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Abraham Broer

(président-rapporteur)

Andrew Granville

(directeur de recherche)

Hershy Kisilevsky

(membre du jury)

Emmanuel Kowalski

(examinateur externe)

Pierre Bastien

(représentant du doyen de la FES)
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RÉSUMÉ

Gowers [31], dans son article sur les matrices quasi-aléatoires, étudie la question,

posée par Babai et Sós, de l’existence d’une constante c > 0 telle que tout groupe

fini possède un sous-ensemble sans produit de taille supérieure ou égale à c|G|.

En prouvant que, pour tout nombre premier p assez grand, le groupe PSL2(Fp)

(d’ordre noté n) ne possède aucun sous-ensemble sans produit de taille cn8/9, il

y répond par la négative.

Nous allons considérer le problème dans le cas des groupes compacts finis, et

plus particulièrement des groupes profinis SLk(Zp) et Sp2k(Zp). La première partie

de cette thèse est dédiée à l’obtention de bornes inférieures et supérieures exponen-

tielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite

d’établir préalablement une borne inférieure sur la dimension des représentations

non-triviales des groupes finis SLk(Z/(pnZ)) et Sp2k(Z/(pnZ)). Notre théorème

prolonge le travail de Landazuri et Seitz [49], qui considèrent le degré minimal des

représentations pour les groupes de Chevalley sur les corps finis, tout en offrant

une preuve plus simple que la leur.

La seconde partie de la thèse à trait à la théorie algébrique des nombres. Un

polynôme monogène f est un polynôme unitaire irréductible à coefficients entiers

qui endengre un corps de nombres monogène. Pour un nombre premier q donné,

nous allons montrer, en utilisant le théorème de densité de Tchebotariov, que la

densité des nombres premiers p tels que tq − p soit monogène est supérieure ou

égale à (q − 1)/q. Nous allons également démontrer que, quand q = 3, la densité

des nombres premiers p tels que Q( 3
√
p) soit non monogène est supérieure ou égale

à 1/9.



vi

Mots clés: groupes profinis, représentations complexes, opérateur

de Hilbert-Schmidt, décomposition en valeurs singuliéres, théorème de

densité de Chebotarev, corps monogénique, équation de Thue.
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ABSTRACT

Gowers [31] in his paper on quasirandom groups studies a question of Babai and

Sós asking whether there exists a constant c > 0 such that every finite group G has

a product-free subset of size at least c|G|. Answering the question negatively, he

proves that for sufficiently large prime p, the group PSL2(Fp) has no product-free

subset of size ≥ cn8/9, where n is the order of PSL2(Fp).

We will consider the problem for compact groups and in particular for the

profinite groups SLk(Zp) and Sp2k(Zp). In Part I of this thesis, we obtain lower

and upper exponential bounds for the supremal measure of the product-free sets.

The proof involves establishing a lower bound for the dimension of non-trivial

representations of the finite groups SLk(Z/(pnZ)) and Sp2k(Z/(pnZ)). Indeed,

our theorem extends and simplifies previous work of Landazuri and Seitz [49],

where they consider the minimal degree of representations for Chevalley groups

over a finite field.

In Part II of this thesis, we move to algebraic number theory. A monogenic

polynomial f is a monic irreducible polynomial with integer coefficients which

produces a monogenic number field. For a given prime q, using the Chebotarev

density theorem, we will show the density of primes p, such that tq − p is mono-

genic, is greater than or equal to (q − 1)/q. We will also prove that, when q = 3,

the density of primes p, which Q( 3
√
p) is non-monogenic, is at least 1/9.

Keywords. Profinite group, Complex representation, Hilbert-Schmidt

operator, Singular value decomposition, Chebotarev density theorem,

Monogenic field, Thue equation.
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Chapter 1

INTRODUCTION

In this chapter we will give a general sketch of our thesis. We will mainly focus

on general ideas and present the results of the thesis, which are divided into two

main chapters. The first one concerns density results in additive combinatorics

on compact groups, and the other one studies the distribution of monogenicity of

a family of polynomials. We will also set some notations and definitions.

1.1. Product-free sets in groups

Additive combinatorics has been investigated extensively over the last decade

and now consists of a variety of tools from graph theory, group theory, number

theory, algebraic geometry and many other methods in mathematics. Amazingly,

in the last decade, computer science has also contributed in this branch of math-

ematics, and raised many important questions that turn out to be challenging

for mathematicians. For instance “expander graphs” are highly connected sparse

finite graphs. One might interpret these graphs as networks that transmit infor-

mation very fast but in the same time that are very economical, meaning that

they do not have many cables. It is important for computer scientists to de-

sign such a network. Various deep mathematical theories have been used to give

explicit constructions of expander graphs, including the Kazhdan property (T )

from representation theory of semisimple Lie groups, the Ramanujan Conjecture

(proved by Deligne) from the theory of automorphic forms, and more. Lubotzky’s

survey paper [51] is an excellent reference for the theory of expander graphs.
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Another aspect of additive combinatorics is the multiplicative (or additive)

structure of groups. To single out one example, let us mention a famous theorem

of Schur, which states that for any k, there exists N = N(k) such that for any

partition of the set {1, . . . , N} into k subsets, there exist numbers x, y, z in the

same subset (where x = y is allowed) such that x+y = z. One approach to prove

Schur’s theorem, is to use “Ramsey theory” which is a graph theoretical concept

(See [50], Chapter 8). It is very interesting to observe how different sets of ideas

can be put together and prove this beautiful theorem.

In contrast to Schur’s theorem, one might ask for which subsets A of the

positive integers, the equation x+ y = z does not have any solutions in A. These

sets are called “product-free” sets. More formally:

Definition 1.1.1. For a given group G, a subset A ⊆ G is called a product-free

set if there are no solutions to the equation xy = z, with x, y, z ∈ A.

Remark 1.1.1. We use “multiplicative structure” typically in the non-commutative

setting and “additive structure” in the commutating setting. Indeed we defined

product-free sets for multiplicative groups, however the same definition holds for

additive groups. In that case product-free sets are called “sum-free” sets. But

in this thesis, for simplicity, the multiplicative notation will be used even when

working in the additive case.

More intuitively, a subset A ⊆ G is product-free if

A2 ∩ A = ∅,

where

A2 = {xy : x, y ∈ A}.

First remark to point out, regarding to this definition, is that if a subset A ⊆ G

has any group structure inside, then A can not be a product-free set. In other

words, a product-free set is very rigid. Indeed this phenomenon turns out to be a

source of many investigations in additive combinatorics. To illustrate this point,

let us mention an observation. Let G be a finite group of order n, and let A be a

subset of G. Suppose that |A| > n/2. Let us denote

A−1 := {a−1 : a ∈ G}.
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For every g ∈ G we have

|gA−1 ∩ A| = |gA−1|+ |A| − |gA−1 ∪ A| > n/2 + n/2− n = 0,

hence for some a1, a2 ∈ A we have ga−1
1 = a2. Therefore g = a1a2 ∈ AA which

implies that A2 = G.

From this, one can ask if for some group G of order n, there exists a product-

free set of size exactly n/2.

Example 1.1.1. The set of quadratic non-residue modulo prime p is an example

of a product-free set in the multiplicative group F∗p of size (p− 1)/2.

Then almost immediately the following questions arise:

Question 1. How big is the largest product-free subset of G?

Question 2. How many product-free subsets of G are there?

Both of these questions have been considered by many mathematicians from

different point of views. In this thesis, we mainly concentrate on Question 1.

Question 2 was motivated by a conjecture of Cameron and Erdös [10], where

they conjectured that the number of sum-free subsets of {1, 2, · · · , n} is O(2n/2).

Alon [1], Calkin [9], and Erdös and Granville (unpublished) proved independently

that the number of sum-free subsets of {1, 2, · · · , n} is

2n/2+o(n).

The Cameron and Erdös conjecture was eventually proven by Ben Green [38].

Back to Question 1, we fix some definitions and notations.

Definition 1.1.2. For a given finite group G, let α(G) denote the size of the

largest product-free set in G, and the “product-free density” is defined by

pf(G) :=
α(G)

|G|
. (1.1.1)

To clarify our definition, let us remark one more time that we defined this

notation for multiplicative groups, however the same definition holds for additive

groups. In that case product-free density is called “sum-free density”. But

in this thesis, for simplicity, the multiplicative notation will be used even when

working in the additive case.
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Lemma 1.1.1. For n ≥ 2,

α(Z/(nZ)) = n/2, if n is even,

α(Z/(nZ)) ≥ b(n+ 1)/3c if n is odd.
(1.1.2)

Proof: First notice that for any given group G, if A ⊆ G is a product-free

set, then for any a ∈ A we have aA ∩ A = ∅, hence

|G| ≥ |A|+ |aA| = 2|A|.

Therefore pf(G) ≤ 1/2. Now we approximate α(Z/(nZ)). If n is even, take

A = {1, 3, 5, . . . , n− 1}.

Then A is a product-free set since for x, y ∈ A, we have that x+ y is even, while

the elements of A are odd. For an odd n, take

A = {k, k + 1, . . . , 2k − 1} = {k + j : 0 ≤ j ≤ k − 1},

where k := b(n+ 1)/3c. For x, y ∈ A we have

2k − 1 < 2k ≤ x+ y ≤ 4k − 2 < n+ k,

so in this case also, A is a product-free set. �

Notice that if n ≥ 3 is odd then

b(n+ 1)/3c ≥ 2n/7.

So from Lemma 1.1.1 we have

Corollary 1.1.1. For n ≥ 2 we have

pf(Z/(nZ)) ≥ 2/7. (1.1.3)

We remark that this inequality is sharp, since Rhemtulla and Street [58] proved

that

pf(Z/(7Z)× · · · × Z/(7Z)︸ ︷︷ ︸
m

) =
2

7
,

for all m.

Moving to general groups, we remark that the following simple observation is

very useful.
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Lemma 1.1.2. Let H be a proper normal subgroup of G then

pf(G) ≥ pf(G/H).

Proof: Consider the natural projection π : G −→ G/H. Let A be a product-

free subset in G/H, then π−1(A) is a product-free set in G. So we have

α(G) ≥ |π−1(A)| = |A|| kerπ| = |A||H|.

So if we take A ⊂ G/H to be a maximal product-free set, then

pf(G) =
α(G)

|G|
≥ |A||H|
|G|

=
|A|

[G : H]
= pf(G/H).

�

Example 1.1.2. For any non-trivial abelian group G of even order, notice that

we have a surjective homomorphism

G −→ Z/(2Z),

therefore

pf(G) =
1

2
.

From the fundamental theorem of finite abelian groups, we know that any

finite abelian group G is isomorphic to a direct sum of finite cyclic groups. More

precisely

G ∼= Z/(n1Z)⊕ Z/(n2Z)⊕ · · · ⊕ Z/(nkZ),

for some integers ni ∈ N. So we obtain

Corollary 1.1.2. For any non-trivial abelian group G, we have

pf(G) ≥ 2/7.

For abelian groups, we also have a geometric picture that heuristically gives

us a product-free set of density 1/3. From the circle

S1 = {e2πiθ : 0 ≤ θ ≤ 1},

take a sector

A := {e2πiθ : 1/3 ≤ θ < 2/3}.

Then A is product-free set (See Figure 1.1). Note that the cyclic group Z/(nZ)
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x

y

120◦A

Figure 1.1. Product-free set in S1

can be arranged into the circle by considering the group of nth roots of unity, and

then in Z/(nZ) we get a product-free set of density roughly 1/3. As mentioned

earlier, any abelian group is the product of cyclic groups, then basically in any

abelian group we can get a product-free set of density roughly 1/3. Green and

Ruzsa (See Theorem 1.5 [39]), used Fourier analysis methods to prove this.

If something can be proven for abelian groups, then it is often possible to

generalize it to solvable groups. To be more precise, let us recall a definition of

solvable groups.

Let G be a non-trivial group. Recall that the commutator of x, y ∈ G is

[x, y] := xyx−1y−1.

The group G′ generated by the commutators in G is called the commutator or

first derived subgroup of G. Notice that G′ is a normal subgroup of G and G/G′

is an abelian group. The second derived subgroup of G is G(2) := (G′)′; the third

is G(3) := (G(2))′; and so on. So we have the following normal series

G ⊇ G′ ⊇ G(2) ⊇ G(3) ⊇ · · · .

Definition 1.1.3. A group G is called solvable if G(k) = 1 for some k.

Example 1.1.3. The following groups are solvable.

1. Abelian groups.

2. p-groups. Indeed any nilpotent group is solvable.
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Solvable groups indeed are those groups that are constructed from an “abelian

tower”.

Corollary 1.1.3. If G is a solvable group then

pf(G) ≥ 2/7.

Proof: Since G is solvable, then G′ is a pure normal subgroup of G since

otherwise G(k) = G for all k which is a contradiction to the definition of solvable

groups. But G/G′ is an abelian group then by Lemma 1.1.2 we have

pf(G) ≥ pf(G/G′) ≥ 2/7.

