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RÉSUMÉ

Le regroupement des données est une méthode classique pour analyser les matrices d’ex-

pression génétiques. Lorsque le regroupement est appliqué sur les lignes (gènes), chaque

colonne (conditions expérimentales) appartient à toutes les grappes obtenues. Cepen-

dant, il est souvent observé que des sous-groupes de gènes sont seulement co-régulés

(i.e. avec les expressions similaires) sous un sous-groupe de conditions. Ainsi, les tech-

niques de bi-regroupement ont été proposées pour révéler ces sous-matrices des gènes

et conditions. Un bi-regroupement est donc un regroupement simultané des lignes et des

colonnes d’une matrice de données. La plupart des algorithmes de bi-regroupement pro-

posés dans la littérature n’ont pas de fondement statistique. Cependant, il est intéressant

de porter une attention sur les modèles sous-jacents à ces algorithmes et de développer

des modèles statistiques permettant d’obtenir des bi-grappes significatives. Dans cette

thèse, nous faisons une revue de littérature sur les algorithmes qui semblent être les plus

populaires. Nous groupons ces algorithmes en fonction du type d’homogénéité dans la

bi-grappe et du type d’imbrication que l’on peut rencontrer. Nous mettons en lumière

les modèles statistiques qui peuvent justifier ces algorithmes. Il s’avère que certaines

techniques peuvent être justifiées dans un contexte bayésien. Nous développons une ex-

tension du modèle à carreaux (plaid) de bi-regroupement dans un cadre bayésien et nous

proposons une mesure de la complexité du bi-regroupement. Le critère d’information

de déviance (DIC) est utilisé pour choisir le nombre de bi-grappes. Les études sur les

données d’expression génétiques et les données simulées ont produit des résultats satis-

faisants.

À notre connaissance, les algorithmes de bi-regroupement supposent que les gènes

et les conditions expérimentales sont des entités indépendantes. Ces algorithmes n’in-

corporent pas de l’information biologique a priori que l’on peut avoir sur les gènes

et les conditions. Nous introduisons un nouveau modèle bayésien à carreaux pour les

données d’expression génétique qui intègre les connaissances biologiques et prend en

compte l’interaction par paires entre les gènes et entre les conditions à travers un champ

de Gibbs. La dépendance entre ces entités est faite à partir des graphes relationnels, l’un
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pour les gènes et l’autre pour les conditions. Le graphe des gènes et celui des conditions

sont construits par les k-voisins les plus proches et permet de définir la distribution a

priori des étiquettes comme des modèles auto-logistiques. Les similarités des gènes se

calculent en utilisant l’ontologie des gènes (GO). L’estimation est faite par une procédure

hybride qui mixe les MCMC avec une variante de l’algorithme de Wang-Landau. Les

expériences sur les données simulées et réelles montrent la performance de notre ap-

proche.

Il est à noter qu’il peut exister plusieurs variables de bruit dans les données à micro-

puces, c’est-à-dire des variables qui ne sont pas capables de discriminer les groupes.

Ces variables peuvent masquer la vraie structure du regroupement. Nous proposons un

modèle inspiré de celui à carreaux qui, simultanément retrouve la vraie structure de

regroupement et identifie les variables discriminantes. Ce problème est traité en utilisant

un vecteur latent binaire, donc l’estimation est obtenue via l’algorithme EM de Monte

Carlo. L’importance échantillonnale est utilisée pour réduire le coût computationnel de

l’échantillonnage Monte Carlo à chaque étape de l’algorithme EM. Nous proposons un

nouveau modèle pour résoudre le problème. Il suppose une superposition additive des

grappes, c’est-à-dire qu’une observation peut être expliquée par plus d’une seule grappe.

Les exemples numériques démontrent l’utilité de nos méthodes en terme de sélection de

variables et de regroupement.

Mots clés : groupement, critère d’information de déviance, expression génétique,

ontologie des gènes, algorithme de Wang-Landau, modèle auto-logistique, sélection

des variables, le modèle à carreaux, algorithme EM de Monte Carlo, l’importance

échantillonnale.



ABSTRACT

Clustering is a classical method to analyse gene expression data. When applied to the

rows (e.g. genes), each column belongs to all clusters. However, it is often observed

that the genes of a subset of genes are co-regulated and co-expressed in a subset of

conditions, but behave almost independently under other conditions. For these reasons,

biclustering techniques have been proposed to look for sub-matrices of a data matrix.

Biclustering is a simultaneous clustering of rows and columns of a data matrix. Most

of the biclustering algorithms proposed in the literature have no statistical foundation.

It is interesting to pay attention to the underlying models of these algorithms and de-

velop statistical models to obtain significant biclusters. In this thesis, we review some

biclustering algorithms that seem to be most popular. We group these algorithms in ac-

cordance to the type of homogeneity in the bicluster and the type of overlapping that may

be encountered. We shed light on statistical models that can justify these algorithms. It

turns out that some techniques can be justified in a Bayesian framework. We develop

an extension of the biclustering plaid model in a Bayesian framework and we propose

a measure of complexity for biclustering. The deviance information criterion (DIC) is

used to select the number of biclusters. Studies on gene expression data and simulated

data give satisfactory results.

To our knowledge, the biclustering algorithms assume that genes and experimental

conditions are independent entities. These algorithms do not incorporate prior biolog-

ical information that could be available on genes and conditions. We introduce a new

Bayesian plaid model for gene expression data which integrates biological knowledge

and takes into account the pairwise interactions between genes and between conditions

via a Gibbs field. Dependence between these entities is made from relational graphs,

one for genes and another for conditions. The graph of the genes and conditions is con-

structed by the k-nearest neighbors and allows to define a priori distribution of labels

as auto-logistic models. The similarities of genes are calculated using gene ontology

(GO). To estimate the parameters, we adopt a hybrid procedure that mixes MCMC with

a variant of the Wang-Landau algorithm. Experiments on simulated and real data show
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the performance of our approach.

It should be noted that there may be several variables of noise in microarray data.

These variables may mask the true structure of the clustering. Inspired by the plaid

model, we propose a model that simultaneously finds the true clustering structure and

identifies discriminating variables. We propose a new model to solve the problem. It

assumes that an observation can be explained by more than one cluster. This problem

is addressed by using a binary latent vector, so the estimation is obtained via the Monte

Carlo EM algorithm. Importance Sampling is used to reduce the computational cost

of the Monte Carlo sampling at each step of the EM algorithm. Numerical examples

demonstrate the usefulness of these methods in terms of variable selection and clustering.

Keywords: Clustering, deviance information criterion, gene expression, gene

ontology, Wang-Landau algorithm, auto-logistic models, variable selection, plaid

model, Monte Carlo EM algorithm, Importance Sampling.
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INTRODUCTION

Les données d’expression génétique obtenues par les technologies micro-puces

d’ADN sont une forme de données génomiques à haut débit. Elles fournissent des me-

sures relatives de niveaux d’ARNm (Acide ribonucléique messager) pour des milliers

de gènes dans un échantillon biologique (Lee et al. [14]). Typiquement, ces données

contiennent un grand nombre (jusqu’à plusieurs dizaines de milliers) de gènes, et un

nombre d’échantillons (individus) relativement faible. Ces mesures sont obtenues en

immobilisant les gènes sur des spots disposés dans une grille (« array ») sur un support

qui est typiquement une lame de verre, une plaquette de quartz, ou une membrane de

nylon. À partir d’un échantillon d’intérêt, par exemple une biopsie tumorale, l’ARNm

est extrait, marqué et hybridé à la grille. La mesure de la quantité de marques sur chaque

spot donne une valeur d’intensité qui devrait être corrélée à l’abondance du transcrit cor-

respondant d’ARN dans l’échantillon (Huber et al. [10]). La connaissance et l’analyse

des données d’expression génétique peuvent s’avérer utile dans le diagnostic médical,

le traitement et la conception de médicaments. Ces données à micro-puces peuvent être

vues comme une matrice de données où les lignes et les colonnes représentent respecti-

vement les gènes et les conditions ou échantillons expérimentaux (par exemple : patients,

tissus, périodes de temps). Chaque cellule de la matrice est un nombre réel et représente

le niveau d’expression d’un gène sous une condition expérimentale.

Une méthode standard pour analyser les données d’expression génétique est le re-

groupement (clustering en anglais) (Kerr et al. [12]) qui peut se faire soit sur les gènes,

soit sur les conditions expérimentales. Les techniques de regroupement (k-moyennes :

Hartigan et Wong [8], regroupement hiérarchique : Ward [19], modèle basé sur le re-

groupement : Fraley et Raftery [5]) ont prouvé leur utilité pour comprendre la fonction

des gènes, la régulation des gènes, les processus cellulaires et les sous-types de cellules.

Les gènes co-exprimés (avec les expressions similaires) peuvent être groupés ensemble

et sont susceptible d’être impliqués dans le même processus cellulaire (Jiang et al. [11]).

Dans un regroupement de gènes, toutes les conditions expérimentales (échantillons)

sont partagés par toutes les autres grappes. Il en est de même dans un regroupement de
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conditions où celles-ci sont groupées en utilisant tous les gènes. De plus, les grappes

obtenues sont exclusives et exhaustives puisqu’elles forment une partition des gènes ou

des conditions. Cependant, il est bien connu en biologie moléculaire qu’un processus

cellulaire qui contient un petit sous-ensemble de gènes peut être actif seulement dans un

sous-ensemble de conditions. En outre, un seul gène peut participer à plusieurs chemins

(« pathways ») qui peuvent ou ne peuvent pas être co-actifs dans toutes les conditions.

Ainsi, un gène peut donc participer dans plusieurs grappes ou dans rien du tout.

Le bi-regroupement tente de surmonter ces limites de regroupement. La notion de

bi-regroupement (ou biclustering en anglais, aussi connu comme co-clustering ou two-

way clustering) réfère au regroupement simultané de lignes et de colonnes d’une matrice

de données. Chaque grappe obtenue de ce bi-regroupement sera appeléen bi-grappe (bi-

cluster en anglais) . C’est donc une sous-matrice de la matrice des données dont les

lignes exhibent un comportement similaire à travers les colonnes et vice versa. Un re-

groupement quant à lui ne peut s’appliquer que sur les lignes, ou sur les colonnes. Un

regroupement fournit un modèle global tandis que le bi-regroupement donne un modèle

local. Les lignes ou les colonnes peuvent appartenir à plusieurs bi-grappes. La bi-grappe

peut être alors imbriquée. La détection des bi-grappes imbriquées fournit une meilleure

représentation de la réalité biologique. Le bi-regroupement n’a pas seulement des appli-

cations en bioinformatique, il a aussi des applications importantes en marketing (Dol-

nicar et al. [4]), et dans l’exploration de texte (text-mining, Busygin et al. [2]). Jus-

qu’à récemment, le bi-regroupement n’avait pas reçu beaucoup d’attention dans la com-

munauté statistique. Très peu de modèles de bi-regroupement ont été proposés dans la

littérature.

L’objectif de cette thèse est de trouver des nouvelles méthodes qui permettent de

sélectionner des bi-grappes dans une matrice de donnée. Nous présentons une revue

des algorithmes de bi-regroupement qui sont classés en fonction du type d’imbrication

et du type d’homogénéité. Nous illuminons les modèles statistiques sous-jacents à cer-

tains algorithmes populaires. Nous présentons également deux nouveaux modèles de

bi-regroupement probabilistes qui sont des extensions du modèle à carreaux (ou plaid)

de Lazzeroni et Owen [13]. Le premier modèle est un modèle à carreaux pénalisé. Il est
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bayésien et contient un paramètre relié à la distribution a priori des étiquettes d’apparte-

nance des lignes et des colonnes. Ce paramètre contrôle le niveau d’imbrication entre les

bi-grappes et permet de lier les deux algorithmes de bi-regroupement les plus populaires

(l’algorithme de Cheng et Church [3] et celui de Lazzeroni et Owen [13]). Les méthodes

d’échantillonnage de Gibbs [6] et de Metropolis-Hasting [9] nous permettent d’estimer

les bi-grappes. Le second modèle est aussi bayésien et tient compte de l’information a

priori sur les gènes et les conditions de la matrice d’expression génétique. Cette infor-

mation est incorporée à travers un graphe relationnel par les modèles auto-logistiques

Besag [1]. L’algorithme de Wang-Landau [18], combiné avec les méthodes de Monte

Carlo par chaines de Markov, est utilisé pour estimer les paramètres. L’utilisation de

l’algorithme de Wang-Landau est utile pour contourner l’indisponibilité de la constante

de normalisation des distributions a priori des étiquettes.

Lorsqu’on regroupe les échantillons ou les conditions expérimentales, le but est de

trouver les structures de phénotype des conditions qui sont généralement liées à cer-

taines maladies ou à des effets des médicaments. Il a été démontré (Golub et al. [7])

que les phénotypes d’échantillons peuvent être discriminés à travers seulement un petit

nombre de gènes qui ont des niveaux d’expression fortement corrélés avec les classes.

Ces gènes sont donc informatifs. Les autres gènes sont non informatifs (ou bruits) car ils

sont considérés non pertinents pour expliquer le regroupement en classes. Il est donc sou-

vent nécessaire en pratique de sélectionner les gènes significatifs capables de révéler la

vraie structure du regroupement dans les échantillons. Inspiré du modèle à carreaux, nous

présentons un nouveau modèle capable de sélectionner les variables dans un contexte de

regroupement des données. Ce modèle est relié à ce qui est appelé dans la littérature le

modèle de mélange multiplicatif pour le regroupement avec imbrication (Qiang et Ba-

nerjee [16]). Il est différent et plus général que les modèles considérés dans la littérature

(Pan et Shen [15] et Tadesse et al. [17]) car il permet non seulement l’imbrication entre

les grappes, mais aussi, dans chaque grappe, les lignes et les colonnes se comportent

de façon similaire (comme dans une bi-grappe à valeurs cohérentes sur les lignes et

les colonnes). De plus, l’utilisation de la variable latente de sélection de variable dans

un algorithme EM de Monte Carlo (Wei et Tanner [20]) semble être nouveau dans ce
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contexte.

Le premier chapitre de cette thèse introduit le concept de bi-regroupement et présente

certains algorithmes en fonction de l’homogénéité recherchée dans les bi-grappes, et le

type d’imbrication que l’on peut rencontrer. C’est un chapitre introductif à la thèse qui

permet de comprendre le bi-regroupement et les approches utilisées dans la littérature. Il

constituera le premier article de cette thèse intitulé : « A Survey of Practical Biclustering

Methods For Gene Expression Data ». L’autre auteur de cet article est mon superviseur,

M. AlejandroMurua, professeur à l’Université deMontréal. La contribution de l’étudiant

dans cet article repose sur la dérivation des formules, la co-écriture du manuscrit et la re-

vue de la littérature sur les algorithmes de bi-regroupement. Le second chapitre décrit le

modèle à carreaux pénalisé et les algorithmes reliés. Il est écrit sous la forme d’un article

intitulé : « The Penalized Plaid model and Related Algorithms ». Cet article a été sou-

mis à « Journal of Applied Statistics ». L’autre auteur de cet article est également mon

superviseur. Dans ce papier, l’étudiant a partiellement émis des idées sur la construction

du modèle, partiellement dérivé les formules, partiellement conçu les expériences sur

des données simulées et réelles, implémenté et exécuté les algorithmes, puis co-écrit le

manuscrit. Le troisième chapitre utilise des champs de Gibbs afin d’introduire de l’in-

formation a priori dans le modèle à carreaux. Il est écrit sous forme d’article : « The

Gibbs-Plaid Biclustering Model ». Les autres auteurs de cet article sont : Alejandro Mu-

rua, professeur à l’Université de Montréal, et Wolfgang Raffelsberger de l’Institut de la

génétique et de la biologie moléculaire et cellulaire (IGBMC) de l’Université de Stras-

bourg, France. L’étudiant a partiellement émis des idées sur la construction du modèle,

partiellement dérivé les formules, proposé l’algorithme de Wang-landau pour estimer

les paramètres, partiellement conçu les expériences sur des données simulées et réelles,

implémenté et exécuté les algorithmes, puis a co-écrit le manuscrit. Le quatrième et

dernier chapitre présente un modèle de sélection de variable dans un contexte de re-

groupement de données. Il est rédigé sous forme d’article intitulé : « Variable Selection

With The Plaid Mixture Model For Clustering ». L’autre auteur est mon superviseur Ale-

jandro Murua. L’étudiant a partiellement émis des idées sur la construction du modèle,

dérivé les formules, conçu l’algorithme EM de Monte Carlo, partiellement conçu les
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expériences sur des données simulées et réelles, implémenté et exécuté les algorithmes

puis a co-écrit le manuscrit.
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CHAPITRE 1

A SURVEY OF PRACTICAL BICLUSTERING METHODS FOR GENE

EXPRESSION DATA

1.1 Introduction and notation

With the recent advances in DNA microarray technology and genome sequencing,

it has become possible to measure at once gene expression levels of many thousands of

genes within a number of different experimental samples or conditions (e.g. different

patients, different tissues, or different time points). Data collected with this technology

are named gene expression data. They may be of great value in medical diagnosis, treat-

ment, and drug design (Wu et al. [37]). Some researchers even claim that the future of

medicine lies in this new type of technology. Gene expression data (or microarray data)

can be viewed as a data matrix where rows and columns represent genes and experimen-

tal conditions respectively. Each matrix entry or cell is a real number, and represents the

expression level (profile) of a gene under an experimental condition.

Clustering techniques can be used to group either the genes under all the different

experimental conditions or the experimental conditions based on the expressions of all

the genes in the data matrix. However, a cellular process may be active only in a subset

of conditions and a single gene may participate in multiple cellular processes (Sara and

Oliveira [29]). It is therefore highly desirable to move beyond the clustering paradigm,

and to develop approaches capable of discovering local patterns (submatrix) in microar-

ray data (Ben-Dor et al. [4]).

The data will be represented by a p× q matrix Y = (yi j). In the case of gene ex-

pression data, yi j represents the expression level of the gene i under the experimental

condition j, i = 1, . . . , p, j = 1, . . . ,q. Table 1.1 illustrates a gene expression matrix.
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Condition 1 ... Condition j ... Condition q

Gene 1 y11 ... y1 j ... y1q

Gene... ... ... ... ... ...

Gene i yi1 ... yi j ... yiq

Gene... ... ... ... ... ...

Gene p yp1 ... yp j ... ypq

Table 1.1: Gene expression matrix

ConsiderK submatrices (or clusters) of the data matrixY. Let ρik = 1 if row i belongs

to the submatrix (or cluster) k, and let it be zero otherwise, k = 1, ...,K. Similarly, let

κ jk = 1 if column j belongs to submatrix k. and let it be zero otherwise. We will

denote by Ik = {i,ρik = 1} the set of rows in k, and by Jk = { j,κ jk = 1}, the set of

columns in k. Their sizes (cardinalities) will be denoted by rk and ck, respectively. Let

ȳ· jk = ∑i∈Ik yi j/rk be the mean of column j in submatrix k, ȳi·k = ∑ j∈Jk yi j/ck, the mean

of row i in submatrix k, and ȳk = ∑(i, j)∈k yi j/rkck, the overall mean of cells in submatrix

k.

Clusters versus biclusters

A cluster k of rows is defined as a subset of rows that exhibit a similar behavior across

all the columns. Thus, a cluster is a rk×q submatrix of the data matrix Y. Note that one

has in this case rk = ∑
p
i=1ρik. A clustering of rows satisfies the following conditions

K

∑
k=1

ρik = 1 and
K

∑
k=1

κ jk = K for all i, j, (1.1)

since each row must belong to only one cluster, and each cluster must contain all the

columns (see Figure 1.1). Similarly, a cluster k of columns is defined as a subset of

columns that exhibit a similar behavior across all rows. A column cluster is then a p×ck

submatrix of the data matrix Y. In this case, one can write ck = ∑
q
j=1κ jk. A clustering
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of columns satisfies the following conditions

K

∑
k=1

ρik = K and
K

∑
k=1

κ jk = 1 for all i, j, (1.2)

since each cluster must contain all rows, and each column must belong to only one

cluster (see Figure 1.2). However, a bicluster k is a subset of rows that exhibit similar

behavior across a subset of columns, and conversely (see Figure 1.3). A bicluster is a

rk× ck submatrix of the data matrix Y. It satisfies

0≤
K

∑
k=1

ρik ≤ K and 0≤
K

∑
k=1

κ jk ≤ K for all i, j, (1.3)

since each row (or column) may belong to several biclusters (see Figure 1.3).

Rows

clusters

Figure 1.1:

Clustering of

rows

Columns

clusters

Figure 1.2:

Clustering of

columns

Biclusters

Figure 1.3: Biclustering of

the matrix data

The problem of biclustering consists of finding a possibly overlapping partition of blocks

(biclusters) of the data matrix. The main unknown parameters of biclustering are, as in

the case of clustering, the number of biclusters K, and the row and column membership

labels (ρ,κ) = {(ρik,κ jk)}, i = 1, . . . p, j = 1, . . . ,q, k = 1, . . .K. Note that contrary to

clustering, biclustering involves two sets of unknown labels. As in any clustering model,

each bicluster k must satisfy a predetermined specific characteristic of homogeneity.

Sara and Oliveira [29] gave a somewhat thorough review of popular biclustering tech-
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niques. They analyzed and classified a large number of existing approaches according to

the type of homogeneity defining biclusters. They identified four types of homogeneity:

biclusters with constant values, biclusters with constant values on rows or columns, bi-

clusters with coherent values, and biclusters with coherent evolution. In Section 1.2, we

give the definitions and some examples of each type of homogeneity.

Another key difference between clustering and biclustering is the concept of over-

lapping between the clusters (or biclusters). We say that a bicluster k1 overlaps with

another bicluster k2 if these two biclusters share some rows or some columns of the data

matrix. From this definition, we can find in the literature three types of overlapping. The

first one is the row or column overlapping. Only the rows (or the columns) can belong to

more than one bicluster. The second one is the Row-column overlapping. Both rows and

columns may belong to several biclusters, but a cell in the matrix cannot belong to more

than one bicluster. The third and last type of overlapping is the cell overlapping which is

more general than the others. A cell (a specific row and column) may belong to several

biclusters. In Section 1.3 we survey some of the biclustering models and algorithms that

have been developed for gene expression analysis for each type of overlapping. Our list

of algorithms is not exhaustive, but it rather focuses on what we believe are the more

practical methods.

1.2 Types of biclusters

In this section we follow closely the exposition of Sara and Oliveira [29].

1.2.1 Biclusters with constant values

A bicluster with constant values is a submatrix whose cells share a common value.

In the case of gene expression data, constant biclusters are subsets of genes with simi-

lar expression values within a subset of conditions. A perfect constant bicluster verifies

yi j = µk for all (i, j) ∈ k. The values yi j found in a constant bicluster can be written as:

yi j = µk + εi j where εi j is a noise associated to yi j. Table 1.2 gives an example of this

type of bicluster.
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12 12 12 12

12 12 12 12

12 12 12 12

Table 1.2: Bicluster with constant values

Hartigan [16] seems to be the first to have applied a clustering method to simultane-

ously cluster rows and columns. He introduced a partition-based algorithm called direct

clustering that allows the division of the data in submatrices (biclusters). The quality of

a bicluster was evaluated by the sum of squared errors

∑
(i, j)∈k

(yi j− ȳk)
2. (1.4)

Hartigan’s algorithm stops when the data matrix is partitioned into the desired number

of biclusters, say K. The quality of the partition is evaluated by the total sum of squared

errors

SSQ =
K

∑
k=1

∑
(i, j)∈k

(yi j− ȳk)
2.

Tibshirani et al. [33] and Cho et al. [10] have also used (1.4) as a measure of biclustering

quality to find constant biclusters.

1.2.2 Biclusters with constant values on rows or columns

This type of bicluster exhibits coherent values either on the columns or the rows. The

biclusters in Tables 1.3 and 1.4 are examples of perfect biclusters with constant rows and

columns, respectively.

12 12 12 12

14 14 14 14

9 9 9 9

Table 1.3: Constant values on rows

12 7 10 11

12 7 10 11

12 7 10 11

Table 1.4: Constant values on columns

A perfect bicluster with constant values on rows is a submatrix k where all the values
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in the bicluster can be obtained using one of the following expressions:

yi j = µk +αik or yi j = µk×αik, (1.5)

where µk is the typical value in the bicluster, αik is the adjustment (additive or multiplica-

tive) for row i. A perfect bicluster with constant values on columns is defined similarly.

A direct approach to identify this type of bicluster is to first do a normalization on the

rows or columns using the mean sample of the rows and of the columns, respectively,

and then, apply a method to find biclusters with constant values. Sheng et al. [31] and

Segal et al. [30] introduced a probabilistic model to find biclusters with constant values

on columns (see Sections 1.3.1 and 1.3.3 for more details).

1.2.3 Biclusters with coherent values

A bicluster with coherent values both on rows and columns is an improvement over

the types considered previously. A perfect bicluster k is defined as a subset of rows and

a subset of columns verifying for all (i, j) ∈ k:

yi j = µk +αik +β jk or yi j = µk×αik×β jk, (1.6)

where µk is the typical value of the bicluster, αik is the adjustment for row i, and β jk is

the adjustment for column j. This type of homogeneity is very common in the literature

and many authors (Cheng and Church [9], Lazzeroni and Owen [20], Gu and Liu [14],

Zhang [39], Turner et al. [34], Cho et al. [10], Chekouo and Murua [7], Hochreiter et al.

[17], Lee et al. [21]) have used it. Note that when an additive model is assumed in

a bicluster k, the residual of yi j is ri jk = yi j − ȳi·k − ȳ· jk + ȳk and ri jk = 0 if and only

if yi j = µk + αik + β jk. The particular cases of αik = 0 (or αik = 1) and β jk = 0 (or

β jk = 1) in the model given by expression (1.6) give the biclusters with constant values

on columns and with constant values on rows, respectively. Tables 1.5 and 1.6 illustrate

examples of an additive and a multiplicative model, respectively.
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12 13 16 11

14 15 18 13

9 10 13 8

Table 1.5: Additive coherent values

12 24 6 18

10 20 5 15

1 2 0.5 1.5

Table 1.6: Multiplicative coherent values

1.2.4 Biclusters with coherent evolution

Ben-Dor et al. [4] have defined a bicluster as a submatrix preserving an order (OPSM).

A submatrix preserves an order if there exists a permutation of its columns so that the

sequence of values in each row is strictly increasing. An example of this type of bicluster

is shown in Table 1.7. In the case of gene expression data, these biclusters correspond

to subsets of genes and conditions such that the expression levels of all the genes have

a same linear order across the conditions. Ben-Dor et al. [4] defined a complete model

of OPSM as being a couple (T,π) where T is a set of s columns and π = (t1, ..., ts) is

a linear order on T . In this model, a row i is said to support (T,π) if {yit1,yit2, . . . ,yits}
is an increasing sequence. Their algorithm look for a complete maximal set in terms of

rows.

