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Résumé
Le but de cette thèse est d�étendre la théorie du bootstrap aux modèles de

données de panel. Les données de panel s�obtiennent en observant plusieurs

unités statistiques sur plusieurs périodes de temps. Leur double dimension

individuelle et temporelle permet de contrôler l�hétérogénéité non observable

entre individus et entre les périodes de temps et donc de faire des études

plus riches que les séries chronologiques ou les données en coupe instantanée.

L�avantage du bootstrap est de permettre d�obtenir une inférence plus précise

que celle avec la théorie asymptotique classique ou une inférence impossible

en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons

aléatoires qui ressemblent le plus possible à l�échantillon d�analyse. L�objet

statitstique d�intérêt est estimé sur chacun de ses échantillons aléatoires et on

utilise l�ensemble des valeurs estimées pour faire de l�inférence. Il existe dans

la littérature certaines application du bootstrap aux données de panels sans

justi�cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse

propose une méthode de bootstrap plus appropriée aux données de panels.

Les trois chapitres analysent sa validité et son application.

Le premier chapitre postule un modèle simple avec un seul paramètre

et s�attaque aux propriétés théoriques de l�estimateur de la moyenne. Nous

montrons que le double rééchantillonnage que nous proposons et qui tient

compte à la fois de la dimension individuelle et la dimension temporelle est

valide avec ces modèles. Le rééchantillonnage seulement dans la dimension

individuelle n�est pas valide en présence d�hétérogénéité temporelle. Le ré-

échantillonnage dans la dimension temporelle n�est pas valide en présence

d�hétérogénéité individuelle.

Le deuxième chapitre étend le précédent au modèle panel de régression
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linéaire. Trois types de régresseurs sont considérés : les caractéristiques indi-

viduelles, les caractéristiques temporelles et les régresseurs qui évoluent dans

le temps et par individu. En utilisant un modèle à erreurs composées doubles,

l�estimateur des moindres carrés ordinaires et la méthode de bootstrap des

résidus, on montre que le rééchantillonnage dans la seule dimension indivi-

duelle est valide pour l�inférence sur les coe¢ cients associés aux régresseurs

qui changent uniquement par individu. Le rééchantillonnage dans la dimen-

sion temporelle est valide seulement pour le sous vecteur des paramètres

associés aux régresseurs qui évoluent uniquement dans le temps. Le double

rééchantillonnage est quand à lui est valide pour faire de l�inférence pour tout

le vecteur des paramètres.

Le troisième chapitre re-examine l�exercice de l�estimateur de di¤érence

en di¤érence de Bertrand, Du�o et Mullainathan (2004). Cet estimateur est

couramment utilisé dans la littérature pour évaluer l�impact de certaines poli-

tiques publiques. L�exercice empirique utilise des données de panel provenant

du Current Population Survey sur le salaire des femmes dans les 50 états des

Etats-Unis d�Amérique de 1979 à 1999. Des variables de pseudo-interventions

publiques au niveau des états sont générées et on s�attend à ce que les tests

arrivent à la conclusion qu�il n�y a pas d�e¤et de ces politiques placebos sur

le salaire des femmes. Bertrand, Du�o et Mullainathan (2004) montre que la

non-prise en compte de l�hétérogénéité et de la dépendance temporelle en-

traîne d�importantes distorsions de niveau de test lorsqu�on évalue l�impact

de politiques publiques en utilisant des données de panel. Une des solutions

préconisées est d�utiliser la méthode de bootstrap. La méthode de double ré-

échantillonnage développée dans cette thèse permet de corriger le problème

de niveau de test et donc d�évaluer correctement l�impact des politiques pu-

bliques.
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Abstract
The purpose of this thesis is to develop bootstrap methods for panel data

models and to prove their validity. Panel data refers to data sets where ob-

servations on individual units (such as households, �rms or countries) are

available over several time periods. The availability of two dimensions (cross

section and time series) allows for the identi�cation of e¤ects that could not

be accounted for otherwise. In this thesis, we explore the use of the bootstrap

to obtain estimates of the distribution of statistics that are more accurate

than the usual asymptotic theory. The method consists in drawing many ran-

dom samples that resembles the sample as much as possible and estimating

the distribution of the object of interest over these random samples. It has

been shown, both theoretically and in simulations, that in many instances,

this approach improves on asymptotic approximations. In other words, the

resulting tests have a rejection rate close to the nominal size under the null

hypothesis and the resulting con�dence intervals have a probability of inclu-

ding the true value of the parameter that is close to the desired level.

In the literature, there are many applications of the bootstrap with panel

data, but these methods are carried out without rigorous theoretical justi�-

cation. This thesis suggests a bootstrap method that is suited to panel data

(which we call double resampling), analyzes its validity, and implements it

in the analysis of treatment e¤ects. The aim is to provide a method that will

provide reliable inference without having to make strong assumptions on the

underlying data-generating process.

The �rst chapter considers a model with a single parameter (the overall

expectation) with the sample mean as estimator. We show that our double

resampling is valid for panel data models with some cross section and/or
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temporal heterogeneity. The assumptions made include one-way and two-

way error component models as well as factor models that have become

popular with large panels. On the other hand, alternative methods such as

bootstrapping cross-sections or blocks in the time dimensions are only valid

under some of these models.

The second chapter extends the previous one to the panel linear regres-

sion model. Three kinds of regressors are considered : individual characte-

ristics, temporal characteristics and regressors varying across periods and

cross-sectional units. We show that our double resampling is valid for in-

ference about all the coe¢ cients in the model estimated by ordinary least

squares under general types of time-series and cross-sectional dependence.

Again, we show that other bootstrap methods are only valid under more

restrictive conditions.

Finally, the third chapter re-examines the analysis of di¤erences-in-di¤erences

estimators by Bertrand, Du�o and Mullainathan (2004). Their empirical ap-

plication uses panel data from the Current Population Survey on wages of

women in the 50 states. Placebo laws are generated at the state level, and the

authors measure their impact on wages. By construction, no impact should

be found. Bertrand, Du�o and Mullainathan (2004) show that neglected he-

terogeneity and temporal correlation lead to spurious �ndings of an e¤ect

of the Placebo laws. The double resampling method developed in this thesis

corrects these size distortions very well and gives more reliable evaluation of

public policies.

Key words : Panel data models, Bootstrap, Public Policy Evaluation.
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Introduction générale
Les données de panel s�obtiennent en observant plusieurs unités statis-

tiques sur plusieurs périodes de temps. Leur double dimension individuelle

et temporelle permet de contrôler l�hétérogénéité non observable entre in-

dividus et entre les périodes de temps. Ceci permet de faire des analyses

di¢ cilement faisables avec juste des séries temporelles ou des coupes trans-

versales de données. L�inférence avec les modèles de panel, comme dans tout

autre modèle statistique nécessite le recours à des statistiques de test. En

pratique, la véritable distribution de probabilité d�une statistique de test est

rarement connue. En général, nous utilisons la loi asymptotique comme ap-

proximation de la vraie loi. Si la taille de l�échantillon n�est pas assez grande,

le comportement asymptotique de la statistique pourrait être une mauvaise

approximation de la réalité.

Un avantage important de la technique de rééchantillonnage bootstrap

est de permettre d�obtenir une approximation de la distribution d�une statis-

tique de test plus précise que l�approximation asymptotique lorsque la taille

de l�échantillon est faible. Cette technique a été proposée originalement pour

l�analyse statistique des observations indépendantes et identiquement distri-

buées. Des extensions ont été faites pour l�adapter à l�analyse de données

avec de la dépendance entre les observations comme les séries temporelles.

La littérature sur l�utilisation du bootstrap avec des données de panel est

assez restreinte. On note des exemples d�utilisation sans justi�cations théo-

riques ou quand ces justi�cations existent c�est pour des cas très particuliers.

Comme contribution récente à la littérature théorique, nous pouvons citer

Kapetanios (2008) et Gonçalves (2010).

La double dimension des modèles de panels pose néanmoins quelques dé�s

en pratique : les théories asymptotiques multiples. La façon dont on suppose
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que le nombre d�unités statistiques (N) et/ou le nombre de périodes tem-

porelles (T) tend vers l�in�ni, n�est pas sans consequence sur la distribution

asymptotique obtenue. En pratique, face à un échantillon particulier, il n�y a

pas de méthode pour choisir laquelle des distributions il faut utiliser. Le re-

cours à une méthodologie qui ne di¤ère pas d�une distribution asymptotique

à l�autre permettrait de contourner ce genre de problème.

L�évaluation de politiques publiques amène à considerer deux groupes

d�individus : ceux qui sont par a¤ectés par la politique (groupe de traitement)

et ceux qui ne sont pas a¤ectés (groupe de contrôle). Le second groupe sert

de groupe de témoins et permet de contrôler des e¤ets temporels qui seraient

produits en l�absence de la politique et permet d�apprécier à sa juste valeur,

l�impact de de la politique publique (ou traitement). Dans l�approche la plus

simpliste, on considère deux périodes de temps : une période avant la mise en

place de la politique et une période après la mise en place. L�impact de la poli-

tique est mésuré en prenant la variation de la variable cible dans le groupe de

traitement auquel on soustrait la variation dans le groupe de contrôle. Cette

technique s�appelle la methode des di¤érencesen di¤érences (ou méthode des

doubles di¤érences). Elle serait tout à fait justi�ée si les individus étaient

a¤ectés arbitrairement dans chacun des groupes. En réalité, la mise en place

d�une intervention du pouvoir publique est justi�ée par des besoins d�objectif

à atteindre. Une localité va béni�cier d�un projet particulier parce qu�on veut

y réduire par exemple le taux de décrochage scolaire qui y est plus élevé que

dans d�autres zone scolaires. Le choix des individus du groupe de contrôle

et ceux qui sont dans le groupe de traitement est donc loin d�être arbitraire.

L�appréciation du gain de la politique peut donc être est biaisé par un e¤et

de sélection. Pour tenir compte du fait que l�appartenance à l�un des deux

groupes peut dépendre des caractéristiques individuelles, il faut les inclure
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dans l�évaluation d�impact. L�approche générale est de postuler un modèle

linéaire ou la variable d�intérêt y est fonction des caractériques individuelles

et d�une variable indicatrice qui prend la valeur 1 quand l�individu est af-

fectée par la politique en second période et la valeur 0 sinon. Le coe¢ cient

associé à cette variable indictarice mesure l�impact de la politique étudiée.

Dans une approche plus générale, on considère les deux mêmes groupes

mais cette fois-ci, pendant plusieurs périodes de temps. Cette approche per-

met de mieux tenir compte de la dynamique temporelle et on à ce moment

des données de panel. Une di¢ culté pratique dans l�évaluation des politiques

publiques est la limitation du nombre d�observation. En e¤et, avant la mise

en place à une plus grande échelle, une politique peut d�abord est testée sur

un échantillon, le nombre d�unités statistiques impliquées est alors modéré.

La nécessité d�avoir les premiers résultats d�un programme dans un laps de

temps raisonnable limite le nombre de périodes de notre panel. Cette double

restriction fragilise la qualité de l�inférence que l�on a recours à l�asympto-

tique. Malgré ces di¢ cultés, le chercheur doit faire de son mieux pour tirer

la meilleure information de l�échantillon dont il dispose. L�utilisation des mé-

thodes de bootstrap peut accroître la qualité de l�inférence.

La présente thèse examine le développement de méthodes bootstrap ap-

propriés aux modèles de panel, leurs justi�cations théoriques et applications.

Le premier chapitre postule un modèle simple avec un seul paramètre et

s�attaque aux propriétés théoriques de l�estimateur de la moyenne1.

Le deuxième chapitre étend le précédent au modèle panel de régression

linéaire. Trois types de régresseurs sont considérés : les caractéristiques indi-

viduelles, les caractéristiques temporelles et les régresseurs qui évoluent dans

1Il est commun de démontrer la validité d�une méthode de rééchantillonnage pour la

moyenne avant de s�attaquer à sa validité pour des statistiques plus complexes.
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le temps et par individu. En utilisant un modèle à erreurs composées doubles,

l�estimateur des moindres carrés ordinaires et la méthode de bootstrap des

résidus, on montre que le rééchantillonnage dans la seule dimension indivi-

duelle est valide pour l�inférence sur les coe¢ cients associés aux régresseurs

qui changent uniquement par individu. Le rééchantillonnage dans la dimen-

sion temporelle est valide seulement pour le sous vecteur des paramètres

associé aux régresseurs qui évoluent uniquement dans le temps. Le double

rééchantillonnage est quand à lui est valide pour faire de l�inférence pour

tout le vecteur des paramètres.

Le troisième chapitre re-examine l�exercice de l�estimateur des doubles

di¤érences de Bertrand, Du�o et Mullainathan (2004). L�exercice empirique

utilise des données de panel provenant du Current Population Survey sur

le salaire des femmes dans les 50 états des Etats-Unis d�Amérique de 1979

à 1999. Des variables de pseudo-interventions publiques au niveau des états

sont générées et on s�attend à ce que les tests arrivent à la conclusion qu�il

n�y a pas d�e¤et de ces politiques placebos sur le salaire des femmes. Ber-

trand, Du�o et Mullainathan (2004) montre que la non-prise en compte de la

dépendance temporelle entraîne d�importantes distorsions de niveau de test

lorsqu�on évalue l�impact de politiques publiques en utilisant des données de

panel. La méthode de double rééchantillonnage développée dans cette thèse

permet de corriger le problème de niveau de test et donc d�évaluer correcte-

ment l�impact des politiques publiques.



Chapitre 1

Double resampling bootstrap

for the mean of a panel

5
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Abstract

This paper considers bootstrap methods for the sample mean in panel

data. It is shown that double resampling that combines cross-sectional and

temporal resampling is valid under general conditions on cross-sectional and

temporal heterogeneity as well as cross-sectional dependence. On the other

hand, resampling only in the cross section dimension is not valid in the pre-

sence of temporal heterogeneity, while block resampling only in the time

series dimension is not valid in the presence of cross section heterogeneity.

The bootstrap does not require the researcher to choose one of several asymp-

totic approximations available for panel models. Simulations con�rm these

theoretical results.

JEL Classi�cation : C15, C23.

Keywords : Bootstrap, Panel Data Models.
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1.1 Introduction

This paper analyzes properties of bootstrap methods in carrying out in-

ference on the mean of panel data. The goal is to try to construct con�-

dence intervals and conduct hypothesis tests without having to make strong

assumptions regarding either the serial correlation or cross-sectional depen-

dence of the data.

While there is an abundant literature on asymptotic theory for panel

data models, there is much less on the bootstrap. There are some simula-

tion results suggesting that some resampling methods work well in practice

but theoretical results are rather limited or require strong assumptions. For

example, Kapetanios (2008) recently presented theoretical results in a linear

panel regression model when the cross-sectional dimension goes to in�nity,

under the assumption that cross-sectional vectors of regressors and errors

terms are i.i.d.. This assumption is quite restrictive and does not allow time-

varying regressors or temporal aggregate shocks in errors terms. Gonçalves

(2010) explores the moving blocks bootstrap in a linear regression model

as well, and Palm, Smeekes and Urbain (2011) develop the bootstrap for

nonstationary panel models.

Asymptotic analysis in panel models is complicated by the fact we have

cross-sectional and time series dimensions. Thus, several asymptotic approxi-

mations can be developed, depending on the assumptions one is willing to

make on the size of these two dimensions. Typically, the resulting approxi-

mations will be di¤erent, forcing an applied researcher to choose among these

various approximations in order to obtain a critical value for a hypothesis

test. One of the main advantages of the bootstrap in the context of panel

models is that it is not necessary to make such a choice. The bootstrap will
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provide valid critical values for various asymptotic scenarios under appro-

priate conditions.

The paper is organized as follows. In the second section, di¤erent panel

data models are presented. Section 3 presents the asymptotic theory. Sec-

tion 4 presents three bootstrap resampling methods for panel data. The �fth

section presents theoretical results, analyzing the validity of each resampling

method. The seventh section bootstrap con�dence interval and analyzes their

validity. In section 7, simulation results are presented and con�rm the theo-

retical results. The eighth section concludes. Proofs of propositions are given

in the appendix.

1.2 Panel Data Models and Assumptions

We suppose that we observe panel data yit for cross-sectional unit i at

time t: There are N cross-sectional units (typically households, �rms or coun-

tries) and T time periods. One could consider unbalanced panels where the

number of observations for each unit would di¤er, but for simplicity, we do

not consider this case.

In this chapter, we consider a panel model without regressors.

yit = � + �it (2.1 )

where � is an unknown parameter of interest and �it is random. The

goal is to carry out inference on the parameter � using the sample mean as

estimator (which is the OLS estimator) without making strong assumptions

on �it. Chapter 2 will consider the more general case where regressors varying

over i and t will be included in the model. It is common to �rst analyze the

properties of a bootstrap method for the sample mean before investigating
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more complicated statistics.