�

Another way to construct a product-free set is to take a pure subgroup of G,

and consider one of its non-trivial cosets. More precisely.

Lemma 1.1.3. Let H be a subgroup of index k ≥ 2 and let A = xH be a non-

trivial coset of H. Then A is a product-free set.

Proof: We have

(xh1)(xh2) = (xh3)⇐⇒ x = h−1
1 h3h

−1
2 ∈ H, (1.1.4)

which is a contradiction, since x 6∈ H. �

Therefore, to construct a big product-free set, we need to find a subgroup

with small index. From the classification of finite simple groups it can be shown

that every finite simple group of order n has a subgroup of index at most Cn3/7

and hence a product-free set of size at least cn4/7.

These examples motivated Babai and Sós [3] to ask:

Question 3 (Babai and Sós). Does there exist a constant c > 0 such that every

group of order n has a product-free set of size > cn?

As we saw earlier, Babai and Sós’ question is true for solvable groups. So

if one wants to give a negative answer to this question, then one needs to look

at those groups that are as non-abelian as possible. For instance, simple groups

might be a good candidate for a counterexample.
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The special linear group of degree n over a field F is the set of n by n matrices

with determinant 1. More formally

Definition 1.1.4.

SLn(F ) := {A ∈Mn(F ) : det(A) = 1} . (1.1.5)

It is clear that SLn(F ) is not a simple group since ±I is in its center. Instead

we can look at the projective special linear group defined by

PSLn(F ) := SLn(F )/{±I}.

For the finite field F, the group PSLn(F) is a finite simple group, except for n = 2

and F = F2 or F3.

Gowers in his remarkable paper on quasirandom groups [31], gives a neg-

ative answer to Question 3 and proves that for sufficiently large prime p, the

group PSL2(Fp) has no product-free subset of size cn8/9, where n is the order of

PSL2(Fp). Gowers’ theorem, apart from its intrinsic interest, has important appli-

cations. Indeed Nikolov and Pyber [55], by using Gowers’ theorem, have obtained

improved versions of recent theorems of Helfgott [41] and of Shalev [65] concerning

product decompositions of finite simple groups. Gowers method, which is known

as Gowers’ trick, has also appeared in several other papers, namely [64, 62].

Behind Gowers’ result lies the fact that PSL2(Fp) has no nontrivial irreducible

representation in low dimensions. The same property has been used by Lubotzky,

Phillips and Sarnak [52] to show that the Ramanujan graphs are expanders. In-

deed, finding a lower bound for the dimension of non-trivial representations of a

group has many applications in number theory and additive combinatorics. Sar-

nak and Xue in their remarkable paper [61], exploited this and introduced the

concept of high multiplicity of non-trivial eigenvalues. This concept then became

ubiquitous in number theory and additive combinatorics. For instance, in order

to show that SLk(Z/(pnZ)) is an expander family, with respect to an appropriate

generating set, Bourgain and Gamburd [7, 8] needed this bound and obtained a

lower bound for the degree of all faithful representations of SL2(Z/(pnZ)).

Let us very briefly explain how representation theory will participate in this

sort of question. We consider a more general setting. For subsets A,B,C of a
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group G, we would like to know when the following equation is verified:

xy = z, x ∈ A, y ∈ B, z ∈ C. (1.1.6)

Notation 1. Let us denote the vector space of all functions from G to C by

CG. Sometimes it is more appropriate to denote this space by L2(G), since then

Fourier analysis can be applied to G.

For any two functions f1, f2 ∈ CG, the convolution is defined as follows:

f1 ∗ f2(y) =
∑
x∈G

f1(x)f2(x−1y) =
∑
x∈G

f1(yx−1)f2(x).

Therefore to show that xy = z has a solution, one needs to show that for some

z ∈ C,

1A ∗ 1B(z) =
∑
xy=z

x∈A,y∈B,z∈C

1 6= 0. (1.1.7)

So if one can show that the support of the function 1A ∗ 1B is a big set, then we

can perhaps show that there is a solution for the equation xy = z. So let assume

that A and B are reasonably big sets in a group G, then we would like to show

that AB fills up almost all of the group G. A usual method of attack is to prove

that 1A ∗ 1B is an almost constant function. So we seek the following strategy:

we need to show that 1A ∗ 1B has small variance.

To be more precise, let us set some notations. Notice that CG is an inner-

product space. Indeed for f1, f2 ∈ CG, we define

〈f1, f2〉 :=
∑
x∈G

f1(x)f2(x). (1.1.8)

Then we can define the L2-norm on CG. For f ∈ CG, define

‖f‖2
2 := 〈f, f〉 =

∑
x∈G

|f(x)|2.

First, we compute the mean of 1A ∗ 1B.

Lemma 1.1.4.

E(1A ∗ 1B) =
|A||B|
|G|

.
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Proof:

E(1A ∗ 1B) :=
1

|G|
∑
x∈G

1A ∗ 1B(x) =
1

|G|
∑
x∈G

(∑
y∈G

1A(xy−1)1B(y)

)

=
1

|G|
∑
y∈G

(∑
x∈G

1A(xy−1)

)
1B(y)

=
|A||B|
|G|

.

�

Set

Σ := {x ∈ G : 1A ∗ 1B(x) = 0}.

Our aim is to show that Σ is a small set.

Lemma 1.1.5. We have

|Σ| ≤
(
|G|
|A||B|

)2

‖1A ∗ 1B − E(1A ∗ 1B)‖2
2 . (1.1.9)

Proof:

‖1A ∗ 1B − E(1A ∗ 1B)‖2
2 =

∑
x∈G

∣∣∣∣1A ∗ 1B(x)− |A||B|
|G|

∣∣∣∣2
≥
∑
x∈Σ

∣∣∣∣1A ∗ 1B(x)− |A||B|
|G|

∣∣∣∣2
=

(
|A||B|
|G|

)2

|Σ|.

�

Then if the variance ‖1A ∗ 1B − E(1A ∗ 1B)‖2 is small, we can deduce that |Σ|

is small, which in particular implies that C 6⊆ Σ, if C is big enough. We remark

that

‖1A ∗ 1B − E(1A ∗ 1B)‖2 = ‖(1A − E(1A)) ∗ 1B‖2 . (1.1.10)

For technical reasons, it is easier to work with a “normalized function”, where we

normalize a function by subtracting its mean. More precisely we define:

Definition 1.1.5.

L2
0(G) := {f ∈ L2(G) : E(f) = 0}.
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Notice that 1A − E(1A) ∈ L2
0(G) since E(1A − E(1A)) = 0. We prefer to work

with 1A − E(1A) (or 1B − E(B)) rather than 1A.

Now the question changes to

Question 4. Let f1, f2 ∈ L2(G), and assume that at least one of them belongs to

L2
0(G). What can we say about ‖f1 ∗ f2‖2?

The first attempt to answer this question is to use the Cauchy-Schwarz in-

equality. Indeed, we have

Lemma 1.1.6. Let f1, f2 ∈ L2(G) then

‖f1 ∗ f2‖2 ≤ |G|1/2‖f1‖2‖f2‖2. (1.1.11)

Proof: From the Cauchy-Schwarz inequality we have

‖f1 ∗ f2‖2 =

(∑
x∈G

|f1 ∗ f2(x)|2
)1/2

=

∑
x∈G

∣∣∣∣∣∑
y∈G

f1(xy−1)f2(y)

∣∣∣∣∣
2
1/2

≤

(∑
x∈G

[(∑
y∈G

|f1(xy−1)|2
)(∑

y∈G

|f2(y)|2
)])1/2

= |G|1/2‖f1‖2‖f2‖2.

�

But this inequality is not sharp enough to show that the variance is small. It

turns out that when the minimal dimension of all non-trivial representations of

G is big enough then the above inequality can be improved significantly.

Definition 1.1.6. Let G be a finite group and let us define

m(G) := min
ρ6=1

dρ,

where dρ denotes the dimension of an irreducible representation ρ. Here we

denote the trivial representation by 1.

The following theorem gives an answer to Question 4.

Theorem 1.1.1 (Babai-Nikolov-Pyber). Let f1, f2 ∈ L2(G). If at least one of

f1, f2 belongs to L2
0(G), then

‖f1 ∗ f2‖2 ≤
(
|G|
m(G)

)1/2

‖f1‖2‖f2‖2. (1.1.12)

From this theorem we can prove the following result:



14

Corollary 1.1.4 (Gowers [31]). For a finite group G, let A,B,C ⊆ G be so that

|A||B||C| > |G|3

m(G)
.

Then AB∩C 6= ∅. In particular if |A| > |G|m(G)−1/3, then A is not a product-free

set. Therefore

pf(G) ≤ m(G)−1/3.

Proof: From (1.1.9) and Theorem 1.1.1 we have

|Σ| ≤
(
|G|
|A||B|

)2

‖(1A − E(1A)) ∗ 1B‖2
2

≤
(
|G|
|A||B|

)2 |G|
m(G)

‖1A − E(1A)‖2
2‖1B‖2

2

≤
(
|G|
|A||B|

)2 |G|
m(G)

|A||B|

=
|G|3

|A||B|m(G)
< |C|,

(1.1.13)

by hypothesis, which implies that C 6⊆ Σ. So AB ∩ C 6= ∅. �

For PSL2(Fp), from a theorem due to Frobenius (See [17], Theorem 3.5.1), we

have

m(PSL2(Fp)) ≥ (p− 1)/2.

Clearly |PSL2(Fp)| ≈ p3 and this shows that the minimal degree of non-trivial

representations of PSL2(Fp) is roughly |PSL2(Fp)|1/3.

Corollary 1.1.5.

pf(PSL2(Fp)) ≤
(

2

p− 1

)1/3

.

One might consider a similar problem for compact groups. Indeed, a finite

group should be seen as a compact group with the counting measure, so the

next generalization of finite groups is compact groups with the normalized Haar

measure.

Let G be a compact, Hausdorff, second countable topological group and µ

denote the Haar measure on G, normalized so that µ(G) = 1. Note that since

G is compact, and hence unimodular, a left Haar measure is automatically right
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invariant. Similar to the finite case, a measurable subset of A is said to be

product-free if A2 ∩ A = ∅. We define the product-free measure by

Definition 1.1.7. Let G be a compact group with normalized Haar measure µ.

Define the product-free measure of G by

pf(G) = sup{µ(A) : A ⊆ G is measurable , A ∩ A2 = ∅}.

Let Un(C) be the unitary group on Cn defined by

Un(C) := {X ∈Mn(C) : XX∗ = In, },

where X∗ is the complex conjugate of X. Notice that U1(C) = S1. Indeed, uni-

tary groups have a very rich geometric structure. This geometric structure might

produce some product-free sets (See Figure 1.1). We can make these groups

simpler to study by considering unitary matrices with the determinant 1, and

denote this group by SUn(C), which is called the special unitary group. Gow-

ers [31] asked if pf(SUn) < cn for some c < 1. The available methods only give

polynomial bounds for these groups.

A special class of compact groups that will be studied in this thesis are profi-

nite groups, which are defined as the projective limit of finite groups. Using

their close connection to finite groups, we can establish exponential lower and

upper bounds for the product-free measure. Indeed, profinite groups are topo-

logical groups that are compact and totally disconnected. These groups appear

naturally once we want to study a sequence of finite groups that can be patched

together. An example to keep in mind is the ring of p-adic integers that is defined

by

Zp :=
{

(xn) ∈
∏

(Z/(pnZ)) : xn+1 ≡ xn (mod pn)
}
.

Analytically, this ring is a “completion” of the ring of integers with respect to

prime ideal (p). So these several interpretations of profinite groups make their

theory very rich. Roughly speaking, understanding properties of profinite groups

often reduces to finite quotients. This idea will be essential when we will study

their representations.
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1.1.1. Statement of our theorems for product-free sets

Let us now turn to our contribution in this thesis. This is joint work with

Keivan Mallahi-Karai.

For the finite Chevalley group defined over a finite field, say G(Fq), Landazuri

and Seitz [49], in their important paper, gave a complete list of minimal degrees of

non-trivial representations of G(Fq). However, it seems that the similar question

has not been considered for G(Z/(pnZ)).

Remark. It is possible to use the theory of simple Lie algebras over C to con-

struct simple groups of matrices over any field. This was discovered by Claude

Chevalley [15]. Very briefly, for a given simple Lie algebra, one can study its

automorphisms. The Chevalley group is a subgroup of this automorphism group.

The generators of the Chevalley group are constructed with the help of a ba-

sis of the Lie algebra called a Chevalley basis . However in this thesis we only

consider the following cases of Chevalley groups: projective special linear groups

PSLn(Fp), or projective special sympletic groups PSp2k(Fp), and their extensions

to SLk(Z/(pnZ)) and Sp2k(Z/(pnZ)). However, we believe that some of these

results can be extended to Chevalley groups because of their connections to sim-

ple Lie algebras. To see more about the Chevalley groups we refer the reader

to [11, 12, 13, 66].