12 8 10 9

15 11 14 13

32 7 20 10

Table 1.7: Bicluster with coherent evolution

1.3 Types of overlapping

1.3.1 Row or column overlapping methods

In this section, we will review some methods which look for biclusters with over-

lapping only between rows, or only between columns. In terms of labels, this type of

biclustering can be characterized by ∑K
k=1ρik ≥ 1 for row overlapping, or ∑K

k=1κ jk ≥ 1
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for column overlapping. Figures 1.4 and 1.5 illustrate the row overlapping and the col-

umn overlapping models, respectively.

Figure 1.4: Row overlapping model Figure 1.5: Column overlapping model

Tang et al. [32] applied an unsupervised approach for gene expression data analy-

sis called Interrelated Two-Way Clustering (ITWC) to find biclusters with possible row

(gene) overlapping. Their goal was to find important gene patterns, and at the same time

perform cluster discovery on the experimental conditions. This is equivalent to variable

selection (selection of genes) in the context of conditions clustering. There are five steps

within each iteration of ITWC. The first step consists of clustering the rows of the ma-

trix into two clusters G1 and G2 using k-means. In the second step, based on each gene

group Gi, i = 1,2, the columns (conditions) are clustered into two clusters Si,1 and Si,2.

The third step combines these clusters to form four groups of columns C1 = S1,1∩S2,1,

C2 = S1,1∩S2,2,C3 = S1,2∩S2,1 andC4 = S1,2∩S2,2. A pair of groups (Cs,Ct) is said to

be a heterogeneous pair if the groups do not share columns, i.e., for all u ∈Cs, v ∈Ct , if

u ∈ Si, j1 and v ∈ Si, j2 , then j1 6= j2. The fourth step of ITWC consists of finding hetero-

geneous pairs (Cs,Ct), s, t = 1, . . . ,4. The vector-cosine similarity between two vectors

u = (u1, ...,uq) and v = (v1, ...,vq) is given by:

cos(u,v) =
∑
q
j=1 u jv j

√

∑
q
j=1 u

2
j

√

∑
q
j=1 v

2
j

.

The fifth step sorts the rows in descending order according to the sum of vector-cosine

similarities between each row and the two occupancy patterns associated with each het-
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erogeneous pair. The two occupancy patterns for a heterogeneous pair (Cs,Ct) are ob-

tained by setting all components corresponding to columns in Cr to one, and setting

all remaining columns to zero, r ∈ {s, t}. The number of rows are reduced by keeping

only the first 1/3 of the sorted rows from each heterogeneous pair. Leave-one-out cross-

validation is used to evaluate the prediction performance of the partition so obtained.

These five steps are repeated using the selected rows until a predetermined stopping

criterion is satisfied. For example, until the occupancy ratio between columns in the

heterogeneous groups and all conditions, (|Cs|+ |Ct |)/q, is maximized.

Gu and Liu [14] develop a Bayesian approach to find biclusters assuming that the

only possible overlapping is between the experimental conditions (columns). The priors

of the labels ρ and κ are set to respect this restriction. Their model, which is based on

the plaid model, may be written as follows

yi j =
K

∑
k=1

(µk +αik +β jk + εi jk)ρikκ jk +(1−
K

∑
k=1

ρikκ jk)ei j, (1.7)

where εi jk is the noise term for cluster k, and ei j models the data points that do not belong

to any cluster. From this expression, Gui and Liu derive the marginal distribution of Y

given the labels. Inference is based on Markov chain Monte Carlo (MCMC) sampling.

The number of biclusters is selected according to the Bayesian information criterion

(BIC).

Sheng et al. [31] also develop a biclustering method where the overlapping is only

allowed between the columns. Their method proposes a Bayesian framework and works

on discrete data. In this model, the columns belonging to any determined bicluster fol-

low independent multinomial distributions. Thus, these biclusters have constant values

on columns. Sheng et al. use a Gibbs sampling to sample from the gene/column mem-

bership labels. In order to find several biclusters, the authors choose to mask the genes

selected in previous biclusters, so as to run again the same algorithm on the remaining

data. By doing this, only the columns can be selected more than once.
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1.3.2 Row-column overlapping methods

These methods aim at finding biclusters where rows or columns (but not a cell) may

belong to more than one bicluster. They may be characterized as satisfying ∑K
k=1ρikκ jk ≤

1. They may also satisfy ∑K
k=1ρik ≥ 1 or ∑K

k=1κ jk ≥ 1, i = 1, . . . , p, j = 1, . . . ,q. This

type of biclustering may be further characterized by the type of pattern or structure found

in the data matrix which may be checkerboard-like or not.

Figure 1.6: Checkerboard structure Figure 1.7: Non-checkerboard structure

1.3.2.1 Checkerboard structure

A particular type of row-column overlapping is given by assuming a checkerboard

structure in the data matrix. Models requiring this structure allow for the existence

of K = ML non-exclusive biclusters, where each row belongs to exactly M biclusters,

and each column belongs exactly to L biclusters. Figure 1.6 shows an example of this

structure for M = L = 3.

Cho et al. [10] have developed an algorithm that simultaneously discovers clusters

of rows and columns while monotonically decreasing the corresponding sum of squared

residuals. Their optimization problems consists of minimizing the total sum of squared

residuals given by
K

∑
k=1

rkckHk,

with Hk = ∑(i, j)∈k(yi j − ȳi·k− ȳ· jk + ȳk)
2/rkck. In what follows, we show that this op-

timization is equivalent to the application of the hard EM algorithm on an inherently
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associated statistical model. Given the set of parameters θ = (µ,α,β ,σ2), the underly-

ing model of Cho et al. [10] could be written as

P(Y|θ ,ρ,κ) ∝ exp(− 1

2σ2 ∑
i, j

(yi j−∑
m,l

(µml +αiml +β jml)ρimκ jl)
2),

where ∑M
m=1ρim = ∑L

l=1κ jl = 1. The membership labels ρim and κ jl are the membership

labels associated with the clustering of the rows and the columns, respectively. This

model assumes the same variance distribution in all K biclusters. If we further assume a

uniform distribution as the prior distribution on the labels, i.e.,

p(ρim = 1) = p(ρim = 1,ρim′ = 0,m′ 6= m) =
1

M
for all i, m

p(κ jl = 1) = p(κ jl = 1,κ jl′ = 0, l′ 6= l) =
1

L
for all j, l

then, applying the hard EM algorithm on the complete distribution P(y,ρ,κ|θ) under the

usual constraints of identifiability on α and β , yield the following parameter estimates

at each EM iteration

µ̂ml = ȳk, α̂iml = ȳi·k− ȳk, β̂ jml = ȳ· jk− ȳk, and σ̂2 =
1

pq

K

∑
k=1

rkckHk.

For the labels, given these estimators, we have

pim = p(ρim = 1,ρim′ = 0,m′ 6= m|y,Θ−ρ)

∝ exp

{

− 1

2σ2 ∑
j,l

κ jl(yi j− (µml +αiml +β jml))
2

}

.

Since ∑m pim = 1, then, maximizing over ρi = (ρim,m = 1, ...M) assigns yi to the
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cluster m with the highest probability, i.e.,

ρim = 1 if and only if m = argmax
m

pim

= argmin
m

∑
l

∑
j∈Jl ,k=(m,l)

(yi j− ȳi·k− ȳ· jk + ȳk)
2. (1.8)

Similarly,

κ jl = 1 if and only if l = argmin
l

∑
m

∑
i∈Im,k=(m,l)

(yi j− ȳi·k− ȳ· jk + ȳk)
2. (1.9)

Relations (1.8) and (1.9) are exactly the same relations that Cho et al. [10] have used to

update the labels without explicitly writing a model for the data.

Another work which assumes the checkerboard structure is that of Govaert and Nadif

[13]. They refer to their biclustering model as block clustering. In contrast to Cho et al.

[10], Govaert and Nadif assume that the prior probabilities on the membership labels

are also parameters of interest to be estimated. They also used a hard EM algorithm, the

Classification EM (CEM) algorithm, to simultaneously cluster the rows and the columns.

Their block mixture model is given by

P(y|θ) = ∑
ρ,κ

∏
i,m

pρim
m ∏

j,l

q
κ jl

l ∏
i, j

φi j(yi j;µlm),

where φi j(yi j;µlm) is a probability density parametrized by µlm. The parameters pl and

qm are the probabilities that a row and a column belong to the l-th and m-th component,

respectively. The parameter θ in this model is the vector (p1, ..., pM,q1, ...,qL,µ11, ...,µLM).

Kluger et al. [19] introduce a biclustering technique called spectral biclustering. It

uses a singular value decomposition to identify bicluster structures in the data. This

method assumes that the expression matrix Y has a checkerboard-like structure. By ap-

plying the singular value decomposition on Y, one finds the eigenvectors of YYT and

YTY. Note that if v is an eigenvector of YYT , then YT v is an eigenvector of YTY.

For any eigenvector pair (v,YT v), we check whether each of the eigenvectors can be

approximated using a piecewise constant vector. This operation allows them to deter-
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mine whether the data have a checkerboard pattern. For that, the authors use a one-

dimensional k-means algorithm to test this fit. Kluger et al.’s assume a multiplicative

model, that is, the expression level of a specific gene i in a condition j can be expressed

as a product of three independent factors. The first factor is called the hidden base ex-

pression level Ei j (i.e., µ). The entries of E within each block are constant. The second

factor represents the genes’ expression tendencies across different conditions (α). The

last factor represents the role of particular conditions over the genes’ expression tenden-

cies (β ). The goal is to find the underlying block structure of E. For that purpose, the

rows and the columns are first normalized. Let R and C denote the diagonal matrices

R = diag(Y1p) where 1p = (1, ..,1) ∈Rp, andC = diag(1TpY). The block structure of E

is now reflected in the stepwise structure of pairs of eigenvectors with the same eigenval-

ues of the normalized matricesM = R−1YC−1YT andMT . Theses two eigenvalue prob-

lems can be solved through a standard singular value decomposition of R−1/2YC−1/2.

1.3.2.2 Non-checkerboard structure

Figure 1.7 shows an example of this structure with K = 3. The algorithm of Cheng

and Church [9], one of the most popular biclustering algorithms, falls in this category.

Cheng and Church seem to be the first authors to have introduced the term biclustering

in the literature. In their algorithm, the mean squared residual Hk plays a crucial role as a

measure of coherence of the rows and columns in a bicluster. Let δ > 0. A sub-matrix k

is said to be a δ -bicluster if Hk < δ . Cheng and Church’s algorithm aims at finding large

and maximal biclusters with scores below a certain predetermined small threshold δ .

Cheng and Church suggest a greedy heuristic search so as to rapidly converge to a locally

maximal δ -bicluster. A single row or column deletion step iteratively removes the row

or column that gives the maximum decrease in Hk. A multiple row or column deletion

step follows the same idea, but this time it removes multiple rows or columns in a single

iteration. A row or column addition step adds to a given bicluster rows and columns that

do not increase the actual score of the bicluster. The general algorithm is composed of

a row or column deletion followed by a row or column addition in each iteration. The

biclusters are found one at a time. Once a bicluster is found, its rows and columns are



22

masked with uniform random numbers. The process is repeated until K biclusters are

found. The masking procedure renders the overlapping between the biclusters unlikely.

Cheng and Church justify their algorithm based on the two following assertions.

Assertion 1. The set of rows that can be completely or partially removed with the net

effect of decreasing the score of a bicluster k is:

R1 =

{

i ∈ Ik,
1

ck
∑
j∈Jk

(yi j− ȳi·k− ȳ· jk + ȳk)
2 > Hk

}

. (1.10)

Assertion 2. The set of rows that can be completely or partially added with the net effect

of decreasing the score of a bicluster k is:

R2 =

{

i /∈ Ik,
1

ck
∑
j∈Jk

(yi j− ȳi·k− ȳ· jk + ȳk)
2 < Hk

}

. (1.11)

Chekouo and Murua [7] have attempted to mimic Cheng and Church’ algorithm

within a Bayesian framework. They define the underlying model in Cheng and Church’s

algorithm as a model similar to the one given by the expression (1.7) of Gu and Liu

[14]. However, contrary to (1.7), Chekouo and Murua’s model assumes the possibility

of having row or column overlapping in the same biclustering. In fact, the labels satisfy

∑K
k=1ρikκ jk ≤ 1 for all i, j. The prior on the labels is a double-exponential-like distri-

bution with a large inverse scale (penalty) parameter (see Section 1.3.3 below for more

details). Chekouo and Murua were successful in showing that both assertions 1 and 2

may be derived as updating proposal movements in a Metropolis-Hastings procedure.

Consequently, using these assertions in a MCMC sampler will lead to estimates of the

posterior labels.

1.3.3 Cell overlapping methods

In this section, we present biclustering methods that allow general overlapping be-

tween biclusters, i.e., where each cell (i, j) of the data matrix may belong to more than

one bicluster. These methods may be characterized by the condition ∑K
k=1ρikκ jk > 1.
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The biclusters in this biclustering are arbitrarily positioned in the matrix. Figure 1.3

shows an example of this type of biclustering.

1.3.3.1 Additive models

One of the most popular models that takes into account this structure is the plaid

model of Lazzeroni and Owen [20] which is defined by

yi j ∼ Normal

(

µ0 +
K

∑
k=1

(µk +αik +β jk)ρikκ jk,σ
2

)

. (1.12)

The general biclustering problem is now formulated as finding parameter values so that

the resulting matrix would fit the original data as much as possible. Formally, the prob-

lem consists of minimizing

p

∑
i=1

q

∑
j=1

(yi j−
K

∑
k=0

(µk +αik +β jk)ρikκ jk)
2 (1.13)

under the constraints: ∑
p
i=1αikρik = ∑

q
j=1β jkκ j = 0 for all k. A layer is a bicluster in

the sense of Cheng and Church [9]. A plaid is an ensemble of additive layers. Lazzeroni

and Owen propose to minimize (1.13) by using an iterative heuristic algorithm. New

layers are added to the model one at a time. To simplify the description of their method,

suppose that we already know K−1 layers, and that we seek to uncover the K-th layer.

Let µi jk = µk+αik+β jk and Z
K
i j = yi j−µi j0−∑K−1

k=1 µi jkρikκ jk the residual from the first

K−1 layers. We need to minimize

Q =
1

2

p

∑
i=1

q

∑
j=1

(ZK
i j −µi jKρiKκ jK)2, (1.14)

subject to the above identifiability constraints on αiK and β jK .

The proposed method to solve (1.14) is again iterative. A relaxation in the parameters

is introduced to simplify the optimization problem. The binary latent variables ρik, κ jk

are replaced by continues ones. The constraints on αiK and β jK are replaced by the soft
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constraints: ∑
p
i=1αiKρ2

iK = ∑
q
j=1β jKκ2

jK = 0.

The hard-EM estimators given in the previous sections are similar to those of Lazze-

roni and Owen with no relaxation. With the relaxed parameters, the updates ρ̄iK and κ̄ jK

are given by

ρ̄ik =
∑ j µi jKκ jkZ

K
i j

∑ j µ
2
i jKκ2

jK

, (1.15)

κ̄ jk =
∑i µi jKρikZ

K
i j

∑i µ
2
i jKρ2

iK

. (1.16)

The importance of layer k is measured by σ2
k = ∑

p
i=1∑

q
j=1ρikκ jkµ2

i jk. A layer is

accepted if its importance is significantly larger than what would be found in noise Zi j.

For a set of K layers, the algorithm allows to re-estimate all of the µi jk, by cycling

through k = 1, ..,K several times. These backfitting cycles only conduct a partial re-

optimization, since the updating is done only on all the µi jk parameters, but not on the

labels ρ and κ parameters, which are kept as known values after the last layer has been

found.

The most successful starting values have been found using a singular value decom-

position on Z. The ρ and κ vectors are initialized as the eigenvectors associated with the

largest singular values. This choice was motivated by the updating equations for ρ and

κ (equations (1.15) and (1.16)) when µi jk = 1.

Segal et al. [30] also assumed an additive model. This is given by

yi j ∼i.i.d Normal

(

µ0 +
K

∑
k=1

(µk +β jk)ρik,σ
2
j

)

. (1.17)

Note that each column belongs to all the biclusters as in clustering. However, this model

allows for the overlapping of layers. Contrary to the work of Lazzeroni and Owen [20],

the model of Segal et al. [30] does not consider row effects αik, and the variances may

be column-dependent. It is easily shown (see Chekouo and Murua [8]) that this model is

similar to the multiplicative mixture model for overlapping clustering (Qiang and Baner-
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jee [24]). The authors referred to this model’s biclusters as processes. The prior distribu-

tions for β jk and ρik are assumed to be independent uniforms (over some appropriately

bounded range) and binomials, respectively. All the parameters are estimated using a

hard EM algorithm as follows:

1. Initialize the labels ρ using a classical method of clustering (k-means for example).

2. (hard E-Step) Repeat (a) and (b) until convergence:

(a) Find the β jk that maximizes its full conditional distribution.

(b) Find the ρik that maximizes its full conditional distribution.

3. Estimate the parameters qik = P(ρik = 1) (M-step).

Turner et al. [34] propose an improved biclustering of microarray data using the plaid

model. They also propose a different algorithm for fitting the plaid model. Their ap-

proach uses binary least squares (i.e., hard EM algorithm) to update the cluster mem-

bership parameters. This somewhat simplifies the updating of the other parameters. The

backfitting is done as in the case of Lazzeroni and Owen [20].

Zhang [39] proposes a hierarchical Bayesian version of the plaid model. He provides

an empirical Bayes algorithm for sampling the posteriors in two steps. In the first step,

he estimates the membership labels by maximizing their marginal posteriors. During

the second step, he directly calculates the Bayesian estimates for the other parameters

given the values of the membership labels. To improve the overall estimation, he runs

backfitting to update the parameters Θk = (µk,αik,β jk,ρik,κ jk,σ
2) given Θt , t 6= k. The

backfitting is performed after having done a greedy search for the K layers, as in the case

of Lazzeroni and Owen [20].

Chekouo and Murua [7] generalize the plaid model also within a Bayesian frame-

work. They introduce a modified extended version of the Bayesian plaid model. The au-

thors refer to this model as the penalized plaid model. It aims at controlling the amount

of bicluster overlapping by considering a penalization on the amount of overlapping.

This is carried out by the introduction of a so-called penalty parameter which will be
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denoted by λ . The model fully accounts for a general overlapping structure, as opposed

to just a one dimensional (row or column) overlapping as in the model of Gu and Liu

[14]. The parameters are determined by an MCMC sampler all at once as opposed to the

sequential greedy search algorithm of Zhang [39]. The model also takes into account the

problem of identifiability of the row and column effects. As in ANOVA, it assumes that

the sum of these effects vanishes within each bicluster. In addition, the penalized plaid

model may be seen as a continuous extension of the non-overlapping model of Cheng

and Church [9] to the plaid model. Formally, given all the parameters,

yi j ∼i.i.d Normal

(

µ0γi j +
K

∑
k=1

(µk +αik +β jk)ρikκ jk,σ
2(ρi,κ j)

)

, (1.18)

where γi j = ∏k(1−ρikκ jk) is the label associated with the zero-bicluster, i.e., a cluster

containing some observations which are not well explained by the main biclusters; and

µ0 is the mean of the zero-bicluster. Note that when ∑K
k=1ρikκ jk ≤ 1 and σ2(ρi,κ j) = σ2

k

depends of bicluster k, the model becomes the underlying model of Cheng and Church.

But when ∑K
k=1ρikκ jk is allowed to become larger than 1, and σ2(ρi,κ j) = σ2 is con-

stant, the model becomes the plaid model introduced by Lazzeroni and Owen.

The prior distribution on the labels is defined by a discrete double-exponential with

scale parameter λ

π((ρ,κ)|λ ) ∝ exp

{

−λ ∑
i, j

∣

∣

∣

∣

∣

1− γi j−
K

∑
k=1

ρikκ jk

∣

∣

∣

∣

∣

}

.

The scale λ ≥ 0 may be viewed as a penalty parameter that controls the amount of bi-

clustering overlapping. If λ = 0, the labels are a priori uniformly distributed (e.g., as in

the original plaid model). There is no constraint on the structure of the overlapping (i.e.,

there is cell overlapping). When λ → ∞ , the model becomes the row-column overlap-

ping model of Cheng and Church. Chekouo and Murua show via a simulation study that

the logarithm of the posterior mean of λ decreases nearly linearly with the number of

biclusters and the amount of overlapping in them. They argue that the penalty parameter

λ may serve as a measure of complexity of the data. In order to choose an appropriate
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number of biclusters, they suggest using a modified version of the deviance informa-

tion criterion (DIC). The modified DIC is based on the conditional distribution given the

membership labels, and on the maximum a posteriori (MAP) estimators of the param-

eters. We note that this work appears to be one of the first to have properly addressed

the model selection (i.e., the choice of number of biclusters) problem within the context

of biclustering. Their work also demonstrates that the use of Bayesian computational

techniques such as the Gibbs sampler and Metropolis-Hastings algorithm to estimate the

biclustering yield far better results than hard-EM or Iterated Conditional Modes (ICM),

and ad hoc heuristic techniques.

1.3.3.2 Informative priors

In another paper, Chekouo and Murua [6] propose a model that takes into account

prior information on genes and conditions through pairwise interactions. Their model

is a Gaussian plaid model for biclustering combined with a discrete Gibbs field or au-

tologistic distribution (Besag [5], Winkler [36]) that conveys the prior information. The

Gibbs field prior is a model for dedicated relational graphs, one for the genes and an-

other for the conditions, whose nodes correspond to genes (or conditions) and edges to

gene (or condition) similarities. Each relational graph is provided with a neighborhood

structure. The notation i ∼ i′ will denote that nodes i and i′ in the graph are connected

with a graph edge, i.e., the relation i∼ i′ is satisfied if and only if i and i′ are neighbors.

Each edge is assigned a weight. For the gene graph, the weights are given by

Bii′(T
ρ ,σρ) =

1

T ρ
exp

(

− 1

2σ2
ρ

dρ(i, i′)2
)

.

where T ρ and σρ are the temperature and kernel bandwidth parameters of the graph,

respectively. The “distances” dρ(i, i′) are induced by genes similarities based on the en-

tropy information (Resnik [26]) extracted from GO (Gene Ontology) annotations (Ash-

burner et al. [1]). The prior for the gene labels ρk is given by the binary Gibbs random
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field

p(ρk|a,T ρ ,σ2
ρ) ∝ hρ,k(ρk,T

ρ)
.
= exp

{

p

∑
i=1

aiρik + ∑
i∼i′

Bii′(T
ρ ,σ2

ρ)1{ρik=ρi′k}

}

where a = {ai}pi=1 is a set of hyper-parameters controlling the amount of membership

(ρik = 1) in the biclusters, and for every relation A, 1A denotes the indicator function as-

sociated with the set of elements satisfying relation A. The Gibbs prior favors biclusters

formed by similar genes in the sense of the distances or similarities built in the relational

graph. The incorporation of a complex data prior in the model poses many computa-

tional challenges. Chekouo and Murua develop a special version of the Wang-Landau

algorithm (Atchadé and Liu [2], Wang and Landau [35]) to bypass the intractability of

the normalizing constants in the prior distributions.

1.3.3.3 Multiplicative models

Hochreiter et al. [17] propose a novel generative approach for biclustering called

FABIA (Factor Analysis for Bicluster Acquisition). Their model is based on a mul-

tiplicative model inspired by factor analysis with K factors. It takes into account the

linear dependencies between gene expressions and conditions. Formally, the matrix data

Y is written as a sum of multiplicative biclustering models

Y =
K

∑
k=1

αkβ
T
k + ε,

where ε = (εi j)
p,q
i=1, j=1 is the additive noise, αk ∈ Rp and βk ∈ Rq. The vector αk corre-

sponds to a column vector that contains zeros for genes not participating in the bicluster.

The vector βk is a vector of factors that contains zeros for conditions not included in the

bicluster. Hochreiter et al. [17] try to find a biclustering by estimating sparse vectors αk

and βk. Hence, the problem is to identify the zero components of these vectors. Hochre-

iter et al. also embed their model into a Bayesian model. The prior distributions on αk

and βk are set to component-wise independent Laplace distributions. The variational EM
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algorithm for sparse factors introduced by Girolami [12] is used to estimate the parame-

ters. The members of the k-th bicluster are obtained by thresholding the components of

αk and βk.

An alternative method to find the biclusters using a multiplicative model is the Sparse

Singular Value Decomposition (SSVD) approach of Lee et al. [21]. The singular value

decomposition (SVD) of y can be written as

Y = αµβT =
r

∑
k=1

µkαkβ
T
k

where r is the rank of Y, α = (α1| · · · |αr) is a matrix of orthonormal left singular

vectors, β = (β1| · · · |βr) is a matrix of orthonormal right singular vectors, and µ =

diag(µ1, ...,µr) is a diagonal matrix with positive singular values µ1 ≥ ... ≥ µr. SVD

decomposes Y into a sum of rank-one matrices µkαkβ
T
k referred to as SVD layers by the

authors. Taking the first K ≤ r rank-one matrices, one obtains the following approxima-

tion of Y:

Y≈ Y(K) =
K

∑
k=1

µkαkβ
T
k .

Note that Y(K) = argmaxy⋆∈AK
‖ y−y⋆ ‖2, where AK is the set of all the p×q matrices

of rankK. The biclustering problem of Lee et al. [21] is similar to that of Hochreiter et al.

[17]. It consists of seeking a low-rank matrix approximation to Y under the assumption

that the vectors αk and βk are sparse (i.e., they contain many zeros). In order to obtain

sparsity, contrary to the Bayesian approach of Hochreiter et al. [17], Lee et al. [21]

simply impose sparsity penalties on both α and β . Thus, for a given k, bicluster k (or

SVD layer k) consists of the genes (rows) associated with the non-zero components of

αk, and the conditions (columns) associated with the non-zero components of βk.

1.4 Choosing the number of biclusters

In the literature, there are mainly three ways to estimate the number of biclusters K.

The first and easier way to choose K is to fix it a priori. The biclustering algorithms are

run until the K biclusters have been identified. Many authors such as Cheng and Church
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[9], Turner et al. [34] and Lee et al. [21] use this strategy to sequentially discover one

bicluster at a time. The second way to estimate K is to perform a greedy search to find

the biclusters. The maximum number Kmax of biclusters allowed in the search is fixed

a priori. A stopping rule for the algorithm must also be specified. Lazzeroni and Owen

(2002) determined the biclusters sequentially, i.e., one at a time. Their stopping rule is

based on what they refer to as a measure of the importance of a bicluster. For bicluster

k, this is defined by σ2
k = ∑n

i=1∑
p
j=1ρikκ jk(µi jk)

2. A new bicluster k is accepted if its

importance is significantly larger than what is expected from noise. Consider again the

residual matrix at stage k, given by Z(k) = (Zi j) where each Zi j = yi j−∑k−1
k′=1

µi jk′ρik′κ jk′ .