It will prove convenient to represent our panel data as a matrix. We will

do so by putting into rows the observations for each cross-sectional unit and

then stacking these rows. The resulting matrix, which we denote by Y , is of

dimension N � T :

Y
(N;T )

=

0BBBBBBBB@

y11 y12 ::: ::: y1T

y21 y22 ::: ::: y2T

::: ::: ::: ::: :::

::: ::: ::: :: :::

yN1 yN2 :: ::: yNT

1CCCCCCCCA
We will analyze the properties of bootstrap methods in (2 :1 ) that do

not require making strong assumptions during implementation. We will do

so under various scenarios on the properties of vit: We conjecture that our

results will extend to even more general structures, and this will be the

subject of future research.

We decompose �it into four components :

�it = �i + ft + �iFt + "it: (2.2 )

It is customary to call �i the individual e¤ect and ft the time e¤ect. The

term �iFt represents the contribution from a factor model. In that model,

each unit i is allowed to respond heterogeneously to a set of common factors

Ft: Finally, the last term is the remainder and will be called the idiosyncratic

component.

Assumption A (individual e¤ects)

The individual e¤ects �i are drawn independently across i from some
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distribution with mean 0 and variance �2� (where 0 < �2� < 1:) and is
independent of the cross-sectional and/or temporal heterogeneity.

Assumption A requires the individual heterogeneities to be independent

and identically distributed with �nite variance. The assumption of a zero

mean is an identi�cation assumption as any non-zero mean could be sub-

sumed into the overall mean �: The i.i.d. assumption, strong for classical

asymptotic distribution is however important for bootstrap validity because

i.i.d. bootstrap will be used in the cross-sectional dimension.

Assumption B (time e¤ects)

fftg is a stationary and �-mixing process with mixing coe¢ cients � (j) ;
E (ft) = 0 and fftg veri�es Ibragimov�s assumptions, that is 9 � 2 (0;1)

such that E jftj2+� < 1 and
1X
j=1

� (j)�=(2+�) < 1 with �nite long-run va-

riance V 1f =
1X

h=�1

Cov (ft; ft+h) 2 (0;1).

Assumption B imposes some conditions on the time-series heterogeneity of

our panel data. In particular, it requires it to be generated from a stationary

process and that the dependence between ft and fk vanishes su¢ ciently fast

as the distance between them increases.

Assumptions C (idiosyncratic error)

C : The idiosyncratic error "it is drawn independently across i and over t

from some distribution with mean 0 and variance �2" where 0 < �
2
" <1:

C�: The idiosyncratic error "it satis�es the following condition : the scaled

sample mean
p
M" (with M 2 fN; Tg) converges to zero in probability.

Assumption C requires that the idiosyncratic error is to i:i:d: in both

dimensions. The assumption is strong and will give us asymptotic distribution
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when only one dimension goes to in�nity. When N and T go to in�nity, we

will use a weaker version of assumption C, assumption C� that allows for

weak dependence such as spatial, etc...

Assumption D (independence)

The two processes (�1; ::; �N) and (f1; :::; fT ) are independent.

Assumption D imposes independence between the vector of individual

heterogeneities and the vector of temporal heterogeneities. It is essential that

there is no dependence between the two types of heterogeneity because the

double resampling bootstrap method we will present later would destroy any

dependence between the two dimensions.

Assumptions E (factor)

E1 : The factor loadings �i are drawn independently across i from some

distribution with mean 0 and variance �2� where 0 < �
2
� <1:

E2 : The factors (Ft) are a stationary and �-mixing process with mean 0

satisfying Ibragimov�s assumptions.

E3 : The two processes (�1; ::; �N) and (F1; :::; FT ) are independent.

Assumptions E are about a factor model. Assumption E1 requires the

loadings in a factor model to be independent and identically distributed with

�nite variance. Assumption E2 is similar to assumption B, but applied to the

factors in a factor model. Assumption E3 imposes independence between the

vector of loadings and the vector of factors in an factor model. The reason is

similar to B.

This general decomposition nests most popular panel data models. Ma-

king assumptions on the properties of each of these components de�nes parti-

cular panel data models : the cross-sectional one-way error component model
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(ECM), the temporal one-way ECM, the two-way ECM and the Factor Mo-

del.

Cross-sectional one-way ECM

yit = � + �i + "it (2.3 )

under the assumptions A and C (C 0). This model captures a single source

of heterogeneity, that is systematic di¤erences across units that results in a

parallel shift. It is important to emphasize that we teat this heterogeneity as

nuisance and not as parameters to be estimated. The parameter of interest

is �: To consider the properties of our bootstrap schemes under this model,

we will assume a random parameter model. In other words, the individual

e¤ects �i will be assumed to be drawn from some distribution.

Temporal one-way ECM

A second special case of our general model (2 :1 ) is the temporal one-way

ECM :

yit = � + ft + "it: (2.4 )

under the assumptions B and C (C 0). In contrast to the cross-sectional

ECM model discussed above, the only heterogeneity considered is with res-

pect to the time periods. This model is obviously much less common than

the cross-section ECM, but we present it for completeness. Assumption B is

somewhat di¤erent from Assumption A because we want to allow for some

serial correlation in the time-speci�c e¤ects ft.
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Two-way ECM

The two-way error component model allows to control for both cross-

sectional and temporal heterogeneity. It is a combination of both one-way

ECMs discussed above :

yit = � + �i + ft + "it (2.5 )

As in both one-way ECMs, cross section and temporal heterogeneities

will be treated as nuisance random variables. Since it is a combination of the

preceding two models. (2:5) is de�ned under the assumptions A, B, C�and

D.

Factor Model

While the two-way ECM assumes that all cross-sectional units respond

homogeneously to time variation, the factor model allows this response to be

heterogeneous across units. These factor models have become highly popular

in panel data either to summarize a large amount of information that can be

used later (for example for forecasting, see Stock and Watson, 2002) or to

model cross-sectional dependence in large panels (for example in �nance or

for panel unit root tests as in Bai and Ng (2004), Moon and Perron (2004)

or Phillips and Sul (2003)).

The factor model we will study is :

yit = � + �i + �iFt + "it (2.6 )

The model is a single-factor model because only one factor process Ft is

involved in the speci�cation. The parameters �1; :::; �N are called the factor

loadings and represent the sensitivity of unit i to changes in the factor. The

Model (2:6) is under the assumptions A, C�and E.
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1.3 Asymptotic Theory

This section presents theoretical results on the asymptotic distribution of

the sample mean.

One di¢ culty with asymptotic theory for panel data is the assumption

made on the size of N and T: Traditionally, because panel data was mostly

used in microeconometrics with large cross-sectional dimension but short

time dimension, the assumption was made that N was large (approaching

in�nity) but that T remained �nite. Conversely, in multiple time series mo-

dels, the asymptotic analysis typically assumes that the number of series N

is small while the number of time series observations T is large. Of course,

these two asymptotic scenarios lead to di¤erent approximations and one is

left to wonder which one is most appropriate for a given application at hand.

Recently. the analysis of large macro-type panels where both dimensions

are reasonably large has allowed both dimensions to diverge. Phillips and

Moon (1999) have provided underpinnings for these asymptotic analyses and

have de�ned di¤erent frameworks. A sequential limit is obtained when an

index is �xed at �rst, and the other goes to in�nity, to have intermediate

result. Next, the �nal result is obtained by allowing the �xed index to go to

in�nity. On the other hand, in a diagonal path limit, N and T approach to

in�nity along a speci�c path, for example T = T (N) and N ! 1: Finally,
in a joint limit, N and T pass to in�nity simultaneously. Sometimes, it is

necessary to control the relative expansion rate of N and T . For equivalence

conditions between sequential and joint limits, see Phillips and Moon (1999).

Again, in practice, when faced with a particular application, it is not

always obvious how to choose among these multiple asymptotic distributions,

which may very be di¤erent. One of the advantages of the bootstrap approach
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we are analyzing is that it avoids having to choose between these competing

approximations.

In order to prove the validity of the bootstrap for inference about �;we

need to show that it reproduces the asymptotic distribution of the estimator

y: The purpose of this section is to develop the asymptotic distribution of

y in the various panel data models described in section 2 and under various

scenarios on N and T: Then, the next section will show that the bootstrap

will (or will not) reproduce these asymptotic distributions.

The asymptotic analysis is carried out by noting that, using (2 :1 ) and

(2 :2 ) ; the sample mean can be written as :

y = � +
1

N

NX
i=1

�i +
1

T

TX
t=1

ft +

 
1

N

NX
i=1

�i

! 
1

T

TX
t=1

Ft

!
(3.1)

+
1

NT

NX
i=1

TX
t=1

"it

= � + �+ f + �:F + " (3.2)

The asymptotic behavior of the sample mean will thus depend on the

behavior of these 4 sample means. It is important to mention that they do

not converge at the same rate. For example, � and �
�
resp. f and F

�
are

averages of N (resp. T ) elements when " is the average of NT elements. This

di¤erence of convergence rates among elements implies that some elements

become negligible more rapidly when the sample size increases than others.

Two asymptotic theories are available for the cross-sectional and temporal

one-way ECM. In the case of the two-way ECM, N and T must go to in�nity.

The relative convergence rate between the two indexes, � de�nes a continuum

of asymptotic distributions. The factor model has a unique asymptotic dis-

tribution when the two dimensions go to in�nity. The spatial dependence
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possibly contained in f"itg for all the speci�cations, or in f�iFtg for factor
model, vanishes when N and T go to in�nity.

Table 1. Asymptotic distributions of the sample mean

Model Assum: Asymptotic distribution !

Cross� sect: A; C
p
N
�
y � �

�
=)
N!1

N (0; !) �2� +
�2"
T

One� way
A;C 0

p
N
�
y � �

�
=)

N;T!1
N (0; !) �2�

ECM

Temporal B; C
p
T
�
y � �

�
=)
T!1

N (0; !) V 1f + �2"
N

One� way
B;C 0

p
T
�
y � �

�
=)

N;T!1
N (0; !) V 1f

ECM

Two� way
p
N
�
y � �

�
=)

N;T!1
N
T
!�2[0;1)

N (0; !) �2� + �:V
1
f

A;B;C 0; D

ECM
p
T
�
y � �

�
=)

N;T!1
N
T
!1

N (0; !) V 1f

Factor

model A;C 0; E
p
N
�
y � �

�
=)

N;T!1
N (0; !) �2�
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1.4 Resampling Methods

In this section, we present the methods we use to resample panel data.

These methods have in common that they resample the observed data yit. In

other words, their implementation do not depend on the choice of a particular

structure for the data. However, of course the validity of each method will

depend on the properties of the underlying data-generating process. In other

words, we want to make inference that is robust to the panel data models

described in the previous section without having to impose that model in

resampling.

From our initial N � T data matrix Y , bootstrapping will create a new
matrix Y � by resampling with replacement elements of Y: Statistics are com-

puted on this pseudo-sample, and we repeat this operation B times. We use

the sequence of B statistics generated by the bootstrap to make inference

about the parameter �:

A word on notation before presenting the resampling methods. Bootstrap

quantities will be denoted by an asterisk. The probability measure induced

by the resampling method conditional on Y is noted P �. E� () and V ar� ()

are respectively the expectation and the variance associated with P �.

Cross-sectional Resampling Bootstrap

For a N�T matrix Y , cross-sectional resampling constructs a new N�T
matrix Y � with rows obtained by resampling with replacement the rows of Y:

In other words, we resample the vectors of T observations for each individual.

As a consequence, conditionally on Y , the rows of Y � are independent and

identically distributed. y�it can only take one of theN values fyitgi=1;:::N , those
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that were observed for some individuals at time t . Y � takes the following

form :

Y �
(N;T )

=

0BBBBB@
y�11 = yi11 y�12 = yi12 ::: y�1T = yi1T

y�21 = yi21 y�22 = yi22 ::: y�2T = yi2T

::: ::: :: :::

y�N1 = yiN1 y�N2 = yiN2 ::: y�NT = yiNT

1CCCCCA (4.1 )

where each of the indices (i1; i2; :::::; iN) is obtained by i.i.d. drawing

with replacement from (1; 2; :::::; N). The mean of Y � obtained by the cross-

sectional bootstrap is denoted by y�cros:

Block Resampling Bootstrap

This method is a direct generalization of block bootstrap methods de-

signed for time series. Non-overlapping block bootstrap (NMB) (Carlstein

(1986)), moving block bootstrap (MBB) (Kunsch (1989), Liu and Singh

(1992)), circular block bootstrap (CBB) (Politis and Romano (1992)) and

stationary block bootstrap (SB) (Politis and Romano (1994)) can be adap-

ted to panel data. The idea is to resample in the time dimension blocks of

consecutive periods in order to capture temporal dependence. All the obser-

vations at each time period are kept together in the hope of preserving their

dependence.

The block bootstrap resampling constructs a new N � T matrix Y � with
columns obtained by resampling with replacement blocks of columns of Y:

As a consequence, in this method, y�it can only take one of the T values
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fyitgt=1;:::T , those that were observed for individual i at some time t. The
mean of Y � obtained by block bootstrap method is noted y�bl. Y

� takes the

following form :

Y �
(N;T )

=

0BBBBB@
y�11 = y1t1 y�12 = y1t2 ::: y�1T = y1tT

y�21 = y2t1 y�22 = y2t2 ::: y�2T = y2tT

::: ::: :: :::

y�N1 = yNt1 y�N2 = yNt2 ::: y�NT = yNtT

1CCCCCA (4.2 )

The choice of (t1; t2; ::; tT ) depends on the which block bootstrap method

is used in the time dimension. With the CBB bootstrap resampling, we have

(t1; t2; :; tT ) taking the form

� 1; � 1 + 1; ::; � 1 + l � 1| {z }
block 1

� 2; � 2 + 1; ::; � 2 + l � 1| {z };
block 2

::::::;�
[T=l]
; �

[T=l]
+ 1; ::; �

[T=l]
+ l � 1| {z }

block [T=l]

where the vector of indices
�
� 1; � 2; :::; � [T=l]

�
is obtained by i.i.d. drawing

with replacement from (1; 2; :::::; T ), l denoting the block length1. Condi-

tionally to Y , the blocks are i.i.d. and the properties of the original i.i.d.

bootstrap are transferred to the blocks as statistical units. With the CBB

there are T possible overlapping blocks of length beginning with each periods

from t = 1.... to t = T

1; 2; ::; l| {z }
block 1

2; 3; ::; l + 1| {z }
block 2

3; 4; ::; l + 2| {z };
block 2

::::k; k + 1; ::; k + l � 1| {z };
block k

::;T; 1; ::; l � 1| {z }
block T

:

The CBB resampling on matrix Y is i.i.d. drawing with replacement of

K = [T=l] blocks from the T possible blocks. Let �s de�ne a new matrix Z,

a transformation of the sample Y .

1The name Circular come from the fact that when � t > T � l; the index of some

observations exceed T and are replace using the rule : T + t ! t, as if the original data

are around a circle and after T we continue with the �rst observation t = 1:



20

Z
(N;T )

=

0BBBBBBBB@

z11 z12 ::: ::: ::: z1T

::: ::: :: ::: ::: :::

::: ::: :: zik ::: :::

::: ::: ::: ::: ::: :::

zN1 zN2 ::: ::: ::: zNT

1CCCCCCCCA
(4.3 )

where zik = 1
l

P
t 2 block k

yit is for given unit i, the average of the observa-

tions of block k: The matrix Z will be useful to derive some theoretical result

in the next section.

Others block bootstrap methods can also be accommodated in the time

dimension to panel data. In this chapter the theoretical results will be given

for the CBB. They remain valid for the NMB and the MMB because the

three methods are asymptotically equivalent.

Double Resampling Bootstrap

This method is a combination of the two previous resampling methods.

The term double comes from the fact that the resampling can be made in

two steps. In a �rst step, one dimension is taken into account : from Y , an

intermediate matrix Y � is obtained either by cross-sectional resampling or

block resampling. It turns out that the resampling is symmetric so it does

not matter which dimension is resampled �rst. Then, another resampling is

made in the second dimension : from Y � the �nal matrix Y �� is obtained.

If we resampled in the cross-sectional dimension in the �rst step, then we
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resampled columns of the intermediate matrix in order to get our resampled

matrix Y ��:2 The mean of Y �� is noted y��.

Carvajal (2000) and Kapetanios (2008) have both suggested this double

resampling in the special case where the block length is 1. They also analyze

this resampling method by Monte Carlo simulations but give no theoretical

support. The idea is that by drawing in one dimension, we preserve the de-

pendence in that dimension in the �rst step. In the second step, we reproduce

the properties in the other dimension by preserving the vectors drawn in the

�rst step. Y �� takes the following form :

Y ��
(N;T )

=

0BBBBB@
y��11 = yi1t1 y��12 = yi1t2 ::: y��1T = yi1tT

y��21 = yi2t1 y��22 = yi2t2 ::: y��2T = yi2tT

::: ::: :: :::

y��N1 = yiN t1 y��N2 = yiN t2 ::: y��NT = yiN tT

1CCCCCA (4.4 )

where the indices (i1; i2; :::::; iN) and (t1; t2; :; tT ) are chosen as described

in the the two previous sub-sections. One important aspect of our analysis

of double resampling is the properties of y��it : Conditionally on the matrix

[Y ] ; the elements of [Y ��] have a particular dependence structure. In fact

each element y��it depends on the elements in its column and on its row. This

link exists because elements on the same line belong to the same unit i and

elements in the same column refer to the same period t. This structure of

dependence and the validity of the bootstrap methods will be analyzed in

the next section.