Let us first set some definitions. For a ring R, we define the special linear

group, denoted by SLk(R), by

SLk(R) := {X ∈Mk(R) : detX = 1}. (1.1.14)

Now let J denote the 2k by 2k matrix defined by

J :=

 0 Ik

−Ik 0

 .

The symplectic group is defined as follows:

Sp2k(R) :=
{
A ∈M2k(R) : AJAt = J

}
. (1.1.15)

In this thesis, we will study lower bounds for the minimal degree of the non-trivial

representations of all the groups SLk(Z/(pnZ)) and Sp2k(Z/(pnZ)) (which are the
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same as the minimal degree of the non-trivial continuous representations of the

profinite groups SLk(Zp) and Sp2k(Zp)). Let us extend Definition 1.1.6 to general

groups (not necessarily finite groups).

Definition 1.1.8. For a given group G the minimal degree of non-trivial repre-

sentations is defined by

m(G) := min
ρ6=1

dρ, (1.1.16)

where the minimum is taken over all non-trivial representations of G, and dρ

denotes the degree of the representation ρ. We will also denote

mf (G) := min
ker ρ={1}

dρ,

where the minimum is taken over the set of all faithful representations, where a

faithful representation is an injective representation.

Remark 1.1.2. For compact groups, we impose the natural restriction that all

representations are continuous.

Remark 1.1.3. In what follows p always denote an odd prime.

Our first theorem gives a minimal degree of all non-trivial representations

of some classical groups. This indeed extends and simplifies previous work of

Landazuri and Seitz, where they consider the minimal degree of representations

for Chevalley groups over a finite field.

Theorem 1.1.2. In the table below, the third column gives a lower bound for the

degree of any non-trivial representations of the group G(Z/(pnZ)) where G is one

of the groups listed in the first column. In other words,

m(G(Z/(pnZ))) ≥ h(G, p).

Similarly, the forth column gives a lower bound for the degree of any faithful

representation of G(Z/(pnZ)). In other words:

mf (G(Z/(pnZ))) ≥ hf (G, p, n).
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Then we have the following table

minimal degree of non-trivial representations minimal degree of faithful representations

G k ≥ h(G, p) ≥ hf (G, p, n)

SL2 2 ≥ 1
2
(p− 1) ≥ 1

2
ϕ(pn)

SLk ≥ 3 ≥ pk−1 − pk−2 ≥ (pn − pn−1)p(k−2)n

Sp2k ≥ 2 ≥ 1
2
(p− 1)pk−1 ≥ 1

2
(pn − pn−1)p(k−1)n

Remark 1.1.4. Bourgain and Gamburd [7], using a theorem of Clifford, found

the following lower bound for mf (SL2(Z/(pnZ)):

mf (SL2(Z/(pnZ))) ≥ pn−2(p2 − 1)

2
. (1.1.17)

Even though our bound is slightly weaker than the one obtained in [7], it is asymp-

totically equivalent. Our method is also more elementary and can be applied to

other classes of Chevalley groups. For instance for SO+
2k(Z/(pnZ)), the group of

orthogonal matrices with the determinant 1, we can also show that

mf (SO+
2k(Z/(p

nZ))) ≥ ϕ(pn)p(2k−4)n.

As any finite dimensional representation of a profinite group factors through

a finite quotient, we have:

Theorem 1.1.3. Let G be one of the groups listed in the table above and G(Zp)

denote the compact group of p-adic points of G. Then the minimal degree of all

non-trivial continuous representations of G(Zp) is bounded below by h(G, p). In

other words

m(G(Zp)) ≥ h(G, p).

Moreover, we will consider Babai and Sós’s question for the profinite groups

SLk(Zp) and Sp2k(Zp). In this context, using representation bounds, we can get an

upper bound for the measure of the product-free sets in SLk(Zp) and Sp2k(Zp).

Using the spectral theory of compact operators we will prove an extension of

Theorem 1.1.1 to compact groups.

Remark 1.1.5. In this thesis, all topological groups considered will be Hausdorff

and second countable. By a representation of these groups we mean a continuous

complex representation.
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Theorem 1.1.4 (Mixing inequality). Let G be a compact topological group such

that any non-trivial representation of G has dimension at least m(G). Let f1, f2 ∈

L2(G) and suppose that at least one of f1, f2 belongs to L2
0(G), which is the space

of functions with zero mean. Then

‖f1 ∗ f2‖2 ≤

√
1

m(G)
‖f1‖2‖f2‖2. (1.1.18)

This theorem has an immediate corollary.

Corollary 1.1.6. Let G be a compact topological group such that any non-trivial

representation of G has dimension at least m(G). Let A,B ⊆ G be two measurable

sets then

‖1A ∗ 1B − µ(A)µ(B)‖2 ≤

√
µ(A)µ(B)

m(G)
(1.1.19)

For compact groups we can therefore deduce the following:

Theorem 1.1.5. Suppose G is a compact topological group such that any non-

trivial representation of G has dimension at least m(G). If A,B,C ⊆ G such

that

µ(A)µ(B)µ(C) >
1

m(G)
,

then the set AB ∩ C has a positive measure. Moreover, if

m(G)µ(A)µ(B)µ(C) ≥ 1

η2
,

then

µ{(x, y, z) ∈ A×B × C : xy = z} ≥ (1− η)µ(A)µ(B)µ(C). (1.1.20)

By Theorem 1.1.3 and Theorem 1.1.5 we get the following result:

Corollary 1.1.7. The product-free measure of the profinite groups G(Zp) for the

groups G, given in Theorem 1.1.2, is bounded from above by:

pf(G(Zp)) ≤ h(G, p)−1/3.

These upper bounds in particular imply that:

Corollary 1.1.8. If A is a measurable subset of the groups G = G(Zp) with

µ(A) > h(G, p)−1/3, then A3 = G.
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Proof: For every g ∈ G(Zp), set B = A and C = gA−1. Since

µ(A)µ(B)µ(C) = µ(A)3 > h(G, p),

then by Theorem 1.1.3 and Theorem 1.1.5, AB ∩ C 6= ∅. If x ∈ AB ∩ C then

x = ga−1
3 = a1a2 for a1, a2, a3 ∈ A which proves the claim. �

Let Tk+1 be an infinite regular tree of degree k+ 1. The automorphism group

Aut(Tk+1) of Tk+1 is the group of isometries of the vertex set of Tk+1 with respect

to the discrete metric d, where d(u, v) is the smallest number of edges on a path

in Tk+1 connecting u and v. In other words, by an automorphism of Tk+1 we

mean a permutation of the set of vertices of Tk+1 that preserves adjacency.

Definition 1.1.9. For a sequence xn ∈ Aut(Tk+1), we define

xn −→ x,

if for any v ∈ Tk+1, there exits nv so that for all n ≥ nv, we have xn(v) = x(v).

With this topology, called pointwise convergence topology, one can show that

Aut(Tk+1) is a locally compact topological group. We fix a vertex O of Tk+1 to

which we may occasionally refer as the root. Let Ak+1 be the stabilizer of O in

Aut(Tk+1). It can be shown that Ak+1 is a compact group. In fact, every x ∈ Ak+1

fixes O and thereby permutes the set of all (k+ 1)kj−1 vertices of distance j from

O, for every j ≥ 1. This induces a homomorphism

σj : Ak+1 −→ Σ(k+1)kj−1 ,

where Σm denotes the symmetric group on {1, 2, . . . ,m}. We can now define

the following “congruence subgroups” and then provide a system of fundamental
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open sets around the identity automorphism:

Cj = {x ∈ Ak+1 : σj(x) = id}.

Then

Ak+1 = lim←−Ak+1/Cj. (1.1.21)

For more details we refer to Section 2.6 or Bass and Lubotzky’s book [4]. We will

obtain lower and upper bounds for the product-free measure for the group A+
k+1

defined as

Definition 1.1.10. An automorphism x ∈ Ak+1 is called positive if σj(x) is

an even permutation for all j ≥ 1. The group of all positive automorphisms is

denoted by A+
k+1.

We will prove:

Theorem 1.1.6. For all k ≥ 6 we have

1

k + 1
≤ pf(A+

k+1) ≤ 1

(k − 1)1/3
, (1.1.22)

1.2. The density of monogenic number fields

In this section, which involves more algebraic number theory techniques, we

study certain arithmetic properties of number fields.

By a number field, we mean a finite extension of the field of rational numbers.

Historically, algebraic number theory is about arithmetic properties of integral

polynomials. For instance, for a given integral irreducible polynomial f(x), one

might be interested to find the density of those primes p, so that f(x) (mod p)

is irreducible over Fp[x]. Another example would be to compute the density of

primes p so that f(x) (mod p) splits over Fp[x]. Let us, before going any further,

set some notations.

Let f(x) ∈ Z[x] be a monic polynomial of degree n, and assume that

α1, α2, . . . , αn,

are roots of f(x) in its splitting field denoted by Ef . The Galois group of f(x)

is often denoted by Galf := Gal(Ef/Q). Notice that the Galois group of f(x)
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permutes the roots of the polynomial. The discriminant is defined as follows:

Discf = ∆2 =

( ∏
1≤i<j≤n

(αi − αj)

)2

, (1.2.1)

where

∆ =
∏

1≤i<j≤n

(αi − αj).

Since f(x) is a monic integral polynomial, ∆ is an algebraic integer that is a root

of a monic integral polynomial. For σ ∈ Galf we have

σ(∆) = sgn(σ)∆.

Hence for all σ ∈ Galf we get

σ(Discf ) = Discf .

This implies that Discf ∈ Z, since it is a rational integer. Clearly Discf = 0

means that f(x) is not separable, i.e., αi = αj, for some i 6= j. Therefore we just

consider separable polynomials.

Similarly we can define the discriminant for number fields. Let K/Q be a

number field of degree n. The ring of integers of K is defined by

OK := {x ∈ K : x is an algebraic integer over K}.

K

OK

Q

n

Z

n

One can show that OK is a free Z-module of rank n. Then linear algebra can be

invoked to define some concepts. Let A be a ring, E a free A-module of finite

rank and let u be an endomorphism of E. If a base {ei} of E has been chosen

and if (aij) is the matrix for u with respect to this base, then the trace of u is

defined by

Tr(u) =
∑
i

aii.

Notice that this quantity is independent of the choice of base.
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Definition 1.2.1. For an algebraic integer β ∈ OK, the trace of β, denoted by

TrK/Q(β), is defined by the trace of the linear transformation

OK −→ OK

x 7−→ βx.
(1.2.2)

Notice that TrK/Q(β) is a rational integer, since OK is a free Z-module. We

define the discriminant of K by

Definition 1.2.2. Let β1, . . . , βn be an integral basis for OK. We define

Disc(K) := det(TrK/Q(βiβj)). (1.2.3)

Remark 1.2.1. More generally, let O be a free Z-module, then the discriminant

of O can be defined similarly to Definition 1.2.2.

There is another way to define the discriminant. Since the degree of K over

Q is n, then there are exactly n embeddings of K into C.

K � o
σi

��
Q C

Let us denote them by σ1, . . . , σn. It is a standard fact in algebraic number

theory that for x ∈ K,

TrK/Q(x) =
∑
l

σl(x).

Therefore,

TrK/Q(βiβj) =
∑
l

σl(βiβj) =
∑
l

σl(βi)σl(βj).

Put

A :=


σ1(β1) . . . σ1(βn)

...
...

σn(β1) . . . σn(βn)

 ,

then we have the following matrix equality

(TrK/Q(βiβj)) = AAT .

Hence we showed
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Lemma 1.2.1.

Disc(K) = det


σ1(β1) . . . σ1(βn)

...
...

σn(β1) . . . σn(βn)


2

. (1.2.4)

For a given monic irreducible polynomial f(x) ∈ Z[x] we can associate a

number field. Let α be a root of f(x), we can consider K := Q(α). So one might

ask about the discriminant of K = Q(α) and its relation to the discriminant of

f(x). Since f(x) is a monic integral polynomial then α is an algebraic integer.

So

Z[α] ⊆ OK .

Lemma 1.2.2. For an irreducible monic polynomial f(x) ∈ Z[x], with an alge-

braic integer root α, we have

Disc(Z[α]) = Discf .

Proof: Since β1 = 1, β2 = α, β3 = α2, . . . , βn = αn−1 is an integral basis for

Z[α], then 
σ1(β1) . . . σ1(βn)

...
...

σn(β1) . . . σn(βn)

 ,

is a Vandermonde matrix, hence

Disc(Z[α]) =

( ∏
1≤i<j≤n

(αi − αj)

)2

= Discf ,

where

f(x) = (x− α1) . . . (x− αn).

�

We recall the elementary divisor theorem. For proof see [60] Theorem 1,

section 1.5.