In order to evaluate σ2
k on noise, Lazzeroni and Owen consider estimating its distribution

by resampling techniques. They randomly permute every row and every column of Z(k)

a pre-defined number of times, say R, and obtain the matrices Z
(k)
r for r = 1, ...,R. The

next bicluster k is then estimated from each of these random matrices. Associated with

every bicluster k so found from Z
(k)
r there is an importance σ2

k,r. If σ2
k > maxr σ2

k,r and

k < Kmax, then the new bicluster k is added to the model; otherwise the algorithm is

stopped and only k−1 biclusters are reported.

Zhang (2010) also find the biclusters one at the time. He estimates the bicluster

memberships by maximizing their marginal posteriors. As Lazzeroni and Owen, Zhang

also uses a gready search to estimate the biclustering. But he notes that a permutation of

rows and columns of the matrix Y may no longer have a similar correlation structure to

that of the originalY. So he proposes a different stopping rule. The algorithm is run until

Kmax biclusters have been found. He computes σ2
min = mink(σ

2
k ), and considers σ2

min as

an initial estimate of the background noise level. Then for a pre-determined constant

tb > 0, he computes the average σ2
b of all σ2

k s verifying σ2
k < tbσ2

min. The background

noise level is then updated to σ2
b . Zhang uses the ratio σ2

k /σ2
b to test the hypothesis that

bicluster k is just noise. The distribution of this ratio under the null hypothesis, and for

large pq, is approximated by a χ2
1 distribution. Finally, bicluster k is kept if and only if

σ2
k /σ2

b > tc, where tc is the critical value of the test.

The third and last way to choose the number of biclusters K is by model selection.

This is based on well-known criteria such as the Bayesian information criterion (BIC),
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the Akaike information criterion (AIC), or the deviance information criterion (DIC). In

general, these criteria are used when the algorithms estimate all biclusters at the same

time, as opposed to sequentially. Gu and Liu [14] use BIC to select the number of

biclusters. Chekouo and Murua [7] note that BIC does not seem very suitable for the

biclustering problem, and instead they propose using AIC or DIC to select an appropriate

number of biclusters.

1.5 Comparison and validation of the biclustering algorithms

Several comparisons of biclustering methods have been proposed in the literature. In

clustering, there are mainly two categories of indices to validate and compare the clus-

tering results: internal and external indices. We can also find these categories within

the context of biclustering (Santamaria et al., 2007). Internal indices are based only on

the information intrinsic to the biclustering model, and not on exogenous prior informa-

tion on the data. Among these indices, we have the well-known Bayesian information

criterion (BIC), the Akaike information criterion (AIC), and also the Calinski-Harabasz

index, and the Davies-Bouldin index, just to mention a few. The reader is referred to

Rendón et al. [25] for a review on internal indices. In general, internal indices vary from

one biclustering model to another, and consequently, often they are not suitable to make

comparisons between models or algorithms. This is why we only focus on external in-

dices in this section. Basically, there are two types of external indices: biological and

non-biologica indices.

1.5.1 Biological external indices

We can use biological knowledge to validate the estimated biclusters. Many au-

thors such as Lazzeroni and Owen [20], Zhang [39], Saez et al. [27], Prelić et al. [23],

Eren et al. [11] and Chekouo and Murua [7] use the enrichment of the genes in their

biclusters to validate their results, and also to compare their results to those yielded by

other alternative algorithms. Usually, gene annotations from GO (Gene Ontology) or

KEGG (Kyoto Encyclopedia of Genes and Genomes ) are used to compute enrichment.
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Gene Ontology [1] provides a controlled vocabulary (GO terms and annotations) to de-

scribe gene products characteristics and properties. Each gene is characterized by some

GO terms, which in turn, are characterized by three biological functions referred to as

molecular function, cellular components, and biological processes. In practice, we get

all the GO terms for any of the genes in a given bicluster and determine if each term

is relevant (i.e., over-represented). The common statistic used to test this hypothesis is

based on the Fisher exact test. Assume that a population made of M+N genes contains

exactly M genes annotated to a term, say GO1. Suppose that a given bicluster contains

k genes, r of which are annotated to the term GO1. In order to find out if the GO1

term is over-represented in the bicluster, one can perform a Fisher exact test. Its p-value

is calculated as the probability that a random bicluster of (the same) size k contains at

least r genes annotated to GO1. The hypergeometric distribution is used to compute this

p-value:

p-value =
k

∑
x=r

(

M
r

)(

N
k−r

)

(

N+M
k

) . (1.19)

The R package GOstat [3] uses a χ2 test to approximate this p-value when the expected

value for any count is above five.

Another popular biological knowledge database is the KEGG database [18]. This

provides the biological pathways where each gene belongs. The same procedure as in

GO is also used to test if a KEGG pathway in a given bicluster is over-represented. The

R Bioconductor package clusterProfiler [38] can be used to detect the over-represented

genes.

1.5.2 Non-biological external indices

Non-biological external indices are very popular to validate and compare among

biclusterings. In clustering, there are many known external indices [15] such as the

Rand Index, the Adjusted Rand Index, the Jaccard index, the Folkes and Mallows index,

and the Huberts statistic. These indices assume that the data are divided in a partition,

that is, the data can be decomposed in disjoint sets (e.g., the clusters). This is not the case

in biclustering, since biclusters are allowed to overlap. Consequently, Turner et al. [34]
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adapted the F1 index, a common measure used in text-mining, to measure the similarity

between biclusterings. We note that the F1 index has previously been suggested by

Murua et al. [22] within the context of clustering as well. They show that within the

context of clustering, the F1 index behaves similarly to the Adjusted Rand Index. Let B

be a bicluster, rB be the number of genes in B, cB be the number of conditions in B and

nB = rBcB be the number of elements in B. Suppose that we wish to compare a target

bicluster A and a known bicluster B. Consider the following two measures of similarity

between A and B:

recall =
(rA∩B)(cA∩B)

nB
,

precision =
(rA∩B)(cA∩B)

nA
.

Recall measures the proportion of elements in B that belong to A and precision measures

the proportion of elements in A captured in B. Turner et al. [34] refer to precision as

specificity and to recall as sensitivity. The F1 measure is defined as

F1(A,B) = 2(rA∩B)× (cA∩B)/(nA +nB).

When several biclusters are to be compared, one may use an F1-average based index

(Chekouo andMurua [7], Prelić et al. [23], Santamarı́a et al. [28]). LetM1 = {A1, . . . ,Ak}
be the set of estimated (target) biclusters, andM2 = {B1, . . . ,Bℓ}, the set of true (known)
biclusters. The similarity of the estimateM1 to the true biclusteringM2 can be measured

by

S(M1,M2) =
1

k

k

∑
i=1

max
j

F1(Ai,B j) or S(M2,M1) =
1

ℓ

ℓ

∑
i=1

max
j

F1(A j,Bi).

Note that S(M1,M2) ≤ 1, and it is equal to 1 if M1 = M2.

1.6 Conclusion

In this article, we reviewed some practical biclustering algorithms according to the

type of the homogeneity in the biclusters and the type of overlapping in the biclustering.
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It turns out that most of the algorithms try to find biclusters with coherent values on the

rows and columns, and biclusterings with cell-overlapping. The number of biclusters

can be fixed, determined by a stopping rule, or by a model selection criterion. Also, the

F1-measure seems suitable to evaluate and compare the biclustering algorithms. The GO

and KEGG biological knowledge databases may be used to give a biological interpreta-

tion of the biclustering results in terms of gene enrichment analysis.



BIBLIOGRAPHIE

[1] Ashburner, M., C. Ball, J. Blake, D. Bolsteing, H. Butler, J. Cherry, A. Davis, K. Do-

linski, S. Dwight, J. Eppig, M. Harris, D. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis,

J. Matese, J. Richardson, M. Ringwald, G. Rubin, and G. Sherlock (2000). Geneon-

tology : tool for the unification of biology the gene ontology consortium. Nature

Genetics 25, 25–29.
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CHAPITRE 2

THE PENALIZED BICLUSTERING MODEL AND RELATED ALGORITHMS

Abstract

Biclustering is the simultaneous clustering of two related dimensions, for example,

of individuals and features, or genes and experimental conditions. Very few statistical

models for biclustering have been proposed in the literature. Instead, most of the re-

search has focused on algorithms to find biclusters. The models underlying them have

not received much attention. Hence, very little is known about the adequacy and limita-

tions of the models and the efficiency of the algorithms. In this work we shed light on

associated statistical models behind the algorithms. This allows us to generalize most of

the known popular biclustering techniques, and to justify, and many times improve on,

the algorithms used to find the biclusters. It turns out that most of the known techniques

have a hidden Bayesian flavour. Therefore, we adopt a Bayesian framework to model

biclustering. We propose a measure of biclustering complexity (number of biclusters

and overlapping) through a penalized plaid model, and present a suitable version of the

DIC criterion to choose the number of biclusters, a problem that has not been adequately

addressed yet. Our ideas are motivated by the analysis of gene expression data.

Key words: Clustering, deviance information criterion, gene expression, mixture,

model selection, plaid model.

2.1 Introduction

The term biclustering seems to have been first introduced by Cheng and Church [9].

It refers to the simultaneous clustering of the individuals of a population and the fea-

tures defining the individuals. In general, this is better understood if one thinks of a data

matrix where the individuals correspond to the rows and the features to the columns.

Biclustering is clustering done simultaneously in two dimensions (rows and columns).

A bicluster is a sub-matrix of the data matrix where the rows exhibit a similar pattern
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across the columns, and the columns exhibit a similar pattern across the rows. Bicluster-

ing techniques have important applications in Bioinformatics (Tanay et al. [32]), Mar-

keting (Dolnicar et al. [12]), and text mining (Busygin et al. [6]), to mention a few

fields. For example, in Bioinformatics, they are usually applied to gene expression data.

These are matrices of gene expression levels (rows) obtained under different experimen-

tal conditions (columns). Clustering methods such as hierarchical clustering (Sokal and

Michener [30]) or k-means (Ward [34]) will group genes (or conditions) into subsets

that convey biological significance. A gene can belong to only one cluster. All genes in

a cluster must present similar co-regulation patterns across all conditions. However, a

gene (or a condition) may participate in multiple biological pathways that could or not

be co-active under all conditions. That is why biclustering is very relevant in the context

of gene expression data. Genes in a bicluster could belong to other biclusters and could

be co-regulated only in a subset of conditions.

Let Y = (yi j) be the data matrix, with p cases (the rows) and q conditions (the

columns). In practice, in bioinformatics applications, we think of the cases as genes,

and of the conditions as different experimental conditions imposed on the genes. The

biclustering literature have distinguished two main types of biclusters: additive or multi-

plicative ones (Sara and Oliveira [27]). In mathematical terms, the additive biclusters are

given by E(yi j|cell (i, j) ∈ k) = µk+αik+β jk, where k denotes the bicluster, E(·|· ∈ k) is

the conditional expectation given that the cell is in bicluster k, µk is the overall mean of

the objects in the bicluster, αik is the effect of the i-th case on bicluster k, and β jk denotes

the effect of the j-th condition on bicluster k. In this case, for identifiability purposes,

we need to impose the constraints ∑i∈k αik = ∑ j∈k β jk = 0. The multiplicative bicluster

(Hochreiter et al. [18], Kluger et al. [22]) is given by E(yi j|cell (i, j) ∈ k) = µk αik β jk,

where the meaning of the parameters is as in the additive model, but now the effects are

multiplicative. We can impose the constraints ∏i∈k αik = ∏ j∈k β jk = 1, or ∑i∈k αik = |i∈
k|, and ∑ j∈k β jk = | j ∈ k|. Here and in what follows, for any discrete set A, |A| denotes
the number of elements of A. The first constraints apparently make the additive and

multiplicative models equivalent (the additive model is apparently the logarithm of the

multiplicative one). However, this is only true if the errors in the multiplicative model
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are also multiplicative. But, most of the multiplicative models reported in the literature

assume additive errors. In this work, we will restrict our attention to additive models

because they are the most used in applications.

We note that most known biclustering techniques only give explicit assumptions on

the mean of the observations. The implicit assumptions of the distribution of the ob-

servations need to be derived from the algorithms used to find the biclusters. However,

it is easy to see that in all of them the errors may be assumed independent identically

distributed Gaussian random variables. The variance is either common to all biclusters

or bicluster dependent. Also note that the observed mean is modeled conditionally on

knowing the bicluster membership. Let ρik = 1 iff the i-th case is in bicluster k, and let it

be zero otherwise. Similarly, let κ jk = 1 iff the j-th condition is in bicluster k, and let it

be zero otherwise. The bicluster problem consists of estimating the number of biclusters

K and the labels (ρ,κ) = {(ρik,κ jk)} for i = 1, . . . p, j = 1, . . . ,q, and k = 1, . . .K}. We

will also use the notation ρi = (ρik) and κ j = (κ jk). Most of the techniques suggested in

the literature assume that K is known. This is usually a sufficiently large number (Cheng

and Church [9], Lazzeroni and Owen [23], Turner et al. [33], Zhang [35]). However,

many algorithms are sequential in the sense that they uncover one bicluster at a time.

In this case, K is determined sequentially according to some stopping criterion. The

sequential search for K is somewhat preferred since it apparently helps to discover large

biclusters.

Biclustering has not received much attention from the statistical community. Many

of the algorithms proposed in the literature have no probabilistic or statistical founda-

tion (for a good survey on the topic see for example Sara and Oliveira [27]). Hence,

little is known about the adequacy and limitations of the models and the efficiency of

the algorithms. Very few models for biclustering have been proposed. One of the most

popular is the plaid model of Lazzeroni and Owen [23]. In this model, the expectation

of yi j given the overall biclustering membership is written as a sum of layers, plaids,

or biclusters (see equation (2.1)). The parameters are estimated by least squares. In or-

der to facilitate their estimation, the labels are relaxed and assumed continuous. Based

on the same model, Turner, Bailey and Krzanowsk [33] proposed a constrained estima-
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tion of the labels by binary least squares. Gu and Liu [16] generalized the plaid model

by introducing bicluster dependent variances in a Bayesian framework. However, their

model constraints the overlapping structure of the biclusters to one dimension. That

is, the overlapping consists of either only rows or only columns. Caldas and Kaski [7]

also extended the plaid model within a Bayesian framework. A drawback of the esti-

mation algorithms presented in Gu and Liu [16] and Caldas and Kaski [7] is that their

Gibbs samplers require either the inversion of potentially (depending on the dimension

of the data) high-dimensional matrices and/or the computation of products of potentially

high-dimensional matrices. These will require huge computational costs and may be

intractable in practice when faced with high-dimensional data sets. Zhang [35] tried to

overcome these limitations also within a Bayesian framework, by estimating the num-

ber of biclusters K and the bicluster parameters sequentially, that is, one bicluster at the

time, using an ICM-type (Iterated Conditional Modes) algorithm (Besag [4], Lindley

and Smith [24]).

In this work we shed light on the actual statistical models behind the algorithms.

This allows us to generalize most of the known popular biclustering techniques, and

to justify, and many times improve on, the algorithms used to find the biclusters. It

turns out that most of the known techniques have a hidden Bayesian flavour. There-

fore, we proposed a Bayesian framework to model biclusters. We show that algorithms

such as the one of Lazzeroni and Owen [23] and Cheng and Church [9] can be justi-

fied as applications of ICM (Besag [4], Lindley and Smith [24]), or can be embedded

into a Metropolis-Hastings paradigm. We introduce a modified extended version of the

Bayesian plaid model, the penalized plaid model, that aims at controlling the amount of

bicluster overlapping in the fitting. Our model fully accounts for a general overlapping

structure as opposed to just one dimensional overlapping as in the model of Gu and Liu

[16]. The parameters are determined all at once by a dedicated MCMC as opposed to

the sequential algorithm of Zhang [35]. Our model also takes into account the prob-

lem of identifiability of the row and column effects. Inspired by the ANOVA model,

it assumes that the sum of these effects vanishes within each bicluster. In addition, the

penalized plaid model may be seen as a continuous extension of the non-overlapping
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model of Cheng and Church [9] to the plaid model. We show that the penalty parameter

of our model may serve as a measure of complexity of the data: the more biclusters and

the more overlapping, the smaller the penalty parameter. We also show that bicluster-

ing may be seen as a mixture model. However, we show that techniques such as the

EM algorithm (Dempster et al. [11]) that are commonly used for mixture models may

not be appropriate. We think that this might be the reason why hard-EM and ICM-like

algorithms have been preferred in the literature. Through a simulation study, we show

that Bayesian computational techniques such as the Gibbs sampler (Geman and Geman

[15]) or Metropolis-Hastings (Hastings [17]) yield far better results. We also introduce

a criterion to choose the number of biclusters, a problem that has not yet been addressed

properly in the literature. Our criterion is a modified version of the Deviance Information

Criterion (DIC) [31] based on the marginal (or conditional) distribution over the labels,

and on Maximum A Posteriori (MAP) estimates of the model parameters.

The paper is organized as follows. Biclustering as a mixture model is treated in

Section 2.2. The EM, hard-EM and ICM algorithms are described in Section 2.3. In

Section 2.4, we describe a Bayesian framework for biclustering and introduce our pe-

nalized plaid model. Our experiments through simulations are shown in Section 3.4.

An application of our penalized plaid model methodology to elucidate the biclustering

structure of the gene expression data associated with the yeast cell cycle data (Eisen et al.

[13]) is described in Section 2.6. We end up our exposition with some conclusions in

Section 3.6.

2.2 Biclusters are mixtures

Using the labels, the additive model becomes

E(yi j|ρ,κ) = ∑
k

ρikκ jk(µk +αik +β jk). (2.1)

Let zi jk be independent Gaussian random variables with corresponding means µk+αik+

β jk and variances σ2
k . It is useful to also consider the special constant mean bicluster,
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the 0-bicluster component, zi j0 ∼ N(µ0,σ
2
0 ). This is used to model data cells that do not

belong to any other bicluster. The 0-bicluster is a special cluster in the model in that we

always assume that the event {ρi0κ j0 = 1} occurs if and only if the event {∑K
k=1ρikκ jk =

0} occurs. This event is better expressed mathematically by the indicator function γi j =

∏K
k=1(1−ρikκ jk). We may like to write

yi j =
K

∑
k=0

ρikκ jk zi jk. (2.2)

Several models can be derived from this simple expression. Note that model (2.2) corre-

sponds to a Gaussian mixture model for the marginals of yi j. Indeed, it is straightforward

to see that these marginals are Gaussian-mixtures with 2K components

1

σ0
φ

(

yi j−µ0

σ0

)

p(γi j = 1)+ ∑
ρi,κ j

γi j=0

1

σ(ρi,κ j)
φ

(

yi j−µ(ρi,κ j)

σ(ρi,κ j)

)

p(ρi,κ j), (2.3)

where σ2(ρi,κ j) = ∑K
k=1ρikκ jk σ2

k , and µ(ρi,κ j) = ∑K
k=1ρikκ jk (µk+αik+β jk). That is,

each possible combination of layers (plaids) forms a bicluster. We will refer to the com-

ponents of the mixture generated by only one layer as biclusters. The other components

will be referred to as combination biclusters. In practice, most of the combination biclus-

ters are empty. Hence, the actual number of components is much smaller than 2K when

K is large. Model (2.2) is not realistic since the variance increases with the number of bi-

clusters that contribute to the response. Intuitively, the variance should be kept constant.

This is what the plaid model assumes (Lazzeroni and Owen [23]), i.e. σ(ρi,κ j) = σ for

all (ρi,κ j). The plaid model is a regression model. As such, it cannot be expressed as

(2.2). However, the marginal of yi j is still a Gaussian-mixture with 2K components. Also

note that the original plaid model does not explicitly include the 0-bicluster component.

However, it is implicitly given by a normal distribution with mean µ0 and variance σ2

equal to the regression variance. That is, the mixture model given by equation (2.3) is

still valid with σ0 = σ(ρi,κ j) = σ , and µk = µ0+ µ ′
k, where the {µ ′

k} are the deviations
from the overall mean µ0. If we suppose that every data cell yi j in the data matrix may
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belong to only one bicluster, then the labels must satisfy the constraints ∑K
k=0ρikκ jk = 1,

for all (i, j). It is easy to see that this case corresponds to a (K+1)-component Gaussian

mixture model for the marginal of yi j

p(yi j) =
K

∑
k=0

1

σk

φ

(

yi j−µk−αik−β jk

σk

)

p(ρikκ jk = 1),

with αi0 = β j0 = 0 for all (i, j). This corresponds to the model introduced by Cheng

and Church (2000). In this model there is no overlapping between layers, i.e. each cell

belongs to only one bicluster, though a line or a column may belong to more than one

bicluster. We note that the notion of overlapping is not always the same in the literature.

Some authors say that there is overlapping if a line or column belongs to more than one

bicluster (Gu and Liu [16], Lazzeroni and Owen [23], Turner et al. [33]).

In what follows, we will work with the general mixture model given by (2.3) where

σ2(ρi,κ j) will just denote the variance associated to yi j given the pair (ρi,κ j) (that is,

we will no longer suppose that model (2.2) holds). This model is a special case of the

so-called mixture of experts model in the machine learning literature (Jordan and Jacobs

[19]). However, note that in the usual mixture of experts model p(ρi,κ j) is modeled by

πi jk. In general, the biclustering parametrization of the labels will yield a more parsimo-

nious model, unless these probabilities are modeled as function of the observed variables

(e.g. through logistic regression). This is difficult to do in the biclustering framework

since usually there is no further information on the cell data, that is, there is no covari-

able information. To our knowledge, this type of model has not been proposed in the

biclustering literature or at least, it has not been widely applied. Instead, the Lazzeroni

and Owen plaid model has become more popular. Recall that this model assumes that

σ2
i j = σ2 independently of the cell (i, j). In this model a data cell can be seen as having

contributions from several biclusters. Many researchers think of this property as if the

data cell were a member of several biclusters. However, as we can see from the mixture

formulation of the model, this is not true. Membership in several biclusters is better

thought of as a data cell with high probabilities of being in more than one bicluster. A

data cell with contributions from several biclusters in the plaid model corresponds to a
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cell lying in a combination bicluster of the mixture.

2.3 Parameter estimation

Since biclustering corresponds to finite mixture modeling, a straightforward applica-

tion of the EM algorithm (Dempster et al. [11]) appears as a good procedure to find es-

timates of the parameters and bicluster labels. This is the case for at least the Cheng and

Church model where only K+1 sets of parameters need to be estimated. The general bi-

cluster mixture model involves a number of parameters that increases exponentially with

the number of layers K. It is perhaps for this reason that the literature does not favor EM

as a valuable alternative. However, we will see here that instead hard-EM has been pre-

ferred. We remark that there is no mention of hard-EM in the biclustering literature. The

community appears not to have realized yet that this is the algorithm most researchers

are using to fit the models. Let θ denote the set of all parameters in the model. We will

write µ(ρi,κ j) as µ(ρi,κ j,θ) to make explicit the dependency of this quantity on θ . In

the EM algorithm, the expectation step corresponds to the computation of

Q(θ |θ̄) = −1

2
∑
ρ,κ

∑
i, j

p(ρ,κ|{yi j}, θ̄)

{

logσ2(ρi,κ j)

+
1

σ2(ρi,κ j)

(

yi j−µ(ρi,κ j,θ)

)2}

+ ∑
ρ,κ

log p(ρ,κ) p(ρ,κ|{yi j}, θ̄),

where θ̄ is the current estimate of the parameters. The goal of computing this quantity

is the M-step, that is, the maximization of Q(θ |θ̄). Note, however, that this quantity is

intractable for large K. A possible solution is to approximate the sum over all possible

values of the labels (ρ,κ) by the largest term in the sum. But this term will depend on

the value of θ . Another popular solution, the so-called hard-EM algorithm, is to replace

the sum by the term associated to the largest weight p( ˆ̄ρ, ˆ̄κ|{yi j}, θ̄). Once the labels

have been fixed, the M-step corresponds to maximize over θ

Q̄(θ |θ̄) = −1

2
∑
i, j

{

logσ2( ˆ̄ρi, ˆ̄κ j)+
1

σ2( ˆ̄ρi, ˆ̄κ j)

(

yi j−µ( ˆ̄ρi, ˆ̄κ j,θ)

)2}

.
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For the plaid model, this reduces to

Q̄(θ |θ̄) = −n

2
logσ2− 1

2σ2 ∑
i, j

(

yi j−µ( ˆ̄ρi, ˆ̄κ j,θ)

)2

.

Note that the hard-EM algorithm in this setup coincides with a simple version of the

iterated conditional modes (ICM) algorithm (Besag [4], Lindley and Smith [24]). That

is, for the current value of the parameters θ̄ , the labels are estimated by the mode of the

full conditional distribution of the labels p(ρ,κ|{yi j}, θ̄). And once the labels have been

chosen, the parameters are updated by the mode of the “full conditional” of θ , which

is proportional to the likelihood. We remark that a full version of the ICM algorithm

would maximize over θ by performing a series of consecutive maximizations of the full

conditionals of the lower-dimensional parameters that make up θ . Therefore, a truly

hard-EM iteration would be achieved by performing an ICM within ICM in order to

maximize over θ . An alternative solution for the plaid model, no longer equivalent to

ICM is to maximize

Q̄(θ |θ̄) = −n

2
logσ2− p( ˆ̄ρ, ˆ̄κ|{yi j}, θ̄)× 1

2σ2 ∑
i, j

(

yi j−µ( ˆ̄ρi, ˆ̄κ j,θ)

)2

,

which arises from noting that first term in the definition of Q(θ |θ̄), is −0.5n log(σ2).

Since hard-EM is a form of ICM with improper priors and uniform priors on the pa-

rameters, one should wonder if the use of proper priors would improve the results. Also,

the use of priors allows the use of the Gibbs sampler and more generally, Metropolis-

Hastings techniques, to obtain not only point estimates of the parameters but also their

posterior distributions. These are discussed in Section 2.4.

2.3.1 The EM updating equations

We suppose that the bicluster and combination bicluster probabilities p(ρi,κ j) do not

depend on the individual observations. Hence, they are constants depending only on the

combination bicluster. We denote them as πk, k = 0,1, . . . ,2K − 1. Most observations

will fall in a single bicluster (as opposed to a combination bicluster). Hence, in general,
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the number of combination biclusters (components) is much smaller than 2K . The ex-

pectation step can only be carried over if K is not large. In some problems, K may be

moderate, so that a solution through EMmay be possible. Also, the EM algorithm is still

a very sensible procedure for the important case where each observation is supposed to

be in a single bicluster. In this case, the bicluster mixture consists of only K components.

