-

surable mapping when the quotient S=E is endowed with the measurable

structure carried by the canonical projection � : S �! S=E (that is, the

�nest �-algebra on S=E which makes � is measurable). This requirement

is trivially satis�ed when the partition fEig is �nite and all the Ei�s are
elements of � (as we have assumed throughout), but might fail when fEig
is in�nite. Thus, when dealing with in�nite partitions, one must restrict to

those partitions such that the mapping Ei 7�!
R
fdPEi is measurable. In

general, however, this condition is necessary but not su¢ cient. A set of suf-

�cient conditions guarateeing that the decomposition in (5.2) holds is given

in [5, pp. 125-129]. Once those are assumed, the statements above extend
without further modi�cations.

6. Comparison with Fishburn�s axioms

Let E � � be a family of subsets of S which is closed under comple-

mentation, and let %E , E 2 E , be a family of preferences satisfying the
Anscombe-Aumann axioms for each E 2 E . We have seen that under as-
sumption S0 and S2 as well as the condition \�2�co fP�ig 6= ?, there exists
a P 2 ba+1 (�) such that for every �nite partition � = fE1; :::; Eng � E , and
every f 2 B(�)

(6.1)
Z
S
fdP =

nX
i=1

P (Ei)

Z
fdPEi
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In addition, if we assume, as in Fishburn [6], that E = � � the algebra

de�ning the measurable structure on the state space � then the measure

P is unique as a consequence of the Riesz representation theorem (given

assumption S0). The decomposition (6.1) along with the uniqueness of

the measure P is essentially Fishburn�s Theorem 1. We are now going to

compare our conditions with those of Fishburn [6].
Without the non-triviality condition embedded therein, our assumption

S1 is equivalent to the axioms (H1) to (H3) mentioned in [6, p. 9] and,
as such, it is weaker than the axioms (A1) to (A3) used by Fishburn [6, p.
8]. Moreover, it is easy to see that Fishburn�s axioms (A1) to (A6) imply

our S2 as well as our non-triviality conditions. Thus, Fishburn�s (A1) to
(A6) imply our S1 and S2. It remains to analyze the role of S0 and of the
condition \

�2�
co fP�ig 6= ?.

The next Proposition shows that Fishburn�s (A1) to (A6) imply the

condition \
�2�

co fP�ig 6= ?. For the ease of the reader, we report Fishburn�s
(A4) below, as it is the crucial axiom leading to this result.

Fishburn A4: Let A;B 2 � be such that A\B = ?, and for E 2 �,
let fE denote the evaluation of the act f given E 2 �. Then,

fA % fB =) fA % fA[B % fB

Proposition 2. Fishburn�s (A1) to (A6) imply \
�2�

co fP�ig 6= ?.

Before we give the proof of the Proposition, a remark is in order. Under

assumptions (A1) to (A6), one can still identify an act with a real-valued

function on S. But, without S0 one can no longer identify the set of acts to
the whole B(�). Rather, the set of acts corresponds to a convex subset of

A � B(�) (since Fishburn assumes that the set of acts is a mixture set).

Proof. By [6, Theorem 3], (A1) to (A6) imply that there exists a linear
functional U : A �! R representing the unconditional preference. U can

be �rst extended to the subspace generated by A by homogeneity, and then
extended to the whole B(�) by Hahn-Banach. Let P 2 ba(�) be the charge
representing it. Fishburn�s result [6, Theorem 3] guarantees that P can be

taken to be a probability. Now, suppose by the way of contradiction that

\
�2�

co fP�ig = ?. Thus, there exists a partition � 2 �, � = fE1; :::; Eng,
such that P =2 co fP�ig. By the separation theorem, 9f such that for any
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choice of weights �i, �i � 0 and
Pn
1 �i = 1, we haveZ

fdP >

nX
1

�i

Z
fdPEi

De�ne A = E1 and B = [n2Ei. By A4, PB(�) is an average of the Ei�s,
i = 2; :::; n. Hence, we choose the weights �i�s so that

Pn
2 �iPEi(�) = PB(�).

But then, the preceding impliesZ
S=A[B

fdP > P (A)

Z
fdPA + P (B)

Z
fdPB

which contradicts A4. �

Summing up, Fishburn�s (A1) to (A6) imply our S1 and S2 as well as
the condition \

�2�
co fP�ig 6= ?. We now move to studying the e¤ect of

assumption S0.
Assumption S0 buys us the following uniqueness properties:
I. The unconditional measure is unique; and

II. The "weights" P (Ei) in the decomposition (6.1) are unique.

Once the existence of an unconditional SEU preference with the de-

sired conditional properties is established, both these properties follow from

the Riesz representation theorem: S0 allows us to identify the set of acts
with B(�), and the Riesz representation theorem tells us that there exists a

unique measure representing the SEU preference. Fishburn [6, Theorem 3]

obtains the same uniqueness properties without imposing S0: in addition to
his axioms A1 to A6 mentioned above, he uses a much richer preference rela-

tion (Fishburn�s preference relation is de�ned on A��) and two additional
assumptions (Fishburn�s A7 and A8).5 It is possible, but rather tedious, to

give a direct proof that these assumptions essentially imply our S0.6 An in-
direct approach, however, would be much more telling: in fact, the theorem

of Phelps [12, Theorem 1] below tells us that any set of assumptions leading
to the uniqueness of the unconditional measure is essentially equivalent to

S0. Let us denote by SW an arbitrary assumption. We will say that As-

sumption SW is essentially weaker than S0 if it implies that (by following
the same procedure as in [9]; see end of Section 2 of this paper) the set of

5It is readily seen that Fishburn�s A7 and A8 are necessary conditions for the uniqueness
properties above.
6The meaning of the quali�cation "essentially" will be clari�ed below.
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acts is identi�ed to a proper closed subspace F � B(�). With the regard to

the uniqueness of the unconditional measure, we have

Corollary 5. Assume S1, S2, \
�2�

co fP�ig 6= ? and SW. If SW is

essentially weaker than S0, then the unconditional measure is not unique.