Theorem 1.2.1. Let O be a free Z-module of rank n. And let M be a free Z-

submodule of O with rank n. Then there exists a basis {β1, . . . , βn} for O, and

non-zero integers a1, . . . , an, so that
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• ai | ai+1.

• {a1β1, . . . , anβn} is a basis for M.

From this important theorem we can deduce

Theorem 1.2.2. Let α be a root of a monic, irreducible integral polynomial f(x),

and suppose K := Q(α), then

Discf = [OK : Z[α]]2Disc(K),

Proof: Let {β1, . . . , βn} be a basis for OK so that {a1β1, . . . , anβn} is a basis

for Z[α]. From Theorem 1.2.1 such a basis exists. By Lemma 1.2.2 we know

Discf = Disc([Z[α]]). Notice that

Disc(Z[α]) = det(TrK/Q(aiajβiβj))

= (a1 . . . an)2 det(TrK/Q(βiβj))

= (a1 . . . an)2Disc(K).

Remark that (∏
i

ai

)2

= [OK : Z[α]].

�

The discriminant is one of the main tools in algebraic number theory. It

reveals many arithmetic properties of f(x). For instance one can show that

when the discriminant of a given polynomial of degree n is square-free then its

Galois group is isomorphic to Sn, the symmetric group of n elements. This would

convince us to ask how it is possible that a random integral polynomial has a

square-free discriminant. Recall that the height of an integral polynomial f(x)

is the maximum of the absolute value of all its coefficients.

Definition 1.2.3. Call an irreducible monic integral polynomial f(x) ∈ Z[x]

essential if

Discf = Disc(K),

where K = Q(α), and α is a root of f(x).

The following conjecture is due to Hendrik Lenstra [2].
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Conjecture 1 (Lenstra). Let n ≥ 2. The probability that a random irreducible

monic integral polynomial of degree n and height ≤ X is essential should tend to

6/π2 as X →∞.

Notice that from Theorem 1.2.2 we have

Discf = [OK : Z[α]]2Disc(K).

So if Discf is square-free then Discf = Disc(K), which means that f is essential.

Moreover, from this, we deduce that

[OK : Z[α]] = 1,

hence

Z[α] = OK .

This motivates the following definition.

Definition 1.2.4. Let K be an algebraic number field of degree n and OK its

ring of integers. K is called monogenic if there exists an element α ∈ OK such

that OK = Z[α].

Notice that when f(x) is essential then, by the definition, Discf = Disc(K)

therefore by Theorem 1.2.2 we have [OK : Z[α]] = 1 which implies that

OK = Z[α],

therefore K is monogenic.

It is a classical problem in algebraic number theory to identify if a number

field K is monogenic or not. In the 1960s, Hasse [40] asked if one could give an

arithmetic characterization of monogenic number fields. The quadratic and cyclo-

tomic number fields are monogenic, but this is not the case in general. Dedekind

[18] was the first who noticed this by giving an example of a cubic field generated

by a root of t3 − t2 − 2t− 8.

Definition 1.2.5. Let f(t) ∈ Z[t] be a monic irreducible polynomial. f(t) is

called monogenic if OK = Z[α], where K = Q(α) and α is a root of f(t).

Let us mention some remarks. The discriminant of a polynomial is itself a

polynomial in several variables. For instance the discriminant of cubic polynomial
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ax3 + bx2 + cx+ d is

F (a, b, c, d) := 18abcd+ b2c2 − 4b3d− 4ac3 − 27a2d2.

Then it is interesting to count the number of |a|, |b|, |c|, |d| ≤ T , so that F (a, b, c, d)

is square-free. This question seems very hard for general degrees. For small de-

grees however, this has been done by several mathematicians [44, 37]. For a given

polynomial f(x, . . . , xn) ∈ Z[x1, . . . , xn], assuming abc-conjecture, Poonen [56] in

his striking paper, by generalizing a fundamental work of Granville [33], com-

puted the density of x ∈ Zn such that f(x) is square-free (See [56] (Theorem

3.2)). Let us recall the abc-conjecture.

Conjecture 2 (Oesterlé and Masser ). For any given ε > 0 there exists a constant

kε such that if a, b and c, are coprime positive integers for which

a+ b = c,

then

c ≤ kε

 ∏
p prime
p|abc

p


1+ε

.

To see more about this interesting conjecture see Granville and Tucker’s pa-

per [35]. As far as I know, there are not many results regarding the probability of

a randomly chosen polynomial of degree n having square-free discriminant. One

might also ask about the density of monogenic number fields when they are sorted

by their discriminants. More formally

lim
X→∞

#{K : K monogenic : |Disc(K)| ≤ X}
#{K : |Disc(K)| ≤ X}

?

For cubic and quartic fields, this question has been studied by Bhargava and

Shankar [6], Theorem 4.1, where we refer the reader to their paper since it requires

some background to state their results precisely.

In Chapter 5 we have used the Chebotarev density theorem to study the

distribution of a family of monogenic polynomials. In order to fix notations, let

us review some concepts and definitions. Let K/Q be a finite Galois extension of
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degree l with Galois group G = Gal(K/Q) and discriminant D. For a prime p,

and a prime p above p, we can speak about the decomposition group, i.e.,

Dp = {σ ∈ G : σ(p) = p}.

Denote κ(p) := OK/p, then we have a well defined surjective homomorphism

Dp −→ Gal(κ(p)/Fp)

σ −→ σ̄,
(1.2.5)

where

σ̄(x+ p) = σ(x) + p.

The kernel of this homomorphism is called the inertia subgroup, denoted by Ip,

which measures the ramification degree. Indeed for a prime p coprime to D,

from a well-known fact in the realm of algebraic number theory, we have that

p is unramified in K, and the map defined by (1.2.5) is an isomorphism. Since

Gal(κ(p)/Fp) is a cyclic group generated by the Frobenius element, denoted by

Frobp, i.e., Frobp(λ) = λp, then there is a unique element in the Galois group,

denoted by σp such that σp = Frobp.

σp is also called the Frobenius element, and one can show that this element is

unique up to conjugation. Indeed, for a different prime p′ above p, we observe that

σp and σp′ are conjugate, and therefore when we study our objects, considering

them in a conjugacy class, it is more convenient to write σp instead of σp. It is

very important to notice that a prime p splits completely if and only if σp = id.

For an integer n, let a be coprime to n. By Dirichlet’s theorem in primes for

arithmetic progressions, we have

π(x, n, a) := # {p ≤ x : p ≡ a (mod n)} ∼ π(x)

ϕ(n)
. (1.2.6)

The Chebotarev density theorem is a generalization of the Dirichlet’s theorem.

Let C ⊆ Gal(K/Q) be a subset stable under conjugation, i.e., τCτ−1 ⊆ C. The

Chebotarev density theorem says that

πC(x) := # {p ≤ x : σp ∈ C} ∼
|C|

[K : Q]
π(x). (1.2.7)
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Let us pick an example to show that how Dirichlet’s theorem can be recovered

by the Chebotarev density theorem. Taken K = Q(ζn), one can see that p splits

completely in K if and only if p ≡ 1 (mod n), hence for C = id, the set of primes

that split completely is the same as the set of primes p for which p ≡ 1 (mod n).

Notice that [K : Q] = ϕ(n). Therefore

#{p ≤ x : p ≡ 1 (mod n)} = # {p ≤ x : σp = id} ∼ π(x)

ϕ(n)
, (1.2.8)

thus recovering Dirichlet’s theorem. Let us mention an application of the Cheb-

otarev density theorem whose proof will be presented in Chapter 4. Let f(x) ∈

Z[x] be a monic polynomial of degree n with discriminant D 6= 0. For a prime

number p, coprime to D, we define

Definition 1.2.6. Xp(f):= the degree of the splitting field of f(x) (mod p).

We consider the average of this random variable.

µn(f) := lim
t→∞

 1

π(t)

∑
p≤t

gcd(p,D)=1

Xp(f)

 , (1.2.9)

if it exists. We will use the Chebotarev density theorem to prove

Theorem 1.2.3. Assume that Galois group of f(x) is the symmetric group Sn,

where n is the degree of f(x). Then

µn(f) = C

√
n

log n
+O

(√
n log log n

log n

)
, (1.2.10)

where

C = 2

√(
2

∫ ∞
0

log log

(
e

1− et

)
dt

)
. (1.2.11)

1.2.1. Statement of our theorems for monogenic fields

In this section we present our theorems on monogenic number fields. Our first

theorem is the following.

Theorem 1.2.4. Let p and q be prime numbers, where q ≥ 3. Consider the

polynomial

fp(t) := tq − p.
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Then, we have

lim inf
x→∞

1

π(x)
#{p ≤ x : fp(t) is monogenic } ≥ q − 1

q
,

where π(x) denotes the number of primes less than x.

The idea is to find a congruence condition on p such that fp(t) = tq − p

is monogenic. This condition on p reads as pq−1 6≡ 1 (mod q2). Then we use

the Chebotarev density theorem to count these primes. We will also present an

elementary method to count these primes by using Dirichlet’s theorem on primes

in arithmetic progressions.

When q = 3, using a description of an integral basis for a pure cubic field

(Theorem 5.1.1), and an explicit computation, we notice that the index form (see

Lemma 5.1.1) of Q(
3
√
hk2) is represented by hx3−ky3 when h2 6≡ k2 (mod 9) and

(hx3−ky3)/9 for h2 ≡ k2 (mod 9). Thus Q(
3
√
hk2) being monogenic is equivalent

to integral solubility ofhx
3 + ky3 = 1 if h2 6≡ k2 (mod 9);

hx3 + ky3 = 9 if h2 ≡ k2 (mod 9).
(1.2.12)

In particular when p is a prime, Q( 3
√
p) is monogenic for p ≡ ±2,±5 (mod 9).

For p ≡ ±1 (mod 9) we obtain the following equation

px3 + y3 = 9. (1.2.13)

By counting those primes p ≡ ±1 (mod 9) where 9 is not a cube in Fp, we will

find a lower bound for the density of non-monogenic cubic fields Q( 3
√
p). Notice

that when p ≡ −1 (mod 9), then 9 is a cube in Fp. Therefore we restrict ourself

by considering primes of the form p ≡ 1 (mod 9), and computing the density of

these primes where 9 is not a cube modulo them. Let K = Q(ζ9,
3
√

9), where ζ9

is a primitive 9’th root of unity. Since a prime p splits completely in K if and

only if p ≡ 1 (mod 9) and 9
p−1
3 ≡ 1 (mod p). Then by applying the Chebotarev

density theorem, we get

Theorem 1.2.5. The density of primes p ≡ 1 (mod 9) such that the following

Thue’s equation

px3 + y3 = 9,
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does not have any solution in integers x, y, is at least 1/9. This set of primes

produces non-monogenic cubic fields Q( 3
√
p).

We can also describe these primes by the following

Theorem 1.2.6. Q( 3
√
p) is non-monogenic for those primes p ≡ 1 (mod 9) which

can be represented by 7x2 + 3xy + 9y2.

We will also remark some other connections to a phenomenon called Euler-

Kronecker constant.





Part I: Additive combinatorics and

product-free sets





Chapter 2

PRELIMINARIES FOR CHAPTER 3

In this chapter, we will cover some background for Chapter 3.

2.1. Bipartite graphs and Gowers’ trick

In this section we will sketch Gowers’ idea for counting the number of solutions

to the equation xy = z. This method will then be developed further in Chapter 3.

We denote the vector space of all functions from G to C by CG. Let us recall

that CG is an inner-product space. Indeed, for f1, f2 ∈ CG we define

〈f1, f2〉 :=
∑
x∈G

f1(x)f2(x), (2.1.1)

and the L2-norm on CG = L2(G) is defined by

‖f‖2
2 := 〈f, f〉 =

∑
x∈G

|f(x)|2.

Remark 2.1.1. We will use the notation CG when we wish to see it as a vector

space. However, sometimes CG is denoted by L2(G) when we want to emphasize

its functional analytic properties.

Our aim in this section is to prove the following theorem in detail, which is

indeed a special case of Theorem 1.1.1. We will then mention how this can be

modified to compact groups.

Theorem 2.1.1 (Gowers [31]). Let G be a finite group of order n, all of whose

non-trivial representations have dimension greater than or equal to m(G). Let A
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be a subset of G and let f ∈ L2(G) be a function so that
∑

x∈G f(x) = 0, then

‖1A ∗ f‖2 ≤
(
n|A|
m(G)

)1/2

‖f‖2 =

(
|G|
m(G)

)1/2

‖1A‖2‖f‖2.

The convolution operator over a finite dimensional vector space can be un-

derstood by the language of graph theory and of course by functional analysis.

Gowers’ approach was to consider the graph theoretical interpretation, by relating

the trace of biadjacency matrix of a bipartite graph to the number of edges.

Definition 2.1.1. For a finite group G of order n, consider subset A of G. We

define the following bipartite graph, denoted by G. The vertex set of G consists

of two copies of G, and {x, y} ∈ E(G), if and only if for some a ∈ A, y = ax.