We consider here the general case. The formulae are easily adapted to the K-component

mixture case.

Note that p(ρ,κ|{yi j}, θ̄) = ∏i, j p(ρi,κ j|yi j, θ̄). It is straightforward to verify that

p(ρi,κ j|yi j, θ̄) =

1
σ(ρi,κ j)

φ
(

(yi j−µ(ρi,κ j, θ̄))/σ(ρi,κ j)
)

πcb(k)

∑ρ ′
i ,κ

′
j

1
σ(ρ ′

i ,κ
′
j)

φ
(

(yi j−µ(ρ ′
i ,κ

′
j, θ̄))/σ(ρ ′

i ,κ
′
j)
)

πcb(k′)

,

where cb(k) and cb(k′) denote the combination biclusters associated to (ρi,κ j) and

(ρ ′
i ,κ

′
j), respectively. The maximizer of Q(θ |θ̄) for the plaid model is obtained by

taking the derivatives with respect to θ . This yields:

µk =
1

∑i, jEθ̄ (ρikκ jk)
∑
i, j

{

Eθ̄ (ρikκ jk)yi j− ∑
k′ 6=k

Eθ̄ (ρikκ jkρik′κ jk′)(µk′ +αik′ +β jk′)

}

αik =
1

∑ jEθ̄ (ρikκ jk)
∑
j

{

Eθ̄ (ρikκ jk)yi j− ∑
k′ 6=k

Eθ̄ (ρikκ jkρik′κ jk′)(µk′ +αik′ +β jk′)

}

−µk

β jk =
1

∑iEθ̄ (ρikκ jk)
∑
i

{

Eθ̄ (ρikκ jk)yi j− ∑
k′ 6=k

Eθ̄ (ρikκ jkρik′κ jk′)(µk′ +αik′ +β jk′)

}

−µk

πcb(k) ∝ ∑
i, j

p(ρi = ρcb(k),κ j = κcb(k)|yi j, θ̄),
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where (ρcb(k),κcb(k)) denotes the corresponding k-th combination bicluster, and

σ2 =
1

qp
∑
i, j

Eθ̄

(

yi j−∑
k

ρikκ jk(µk +αik +β jk)

)2

=
1

qp
∑
i, j

{

y2i j−2∑
k

Eθ̄ (ρikκ jk)yi j(µk +αik +β jk)

+ ∑
k,k′

Eθ̄ (ρikκ jkρik′κ jk′)(µk +αik +β jk)(µk′ +αik′ +β jk′)

}

.

Note that the updating equations are recursive. The parameters can be estimated by us-

ing a Gauss-Seidel relaxation scheme over k = 1, . . . ,K. For example, let the superscript

“(t + 1)” denote the coefficients recently updated, and the superscript “(t)”, the coeffi-

cients not yet updated. Then in order to solve the system, say for αik’s, we iterate for k

within the EM iterations

α
(t+1)
ik =

1

∑ jEθ̄ (ρikκ jk)
∑
j

{

Eθ̄ (ρikκ jk)yi j− ∑
k′<k

Eθ̄ (ρikκ jkρik′κ jk′)(µ
(t+1)
k′ +α

(t+1)
ik′

+β
(t+1)
jk′ ) − ∑

k′>k

Eθ̄ (ρikκ jkρik′κ jk′)(µ
(t)
k′ +α

(t)
ik′ +β

(t)
jk′ )

}

−µ
(t+1)
k .

Also note that the expectation is intractable if the number of biclusters K is large. For

example, one needs to compute Eθ̄ (ρikκ jk) = ∑ (ρi,κ j)
ρikκ jk=1

p(ρi,κ j|yi j, θ̄), which is a sum

involving 2K terms. In the non-overlapping bicluster model, the sum reduces to one term

Eθ̄ (ρikκ jk) = p(ρiκ j = 1,∏k′ 6=k(1−ρik′κ jk′) = 1 |yi j, θ̄). In this latter case, the updating
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equations simplify to

µk =
1

∑i, jEθ̄ (ρikκ jk)
∑
i, j

Eθ̄ (ρikκ jk)yi j

αik =
1

∑ jEθ̄ (ρikκ jk)
∑
j

Eθ̄ (ρikκ jk)yi j−µk

β jk =
1

∑iEθ̄ (ρikκ jk)
∑
i

Eθ̄ (ρikκ jk)yi j−µk

σ2
k =

1

∑i, jEθ̄ (ρikκ jk)
∑
i, j

Eθ̄ (ρikκ jk)
(

yi j−µk−αik−β jk

)2

πcb(k) ∝ ∑
i, j

p(ρikκ jk = 1|yi j, θ̄).

Unfortunately, despite the simple updating formulas, it does not seem possible to get

reliable estimates of ρik and κ jk from the EM algorithms for clusters described here.

Note that for any j = 1, . . . ,q

P(ρik = 1|y) = P(ρik = 1,κ jk = 1|y)+P(ρik = 1,κ jk = 0|y) ≥ P(ρikκ jk = 1|y). (2.4)

Thus, if there is a single column j such that p(ρikκ jk = 1|y) is large, then, the proba-

bility that the row i belongs to bicluster k will be high as well. To illustrate this point,

we used an artificial data set with two non-overlapping biclusters. The bottom left panel

of Figure 2.2 shows the two biclusters. Figure 2.1 shows the estimated probabilities of

bicluster membership. The left panel image shows the EM estimated posterior mem-

bership probabilities P(ρi1 = 1,κ j1 = 1|y), whilst the right panel image shows the ones

for P(ρi2 = 1,κ j2 = 1|y). Observe, for example, that in the left panel image (estimated

bicluster 1) there are many spots of large (black) probabilities around the black rectangle

(bicluster 1), surrounded by very small (white) probabilities. Therefore, by (2.4), almost

all the rows belong to the bicluster 1. The same can be concluded from the right panel

image; that is, almost all the rows belong to the bicluster 2. Unfortunately, this property

makes biclustering different from clustering and renders biclustering as a mixture model

an impractical solution. Perhaps, it is exactly to avoid this problem that the literature has

favored a hard-EM type solution.
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Figure 2.1: Estimated membership probabilities for the two biclusters

2.4 A Bayesian biclustering framework

In this section we consider a fully Bayesian model for biclustering. This would

make ICM a more adequate approach than in the non-Bayesian setup. The Bayesian

framework will also allow us to employ the Gibbs sampler and more complex techniques

derived from the Metropolis-Hastings algorithm. We note that ICM may be seen as a

deterministic greedy Gibbs, where instead of generating stochastic samples, one simply

proposes the mode of the conditional distribution.

Given the bicluster labels (ρ,κ), we define Ik = {i : ∑ j ρikκ jk > 0} as the set of rows
making up the bicluster k; and Jk = { j : ∑iρikκ jk > 0} as the set of columns in bicluster

k, k = 1, . . . ,K. The bicluster k is given by Bk = Ik× Jk. The number of elements in the

bicluster k will be denoted as nk. The number of rows and columns in this bicluster will

be denoted by rk and ck, respectively. Note that nk = rk× ck.

We suppose that given the bicluster labels, the prior of the row effects {αik} is a

multivariate normal distribution with mean zero and variance-covariance matrix given
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by

Cov(αik,αi′k) =

{

(1−1/rk)σ
2
α , if i′ = i ∈ Ik

−σ2
α/rk, otherwise.

Similarly, we suppose that the prior for {β jk}|(ρ,κ) follows a multivariate normal dis-

tribution with mean zero and variance-covariance matrix given by

Cov(β jk,β j′k) =

{

(1−1/ck)σ
2
β , if j′ = j ∈ Jk

−σ2
β /ck, otherwise.

These prior distributions ensure that the row and column effects add up to zero on each

bicluster (Kaufmann and Sain [21]). The distributions are degenerate since the variance-

covariance matrices are singular. We will use this fact later on when deriving the full

conditional distribution of these parameters.

The priors for the means µ0,{µk} are given by independent zero-mean normal dis-

tributions with variances σ2
µ0
, and σ2

µ , respectively. The prior of the bicluster variances

σ2
k are independent inverse-χ2(s2,ν) with scaling parameter s2 and ν degrees of free-

dom. The prior for the variance σ2
0 associated to the zero-bicluster is also an inverse-

χ2(s20,ν0).

In general, the bicluster may be overlapping (producing combination biclusters). The

amount of overlapping may be controlled by imposing a prior that restricts it. Hence,

we suppose that the prior for the bicluster labels is proportional to ∏i j exp{−λ |1−γi j−
∑K
k=1ρikκ jk|}. The parameter λ ≥ 0 controls the amount of biclustering overlapping.

The larger λ , the less overlapping. We will refer to the plaid model with this prior

as the penalized plaid model. Note that for very large values of λ the model is a non-

overlapping bicluster model. IfK = 1 or λ = 0, the prior on the labels becomes a uniform

prior.

2.4.1 The full conditionals

The Gibbs sampler as well as ICM relies on the knowledge of the full conditionals

of the parameters. In this section we spell them out.
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Note that the likelihood may be written as

exp{−1

2
∑
i, j

(1− γi j)

{(

yi j−∑k ρikκ jk(µk +αik +β jk)

σ(ρi,κ j)

)2

+ logσ(ρi,κ j)
2

}

− 1

2
∑
i, j

γi j

(

(
yi j−µ0

σ0
)2 + logσ2

0

)

}.

Let k, i.e., the bicluster k, be fixed. Define the variables zi jk = yi j−∑k′ 6=k ρik′κ jk′(µk′ −
αik′ −β jk′), αk = (αik)i∈Ik ∈ R

rk , βk = (β jk) j∈Jk ∈ R
ck , and the matrices

Rk = diag(∑ j∈Jk σ−2(ρi,κ j)), and Ck = diag(∑i∈Ik σ−2(ρi,κ j)).

2.4.1.1 The row and column effects

Let 1m denote the vector of all 1’s in R
m. Since the variance of αk is given by

σ2
αVk = σ2

α(Irk− 1
rk
1rk1

′
rk
), we may write αk =Vkak for a random vector ak ∼N(0,σ2

α Irk).

It is easy to verify that the full conditional of ak is a multivariate normal with mean µa,k

and variance Σa,k given by

µa,k = (VkRkVk +σ−2
α Irk)

−1Vkzα ,k,

Σa,k = (VkRkVk +σ−2
α Irk)

−1,

where zα ,k = (∑ j∈Jk(zi j− µk−β jk)/σ2(ρi,κ j))i∈Ik . Similarly, let Uk = (Ick − 1
ck
1ck1

′
ck

).

We may write βk =Ukbk for a random vector bk ∼ N(0,σ2
β Ick). It is easy to verify that

the full conditional of bk is a multivariate normal with mean µb,k and variance Σb,k given

by

µb,k = (UkCkUk +σ−2
β Ick)

−1Ukzβ ,k,

Σb,k = (UkCkUk +σ−2
β Ick)

−1,

where zβ ,k = (∑i∈Ik(zi j−µk−αik)/σ2(ρi,κ j)) j∈Jk .

For the plaid model σ(ρi,κ j) = σ , and for the model of Cheng and Church [9],

σ(ρi,κ j) = σk. In both cases the variance is constant on each bicluster. Therefore,
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for these models, Rk = σ−2
k ckIrk and Ck = σ−2

k rkIck . Hence the conditional means and

variances for ak and bk become

µa,k =

(

ck

σ2
k

+
1

σ2
α

)−1
ck

σ2
k

(z̄i·k− z̄k)i∈Ik ,

Σa,k =

(

ck

σ2
k

+
1

σ2
α

)−1(

Irk +
ck

rk

σ2
α

σ2
k

1rk1
′
rk

)

,

µb,k =

(

rk

σ2
k

+
1

σ2
β

)−1
rk

σ2
k

(z̄· jk− z̄k) j∈Jk ,

Σb,k =

(

rk

σ2
k

+
1

σ2
α

)−1(

Ick +
rk

ck

σ2
β

σ2
k

1ck1
′
ck

)

,

where z̄k denotes the mean of the values of zi jk in the bicluster k, and z̄i·k = ∑ j∈Jk zi jk/ck,

and z̄· jk = ∑i∈Ik zi jk/rk.

It can be easily shown that the full conditionals of the means µk, k = 0,1, . . . ,K are

also normal distributions with means and variances given by

µµ ,k =

(

1

σ2
µ

+ ∑
(i, j)∈Bk

1

σ2(ρi,κ j)

)−1

∑
(i, j)∈Bk

zi j−αik−β jk

σ2(ρi,κ j)
,

Σµ ,k =

(

1

σ2
µ

+ ∑
(i, j)∈Bk

1

σ2(ρi,κ j)

)−1

.

Again, for the plaid and Cheng and Church models, the means and variances simplify to

µµ ,k =

(

1

σ2
µ

+
nk

σ2
k

)−1
nk

σ2
k

z̄k, Σµ ,k =

(

1

σ2
µ

+
nk

σ2
k

)−1

.

Note that when σ2
µ , σ2

α , and σ2
β tend to infinity we obtain the hard-EM (or ICM) estima-

tors.

2.4.1.2 The variances

The full conditionals of the variances σ2
k given by the model in equation (2.2) are

also easily found. Although this model is not realistic (because it forces an increase in
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the variance with the number of biclusters), the equations will help us to find the full

conditionals of the more practical models. Let zi j = yi j−∑k′ ρik′κ jk′(µk′ + αik′ + β jk′),

and set s2i jk = ∑k′ 6=k ρik′κ jk′σ
2
k′ . The full conditionals of the variances σ2

k are proportional

to

exp

{

−1

2

(

∑
(i, j)∈Bk

z2i j

σ2
k + s2i jk

+
νs2

σ2
k

)

− 1

2
∑

(i, j)∈Bk

log(σ2
k + s2i jk)− (

ν

2
+1) logσ2

k

}

.

If we suppose that there is no overlapping among the biclusters, then s2i jk = 0. This

corresponds to the Cheng and Church model [9]. The corresponding full conditional

of σ2
k is an inverse-χ2 distribution with scale (νs2 + ∑(i, j)∈Bk

z2i j)/(ν + nk), and ν + nk

degrees of freedom. If instead we suppose that σ(ρi,κ j) = σ independently of the cell

(i, j) (i.e., σk = σ and si jk = 0 for all k = 0,1, . . . ,K), then we obtain the full conditional

of σ2 for the plaid model. This is also an inverse-χ2 distribution, but this time with scale

(νs2 +∑i, j z
2
i j)/(ν + pq), and ν + pq degrees of freedom.

2.4.1.3 The labels

To find the full conditional of the labels, say ρik, we use the fact that

yi j−
K

∑
k′=1

ρik′κ jk′(µk′ +αik′ +β jk′) = zi jk−ρikκ jk(µk +αik +β jk)

= ρikκ jk(zi jk−µk−αik−β jk)+(1−ρik)zi jk +ρik(1−κ jk)zi jk.
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Note that γi j = ∏K
k=1(1−ρikκ jk). For a given k, we will write γi jk = ∏K

k′=1
k′ 6=k

(1−ρik′κ jk′).

Then ρikκ jk(1− γi j) = ρikκ jk− γi jk(1−ρikκ jk)ρikκ jk = ρikκ jk. We have

∑
j

(1− γi j)
(zi jk−ρikκ jk(µk +αik +β jk))

2

σ2(ρi,κ j)

= ρik ∑
j∈Jk

(zi jk−µk−αik−β jk)
2

σ2(ρi,κ j)

+(1−ρik)∑
j

(1− γi j)
z2i jk

σ2(ρi,κ j)
+ρik ∑

j/∈Jk
(1− γi j)

z2i jk

σ2(ρi,κ j)

= ρik ∑
j∈Jk

(zi jk−µk−αik−β jk)
2

σ2(ρi,κ j)

+(1−ρik) ∑
j∈Jk

(1− γi jk)
z2i jk

σ2(ρi,κ j)
+ ∑

j/∈Jk
(1− γi jk)

z2i jk

σ2(ρi,κ j)
.

As before, let θ denote the set of parameters of the model. Define

Aik = exp

{

−1

2
∑
j∈Jk

(zi jk−µk−αik−β jk)
2

σ2(ρi,κ j)

}(

∏
j∈Jk

σ2(ρi,κ j)

)−1/2

,

Bik = exp

{

− 1

2σ2
0

∑
j∈Jk

γi jk(yi j−µ0)
2

}(

σ2
0

)−∑ j∈Jk γi jk/2

,

Cik = exp

{

−1

2
∑
j∈Jk

(1− γi jk)

(

z2i jk

σ2(ρi,κ j)
+ logσ2(ρi,κ j)

)}

,

Dik,ρik
= exp

{

1

2
∑
j/∈Jk

(1− γi jk)

(

z2i jk

σ2(ρi,κ j)
+ logσ2(ρi,κ j)

)}

.

Also let ρ(−ik) denote the set of all row labels except ρik. From the above equation it is

straightforward to verify that the full conditionals of ρik satisfy

p(ρik|{yi j}, (ρ(−ik),κ), θ) ∝ A
ρik

ik B
1−ρik

ik C
1−ρik

ik Dik,ρik
π(ρik),

where

π(ρik) = exp{−λ ∑
j

(
K

∑
k′=1
k′ 6=k

ρik′κ jk′ + γi jk +(1− γi jk)κ jkρik−1)}.
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In particular,

p(ρik = 1|{yi j}, (ρ(−ik),κ), θ)

p(ρik = 0|{yi j}, (ρ(−ik),κ), θ)
= AikB

−1
ik C−1

ik Dik,1D
−1
ik,0 exp{−λ ∑

j

(1− γi jk)κ jk}.

The term Dik,ρik
may be ignored for models whose variances do not depend on (i, j). In

particular, for the plaid model, this ratio is

exp

{

− 1

2σ2 ∑
j∈Jk

(

(zi jk−µk−αik−β jk)
2 +(1− γi jk)z

2
i jk + γi jk(yi j−µ0)

2

)

−λ ∑
j

(1− γi jk)κ jk

}

.

The full conditional for κ jk’s are found in a similar way by symmetry.

Next, consider the the non-overlapping bicluster model. Note that in this case the

term Cik may be conveniently written as

exp

{

−1

2
∑
k′=1
k′ 6=k

ρik′ ∑
j∈Jk∩Jk′

zi jk

σ2
k′

}

∏
k′=1
k′ 6=k

σ
−ci.k′k
k′ ,

where ci.k′k is the number of cells in the set {(i, j) ∈ Bk′ : j ∈ Jk}. Also note that the term
Bik may be written as exp

{

− ρi0

2σ2
0

∑ j∈Jk∩J0 z
2
i j0

}

σ
−ci.0k
0 , for zi j0 = yi j−µ0, and where J0

and ci.0k are defined as before but for the zero-bicluster. Therefore,

p(ρik = 1|{yi j}, (ρ(−ik),κ), θ)

p(ρik = 0|{yi j}, (ρ(−ik),κ), θ)
=

σ−ck
k ∏

k′=0
k′ 6=k

σ
ci.k′k
k′ exp

{

− 1

2σ2
k

∑
j∈Jk

(zi jk−µk−αik−β jk)
2 +

1

2
∑
k′=0
k′ 6=k

ρik′ ∑
j∈Jk∩Jk′

zi jk

σ2
k′

}

.

Let Eik = ∏k′=0
k′ 6=k

σ
ci.k′k
k′ exp

{

1
2 ∑k′=0

k′ 6=k

ρik′ ∑ j∈Jk∩Jk′
z2i jk

σ2
k′

}

. Performing the Gibbs sampler for

the row labels in this model would favor inclusion, i.e. ρik = 1, if AikEik > 1. That is,

inclusion is favored when the likelihood associated with having the row i in bicluster k is

larger than that associated with having row i elsewhere. Although this is very reasonable,
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it is not the only argument to include row i in bicluster k. Cheng and Church [9] thought

of favoring inclusion when the average square error c−1
k ∑ j∈Jk(yi j − µk−αik−β jk)

2 is

smaller than the current estimate of the bicluster variance σ2
k . Also, a row is a candidate

to be eliminated from bicluster k if the average square error is larger than the current

estimate of the bicluster variance σ2
k . We may incorporate these otherwise ad hoc ideas

into a Metropolis-Hastings sampling procedure for sampling the labels as follows. Given

the current values of the labels {κ jk}, our proposal qik(ρ ′
ik|{κ jk}) proposed ρ ′

ik with

probability proportional to σ
−ρ ′

ikck
k e−ρ ′

ikck/2E
ρ ′
ik

ik . Note that an inclusion, i.e. ρ ′
ik = 1, may

only be proposed if ρik′κ jk′ = 0 for all 1≤ k′ 6= k, and j ∈ Jk. Hence, only the rows i for

which all cells in {i}× Jk are in the zero-bicluster may be proposed for inclusion in the

k-th bicluster. For these admissible rows, Eik = σ ck
0 exp{ 1

2σ2
0

∑ j∈Jk z
2
i j0}. Therefore, the

proposal will favor inclusion if σ2
k /σ2

0 < exp{(s2k0−σ2
0 )/σ2

0 }, where s2k0 = ∑ j∈Jk z
2
i j0/ck.

That is, inclusion is favored when the current “sample” estimate of the variance in the

zero-bicluster of the columns in bicluster k, s2k0, is relatively large in comparison to the

overall variance of the zero-bicluster, σ2
0 . The Metropolis-Hastings acceptance ratio is

α(ρ ′
ik,ρik) = min

{

1,
p(ρ ′

ik|{yi j},(ρ(−ik),κ),θ)qik(ρik|{κ jk})
p(ρik|{yi j},(ρ(−ik),κ),θ)qik(ρ

′
ik|{κ jk})

}

= min

{

1, exp

(

−ρ ′
ik−ρik

2

[

∑
j∈Jk

(zi jk−µk−αik−β jk)
2

σ2
k

− ck

])}

.

Note that the proposal ρ ′
ik = ρik is always accepted. Also always accepted are the pro-

posals ρ ′
ik = 1, i.e., inclusion of row i in bicluster k, if

1

ck
∑
j∈Jk

(zi jk−µk−αik−β jk)
2 ≤ σ2

k ,

and ρ ′
ik = 0, i.e., removal of row i from bicluster k, if

1

ck
∑
j∈Jk

(zi jk−µk−αik−β jk)
2 ≥ σ2

k .

The procedure is similar for the plaid model: it suffices to set σk = σ0 = σ in the above
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formulas.

Note that these moves do not consider moving or swapping rows between arbitrary

bicluster. Only swaps between one fixed bicluster and the zero-bicluster are allowed.

Also note, that these moves are sufficient to move around all biclusters. However, this

procedure might be inefficient in the sense that it may take several moves to swap rows

between biclusters. The root of this problem lies in the fact that most biclustering algo-

rithms work with only one bicluster at the time. Once a bicluster and its parameters have

been estimated, the labels already estimated are no longer touched. Instead, a search for

a new bicluster starts. Once the search for new biclusters is finished, the labels may be

re-estimated. However, most of the time this latter step is not done. We note that this

type of procedure resembles ICM over the biclusters, i.e., only one bicluster is estimated

at the time by letting the others fixed. To allow a move between biclusters in the non-

overlapping model, we might proceed as follows. We have to propose two biclusters: k′

the “targeted” bicluster, and k the “selected” bicluster. In order to be able to propose a

move of row i from the targeted bicluster k′ to the selected bicluster k, all columns in Jk

need to be included in the k′-th bicluster, i.e. Jk ∩ Jk′ = Jk. This is the condition similar

to the one already encountered when considering a move from the zero-bicluster to the

k-th one. That is, we must have Eik = σ
ck
k′ exp{ 1

2σ2
k′

∑ j∈Jk(yi j−µk′ −αik′ −β jk′)
2}. Con-

sider the same proposal as before. However, this time k′ needs to be proposed as well.

This may be done uniformly among the admissible biclusters. Note that in this case, the

“exclusion” move corresponds to the reversal move, that is, of moving the i-th row in

the k-th bicluster to the k′-th bicluster. This is possible since the k-th bicluster is admis-

sible for the reversal move. The move will be favored if σ2
k /σ2

k′ < exp{(s2kk′ −σ2
k′)/σ2

k′},
where s2kk′ = ∑ j∈Jk(yi j−µk′−αik′−β jk′)

2/ck. That is, the move is favored when the cur-

rent “sample” estimate of the variance in the k′-th bicluster of the columns in bicluster

k, s2kk′ , is relatively large in comparison to the overall variance of the k′-th bicluster, σ2
k′ .

Not surprisingly, the Metropolis-Hastings acceptance ratio and the general conclusions

about when the moves are always accepted are exactly the same as before. This is due

to the symmetry concerning all the biclusters in the formulas. We would like to stress

that although these moves are always reasonable for the selected bicluster k, they are
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not necessarily good moves for the targeted bicluster k′. The best balance move may be

obtained by performing a Gibbs sampler on the labels (see the comment above).

2.4.1.4 The penalty parameter

The penalty λ may be fixed a priori to a suitable value. However, in the absence

of information about its value, one may choose to estimate it. In this latter case, λ is

the penalty parameter of the model. We assume a gamma(a,b) prior for it. The full

conditional of λ , p(λ |(ρ,κ),{yi j}), is proportional to

π((ρ,κ)|λ )π(λ ) ∝ ∏
i j

(Zi j(λ ))−1λ a−1 exp

(

−λ (b+ |1− γi j−∑
k

ρikκ jk|)
)

,

where

Zi j(λ ) = ∑
k

∑
ρik,κ jk

exp(−λ |1− γi j−∑
k

ρikκ jk|)

= 1+
K

∑
L=1

(

K

L

)

exp(−λ (L−1)) = 1+ eλ

(

[1+ e−λ ]K −1

)

.

To generate λ in the MCMC sampling, we use a Metropolis-Hastings step. The proposal

for λ ′ is again a gamma distribution

q(λ ′|λ ) ∝ λ ′a−1 exp

{

−λ ′
(

b+∑
i, j

|1− γi j−∑
k

ρikκ jk|
)}

.

Thus, the acceptance probability ratio in the Metropolis-Hastings step is given by

min

(

1, ∏
i, j

[

(Zi j(λ
′))−1Zi j(λ )

])

= min

(

1, exp(pq(λ −λ ′))
X(λ )

X(λ ′)

)

,

where X(λ ) =

{

exp(−λ )+(1+ exp(−λ ))K −1

}pq

for all λ > 0.

In our simulations below, we note that λ may be seen as a measure of complexity of

the data structure: its value decreases almost linearly in the log-scale with the number of
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biclusters and the amount of bicluster overlapping in the data.