2We will use double asterisks** denote the quantities induced by double resampling.
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1.5 Bootstrap Validity

This section analyzes the properties of the bootstrap methods described

in the previous section in the panel models described in section 2. A boots-

trap method is consistent for the sample mean if the distance between the

bootstrap distribution function and the sampling distribution of the statis-

tic converges to 0 asymptotically. Since we have di¤erent (three) modes of

convergence, we have three de�nitions of consistency. In order to avoid over-

burdening the text, we will denote by P!
NT!1

the convergence in probability

under either case of asymptotic analysis : N �xed with T going to in�nity, T

�xed with N going to in�nity, and �nally N and T going to in�nity simul-

taneously. With this notation, we will say that the bootstrap is consistent

if :

sup
x2R

���P � �pM �
y
� � y

�
� x

�
� P

�p
M
�
y � �

�
� x

���� P!
NT!1

0 (5.1 )

with M 2 fN; T;NTg :

M is the scaling factor and depends on the panel model speci�cation. In

the special case where the sample mean asymptotic distribution is available,

consistency can be established by showing that the bootstrap sample mean

has the same distribution. The next proposition expresses this idea.

Proposition 1 : Assume that
p
M
�
y � �

�
=) L and

p
M
�
y
� � y

� �
=) L�.

If L�and L are identical and continuous, then

sup
x2R

���P � �pM �
y
� � y

�
� x

�
� P

�p
M
�
y � �

�
� x

���� P!
NT!1

0

where " �
=)" means "converge in distribution conditionally on Y ".
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To understand the behavior of the resampling schemes, it is convenient

to decompose the error term. Using the matrix notation developed above, we

can rewrite the data matrix Y as

Y = ��N �
0
T| {z }

[�]

+

0BBBBB@
�1 ::: �1

�2 ::: �2

::: :: :::

�N ::: �N

1CCCCCA
| {z }

[�]

+

0BBBBB@
f1 ::: fT

f1 ::: fT

::: ::: :::

f1 ::: fT

1CCCCCA
| {z }

[f ]

+

0BBBBB@
�1

�2

:::

�N

1CCCCCA
| {z }

[�]

�
F1 ::: FT

�
| {z }

[F ]

+

0BBBBB@
"11 ::: "1T

"21 ::: "2T

::: :: :::

"N1 ::: "NT

1CCCCCA
| {z }

["]

(5.2)

= [�] + [�] + [f ] + [�] [F ] + ["]

Thus, each line of the matrix [�] contains T times the same value. Thus, if

one were to resample [�] in the cross-sectional dimension (i.e. drawing rows)

and take the overall average would be equivalent to an i.i.d. resampling of �i:

Similarly, cross-sectional resampling is also equivalent to i.i.d. resampling of

the factor loadings �i:

On the other hand, the rows of the matrices [f ] and [F ] are identical. This

means that cross-sectional resampling does not do anything and returns the

original matrices [f ] and [F ] : E¤ectively, it treats (f1; :::; fT ) and (F1; ::::; FT )

as constants. In other words, when doing cross-sectional resampling, each

bootstrap observation can be decomposed as :

y�it;cros = � + �
�
i + ft + �

�
iFt + "

�
it;cros (5.3 )
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where ��i , �
�
i are i.i.d. draws.

The analysis for temporal block resampling is symmetrical. It is equivalent

to block resampling on the time e¤ects f1; ::; fT and the factors F1; :::; FT .

However, it does not resample the individual e¤ects and factor loadings and

teats them as constants. Hence, each bootstrap observation can be written

as

y�it;bl = � + �i + f
�
t;bl + �iF

�
t;bl + "

�
it;bl: (5.4 )

Finally, double resampling is the combination of the two previous me-

thods. It is equivalent to the combination of i.i.d. resampling on the individual

e¤ects (�1; ::::; �N) and factor loadings (�1; ::::; �N) and block resampling on

the time e¤ects (f1; ::::; fT ) and factors (F1; ::::; FT ) :

y��it = � + �
�
i + f

�
t;bl + �

�
iF

�
t;bl + "

��
it : (5.5 )

Using the above expression, we can express the bootstrap means as :�
y
�
cros � y

�
= (�� � �) +

�
�
�
F � �F

�
+
�
["inter]

� � "
�

(5.6)�
y
�
bl � y

�
=

�
f
�
bl � f

�
+
�
�F

�
bl � �F

�
+
�
["inter]

�
bl � "

�
(5.7)�

y
�� � y

�
= (�� � �) +

�
f
�
bl � f

�
+
�
�
�
F
�
bl � �F

�
+
�
"
�� � "

�
(5.8)

It must be noted that the centering eliminates ft in the case of cross-

sectional resampling and �i in the case of temporal block resampling. It

follows immediately that cross-sectional resampling is inconsistent in the

presence of temporal heterogeneity as it cannot reproduce it. Similarly, the

temporal block resampling is inconsistent in presence of cross-sectional hete-

rogeneity.

The particular dependence structure in Y ��, induces a particular form for

the bootstrap variance of y�� as expressed by the following proposition.
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Proposition 2 : 8 N; T , the double resampling bootstrap-variance is :

V ar��
�
y
���

= V ar�
�
z
��
+

�
1� 1

K

�
V ar�

�
y
�
cros

�
+

�
1� 1

N

�
V ar�

�
y
�
bl

�
V ar��

�
y
���

>

�
1� 1

K

�
V ar�

�
y
�
cros

�
(5.9)

V ar��
�
y
���

>

�
1� 1

N

�
V ar�

�
y
�
bl

�
(5.9) gives the expression of the double resampling bootstrap mean va-

riance. It is important to mention that these results are �nite sample pro-

perties, holding without any assumption about yit. The �rst term V ar�
�
z
��

is the i.i.d. bootstrap mean variance for transformed data zik where in the

time dimension, we make the average of observations by block as described in

(4.5). The second component of V ar��
�
y
��� is the cross-sectional resampling

bootstrap variance times
�
1� 1

K

�
and the third component is the block re-

sampling bootstrap variance times
�
1� 1

N

�
. The two inequalities mean that

the double resampling bootstrap induces a greater variance than the cross-

sectional resampling bootstrap and the block resampling bootstrap. That

implies that in some cases the cross-sectional resampling bootstrap or the

block resampling bootstrap could reject the null hypothesis while the double

resampling bootstrap does not reject it. Inversely, if the double resampling

bootstrap rejects the null hypothesis, there is no chance that a bootstrap

method in one dimension does not reject it.

Another implication of (5.9) what happens in the particular case when

the block length l = 1. (5.9) becomes :

V ar��
�
y
���

= V ar�
�
y
��
+

�
1� 1

T

�
V ar� (y�i:)

N
+

�
1� 1

N

�
V ar� (y�:t)

T

V ar��
�
y
��� � V ar�

�
y
�� (5.10)
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It is important to mention two things about inequality (5.10). First,

the equality V ar��
�
y
���

= V ar�
�
y
�� holds in (5.10) when T = 1 (cross-

section data) or N = 1 (time series). Second, (5.10) means that in �nite

sample, the double resampling bootstrap induces a greater variance than the

i.i.d. bootstrap. In particular the next proposition expresses what happens

asymptotically when the double resampling bootstrap is applied to i.i.d. error

term "it:

Proposition 3 : Under Assumption C, using the double resampling boots-

trap with block length l=1 we have :

V ar��
�p
NT "

��
�

P!
N;T!1

3.�2" (5.11 )

In the absence of random heterogeneities, the double resampling induces a

bootstrap-variance three times larger than i.i.d. bootstrap inducing a conser-

vative con�dence interval.

Let�s introduce new assumptions about the error term "it:

Assumptions C� (idiosyncratic error)

C�1 : the scaled sample mean
p
M" (with M 2 fN; Tg) converges in

probability to zero.

C�2 : the empirical mean of squares of cross-section averages 1
N

P
i

("i:)
2

converges in probability to zero.

C�3 : the empirical mean of squares of temporal block averages 1
[T=l]

P
k (e:k)

2

converges in probability to zero.

Assumption C� is a weaker version of assumption C. The �rst assump-

tion ensures that the error term "it is asymptotically negligible : it is the
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assumption C�). Assumption C�2 ensures that there is no cross-sectional hete-

rogeneity remaining in "it . Assumption C�3 excludes temporal heterogeneity

in "it. [T=l] denotes the number of blocks in the time dimension and ek: the

average of the term "it in the block k for all the individuals as exposed in

(4.3).

Under assumption C� about the error term "it the next proposition ana-

lyzes the asymptotic behavior of "��when the scaling factor is
p
N or

p
T .

Proposition 4 Under assumption C�, using the double resampling bootstrap

we have :

V ar��
�p
N"

��
�

P!
N;T!1

0 and V ar��
�p
T"

��
�

P!
N;T!1

0 (5.12 )

The implication of Proposition 4 is that when the scaling factor of y��

is
p
N or

p
T (presence of heterogeneities) the distribution of "�� does not

appear in the asymptotic distribution of y��. That means that the double

resampling bootstrap method is valid under general spatial dependence. Thus

validity of the bootstrap method will be focused of the components [�] ; [f ] ; [�]

and [F ] :

Our validity proofs will imitate the procedure in Proposition 1. For each

bootstrap method, by deducing the asymptotic distribution of the compo-

nents of y�� y, using the appropriate scaling factor and comparing with the
asymptotic distributions in Table 1, one can identify consistent and incon-

sistent bootstrap for the di¤erent panel model speci�cations. The results are

in the following proposition.
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Proposition 5 : Consistency.

1 - In the presence of temporal heterogeneity, the cross-sectional bootstrap

is inconsistent.

sup
x2R

���P � �pM �
y
�
cros � y

�
� x

�
� P

�p
M
�
y � �

�
� x

���� P9
NT!1

0

with M 2 fN; T;NTg.
2 - In the presence of cross-sectional heterogeneity, the block bootstrap

methods are inconsistent.

sup
x2R

���P � �pM �
y
�
bl � y

�
� x

�
� P

�p
M
�
y � �

�
� x

���� P9
NT!1

0

with M 2 fN; T;NTg.
3 - In the presence of cross-sectional and/or temporal heterogeneity, under

the assumption that l�1 + lT�1 = o (1) as T ! 1, the double resampling
bootstrap is consistent when N and T go to in�nity

sup
x2R

���P �� �pM �
y
�� � y

�
� x

�
� P

�p
M
�
y � �

�
� x

���� P!
NT!1

0

with M 2 fN; Tg.

The condition about the convergence of l has a heuristic interpretation. If l

is bounded, the block bootstrap method fails to capture the real dependence

among the data. On the other hand, if l goes to in�nity at the same rate

as T , there are not enough blocks to resample. The strength of the double

resampling is to replicate the behavior of the main components of errors

terms, without having to separate them. It is thus robust to the presence of

these two types of heterogeneity and will allow for valid inference without

having to make parametric assumptions. The consistency of the bootstrap

methods for the di¤erent panel model speci�cations are presented in Table

2.
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Table 2 : Summary of bootstrap consistency
Cross-sect. Block Double

Resampling Resampling Resampling

Cross. one-way ECM Consistent Consistent

Temp. one-way ECM Consistent Consistent

Two-way ECM Consistent

Factor model Consistent Consistent

1.6 Bootstrap Con�dence Interval

Once we have used the bootstrap to generate B pseudo samples, we

can construct con�dence intervals for �: In the literature, there are seve-

ral bootstrap con�dence intervals. The percentile con�dence interval and

the percentile-t con�dence intervals are the commonly used.

Bootstrap Percentile Interval

The �rst type of interval is based on the distribution of the bootstrap

mean. For each pseudo-sample Y �b , we compute the bootstrap-sample mean :

y
�
b and the centered statistic r

�
b = y

�
b � y. The empirical distribution of these

B realizations is :
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bR� (x) = 1

B

BX
b=1

I (r�b � x) (6.1 )

bR�is an approximation of the cumulative distribution function of the
bootstrap-mean . The percentile con�dence interval of level (1� �) for the
parameter � is then constructed as

CI�1�� =
�
y � r�1��=2; y � r��=2

�
(6.2 )

where r��=2 and r
�
1��=2 are respectively the �=2-percentile and (1� �=2)-

percentile of bR�: B should be chosen so that � (B + 1) is an integer. WhenbR� (x) is symmetric, r��=2 = �r�1��=2 and a symmetric percentile interval is :
CI�1�� =

�
C��=2;C

�
1��=2

�
(6.3 )

whereC��=2 andC
�
1��=2 are respectively the �=2-percentile and the (1� �=2)-

percentile of the empirical distribution function of
�
y
�
b

	
b=1::B+1

: This is a

simple way of constructing a non-parametric con�dence interval.

Bootstrap Percentile-t Interval

Alternatively, one could build a percentile-t interval. These are often pre-

ferred because they involve bootstrapping pivotal statistics (statistics that do

not depend on nuisance parameters) and sometimes allow proving asymptotic

re�nements (though we will not prove any such re�nement in this thesis).

To construct this type of intervals, we compute the t statistic on each

pseudo-sample Y �b :

t�b =
y
�
b � yqbV ar� �y�� (6.4 )
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The empirical distribution of these B realizations is

bG� (x) = 1

B

BX
b=1

I (t�b � x) (6.5 )

A percentile-t con�dence interval of level (1� �) is

CI�1�� =

�
y �

qbV ar �y�:t�1��
2
; y �

qbV ar �y�:t��
2

�
(6.6 )

where t��=2 and t
�
1��=2 are respectively the �=2-percentile and (1� �=2)-

percentile of bG�. The construction of these intervals resembles standardWald-
type statistics where one adds and subtracts a given quantile from the normal

distribution (for example 1.96 for a 95% interval). The bootstrap is only used

to compute the appropriate multiple of the standard error to add and subtract

to the point estimate.

Bootstrap Interval Validity

The consistency of a bootstrap method implies the validity of the associa-

ted percentile con�dence interval. If the asymptotic law is continuous, strictly

increasing and symmetric, con�dence interval using directly the percentile of�
y
�
b

	
is also valid 3.

For the consistency of percentile-t con�dence interval, we need to show

the consistency as expressed in (5.1) but applied to studentized statistics.

The next proposition analyzes the case of the double resampling bootstrap.

3See Theorem 4.1 of Shao and Tu (1995) for technical proof.
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Proposition 6 In the presence of cross-sectional and/or temporal heteroge-

neity, under assumptions A - E and the assumption that l�1 + lT�1 = o(1)

as T !1; we have :

sup
x2R

������P ��
0@ y

�� � yqbV ar�� �y��� � x
1A� P

0@ y � �qbV ar �y� � x
1A������ P!

N;T!1
0 (6.7 )

where bV ar �y� = V ar�� �y��� and bV ar�� �y��� is the analog of V ar�� �y��� on
the pseudo-sample Y ��:

The intuition is that with the consistency as de�ned in (5.1), V ar��
�
y
���

is asymptotically equivalent to V ar
�
y
�
thus it is a consistent estimator. In

the bootstrap world the analog of V ar��
�
y
��� is a good choice to studentize�

y
�� � y

�
: Like this the consistency with t��b is also given, justifying the use

of percentile-t con�dence interval. Similar results are given with the cross-

sectional resampling bootstrap and the block resampling bootstrap using

respectively bV ar �y� = V ar� �y�cros�, bV ar �y� = V ar� �y�bl� and their analogs
in the bootstrap world.

The consistency of the double resampling bootstrap percentile-t con�-

dence interval, as de�ned in (5.1), has been provided when N and T go to

in�nity. A question arises : the validity of the double resampling bootstrap

method for inference when only one dimension goes to in�nity. The next

proposition compare the percentile-t con�dence intervals.
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Proposition 7 For N and T large enough

CI�cros1�� 2 CI��1�� (6.8)

CI�bl1�� 2 CI��1�� (6.9)

where

CI�cros1�� =

�
y �

q
V ar�

�
y
�
cros

�
:t�cros1��

2
; y �

q
V ar�

�
y
�
cros

�
:t�cros�

2

�
CI�bl1�� =

�
y �

q
V ar�

�
y
�
bl

�
:t�bl1��

2
; y �

q
V ar�

�
y
�
bl

�
:t�bl�

2

�
CI��1�� =

�
y �

q
V ar��

�
y
���
:t��1��

2
; y �

q
V ar��

�
y
���
:t���

2

�

For the validity of con�dence interval associated to cross-sectional (resp.

block) resampling bootstrap we need N (resp. T ) to go to in�nity. When

the other dimension is large enough, the Proposition 7 ensures that the valid

percentile-t con�dence interval associated belong to the double resampling

bootstrap percentile-t con�dence interval that is valid even if the second

dimension is �xed, in the sense that the level is controlled.

Pr
�
� 2 CI��1��

�
� 1� � (6.10 )

With all the theoretical results in hand, in the next section we will see

the behavior of the bootstrap methods in �nite sample, using simulations.