Figure 2.1. Bipartite Graph

Then each vertex of G is of degree |A|, and the number of edges in G is n|A|.

Let us recall the definition of the biadjacency matrix of a bipartite graph. Let

G = {x1, x2, . . . , xn}, then by our definition {xi, xj} ∈ E(G) if and only if xj = axi

for some a ∈ A. In other words {xi, xj} ∈ E(G) if and only if 1A(xjx
−1
i ) = 1.

Then the biadjacency matrix of the graph G, denoted again by G, simply is

G :=



1A(x1x
−1
1 ) 1A(x2x

−1
2 ) . . . 1A(x1x

−1
n )

1A(x2x
−1
1 ) 1A(x2x

−1
2 ) . . . 1A(x2x

−1
n )

1A(x3x
−1
1 ) 1A(x3x

−1
2 ) . . . 1A(x3x

−1
n )

...
... . . .

...

1A(xnx
−1
1 ) 1A(xnx

−1
2 ) . . . 1A(xnx

−1
n )


.

We define the convolution operator.

Definition 2.1.2. Consider the following operator

α : CG −→ CG

f 7−→ α(f),
(2.1.2)
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where

(αf)(y) :=
∑
x∈G

{x,y}∈E(G)

f(x) =
∑
x∈G

1A(yx−1)f(x) = (1A ∗ f)(y).

We also recall the definition of the norm of an operator.

Definition 2.1.3. For the operator α, the norm of α is defined by

‖α‖op := sup
06=f∈L2(G)

‖αf‖2

||f ||2
.

Since in Theorem 2.1.1,
∑

x∈G f(x) = 0, we restrict ourself to this subspace.

Definition 2.1.4.

L2
0(G) :=

{
f ∈ L2(G) :

∑
x∈G

f(x) = 0

}
=
{
f ∈ L2(G) : 〈f, 1G〉 = 0

}
.

Indeed we have

Lemma 2.1.1. Let f ∈ L2
0(G), then αf ∈ L2

0(G). Hence the following map is

well defined.

α|L2
0(G) : L2

0(G) −→ L2
0(G).

Proof: For f ∈ L2
0(G) we get∑
y∈G

(αf)(y) =
∑
y∈G

∑
x∈G

1A(yx−1)f(x)

=
∑
x∈G

∑
y∈G

1A(yx−1)f(x)

= |A|
∑
x∈G

f(x) = 0.

(2.1.3)

�

Therefore, to prove Theorem 2.1.1 we need to prove the following inequality

‖α|L2
0(G)‖op := sup

06=f∈L2
0(G)

‖αf‖2

‖f‖2

= sup
0 6=f∈L2

0(G)

‖1A ∗ f‖2

‖f‖2

≤
(
|G|
m(G)

)1/2

‖1A‖2.

(2.1.4)

Let δx be the characteristic function of the set {x}, then {δx}x∈G is an orthonormal

basis of CG. The following lemma is easy to prove.

Lemma 2.1.2. The matrix of α with respect to this basis is the biadjacency matrix

of the bipartite graph G.
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Proof: Let G = {x1, . . . , xn}, then to find for instance the first column of the

matrix associated to the operator α we need to write αδx1 with respect to the

basis {δxj}. We have

αδx1 =
n∑
j=1

(αδx1)(xj)δxj

=
n∑
j=1

(1A ∗ δx1)(xj)δxj

=
n∑
j=1

1A(xjx
−1
1 )δxj .

(2.1.5)

Hence the first column of α with respect to this basis is the column vector

1A(x1x
−1
1 )

1A(x2x
−1
1 )

...

1A(xjx
−1
1 )

...

1A(xnx
−1
1 )


,

which is exactly the first column of the biadjacency matrix of G. �

Since A ⊆ G is not necessarily a symmetric set, i.e., A 6= A−1, the matrix

representation of the operator α is not necessarily a symmetric matrix. In other

words, the biadjacency matrix of the bipartite graph G can be a non-symmetric

matrix.

Now let us recall an important theorem in linear algebra: let T be a symmetric

operator on an inner product space V . Then by the spectral theorem one can find

an orthonormal basis for V , say {v1, v2, . . . , vn}, so that the matrix of T with

respect to this basis is a diagonal matrix. Perhaps it is appropriate to mention

that this is equivalent to saying that any quadratic form can be diagonalized

orthogonally. When T is not symmetric however, we have the following theorem.

Theorem 2.1.2 (Singular value decomposition). Let V be an inner product space

with norm denoted by |.|, and let T be any linear map on V . Then there exist

two orthonormal bases {u1, . . . , un} and {v1, . . . , vn} such that the matrix of T
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with respect to these bases is 
λ1

λ2

. . .

λn

 , (2.1.6)

where λ1 ≥ · · · ≥ λn ≥ 0. Moreover

‖T‖op := sup
v 6=0

|T (v)|
|v|

= λ1.

Proof: Let v be a non-zero vector such that |T (v)|/|v| is maximized. Now

suppose that w is any vector orthogonal to v. We claim that T (w) is also orthog-

onal to T (v). To prove this claim let ε be a small real number. Then

|T (v + εw)|2 = 〈T (v) + εT (w), T (v) + εT (w)〉

= |T (v)|2 + 2ε<(〈T (v), T (w)〉) + ε2|T (w)|2.
(2.1.7)

Moreover since v is orthogonal to w,

|v + εw|2 = |v|2 + ε2|w|2,

as 〈v, w〉 = 0. Since v was chosen so that |T (v)|/|v| to be maximized then we

have
|T (v + εw)|2

|v + εw|2
≤ |T (v)|2

|v|2
, (2.1.8)

therefore
|T (v + εw)|2

|T (v)|2
≤ |v + εw|2

|v|2
.

From this inequality and (2.1.7) we have

2ε<(〈T (v), T (w)〉)
|T (v)|2

+
ε2|T (w)|2

|T (v)|2
≤ ε2|w|2

|v|2
. (2.1.9)

But this implies that <(〈T (v), T (w)〉) = 0, since otherwise ε can be chosen so

small with the same sign as <(〈T (v), T (w)〉), such that (2.1.9) is not fulfilled. We

also have =(〈T (v), T (w)〉) = 0, by choosing iw and repeating the above argument.

Therefore we will get a linear transformation from the orthogonal complement

of 〈v〉 to the orthogonal complement of 〈T (v)〉.

T ′ : 〈v〉⊥ −→ 〈T (v)〉⊥.
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By induction, T ′ has a matrix of the required form. Now set

v1 : = v/|v|,

w1 : = T (v)/|T (v)| = T (v1)/|T (v1)|,

λ1 : = |T (v1)|,

(2.1.10)

then T (v1) = λ1w1, which proves the theorem. �

Remark 2.1.2. As shown in the proof, we have

λ2 = max
0 6=w∈〈v1〉⊥

|T (w)|
|w|

= ‖T |〈v1〉⊥‖op.

This remark will be invoked afterward.

For the vector space CG with norm ‖ · ‖2 and operator α, defined in (2.1.2),

we will apply Theorem 2.1.2 to get two orthonormal bases for CG so that, with

respect to these bases, α is a diagonal matrix with the diagonal elements

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

so that

‖α‖op = λ1.

Remark 2.1.3. With the same notation as Theorem 2.1.2, λ2
i ’s are the eigen-

values of αα∗. We will, by abuse of notation, call λi the “eigenvalues” of α.

The eigenvalues of α will give some information about the number of edges of

the bipartite graph G. More precisely, we have

Lemma 2.1.3. For the bipartite graph G, with biadjacency matrix also denoted

by G, we have

n|A| = |E(G)| = Tr(GGT ) =
n∑
i=1

λ2
i ,

where n is the order of G.

Proof: We have

Tr(GGT ) =
∑
y∈G

∑
x∈G

1A(yx−1) = n|A| = |E(G)|.
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To show that Tr(GGT ) =
∑n

i=1 λ
2
i , by Theorem 2.1.2 we can find two orthogonal

matrices, say Σ1 and Σ2, such that

Σ1GΣ2 =


λ1

λ2

. . .

λn

 .

Therefore

Tr
(
GGT

)
= Tr

(
(Σ1GΣ2) (Σ1GΣ2)T

)
=
∑
i

λ2
i .

�

From Theorem 2.1.2 we see that ‖α‖op = λ1. In the following lemma we will

find a graph interpretation of the norm of α.

Lemma 2.1.4. We have

‖α‖op = λ1 = |A|,

moreover the multiplicity of the eigenvalue λ1 is one, i.e.,

λ1 > λ2 ≥ λ3 · · · ≥ λn ≥ 0.

Remark 2.1.4. It is worth mentioning that for a k-regular graph X one can show

that

• λ1 = k.

• λ1 has multiplicity 1, if and only if X is connected.

Proof of Lemma 2.1.4: For two complex numbers a, b notice that

0 ≤ |a− b|2 = |a|2 + |b|2 − ab̄− āb,

then

(ab̄+ āb) ≤ |a|2 + |b|2. (2.1.11)
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For any f ∈ CG, from the above inequality we have

‖αf‖2
2 =

∑
y∈G

|(αf)(y)|2 =
∑
y∈G

|(1A ∗ f)(y)|2 =
∑
y∈G

∣∣∣∣∣∑
x∈G

1A(yx−1)f(x)

∣∣∣∣∣
2

=
∑
y∈G

(∑
x∈G

1A(yx−1)f(x)

)(∑
z∈G

1A(yz−1)f(z)

)

=
∑
x,z∈G

f(x)f(z)
∑
y∈G

1A(yx−1)1A(yz−1)

≤ 1

2

∑
x,z∈G

(
|f(x)|2 + |f(z)|2

)∑
y∈G

1A(yx−1)1A(yz−1)

=
∑
x∈G

|f(x)|2
∑
z∈G

∑
y∈G

1A(yx−1)1A(yz−1).

(2.1.12)

But ∑
z∈G

∑
y∈G

1A(yx−1)1A(yz−1) = |A|2,

therefore for any 0 6= f ∈ CG we have

‖αf‖2

‖f‖2

≤ |A|.

This implies that

‖α‖op ≤ |A|.

Now, for the constant function 1G(g) ≡ 1, we have

‖α1G‖2 =
√
|G||A|,

‖1G‖2 =
√
|G|,

(2.1.13)

hence
‖α1G‖2

‖1G‖2

= |A|.

From this we deduce that ‖α‖op = |A|. To show that the multiplicity of λ1 is 1,

notice that when a 6= b we have

(ab̄+ āb) < |a|2 + |b|2.

which gives a strict inequality in (2.1.12). �

We use this lemma along with Theorem 2.1.2 to prove the following important

corollary which will play an essential role in the proof of Theorem 2.1.1.
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Corollary 2.1.1. Let λ2 be the second largest eigenvalue of α, then the following

set is a linear subspace of CG

W :=

{
f ∈ CG :

∑
x∈G

f(x) = 0, and
‖αf‖2

‖f‖2

= λ2

}
.

Proof: From Theorem 2.1.2 and Lemma 2.1.4, we obtain an orthogonal basis

f1, . . . , fn of CG , with f1 = 1G, such that αf1, . . . , αfn are orthogonal and

λi =
‖αfi‖2

‖fi‖2

.

Also, as we saw in the proof of Theorem 2.1.2, we have

α : 〈1G〉⊥ −→ 〈α1G〉⊥,

hence W ⊆ 〈1G〉⊥. Moreover by Remark 2.1.2 we also have

λ2 = max
06=f∈〈1G〉⊥

‖αf‖2

‖f‖2

= ‖α|L2
0(G)‖op. (2.1.14)

W is obviously closed under scalar multiplication, then we just need to show that

W is closed under addition. If v1, v2 ∈ W (v1, v2 are functions), then by (2.1.14)

we have

‖α(v1 ± v2)‖2 ≤ λ2‖v1 ± v2‖2. (2.1.15)

Moreover, by the parallelogram law we have

‖α(v1 + v2)‖2
2 + ‖α(v1 − v2)‖2

2 = 2‖α(v1)‖2
2 + 2‖α(v2)‖2

2

= λ2(2‖v1‖2
2 + 2‖v2‖2

2)

= λ2(‖v1 + v2‖2
2 + ‖v1 − v2‖2

2).

(2.1.16)

Then from (2.1.15) and (2.1.16) we have

‖α(v1 ± v2)‖2 = λ2‖v1 ± v2‖2,

which shows that W is a subspace. �

Now let

λ2 = λ3 = · · · = λl,

then we show that l is big if G does not have any non-trivial representation with

small degree. The idea is to define a non-trivial action of G on W , which induce
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a non-trivial representation and then use the fact that the group G does not have

small representations.

Lemma 2.1.5. For g ∈ G and f ∈ CG, define Tgf ∈ CG by

Tgf(x) := f(xg).

This action of G on CG has the following properties:

1) ‖Tgf‖2 = ‖f‖2.