2.4.2 Estimating the number of biclusters

The problem of estimating the number of biclusters is very rarely treated in the lit-

erature. For the most part, the number of biclusters is either fixed a priori, or estimated

sequentially by some ad hoc stopping rule such as until no more biclusters of a min-

imum size are found. For example, the algorithm of Cheng and Church [9] fixes the

number of biclusters K a priori. Then, it discovers one bicluster at a time. At each one of

the K iterations, the algorithms starts with an initial bicluster that contains all rows and

columns. The previously discovered biclusters are masked with uniform random num-

bers. The process is repeated until the K biclusters are found. A similar ad hoc criterion

is applied in the algorithms of Lazzeroni and Owen [23], Turner et al. [33], and Zhang

[35]. Therein, the number of maximum biclusters K is fixed a priori. The optimal num-

ber of bicluster is chosen according to a measure of relevance of the last bicluster kept.

This measure compares a candidate bicluster with a pure noise bicluster. See the above

references for further details. We proposed a modified Deviance Information Criterion

(DIC) [31] suited for biclustering. As pointed out by Celeux et al. [8], in order to prop-

erly formulate the DIC criterion, a model needs a focus parameter. Unfortunately, this

focus parameter is not obvious for mixture models. Let Θ = (α,β ,µ,σ2). Since in the

clustering setup, the labels may be seen as latent variables, we suggest considering the

marginals Eρ,κ p(y|Θ,ρ,κ)) instead of the full conditionals in the computation of DIC.

This corresponds to choosing Θ as the focus parameter, i.e. our DIC, which we will refer

to as DICm, is given by

DICm = −2EΘ

[

log(Eρ,κ|yp(y|Θ,ρ,κ)) |y
]

+ pm(Θ̃m),

where Θ̃m denotes the maximum a posteriori (MAP) estimator of Θ, and

pm(Θ̃m) = −2EΘ

[

log(Eρ,κ|yp(y|Θ,ρ,κ)) |y
]

+2log(Eρ,κ|yp(y|Θ̃m,ρ,κ)),
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is the so-called effective dimension. As suggested by Celeux et al. [8], we use the MAP

estimator so as to have a positive effective dimension. This measure works well in our

experiments. However, it is computationally expensive, since the labels’ marginals have

to be computed. An alternative measure to the DICm, is

DICc = −2EΘ,ρ,κ [log p(y|Θ,ρ,κ)|y]+ pc(Θ̃, ρ̃, κ̃).

where (Θ̃, ρ̃, κ̃) is the maximum a posteriori estimator of (Θ,ρ,κ), and

pc(Θ̃, ρ̃, κ̃) = −2EΘ,ρ,κ [log p(y|Θ,ρ,κ)|y]+2log p(y|Θ̃, ρ̃, κ̃),

is the corresponding effective dimension. In our experiments, DICc works as well as

DICm, but its computation is much faster. This finding may be a bit surprising at first,

since after all, in the clustering setup, the labels are not thought of as parameters but

as latent variables. However, a closer look at the biclustering model reveals that the

labels (ρ,κ) are not equivalent to the labels in the clustering setup. In fact, our analysis

of biclustering as a mixture model in Section 2.3.1 clearly shows that it is the product

ρikκ jk that is equivalent to the cluster labels. The two sets of labels (ρ,κ) are more

similar to parameters than latent variables. This is especially true for the overlapping

bicluster model. Note that in the clustering setup, this latter model does not and cannot

exist.

In our experiments we have also compared these two measures with more classical

ones, such as AIC (Akaike [1]) and BIC (Schwarz [28]). In order to compute them, we

have used the value of the parameters (Θ̂, ρ̂, κ̂) that maximizes the likelihood among the

values generated by our MCMC sampler as the estimator of the maximum likelihood

estimator.

2.4.3 Initial values

Finding the initial membership labels (ρ,κ) is a difficult task. Several procedures

have been suggested in the literature. We have adopted a technique similar to that of
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Turner et al. [33]. We run two independent k-means algorithms Ward [34] with k = 2:

once for the rows and once for the columns. Using the Cartesian product of the resulting

k-means row and column labels, we divide the data matrix into four groups. A single

initial bicluster is chosen among these four groups according to a variance criterion

explained a few lines below. The procedure is repeated as many times as the number

of initial biclusters needed. A single initial bicluster is chosen after each application of

the independent row and column k-means algorithms. The elements of the biclusters

already chosen are masked by replacing their original values yi j by random values.

This is done so that in the next iteration a different group may be chosen. The masking

procedure is not new. It has been used before by Sheng, Moreau and De Moor [29]

to determinate multiple biclusters. The criterion to choose an initial bicluster among

the four groups yielded by each iteration is the following. Suppose that the cells of

each group follow a random effect additive ANOVA model. That is, on each group g ,

yi j = µg+αig+β jg+εi j, g = 1,2,3,4. The standard moment estimates of the variances

are

σ̂2
gα =

1

cg

(

MSSg(α)−MSSg(e)

)

, σ̂2
gβ =

1

rg

(

MSSg(β )−MSSg(e)

)

, σ̂2
ge = MSSg(e),

(2.5)

where rg is the number of rows in the g-th group, cg is the number of columns, and

MSSg(e), MSSg(α) and MSSg(β ) are the corresponding mean sum of squares for er-

ror, rows and columns, respectively. We select as an initial bicluster the group g that

maximizes (σ̂2
gα + σ̂2

gβ )/σ̂2
ge. For each initial bicluster, the parameters µg, αig et β jg

are initialized as ȳ.., ȳi.− ȳ.., ȳ. j− ȳ.., respectively, where y.., ȳi., ȳ. j stand for the overall

bicluster mean, the bicluster i-th row mean, and the bicluster j-th column mean, respec-

tively. The parameter µ0 is estimated as the arithmetic mean of the zero-bicluster. The

variance σ2 is initialized as the mean sum of squares of all the residuals.

2.4.4 Measuring MCMC convergence

As a stopping rule for exploring the support of the posterior distribution, we used the

Kolmogorov-Smirnov (KS) test as suggested by Robert and Casella [25, Ch. 8, pp 370–
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372]. We compare the “empirical” distribution of the log-likelihood from MCMC sub-

samples takenG samples apart. The gapG between the sub-samples is used to run the KS

test with two (quasi-) independent populations. To monitor the MCMC convergence to

the posterior distribution we plotted the KS test p-values against the number of iterations.

2.5 Experiments with artificial data

In this section we show the results of applying the Bayesian biclustering models to

diverse simulated data sets. The goal is to study the behaviour of the models under

two real complexities in the data: the number of biclusters and the amount of bicluster

overlapping. We will see that augmenting the number of biclusters deteriorates the per-

formance of all the algorithms studied. The same is true if the amount of overlapping

between biclusters increases, though the performance of many of the algorithms is not

affected as much as when the number of biclusters is increased.

The data were simulated for a number of biclusters K ∈ {1,2,4,6,8,10}. The biclus-
ters were allowed to overlap. For each K ≥ 2, we generated three scenarios of data with

p = 400 rows and q = 50 columns. The first scenario corresponded to non-overlapping

biclusters. These data were generated according to the non-overlapping model. The sec-

ond and third scenarios allowed for a small and sizable amount of overlapping biclusters,

respectively. These two scenarios were simulated according to the Bayesian plaid model

described in this paper. Figure 2.2 shows some examples of our simulated data sets.

More specifically, for K = 1, the data were generated with µ1 ∼ N(4,0.05) and µ0 ∼
N(1,0.05). For K = 2, µk ∼ N(2k,0.05), k = 1,2, and µ0 ∼ N(0,0.05). For K = 4

and K = 6, the data were generated with µk ∼ N(−2(k+ 1),0.05), k = 1, . . . ,K. For

K = 8 and K = 10, µk ∼ N((4k2 + 8)/(k+ 1),0.05), k = 1, . . . ,K. For K ∈ {4,8,10},
µ0 ∼ N(0,0.05), and for K = 6, µ0 ∼ N(1,0.05). The row effects αik were generated

according to their prior distributions with means set to µαik
= 2

1+exp(−i) −
1
rk

∑i
2

1+exp(−i) ,

k = 1, . . . ,K. The column effects β jk were generated similarly. For the non-overlapping

bicluster data, we generated the variances as draws from the distributions

σ2
0 ∼ inverse-χ2(0.01,3), and σ2

k ∼ inverse-χ2(s2k,3), where s2k = k/100, k = 1, ..,K.
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Figure 2.2: Examples of simulated data. The right column shows examples of non-

overlapping biclusters (scenario 1). The middle and left columns show moderate (sce-

nario 2) and heavy (scenario 3) overlapping of biclusters, respectively.
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For the overlapping bicluster data, we draw the variance σ2 from an inverse-χ2(0.01,3).

The hyper-parameters were set to the values: ν = ν0 = 1, s2 = s20 = 0.05, and σ2
α = σ2

β =

σ2
µ = σ2

µ0
= 0.5. For the penalized plaid model, the prior of λ was a gamma distribution

with shape α = 16 and scale β = 8 (that is, the mean prior was set to 2, and the variance

to 0.25).

2.5.1 Model comparison

In this section we compare several biclustering models and algorithms for a known

biclustering comprising K biclusters. The case of unknown K is dealt with in the

next section. The models compared were (A) the non-overlapping bicluster model; (B)

the plaid model; and (C) our penalized plaid model with double exponential prior on

the labels. The estimation methods compared were (I) the Gibbs sampler and (II) the

Metropolis-Hastings algorithm. Furthermore, we compared these methods with (III) the

Cheng and Church’s biclustering algorithm, and (IV) the plaid model of Turner et al.

[33]. We decide to use this latter implementation because it seems to perform better than

the original Lazzeroni and Owen’s method [23]. The Gibbs and Metropolis-Hastings

samplers were run with 20,000 burn in iterations. Only 2,000 iterations were kept after

the burn in to do the comparison analysis between the models.

2.5.1.0.1 The F1 measure. In order to compare the performance of the models plus

algorithms, we used the so-called F1 measure (Allan et al. [2]). The F1 measure have

been extensively used in the text mining literature and recently introduced to the biclus-

tering literature (Santamaria et al. [26], Turner et al. [33]). It results from the harmonic

mean of precision and recall. These indices are defined as follows. Let B be a bicluster,

rB be the number of genes in B, cB be the number of conditions in B and nB = rBcB be

the number of elements in B. Suppose that we wish to compare a target bicluster A and
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a known bicluster B. Then

recall =
(rA∩B)(cA∩B)

nB

precision =
(rA∩B)(cA∩B)

nA
.

Recall measures the proportion of elements in B that belong to A and precision measures

the proportion of elements in A captured in B. Turner et al. [33] used these indices

to measure quality of the biclusters but they mistakenly named precision by specificity.

The F1 measure is defined as F1(A,B) = 2(rA∩B)× (cA∩B)/(nA + nB). When several

biclusters are to be compared, we can use an F1-type average. LetM1 = {A1, . . . ,Ak} be
the set of estimated (target) biclusters, and M2 = {B1, . . . ,Bℓ}, the set of true (known)

biclusters. We measure the similarity of the estimate M1 to the true biclustering M2 by

S(M1,M2) = 1
k ∑k

i=1max jF1(Ai,B j). Note that S(M1,M2) ≤ 1, and it is equal to 1.0 if

and only if M1 = M2.

A visual summary of the results can be seen in Figure 2.3. It is clear from these bar

plots, that the fitting methods suggested by Cheng and Church [9] for the mixture model,

and by Turner et al. [33] for the plaid model are not very competitive in comparison with

the Bayesian models proposed in this paper. We carried out an analysis of variance of the

square-root of the F1 measure (as suggested by the Box and Cox family of power trans-

formations, Box and Cox [5]) for the three models (Penalized Plaid, Plaid and Mixture

model), fitted using the two methods (Gibbs sampler or the Metropolis-Hastings sam-

pler) presented in Section 2.4, for the three amounts of overlapping (No overlapping,

Moderate overlapping and Heavy overlapping). The ANOVA revealed that a model with

all second-order interactions and a third-order interaction between the amount of over-

lapping, the model and the number of biclusters fitted well the results. The Gibbs sam-

pler performs better than the Metropolis-Hastings algorithm of Section 2.4 for the data

sets with eight and ten biclusters. Furthermore, a multiple comparison analysis showed

that the plaid and penalized plaid models performed similarly and were the best models.

We note that the value of the penalty parameter λ depends a posteriori on the complex-

ity of the data. Its logarithm decreases with the number of biclusters and the amount
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Figure 2.3: F1 means for the different models compared. The darker bars correspond

to the Mixture model, the lighter bars, to the penalized plaid model, and the others to

the plaid model. The letter “G” stands for the Gibbs sampler, the letters “MH” for

the Metropolis-Hastings algorithm described in this paper, and the letters “CC” in the

“CCT” triplet stands for the original method suggested by Cheng and Church to fit a

mixture model (darker bars), and the letter “T” for the Turner et al.’s algorithm to fit the

plaid model (light bars). The symbol “+” stands for Heavy overlapping in the biclusters;

the symbol “-” stands forModerate overlapping, and the “0” stands for No overlapping.
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of overlapping (see Figure 2.4). As such the logarithm of λ may be used as a measure

of data complexity. Note that the complexity is dominated by the number of biclusters

when this is large relatively to the data size. The amount of overlapping does not appear

to influence it in this case.

2.5.2 Choice of model

We apply the criteria described in Section 2.4.2 for selecting the number of biclusters.

We only used the Gibbs sampler on the penalized plaid model to evaluate the criteria,

since the above results have shown that this is one of the best combinations for bicluster-

ing estimation. Figure 2.5 shows the DICc, DICm, AIC and BIC as a function of the num-

ber of biclusters for five data sets with K = 2,4,6,8,10 and moderate overlapping. For

each data set, each criterion, with the exception of BIC, reaches the minimum at the true

number of biclusters, except for K = 8, where K = 9 is preferred. Also, we observed (not

shown) that the F1-measure is maximized at the biclustering implied by the DICm’s min-

imum. The data set corresponding to K = 8 is shown in the middle column of the fourth

row in Figure 2.2. The nine-bicluster solution corresponds to all the biclusters seen in

the image plus the block of the zero-bicluster marked with with a “+” in this image. The

eight-bicluster solution combined the blocks marked with the “+” and a “2” in the image

in one bicluster. It appears that our model preferred the nine-bicluster solution because

the block marked with a “+” in the image is somewhat different to the background image

(the zero-bicluster) but still much weaker than Bicluster 2. Further analysis reveals that

the F1-measure between the true biclustering and the eight-bicluster solution is much

smaller (0.63) than that associated with the nine-bicluster solution (0.85).

Note that the DICc and DICm, curves are almost indistinguishable. This indicates

that the expected marginal likelihood is similar to the expected conditional likelihood

in these examples. This is also seen in the gene expression application described in the

next section. This is partly due to a relatively small effective dimension compared to

the expected log-likelihood. Also, after thousands of iterations of the Gibbs sampler, the

distribution of the bicluster labels becomes very asymmetric, strongly signalling the final

bicluster memberships. As a consequence, the expected log-likelihood is very similar to
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model.

the log of the expected likelihood.

2.6 Applications to gene expression arrays

We have applied our penalized plaid model to elucidate the biclustering structure

of the gene expression data associated with the yeast cell cycle data (Eisen et al. [13]).

This data set was obtained for five experimental conditions: the diauxic shift, mitotic

cell division cycle, sporulation, temperature shock, and reducing shock. The data is

available at http://genome-www.stanford.edu/clustering/. It shows the fluctuation of the

log-expression levels of 2467 genes over ten experimental series comprising 79 time-

points. The columns are denoted by the following prefixes: alpha (columns 1-18), Elu

(19-32), cdc (33-47), spo (48-53), spo5 (54-56), spo- (57-58), heat (59-64), dtt (65-68),

cold (69-72) and diau (73-79). This data have been analyzed by several researchers: Chu

et al. [10], Eisen et al. [13], Katsuhisa and Hiroyuki [20], Lazzeroni and Owen [23]. The

original data contained some missing values (1,9% of the data), which we imputed as in

Lazzeroni and Owen [23] by using the sum of the row and column means less the overall

mean.
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Figure 2.5: DICm, DICc, AIC and BIC for the penalized plaid model (p=400, q=50). The

F1 measure refers to the F1 value between the true biclustering and that one associated to

the biclustering that minimizes the DICm. The curves for DICm and DICc are overlying.
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2.6.1 Biological interpretation of the biclusters

We use the Gene Ontology (GO) database (Ashburner et al. [3]) to investigate which

terms are under or over-represented on each of the estimated bicluster and on each ontol-

ogy. The GO project is a major bioinformatics initiative with the aim of standardizing the

representation of gene attributes across species and databases. The GO project consists

of three structured controlled vocabularies or ontologies that describe gene products in

terms of their associated biological processes, cellular components, and molecular func-

tions in a species-independent manner.

If a high fraction of the genes forming a bicluster are contained in a given ontology,

then we expect, and we can say, that such a bicluster corresponds to known GO terms

within that ontology. In general, this is difficult to assess, since the large number of genes

makes it likely to find spurious but significant relations between GO terms and biclusters

just by chance. The Bioconductor project (Falcon and Gentleman [14]) uses the Fisher

exact test to measure such relations. In order to control the rate of false positive relations,

we employed a Bonferroni correction by adjusting by the number of GO terms present

in the data. Even after this adjustment, we found several relations that are significant

within each estimated bicluster.

In what follows, as in the work of Lazzeroni and Owen (2002), we will say that gene

i is up-regulated (respectively, down-regulated) within the k-th bicluster, if µk + αik is

positive (respectively, negative). We will say that the effect of the j-th condition is posi-

tive (respectively, negative) within the k-th bicluster if µk +β jk is positive (respectively,

negative).

2.6.2 Results

Figure 2.6 shows that the DICm and DICc criteria select thirteen biclusters for the

yeast cell cycle data, while the AIC selects five biclusters. The AIC criterion differs

from the DIC because this time the data size is large enough to make the penalty term

much more relevant. Recall that the number of parameters in our model is proportional

to the data size. The thirteen bicluster solution is more appealing to biologists. The five-



74

bicluster solution aggregates too much of the data and hides interesting small biclusters.

Therefore, we decided to continue the analysis of the biclustering chosen by the DICc.

The number of genes and the number of conditions associated with each bicluster are

displayed in Table 2.1. About 8% of the genes and 14% of conditions are in a single

bicluster and only 3% of the genes are in the zero-bicluster. 86% of the genes and 80%

of the conditions are found in overlapping biclusters. Biclusters 4 and 7 are the two

largest, with 1388 genes and 1381 genes, respectively. Bicluster five is the smallest one.

It is composed of 5 genes. We note that most of the genes are annotated by GO terms,

that is, they have a known biological function within GO.

The smaller biclusters, in terms of the number of genes or experimental conditions

included, are Biclusters 3, 5, 6, 9, 10, 11 and 13. In general, the smaller biclusters are the

most interesting to analyze since their genes are more likely to share common functions.

They are shown in Figure 2.7 along with the gene (µk +αik) and experimental condition

(µk +β jk) effects.

Bicluster 3 has 908 genes, all down-regulated, and consists of five experimental con-

ditions of sporulation. All the conditions act negatively. The main molecular functions

that characterize this bicluster are associated with structural constituents of ribosomes

and rRNA binding. The biological processes are associated with cytoplasmic transla-

tion, bio-synthetic and catabolic processes. The cellular components correspond to ri-

bosomes and cytoplasm. This bicluster is similar to the third bicluster (layer 3) found

in (Lazzeroni and Owen, 2002). Bicluster 5 contains only five genes. This bicluster

is characterized by hydrolase activity (gene YLR286C), cell division (genes YNL327

and YNL066W) and cellular budding (genes YKL185W, YNL327W, and YNL066W).

Bicluster 6 consists of 492 genes, six time-points of the sporulation and one time-point

of the diauxic shift. In this bicluster, the genes are up-regulated and the experimental

conditions present positive effects. The over-represented GO-term functions are related

to the threonine-type endopeptidase activity, the DNA binding, the cell cycle, and the

DNA replication processes. This bicluster is similar to the first bicluster (layer 1) found

in Lazzeroni and Owen [23]. Bicluster 10 consists of 884 genes and 3 time-points of

the sporulation The over-represented GO-term functions are related to catalytic and oxi-



75

5 10 15

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

4
0
0
0
0
0

Yeast

Number of biclusters

C
ri

te
ri

a

DICc

AIC

Figure 2.6: DICc and AIC for the Yeast cell cycle data

Table 2.1: Summary of the results for the yeast cell cycle data

Yeast data

number of number of annotated

Bicluster conditions genes genes

0 5 71 71

1 41 415 414

2 53 488 487

3 5 908 907

4 28 1388 1383

5 36 5 5

6 7 492 491

7 31 1381 1378

8 22 680 679

9 8 711 711

10 3 884 882

11 4 789 788

12 10 953 948

13 9 1105 1103
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Figure 2.7: Biclusters 3, 5, 6, 10, 11 and 13 of the Yeast cell cycle data. The upper sub-

plots correspond to the gene (column) effects, and the right subplots, to the experimental

conditions (row) effects.
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doreductase activities, and the catabolic process. Bicluster 11 consists of three times of

the sporulation. Its associated GO-term significant functions are related to the structural

constituent of ribosomes and rRNA binding, the cytoplasmic translation, the metabolic

process, and the gene expression. All the genes were down-regulated in Biclusters 10

and 11. Moreover, the experimental conditions presented negative effects in these bi-

clusters. Bicluster 13 consists of 1105 genes and nine cdc15 experimental conditions.

These conditions from the mitotic cell cycle show negative effects. Almost all the genes

were down-regulated (95%). The associated GO-term significant functions are related to

proteolysis, the cellular protein catabolic process and the modification-dependent protein

catabolic process.

The zero-bicluster has 71 genes and five time-points from the alpha-factor (“al-

pha.77”), the sporulation (“spo5.2”), the heat shock (“heat.10”), and the diauxic shift

(“diau.a”, “diau.b”). No gene is over-represented and no condition has an effect in this

zero-bicluster.

Although most of the small biclusters consist primarily of experimental conditions

from sporulation, these biclusters are very different. They play different biological roles

in terms of cellular components, biological processes and molecular functions. Lazze-

roni and Owen (2002) detected similar biclusters. However, the ones found with our

model are also related to other functions that have not been reported before.

2.7 Conclusions

In this work, we introduced an extension of the plaid model, the penalized plaid

model. This model incorporates a penalty parameter, λ , that controls (or measures) the

amount of bicluster overlapping. Within this model, we found the original plaid model

of Lazzeroni and Owen (2002) when λ is set to zero. At the other extreme (λ → +∞)

we find a homogeneous-variance version of the non-overlapping model of Cheng and

Church (2000). We have proposed both a Gibbs sampler and a Metropolis-Hastings

algorithm to estimate the parameters. We note that our Metropolis-Hastings sampler

applied to the mixture model with bicluster dependent variances justifies the optimality
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of the otherwise ad hoc algorithm proposed by Cheng and Church (2000).

We have shown that although the Biclustering problem may be studied as a mixture

model, the commonly used (soft) EM-algorithm for mixtures does not seem appropriate.

Instead, an ICM-like or hard-EM algorithm appears to be more suitable. In fact, we note

that most of the underlying algorithms for biclustering reported in the literature may be

justified using hard-EM or ICM. However, we have shown through our simulations that

the results derived from our MCMC implementation of the models are better than the

original Cheng and Church and plaid model algorithms.

We defined a DIC criterion that seems specially suitable for the biclustering problem.

Our DIC for biclustering was inspired by the work of Celeux et al. [8] who noticed that

the original DIC was not well-defined for mixture models. In our experiments, our

marginal and conditional DIC criteria performed very well. Although we believe that,

in principle, the marginal DIC should be preferred to the conditional DIC, we admit that

this latter criteria is easier and faster to compute.

We applied our penalized plaid model to the yeast cell cycle data of Eisen et al. [13].

We found thirteen biclusters in the data as indicated by our conditional DIC model se-

lection criterion. Among the biclusters, we obtained the main biclusters found in Lazze-

ronni and Owen (2002). We showed that these biclusters are very different as indicated

by their diverse biological roles obtained using the GO ontology annotations (Falcon and

Gentleman [14]).
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CHAPITRE 3

THE GIBBS-PLAID BICLUSTERING MODEL

Abstract

Within the context of gene expression, biclustering refers to the simultaneous clus-

tering of genes and experimental conditions. Many biclustering algorithms have been

proposed. Most of them consider genes or conditions as statistically independent en-

tities. We propose a Bayesian plaid model for biclustering that accounts for the prior

dependency between the genes or conditions through a random relational graph. The

dependency information is modelled from biological knowledge gathered from Gene

Ontologies such as GO. Our model assumes that the relational graph is governed by a

Gibbs random field. We developed a stochastic algorithm partly based on the Wang-

Landau flat-histogram algorithm in order to estimate the posterior distribution of the

bicluster membership labels. We show some experiments with real and simulated data

and compare the performance of our model with that of the most popular biclustering

algorithms.

Key words: Clustering, relational graph, autologistic model, Wand-Landau algo-

rithm, plaid model, gene expression, gene ontology.

3.1 Introduction

DNA microarray and other microarray technologies allow the measurement of the

transcription level of a large number of genes within several diverse experimental con-

ditions (or experimental samples) (Sara and Oliveira, 2004, Tanay et al, 2005). The

experimental conditions may correspond to either different time points, different envi-

ronmental samples, or different individuals or tissues. The resulting data from these

technologies are usually referred to as gene expression data.

Basically, gene expression data may be seen as a data matrix with rows correspond-

ing to genes, and columns to experimental conditions. Each cell of this matrix represents
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the expression level of a gene under a biological condition. The analysis of gene expres-

sion data usually implies the search for groups of co-regulated genes, that is, groups of

genes that exhibit similar expression patterns. Or inversely, the analysis may consists

of looking for samples or conditions (e.g. patients) with similar expression profiles.

These may indicate the same attribute, such as a common type of particular disease (e.g.

leukemia). To accomplish this task, exploratory data analysis such as clustering are

required. A wide range of clustering algorithms have been proposed to analyze gene

expression data. They are usually based on techniques such as hierarchical clustering

(Sokal and Michener, 1958) and/or K-Means (Ward, 1963). However, there are at least

two drawbacks with classical clustering in the context of gene expression data. The first

one is the fact that within the context of clustering each gene must belong to one and

only one cluster, even though a single gene may participate in multiple cellular pro-

cesses. The second one is that the clustered genes must have similar expression patterns

under all experimental conditions. However, a cellular process may be active only in a

subset of conditions. Biclustering overcomes these drawbacks. It aims at discovering bi-

dimensional clusters given by genes and conditions simultaneously. That is, a bicluster

is a subset of genes and conditions of the original expression matrix for which the genes

present similar patterns on the conditions and conversely, the conditions present similar

patterns across the genes.