1.7 Simulations

This section presents results from a small simulation experiment to illus-

trate our theoretical results. The data generating process is (2 :1 ) and (2 :2 ) :
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The individual e¤ects are standard normal and independent across units :

�i � i:i:d:N (0; 1) ;

while both the time e¤ect and common factor are AR (1) process with para-

meter 0.5 :

ft = �ft�1 +$t

Ft = �Ft�1 + �t

�t; $t � i:i:d:N
�
0;
�
1� �2

��
� = 0:5

The factor loadings are standard normal :

�i � i:i:d:N (0; 1)

and the idiosyncratic errors are also standard normal :

"it � i:i:d:N (0; 1) :

Six panel dimensions are considered : (N; T ) = (10; 10) ; (30; 30) ; (60; 60) ;

(10; 6) and (6; 10). Temporal resampling is carried out with the Circular Block

Bootstrap (CBB) with block length l = 2; 2; 3; and 4 respectively for T = 6;

10, 30 and 60. For each bootstrap resampling scheme, B is equal to 999 and

the number of simulations is 1000.

Tables 3 gives rejection rates for a two-tailed test for the null hypothesis

that � = 0 at nominal level 5%. The rejection rates close to 5% are presented

in bold.

The simulations con�rm the theoretical results. In particular, we see that

the double resampling performs well for all models considered : the cross-

sectional and temporal one-way ECM, the two-way ECM and the factor



35

model. The other bootstrap schemes fail for at least one model. The cross-

sectional bootstrap performs well with one-way ECM and factor model, but

cannot reproduce temporal heterogeneity. Similarly, the block bootstrap per-

forms well with temporal one-way ECM, but it cannot provide reliable infe-

rence in the cross-sectional one-way or two-way ECM or the factor model.

The implication of Proposition 2 is visible in Table 3 : for any sample size, the

double resampling bootstrap induces a rejection rate smaller than the block

resampling bootstrap and the cross-sectional resampling bootstrap rejection

rates.

1.8 Conclusion

This chapter considers bootstrap resampling for panel data..It is shown

that double resampling that combines cross-sectional and block resampling

is valid for panel data models with cross-sectional and/or temporal heteroge-

neity. Some weak forms of spatial and serial dependence in the idiosyncratic

errors can even be allowed for if both the cross-sectional and time dimensions

are large. On the other hand, resampling only in the cross-sectional dimen-

sion is not valid in presence of temporal heterogeneity, and block resampling

in the time dimension only is not valid in the presence of cross-sectional

heterogeneity.

There are two important advantages of the methods proposed in this

paper. The �rst one is that double resampling is able to replicate the behavior

of the error term, without having to separate it into components (which would

require making strong parametric assumptions). Secondly, the bootstrap has

the nice advantage of avoiding having to choose among multiple asymptotic

approximations.



36

There are several directions in which the current work can be extended to

be made more realistic. One would be to relax some of the strong assumptions

that were made on the individual e¤ects. Also, one would like to introduce

regressors in the model. This will be the subject of the next chapter.
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Table 3 : Simulation results with percentile-t
Models (N ;T) Cross. Block D-Res

(10 ;10) 5.5 60.2 4.2

Cross� sectional (30 ;30) 4.9 73.1 4.4

(60 ;60) 5.2 79.8 5.1

One� way (10 ;06) 6.9 57.9 5.1

ECM (06 ;10) 10.8 62.6 6.8

(10 ;10) 58.8 11.8 6.6

Temporal (30 ;30) 73.1 6.4 5.7

(60 ;60) 81.1 6.3 5.5

One� way (10 ;06) 59.1 17.7 10.7

ECM (06 ;10) 57.1 11.4 5.0

(10 ;10) 20.5 23.5 5.5

Two� way (30 ;30) 18.6 20.3 5.2

(60 ;60) 17.5 18.6 5.3

ECM (06 ;10) 19.2 28.4 5.6

(10 ;06) 19.5 28.1 6.5

(10 ;10) 8.3 52.9 4.1

(30 ;30) 6.4 65.1 5.1

Factor (60 ;60) 4.6 75.3 4.1

model (06 ;10) 10.7 48.7 5.1

(10 ;06) 9.5 51.1 4.5
The rejection rates close to 5% are presented in bold
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APPENDIX

Proposition 8 : Assume that A2 holds, assume also that l�1+ lT�1 = o (1)

as T !1;, using NMB, MBB or CBB, we have

sup
x2R

���P � �pT �f �bl � f� � x�� P �pT �f � 0� � x���� P!
T!1

0

p
T
�
f
�
bl � f

�
�
=)
T!1

N
�
0; V 1f

�
Proof. [Proof of Proposition 8] Under the assumptions and the convergence

rate imposed to l, a demonstration of the consistency of MMB, NMB and

CBB for time series, can be seen for example in Lahiri (2003), p. 55 .

Classical Asymptotic Distributions

Cross-sectional one-way ECM

a) T is �xed. yi: are i.i.d. with E (yi:) = � and V ar (yi:) = �2� +
�2"
T
.

Applying a standard CLT, the result follows.

b)

p
N
�
y � �

�
=

1p
N

NX
i=1

�i +
p
N"

1p
N

NX
i=1

�i =)
N!1

N
�
0; �2�

�
by CLT and

p
N"

P!
N;T!1

0 ( Assumption C�)

The result follows
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Temporal one-way ECM

a)T !1

p
T
�
y � �

�
=

 
1p
T

TX
t=1

ft

!
+

 
1p
T

TX
t=1

":t

!
 
1p
T

TX
t=1

ft

!
=)
T!1

N
�
0; V 1f

�
(Proposition 6 )

 
1p
T

TX
t=1

":t

!
=)
T!1

N

�
0;
�2"
N

�
thus

p
T
�
y � �

�
=)
T!1

N

�
0; V 1f +

�2"
N

�
b)N; T !1

p
T
�
y � �

�
=

 
1p
T

TX
t=1

ft

!
+
p
T"

p
N"

P!
N;T!1

0 ( C�)

thus
p
T
�
y � �

�
=)

N;T!1
N
�
0; V 1f

�
Two-way ECM

a)N
T
! � 2 [0;1)

p
N
�
y � �

�
=

1p
N

NX
i=1

�i +

p
Np
T

 
1p
T

TX
t=1

ft

!
+
p
N"

1p
N

NX
i=1

�i =)
N!1

N
�
0; �2�

�
by CLT;

 
1p
T

TX
t=1

ft

!
=)

N;T!1
N
�
0; V 1f

�
.

p
N"

P!
N;T!1

0 ( C�)

The result follows4.

4When the vector(Xn; Yn)
0
converges to a normal distribution, the asymptotic distribu-
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b)N
T
!1

p
T
�
y � �

�
=

p
Tp
N

 
1p
N

NX
i=1

�i

!
+

 
1p
T

TX
t=1

ft

!
+
p
T"

p
N"

P!
N;T!1

0;

p
Tp
N

 
1p
N

NX
i=1

�i

!
m:s:!

N;T!1
0 

1p
T

TX
t=1

ft

!
=)
T!1

N
�
0; V 1f

�
The result follows.

Factor Models

p
N
�
y � �

�
=

1p
N

NX
i=1

�i +

 
1p
N

NX
i=1

�i

! 
1

T

TX
t=1

Ft

!
+
p
N"

1p
N

NX
i=1

�i =)
N!1

N
�
0; �2�

�
 

1p
N

NX
i=1

�i

! 
1p
T

TX
t=1

Ft

!
=)

N;T!1

�
N
�
0; �2�

��
�
�
N
�
0; V 1f

��
thus  

1p
N

NX
i=1

�i

! 
1

T

TX
t=1

Ft

!
m:s:!

N;T!1
0

p
N"

P!
N;T!1

0 ( C�)

and we have
p
N
�
y � �

�
=)

N;T!1
N
�
0; �2�

�
tion of any linear combination of the elements of the vector (in particular the sum) can be

deduced. The fact that Xn and Yn are independent and converge to a normal distribution,

implies that their sum converge to the sum of their asymptotic normal distributions.
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Proof. [Proof of Proposition 1] y and y� having the same asymptotic distri-

bution, implies that jP � (::)� P (::)j converges to zero. Under the continuity
assumption, uniform convergence is given by the Pólya theorem (Pólya (1920)

or Ser�ing (1980), p. 18)

Proof. [Proof of Proposition 2] An analysis of variance gives :

Using CBB, there is the time dimension, K blocks are chosen from T

possible blocks. The bootstrap-mean y�� rewritten as

y
��
=

1

NT

NX
i=1

TX
t=1

y��it =
1

NK

NX
i=1

KX
k=1

z��ik

where

z��ik =
1

l

X
t 2 block k

y��it

V ar��
�
y
���
= V ar��

�
z
���
=

1

NK
V ar�� (z��it )+

1

(NK)2

X
(i;k) 6=

X
(j;s)

Cov��
�
z��ik ; z

��
js

�
z��ik can take any of the N � T values of elements of [Z] with probability

1=NT then the expectation and the variance are identical to those obtained

with i.i.d. bootstrap accommodated to panel data [Z] : E�� (z��it ) = E
� (z�it) ;

V ar�� (z��it ) = V ar
� (z�it).

For i 6= j and k 6= s, Cov��
�
z��ik ; z

��
js

�
= 0

1

(NK)2

X
(i;k) 6=

X
(j;s)

Cov��
�
z��ik ; z

��
js

�
=

1

(NK)2

KX
k=1

X
i6=

X
j

Cov��
�
z��ik ; z

��
jk

�
+

1

(NK)2

NX
i=1

X
t6=

X
s

Cov�� (z��ik ; z
��
is )
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Cov��
�
z��ik ; z

��
jk

�
=

1

N2T

KX
k=1

NX
i=1

NX
j=1

zikzjk �
 
1

NT

NX
i=1

TX
k=1

zik

!2

=
1

T

TX
t=1

 
1

N

NX
i=1

zik

!2
�
 
1

NT

NX
i=1

KX
k=1

zik

!2

=
1

T

TX
k=1

(z:k)
2 �

 
1

T

TX
k=1

z:k

!2
= V ar� (z�:k)

Similary

Cov�� (z��ik ; z
��
is ) = V ar

� (z�i:)

z�i: =
1

K

KX
k=1

zik =
1

K

KX
k=1

"
1

l

X
t 2 block k

y��it

#

z�i: =
1

Kl

TX
t=1

y��it =
1

T

TX
t=1

y��it = y
�
i:

There are T (N2 �N) possibilities of Cov��
�
z��ik ; z

��
jk

�
. There areN (T 2 � T )

possibilities of Cov�� (z��ik ; z
��
is ) then :

V ar��
�
y
���

=
V ar� (z�ik)

NT
+

�
1� 1

T

�
V ar� (z�i:)

N
+

�
1� 1

N

�
V ar� (z�:k)

T

V ar��
�
y
���

= V ar�
�
z
��
+

�
1� 1

T

�
V ar� (y�i:)

N
+

�
1� 1

N

�
V ar� (z�:k)

T

V ar��
�
y
���

= V ar�
�
z
��
+

�
1� 1

T

�
V ar�

�
y
�
cros

�
+

�
1� 1

N

�
V ar�

�
y
�
bl

�
V ar��

�
y
���

>

�
1� 1

T

�
V ar�

�
y
�
cros

�
V ar��

�
y
���

>

�
1� 1

N

�
V ar�

�
y
�
bl

�



43

Proof. [Proof of Proposition 3] Variance decomposition in the proof of Pro-

position 2 gives :

V ar��
�p
NT "

��
�
= V ar� ("�it)+

�
1� 1

T

�
[T:V ar� ("�i:)]+

�
1� 1

N

�
[N:V ar� ("�:t)]

V ar� ("�it)
P!

NT!1
�2" ; [T:V ar

� ("�i:)]
P!

N!1
�2" ; [N:V ar

� ("�:t)]
P!

T!1
�2"

therefore

V ar��
�p
NT "

��
�

P!
N;T!1

3:�2"

Proof. [Proof of Proposition 4]

V ar��
�p
N"

��
�
= E��

�p
N"

��
�2
�
h
E��

�p
N"

��
�i2

= E��
�p
N"

��
�2
�
hp
N"
i2

By assumption
p
N"

P! 0 thus
hp
N"
i2 P! 0: Let�s study now the behavior

of E��
�p
N"

��
�2
:

The block size is l and we have K blocks.

"
��
=

1

NT

P
i

P
t

"��it =
1

NK

P
i

P
k

e��ik =
1

NK

P
i

P
k

eit�i�k

where e��ik denote for given i the average of observations in the block k:

�i �Multinomial
�
N; p1 = p2 = :::::: = pN =

1
N

�
and

�k � Multinomial
�
K; p1 = p2 = :::::: = pK =

1
�

�
� denotes the num-

ber of potential block to resample from Y: For the case of CBB � = T �i

(resp. �k)denotes how much time individual i (respectively block k)appears

in the pseudo-sample Y �: �i is independent of �k and both are indepndent
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of the observations :

E��
�p
N"

��
�2
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� (�i) + [E

� (�i)]
2

= N � pi (1� pi) +N � pi
= N � 1

N

�
1� 1

N

�
+ 1 =

�
1� 1

N

�
+ 1

if i 6= j E� (�i�j) = Cov� (�i�j) + E� (�i)E� (�j)
= �N � pi � pj +N � pi �N � pj
= � 1

N
+ 1 =

�
1� 1

N

�
if k = s, E� (�k�s) = E

� ��2k� = V ar� (�k) + [E� (�k)]2
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�
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T
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�
1
l

�2
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l

�
1
l
� 1
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�
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=
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1� 1
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l
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� hp
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+
1

N

P
i

["i:]
2| {z }

P!0

+
N

T

1

K

P
k

[":k]
2| {z }

P!0
P! 0

thus V ar��
�p
N"

��
�

P! 0

Similary,
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E��
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l
� 1
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� hp
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| {z }
P!0
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+
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N
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["i:]
2| {z }

P!0

+
1

K

P
k

[":k]
2| {z }

P!0
P! 0

thus V ar��
�p
T"

��
�

P! 0:

Proof. [Proof of Proposition 5]With the cross-sectional resampling, the cen-

tering eliminates the temporal heterogeneity fftg. Its behavior does not ap-
pear neither in �nite sample properties nor in the asymptotic distribution and

therefore causes inconsistency. With block resampling, the centering elimi-

nates the cross-sectional heterogeneity f�ig ; therefore insconsistency. With
the double resampling, all the properties demonstrated for the i.i.d. bootstrap

or for the various block bootstrap methods are transferred to the appropriate

errors terms without restriction. With the di¤erent speci�cations, the consis-

tency or the inconsistency holds comparing the bootstrap asymptotic distri-

bution and the classic asymptotic distribution, according Proposition 1.

Proof. [Proof of Proposition 6] We have already the consistency of Proposi-

tion 5 in hand.

with bV ar �y� = V ar�� �y��� and bV ar�� �y��� is the analog of V ar�� �y��� on
the pseudo-sample Y ��; the proposition 4.1 of Shao and Tu (1995) ensures

that the consistency of Proposition 5 implies the result in Proposition 6.
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Proof. [Proof of Proposition 7] For the three bootstrap methods we have :

sup
x2R
jP � (t�b � x)� � (x)j

P!
NT!1

0

For N andT large enough, t�cros1��
2
� t�bl1��

2
� t��1��

2
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2
� t�bl�

2
� t���

2
<

0
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�
y
��� � V ar� �y�cross�

V ar��
�
y
��� � V ar� �y�bl�
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q
V ar�

�
y
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�
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2
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q
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�
y
�
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q
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V ar��

�
y
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�
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2
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�
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y �

q
V ar��

�
y
���
:t��1��

2
; y �

q
V ar��

�
y
��
cros

�
:t���

2

�
= CI��1��

Similary

CI�bl1�� 2 CI��1��
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Cross-sectional Resampling Bootstrap

�
y
�
cros � y

�
= (�� � �) +

�
�
�
F � �F

�
+
�
["inter]

� � "
�

V ar�
�p
N ["inter]

�
�
= N � V ar�

�
1

N

P
i

"�i:

�
= N

1

N2

P
i

V ar� ("�i:)

= N
1

N2
N � V ar� ("�i:) = V ar� ("�i:)

=
1

N

P
i

"2i:| {z }
P!0(C200)

�
�
"
�2|{z}

P!0(C100)

P! 0

Thus under assumption C�, the behavior
�
["inter]

� � "
�
doesn�t appear

in the asymptotic distribution of
p
N
�
y
�
cros � y

�
:

p
N
�
�
�
F � �F

�
=
p
N
�
�
� � �

�
F

F
P! 0: and

p
N
�
�
� � �

�
) N (0; �2�) thus

p
N
�
�
�
F � �F

�
P! 0:

Remarks

A - For the negligibility of "it using the cross-sectional resampling boots-

trap, we need

1 - C 001 :
p
N"

P! 0 for the classical asymptotic distribution of y:

2 - C 002 : 1
N

P
i "
2
i:

P! 0 for the classical asymptotic distribution of

y
�
cros:

3 - N to go do in�nity.