2) ‖α(Tgf)‖2 = ‖αf‖2.

3) E(Tgf) = E(f).

Proof: For 1), we have

‖Tg(f)‖2
2 =

∑
x∈G

|f(xg)|2 =
∑
x∈G

|f(x)|2 = ‖f‖2
2.

To prove 2) we remark that

(α(Tgf))(y) = (1A ∗ Tgf)(y) =
∑
x∈G

1A(yx−1)f(xg)

=
∑
x∈G

1A(yg(xg)−1)f(xg)

= Tg(αf)(y).

(2.1.17)

Then α(Tgf) = Tg(αf), therefore by 1) we can show 2). To prove the last property

notice that ∑
x∈G

Tgf(x) =
∑
x∈G

f(xg) =
∑
x∈G

f(x). (2.1.18)

Hence we have 3) as well. �

By Lemma 2.1.5 we deduce that G acts on W , however we need to show that

this action in non-trivial.

Lemma 2.1.6. G acts non-trivially on W .

Proof: Since any non-zero function f in W is a non-constant function, there

exists g ∈ G such that Tgf 6= f . So G acts non-trivially on W . �

Proof of Theorem 2.1.1: From Lemma 2.1.3 we have

n∑
i=1

λ2
i = |G||A|.
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With the notation of Corollary 2.1.1, let

λ2 = λ3 = · · · = λl,

then

lλ2
2 ≤ |G||A|. (2.1.19)

But G acts non-trivially on W by Lemma 2.1.6. Hence from this action we get a

non-trivial representation of G, so

l = dimW ≥ m(G).

Therefore by (2.1.19) we have

λ2
2 ≤
|G||A|
l
≤ |G||A|
m(G)

,

but as mentioned in (2.1.14)

λ2 = ‖α|L2
0(G)‖op,

so

‖α|L2
0(G)‖op ≤

(
|G||A|
m(G)

)1/2

.

�

As we saw, the main idea in Gowers’ proof was to estimate ‖αf‖ when the

average of f is zero. So one might ask a more general question. For given compact

group G, let us define

L2
0(G) :=

{
h ∈ L2(G) :

∫
G

h dµ = 0

}
.

Notice that L2
0(G) is a Hilbert subspace of L2(G). Let f1, f2 ∈ L2(G) and at least

one of f1, f2 belongs to L2
0(G). What can we say about ‖f1 ∗ f2‖2?

To answer to this question we step back and look at what we have done for

finite groups, from a more abstract point of view. One of the main identities that

appears in Gowers’ proof was

‖G‖HS := Tr(GGT ) =
∑

λ2
i . (2.1.20)

From functional analysis, we know that any Hilbert-Schmidt operator has a prop-

erty similar to (2.1.20). Moreover, we used the singular value decomposition
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to diagonalize the convolution operator α. Fortunately when an operator over a

Hilbert space is compact, we have the singular value decomposition. So we should

see when our convolution operator is compact. We consider the following kernel

K(x, y) := f1(xy−1).

Since G is a compact group, we have K(x, y) ∈ L2(G × G). For this kernel, we

define the following integral operator

ΦK : L2(G) −→ L2(G)

h 7−→ ΦK(h),
(2.1.21)

where

ΦK(h)(x) :=

∫
G

K(x, y)h(y)dµ(y) =

∫
G

f1(xy−1)h(y)dµ(y) = (f1 ∗ h)(x).

(2.1.22)

We should remark that the operator ΦK indeed should be compared with the

definition of α (See (2.1.2)). Therefore, to evaluate ‖f1 ∗ f2‖2 when f2 ∈ L2
0(G),

we need to compute the norm of ‖ΦK |L2
0(G)‖op, since

‖ΦK |L2
0(G)‖op := max

06=f∈L2
0(G)

‖Φ(f)‖2

‖f‖2

.

In Chapter 3 we will consider these operators and answer the question we asked

about the size of ‖f1 ∗ f2‖2. To sketch the idea, first notice that ΦK is a Hilbert-

Schmidt operator, and hence is a compact operator. We will then use singular

value decomposition theorem, which is valid for compact operators, to write the

spectrum of ΦK |L2
0(G), say

λ1 ≥ λ2 ≥ · · · ≥ 0.

From the singular value decomposition we will have

λ1 = ‖ΦK |L2
0(G)‖op.

λ2
1 is indeed an eigenvalue of the self adjoint operator ΦK |L2

0(G)Φ
∗
K |L2

0(G). We will

see, using representation theory, that the multiplicity of λ2
1 in the spectrum is big

if the compact group G does not have a small dimensional representation.
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2.2. The Peter-Weyl theorem and product-free sets

In this section we will give another approach to approximate the product-free

measure of compact groups. By using the famous Peter-Weyl theorem we will

prove the following theorem.

Theorem 2.2.1. Let G be a compact group. With the notation used in Defi-

nition 1.1.8, let A ⊆ G be a measurable set so that µ(A)3 > 1/m(G). Then

A3 = G.

This theorem is essentially due to Emmanuel Breuillard, who reproved Gowers’

theorem 1.1.4 for finite groups. However his method can be modified to be used

for compact groups. Indeed this method clearly shows how representation theory

comes to play in the context of “group expansion”. The main idea is to show

that, for any element g ∈ G

1A ∗ 1A ∗ 1A(g) = µ{(x, y, z) ∈ G3 : xyz = g} 6= 0,

where µ is the normalized Haar measure. Set f := 1A ∗ 1A ∗ 1A. It is standard in

number theory and additive combinatorics, to look at the Fourier coefficients of

a function which gives much information about the original function. Indeed we

will write f with regard to its Fourier expansion, and will derive a contradiction

if f(g) = 0 for some g ∈ G. However, in order to prove the above theorem, we

need to recall some facts from Fourier analysis on compact groups. The main tool

that we will use in this section is Parseval’s theorem; the compact groups case is

due to Peter and Weyl. To give a better illustration of the Peter-Weyl theorem,

we start from finite groups, and gradually we will move to compact groups. For

more details on Fourier analysis over finite groups see [68]. First we recall some

basic definitions.

Definition 2.2.1. Let V be a finite dimensional C-vector space of dimension n.

For a given finite group G, a linear representation is an homomorphism from

G to the group of invertible transformations of V . In other words

ρ : G −→ GL(V ),

is a group homomorphism. n is called the dimension of the representation ρ.
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Remark 2.2.1. When ρ is given, we say that V is a representation space of G

(or even simply, by abuse of language, a representation of G).

Let us give some examples:

Example 2.2.1. The first example is the classic Dirichlet characters. For an in-

teger n, a Dirichlet character modulo n is a group homomorphism from (Z/(nZ))∗

to C∗. These are all one dimensional representations.

Another example is the regular representation.

Example 2.2.2. Let G be a finite group. Let V be a C-vector space with basis

{eg}g∈G.

For s ∈ G, let ρs be a linear transformation that maps eg to esg. From this we

get a representation of dimension |G|. This representation is called the regular

representation and detects much of the group theoretical structure of G.

We pick another example.

Example 2.2.3. Let S3 be the symmetric group with three elements. Also let V

be a C-vector space with basis

{e1, e2, e3}.

For any σ ∈ S3, let ρσ be a linear transformation that maps ei to eσ(i). More

precisely, for v = a1e1 + a2e2 + a3e3 we have

ρσ(v) = a1eσ(1) + a2eσ(2) + a3eσ(3).

This provides a representation of dimension 3. Notice that the following set is

invariant under the action of S3.

W = {v ∈ C3 : a1 = a2 = a3}.

In particular V has an S3-invariant subspace.

From the examples above we see that the representation V can be sometimes

decomposed into smaller representations. When this cannot happen we say that

the representation is irreducible.

Definition 2.2.2. Let (ρ, V ) be a representation of a finite group G. ρ is called

irreducible when V does not have any invariant subspace under the G-action.
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Of course any one dimensional representation is irreducible. One can show

that all of the irreducible representations of a finite abelian group are one dimen-

sional.

Example 2.2.4. In this example we determine all of the irreducible representa-

tions of Z/(nZ). For h = 0, . . . , n− 1 we define

χh : Z/(nZ) −→ C∗

k −→ e
2πihk
n .

(2.2.1)

These representations are all the irreducible representations of Z/(nZ). The set

of all of these representations will be denoted by Ẑ/(nZ).

These representations indeed, gives us the Fourier analysis on Z/(nZ). Let us

recall it, since this would gives a better understanding of the Peter-Weyl theorem.

Let f ∈ L2(Z/(nZ)) be a function, then the Fourier coefficient of f with

respect to a representation χ ∈ Ẑ/(nZ) is defined by

f̂(χ) := 〈f, χ〉 =
∑

k (mod n)

f(k)χ(k).

Notice that f̂ is an element of L2(Ẑ/(nZ)). We have the following theorem, known

as Fourier inversion.

Theorem 2.2.2 (Fourier inversion for Z/(nZ)).

f(g) =
1

n

∑
χ∈Ẑ/(nZ)

f̂(χ)χ(g). (2.2.2)

Also we have the following theorem, which is sometimes called Plancherel’s

formula.

Theorem 2.2.3 (Parseval’s theorem for Z/(nZ)). For a function f ∈ L2(Z/(nZ))

we have

‖f‖2
2 =

1

n
‖f̂‖2

2.

Now let G be a finite group, and let f ∈ L2(G). For any irreducible represen-

tation (ρ, Vρ) of G we can similarly define the Fourier coefficient.

f̂(ρ) :=
∑
g∈G

f(g)ρ(g).
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Let us emphasize the difference when G is a an abelian group. Indeed, when G

is abelian, ρ is one dimensional, so the Fourier coefficient is a complex number.

But for a general group, ρ is not necessary one dimensional, so f̂(ρ) is a linear

transformation of Vρ. The Fourier inversion formula now reads:

Theorem 2.2.4 (Fourier inversion for finite groups). Let f ∈ L2(G) then

f(g) =
1

|G|
∑
ρ

dρTrVρ

(
f̂(ρ)ρ(g−1)

)
, (2.2.3)

where the sum is over all the irreducible representations (ρ, Vρ) of dimension dρ.

Moreover we have Parseval’s identity.

Theorem 2.2.5 (Parseval’s theorem for finite groups). Let f ∈ L2(G) then

‖f‖2
2 =

1

|G|
∑
ρ

dρTrVρ

(
f̂(ρ)f̂(ρ)∗

)
, (2.2.4)

where f̂(ρ)∗ is the conjugate transpose of the matrix f̂(ρ).

Let us go further and consider the circle group. For S1 one can observe that

the irreducible finite-dimensional representations are 1-dimensional, hence are

given by additive characters. The exponential functions x 7−→ enix, where n is an

integer, are examples of all additive characters. For a function f ∈ L2(S1), define

the Fourier coefficient of f by

cn :=
1

2π

∫
S1

f(x)e−inxdx.

Then by Parseval’s theorem we have

1

2π

∫
S1

|f(x)|2 =
∑
n∈Z

|cn|2.

the Peter-Weyl’s theorem is indeed a vast generalization of Parseval’s theorem.

As we saw for finite groups and for S1, by Parseval’s theorem the L2-norm of a

function can be expressed by the L2-norm of its Fourier transform.

We define a finite-dimensional representation of a topological group G on a

finite-dimensional complex vector space V = Cn to be a continuous homomor-

phism ρ of G into GLn(C) . The continuity condition means that in any basis of

V the matrix entries of ρ(g) are continuous for g ∈ G. It is equivalent to say that

g 7−→ ρ(g)v is a continuous function from G into V for each v in V . Indeed we

have
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Theorem 2.2.6 (Peter-Weyl). If G is a compact group, then the linear span of all

matrix coefficients for all finite-dimensional irreducible unitary representations of

G is dense in L2(G).

For more details, we refer the reader to an excellent reference with many

examples [48]. Let us set some notations. Let f ∈ L2(G) be a square integrable

function with respect to the normalized Haar measure µ, meaning that µ(G) = 1.

For a continuous representation ρ, define the Fourier transform of f by

f̂(ρ) :=

∫
G

f(g)ρ(g)dµ(g). (2.2.5)

From the Peter-Weyl’s theorem, we have the following well known theorems.

Theorem 2.2.7 (Fourier inversion formula for compact groups). Let G be a

compact group and let f ∈ L2(G). Then

f(g) =
∑
ρ

dρ〈f̂(ρ), ρ(g)〉HS, (2.2.6)

where the sum is over all the continuous irreducible representations. Moreover,

the Hilbert-Schmidt inner product, denoted by 〈.〉HS is defined by

〈A,B〉HS := Tr(AB∗),

where B∗ is the complex conjugate.

Remark 2.2.2. Here we consider all representations to be unitary, which can be

done by Weyl’s unitary trick since G is a compact group.