Good surveys of existing biclustering algorithms can be found in several papers, such

as (Sara and Oliveira, 2004), (Tanay et al., 2005) and (Prelic et al., 2006). The Cheng

and Church’s algorithm ((Cheng and Church, 2000) and the plaid model (Lazzeroni and

Owen, 2002) are two of the most popular biclustering methods. Cheng and Church

(2000)) seem to be the first authors to propose the term biclustering for the analysis of

microarray data. Their algorithm consists of a greedy iterative search aiming at minimiz-

ing the mean square residual error. Lazzeroni and Owen (2002) proposed the popular

plaid model. They assumed that the expectation of each cell in the data matrix is form

by the contribution (sum) of different layers or single biclusters. Recently, many authors

(Gu and Liu, 2008; Caldas and Kaski, 2008; Zhang, 2010; Chekouo and Murua, 2012)

have generalized the plaid model into a Bayesian framework.
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It is apparent from our review of the literature, that prior information about genes

or conditions, and pairwise interaction between them are not taken into account in most

biclustering models. In this work, we propose a model that does take into account this

information. We adopt a Gaussian plaid model as the model describing the biclustering

structure of the data matrix. In addition, we incorporate prior information on the depen-

dency between genes and between conditions through dedicated relational graphs, one

for the genes and another for the conditions. These graphs are conveniently described

by auto-logistic models (Besag, 1974, 2001; Winkler, 2003) for genes and conditions.

These distributions are pairwise-interaction Gibbs Random Fields for dependent binary

data. They can be interpreted as generalizations of the finite-lattice Ising model (Be-

sag, 2001). The Ising model is a popular two-state discrete mathematical model for

ferromagnetism in statistical mechanics. We will refer to this model as the Gibbs-plaid

biclustering model. In our prior, the inter-dependencies between the genes, that is the

edge weights in the graph, are elicited through the information contained in the GO

(Gene Ontology) collection. The latter is a major bioinformatics initiative to unify the

representation of gene and gene product attributes across all species (Ashburner et al,

2000). It provides an ontology of controlled vocabularies that describes gene products

in terms of their associated biological processes, cellular components, and molecular

functions in a species-independent manner.

Our prior is elicited from similarities obtained from the GO annotations. A k-nearest-

neighbor graph over the genes is built from these similarities. A key parameter of the

auto-logistic prior is the so-called temperature parameter T (due to its analogy with the

physical process of tempering). The normalizing constant of this prior is, in general,

unknown and intractable. Unfortunately, for computational purposes, this constant is

needed in order to implement a stochastic algorithm aiming at estimating the posterior

distribution of the genes bicluster memberships when T is unknown. Basically, this

means that the usual MCMC Metropolis-Hastings procedure is too difficult to apply to

our model. Instead, we adopt a hybrid procedure that mixes Metropolis-Hastings with a

variant of theWang-Landau algorithm (Wang and Landau, 2001; Atchade and Liu, 2010;

Murua and Wicker, 2012). The convergence of the proposed algorithm to the posterior
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distribution of the bicluster membership is guaranteed by the work of Atchade and Liu

(2010).

We note that some earlier attempts to incorporate gene dependency information have

been made in the literature, but within the context of clustering (as opposed to bicluster-

ing) and variable selection. Vannucci and Stingo (2011) give a nice review. Stingo et al

(2011) have proposed a Bayesian model which incorporates information on pathways

and gene networks in the analysis of DNA microarray data. They assumed a Markov

Random Field prior to capture the gene-gene interaction network. The neighborhood

between the genes uses the pathway structure from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (Kanehisa and Goto, 2000). Hang et al (2009) and Vi-

gnes and Forbes (2011) have also used biological information to do a clustering analysis

of gene expression data. Park, Hastie and Tibshirani (2007) also incorporated gene on-

tology GO annotations to predict survival time and time to metastases of breast cancer

patients using gene expression data as predictors variables. There is also some work on

clustering of gene expression data with a generalization of the Ising model, the Potts

model (Murua, Stanberry and Stuetzle, 2008; Getz, Levine, Domany and Zhang, 2000).

However, in these works the Potts model (Sokal, 1996) is used directly as a nonparamet-

ric model for clustering (Blatt, Shai and Domany, 1996), and not as a prior accounting

for gene-gene interaction on another clustering model.

3.2 The Model

Let p be the number of genes, and q be the number of experimental conditions. Let

Yi j denote the expression level of gene i under condition j (i= 1, . . . , p, j = 1, . . . ,q). Let

K be the number of biclusters. For all i in the sets of genes, j in the set of conditions,

and k = 1, . . . ,K, define the binary variables ρik and κ jk taking values in {0,1}, so that

ρik = 1 if and only if gene i belongs to bicluster k, and κ jk = 1 if and only if condition

j belongs to bicluster k. The symbols ρi and ρ will denote the K-dimensional vector

of components {ρik}Kk=1 and the pK-dimensional vector comprising all the vectors ρi,

i = 1, . . . , p, respectively. The symbols κ j and κ are similarly defined for the conditions.
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3.2.1 The plaid model

The Gaussian plaid model states that Yi j = µi j(ρ,κ,Θ) + εi j, where ε follows a

Normal(0,σ2), and µi j(ρ,κ,Θ)= µ0+∑K
i=1(µk+αik+β jk), where αk = {αik, i= 1, .., p}

and βk = {β jk, j = 1, ..,q} are the gene and condition effects associated to bicluster

k = 1, ..,K, measured as deviations from the bicluster mean µ0 + µk. (µ0 denotes the

overall data mean). The symbol Θ denotes the ensemble of parameters of the model

(µ0,µ,α,β ). We assume that the variables Yi j’s given the labels (ρ,κ) and (σ2,Θ) are

independent. That is,

P(y|ρ,κ,σ2,Θ) = ∏
i, j

1

σ
φ

(

yi j−µi j(ρ,κ,Θ)

σ

)

(3.1)

where φ stands for the standard normal density. Given the bicluster labels (ρ,κ), we

define Ik = {i : ρik = 1} as the set of rows in the bicluster k, and Jk = { j : κ jk = 1} as

the set of columns in bicluster k, k = 1, . . . ,K. The bicluster k is given by Bk = Ik× Jk.

Let be nk the number of elements in the bicluster k. The number of rows and columns in

this bicluster will be denoted by rk and ck, respectively. Note that nk = rk× ck. Let 1m

denote the vector of all 1’s in R
m, and Im stand for the identity matrix of dimension m.

We further assume that given the bicluster labels, the prior of the gene effects {αik} is

a multivariate normal distribution with mean zero and variance-covariance matrix given

by σ2
αVk = σ2

α(Irk − 1
rk
1rk1

′
rk
). As shown in (Chekouo and Murua, 2012), we may change

the parametrization of the model to a proper multivariate normal vector ak ∼ N(0,σ2
α Irk)

so that αk = Vkak. Similarly, we suppose that the prior for {β jk}|(ρ,κ) follows a mul-

tivariate normal distribution with mean zero and variance-covariance matrix given by

σ2
βUk = σ2

β (Ick − 1
ck
1ck1

′
ck

). Note that these prior distributions verify the conditions of

identifiability in the model, i.e., they ensure that the gene and condition effects add up to

zero on each bicluster almost surely.
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3.2.2 A prior for the bicluster membership

The gene labels ρik as well as the condition labels κ jk are usually assumed to be

independent (Zhang, 2010; Gu and Liu, 2008). More realistically, in this work, we

incorporate prior knowledge on the relation between genes and between conditions (if

applicable) by means of relational graphs. For example, the gene relational graph is a

k-nearest-neighbor graph whose nodes correspond to the set of genes, and whose edges

correspond to the set of most-similar or “closer” genes. It is this notion of similarity that

contains the relational information between genes. We define these similarties based on

the GO annotations. The GO annotations, also known as GO terms, are organized in

a directed acyclic graph (DAG) wherein children annotations inherit annotations from

multiple parent terms. We adopt the minimum subsumer of (Resnik, 1999) as a means

to build a notion of semantic similarity between any two GO annotations. This idea was

first introduced by Lord et al. (2003). Let x denote a GO annotation, and let P(x) be its

empirical frequency within a collection of genes. The information content in x is defined

as IC(x) = − logP(x). The information content of the minimum subsumer between two

GO annotations x1 and x2 is based on the lowest common ancestor in the DAG

ICa(x1,x2) = max
x∈A(x1,x2)

IC(x), (3.2)

where A(x1,x2) is the set consisting of all common ancestors of the annotations x1 and

x2. These quantities are readily available using the R package GOSim (Frohlich et al,

2007). One of the simplest normalization of the Resnik’s similarities is the Lin’s pairwise

similarity (Lin, 1998) given by

sim(x1,x2) =
2ICa(x1,x2)

IC(x1)+ IC(x2)
(3.3)
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Therefore, given two genes i and i′, annotated with the sets of GO annotations Xi and Xi′ ,

respectively, we define their similarity by

sim(i, i′) = max
x∈Xi
x′∈Xi′

sim(x,x′),

and their distance by dρ(i, i′) = 1− sim(i, i′). The gene relational graph is defined to

have edge weights equal to

Bii′(T
ρ ,σρ) =

1

T ρ
exp

(

− 1

2σ2
ρ

dρ(i, i′)2
)

.

Here T ρ and σρ are the temperature and kernel bandwidth parameters of the graph,

respectively. We assume that Bii′(T
ρ ,σρ) = 0 for pairs of genes not connected by an

edge. These weights are larger, the more similar the genes are. We will use the notation

i∼ i′ for nodes that are connected by an edge in the graph. The distribution of the gene

labels in this graph is given by the binary Gibbs random field

p(ρk|a,T ρ ,σ2
ρ) ∝ hρ,k(ρk,T

ρ)
.
= exp

{

p

∑
i=1

aiρik + ∑
i∼i′

Bii′(T
ρ ,σ2

ρ)1{ρik=ρi′k}

}

where a= {ai}pi=1 are hyper-parameters controlling the amount of membership (ρik = 1)

in the bicluster, and for every relation A, 1A denotes the indicator function taking the

value 1 if and only if the relation A is satisfied. This Gibbs field is actually a binary auto-

logistic distribution on the labels (Besag, 1974, 2001; Winkler, 2003). This Gibbs prior

favors biclusters formed by similar genes in the sense of the distances or similarities

chosen to built the relational graph.

The conditions prior

A similar prior relational graph may be built for the conditions if a notion of simi-

larity between the conditions may be defined. This is the case, for example, when the

conditions correspond to similar measurements taken over a period of time, such as in
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gene expression evolution (i.e., time-course) profiles. In this latter case, the distance

between conditions may incorporate a measure of smoothness of the time-course profile

during consecutive measurements. Alternatively, a measure of correlation may be incor-

porated in the similarities, if a moving-average or specific ARMA process is assumed on

the time-course profiles. These aspects of the modelling processes are better explained

within the context of specific applications, such as the ones describe in Section 3.5. For

the moment, assume that such a distance between conditions may be defined. We will

denote the distance between two conditions j and j′ by dκ( j, j′). The condition rela-

tional graph is defined to have edge weights equal to

D j j′(T
κ ,σκ) =

1

T κ
exp

(

− 1

2σ2
κ

dκ( j, j′)2
)

.

As before, T κ and σκ are the temperature and kernel bandwidth parameters of the graph,

respectively. And we assume that D j j′(T
κ ,σκ) = 0 for pairs of conditions not connected

by an edge. The distribution of the condition labels in this graph is then given by the

binary auto-logistic distribution

p(κk|c,T κ ,σ2
κ) ∝ hκ,k(κk,T

κ)
.
= exp

{

q

∑
j=1

c jκ jk + ∑
j∼ j′

D j j′(T
κ ,σκ)1{κ jk=κ j′k}

}

where c = {c j}qj=1 are hyper-parameters controlling the amount of condition member-

ship (κ jk = 1) in the bicluster. Note that in the absence of any prior information on the

dependency between conditions, we may assume that all pairs of conditions ( j, j′) are

far apart, and consequently, that D j j′(T
κ ,σκ) = 0 for all pairs ( j, j′). This leads to a

prior where all the condition labels κ jk are a priori independent.

3.3 Posterior Estimation

To estimate the posterior of the parameters, specially the one associated to the labels

(ρ,κ), we use a hybrid stochastic algorithm. First of all an augmented model is consid-

ered in order to efficiently sample the labels through a block Gibbs sampling. This is the
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Swendsen-Wang algorithm (Swendsen and Wang, ). The algorithm is very-well known

in the Physics and imaging literature. We briefly describe it below. The effects param-

eters and the variances are readily sampled using the usual Gibbs sampler. However,

the temperature hyper-parameters associated to the label priors need extra consideration.

In order to sample from their posterior, one needs to know the normalizing constant of

the priors which unfortunately are intractable. To solve this impass, we adopt the Wang-

Landau algorithm (Wang and Landau, 2001; Atchade and Liu, 2010). This is a technique

that efficiently samples from a grid of finite temperature values by cleverly estimating

the normalizing constant at each iteration. The algorithm travels efficiently over all the

temperatures by penalizing each visit. The resulting algorithm is also referred to as a

flat-histogram algorithm. Below, we explain a bit more how the technique is applied to

our model.

3.3.1 Sampling the labels with known temperatures

Let the number of biclusters k be fixed. We will denote the residuals by zi jk = yi j−
µ0−∑K

k′ 6=k θi jk′ρik′κ jk′ . The likelihood is given by

P(y|ρ,κ,σ2,Θ) ∝
1

σnp
exp

{

− 1

2σ2 ∑
i, j

(zi jk−ρikκ jk(µk +αik +β jk))
2

}

=
1

σnp
exp

{

− 1

2σ2 ∑
i, j

ρikκ jk(zi jk−µk−αik−β jk)
2− 1

2σ2 ∑
i, j

(1−ρikκ jk)(zi jk)
2

}

Consequently, the full conditional probability of the genes labels is given by

P(ρk|y,ρ−k,κk,σ
2,Θ,T ρ) ∝ exp

{

∑
i

Aikρik + ∑
i∼i′

Bii′(T
ρ ,σρ)1{ρik=ρi′k}

}

,

where Aik = ai − (1/2)σ−2∑
q
j=1

{

κ jk(zi jk−µk−αik−β jk)
2−κ jk(zi jk)

2
}

, and ρ−k =

ρ \ ρk. To sample from this full conditional, we use the Swendsen-Wang algorithm

(Swendsen and Wang, 1987). This algorithm samples the label in blocks by taking into

account the data graph neighborhood system. It defines a set of the independent auxiliary
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0−1 binary variables R = {Rii′ : i, i
′ = 1, . . . , p}, called the bonds. The bonds are set to

the value 1 with label dependent probabilities given by

pii′
.
= P(Rii′ = 1|ρk) = (1− exp{−Bii′(T

ρ ,σρ)})1{ρik=ρi′k}1{i∼i′}. (3.4)

The bond Rii′ is said to be frozen if Rii′ = 1. Note that necessarily a frozen bond can

occur only between neighboring points that share the same label. A set of data graph

nodes is said to be connected if for every pair of nodes (i, i′) in the set there is a path of

frozen nodes in the set connecting i with i′. The Swendsen-Wang algorithm to sample

the labels is the following:

1. Given the labels ρk, each bond Rii′ is frozen independently of the others with

probability pii′ if i∼ i′ and ρik = ρi′k. Otherwise, the bond is set to zero.

2. Given the bond variables R, the graph is partitioned into its connected components.

Each connected component C is randomly assigned a label. The assignment is

done independently, with 1-to-0 log-odds proportional to ∑i∈CAik. In the special

case of the Ising model, and more generally, when Aik = 0 for all i, the labels are

chosen uniformly at random.

The conditions labels are sampled in a similar manner given the genes labels.

3.3.2 Sampling the labels with unknown temperatures

We assume that the temperatures T ρ and T κ take finitely many values. Let Tρ and

Tκ be the sets of m and n possible values for T ρ and T κ , respectively. We assume that

a priori that (T ρ ,T κ) is distributed uniformly on the grid of values Tρ ×Tκ . We may

write

p(σ2,Θ,ρ,κ,Tρ ,T κ |y) ∝ p(y|σ2,Θ,ρ,κ)π(σ2,Θ)
K

∏
k=1

(

hρ,k(ρk,T
ρ)

Zρ(T ρ)

hκ,k(κk,T
κ)

Zκ(T κ)

)

.

where Zρ(T ) and Zκ(T ) denote the normalizing constants for hρ,k(ρk,T ) and hκ,k(κk,T
ρ),

respectively. In general, these constants cannot be easily evaluated and are intractable,
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except for the very simplest cases. MCMC techniques such as Metropolis-Hastings are

of no use here, since the constants change with the value of T . Instead, in order to obtain

samples from the posterior of the labels, we used a stochastic algorithm based on the

Wang-Landau algorithm (Wang and Landau, 2001; Atchade and Liu, 2010). The sam-

pling from this algorithm gives at the same time approximate samples from the posterior

of the labels and the parameters (σ2,Θ), and estimates of the posterior probability mass

function of (T ρ ,T κ). Atchade and Liu (2010) give a nice exposition of the algorithm

and show its convergence. Murua and Wicker (2012) have successfully used a variant

of the Wang-Landau algorithm to estimate the posterior of the temperature of the Potts

model. Basically, the Wang-Landau algorithm considers the target joint distribution

π(σ2,Θ,ρ,κ,T ρ ,T κ) ∝ p(y|σ2,Θ,ρ,κ)π(σ2,Θ)
K

∏
k=1

hρ,k(ρk,T
ρ)hκ,k(κk,T

κ)/φ(T ρ ,T κ),

where

φ(T ρ ,T κ) = Z−1 ∑
ρ,κ

{(

∫

p(y|σ2,Θ,ρ,κ)π(σ2,Θ)dσ2 dΘ

)

K

∏
k=1

hρ,k(ρk,T
ρ)hκ,k(κk,T

κ)

}

,

and Z is the constant such that ∑Tρ∈Tρ ,Tκ∈Tκ
φ(T ρ ,T κ) = 1. The algorithm samples

from iterative stochastic approximations of this distribution (see the algorithm steps be-

low), so that the marginal of the parameters and labels converges to the target marginal

π(σ2,Θ,ρ,κ)= p(σ2,Θ,ρ,κ|y) and the marginal of (T ρ ,T κ) converges to π(T ρ ,T κ) ∝

Z, a uniform distribution on the grid Tρ ×Tκ . The main idea of the stochastic approxi-

mation is to replace φ(T ρ ,T κ) by an iterative estimate, say φ̂(T ρ ,T κ). Since π(T ρ ,T κ)

is uniform, at convergence

φ̂(T ρ ,T κ)

∑tρ∈Tρ ,tκ∈Tκ
φ̂(tρ , tκ)

≈ φ(T ρ ,T κ). (3.5)

Therefore, the quantities given in the left-hand-side of equation (3.5) give an estimate of

the posterior probability mass function of the temperatures (T ρ ,T κ).

The Wang-Landau algorithm we have implemented depends on an updating pro-

posal of the form q(T ρ ,T κ |T ρ,(t),T κ,(t)) = qρ(T ρ |T ρ,(t))qκ(T κ |T κ,(t)),with qρ(t1, t2) =
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qρ(tm, tm−1) = 1 and qρ(ti, ti−1) = qρ(ti, ti+1) = 1/2 if 1 < i < m, where we have writ-

ten Tρ = {t1 < t2 < · · · < tm}. The proposal qκ is similarly defined. This proposal

corresponds to the proposal of Geyer and Thompson (1995) used within the context of

simulated tempering. Atchade and Liu (2010) suggest a different proposal based on a

multinomial distribution. However, this latter proposal involves considerably more com-

putations. The algorithm proceeds as follows: Given (σ2,(t),Θ(t),ρ(t),κ(t),T ρ,(t),T κ,(t))

and φ̂ (t) = {φ̂(tρ , tκ) : (tρ , tκ) ∈ Tρ ×Tκ} at iteration t,

1. Sample T from the proposal distribution qρ(·|T ρ,(t)). Set T ρ,(t+1) = T with prob-

ability:

min

(

1,
qρ(T |T ρ,(t))

qρ(T ρ,(t)|T )

φ̂(T ρ,(t),T κ,(t))

φ̂(T,T κ,(t))

× exp

{

K

∑
k=1

∑
i∼i′

Bii′(T,σ2
ρ)−Bii′(T

ρ,(t),σ2
ρ)1{ρ

(t)
ik

=ρ
(t)

i′k }

})

,

otherwise set T ρ,(t+1) = T ρ,(t).

2. Sample T from the proposal distribution qκ(·|T κ,(t)). Set T κ,(t+1) = T with prob-

ability:

min

(

1,
qκ(T |T κ,(t))

qκ(T κ,(t)|T )

φ̂(T ρ,(t),T κ,(t))

φ̂(T ρ,(t),T )

× exp

{

K

∑
k=1

∑
j∼ j′

D j j′(T,σ2
κ)−D j j′(T

κ,(t),σ2
κ)1{κ

(t)
jk

=κ
(t)

j′k}

})

,

otherwise set T κ,(t+1) = T κ,(t).

3. Update φ̂ (t+1):

log φ̂ (t+1)(tρ , tκ) = log φ̂ (t)(tρ , tκ)+γ(t)

(

1{(Tρ,(t+1),Tκ,(t+1))=(tρ ,tκ )}−
1

mn

)

, (3.6)

(tρ , tκ) ∈ Tρ ×Tκ .
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4. Sample ρ(t+1) and κ(t+1) with the Swendsen-Wang algorithm.

5. Sample (σ2,(t+1),Θ(t+1)) using the usual Gibbs sampler.

In the step (3), we need how to choose γ(t), which is a random sequence of real numbers

decreasing slowly to 0. We chose γ(t) according to the Wang-Landau approach. γ(t) is

kept constant until the histogram of the temperatures is flat, that is, until (T ρ,(t),T κ,(t))

has equiprobably visited all the values of the grid Tρ ×Tκ . At the k
th recurrent time nk

such that (T ρ,(t),T κ,(t)) is approximately uniformly distributed, we set γ(nk+1) = γ(0)/2k

where γ(0) = 1. When γn becomes too small, γn is set to 0.0001/n0.7 as suggested by

Atchade and Liu (2010).

In Step 5, the parameters (σ2,Θ) are sampled with a Gibbs sampler. The full condi-

tional posterior of the parameters (σ2,Θ) is straightforward to derive (see for example

(Chekouo and Murua, 2012)). Hence, it will not be spelled out here.

3.4 Experiments with Simulated Data

In this section, we show the results of a performance comparison between the Gibbs-

plaid model and algorithm with the classical plaid Model of Turner et al. (2005), the

algorithm of Cheng and Church (2000), and the Bayesian penalized plaid model of

Chekouo and Murua (2012).

To build our simulated data we use the Yeast Cycle data of Cho et al. (1998). This

data set shows the time-course fluctuation of the log-gene-expression levels of 6000

genes over seventeen time-points. The data have been analyzed by several researchers

(Cho et al., 1998 ; 2002; Mewes et al., 1999 ;Tavazoie et al., 1999) and have been a

classical example for testing clustering algorithms (Yeung et al., 2001). We use the

five-phase subset of this data that consists of 384 genes whose expression levels peak

at different time points that correspond to the five cell cycle phases (Cho et al., 1998).

Of the 384 genes, there are 355 genes annotated with GO terms. Based on the Lin’s

pairwise similarities discussed in Section 3.2.2, we built a relational graph comprising

the annotated genes. Since the Gibbs prior is of the form of the Potts model, we per-

form Potts model clustering [20, 21] in order to discover clusters of genes in the graph.



96

These were used to set the genes labels. Clusters that split at higher temperatures in the

Potts model were use as candidates for overlapping biclusters. As with the real data, we

consider seventeen simulated conditions. The relational condition graph was modelled

inspired by the time-dependency in the Yeast Cycle data. This allowed us to consider

biclusters formed by consecutive conditions. These are easier to visualize. The similar-

ity between conditions was given by a set correlation of γ = 0.8 between consecutive

conditions. The correlation distance between conditions was set to

dκ( j, j′) =

{

2(1− γ | j− j′|), | j− j′| ≤ 3,

0 otherwise.

The condition labels were sampled according to the Gibbs prior given by this graph. The

expression levels of the bicluster cells were then generated as follows: µ0 was generated

from a Normal(0,0.05); µk was generated from a Normal(2(k+1),0.05), k = 1,2, ...,K;

the gene effects αik were generated according to their prior distribution with means set to

µαik
= 2

1+exp(−i) −
1
rk

∑i
2

1+exp(−i) , k = 1, . . . ,K; the condition effects β jk were generated

similarly; and the variance σ2 was generated from an Inverse-χ2(3,0.03). We created

in this fashion data sets with number of biclusters K = 2,3,4,5,6,7,8. Figure 3.1 shows

some examples of the simulated data for different values of K.

3.4.1 The F1-measure of performance

A measure of similarity between two sets of biclusters M1 = {A1, . . . ,Ak} and M2 =

{B1, . . . ,Bℓ} is given by by the so-called F1-measure (Santamaria et al., 2007; Turner et

al., 2005). The F1-measure is an average between recall and precision, two measures of

retrieval quality introduced in the text-mining literature (Allan et al., 1998). Let A,B be

two biclusters, rA and rB be the number of genes in A and B, cA and cB be the number of

conditions in A and B, and nA = rAcA and nB = rBcB be the number of elements in A and

B, respectively. Precision and recall are given by

recall =
(rA∩B)(cA∩B)

nB
, precision =

(rA∩B)(cA∩B)
nA

.
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Figure 3.1: Examples of simulated data.
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Recall is the proportion of elements in B that are in A. Precision is the proportion of

elements in A that are also found in B. The F1-measure between A and B is given by

F1(A,B) = 2(rA∩B)× (cA∩B)/(nA + nB). When several target biclusters M1 are to be

compared with known biclusters M2, we use the F1-measure average: F1(M1,M2) =

1
k ∑k

i=1max jF1(Ai,B j).

3.4.2 Comparison of results

The Gibbs-plaid model was run with the stopping criterion suggested by Atchade

and Liu (2010), but with a maximum number of iterations fixed at 500,000. We used

the last 2000 samples after the burn-in period to do the analysis. We compared our

results with the ones obtained with two of the most popular algorithms for biclustering:

the algorithm of Cheng and Church (2000), and the plaid model (Turner et al., 2005).

The results are shown in Figure 3.2. Our results are far better that the others. We also

compared with the Bayesian penalized plaid model of Chekouo and Murua (2012). In

general, our model is the best performing one.