49

B - Validity of the cross-sectional resampling bootstrap :

For the sample mean, the cross-sectional resampling bootstrap is equiva-

lent to i.i.d. bootstrap of averages [y1:; y2:; ::::::; yN:] : The minimal assump-

tions of validity is that yi: are i.i.d. of decomposable on a i.i.d. term �i plus

a asymptotically negligible term "it:

Table 4 summarizes the asymptotic distributions of
�
y
�
cros � y

�
for the

di¤erent panel models.
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Table 4 : Asymptotic distributions with cross sectional resampling

bootstrap

Model Assumptions Asymptotic distribution !

Cross� sect: A; C
p
N
�
y
� � y

� �
=)
N!1

N (0; !) �2� +
�2"
T

One� way
A; C 00

p
N
�
y
� � y

� �
=)

N;T!1
N (0; !) �2�

ECM

Temporal B; C
p
NT

�
y
� � y

� �
=)
N!1

N (0; !) �2"

One� way
B; C 00

p
N
�
y
� � y

� m:s:�!
N;T!1

0

ECM

Two� way A; B; C;D
p
N
�
y
� � y

� �
=)
N!1

N (0; !) �2� +
�2"
T

ECM A; B; C 00; D
p
N
�
y
� � y

� �
=)

N;T!1
N (0; !) �2�

Factor A;C 00; E
p
N
�
y
� � y

� �
=)

N;T!1
N (0; !) �2�

model
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Block Resampling Bootstrap
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Thus under assumption C�, the behavior
�
["inter]

� � "
�
doesn�t appear

in the asymptotic distribution of
p
T
�
y
�
bl � y

�
:

Remarks

A - For the negligibility of "it using the block resampling bootstrap, we

need :

1 - C 001 :
p
T"

P! 0 for the classical asymptotic distribution of y

2 - C 003 : 1
K

P
k (ek:)

2 P! 0 for the classical asymptotic distribution of

y
�
bl

3 - T to go do in�nity.

B - Validity of the block resampling bootstrap, we need :

For the sample mean, the block resampling bootstrap is equivalent to

block bootstrap on averages by time periods [y:1; y:2; ::::::; y:T ] ; the minimal

assumption of validity is that y:t is decomposable in a ��mixing process ft
(verifying Ibragimov�s assumptions ) plus a asymptotically negligible error

term "it:

Table 5 summarizes the asymptotic distributions of
�
y
�
bl � y

�
for the

di¤erent panel model speci�cations.
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Table 5 : Asymptotic distributions with block resampling

bootstrap

Model Assump: Asymptotic distribution !

Cross� sect: A;B
p
NT

�
y
�
bl � y

� �
=)
T!1

N (0; !) �2"

One� way
A;C 00

p
T
�
y
�
bl � y

� m:s:�!
N;T!1

0
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Temporal B; C
p
T
�
y
�
bl � y

� �
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T!1

N (0; !) V 1f + �2"
N

One� way
B; C 00

p
T
�
y
�
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� �
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N;T!1
N (0; !) V 1f
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Two� way A; B; C;D
p
T
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�
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� �
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T!1

N (0; !) V 1f + �2"
N

ECM A; B; C 00; D
p
T
�
y
�
bl � y

� �
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N;T!1
N (0; !) V 1f

Factor

model A;C 00; E
p
T
�
y
�
bl � y

� m:s:�!
N;T!1

0
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Double Resampling Bootstrap

�
y
�� � y

�
= (�� � �) +

�
f
�
bl � f

�
+
�
�
�
F
�
bl � �F

�
+
�
"
�� � "
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N
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p
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0 (Proposition 4)

The result follows.

Two-way ECM
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T
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N
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thus
p
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The result follows.

Factor Model

p
N
�
y
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�
=
p
N (�� � �) +

p
N
�
�
�
F
�
bl � �F

�
+
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�
"
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p
N (�� � �) �

=)
N!1
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�
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�
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�
"
�� � "

�i m:s:�!
N;T!1
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p
N
�
�
�
F
�
bl � �F

�
m:s:�!

N;T!1
0

then
p
N
�
y
�� � y

� �
=)

N;T!1
N
�
0; �2�

�
Table 6 summarizes the asymptotic distributions of

�
y
�� � y

�
for the

di¤erent panel model speci�cations.
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Table 6 : Asymptotic distributions with double resampling

bootstrap

Model Assumptions Asymptotic distribution !

Cross� sect:
One� way A;C 00

p
N
�
y
�� � y

� �
=)

N;T!1
N (0; !) �2�

ECM

Temporal

One� way B;C 00
p
T
�
y
�� � y

� �
=)

N;T!1
N (0; !) V 1f

ECM

�2�

Two� way
p
N
�
y
�� � y

� �
=)

N;T!1
N
T
!�2[0;1)

N (0; !) +�:V 1f

A;B;C 00; D

ECM
p
T
�
y
�� � y

� �
=)

N;T!1
N
T
!1

N (0; !) V 1f

Factor A;C 00; E
p
N
�
y
�� � y

� �
=)

N;T!1
N (0; !) �2�

model
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Abstract

This paper considers bootstrap methods for panel linear regression mo-

dels with random e¤ects. Three kinds of regressors are considered : indivi-

dual characteristics, temporal characteristics and regressors varying among

periods and cross-section units. Using a two-way error component model, or-

dinary least squares estimator and the residual based bootstrap, it is shown

that the double resampling that combines cross-sectional and temporal re-

sampling is valid for the whole vector of parameters, under general conditions

on cross-sectional and temporal heterogeneity as well as cross-sectional de-

pendence. On the other hand, resampling only in the cross section dimension

is only valid for the coe¢ cients associated with individual characteristics,

while block resampling only in the time series dimension is only valid for the

coe¢ cients associated with temporal characteristics. The bootstrap does not

require the researcher to choose one of several asymptotic approximations

available for panel models. Simulations con�rm these theoretical results.

JEL Classi�cation : C15, C23.

Keywords : Bootstrap, Panel Data Models.
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2.1 Introduction

The purpose of this paper is to develop bootstrap methods for panel li-

near regression models and to prove their validity. The parameter of interest

is the vector of the coe¢ cients in a linear regression model �. Three di¤erent

methods are considered : the �rst takes into account the cross-section di-

mension, the second use the time dimension and the third combines the two

previous.

Because of their two dimensions, panel data have the important advantage

to allowing the researcher to control for unobservable heterogeneity, that is

systematic di¤erence across cross-sectional units or periods. These data have

traditionally been used in many applied microeconomic �elds such as labour

economics and public �nance, but more recently, the analysis of macro-level

panel data sets has become common. For an overview of panel data models,

see for example Baltagi (2008) or Hsiao (2003).

The exact probability distribution of a test statistic is rarely known. Ge-

nerally, its asymptotic law is used as approximation of the true law. If the

sample size is not large enough, the asymptotic behavior of that statistic

could lead to a poor approximation of the true one. Using bootstrap methods,

under some regularity conditions, it is possible to obtain a more accurate ap-

proximation of the distribution of the test statistic. The original bootstrap

procedure has been proposed by Efron (1979) for statistical analysis of in-

dependent and identically distributed (i.i.d.) observations. It is a powerful

tool for approximating the distribution of complicated statistics based on

i.i.d. data. Since Efron (1979) there has been an extensive research to ex-

tend the bootstrap to statistical analysis of non i.i.d. data. Several bootstrap

procedures have been proposed for time series. For an overview of bootstrap
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methods for dependent data, see Lahiri (2003). Application of bootstrap me-

thods to panel data is an embryonic research �eld.

There is an abounding literature on asymptotic theory for panel data

models. Some recent developments treat large panels, when temporal and

cross section dimensions are both important. However, the theoretical lite-

rature about bootstrap methods for panel data is rather recent. Kapetanios

(2008) presents theoretical results when the cross-sectional dimension goes

to in�nity, under the assumption that cross-sectional vectors of regressors

and errors terms are i.i.d.. Gonçalves (2010) shows the �rst order asymptotic

validity of the moving blocks bootstrap for �xed e¤ects OLS estimators of

panel linear regression models with individual �xed e¤ects. Analyzing the

sample mean, Hounkannounon (2011) explores the validity of several resam-

pling methods for panel data. The main result of that paper is to provide

the double resampling bootstrap that combines resampling in cross-sectional

dimension and block resampling in temporal dimension. This special method

is valid in the presence of cross-sectional and temporal heterogeneity, and

also in the presence of spatial dependence.

This paper aims to extend these results to linear regression model. Using

a two-way error component model, ordinary least squares estimator and the

residual based bootstrap, it is shown that the double resampling that com-

bines cross-sectional and temporal resampling is valid for the whole vector of

parameters, under general conditions on cross-sectional and temporal hetero-

geneity as well as cross-sectional dependence. On the other hand, resampling

only in the cross section dimension is only valid for the coe¢ cients associa-

ted with individual characteristics, while block resampling only in the time

series dimension is only valid for the coe¢ cients associated with temporal

characteristics.
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The paper is organized as follows. In the second section, the panel data

model studied is presented : a two-way error component model. Section 3

presents three bootstrap methods for panel models : the �rst takes into ac-

count the cross-section dimension, the second use the time dimension and

the third combines the two previous. The fourth section presents theoretical

results and analyzes the validity of each resampling methods using a heuristic

mimic analysis and the asymptotic consistency. The sixth section concludes.

Proofs of propositions are given in the appendix.

2.2 Panel Data Models

Consider a panel linear model

yit = Zit� + �it; i = 1; 2; :::N; t = 1; 2; :::T: (2.1)

yit is the cross-sectional i0s observation at period t. Three kinds of regressors

are considered : cross-section varying variables Vi, time varying variables

Wt and double dimension varying variables Xit. � is an unknown vector of

parameters.

yit = � + Vi� +Wt +Xit� + �it = Zit� + �it (2.2)

where we collect all the parameters in a vector

�
(K;1)

=

0BBBBBBBBB@

�
(1;1)

�
(K1;1)


(K2;1)

�
(K3;1)

1CCCCCCCCCA
(2.3)
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It is convenient to represent panel data as a matrix. By convention, in

this paper, rows correspond to the cross-sectional units and columns represent

time periods. A panel dataset withN cross-sectional units and T time periods

is represented by a matrix Y of N rows and T columns. Thus Y contains NT

elements.

Z(it)
(1;K)

=

�
1
(1;1)

Vi
(1;K1)

Wt
(1;K2)

Xit
(1;K3)

�
(2.4)

Thee is used to denote vectors obtained pooling the elements of matrices.
eZ = � 1

(NT;1)

eV
(NT;K1)

fW
(NT;K2)

eX
(NT;K3)

�
(2.5)

Subbar and upbar refer respectively to the average in the cross-section di-

mension and the temporal dimension.

Z(i)
(1;K)

=
1

T

TX
t=1

Z(it) ; Z(t)
(1;K)

=
1

N

NX
i=1

Z(it) (2.6)

Assumptions about �it de�ne di¤erent panel data models. Assume the

following decomposition

�it = �i + ft + �iFt + "it (2.7)

(2.10) is a two-way error component model (ECM) with spatial depen-

dence. The term ECM comes from the structure of error terms. �i and ft

are respectively systematic di¤erences across units and time periods. Classi-

cal papers on error component models include Balestra and Nerlove (1966),

Fuller and Battese (1974) and Mundlak (1978). It is important to emphasize

that the unobservable heterogeneity here is a random variable, not a parame-

ter to be estimated. The alternative is to use the �xed e¤ects model in that
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the heterogeneities are parameters1. The product �iFt allows the common

factor Ft to have di¤erential e¤ects on cross-section units. This speci�cation

is used by Bai and Ng (2004), Moon and Perron (2004) and Phillips and Sul

(2003). It is a way to introduce dependence among cross-sectional units.

Assumption A (individual e¤ects)

The individual e¤ects �i are drawn independently across i from some

distribution with mean 0 and variance �2� where 0 < �
2
� <1;

Assumption A requires the individual heterogeneities to be independent

and identically distributed with �nite variance. The assumption of a zero

mean is an identi�cation assumption as any non-zero mean could be sub-

sumed into the overall mean �: The i.i.d. assumption, strong for classical

asymptotic distribution is however important for bootstrap validity because

i.i.d. bootstrap will be used in the cross-sectional dimension.

Assumption B (time e¤ects)

fftg is a stationary and �-mixing process with mixing coe¢ cients � (j) ;
E (ft) = 0 and fftg veri�es Ibragimov�s assumptions, that is 9 � 2 (0;1)

such that E jftj2+� < 1 and
1X
j=1

� (j)�=(2+�) < 1 with �nite long-run va-

riance V 1f =
1X

h=�1

Cov (ft; ft+h) 2 (0;1) ;

Assumption B imposes some conditions on the time-series heterogeneity of

our panel data. In particular, it requires it to be generated from a stationary

process and that the dependence between ft and fk vanishes su¢ ciently fast

as the distance between them increases.
1Fixed e¤ect in one dimension has a immediate consequence : parameters associated

with the regressors varying only in this dimension become unidenti�ed
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Assumptions C (idiosyncratic error)

C : The idiosyncratic error "it is drawn independently across i and over t

from some distribution with mean 0 and variance �2" where 0 < �
2
" <1; 2

Assumption D (independence)

The two processes (�1; ::; �N) and (f1; :::; fT ) are independent.

Assumption D imposes independence between the vector of individual

heterogeneities and the vector of temporal heterogeneities. It is essential that

there is no dependence between the two types of heterogeneity because the

double resampling bootstrap method we will present later would destroy any

dependence between the two dimensions..

Assumptions E (factor)

E1 : The factor loadings �i are drawn independently across i from some

distribution with mean 0 and variance �2� where 0 < �
2
� <1;

E2 : The factors (Ft) are a stationary and �-mixing process with mean 0

verifying Ibragimov�s assumptions.

E3 : The two processes (�1; ::; �N) and (F1; :::; FT ) are independent.

Assumptions E are about factor model. Assumption E1 requires the

loadings in a factor model be independent and identically distributed with

�nite variance. Assumption E2 is similar to assumption B, but applied to the

factors in a factor model. Assumption E3 imposes independence between the

vector of loadings and the vector of factors in an factor model. The reason is

similar to B.
2It must be possible to assume a weaker version of assumption C as in chapter one. It

will be a part of our next research.
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Assumptions F (regressors)

F1 : The regressors are strictly exogenous

F2 : eZ0 eZ
NT

P!
NT!1

Q
(K;K)

> 0

F3 : Z
0
Z
N

P!
N!1

Q

F4 : Z
0
Z
T

P!
T!1

Q

Assumption F1 : The choice of strictly exogenous regressors is motivated

by the fact that this chapter address residuals based bootstrap methods. The

resampling uses �rst step estimations residuals thus any correlation between

the regressors and the error terms would be destroyed in case of non exoge-

neity. Assumptions F3-F4 ensure that the product of regressors converge to

non stochastic matrices. These matrices will be useful to derive asymptotic

distributions.

One di¢ culty with asymptotic theory for panel data is the assumption

made on the size of N and T: Traditionally, because panel data was mostly

used in microeconometrics with large cross-sectional dimension but short

time dimension, the assumption was made that N was large (approaching

in�nity) but that T remained �nite. Conversely, in multiple time series mo-

dels, the asymptotic analysis typically assumes that the number of series N

is small while the number of time series observations T is large. Of course,

these two asymptotic scenarios lead to di¤erent approximations and one is

left to wonder which one is most appropriate for a given application at hand.

Recently. the analysis of large macro-type panels where both dimensions

are reasonably large has allowed both dimensions to diverge. Phillips and

Moon (1999) have provided underpinnings for these asymptotic analyses and
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have de�ned di¤erent frameworks. A sequential limit is obtained when an

index is �xed at �rst, and the other passes to in�nity, to have intermediate

result. Next, the �nal result is obtained by passing the �xed index to in�nity.

On the other hand, in a diagonal path limit, N and T pass to in�nity along a

speci�c path, for example T = T (N) and N !1: Finally, in a joint limit, N
and T pass to in�nity simultaneously. Sometimes, it is necessary to control

the relative expansion rate of N and T . For equivalence conditions between

sequential and joint limits, see Phillips and Moon (1999).

Again, in practice, when faced with a particular application, it is not

always obvious how to choose among these multiple asymptotic distributions,

which may very be di¤erent. One of the advantages of the bootstrap approach

we are analyzing is that it avoids having to choose between these competing

approximations.