Notice that

‖AB‖HS ≤ ‖A‖HS‖B‖HS. (2.2.7)

We also have

Theorem 2.2.8 (The Parseval-Plancherel theorem). For a compact group G, let

f ∈ L2(G). Then

‖f‖2
2 =

∑
ρ

dρ‖f̂(ρ)‖2
HS, (2.2.8)

where the sum is over all the continuous irreducible representations.

Consider the function 1A, then from Plancherel’s theorem, we can deduce the

following
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Lemma 2.2.1. For any non-trivial continuous irreducible representation π, we

have

µ(A) ≥ m(G)‖1̂A(π)‖2
HS.

Proof: Notice that ‖1A‖2
2 = µ(A), so by Plancherel’s theorem we have

µ(A) =
∑
ρ∈Ĝ

dρ‖1̂A(ρ)‖2
HS ≥ dπ‖1̂A(π)‖2

HS ≥ m(G)‖1̂A(π)‖2
HS.

�

Now we prove Theorem 2.2.1.

Proof of Theorem 2.2.1. To prove Theorem 2.2.1, we will consider f to

be 1A∗1A∗1A. Then we will show that f(g) 6= 0 for any g ∈ G. This in particular

implies that g ∈ A3, and hence G = A3. Suppose f(g) = 0 for some g ∈ G. We

will derive a contradiction. Notice that

f̂(ρ) = 1̂A(ρ)3, (2.2.9)

hence from the Fourier inversion formula we have

0 = f(g) =
∑
ρ∈Ĝ

dρ〈1̂A(ρ)3, ρ(g)〉HS

= µ(A)3 +
∑
ρ 6=1

dρ〈1̂A(ρ)3, ρ(g)〉HS.

Therefore

µ(A)3 =

∣∣∣∣∣∑
ρ 6=1

dρ〈1̂A(ρ)3, ρ(g)〉HS

∣∣∣∣∣
≤
∑
ρ6=1

dρ

∣∣∣〈1̂A(ρ)3, ρ(g)〉HS
∣∣∣

=
∑
ρ6=1

dρ

∣∣∣〈1̂A(ρ)2, ρ(g)1̂A(ρ)∗〉HS
∣∣∣ .

(2.2.10)
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Notice that ‖ρ(g)1̂A(ρ)∗‖HS = ‖1̂A(ρ)‖HS since ρ(g) is an unitary matrix, there-

fore from (2.2.10) we have

µ(A)3 ≤
∑
ρ6=1

dρ

∣∣∣〈1̂A(ρ)2, ρ(g)1̂A(ρ)∗〉HS
∣∣∣

≤
∑
ρ6=1

dρ‖1̂A(ρ)2‖HS‖ρ(g)1̂A(ρ)∗‖HS (by Cauchy-Schwarz)

≤
∑
ρ6=1

dρ‖1̂A(ρ)‖3
HS

≤

√
µ(A)

m(G)

∑
ρ∈Ĝ

dρ‖1̂A(ρ)‖2
HS (by Lemma 2.2.1)

=

√
µ(A)

m(G)
µ(A).

Hence

µ(A)3 ≤

√
µ(A)

m(G)
µ(A) =⇒ µ(A)3 ≤ 1

m(G)
, (2.2.11)

which is a contradiction. �

Then by Theorem 1.1.2 we can prove Corollary 1.1.8.

2.3. Minimal degree of non-trivial representations of

finite groups

As we saw in Gowers’ proof, to show that the multiplicity of the second

eigenvalue is high, one needs to show that the minimal degree of any non-trivial

representation of a given group G is big. These groups are called “quasirandom

group” by Gowers [31]. This concept is highly related to the nature of the group.

For instance, for a given group G, let ρ be a one dimensional representation, then

this representation factors through G/G′, where G′ is the commutator subgroup.

Conversely, any representation of G/G′ gives a representation of G. Since G/G′ is

an abelian group, then G/G′ has exactly [G : G′] one dimensional representations.

Hence we have

Lemma 2.3.1. The number of one-dimensional representations of G, is [G : G′].
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Therefore if a group G is perfect, meaning that G = G′, all of its non-trivial

representations have dimension bigger or equal than 2. For a finite non-abelian

simple group G of order n however, Jordan showed that every non-trivial repre-

sentation of G has dimension at least
√

log n/2. This was rediscovered by Gowers

as well (See [31], Theorem 4.7).

Frobenius wrote down the character table of SL2(Fp), and then proved that

any non-trivial representation of this group has dimension at least (p−1)/2. How

can one get such bound without finding the character table? We will describe a

method which we call the “eigenvalue multiplicity principle”. The idea is very

simple. For an n × n complex matrix A, n is obviously greater than or equal to

the number of distinct eigenvalues. Let us describe how this simple observation

gives us a bound for the minimal degree of a non-trivial representation.

To illustrate this principle we first consider a hypothetical situation. After

words we will come back to more concrete examples.

Lemma 2.3.2. Suppose that G is finite group, and let

ρ : G −→ GLd(C),

be a non-trivial representation. For an element g ∈ G of order p, let us assume

that

ρg := ρ(g) 6= I,

where I is the identity matrix in GLd(C). Moreover assume that g is conjugate

to gt, for all integers 1 ≤ t ≤ p− 1. Then d ≥ p− 1.

Proof: Since the order of g is p and ρg is not the identity matrix, then at

least one of the eigenvalues of ρg is ζmp := e
2πim
p , where gcd(m, p) = 1.

Notice that ζtmp is an eigenvalue of ρgt = ρtg. But g is conjugate to gt, hence

ρg is also conjugate to ρgt . Any two conjugate matrices have the same set of

eigenvalues. Hence ζmtp is also an eigenvalue of ρg. From this we get p − 1

different eigenvalues, so d ≥ p− 1. �

Now let us look at an example. Take the symmetric group of n-elements, where

n ≥ 5. The commutator subgroup of Sn is An, which has index 2. Therefore Sn

has only two one dimensional representations. One is the trivial representation
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and the other one is the sign representation, which assigns to each element of

σ ∈ Sn its sign sgn(σ).

Lemma 2.3.3. For n ≥ 5, let

ρ : Sn −→ GLd(C),

be an irreducible representation of dimension greater than or equal to 2. Then ρ

is a faithful representation, meaning that ρ is an injective homomorphism.

Sn acts on Cn by permuting the coordinates. More precisely, for σ ∈ Sn and

v = a1e1 + · · ·+ anen, we define

σ.v := a1eσ(1) + · · ·+ aneσ(n). (2.3.1)

This does not give us an irreducible representation. Notice that the subspace W

defined by

W = {v ∈ Cn : a1 = a2 = · · · = an},

is fixed by Sn. However, W is irreducible (it has dimension 1), and one can show

that the complement,

W⊥ :=

{
v ∈ Cn :

∑
i

ai = 0

}
,

is an irreducible representation of degree n−1. Frobenius and Schur have studied

representation theory of the symmetric group. Indeed in modern language there is

a correspondence between the set of irreducible representation of Sn and “Specht

Modules”. Using this correspondence one can show that, for n ≥ 6, the minimal

degree of non-trivial representations of the simple group An is n− 1.

Here we just consider Sp, when p is a prime greater than 5, and use the

eigenvalue multiplicity principle to show that the degree of any irreducible rep-

resentation of Sp, beside the trivial one and the sign representation, is at least

p− 1. First we prove the following lemma.

Lemma 2.3.4. For n ≥ 5, let H be a normal subgroup of Sn such that

H ∩ An = {id},

where An is the alternating group on n letters. Then H is the trivial subgroup.
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Proof. First we show thatH has at most two elements. Suppose id 6= σ ∈ H,

therefore sgn(σ) = −1, since H ∩ An = {id}. Hence

σ2 ∈ H ∩ An = {id} =⇒ σ = σ−1.

Let τ ∈ H be an another element of H different from σ and id, then

στ ∈ H ∩ An = {id} =⇒ τ = σ−1 = σ,

which is a contradiction. Therefore H = {id, σ}. But H is a normal subgroup,

therefore for any η ∈ Sn we have

ησ = ση,

so σ belongs to the center of Sn. It is well known that the center of Sn is trivial,

hence H is a trivial subgroup. �

From this lemma we can prove Lemma 2.3.3.

Proof of Lemma 2.3.3: Note that ker ρ�Sn, therefore ker ρ∩An�An. But

An is a simple group for n ≥ 5. Hence ker ρ = An or ρ is faithful. Let

ker ρ = An,

then we have the following representation of Sn/An ∼= Z/(2Z),

ρ̃ : Sn/An −→ GLd(C)

σAn 7−→ ρ(σ).
(2.3.2)

Notice that an invariant subspace of Cd under the action of ρ̃, remains invariant

under the action of ρ. So ρ̃ is an irreducible representation of dimension greater

than or equal to 2. But this is a contradiction, since Z/(2Z) has only two one

dimensional irreducible representations. �

Theorem 2.3.1. For a prime p ≥ 5, let

ρ : Sp −→ GLd(C),

be an irreducible representation of dimension greater than or equal to 2, then

d ≥ p− 1.
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Proof: Take the permutation

g = (1, 2, . . . , p− 1, p).

By Lemma 2.3.3, ρ is faithful therefore

ρg 6= I.

For 1 ≤ t ≤ p − 1, notice that g and gt have the same cyclic structure so g is

conjugate to gt, for all integers 1 ≤ t ≤ p− 1. Moreover the order of g is p. Then

by Lemma 2.3.2 we deduce d ≥ p− 1. �

In this argument, we just picked one eigenvalue, and then produced many

other eigenvalues from it. In our proof for the minimal degree of non-trivial

representations of SLk(Z/(pnZ)), we manipulate this argument, and instead of

picking just one eigenvalue, we pick many eigenvalues. To do this, we will consider

the root functions. We postpone this argument to Chapter 3.

2.4. Some remarks on compact operators

In this thesis, we always consider our Hilbert space to be separable, meaning

that it has a countable basis, or equivalently has a countable dense subset. A

typical example would be L2(G), when G is a compact group.

Let X, Y be normed spaces. An operator T from X to Y is called bounded if

there is a number M so that for any x ∈ X we have

‖T (x)‖Y ≤M‖x‖X .

Definition 2.4.1. The vector space of all bounded linear operators from X to Y ,

will be denoted by B(X, Y ).

In linear algebra, we mostly work with finite matrices. Compact operators

are the natural generalization of matrices.

Definition 2.4.2. A linear transformation T ∈ B(X, Y ) is compact, if for any

bounded sequence {xn} in X, the sequence {T (xn)} in Y contains a convergent

subsequence.
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To illustrate this definition, let us give some examples. An operator T ∈

B(X, Y ), is called a finite rank operator when its image is a finite dimensional

vector space. Let T be a finite rank operator with image Z = Im(T ). Now,

for any bounded sequence {xn} in X, the sequence {T (xn)} is bounded in Z,

so by the Bolzano-Weierstrass theorem this sequence must contain a convergent

subsequence. Hence T is compact. This in particular implies the following lemma.

Lemma 2.4.1. Let X be a Banach space. Let {Tk} be a sequence of bounded,

finite rank operators which converges to T ∈ B(X), then T is compact.

When H is a Hilbert space, the converse of the above theorem is also valid.

Lemma 2.4.2. Let T ∈ B(H) be a compact operator, then there is a sequence of

finite rank operators {Tk} which converges to T in B(H).

This indeed would justify our attempt to study compact operators for our

problem. Notice that, when T ∈ B(H) is compact, Tk −→ T , where Tk are

finite rank. Therefore T ∗k −→ T ∗. Hence T ∗ is also a compact operator. Another

interesting property of compact operators is closedness that they form an ideal in

B(H). This means that for two bounded operators S, T , if at least one of them

is compact, ST is compact.

Now we consider a specific family of compact operators, which are called

Hilbert-Schmidt operators.

Lemma 2.4.3. Let H be a Hilbert space with norm denoted by ‖·‖. Let T ∈ B(H)

be a bounded operator, and assume {ei}, and {e′i} are two orthonormal basis for

H, then ∑
‖T (ei)‖2 =

∑
‖T (e′i)‖2. (2.4.1)

Proof: By Parseval’s identity

‖T (ei)‖2 =
∑
j

|〈T (ei), e
′
j〉|2,

and

‖T ∗(e′j)‖2 =
∑
i

|〈ei, T ∗(e′j)〉|2.
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Therefore ∑
‖T (ei)‖2 =

∑
i

∑
j

|〈T (ei), e
′
j〉|2

=
∑
j

∑
i

|〈ei, T ∗(e′j)〉|2

=
∑
‖T ∗(e′i)‖2

=
∑
‖T (e′i)‖2.

(2.4.2)

�

With this theorem for T ∈ B(H) we can define a norm which is called

Hilbert-Schmidt norm.

Definition 2.4.3. An operator T ∈ B(H) is called a Hilbert-Schmidt operator

when for some orthonormal basis {ei}, hence for any orthonormal basis, we have∑
‖T (ei)‖2 <∞.

For these operators, the Hilbert-Schmidt norm is defined by

‖T‖2
HS =

∑
‖T (ei)‖2.