3.4.3 Choosing the number of biclusters

As in the work of (Chekouo and Murua, 2012), we used two model selection criteria

to decide what is the appropriate number of biclusters for each data set. The criteria

used were the Akaike information (AIC) (Akaike, 1974) and the conditional Deviance

information (DICc) introduced in (Chekouo and Murua, 2012) is given by

DICc = −2Eσ2,Θ,ρ,κ

[

log p(y|σ2,Θ,ρ,κ)|y
]

+ pc(σ̃
2, Θ̃, ρ̃, κ̃).

where (σ̃2, Θ̃, ρ̃, κ̃) is the maximum a posteriori estimator of (σ2,Θ,ρ,κ), and

pc(σ̃
2, Θ̃, ρ̃, κ̃) = −2Eσ2,Θ,ρ,κ

[

log p(y|σ2,Θ,ρ,κ)|y
]

+2log p(y|σ̃2, Θ̃, ρ̃, κ̃),

is the corresponding effective dimension. Figure 3.3 shows the model selection results

for some of the simulated data sets. We note that, in general, AIC and DICc perform
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Figure 3.2: F1-measure means for the different models compared. The darker bars cor-

respond to the classical plaid model, the red bars, to the algorithm of Cheng and Church,
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plaid model.
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very well. Most of the criteria reach a minimum at the true number of biclusters. In

some cases the DICc criterion reaches a minimum for a number of biclusters larger than

the true number of biclusters. A closer look at the extra biclusters reveals that these are,

in general, very small, containing only a couple of conditions or a handful of genes. A

rule-of-thumb would be to select the biclustering model associated to the first minimum

or near optimal value of DICc.

3.5 Applications

We applied our model to the Yeast Cycle data already described in Section 3.4. The

data is displayed in Figure 3.4. The DICc criterion chooses fourteen biclusters (see Fig-

ure 3.5). The size of the biclusters is shown in Table 3.1. Some biclusters are displayed

in Figure 3.6. Most of the genes and the conditions (95%) were in more than one bi-

cluster. Only one bicluster, Bicluster 7, contains down-regulated genes. Bicluster 7 also

presents time-points with negative effects. This bicluster contains 100 genes and only

the first two time-points. The significant genes in this bicluster are related to the nu-

cleosome. All the others biclusters contain up-regulated genes and the time-points have

positive effects. Bicluster 2 contains 58 genes and 8 time-points. The significant genes

in this bicluster are related to the condensed chromosome kinetochore, the condensed

nuclear chromosome and the centromeric region. The corresponding time-points are re-

lated to the S and G2 phases ([11]). It contains some genes which peak in both phases.

Biclusters 1 and 3 are also characterized by functions related to cellular components

MCM complex and cytoskeletal part, respectively. Bicluster 6 contains 118 genes that

are up-regulated on the three last time-points. The main gene functions that characterize

this bicluster are associated to the transporter activity and the substrate-specific trans-

membrane transporter activity (molecular functions); to the cellular ketone metabolic

process, the oxidation-reduction process and to transport (cellular components); to the

mitochondrial part (biological process). Bicluster 5 consists of 83 genes and 5 timepoints

(1,9,10,11,17). Cellular respiration is the most significant biological process present in

this bicluster. The main cellular component is the mitochondrial part. Finally, Bicluster
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Figure 3.3: AIC and DICc for the Gibbs-plaid model (p=355, q=17). The F1 measure

refers to the F1 value between the true biclustering and that one associated to the biclus-

tering that minimizes the DICc.
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12 contains genes with functions related to the DNA repair and the cellular response to

stress.

3.6 Conclusion

We proposed a model for biclustering that incorporates biological knowledge from

Gene Ontology (GO) and experimental conditions (if available). This knowledge is used

to specify prior distributions that account for the dependency structure between genes

and between conditions. Our goal was to show that using prior information on the genes

and the conditions helps improve the significance of the biclustering obtained from a

biological point of view. We incorporated this prior information by efficiently modeling

mutual interactions between genes (or conditions) with discrete Gibbs fields. The pair-

wise interaction between the genes is given by entropy similarities estimated from GO.

These are embedded into a relational graph whose nodes correspond to genes, and edges

to similarities. The graph is kept sparse by filtering out gene interactions (edges) coming

from genes that do not share much common biological functionality as measured by GO.

In some cases, the conditions may also be compared by building a notion of similarity

between them, e.g., in the case of gene expression time courses. These similarities can

also be represented by a corresponding relational graph. To our knowledge the intro-

duction of Markov models and Gibbs fields in the context of biclustering seems new.

However, this has already been attempted in the fields of clustering and regression.

In order to estimate the biclusters, we adopted a hybrid procedure that mixes Metro-

polis-Hastings with a variant of the Wang-Landau algorithm. To efficiently sample the

labels through a block Gibbs sampling, we used an algorithm based on Swendsen and

Wang algorithm. Preliminary results are very promising. Experiments on simulated data

showed that our model is an improvement over other algorithms. They also showed that

criteria based on our conditional DIC and AIC may be used to guide the choice of the

number of biclusters.
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Figure 3.4: The gene expression levels of the Yeast Cycle data set.
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Figure 3.6: Yeast Cell Cycle Data. Biclusters 1, 2, and 4 seen at the bottom left corner of

the first three images in contrast to the whole data matrix. The rightmost bottom panel

corresponds to the original data and the fitted values predicted by the model.
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Table 3.1: The size of the biclusters found in the Yeast Cycle data set

Bicluster number of conditions number of genes

1 6 79

2 8 58

3 5 147

4 2 109

5 5 83

6 3 118

7 2 100

8 2 30

9 3 216

10 2 26

11 2 179

12 3 41

13 3 149

14 3 105
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CHAPITRE 4

VARIABLE SELECTIONWITH THE PLAID MIXTURE MODEL FOR

CLUSTERING

4.1 Introduction

Microarray data consist of many thousands of gene expression profiles but just about

tens or hundreds of samples. These sorts of data are typical examples of high dimen-

sional data for which the number of covariates (genes) is considerably larger than the

sample size. Having so much information poses some problems on model selection. The

decision on which data to keep or even look at becomes very relevant. For this reason, a

classical way to start the analysis of high-dimensional data is with exploration analysis

techniques such as clustering or biclustering. Both these techniques may be used for

data compression and/or dimensionality reduction. However, in many situations cluster-

ing is the goal, for example to detect subtypes of a desease. In this case, having a sound

and efficient methodology to perform variable selection is key to the advancement of the

study of the desease. For example, in cancer research, only a few genes in the genome

are supposed to contribute most to characterize cancer subtypes.

In the last few years, several authors have treated the problem of variable selection

in the context of clustering. Tadesse et al. [24] formulated the clustering problem in a

Bayesian context. In their model, the nondiscriminating variables follow a multivariate

normal distribution, while the discriminating ones follow a multivariate normal mixture

model with an unknown number of components. They use reversible jump Markov

chain Monte Carlo techniques to define a sampler that moves between spaces of different

dimensions. In their model, a binary exclusion/inclusion latent vector is introduced to

indicate whether a variable is selected (i.e., discriminanting) or not. Another approach

to do variable selection within a mixture model for clustering, described by Raftery

and Dean [19], is the use of Bayes factors to do model selection. Raftery and Dean

[19] propose a greedy search algorithm to find a local optimum in model space. They
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approximate the Bayes factors by the Bayes information criterion (BIC). Other authors

(Kim et al. [13], Hoff [10]) have also introduced Bayesian variable selection methods

through binary latent vectors to select the discriminating variables as in Tadesse et al.

[24].

Another class of models for variable selection uses penalization methods for model-

based clustering (Pan and Shen [18], Xie et al. [28], Wang and Zhu [26]). One of the

most popular approaches among these latter methods is that of Pan and Shen [18] which

is based on a penalized likelihood approach with an L1 penalty term. Specifically, follow-

ing Hoff [10], Pan and Shen [18] parametrize the cluster means, say µk, for each variable

j = 1, . . . ,q, as µ jk = υ j+β jk, where υ j is the overall cluster-independent mean for vari-

able j. They infer that if β jk = 0 for all clusters k, then the variable j is non-informative

for clustering (at least in terms of the mean). The model is fitted with an EM algorithm.

Here, we propose a novel method to select the variables in the context of clustering.

This method is inspired by the plaid model (Lazzeroni and Owen [14]) in the context of

biclustering. A biclustering is a simultaneous clustering of the observations (rows) and

the variables (columns) of a data matrix. The biclusters obtained are submatrices where

the rows exhibit a similar pattern across a subset of columns and vice-versa. The works

of Madeira and Oliveira [16], Tanay et al. [25], and also Chekouo and Murua [5] give

nice reviews on the topic. The key is to realize that when the same subset of columns

is selected on each bicluster, then what we have really obtained is a clustering of the

observations given by a selected subset of discriminating variables.

Let Y = {y1,y2, . . . ,yi, . . . ,yp} ⊂Rq be a random sample of p observations. Assume

that the data has a structure consisting of K clusters. We introduce the latent variables

ρ = {ρik}p,Ki=1,k=1 and κ = {κ j}qj=1, so that

ρik =

{

1, iff the i-th row is in bicluster k

0, otherwise;

κ j =

{

1, if the j variable is discriminating,

0, otherwise.
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We will also use the notation ρi = {ρik}pi=1.Our variable selection model for clustering is

defined as follows. Given the overall memberships ρ , κ , the expectation of yi j is written

as a sum of layers or plaids

E(yi j|ρi,κ j) = κ j

K

∑
k=0

ρik(µk +αik +β jk)+(1−κ j)υ j,

where µk is the overall mean of the objects in cluster k, β jk is the effect of the j-th

variable in cluster k, and αik is the random effect in cluster k associated to the i-th obser-

vation. For identifiability purposes, we impose the constraints ∑i∈k αik = ∑ j∈k β jk = 0,

k = 1, ..,K. Each plaid corresponds to a cluster. Note that the usual mixture model may

be written as

E(yi j|ρi,κ j,k) = κ j(µk +β jk).

Therefore, our model differs from other variable selection models based on mixtures in

that:

(A) We consider the possibility that some observations are not well explained by the

main clusters, but rather lie in what we called the zero-cluster (k = 0). These observa-

tions satisfy the constraints ρi0 = ∏K
k=1(1−ρik), αi0 = β j0 = 0, for all j = 1, . . . ,q. Note

that υ j is the background or zero-cluster mean of variable j. The presence of this cluster

may be justified by some observations in real life datasets. In clustering there is often

a “ragbag” cluster for subjects that do not belong to any well defined cluster and are

considered as noisy-individuals. Hence, it is desirable to consider a model which can

leave a few points un-clustered if necessary.

(B) We incorporate observation random effects. Thus, as in the biclustering, the ob-

servations and the variables play a symmetrical role in each cluster. One particularity

of our approach is that when K = 1, the problem of variable selection is equivalent to

searching for a single bicluster (a submatrix) in the data matrix. Not only the random

effects take into account the potential influence of single observations in the model, but

they also introduce compound symmetry in the variance-covariance matrix associated to

observations given the clusters. When this is not appropriate for a dataset at hand, then
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one could either simply eliminate the random effects from the model, or consider them

as fixed effects. For example, in the case of gene expression data, the effect of each gene

(the observations) is of interest, so it makes sense to incorporate fixed gene effects in the

model (as opposed to gene random effects) and to avoid imposing compound symmetry.

In the present paper we work with the observation fixed effects assumption.

(C) The observations may be explained by more than a single cluster (∑K
k=1ρik ≥ 1). This

yields an aggregate superposition of clusters which is different from a distributional over-

lapping of clusters as in the usual mixture model. For example, in clinical applications

(Bhattacharya [3]), a patient may belong to more than one clinical group, i.e., a patient

who complains of headache may have migraine symptoms and other causes of headache

(such as nasal or sinus problems/desease). Many authors in the literature have worked

on overlapping clustering (Fu and Banerjee [6], Fu and Banerjee [7] and Heller and

Ghahramani [8]). Their models, which are motivated by the product-of-experts model

(Hinton [9]), are often called multiplicative mixture models. We will show later on that

our approach is related to the work of these authors.

Since our model, similarly to many of the other models for clustering in the literature,

involves latent labels ρ,κ , we use a stochastic version of the EM algorithm based on

the so-called Monte Carlo EM (MCEM) algorithm (Wei and Tanner [27]) to estimate

the parameters. This is a modified EM algorithm where the expectation in the E-step

is computed numerically through Monte Carlo simulations. We do the Monte Carlo

sampling in each iteration of the MCEM algorithm with a Gibbs sampler. However, as

suggested by Levine and Casella [15], we also use Importance Sampling to overcome

the computational cost of the MC sampling at each step of the EM algorithm.

4.2 The plaid mixture model

In this section and throughout the paper we keep the notation introduced in the

previous section. Inspired by the biclustering plaid model of Lazzeroni and Owen

[14], we propose a general model for variable selection in the context of clustering.

Our model comprises the clustering label parameters ρ , the variable selection parame-
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ters κ , the variance parameters Σ = (σ2,{σ2
jk}

p,K
j=1,k=0), and the mean parameters Ψ =

(µ,{µk}Kk=0,β ,α), with α = {αik}q,Ki=1,k=0 and β = {β jk}q,Kj=1,k=0. It is given by

yi j = κ j(
K

∑
k=0

(µk +αik +β jk)ρik +ηi j)+(1−κ j)(υ j + εi j), (4.1)

where the ηi j’s and εi j’s are assumed to follow independent zero-mean normal distri-

butions. The variance of εi j is σ2
o j. The variance of ηi j is the harmonic mean of the

variances σ2
jk –which could depend on the cluster k and the variable j– and is given by

τ2i j =
K

∑
k=0

ρik/
K

∑
k=0

(ρik/σ2
jk) =

(

K

∑
k=0

ρik/riσ
2
jk

)−1

,

where ri = ∑K
k=0ρik ≥ 1 is the number of clusters that jointly explain observation yi. This

form of the variance allows us to cast our model as a multiplicative mixture model whose

observation and component dependent variances are riσ
2
k j (see equation (4.3) below).

Prior distribution.

The prior probability that variable j is selected is chosen to be the same for all

j = 1, . . . ,q, and will be denoted by π = P(κ j = 1), any j. The prior probability that

the i-th observation is explained by cluster k is denoted by πk = P(ρik = 1) and it is

supposed to be the same for all observations i = 1, . . . , p. Let Π = (π,{πk}Kk=0) be the

prior probability parameters. Furthermore, we assume that a priori the set of labels

({ρi}pi=1,{κ j}qj=1) are mutually independent Bernoulli latent variables.
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Likelihood.

In what follows, we will write µi jk for µk + αik + β jk. Let θ = (Σ,Ψ,Π). The com-

plete data likelihood is given by

L(θ |Y ,ρ,κ) = P(Y |ρ,κ,Σ,Ψ)∏
i,k

πk
ρik(1−πk)

1−ρik ∏
j

πκ j(1−π)1−κ j

= ∏
i, j

[

1

τi j
φ

(

yi j−∑K
k=0 µi jkρik

τi j

)]κ j [

1

σ
φ

(

yi j−υ j

σ

)]1−κ j

×∏
i,k

πk
ρik(1−πk)

1−ρik ∏
j

πκ j(1−π)1−κ j (4.2)

Let κ∗ = { j : κ j = 1, j = 1, . . . ,q} be the set of the selected variables. One can show that

the density of Y on the selected discriminating variables, that is j ∈ κ∗ is given by

P(Y |ρ,κ∗,θ) = ∏
i, j

1

ci j(ρ,κ∗,θ)

K

∏
k=0

[

1√
riσ jk

φ

(

yi j−µi jkriσ
2
jk/τ2i j√

riσ jk

)]ρik

, (4.3)

where

ci j(ρ,κ∗,θ) =
τi j

√
2π

∏k(
√
riσ jk

√
2π)ρik

exp







1

2τ2i j

(

K

∑
k=0

µi jkρik

)2

− 1

2τ4i j

K

∑
k=0

riµ
2
i jkρikσ

2
jk







Equation (4.3) shows that our model is similar to the multiplicative mixture model for

Overlapping Clustering described by Fu and Banerjee [6], Fu and Banerjee [7], and

Heller and Ghahramani [8]. Within this model, the location and the scale parameters

corresponding to cluster k are, respectively, µi jkriσ
2
jk/τ2i j and riσ

2
jk. Note that when there

is no aggregate overlapping of clusters, i.e., ri = 1 for all i = 1, . . . , p, and ignoring the

observation random effects, these parameters (µi jk and σ2
jk) are, respectively, the mean

and the variance of cluster k. Equation (4.3) is also related to the Product of Experts

(PoE) of Hinton [9].
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4.3 Estimation

The EM algorithm is particularly suitable for learning the parameters of our model

(4.2) because the likelihood of the complete data (Y ,ρ,κ) is much easier to calculate

than the likelihood of the observed data Y . More specifically, the EM algorithm starts

with an initial guess θ (0) = (Σ(0),Ψ(0),Π(0)) of the unknown parameters and iteratively

aims at estimating the MLE θ ⋆. Each iteration consists of the expectation (E) step and

the maximization (M) step.

4.3.1 The E-step

Given an estimate of θ at the current iteration t, say θ (t), the conditional expectation

of the complete data log-likelihood with respect to the density P(ρ,κ|Y ,θ) is computed

in the E-step:

Q(θ |θ (t)) = E
(

log(P(Y ,ρ,κ|θ))|Y ,θ (t)
)

, t ≥ 0. (4.4)

Unfortunately, we cannot compute the exact expectation (4.4) since we do not have a

tractable closed form expression for the joint conditional density P(ρ,κ|Y ,θ). How-

ever, since the full conditionals of ρ and κ are easily obtained, we propose to estimate

Q(θ |θ (t)) via a Monte Carlo EM (MCEM) algorithm [27]. The proposed estimator is

given by

Qm(θ |θ (t)) =
1

m

m

∑
l=1

log(P(Y ,ρ(l),κ(l)|θ)), (4.5)

where ρ(l),κ(l), l = 1, ..,m are samples from the conditional joint distribution of the

latent variables ρ , κ given the observed data Y and the current value of the parameters

θ (t). The estimator in (4.5) converges to the theoretical expectation in (4.4) by the law of

large numbers. Below, we explain how to obtain the label samples via a Gibbs sampler.
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4.3.2 The M-step

The M-step maximizes the sum (4.5) with respect to θ subject to the identifiability

constraints ∑iρikαik = ∑ j κ jβ jk = 0, for all i, j,k. To overcome the computational cost of

performing MCMC sampling within the MCEM algorithm when m is large, Levine and

Casella [15] propose to use instead importance sampling (Robert and Casella [21]). The

algorithm is initialized by m samples, ρ(l),κ(l), l = 1, ..,m from the joint distribution

P(ρ,κ|Y ,θ (0)). At iteration t, we estimate Q(θ |θ (t)) by importance sampling (IS):

QIS,m(θ |θ (t)) =
1

∑m
l=1w

(t)
l

m

∑
l=1

w
(t)
l log(P(Y ,ρ(l),κ(l)|θ)) (4.6)

where w
(t)
l = P(Y |ρ(l),κ(l),θ (t))/P(Y |ρ(l),κ(l),θ (0)). Thus, we do not need to ob-

tain a new sample ofm labels from P(ρ,κ|Y ,θ (t)) at each iteration t in order to estimate

Q(θ |θ (t)). The cost of obtaining a new sample ofm labels at each iteration is higher than

obtaining the IS weights. The weights are given by:

w
(t)
l = ∏

i, j

w
(t)
l (i, j), with w

(t)
l (i, j) =

P(yi j|ρi(l),κ j(l),θ
(t))

P(yi j|ρi(l),κ j(l),θ (0))
. (4.7)

4.3.3 The EM updating equations

Note that the identifiability constraints for the M-Step now become

∑
i

ρik(l)αik = ∑
j

κ j(l)β jk = 0, for all i, j,k, and l = 1, . . . ,m. (4.8)

If for a particular observation i, and cluster k one obtains ρik(l) = 0 for all l ∈ {1, . . . ,m},
then, it is reasonable to set αik = 0. This latter condition may be written as the identity

αik ∏l(1−ρik(l)) = 0 for all i,k.

In order to simplify the estimation problem, we will assume that the variances σ2
jk do

not depend on the cluster. Thus, σ2
jk = σ2

j , for all k = 0, . . . ,K. Consequently, τ2i j = σ2
j .

In what follows, for any function of the labels f (ρ,κ), the Important Sampling

weighted average ∑m
l=1w

(t)
l f (ρ(l),κ(l))/∑m

l=1w
(t)
l will be denoted by
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EIS( f (ρ,κ)|Y ,θ (t)). Consider the following quantities

α ′
ik = Di∑

j

1

2σ2
j

{

EIS(ρikκ j|Y ,θ (t))(yi j−β jk)− ∑
k′ 6=k

EIS(ρikκ jρik′ |Y ,θ (t))µi jk′

}

−µk

β ′
jk =C j∑

i

{

EIS(ρikκ j|Y ,θ (t))yi j− ∑
k′ 6=k

EIS(ρikκ jρik′ |Y ,θ (t))µi jk′

}

−µk.

and also

D−1
i = ∑

j

1

2σ2
j

EIS(ρikκ j|Y ,θ (t)), C−1
j = ∑

i

EIS(ρikκ j|Y ,θ (t)).

The maximization of (4.6) subject to the constraints in (4.8) yields the following EM

updating equations:

αik = α ′
ik(1−

m

∏
l=1

[1−ρik(l)])−Di

m

∑
l=1

λ
(α)
lk ρik(l)

β jk = β ′
jk(1−

m

∏
l=1

[1−κ j(l)])−2σ2
jC j

m

∑
l=1

λ
(β )
lk κ j(l)

µk = [∑
i, j

EIS(ρikκ j|Y ,θ (t))/σ2
j ]
−1

×∑
i, j

{EIS(ρikκ j|Y ,θ (t))(yi j−β jk)− ∑
k′ 6=k

EIS(ρikκ jρik′ |Y ,θ (t))µi jk′}/σ2
j

πk = ∑
i

EIS(ρik|Y ,θ (t))/p

υ j = ∑
i

yi j/p

π = ∑
j

EIS(κ j|Y ,θ (t))/q
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σ2
j = [pEIS(κ j|Y ,θ (t))]−1∑

i

EIS(κ j[yi j−∑
k

ρik{µk +αik +β jk}]2 |Y ,θ (t))

= [pEIS(κ j|Y ,θ (t))]−1

×∑
i

{EIS(κ j|Y ,θ (t))y2i j−2∑
k

EIS(ρikκ j|Y ,θ (t))µi jkyi j+

+ ∑
k,k′

EIS(ρikκ jρik′ |Y ,θ (t))µi jkµi jk′}

σ2
o j = ∑

i

(yi j−υ j)
2/p.

The Lagrange multipliers λlk involved in the updating equations for the variable and

random effects verify the following equations for l = 1, ...,m:

λ
(α)
lk

p

∑
i=1

Diρik(l) = ∑
i

ρik(l)α
′
ik− ∑

l′ 6=l

λ
(α)
l′k

p

∑
i=1

Diρik(l)ρik(l
′)

λ
(β )
lk

q

∑
j=1

2σ2
jC jκ j(l) = ∑

j

κ j(l)β
′
jk− ∑

l′ 6=l

λ
(β )
l′k

q

∑
j=1

2σ2
jC jκ j(l)κ j(l

′)

Note that in practice, one may have ρik(l) = ρik(l
′) for all observations i = 1, . . . , p for

a couple of samples l, l′ (that is, the membership in cluster k is the same for these two

samples), or κ j(l) = κ j(l
′) for all variables j for a couple of samples l, l′. If this is the

case, then we do not have necessarily m constraints for αk (or βk) , and we only need to

consider the multiplier λlk +λl′k instead of the two multipliers λlk and λl′k separately.

4.3.4 Sampling the labels

As we previously mentioned, the joint density of the labels P(ρ,κ|Y ,θ (t)) is not

known in closed form. Therefore we cannot perform the Monte Carlo sampling of the

labels (ρ,κ) required to compute QIS,m(θ |θ (t)). However, we can obtain a Markov

chain Monte Carlo (MCMC) estimate of this quantity. This is carried out with a Gibbs

sampler, since the full marginal conditionals of the labels are known. For i ∈ {1, . . . , p}
and k ∈ {0, . . . ,K}, let ρ

(k)
i0 = ∏k′ 6=k(1−ρik′), and ρ−ik = ρk \ {ρik}. The labels ρi for

each i = 1, ..., p and κ j for each j = 1, ..,q are generated independently according to the
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following density equations

P(ρik = 1|Y ,ρ−ik,κ,θ)

P(ρik = 0|Y ,ρ−ik,κ,θ
) =

exp

{

q

∑
j=1

κ j

2σ2
j

(µi jk−µ0ρ
(k)
i0 )(2yi j−2 ∑

k′ 6=k

µi jk′ρik′ −µ0ρ
(k)
i0 −µi jk)

}

πk

1−πk

(4.9)

P(κ j = 1|Y ,ρ,θ)

P(κ j = 0|Y ,ρ,θ)
=

σ p

σ
p
j

exp

{

−1

2σ2
j

p

∑
i=1

(yi j−∑
k

µi jkρik)
2 +

1

2σ2 ∑
i

(yi j−υ j)
2

}

π

1−π

(4.10)

In the case of non aggregate overlapping clusters, that is, ri = 1 for all i, the Gibbs

sampler uses instead

P(ρik = 1|κ,θ) =
Aik

∑K
k=0Aik

, and P(κ j = 1|ρ,θ) =
B j1

B j0 +B j1
,

where:

Aik = ∏
j

[

1

σk j

φ

(

yi j−µk−αik−β jk

σk j

)]κ j

πk,

B j1 = ∏
i,k

[

1

σk j

φ

(

yi j−µk−αik−β jk

σk j

)]ρik

π, and

B j0 = ∏
i

[

1

σ
φ

(

yi j−µ

σ

)]

(1−π).