Proposition 9 : Asymptotic distribution

1 - Assume that A - F hold. When N; T !1; with N
T
! � 2 [0;1)

p
N
�b� � �� =) N

�
0; �2�

�
Q�1QQ�1

�
+ �:Q�1
1fZQ

�1� (2.11)

where 
1fZ = lim
T!1

�
V ar

�
1p
T

TP
t=1

Z
=
(t)ft

��
2 - Assume that A-F hold. When N; T !1; with N

T
!1

p
T
�b� � �� =) N

�
0; Q�1
1fZQ

�1� (2.12)

The asymptotic distribution depends on �, the relative convergence rate

between the two indexesN andT With this asymptotic distributions in hand,

the next step is to present the bootstrap methods, the bootstrap estimators

in order to analyze their validity.
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2.3 Bootstrap Methods

Methodology

In this section, we present the bootstrap methods. From initial data

(Y; Z), we create pseudo data (Y �; Z�) by resampling with replacement ele-

ments of (Y; Z) : This operation must be repeated B times in order to have

B + 1 pseudo-samples fY �b ; X�
b gb=1::B+1. Statistics are computed with these

pseudo-samples in order to make inference. In this paper, inference is about

� and consists in building con�dence intervals for each component of the vec-

tor �. There are two main bootstrap approaches with regression models : the

pairs bootstrap and the residual-based bootstrap .This paper analyzes the

second one. The idea is to estimate � and to resample the residuals to create

pseudo data. Several estimators are available : pooled regression estimator,

within estimator, between estimator and FGLS estimator. Within estimator

estimates only a sub-vector of �. Then inference is possible only with parame-

ters that are not cancelled by the centering. Between estimation consists on

averaging the data in one dimension to make inference to have one dimension

model before estimation. The drawback of this approach is that it reduces

drastically the number of observations. Inference becomes impossible for co-

e¢ cient associated with variables in averaged dimension. FGLS estimation

uses an estimated variance-covariance matrix. A non parametric estimator

would be very useful. Driscoll and Kraay (1998) provides non parametric

estimator for panel data. Unfortunately their framework does not cover the

speci�cations with cross-section heterogeneity. Even if a more general non

parametric estimator exists, it would be asymptotically valid and would not

necessarily provide good inference in small samples. Thus our choice is to

use an unbiased and consistent estimator the pooled OLS estimator. The
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di¤erent steps of the residuals based bootstrap are the followings :

Step 1 : Run the pooling regression to obtain OLS estimator b� and the
residuals buit

b� = � eZ= eZ��1 eZ=eY (3.1)

buit = yit � Zitb� (3.2)

The �rst step residuals are arranged in matrix U :

U
(N;T )

=

0BBBBB@
bu11 bu12 ::::::: bu1Tbu21 bu22 ::::::: bu2T
::::::: ::::::: :::::: ::::::::buN1 buN2 :::::::: buNT

1CCCCCA
Step 2 : From U, use a resampling method to create pseudo-sample of

residuals U� and pseudo-values of the dependent variable y�it .

y�it = Zit
b� + u�it or eY � = eZb� + eU� (3.3)

Run pooling regression with (Y �; Z) to obtain the bootstrap estimate :

b�� = � eZ= eZ��1 eZ=eY � (3.4)

Step 3 : Repeat step 2 B times in order to have B + 1 realizations of

Y �; Z;and b�� : nY �b ; Z; b��bo
b=1::B+1

The probability measure induced by the resampling method conditionally

on U is noted P �. E� () and V ar� () are respectively expectation and variance

associated with P �. The resampling methods used to compute pseudo-panel-

data are exposed below.
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Cross-sectional Resampling Bootstrap

For a N�T matrix Y , cross-sectional resampling constructs a new N�T
matrix Y � with rows obtained by resampling with replacement the rows of U:

In other words, we resample the vectors of T observations for each individual.

U� takes the form :

U�
(N;T )

=

0BBBBB@
u�11 = bui11 u�12 = bui12 ::: u�1T = bui1T
u�21 = bui21 u�22 = bui22 ::: u�2T = bui2T

::: ::: :: :::

u�N1 = buiN1 u�N2 = buiN2 ::: u�NT = buiNT

1CCCCCA
where each of the indices (i1; i2; :::::; iN) is obtained by i.i.d. drawing with

replacement from (1; 2; :::::; N). As a consequence, conditionally on U , the

rows of U� are independent and identically distributed.

Block Resampling Bootstrap

It is an accommodation of block bootstrap methods designed for time

series. The idea is to resample in the time dimension blocks of consecutive

periods in order to capture temporal dependence. All the observations at each

time period are kept together in the hope of preserving their dependence. In

this chapter, the original data are not directly resampled. The resampling

is about the residuals from a �rst step OLS regression. Paparoditis and Po-

litis (2003) exposed theoretical results using residual-based block bootstrap

(RBB) for unit root testing with time series. Paparoditis and Politis (2003)
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resamples the residuals using the moving block bootstrap (MBB) (Kunsch

(1989), Liu and Singh (1992)). 3

The Block bootstrap resampling is the operation of constructing a N �T
matrix U� with columns obtained by resampling with replacement, blocks of

columns of U: U� takes the following form :

U�
(N;T )

=

0BBBBB@
u�11 = bu1t1 u�12 = bu1t2 ::: u�1T = bu1tT
u�21 = bu2t1 u�22 = bu2t2 ::: u�2T = bu2tT

::: ::: :: :::

u�N1 = buNt1 u�N2 = buNt2 ::: u�NT = buNtT

1CCCCCA
where in the setup of CBB resampling, (t1; t2; :; tT ) takes the form

� 1; � 1 + 1; ::; � 1 + l � 1| {z }
block1

� 2; � 2 + 1; ::; � 2 + l � 1| {z };
block2

::::::;�
[T=l]
; �

[T=l]
+ 1; ::; �

[T=l]
+ l � 1| {z }

block[T=l]

where the vector of indices
�
� 1; � 2; :::; � [T=l]

�
is obtained by i.i.d. drawing

with replacement from (1; 2; :::::; T ), l denoting the block length. The name

Circular come from the fact that when � t > T � l; the index of some

observations exceed T and are replace using the rule : T + t $ t, as if

the original data are around a circle and after T we continue with the �rst

observation t = 1:

Double Resampling Bootstrap

This method is a combination of the two previous resampling methods.

The term double comes from the fact that the resampling can be made in

3Non-overlapping block bootstrap (NMB) (Carlstein (1986)), circular block bootstrap

(CBB) (Politis and Romano (1992)) and stationary block bootstrap (SB) (Politis and

Romano (1994)) can also be adapted to panel data.
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two steps. In a �rst step, one dimension is taken into account : from U , an

intermediate matrix U� is obtained either by cross-sectional resampling or

block resampling. It turns out that the resampling is symmetric so it does

not matter which dimension is resampled �rst. Then, another resampling is

made in the second dimension : from U� the �nal matrix U��4 is obtained.

If we resampled in the cross-sectional dimension in the �rst step, then we

resampled columns of the intermediate matrix in order to get our resampled

matrix U��:

Carvajal (2000) and Kapetanios (2008) have both suggested this double

resampling in the special case where the block length is 1. They also analyze

this resampling method by Monte Carlo simulations but give no theoretical

support. The idea is that by drawing in one dimension, we preserve the de-

pendence in that dimension in the �rst step. In the second step, we reproduce

the properties in the other dimension by preserving the vectors drawn in the

�rst step. U�� takes the following form :

U��
(N;T )

=

0BBBBB@
u��11 = bui1t1 u��12 = bui1t2 ::: u��1T = bui1tT
u��21 = bui2t1 u��22 = bui2t2 ::: u��2T = bui2tT

::: ::: :: :::

u��N1 = buiN t1 u��N2 = buiN t2 ::: u��NT = buiN tT

1CCCCCA
where the indices (i1; i2; :::::; iN) and (t1; t2; :; tT ) are chosen as described

in the the two previous sub-sections.

4We will use double asterisks** denote the quantities induced by double resampling.
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Bootstrap Con�dence Interval

In the literature, there are several bootstrap con�dence intervals. In this

chapter we study the percentile con�dence interval 5., constructed as follo-

wing :

With each pseudo-sample Y �b , compute b��b and the K statistics rb�k =b�b�k � b�k: The empirical distribution of these (B + 1) realizations is :
R�k (x) =

1

B + 1

B+1X
b=1

I
�
rb�k � x

�
(3.5)

The percentile con�dence interval of level (1� �) for the parameter b�k is :
CI�1��;k =

hb�k � r�k;1��=2; b�k � r�k;�=2i (3.6)

where r�k;�=2 and r
�
k;1��=2 are respectively the �=2-percentile and (1� �=2)-

percentile of R�k. B must be chosen so that � (B + 1) =2 is an integer. When

R�k. is symmetric, r
�
k;�=2 = �r�k;1��=2 and the con�dence interval becomes

CI�1��;k =
hb��k;�=2; b��k;1��=2i where b��k;�=2 and b��k;1��=2 are respectively the

�=2-percentile and (1� �=2)-percentile of the empirical distribution of
nb��bk o

b=1::B+1
:

The next section analyzes the validity of the bootstrap methods exposed

above.

5In this chapter we do not address the percentile-t interval issue. The complexity to

found a valid bootstrap variance to studentize the test statictic comes from the fact that

the regressors are not resampled, avoiding to generalize easely some theoretical results

founded in Chapter 1, speci�callly with the block bootstrap.
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2.4 Theoretical Results

This section presents theoretical results about resampling methods expo-

sed in section 3.

Mimic Analysis

Davidson (2007) argues that a bootstrapping procedure must respect two

golden rules. The �rst one being that the bootstrap Data Generating Process

(DGP) must respect the null hypothesis when testing hypothesis. The second

is that unless the test statistic is pivotal, the bootstrap DGP should be

an estimate of the true DGP as possible. This means that the bootstrap

data must mimic as much as possible the behavior of the original data.

To understand this �nite sample property approach, we must bear in mind

that bootstrap procedure was originally designed for small samples. A good

resampling method for panel data models must mimic very well the behavior

of the components of �it: The error terms takes the form of four matrices. This

formal decomposition allows one to appreciate the impact of each resampling

method.

U =

0BBBBB@
b�1 :: b�1b�2 :: b�2
:: :: ::b�N :: b�N

1CCCCCA
[�]

+

0BBBBB@
bf1 :: bfTbf1 :: bfT
:: :: ::bf1 :: bfT

1CCCCCA
[f ]

+

0BBBBB@
b�1b�2
::b�N

1CCCCCA
[�]

� bF1 :: bFT �
[F ]

+

0BBBBB@
b"11 :: b"1Tb"21 :: b"2T
:: :: ::b"N1 :: b"NT

1CCCCCA
["]

(4.1)
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U�cros = [�]
�
cros + [f ] + [�]

�
cros [F ] + ["]

�
cros (4.2 )

U�bl = [�] + [f ]
�
bl + [�] [F ]

�
bl + ["]

�
bl (4.3 )

U�� = [�]�cros + [f ]
�
bl + [�]

�
cros [F ]

�
bl + ["]

�� (4.4 )

Each line of [�] contains T times the same value. Resampling [�] on the

cross-section dimension is equivalent to an i.i.d. resampling on (b�1; ::::; b�N) :
The cross-sectional resampling is also equivalent to i.i.d. resampling on

�b�1; ::; �N� :
The rows of [f ] and [F ] are identical, the cross-sectional resampling has no

impact on [f ] and [F ] : It treats
� bf1; :::; bfT� and � bF1; ::::; bFT� as constants.

For the temporal block resampling, the analysis is symmetrical to the �rst

case. It is equivalent to block resampling on
� bf1; :::; bfT� and � bF1; ::::; bFT�. It

treats (b�1; ::; b�N) and �b�1; ::; b�N� as constants. The double resampling is the
resultant of the two previous methods. It is equivalent to i.i.d. resampling

on (b�1; ::; b�N) and
�b�1; ::; b�N� and block resampling on � bf1; :::; bfT� and� bF1; ::::; bFT� : The strength of the double resampling is thus to replicate the

behavior of the temporal and cross-sectional components of the error terms

without having to separate them and then induces a good inference. This

analysis is heuristic and is about the validity of the resampling methods for

the whole vector of the parameters. The next sub-section presents the ana-

lysis the asymptotic validity of the resampling methods for the vector whole

vector of the parameters and some speci�c sub-vectors of parameters.

Consistency Analysis

There are several ways to prove consistency of a resampling method. For

an overview, see Shao and Tu (1995, chap. 3). The method commonly used
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is to show that the distance between the cumulative distribution function

on the classical estimator and the bootstrap estimator goes to zero when the

sample grows. Because of multiple asymptotic distributions, there are several

consistency de�nitions. A bootstrap method is said to be consistent for � if :

sup
x2RK

���P � �pM �b�� � b�� � x�� P �pM �b� � �� � x���� P!
NT!1

0 (4.5 )

where M 2 fN; Tg
De�nition 4.5 is given with convergence in probability ( P!). This case

implies a weak consistency. The case of almost surely (a:s.) convergence pro-

vides a strong consistency.

Using the asymptotic distributions exposed in section 2, the consistency of

the resampling methods presented above is demonstrated when the asymp-

totic distributions of the bootstrap estimators are identical to their clas-

sic counterfactual. The following proposition analyzes the double resampling

bootstrap.

Proposition 10 : Consistency of the double resampling bootstrap

Assume that A -F hold and l!1 such that lp
T
! 0 as T !1; then :

sup
x2RK

���P �� �pN �b��� � b�� � x�� P �pN �b� � �� � x���� P!
N;T!1
N
T
!�2[0;1)

0 (4.6 )

sup
x2RK

���P �� �pT �b��� � b�� � x�� P �pT �b� � �� � x���� P!
N;T!1;N

T
!1

0

(4.7 )

Proposition 10 is a extension of the result of the previous chapter to

linear regression model with random e¤ect in the two dimensions. The double
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resampling takes into account the two dimensions of the panels and thus

induce a correct inference for all the vector of the parameters � without

having to impose a restriction or the convergence of N and T, except what

is necessary to have classical asymptotic distribution.

As a consequence of Chapter 1, resampling in one dimension would lead

to invalid inference about the vectors of parameters �: However the next two

propositions analyze respectively the validity of the cross-sectional resam-

pling bootstrap and block resampling bootstrap for components of �; even if

the inference is not valid for the whole vector.

To do this, let�s introduce new assumptions about the regressors.

Assumptions F�(regressors)

F1�: The regressors are strictly exogenous and the means of stochastic

regressors converge to zero.

F2�: eZ0 eZ
NT

P!
NT!1

Q
(K;K)

> 0

F3�: Z
0
Z
N

P!
N!1

Q

F4 �: Z
0
Z
T

P!
T!1

Q

F1� imposes the means of stochastic regressors to converge to zero in-

ducing a particular variance covariance in that the asymptotic distributions

of temporal (resp. individual) characteristic coe¢ cients are independent of

individuals e¤ects (time e¤ects). The zero mean assumption hold in �nite

sample when �xed e¤ects are remove by centering, or using Frisch-Waugh-

Lovell theorem to center the regressors and the dependent variable, or center

the stochastic regressors only and maintain the constant. Assumptions F2�,

F3�and F4�are identical to F2, F3 and F4.
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Proposition 11 : Consistency of the cross-sectional bootstrap

Assume that A - F�hold. When N; T !1, the cross-sectional bootstrap
is consistent for the sub-vector of the parameters associated with regressors

varying only by individuals

sup
x2RK1

���P � �pN (b� �cros � b�) � x�� P �pN (b� � �) � x���� P!
N;T!1

0 (4.8)

The presence of the temporal heterogeneity ft induces the inconsistency

of the cross-sectional resampling bootstrap for � when N and T goes to

in�nity. However, a sub-vector analysis shows that the asymptotic behavior

of the parameter � depends on the process �i, whose behavior is correctly

replicated by the cross-sectional resampling, inducing a correct inference for

the individual characteristics even if it is not correct for all the coe¢ cients.

In practice, Proposition 11 allows the use of the cross-sectional bootstrap

when the inference is only about the parameters associated with individual

characteristics. The next proposition analyzes the consistency of the temporal

block resampling.

Proposition 12 : Consistency of the block resampling bootstrap

Assume that A - F�hold and l!1 such that lp
T
! 0 as T !1; then :

sup
x2RK2

���P � �pT (b�bl � b) � x�� P �pT (b � ) � x���� P!
N;T!1

0 (4.8 )

This proposition means that the block resampling bootstrap is consistent

for sub-vector of the parameters associated with time varying regressors. As

shown by the mimic analysis, block bootstrap resampling bootstrap does not

replicate the behavior of the cross-sectional heterogeneity �i, inducing its

inconsistency for � when N and T goes to in�nity. However, a sub-vector

analysis shows that the asymptotic behavior of the parameter � depends
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on the process ft , whose behavior is correctly replicated by the temporal

block resampling, inducing a correct inference for the temporal characteristics

even if it is not correct for all the coe¢ cients. In practice, the the previous

proposition allows the use of the block bootstrap when the inference is only

about the parameters associated with temporal characteristics.

The consistency of bootstrap methods as de�ned in (4.5) implies the va-

lidity of percentile con�dence interval to make inference. With all the theo-

retical results in hand, in the next section we will see the behavior of the

bootstrap methods in �nite sample, using simulations.

2.5 Simulations

This section presents results from a small simulation experiment to illus-

trate our theoretical results. The data generating process is (2.2) and (2.10).

The individual e¤ects are standard normal and independent across units :

�i � i:i:d:N (0; 1) ;

while both the time e¤ect and common factor are AR (1) process with para-

meter 0.25 :

ft = �ft�1 +$t

Ft = �Ft�1 + �t

�t; $t � i:i:d:N
�
0;
�
1� �2

��
� = 0:25

The factor loadings are standard normal :

�i � i:i:d:N (0; 1)
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and the idiosyncratic errors are also standard normal :

"it � i:i:d:N (0; 1) :

Each component of �=(�; � ; ; �)
0
is equal 1. The regressors are generated

standard normal :

Vi � i:i:d:N (0; 1)

Wt � i:i:d:N (0; 1)

Xit � i:i:d:N (0; 1)

Four panel dimensions are considered : (N; T ) = (10; 10) ; (20; 20) ; (30; 30) ;

and (50; 50). Temporal resampling is carried out with the Circular Block

Bootstrap (CBB) with block length l = 2; 2; 3; 5 for T = 10; 20; 30 and 50.