The result is a consequence of the following observations. Under the

conditions in the corollary, Proposition 1 guarantees the existence of an

unconditional measure, hence of a continuous linear functional de�ned on

a subspace of (B(�); k�k1). Since SW is essentially weaker than S0, this
subspace is a proper closed subspace of (B(�); k�k1). From Phelps�theorem
(see below) and the fact that the dual of the Banach space (B(�); k�k1) is
not strictly convex, we then conclude that this continuous linear functional

admits, generally speaking, more than one norm-preserving extension. All

these extensions represent the same unconditional preference, and are asso-

ciated to di¤erent probability measures on �.

When assumption S0 is replaced by a weaker assumption, thus the set
of acts is identi�ed to a proper closed subset F � B(�), the problem of the

uniqueness of the "weights" P (Ei) in the decomposition (6.1) is still mean-

ingful despite the non-uniqueness of the unconditional measure (the reader

should think, for example, of the case of a partition E of S). A necessary

and su¢ cient condition for the uniqueness of these weights is given in the

next corollary, which is once again an immediate implication of Phelps�the-

orem. Rather than deducing it from general principles, we chose to provide

a direct proof so to make the argument immediately accessible. However,

as the proof uses Phelps�theorem, for the reader�s convenience we report it

below.

Theorem 2 (Phelps [12, Theorem 1]). Let X be a normed linear space.

A closed subspace V � X has the unique extension property i¤ its annihilator

V ? � X� is Chebyshev.

We recall that a closed subspace V of a normed linear space X has

the unique extension property if every linear functional V �! R has a

unique norm-preserving extension to the whole X. We also recall that a V

is said to be Chebyshev if and only if for each x 2 X there exists exactly

one element of best approximation, that is, an element y 2 V such that

kx� yk = dist(x; V ).

For simplicity, we are going to focus on the case where the family E
is a �nite partition. More complicated cases where E is either in�nite or
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contains more than one partition are easily dealt with by introducing the

obvious modi�cations. So assume that E = fE1; E2; :::; Eng is a partition
of S. An unconditional measure P with the desired conditional properties

is completely determined by the weights P (Ei) that it assigns to the events

Ei. Thus, P is completely de�ned by n�1 numbers. Any act f 2 F � B(�)

de�nes a function S=E �! R by Ei 7�!
R
fdPEi , where PEi is the conditional

measure for the event Ei. That is, the partition E along with the family of
conditional measures fPEigEi2E induces a mapping � : F �! B(S=E), where

B(S=E) denotes the set of mappings on the quotient S=E . Clearly, B(S=E)

can be identi�ed to a subset of Rn. Let linf1g denote the one-dimensional
subspace consisting of the constant functions on S=E . We have

Corollary 6. The weights P (Ei) are unique i¤ �(F ) [ linf1g = Rn.

Proof. For any measure P on � with the assigned conditional prop-

erties, let ~P = (P (E1); P (E2); :::; P (En)). ~P de�nes a linear functional on

V = �(F ) [ linf1g. Thus, ~P 2 (Rn; k�k1), where, for x = fx1; x2; :::; xn),
kxk1 =

nP
i=1
jxij, and V � (Rn; k�k1).

Su¢ ciency: V = Rn obviously implies that V ? is Chebyshev. Thus, by
Phelps�theorem ~P is unique.

Necessity: By assumption, 1 2 V . Then � 2 V ? implies
nX
i=1

�i = 0.

Moreover, � 2 V ? implies k� 2 V ? for all k 2 R. Let x = (x1; :::; xn) be

such that xi > 0 for all i. For � 2 V ?, we have kx� k�k1 =
nX
i=1

jxi � k�ij.

Partition N = f1; 2; :::; ng into two subsets N = I+ [ I� where I+ = fj 2
N j jxj � k�j j � 0g and I� is de�ned accordingly. Then,

kx� k�k1 =
X
i2I+

(xi � k�i) +
X
i2I�

(k�i � xi)

�
X
i2I+

(xi � k�i) +
X
i2I�

(xi � k�i) = kxk1

Now, if V 6= Rn, then, V ? is non-trivial. That is, 9y 2 V ?, y 6= 0. By

the preceding, if x is such that xi > 0 for all i, then 8� 2 V ? we have

kx� k�k1 � kxk1. Clearly, the value kxk1 is attained by setting k = 0, that
is dist(x; V ?) = kxk1 and 0 2 argmin

�2V ?
kx� �k1. However, if y 2 V ? and

y 6= 0, then supi yi > 0 (because y 2 V ? implies
nX
i=1

yi = 0) and any z in
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the set �
z = ky 2 V ? j infi xi

supi yi
� k > 0

�
also belong to 0 2 argmin

�2V ?
kx� �k1 as (the second inequality below follows

from xi � infi xi � k supi yi � kyi)

kx� kyk1 =
nX
i=1

jxi � kyij =
nX
i=1

(xi � kyi) =
nX
i=1

xi = kxk1

That is, V ? is not Chebyshev and ~P is not unique. �
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