4.3.5 Increasing the IS size m

As pointed out in Robert and Casella [21], the importance sampling estimator (4.6)

would be inaccurate if the initial parameter values θ (0) were poor. In addition, the esti-

mator would take a long time to converge. Hence, as suggested by Levine and Casella

[15], we obtain MCMC samples from P(ρ,κ|Y ,θ (t)) for the first few iterations. The

choice of the MCMC sample sizem is an issue within the MCEM algorithm, since we do

not want to use a large m when θ (t) is far from the true MLE θ̂ . The trade-off between

the computational cost and the accuracy of the estimator of Q(θ |θ (t)) could be resolved

by increasing the sample size m as θ (t) approaches the true MLE during the progres-
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sion of the EM algorithm. This is what Booth and Hobert [4] do within the context of

generalized linear mixed models. In their procedure, the increase in m obeys a sched-

ule induced by a simple confidence region test: at the (t +1)th iteration of the MCEM,

an approximate 100(1−α)% confidence ellipsoid for θ̂ (t+1) = argmaxθ Q(θ |θ (t)) is

constructed using the central limit theorem (CLT); if the previous estimate of the pa-

rameter θ (t) lies in this region, then the the procedure declares that “the EM-Step was

swamped by Monte Carlo error” and the number of simulations, m, is increased. We

note that this schedule is based on true Monte Carlo samples, whereas in our case, we

use MCMC samples. Unfortunately, the dependency between the MCMC samples do

not allow us to use directly the CLT to construct a confidence interval. However, we

overcome this limitation by borrowing some ideas from [15, 22] to limit the effect of the

correlation between successive samples. We choose a sequence ur, r = 1, ...,N such that

ur−1∼ Poisson(νr) where, νr = νrd for some ν ≥ 0 and d > 0. The sums lr = ∑r
j=1 ur

are used as the subsampling points, and N, the number of such subsamples taken from

the m samples, is set to sup{r : lr ≤ m}. Using these subsamples, one gets an estimator

of Q(1)(θ |θ (t−1)) = (∂/∂θ)Q(θ |θ (t−1)) evaluated at θ (t)

Q
(1)
IS,m(θ (t)|θ (t−1)) =

N

∑
r=1

w
(t−1)
lr

∂

∂θ
logP(ρ(lr),κ(lr),Y |θ (t))/

N

∑
r=1

w
(t−1)
lr

.

Having obtained θ (t+1), following the procedure described by Levine and Casella [15],

we construct a confidence interval (CI) for each of the components of the vector

Q(1)(θ |θ (t)) by evaluating its mean and variance estimates

µ̂m(θ) = [
m

∑
l=1

w
(t)
l ]−1

m

∑
l=1

w
(t)
l

∂

∂θ
logP(ρ(l),κ(l),Y |θ),

v̂m(θ) = −µ̂mµ̂T
m+

[
m

∑
l=1

w
(t)
l ]−1

m

∑
l=1

w
(t)
l

(

∂

∂θ
logP(ρ(l),κ(l),Y |θ)[

∂

∂θ
logP(ρ(l),κ(l),Y |θ)]T

)

,

at θ = θ (t+1) (here the superscript T stands for matrix transposition). The CI for the j-

th component is given by µ̂mj(θ
(t+1))± zγ

√

v̂m, j j(θ (t+1)), where zγ is the percentile of
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order γ of the standard Normal distribution (usually γ = 0.95). The importance sample

size m is increased if any of the components of the vector Q
(1)
IS,m(θ (t)|θ (t−1)) lies in the

corresponding CI.

4.3.6 The algorithm

1. Initialize m, and θ (0) = (Σ(0),Ψ(0),Π(0)).

Set t = 0.

2. Generatem label samples ρ(l), κ(l), l = 1, ..,m using the Gibbs sampler according

to equations (4.9) and (4.10).

3. Compute the importance weights wl(i, j) for all i, j using the equation (4.7).

4. E-step: Estimate Q(θ |θ (t)) by:

EIS(κ j|Y ,θ (t)) =
m

∑
l=1

wlκ j(l)/
m

∑
l=1

wl, (4.11)

EIS(ρik|Y ,θ (t)) =
m

∑
l=1

wlρik(l)/
m

∑
l=1

wl, (4.12)

EIS(ρikκ j|Y ,θ (t)) =
m

∑
l=1

wlρik(l)κ j(l)/
m

∑
l=1

wl. (4.13)

5. M-step: Maximize Qm(θ |θ (t)) over θ to get θ (t+1) through the EM updating

equations given in Section 4.3.3.

6. MC error Perform the tests described in Section 4.3.5. If any of the tests in

negative, i.e., if any of the components of the vector Q
(1)
IS,m(θ (t)|θ (t−1)) lies in the

corresponding CI, then

(a) Set m0 = m.

(b) Set m = m0 + ⌊m0/c⌋ where c = 3 in our simulations.

(c) Generate new labels ρ(l),κ(l), l = m0 +1, ...,m via Gibbs sampler.

7. Set t = t+1. Repeat steps 3 through 6 until convergence.
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As mentionned earlier, if the initial value θ (0) is poor, that is, if P(ρ,κ|Y ,θ (0)) is far

from P(ρ,κ|Y ,θ ∗), then the algorithm will take a long time to converge. Thus, in our

simulations, we include a burn-in period in Step 1 above, so that at each burn-in iteration

we estimateQm(θ |θ (t)) via MCMC instead of by IS. Therefore, our computations during

the burn-in period behave like the MCEM algorithm described by McCulloch [17].

4.4 Model selection

We propose a modified BIC criterion (Schwarz, 1978) to perform model selection

within our multiplicative plaid mixture model:

BICplaid = −2logL(θ̂ |Y )+de log(p)

where L(θ̂ |Y ) is the likelihood of the incomplete data, θ̂ is the maximum likelihood

estimator, and de = d−s is the effective number of parameters, which is given by the dif-

ference between d, the total number of parameters, and s, the number of non-informative

parameters, that is

s = Card{(i,k) : αik = 0}+Card{( j,k) : β jk = 0}

+Card{ j : κ j = 0 (associated to σ2
j for variables excluded from the model)}

+2Card{ j : κ j = 1 (associated to υ j = 0 and σ2
o j)},

where Card stands for the cardinality of the set. This definition of BIC is inspired by that

of Pan and Shen [18] for penalized model-based clustering with variable selection. We

use it as a goodness-of-fit criterion to select an appropriate number of clusters K. The

optimal K is the one that maximizes BICplaid . Note that our BICplaid is the analog of the

usual BIC used in model-based clustering, since only those parameters actually used in

the model are considered in the penalty term. The term L(θ̂ |Y ) is intractable, since it

involves the sum of all possible combinations of label values. So, in order to compute

BICplaid , we use an estimate of L(θ̂ |Y ) derived by importance sampling. This is given
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by LIS(θ̂ |Y ) = ∑m
l=1wlP(Y ,ρ(l),κ(l)|θ̂)/∑wl. Therefore, in our experiments we use

BICIS,plaid = −2logLIS(θ̂ |Y )+de log(p).

4.5 Comparison of methods by simulation

In this section, we illustrate the effectiveness of our method by conducting a simula-

tion study with two different data scenarios. The first one is a mimicry of the synthetic

data described by Pan and Shen [18] with K = 1 and no aggregate overlapping clusters.

The second scenario concerns four synthetic data built with K = 1,2,3,4, respectively.

For each K≥ 2, we simulate data with some aggregate overlapping clusters. We note that

by definition for K = 1 there is not possible overlapping among the clusters. We apply

to versions of our model to the simulated data. The first one assumes that there is some

aggregate overlapping clusters The second version assumes there is no aggregate over-

lapping at all. We will refer to these two versions of our model as Plaid-Full and Plaid-

Restricted. We compare the performance of our model with that of the LASSO-type

L1-penalization method of Pan and Shen [18], and the Gaussian model-based clustering

greedy search (GS) method of Raftery and Dean [19]. We will refer to these methods

as L1-Penalty and GMBC-GS, respectively. The L1-Penalty of Pan and Shen [18] penal-

izes the L1-norm of the clusters means so as to obtain sparseness in the mean vectors.

In this approach a zero component across all cluster means corresponds to a variable

not being selected. The GMBC-GS variable selection of Raftery and Dean [19] models

the non-discriminating variables as cluster-independent multivariate Normal variables.

The algorithm uses Bayes factor estimates given by BIC to first filter out most models

from the final search, and then to select the best model among those that pass the fil-

ter. We used the code published by Zhou [29], and the package clustvarsel to run the

L1-penalty and the GMBC-GS method, respectively. It is important to remember that

our clustering model contains K+1 clusters including the zero-cluster. Thus, if another

clustering method selects, say two clusters, then the corresponding K for comparison

with our model is K = 1.



126

4.5.1 Simulated data

4.5.1.1 Scenario 1

In the first scenario, we closely followed the simulation done in Pan and Shen [18] so

as to be able to compare our results with those given by the L1-Penalty method. A two-

cluster 1000-dimensional data set with a hundred observations is generated. Eight-five

observations live in the first cluster; the remaining fifteen live in the second cluster. Only

the first 150 variables are discriminating variables for clustering. More specifically, the

first 150 variables were independent and identically distributed (iid) generated as

yi j ∼ I{1≤i≤85}N(0,1)+ I{86≤i≤100}N(1.5,1),

whereas the remaining 850 variables were all iid N(0,1). Since these data do not present

fixed effects in the response, the first as well the second cluster may be considered as the

zero-cluster of our multiplicative plaid mixture model.

4.5.1.2 Scenario 2

In this scenario, we simulated data with a more complicated clustering structure.

The data was generated according to our model. We generated fifty 1000-dimensional

observations. Only the first 20 dimensions were discriminating for clustering. More

specifically, for each K, the first 20 variables are independently distributed N(∑K
k=0(µk+

αik+β jk)ρik,σ
2
j ), whereas the other 980 variables are all iid N(υ j,σ

2), i= 1, ...,50. Let

Ak = {i : ρik = 1}, k = 0, . . . ,K. For each i ∈ Ak, define Rk(i) = Card{i′ ∈ Ak : i
′ ≤ i} be

the “rank” of i in Ak. The observation effects are generated as follows

αik =



















0, if ρik = 0

2/(1+ exp{−[Rk(i)−1]})

−
(

∑i′,ρi′k=1 2/(1+ exp{−[Rk(i
′)−1]})

)

/(Card{Ak}), if ρik = 1
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The column effects β jk were generated similarly. We set υ j = 2/(1+exp{−[R( j)−1]})
where R( j) = j− 20 is the “rank” of the variable j among the 980 non-informative

variables. The mean µ0 of the zero-cluster is set to zero. For K = 1, µK = 1. For K = 2,

µk = 3k+1, k = 1, ..,K. For K = 3, µ1 = 7,µ2 = −4,µ3 = 4. For K = 4, µ1 = 4,µ2 =

7,µ3 = −2,µ4 = −4. All variances are draws from an Inverse-χ2 distribution with 3

degrees of freedom and scale equals to 0.1.

4.5.2 Results

The algorithm to fit our model were run withm= 60. We included a burn-in period of

twenty samples. We set a maximum of 100 iterations for finding the optimal parameters.

In practice, our algorithm converged in much fewer iterations. To get good starting

values for any given K, we ran the MCEM algorithmmultiple times with random starting

values. In order to initialize the labels, we randomly start several K-means algorithms.

To find initial values for the cluster labels ρ , we run K-means with K + 1 clusters, and

find a ”good” zero-cluster among them. To initialize the variable labels κ , we also run

K-means, but this time on the variables. We set K = 2 and consider separately each one

of these two clusters as possible initial selected variables. For any given K, we perform

multiple runs of this procedure. Our final result is the one associated with the optimal

run, that is, the one yielding the highest log-likelihood for the given K.

For each scenario, we simulated ten data sets and recorded the number of times that

each method detected the true number of clusters. We also recorded the number of dis-

criminating variables excluded from the model (Z1), and the number of non-informative

variables excluded from the model (Z2). In order to measure the quality of the clustering

estimated by the methods, we compared the estimated clustering with the true clustering

of the data through the so-called F1-measure. This is defined as the harmonic average

between recall and precision, which are two measures of retrieval quality introduced in

the text-mining literature [1]. Let A,B be two clusters , and rA and rB be the number of

observations in A and B be the number of elements in A and B, respectively. Recall and
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precision are given by

recall =
Card(A∩B)

Card(B)
, precision =

Card(A∩B)

Card(A)
.

So, recall is the proportion of elements in B that are in A, and precision is the proportion

of elements in A that are also found in B. The F1-measure between A and B is given by

F1(A,B) = 2Card(A∩B))/(Card(A) +Card(B)). When an estimated clustering M1 =

{A1, . . . ,Ak} is to be compared with the true clusteringM2 = {B1, . . . ,Bℓ}, we use the F1-
measure average: F1(M1,M2) = 1

k ∑k
i=1max jF1(Ai,B j). We note that the more common

measure of clustering quality, the adjusted Rand index [11, 20], is not properly defined

for overlapping clusters. For this reason, the F1-measure seems to be preferred in the

literature. We computed the F1-measure associated to the clustering of observations

(F1), and the F1-measure associated to the selected variables (Fv
1 ). Their corresponding

standard deviations are also reported (in brackets). Fv
1 may be interpreted as a global

measure of quality of the variable selection obtained. It can be written as Fv
1 = 2(q0−

Z1)/(q0−Z1+q−Z2) where q0 is the true number of informative variables. The results

are shown in Tables 4.1 and 4.2.

K=1

Method K = 1 F1 Z1 Z2 Fv
1

Plaid-Full 10 1 (0) 2.4 (1.42) 849.6 (0.51) 0.99(0.005)

Plaid-Restricted 10 1 (0) 2.6 (1.26) 849.5 (0.70) 0.99(0.004)

L1-Penalty 10 1 (0) 0.1 (0.31) 815.2 (13.58) 0.89(0.03)

GMBC-GS 8 0.72 (0.24) 142.6 (8.05) 818.8 (2.74) 0.07(0.08)

Table 4.1: Results for the Scenario 1. The column “K = 1” is the number of times (out

of 10) that 1 was identified as the number of clusters. F1 is the F1 measure evaluated

between the true clustering and the estimated one by the corresponding method. Z1 is

the number of variables excluded from the model out of the 150 informative variables.

Z2 is the number of excluded variables from the model out of the 850 noise variables.

The numbers in the parentheses are the corresponding standard deviations.

Table 4.1 shows the results for the first scenario. As we can see, the three methods

Plaid-Full, Plaid-Restricted and L1-Penalty always selected two clusters (i.e., K = 1) as
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the number of clusters for the ten data sets. Also, they detected the true structure of

the clustering since their F1 measure is exactly 1. In contrast, the GMBC-GS method

of Raftery and Dean selected K = 1 for eight data sets and its clustering results are less

good that the others (the F1 is smaller). Our methods (Plaid-Full and Restricted) also

performed better than the others two in terms of variable selection (the Fv
1 is larger) but

tended to keep slightly fewer (about 1.7% excluded) informative variables than the L1-

Penalty method. Curiously, this did not affect their good results probably because of

the abundance of informative variables. Also, our methods show very little variability

in the results as compared to those of the other methods. Note that GMBC-GS selected

only approximately eight variables among the 150 informatives variables with very high

variability in its results.

Table 4.2 shows the results for the second scenario. In terms of quality of clustering,

all four methods perform similarly. One can also see that it becomes more difficult to es-

timate the right number of clusters when the true number of clusters increases. However,

our methods get the right informative variables most of the time. In this sense it performs

much better than the other two methods. We stress that obtaining the correct variables is

specially important in many applications such as those involving gene expression data.

4.6 Application to gene expression data

4.6.1 The Colon tumor data

The first data set is an Affymetrix oligonucleotide array from 62 samples collected

from colon-cancer patients (Alon et al. [2]). It contains 40 tumor biopsies and 22 normal

biopsies from healthy parts of the colons of the same patients. 2000 out of around 6500

human genes were selected based on the highest minimal intensity across the samples.

We applied the Plaid-Full and Plaid-Restricted models to analyse this data. The

BIC criterion selected K = 3 (plus the zero-cluster) as the number of clusters in the

two methods. Figure 4.1 shows the corresponding BIC curves. The zero-clusters from

the Plaid-Full and Plaid-Restricted models contain four and six conditions, respectively.

The Plaid-Full model selected 700 discriminating genes. The Plaid-Restricted model



130

selected 721 discriminating genes. The 700 genes selected by Plaid-Full and the 721

genes selected by Plaid-Restricted have 677 genes in common. The clustering results

are displayed in Table 4.3. Most of the 40 patients with tumor belong to Clusters 1 and

2. The normal biopsies are not really well distinguished from the tumor ones in the

clusterings. We also applied the L1-Penalty model to this data. It selected all the 2000

genes as discriminating. The clustering results are also shown in Table 4.3. It is clear

that none of these three methods was fully capable of clearly distinguishing the normal

from the tumor biopsies. However, the images in the Figure 4.3 show a clear distinction

between the four clusters found by the plaid clustering algorithms. In these images, only

the discriminating genes are plotted (x-axis). The biopsies are sorted according to the

clusterings given by the methods. Consequently, and in view of our results and those of

the L1-penalty model, it is posible that these particular biopsies cannot be well separated

on the solely basis of their gene expression data.

4.6.2 The SRBCT data

The second application comprises microarray gene expression data coming from the

small round blue cell tumors (SRBCTs) of childhood (Khan et al. [12]). These are

divided in four groups: Burkitt lymphoma (BL), Ewing sarcoma (EWS), neuroblastoma

(NB), and rhabdomyosarcoma (RMS). The data consist of 6567 genes, and have been

divided into 63 training samples and 20 test samples. The training samples include

8 samples of BL, 23 samples of EWS, 12 samples of NB, and 20 of RMS. The test

samples contained 6, 5, 6 and 3 samples of EWS, RMS, NB and BL, respectively. Each

sample consists of gene expression levels associated with q = 2308 genes. We applied

the Plaid-Full and Plaid-Restricted models to the training data. Figure 4.2 shows the BIC

curves for the two plaid models. BIC selected K = 3 clusters (plus the zero-cluster) for

the Plaid-Restricted model, and K = 1 (plus the zero-cluster) for the Plaid-Full model.

Plaid-Restricted selected 39 genes, whilst Plaid-Full selected only 28 genes. Figure 4.4

shows the clusters found by the two models. We also applied the L1-Penalty of Pan and

Shen. Their method selected 2183 genes. Their clustering results are also summarized in

Table 4.4. All three methods have difficulties separating the EWS and RMS groups. The
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results from Plaid-Restricted model with K = 4 (plus the zero-cluster) are a bit better

than all the three others. These also can be seen in Table 4.4.
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Figure 4.3: Clustering images for the Colon Tumor data
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K=1

Method K = 1 F1 Z1 Z2 Fv
1

Plaid-Full 10 1 (0) 0 (0) 980 (0) 1 (0)

Plaid-Restricted 10 1 (0) 0 (0) 980 (0) 1 (0)

L1-Penalty 5 0.85 (0.15) 0 (0) 978.8 (3.8) 0.97(0.07)

GMBC-GS 0 0.71 (0.02) 15.8 (1.54) 965.9 (7.01) 0.22(0.06)

K=2

Method K = 2 F1 Z1 Z2 Fv
1

Plaid-Full 8 0.84 (0.07) 0 (0) 980 (0) 1 (0)

Plaid-Restricted 6 0.77 (0.1) 0 (0) 980 (0) 1 (0)

L1-Penalty 6 0.88 (0.08) 0 (0) 908.5 (125.1) 0.70(0.36)

GMBC-GS 2 0.81 (0.06) 17.3 (0.82) 961.6 (2.01) 0.13(0.04)

K=3

Method K = 3 F1 Z1 Z2 Fv
1

Plaid-Full 5 0.66 (0.06) 0 (0) 980 (0) 1 (0)

Plaid-Restricted 6 0.67 (0.06) 0 (0) 980 (0) 1 (0)

L1-Penalty 3 0.69 (0.05) 0 (0) 930.0 (55.1) 0.59(0.3)

GMBC-GS 2 0.76 (0.1) 18.0 (0.66) 970.3 (9.20) 0.14(0.05)

K=4

Method K = 4 F1 Z1 Z2 Fv
1

Plaid-Full 4 0.80 (0.06) 0 (0) 980 (0) 1 (0)

Plaid-Restricted 3 0.85 (0.05) 0 (0) 980 (0) 1 (0)

L1-Penalty 4 0.85 (0.07) 0 (0) 976.5 (3.6) 0.92(0.07)

GMBC-GS 0 0.76 (0.04) 18.0 (0.66) 977.6 (3.86) 0.17(0.06)

Table 4.2: Results for Scenario 2. The column “K= k” is the number of times (out of

10) that the right number of clusters was identified by each of the four methods: Plaid-

Full, Plaid-Restricted, L1-Penalty and GMBC-GS. There are q = 1000 variables. F1
is the F1 measure evaluated between the true clustering and the estimated one by the

corresponding method. Z1 is the number of variables excluded from the model out of

the first 20 informative variables. Z2 is the number of excluded variables from the model

out of the last 980 noise variables.
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Plaid-Restricted Plaid-Full L1-Penalty

0 1 2 3 0 1 2 3 1 2 3 4 5 6

Normal 3 2 13 4 5 3 7 7 3 7 3 1 2 6

Tumor 1 11 24 4 1 11 24 4 7 9 8 6 1 9

Table 4.3: Clustering results for Colon tumor data

Plaid-Restricted Plaid-Restricted Plaid-Full L1-Penalty

0 1 2 3 2 0 1 4 3 0 1 1 2 3 4 5 6

EWS 1 1 17 4 14 3 0 3 3 4 19 3 1 5 5 9 0

BL 3 0 0 5 0 0 8 0 0 4 4 4 4 0 0 0 0

NB 0 5 0 7 0 1 3 7 1 10 2 3 9 0 0 0 0

RMS 1 4 12 3 7 0 0 5 8 5 15 0 4 2 6 6 2

Table 4.4: Clustering results for SRBCT data
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CONCLUSION

Cette thèse résume les contributions sur l’utilisation des extensions du modèle de

plaid pour effectuer un bi-regroupement et la sélection des variables dans une matrice

d’expression génétique. Le bi-regroupement, aussi bien la sélection des variables consti-

tuent un défi en bio-informatique puisqu’il vise à trouver des régions locales d’intérêt

dans les ensembles de données à haut débit.

Au chapitre 1, nous avons proposé une revue de la littérature sur certains algorithmes

de bi-regroupement. Il ressort de cette revue que les méthodes de bi-regroupement pour-

raient être classées en fonction du type d’imbrication entre les bi-grappes. Les types

d’imbrication populaire seraient des bi-regroupements où ses bi-grappes sont positionnées

de façon arbitraire (possibilité de chevauchement des cellules de la matrice) et le type

d’imbrication lignes-colonnes où soit les lignes, soit les colonnes peuvent s’imbriquer

dans un bi-regroupement. De plus, les modèles de bi-grappes peuvent être multiplicatifs

et additifs. De plus, le nombre de bi-grappes est soit fixé, soit déterminé par un critère

d’arrêt ou par un critère de sélection de modèle. Tout au long de cette thèse, nous nous

sommes intéressés au modèle additif avec la possibilité d’avoir les chevauchements entre

les bi-grappes.

Au chapitre 2, nous avons introduit une extension du modèle de plaid ; le modèle de

plaid pénalisé. Ce modèle incorpore un paramètre qui contrôle la quantité d’imbrication

de cellules entre les bi-grappes. Si ce paramètre est nul, l’on obtient le modèle plaid

original de Lazzeroni et Owen. Par contre, s’il est très large, l’on pourrait retrouver le

modèle sous-jacent de Cheng et Church. A travers une étude de simulations, nous avons

prouvé que les résultats issus des implémentations MCMC (Échantillonnage de Gibbs et

de Metropolis-Hastings) des modèles sont meilleur que ceux de l’algorithme original de

Cheng et Church et du modèle plaid. Nous avons défini un critère DIC de sélection de

modèle qui semble approprié pour le problème de bi-regroupement. Le modèle de plaid

pénalisé a été appliqué aux données de cycle cellulaire de levure de Eisen et al (1998).

Les bi-grappes obtenues sont toutes différentes compte tenu de la diversité de leurs rôles

biologiques obtenus à l’aide de l’ontologie des gènes (GO).
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Le chapitre 3 propose un modèle de bi-regroupement qui incorpore la connaissance

biologique des gènes et des conditions expérimentales. Cette connaissance aide à définir

des distributions à priori sur les étiquettes d’appartenance qui tiennent compte de la

structure de dépendance entre les gènes et entre les conditions expérimentales. L’intro-

duction d’un champ de Markov dans le contexte de bi-regroupement est nouveau com-

paré au groupement ou aux modèles de régression. Pour estimer les paramètres, nous

avons adopté une procédure basée sur une variante de l’algorithme de Wang-Landau qui

nous aide à contourner l’intractabilité de la constante de normalisation des distributions

a priori des étiquettes. Nos expériences sur des données simulées montrent que notre

approche peut améliorer les autres algorithmes dans la littérature tels que celui de Cheng

et Church, Lazzeroni et Owen. L’expérience sur les données réelles (cycle cellulaire

de la levure) souligne d’autres caractéristiques intéressantes de notre modèle en terme

d’enrichissement de gènes dans les bi-grappes.

Un modèle approprié pour la sélection des variables dans un contexte de groupement

a été proposé au chapitre 5. Nous avons proposé deux méthodes pour retrouver la vraie

structure des groupes. L’une qui tient compte de l’imbrication des gènes, et l’autre non.

Ces méthodes groupent les ”individus” et sélectionnent les variables informatives simul-

tanément. Ce modèle inspiré de celui de plaid tient compte de l’imbrication des indivi-

dus et chaque grappe obtenue est une bi-grappe à valeurs cohérente sur les lignes et sur

les colonnes. Nous avons utilisé l’algorithme EM de Monte Carlo avec échantillonnage

d’importance pour estimer les paramètres. Nos études expérimentales montrent que notre

modèle donne de bons résultats en terme de sélection de variable et de regroupement.

La plupart des modèles proposés dans cette thèse supposent que le nombre de bi-

grappes (ou grappes) K est fixé. Il est déterminé après par un critère de sélection de

modèle. Nous pensons par la suite supposer K comme un paramètre du modèle. Dans

le cas de groupement, plusieurs approches dans un contexte bayésien ont été proposées.

L’exemple populaire est l’utilisation d’un processus de Dirichlet sur les probabilités a

priori des étiquettes. La possibilité d’imbrication des bi-grappes rendrait la tâche moins

facile pour définir un tel processus dans le cas du bi-regroupement. Une autre façon

de considérer K comme un paramètre serait de supposer que K suit une distribution
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uniforme ou une distribution de poisson tronquée à une valeur arbitraire Kmax.

Il faut aussi noter que nous avons supposé dans cette étude que nos données suivent

des distributions normales alors qu’il est connu que les données d’expression génétiques

peuvent avoir des queues très épaisses dans leur distribution. L’on pourrait donc penser

à chercher les bi-grappes en supposant par exemple des distributions de Student. Ainsi,

les paramètres estimés seront moins affectés par des valeurs aberrantes. L’on pourra

qualifier cette approche de bi-regroupement bayésien robuste si nous travaillons dans un

contexte bayésien.

Au chapitre 5 de cette thèse qui traite de la sélection de variables, les distributions

de probabilités a priori sur les colonnes (gènes) sont supposées indépendantes. Il est

possible d’améliorer cette hypothèse en considérant l’interaction qu’il pourrait y avoir

entre les gènes à travers un graphe relationnel. Ce graphe pourrait être construit comme

au chapitre 3 en utilisant l’annotation GO des gènes. L’on espère obtenir moins de gènes

informatifs capable de discriminer la structure cachée de groupement des individus.