For each bootstrap resampling scheme, B is equal to 999 and the number of

simulations is 1000.

Tables 1 and 2 gives rejection rates for a two-tailed test for the null

hypothesis that �k = 0 at nominal level 5%.

Several speci�cations are considered combining di¤erent processes in (2.10) :

the cross-sectional one-way ECM (�i + "it), the temporal one-way ECM (ft + "it),

the two-way ECM (�i + ft + "it) and the two-way ECM with spatial depen-

dence (�i + ft + �iFt + "it).

The analysis of the simulations results can be made at two levels. The

�rst one is about the sub-model speci�cations when the two dimensions are

similar. The fact that the failure on the resampling methods in only one

dimension is due to the non-replication of the heterogeneity on the other

dimension. Thus when there is one kind of heterogeneity, the resampling in

only this speci�c dimension produces good inferences. The cross-sectional

bootstrap performs well with one-way ECM. The block bootstrap performs
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well with temporal one-way ECM. The double resampling performs well with

the general speci�cation and all the sub-model speci�cations. The second

level is about sub-vector analysis. With the two-way ECM, the resampling

in one dimension is not valid for all the component of � when N and T have

similar sizes. However, the �rst parts of Proposition 2 and 3 a¢ rms that

the cross-sectional resampling and the temporal block resampling allows to

have a good inference with respectively � and . The results (in italics) are

near the theoretical �ve percents for the coe¢ cient associated with individual

characteristic when the cross-sectional resampling is used. The same thing

is observed with the coe¢ cient associated with the temporal characteristic

using the block resampling.
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Table 1 : Simulations results with percentile interval
(N ;T ) = (10; 10) (N ;T ) = (20; 20)

Cros. Bloc. D-Res Cros. Bloc. D-Res

Cross 1 � 11.6 63.1 8.5 6.0 69.7 5.5

1-way Vi � 12.2 63.8 9.0 8.1 69.1 7.5

ECM Wt  8.6 13.9 1.8 6.7 6.6 0.4

�i + "it Xit � 5.8 34.8 4.2 6.3 37.5 5.8

Temp. 1 � 67.9 23.0 9.0 75.8 16.1 8.7

1-way Vi � 12.4 13.1 2.0 7.7 8.8 1.0

ECM Wt  57.6 12.7 8.6 68.1 8.6 7.5

ft + "it Xit � 32.7 8.0 6.5 35.3 6.0 5.6

1 � 31.4 34.4 9.4 25.2 24.4 8.9

2-way Vi � 12.6 59.4 6.0 8.1 67.5 6.9

ECM Wt  58.5 12.2 9.9 67.3 7.8 7.2

�i + ft + "it Xit � 26.3 28.7 7.0 26.4 27.1 5.5

2-way ECM 1 � 27.0 35.8 9.9 23.8 25.4 8.5

with spatial Vi � 12.7 53.8 9.5 7.8 59.8 6.4

dependence Wt  45.9 11.0 6.8 60.8 8.6 6.7

�i + ft + �iFt + "it Xit � 18.4 24.1 5.5 21.4 19.8 5.7

In bold the rejection rates with the double resampling bootstrap.

In italics the rejection rates with valid subvector inference
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Table 2 : Simulations results with percentile interval
(N ;T ) = (30; 30) (N ;T ) = (50; 50)

Cros. Bloc. D-Res Cros. Bloc. D-Res

Cross 1 � 7.4 75.2 6.1 5.8 79.4 5.6

1-way Vi � 6.1 75.9 6.0 5.5 80.4 5.5

ECM Wt  7.1 7.8 0.7 6.6 6.1 0.4

�i + "it Xit � 5.5 37.4 5.7 4.9 36.0 4.4

Temp. 1 � 77.9 9.1 8.1 83.5 7.0 6.5

1-way Vi � 7.5 9.4 1.1 5.8 8.7 0.8

ECM Wt  73.3 7.0 6.5 78.7 6.2 5.9

ft + "it Xit � 36.7 5.7 5.4 36.9 5.2 4.9

1 � 26.0 23.8 6.5 24.3 20.5 6.0

2-way Vi � 8.7 73.8 5.2 5.5 81.6 5.5

ECM Wt  73.8 7.3 4.7 78.2 5.2 5.6

�i + ft + "it Xit � 24.4 28.2 5.8 24.8 25.3 5.4

2-way ECM 1 � 24.2 22.5 6.7 22.6 20.9 6.0

with spatial Vi � 6.8 65.2 6.0 6.0 73.2 5.8

dependence Wt  68.6 7.4 5.9 77.3 5.2 4.7

�i + ft + �iFt + "it Xit � 20.5 21.2 5.5 19.5 20.4 4.9

In bold the rejection rates with the double resampling bootstrap.

In italics the rejection rates with valid subvector inference.
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2.6 Conclusion

This paper considers the issue of bootstrap methods for panel data mo-

dels. Three bootstrap methods are explored : cross-sectional bootstrap, tem-

poral block bootstrap and double resampling bootstrap. The cross-sectional

bootstrap resamples the cross-section units. The temporal block bootstrap

resamples blocks of consecutive time periods for all the cross-section units.

The double resampling bootstrap combines the two previous methods. It

is shown that the presence of temporal heterogeneity invalids the use of the

cross-sectional bootstrap for the make inference about the whole coe¢ cient of

the model. The reason of this failure is that the resampling in only the cross-

sectional dimension, treat the processes in the time dimension as constants

and does not replicate their behavior. However, an appropriate analysis of the

covariance matrix shows that the asymptotic distribution of the coe¢ cients

associated with individual characteristics, does not depends to the temporal

heterogeneity. The cross-sectional bootstrap is then valid for the sub-vector

of the parameters associated with temporal regressors. The temporal block

resampling only in the time dimension fails because of the presence of the

cross-sectional heterogeneity. However, the inference about the coe¢ cients

associated with temporal characteristics is valid using the temporal block

bootstrap. The double resampling bootstrap replicates simultaneously the

behavior of the cross-sectional and temporal processes without having to se-

parate them. This property induces the validity of the double resampling

bootstrap for all the coe¢ cients of the model. The implementation of boots-

trap methods for panel models does not explicitly take into account how

N and T goes to in�nity, avoiding the multiple asymptotics problem that

sometimes arises with large panel models.
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Proof Proposition 10
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Proof of Proposition 11
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Abstract

This paper re-examines the analysis of di¤erences-in-di¤erences estima-

tors by Bertrand, Du�o and Mullainathan (2004). Their empirical application

uses panel data from the Current Population Survey on wages of women in

the 50 states. Placebo laws are generated at the state level, and the authors

measure their impact on wages. By construction, no impact should be found.

Bertrand, Du�o and Mullainathan (2004) show that neglected heterogeneity

and temporal correlation lead to spurious �ndings of an e¤ect of the Placebo

laws. The double resampling bootstrap method taking into account the tem-

poral and the cross-section dimension of the panel dataset, corrects these size

distortions very well and gives more reliable evaluation of public policies.

JEL Classi�cation : C15, C23, C21

Keywords : Bootstrap, Panel data models, Di¤erences-in-di¤erences esti-

mates, Evaluation of Public Policies
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3.1 Introduction

Since the work of Ashenfelter and Card (1985), di¤erences-in-di¤erences

(DD) estimation methods are commonly used to evaluate the e¤ect of an

treatment or intervention such as a change in policy 1. The basic set up is

the case with two groups and two periods. One group (the treated group) is

exposed to a treatment in the second period but not the �rst one. The second

group (the control group) is not exposed to the treatment. The impact of this

treatment is evaluated by comparing changes in the response of the treated

with the changes among the control group. This basic framework can be easily

extended to several time periods and heterogeneity through the introduction

of covariates.

This paper explores the application of bootstrap methods to make more

accurate inference in DD estimation. It is motivated by results in Bertrand,

Du�o and Mullainathan (2004), henceforth BDM, who document inference

problems with the use of standard OLS inference. Their evidence comes from

panel data from the Current Population Survey on wages of women in the 50

states. Placebo laws are generated at the state level, and the authors measure

their impact on wages. By construction, no impact should be found. They

show that neglected heterogeneity and temporal correlation lead to spurious

�ndings of an e¤ect of the Placebo laws. Typically, instead of the theoretical

5% rejection rate, simulations with the OLS �xed e¤ect estimator lead to

45% rejection rate. This size distortion means that many evaluations will

incorrectly conclude that the analyzed public policy has an e¤ect when it

has no impact in reality.

1For an overview of impact evaluation methods, see for example Shahidur, Koolwal,

and Hussain (2009).



97

To correct these problems, we suggest using bootstrap methods. Appli-

cation of the bootstrap in this context is complicated by the presence of

possible cross-sectional dependence, serial correlation and neglected hetero-

geneity. We propose using the double resampling method developed in the

previous chapter that is robust to some forms of these di¢ culties to generate

bootstrap samples. Our simulation results suggest that the size distortions

reported in BDM are corrected to a large degree by our methods.

The paper is organized as follows. The next section presents di¤erences-in-

di¤erences estimation. Section 3 presents bootstrap methods for panel data

and presents conditions for their validity. Section 4 revisits the empirical

exercise of BDM, while the section 5 concludes.

3.2 Di¤erences-in-di¤erences Estimation

The simplest setup of DD estimation is the case with two groups and two

periods. One group (treatment group) is exposed to a treatment (or public

policy) in a second period not the �rst one. The second group (control) is

not exposed to the treatment. Using the second group as a control group,

the basic idea is to evaluate the impact of this treatment. The model is :

y = �0 + �1I2 + �I + u

where y is the outcome of interest, I2 is a dummy variable for the second

time period which captures changes in the outcome even in the absence of

the treatment. I is a binary program indicator, which is unity if unit i is

a¤ected by the public policy (treatment). The parameter of interest is �. The

impact of the treatment is de�ned as :

DD = E(yT;2 � yT;1)� E(yU;2 � yU;1)
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where yT;2 (resp. yT;1) is the value of y for the treatment group in the second

period (resp. �rst period). Similar de�nitions are associated to the control

group when T is replaced by U . The DD estimator is :

dDD = �̂ = (yT;2 � yT;1)� (yU;2 � yU;1)
where yT;2 (resp. yT;1) is the mean of y for the treatment group at the second

period (resp. �rst period). The impact of the treatment is then evaluated

by the change in the treated group (yT;2 � yT;1) minus the change in the
untreated group (yU;2 � yU;1) which is considered as the evolution of y that
is not induced by the treatment2. The name di¤erences-in-di¤erences is due

to this double di¤erence. The DD estimator is exactly the OLS estimator �

in the model (2.1) : this analogy is useful in the general case.

In a more general setup, there are several periods for the two groups and

covariates. Then model (2.1) becomes :

yit = �Xit + �Iit + uit = Zit� + uit (2.4)

where yit is the outcome of interest, Xit a range of covariates, Iit a bi-

nary program indicator, which is unity if unit i is a¤ected by the public

policy (treatment) at time t. The parameter of interest is � which is assumed

constant among units and periods. Using the analogy between the DD esti-

mator and the OLS estimator, the impact of the treatment e¤ect is evaluated

by the OLS estimator of �. The problem is not about pointwise estimation

of � because under general assumptions about the error term, �̂ is unbiased

and consistent. The main problem is about statistical inference, specially in

samples of small or moderate sample as would be the case if the policy is

2This paper will not address the issue of possible selection bias. As in BMD, the paper

will treat the possible bias in the estimation the con�dence interval of �
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subject to a pilot-project. The next section presents bootstrap methods in

order to have a correct inference.

3.3 Bootstrap Method

The basic idea of bootstrap methods consists in drawing many random

samples that resemble the observed sample as much as possible and estima-

ting the distribution of the object of interest over these random samples. The

original bootstrap procedure has been proposed by Efron (1979) for statistical

analysis of independent and identically distributed (i.i.d.) observations. Since

Efron (1979) there has been an extensive research to extend the bootstrap

to statistical analysis of non i.i.d. data. Several bootstrap procedures have

been proposed for time series and more recently, the application of bootstrap

methods to panel data models. In the setup of linear regression, there are

two main approaches of bootstrap methods : the residual based bootstrap

and the pair bootstrap.

3.3.1 Residual-based Bootstrap

The residual-based method uses a �rst step regression in order to obtain

residuals which are used to create the pseudo data and the pseudo values of

the parameter of interest. In details, this method can be summarized in the

followings steps.

Step 1 : Run the pooled regression to obtain the OLS estimator �̂ and

the residuals ûit

�̂ =
�
Z=Z

��1
Z=Y (3.1)
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ûit = yit � Zit�̂ or U = Y � Z�̂ (3.2)

Step 2 : From the matrix of residuals U , use a resampling method to

create pseudo-sample of residuals U� and pseudo-values of the dependent

variable :

y�it = Zit�̂ + u
�
it or Y � = Z�̂ + U� (3.3)

Run pooling regression with (Y �; Z)

�̂
�
=
�
Z=Z

��1
Z=Y � (3.4)

Step 3 : Repeat step 2 B times in order to have B+1 realizations of the

vector of parameters �̂
�
and thus the coe¢ cient of interest �̂

�
:
n
�̂
�
b

o
b=1;2;:::;B+1

.

The empirical distribution of these (B + 1) realizations is used to make in-

ference.

3.3.2 Pair bootstrap

The pair bootstrap method does not require a preliminary regression. The

pseudo data are created directly from the real data. The term pair comes from

the fact that to create the pseudo data, the methods resample the dependent

variable and covariates jointly. In details, this method can be summarized in

the following steps.

Step 1 : From the original data matrix Y; Z, use a resampling method

to create pseudo-sample of regressors Z� and pseudo-values of the dependent

variable Y � and run pooling regression with (Y �; Z�)

�̂
�
=
�
Z�=Z�

��1
Z�=Y � (3.5)

Step 2 : Repeat step 2 B times in order to have B+1 realizations of the

vector of parameters �̂
�
and thus the coe¢ cient of interest �̂

�
:
n
�̂
�
b

o
b=1;2;:::;B+1

.
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3.3.3 Bootstrap Con�dence Intervals

Two bootstrap con�dence intervals are commonly used : the percentile

con�dence interval and the percentile-t con�dence interval. A equal-tailed

percentile con�dence interval of level (1� �) for the parameter �̂ is :

CI�1��;� =
h
�̂ � r�1��=2; �̂ � r��=2

i
(3.6)

where r��=2 and r
�
1��=2 are respectively the �=2-percentile and (1� �=2)-

percentile of the empirical distribution of
n
rb�� = �̂

b� � �̂
o
b=1;2;:::;B+1

.

The construction of a percentile-t interval is based on a studentized sta-

tistic. In practice, with each pseudo-sample, compute the statistic :

t�b =
�̂
� � �̂rbV ar� ��̂�� (3.7)

A equal-tailed percentile-t con�dence interval of level (1� �) is

CI�1��;� =

"
�̂ �

rbV ar ��̂�:t�1��
2
; �̂ �

rbV ar ��̂�:t��
2

#
(3.8)

where t��=2 and t
�
1��=2 are respectively the �=2-percentile and (1� �=2)-

percentile of the empirical distribution of ft�bgb=1;2;:::;B+1. The percentile-t
con�dence interval allow theoretical results for asymptotic re�nements in

some situations.

3.3.4 Panel Resampling Methods

The �rst bootstrap resampling methods have been developed for one di-

mension data : cross-section units, time series. The two dimension of panel

data need appropriate resampling methods. It is practical to represent panel
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data as a matrix. By convention, rows correspond to the cross-sectional units

and columns represent time periods. A panel dataset with N cross-sectional

units and T time periods is represented by a matrix X of N rows and T

columns, xit is the cross-sectional i0s observation at period t:

X
(N;T )

=

0BBBBB@
x11 x12 ::: ::: x1T

x21 x22 ::: ::: x2T

::: ::: ::: ::: :::

xN1 xN2 :: ::: xNT

1CCCCCA (3.9)

We will present three resampling methods designed for panel data using a

generic matrix X ; these resampling methods exposed can be adapted to Y,

Z or U depending of the bootstrap method (residual-based or pair).

Cross-sectional Resampling Bootstrap

It is an accommodation of the original i.i.d. bootstrap method to the rows

of X: For a N � T matrix X, cross-sectional resampling is the operation of
constructing a N � T matrix X� with rows obtained by resampling with

replacement rows of X: Conditionally on X, the rows of X� are independent

and identically distributed.

For a N�T matrix Y , cross-sectional resampling constructs a new N�T
matrix Y � with rows obtained by resampling with replacement the rows of Y:

In other words, we resample the vectors of T observations for each individual.

X� takes the form :

X�
(N;T )

=

0BBBBB@
x�11 = xi11 y�12 = yi12 ::: x�1T = xi1T

x�21 = xi21 x�22 = xi22 ::: x�2T = xi2T

::: ::: :: :::

x�N1 = xiN1 x�N2 = xiN2 ::: x�NT = xiNT

1CCCCCA (3.10)



103

where each of the indices (i1; i2; :::::; iN) is obtained by i.i.d. drawing with

replacement from (1; 2; :::::; N). As a consequence, conditionally on X, the

rows of X� are independent and identically distributed.

Block Resampling Bootstrap

This methods is a direct generalization of block bootstrap methods de-

signed for time series. Non-overlapping block bootstrap (NMB) (Carlstein

(1986)), moving block bootstrap (MBB) (Kunsch (1989), Liu and Singh

(1992)), circular block bootstrap (CBB) (Politis and Romano (1992)) and

stationary block bootstrap (SB) (Politis and Romano (1994)) can be adap-

ted to panel data. The idea is to resample in the time dimension blocks of

consecutive periods in order to capture temporal dependence. All the obser-

vations at each time period are kept together in the hope of preserving their

dependence.

The block bootstrap resampling constructs a new N �T matrix X� with

columns obtained by resampling with replacement blocks of columns of X:

X� takes the following form :

X�
(N;T )

=

0BBBBB@
x�11 = x1t1 x�12 = x1t2 ::: x�1T = x1tT

x�21 = x2t1 x�22 = x2t2 ::: x�2T = x2tT

::: ::: :: :::

x�N1 = xNt1 x�N2 = xNt2 ::: x�NT = xNtT

1CCCCCA (3.11)

The choice of (t1; t2; ::; tT ) depends on the which block bootstrap me-

thod is used in the time dimension. For example with the CBB bootstrap

resampling, we have (t1; t2; :; tT ) taking the form
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� 1; � 1 + 1; ::; � 1 + l � 1| {z }
block1

� 2; � 2 + 1; ::; � 2 + l � 1| {z };
block2

::::::;�
[T=l]
; �

[T=l]
+ 1; ::; �

[T=l]
+ l � 1| {z }

block[T=l]

where the vector of indices
�
� 1; � 2; :::; � [T=l]

�
is obtained by i.i.d. dra-

wing with replacement from (1; 2; :::::; T � l), where the vector of indices�
� 1; � 2; :::; � [T=l]

�
is obtained by i.i.d. drawing with replacement from (1; 2; :::::; T ),

l denoting the block length. The name Circular come from the fact that when

� t > T � l; the index of some observations exceed T and are replace using
the rule : T + t ! t, as if the original data are around a circle and after T

we continue with the �rst observation t = 1: Others block bootstrap methods

can also be accommodated in the time dimension to panel data.

Double Resampling Bootstrap

This method is a combination of the two previous resampling methods.

The term double comes from the fact that the resampling can be made in

two steps. In a �rst step, one dimension is taken into account : from X, an

intermediate matrix X� is obtained either by cross-sectional resampling or

block resampling. It turns out that the resampling is symmetric so it does

not matter which dimension is resampled �rst. Then, another resampling is

made in the second dimension : from X� the �nal matrix X�� is obtained.

If we resampled in the cross-sectional dimension in the �rst step, then we

resampled columns of the intermediate matrix in order to get our resampled

matrix X��3.

Carvajal (2000) and Kapetanios (2008) have both suggested this double

resampling in the special case where the block length is 1. They also analyze

this resampling method by Monte Carlo simulations but give no theoretical

support. The idea is that by drawing in one dimension, we preserve the de-

pendence in that dimension in the �rst step. In the second step, we reproduce
3We will use double asterisks** denote the quantities induced by double resampling.
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the properties in the other dimension by preserving the vectors drawn in the

�rst step. X�� takes the following form :

X��
(N;T )

=

0BBBBB@
x��11 = xi1t1 x��12 = xi1t2 ::: x��1T = xi1tT

x��21 = xi2t1 x��22 = xi2t2 ::: x��2T = xi2tT

::: ::: :: :::

x��N1 = xiN t1 x��N2 = xiN t2 ::: x��NT = xiN tT

1CCCCCA (3.12)

where the indices (i1; i2; :::::; iN) and (t1; t2; :; tT ) are chosen as described

in (3.10) and (3.11).

Bootstrap Methods Validity

Let�s consider the validity of bootstrap methods exposed above for good

inference about the vector of parameters � in general and coe¢ cient of

the impact of the treatment e¤ect � in particular. To justify to validity

of a bootstrap percentile con�dence interval, it must be shown that the

asymptotic distribution of (�̂ � �) coincides with the asymptotic distribu-
tion of its bootstrap counterpart (�̂

� � �̂). The validity of the percentile-t
interval is proved in a similar way. It must be shown that the behavior of

(�̂��)=
rbV ar ��̂� asymptotically equivalent to the behavior of its bootstrap

analog (�̂
� � �̂)=

rbV ar� ��̂��.
In the literature, there are many applications of the bootstrap with panel

data, but several are carried out without rigorous theoretical justi�cation. Re-

cently some theoretical papers appeared in the literature. Kapetanios (2008)

presents theoretical results about panel regression models N goes to in�nity,

under the assumption that cross-sectional vectors of regressors and errors

terms are i.i.d. Hounkannounon (2011) shows that the double resampling
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bootstrap is valid in the presence of some forms of temporal and or cross-

sectional random heterogeneity and cross-sectional dependence. It also shows

that the presence of temporal random heterogeneity leads to invalid inference

using cross-sectional resampling bootstrap and the presence of cross-sectional

random heterogeneity leads to incorrect inference using the temporal resam-

pling bootstrap. The double resampling bootstrap is valid in presence of both

temporal and or cross-sectional random heterogeneity. Gonçalves (2010) ex-

plores the accommodation of the moving blocks bootstrap to panel linear

model with individual �xed e¤ects.

3.4 Empirical Application

3.4.1 Speci�cation

This section re-examines the di¤erences-in-di¤erences estimates exercise

of BDM (2004). Their empirical application uses data from the Current Po-

pulation Survey (CPS) on wages of women between 25 and 50 in the fourth

month of the Merged Outgoing Rotation Group for years 1979 to 1999, in

the 50 American States. Placebo laws are generated at the state level, and

the authors measure their impact on wages. Formally, consider the model

Yist = As +Bt + cXist + �Ist + "ist (4.1 )

where As and Bt are e¤ects for states and years respectively, Ist a dummy for

whether the intervention has a¤ected group s (state) at period t (year) and

Yist the outcome (wage) for individual i in group s by time t. Xist are indivi-

dual controls including four education dummies (less than high school, high

school, some college and college or more) and a quartic in age. Model (4.1) is

called a multilevel (or hierarchical) linear model because of the presence of
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three indexes. In order to have a panel dataset, log weekly earnings are �rst

regressed on the individual controls Xist. A panel is constructed with mean

of these residuals by state and year.

Y st = �s + t + �Ist + "st (4.2 )

By construction, Y st presents the evolution of wages that do not depend

on the education level and age. Figure 1 presents the evolution of Y st and

is presented for a subsample of states. The relative position of the aggregate

wage among states seems stable (state heterogeneity) and the temporal evo-

lution of the series are similar (temporal heterogeneity). To take into account

these heterogeneities, two main approaches are used : �xed-e¤ect vs random

e¤ects.

In the setup of model (4 :2 ), �xed-e¤ect models assumed that f�sgs=1;2;::;N
and ftgt=1;2;::;T belong to the space of interest parameters. The random e¤ect
models treat f�sgs=1;2;::;N and ftgt=1;2;::;T as random variables like "st with

exogeneity conditions. It is also possible to assume heterogeneities �xed in

one dimension and random in the other. In the model (4.2), taking for each

state the time average, we have Y s: = �s++ �Is:+"s:, taking for each time

period the average across states, we have Y :t = � + t + �I :t + ":t. Finally

the overall mean is de�ned as Y = � +  + �I + ". By Frisch-Waugh-Lovell

theorem, the OLS estimation of � in the model (4.2) assuming �xed e¤ects

in time and cross-section dimensions is exactly the OLS estimation of � with

the transformed model :

(Y st � Y s: � Y :t + Y ) = �(Ist � Is: � I :t + I) + ("st � "s: � ":t + ") (4.3 )

Assuming only �xed e¤ect in the time dimension, de�ning ust = �s + "st as

the new error term, the appropriate transformed model is :

(Y st � Y :t) = �(Ist � I :t) + (ust � u:t) (4.4 )
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The speci�cations (4.3) and (4.4) will be useful to remove �xed e¤ects and

time e¤ects from the original data.

Fig. 3.1 �Time Evolution of Wage by State

3.4.2 Placebo Laws

At each simulation, the selection of the treatment group states is similar :

half of the states are randomly chosen to form the treatment group. A passage

date is randomly chosen (uniformly drawn between 1985 and 1995) identically

for each state in the treatment group : from the passage date all states in the

treatment group are assumed a¤ected by the public intervention for all the

remaining periods.
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3.4.3 Simulation Results

By construction of the placebo laws, no impact is expected, i.e. the true

value of � is zero. Simulations with a correct inference method to construct

con�dence interval of level 95 % will reject the null hypothesis (H0 : � = 0)

approximately 5 % times. H0 is rejected if the true value 0 doesn�t belong

to the con�dence interval. Five inference methods are considered. The �rst

is the BDM �xed e¤ect OLS with usual estimation of the standard error

(BDM-OLS). The second is BDM block bootstrap method4 (BDM-BSP). The

third is Pair Bootstrap with resampling in the cross-section dimension and

percentile-t con�dence interval applied to transformed model (4.3) (extrac-

tion of �xed e¤ects) 5 (Pair-BSP). This bootstrap method is modi�ed version

of the bootstrap method called block bootstrap in BDM. 6 The fourth is the

Residual based bootstrap with double resampling (block size=3, C.B.B. in

time dimension) and percentile con�dence interval, applied to transformed

model (4.4) (extraction time e¤ect) (D-Res-BSP-R). The �fth method is the

Pair bootstrap with double resampling (block size=3, C.B.B. in time dimen-

sion) and percentile-t con�dence interval, applied to transformed model (4.4)

(extraction time e¤ect) (D-Res-BSP-P).

Table 1 presents rejection rates based on 2000 simulations, and 999 boots-

trap replications. The time periods are maintained constant (1979-1999)

4BDM block bootstrap method resamples States that is in our notation cross-sectional

resampling bootstrap.
5The choice to extract the time �xed e¤ect instead of random is due to a positive trend

visible in Figure 1, implying a non-stationary process.
6BDM uses the usual OLS estimate standard error in the bootstrap world. The problem

with this methodology is the contradiction between the resampling method and the esti-

mation of V ar�(�̂�). The resampling method assumes that the states are i.i.d. and keeps

the time dependence but the estimation of the variance ignores the temporal correlation.
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while the number of States takes the values 6,10, 20 and 50 and the states

are selected as presented in the subsection Placebo laws.

Table 1 : Simulations Results
States BDM-OLS BDM-BSP Pair-BSP D-Res-BSP-R D-Res-BSP-P

6 48.0 43.5 17.1 15.0 4.9

10 38.5 22.5 13.3 9.6 5.3

20 38.5 13.5 8.1 6.3 5.1

50 43.0 6.5 6.5 5.1 5.1

Standard OLS �xed e¤ect estimator clearly over-rejects the null hypothe-

sis. In practice, that means that researchers conclude that a public policy

has an impact, when in fact, there is no impact. The bad performance of

the commonly used OLS �xed e¤ect estimator is due to serial correlation

remaining in the speci�cation (4.3). The correlation in the original data is

not completely eliminated by the extraction the time e¤ect. The BDM boots-

trap method performs better than �xed e¤ect OLS, but the results are only

acceptable when N=50. The disappointing performance of the BDM boots-

trap method comes from a bad speci�cation of the variance in the bootstrap

world. BDM uses the usual OLS estimate standard error in the bootstrap

world. The problem with this methodology is the contradiction between the

resampling method and the estimation of V ar�(�̂�). The resampling method

assumes that the states are i.i.d. and keeps the time dependence but the

estimation of the variance ignores the temporal correlation. A modi�cation

of BDM bootstrap method, using a correct variance estimator, gives better

results, what is visible comparing columns BDM-BSP and Pair-BSP. The two

last columns present results with the double resampling bootstrap : residual-

based and pair bootstrap. In all the cases, the double resampling bootstrap
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performances are the best with a advantage the pair version. This advantage

is probably due to the use of a percentile-t con�dence interval while a per-

centile con�dence interval is used in the residual based method of the double

resampling bootstrap.

3.5 Conclusion

The evaluation of public policies when data are available for the outcome

during several periods, leads to panel models. The necessity to have very qui-

ckly some information about the e¤ect of the treatment implies restrictions

in the time dimension. Sometimes, the public program can be implemented

with a test sample before a large application, thus a moderate number of indi-

viduals is also involved. This double restriction in the cross-section and time

dimension gives to the researcher in charge of this evaluation very moderate

sample size dataset. Despite theses restrictions, the researcher has the obliga-

tion to do his best to evaluate properly the potential impact of the treatment.

For this purpose, bootstrap methods for linear panel models can be useful. In

this paper we give a justi�cation of the disappointing performance of BDM

bootstrap method carried-out without theoretical justi�cation. We compare

a modi�ed version BDM bootstrap and the double resampling bootstrap me-

thod based on resampling in time and cross-section dimensions. Simulation

results with time dependent placebo laws, these bootstrap methods correct

very well size distortions in moderate size samples. The double resampling

bootstrap outperforms the other methods and corrects size distortions even

in small samples. In practice, DD method can use when data are available be-

fore and after the public intervention. Other methodologies are available for

impact evaluation when the information is available only after the interven-
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tion (matching estimator, propensity matching estimator,...). The theoretical

justi�cation of resampling methods for inference with these impact evaluation

methods is a research �eld to explore.
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Conclusion générale
Dans cette thèse nous fournissons les fondements théoriques des méthodes

de bootstrap appliquées aux données de panel. Comme il est courant dans

la littérature, nous avons commencé par un estimateur de la moyenne en

postulant dans le premier chapitre, un modèle avec un seul paramètre. Nous

montrons les méthodes de rééchantillonnage qui tiennent compte seulement

dans une dimension échoue à répliquer le comportement du processus gé-

nérateur de données dans la seconde dimension. Ainsi, lorsque qu�il y a de

l�hétérogénéité aléatoire dans la dimension individuelle(resp. temporelle), la

méthode réchantillonnage dans la dimension temporelle (resp. individuelle)

seulement, échoue à produire une inférence valide. Nous proposons la mé-

thode du bootstrap de double rééchantillonnage qui tient compte des deux

dimensions du panel et avec laquelle on obtient des résultats valides là où les

autres échouent.

Le second chapitre étend le premier à un modèle de regression linéaire

de panel. En utilisant un modèle à erreurs composées doubles, l�estimateur

des moindres carrés ordinaires et la méthode de bootstrap des résidus, on

montre que le rééchantillonnage dans la seule dimension individuelle est va-

lide pour l�inférence sur les coe¢ cients associés aux régresseurs qui changent

uniquement par individu. Le rééchantillonnage dans la dimension temporelle

est valide seulement pour le sous vecteur des paramètres associé aux régres-

seurs qui évoluent uniquement dans le temps. Le double rééchantillonnage

est quand à lui est valide pour faire de l�inférence pour tout le vecteur des

paramètres.

Le troisième chapitre re-examine l�exercice de l�estimateur des doubles

di¤érences de Bertrand, Du�o et Mullainathan (2004). L�exercice empirique

utilise des données de panel provenant du Current Population Survey sur
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le salaire des femmes dans les 50 états des Etats-Unis d�Amérique de 1979

à 1999. Des variables de pseudo-interventions publiques au niveau des états

sont générées et on s�attend à ce que les tests arrivent à la conclusion qu�il

n�y a pas d�e¤et de ces politiques placebos sur le salaire des femmes. Ber-

trand, Du�o et Mullainathan (2004) montre que la non-prise en compte de la

dépendance temporelle entraîne d�importantes distorsions de niveau de test

lorsqu�on évalue l�impact de politiques publiques en utilisant des données de

panel. La méthode de double rééchantillonnage développée dans cette thèse

permet de corriger le problème de niveau de test et donc d�évaluer correcte-

ment l�impact des politiques publiques.

Les perspectives de recherche pour l�avenir peuvent être empiriques ou

théoriques. Dans les simulations et les applications empiriques, le choix de la

longueur du bloc du double resampling bootstrap est arbitraire. Une métho-

dologie de choix optimal de choix reste à développer. Une piste à explorer

serait d�adapter les méthodes de choix de bloc optimal, développés pour les

séries temporelles, au pseudo échantillon intermédiaire obtenue après appli-

cation du bootstrap i.i.d. dans la dimension individuelle. D�un autre côté,

les méthodologies bootstrap ont été validées au premier degré. Le recours à

des expansions aux ordres supérieurs permettra d�apporter des preuves de

ra¢ nements asymptotiques. Sur le plan pratique, la méthodologie bootstrap

pourrait être utilisée pour évaluer de réelles politiques publiques lorsqu�on

a des observations plusieurs périodes, avant et après la mise en place de la

politique.
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