To justify this definition we remark that for a finite matrix A, we have

‖A‖2
HS = Tr(AA∗) =

∑
λ2
i ,

where A∗ is the complex conjugate of A and λ2
i are the eigenvalues of AA∗ (See

Theorem 2.1.2). We should mention that the usual norm of an operator is defined

by

‖T‖op := sup
06=x∈H

‖T (x)‖
‖x‖

= sup
x∈H
‖x‖=1

‖T (x)‖.

The following lemma which will be needed for Chapter 3.

Lemma 2.4.4. For any T, S ∈ B(H), we have

‖TS‖HS ≤ ‖T‖HS‖S‖HS.

Proof: For any operators T, S ∈ B(H), and an orthonormal basis {ei}, we

have

‖TS‖2
HS =

∑
‖TS(ei)‖2 ≤ ‖T‖2

op

∑
‖S(ei)‖2 = ‖T‖2

op‖S‖2
HS. (2.4.3)
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Now let e1 be a unit vector, then by extending this to an orthonormal basis {ei}

we observe that

‖T (e1)‖ ≤ ‖T‖HS,

therefore

‖T‖op ≤ ‖T‖HS.

From this and (2.4.3), we have the required inequality. �

Moreover the following properties of Hilbert-Schmidt operators.

Lemma 2.4.5. Let H be a separable Hilbert space and let T ∈ B(H) then

a) T is Hilbert-Schmidt if and only if T ∗ is Hilbert-Schmidt.

b) If either S or T is Hilbert-Schmidt, then ST is Hilbert-Schmidt.

c) If T is Hilbert-Schmidt then it is compact.

In Chapter 3 we will give some other properties of Hilbert-Schmidt operators.

2.5. Profinite groups

In this section, we will spend some time to explain some basic properties of

profinite groups. Historically, the notion of profinite groups first appeared in the

theory of Galois correspondence. Indeed let E/F be a finite Galois extension,

and assume that H ⊆ Gal(E/F ). Then Gal(E/L) = H, where L is the fixed

field of H. But when E/F is an infinite Galois extension, this is not necessarily

true. Krull was the first to put a topology, called the “Krull topology”, on

Gal(E/F ). This topology is Hausdorff, compact and totally disconnected. With

this topology one can show that Gal(E/L) = H, where H is the closure of H.

The Krull topology is essential in the theory of Galois Cohomology.

Another example of profinite group is the ring of p-adic integers, denoted by

Zp. Let us recall that

Zp :=
{

(xn) ∈
∏

(Z/(pnZ)) : xn+1 ≡ xn (mod pn)
}
.

Abstractly we have reduction maps

ϕn : Z/(pn+1Z) −→ Z/(pnZ), (2.5.1)
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and then

Zp :=
{
x = (xn) ∈

∏
(Z/(pnZ)) : ϕn+1πn+1(x) = πn(x)

}
,

where πn is projection map.

Z/(pn+1Z) ϕn // Z/(pnZ)

Zp

πn+1

kk

πn

gg

Put the discrete topology on Z/(pnZ), then by Tychonoff’s theorem
∏

Z/(pnZ)

is compact. Using this, one can that Zp is a compact ring. This motivates us to

consider the following concepts. A directed set is a partially ordered set I such

that for all i1, i2 ∈ I there is an element j ∈ I for which i1 ≤ j and i2 ≤ j.

Definition 2.5.1. An inverse system (Xi, ϕij) of topological spaces indexed by

a directed set I consists of a family (Xi)i∈I of topological spaces and a family

ϕij : Xj −→ Xj, for i ≤ j, of continuous maps such that ϕii is the identity map

IdXi, for each i and ϕijϕjk = ϕik whenever i ≤ j ≤ k.

Xi

Xk

ϕik
>>

ϕjk

// Xj

ϕij
``

The sets for which no other topology is specified will be regarded as topological

spaces with the discrete topology. If each Xi is a topological group and each

ϕij is a continuous homomorphism, then (Xi, ϕij) is called an inverse system of

topological groups; an inverse system of topological rings is defined similarly.

Example 2.5.1. Assume I = N and let p be a prime. Let Gi = Z/(piZ) for

each i, and for i ≤ j let ϕij : Gj −→ Gi be the reduction homomorphism. Then

(Gi, ϕij) is an inverse system of finite rings.

Definition 2.5.2. An inverse limit (or projective limit) (X,ϕi) of an inverse

system (Xi, ϕij) of topological spaces (resp. groups, rings) is a topological space

(resp. group, ring) X together with a compatible family ϕi : X −→ Xi of con-

tinuous maps (resp. continuous homomorphisms) with the following universal

property: whenever ψi : Y −→ Xi is a compatible family of continuous maps from
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a space Y (resp. of continuous homomorphisms from a group or a ring Y), there

is a unique continuous map (resp. continuous homomorphism) ψ : Y −→ X such

that ϕiψ = ψi for each i.

Y

ψj

tt

ψi

xx
∃!ψ

��

Xj
ϕij // Xi

X

ϕj

jj

ϕj

ff

(2.5.2)

Now let (Xi, ϕij) be an inverse system, then the inverse limit of this inverse

system, denoted by lim←−Xi, exists. To define this, we simply mimic the construc-

tion of Zp.

lim←−Xi :=
{
x = (xi) ∈

∏
Xi : ϕijπj(x) = πi(x)

}
. (2.5.3)

Here πi stands for the projection map. A topological space is called totally dis-

connected when the connected component of each element has only one element.

Lemma 2.5.1. Let (Xi, ϕij) be an inverse system, with inverse limit X := lim←−Xi,

then

1) If each Xi is Hausdorff, so is X.

2) If each Xi is compact and Hausdorff, so is X.

3) If each Xi is totally disconnected, so is X.

Therefore if all Xi are discrete then X is Hausdorff, compact and totally

disconnected.

Definition 2.5.3. A topological group G is called profinite when G is Hausdorff,

compact and totally disconnected.

One can show that any profinite group is an inverse limit of finite groups. To

emphasize the vital role of profinite groups, let us mention that

Gal(Q/Q) = lim←−
E/Q

finite, Galois

Gal(E/Q).

This relation is very important, since by this one can reduce any continuous

representation of Gal(Q/Q) to a linear representation of a finite quotient. In

Chapter 3, inspired by these arguments, we will give some other properties of
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profinite groups which are relevant to our work. We will work with continuous

representations of the profinite group SLk(Zp).

2.6. Regular trees

This section is devoted to the automorphism group of regular trees. A tree is a

connected non-empty graph without circuits. For instance the following diagram

is a 3-regular tree. Another way to visualize a regular tree is to look at the Cayley

Figure 2.2. Rooted tree

graph of the free group Fn.

Trees have been source of many important contributions in mathematics. We

pick an example merely to show its importance. Ihara [45] in 1966 proved that

every torsion-free subgroup G of SL2(Qp) is a free group. Serre [63] reproved

this theorem using trees. Serre’s idea was to connect this group to a tree via

the fundamental group of a topological space. Indeed he showed that G act

freely (“without fixed points”) on a tree X. The idea is roughly that G is the

universal cover of X/G, hence G may then be identified with the fundamental

group π1(X/G) of the quotient graph X/G, a group which is obviously free. In

this thesis we are more interested in the automorphism group of a tree. Let us

set up some notations for this group.

Let Tk+1 be a regular tree of degree k+1. The automorphism group Aut(Tk+1)

of Tk+1 is the group of isometries of the vertex set of Tk+1 with respect to the

discrete metric d, where d(x, y) is the smallest number of edges on a path in Tk+1

connecting x and y. In other words, by an automorphism of Tk+1 we mean a
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permutation of the set of vertices of Tk+1 that preserves adjacency. Notice that

Aut(Tk+1) acts transitively on Tk+1. For a sequence σn ∈ Aut(Tk+1), we define

σn −→ σ,

if for any x ∈ Tk+1, there exists nx so that for all n ≥ nx, we have σn(x) = σ(x).

With this topology, called pointwise convergence topology, one can show that

Aut(Tk+1) is a locally compact topological group. We can define this topology via

a subbasis for the topology. We fix a vertex O of Tk+1 which we may occasionally

refer as the root. Let Ak+1 be the stabilizer of O in Aut(Tk+1). For any x ∈ Tk+1,

there is a an element σ ∈ Aut(Tk+1), so that σx(O) = x, therefore

σxAk+1σy, x, y ∈ Tk+1,

is a subbasis of the topology.

Lemma 2.6.1. Ak+1 is compact.

Proof: Let {σn} be a sequence in Ak+1. Let {x0 = O, x1, x2, . . .} be the set

of vertices of the tree Tk+1. Notice that σn(O) = O. Since σn is an isometry, for

any k the following set is a finite set

{σn(xk)}.

Therefore for a subsequence, say a1n, we have

σa11(x1) = σa12(x1) = · · · = σa1n(x1) = · · · .

Now we look at the finite set {σa1n(x2)}. There is a subsequence of a1n, denoted

by a2n, so that

σa21(x2) = σa22(x2) = · · · = σa2n(x2) = · · · .

We construct these subsequences inductively and define

σ(xi) := σaii(xi).

Then σann −→ σ. �
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It turns out that Ak+1 is a profinite group. In fact, every σ ∈ Ak+1 fixes O

and thereby permutes the set of all (k + 1)kj−1 vertices of distance j from O, for

every j ≥ 1. This induces a homomorphism

ϕj : Ak+1 −→ S(k+1)kj−1 ,

where Sm denotes the symmetric group on {1, 2, . . . ,m}. We can now define the

following “congruence subgroups” that provide a system of fundamental open sets

around the identity automorphism:

Cj = {σ ∈ Ak+1 : ϕj(σ) = id}.

We have

Ak+1 = lim←−Ak+1/Cj. (2.6.1)

We will speak more about this group in Chapter 3.





Chapter 3

PRODUCT-FREE SUBSETS OF PROFINITE

GROUPS

Authors: Mohammad Bardestani, Keivan Mallahi-Karai.

In this chapter we will prove our theorems which were stated in Section 1.1.1.

This chapter is organized as follows: In Section 3.1 we will recall some definitions

and set the notations. Moreover in this section we will establish some elementary

properties of the product-free measure. In Section 3.2 we gather some facts

about the representation theory of profinite groups. In Section 3.3 we will prove

Theorem 1.1.2. Gowers’ proof [31] uses the language of quasirandom graphs. We

will translate his argument to direct arguments in functional analysis involving

Hilbert-Schmidt operators which is more suitable for compact groups. This is

done in Section 3.4. In Section 3.5 we will prove Theorems 1.1.5, 1.1.6.

3.1. Product-free measure

For a profinite group

G = lim←−Gi,

the Haar measure can be easily described as a “limit” of counting measures. More

precisely, for an open set U ⊆ G we have,

µ(U) = lim
i

|φi(U)|
|Gi|

, (3.1.1)

where

φi : G −→ Gi,
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is the continuous projection (See Definition 2.5.2).

Moving to product-free measure, let us recall its definition. Let G be a com-

pact group with normalized Haar measure µ. We recall the definition of the

product-free measure of G.

pf(G) := sup{µ(A) : A ⊆ G is measurable , A ∩ A2 = ∅}.

First note that pf(G) ≤ 1/2. This follows from the fact that if A ∩ A2 = ∅ then

for each x ∈ A, the sets A and xA are disjoint and have the same Haar measure.

When G is a non-trivial group then one can also easily see that pf(G) > 0 as

we now show: Let G be a compact group. It is known that the topology of G

is given by a bi-invariant metric (see Corollary A4.19 in [43].) Let dG be such a

metric and D = diam(G) be the diameter of G which is defined by

dim(G) = sup{dG(x, y) : x, y ∈ G}.

Let us also denote f(r) = µ(B(x, r)) (note that the bi-invariance of dG implies

that the volume of the ball is independent of its center.) Then we have

Proposition 3.1.1.

pf(G) ≥ f(D/3) > 0.

Proof: Choose y, z ∈ G such that dG(y, z) = D and let x = z−1y. We have,

dG(x, x2) = dG(1, x) = dG(z, zx) = dG(z, y) = D. (3.1.2)

For u, v ∈ B(x,D/3) we have

dG(uv, x2) ≤ dG(uv, ux) + dG(ux, x2) = dG(v, x) + dG(u, x) <
2D

3
.

Then uv ∈ B(x2, 2D/3) and hence uv /∈ B(x,D/3) since otherwise we would have

dG(x, x2) ≤ dG(x, uv) + dG(uv, x2) <
D

3
+

2D

3
= D,

which contradicts (3.1.2). This shows that B(x,D/3) is a product-free set. �

We would also like to remark that one can give an alternative definition by

replacing A∩A2 = ∅ with µ(A∩A2) = 0. However, these turn out to be equivalent:
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Proposition 3.1.2. Suppose G is an infinite compact group with Haar measure

µ. Define

pf0(G) = sup{µ(A) : A ⊆ G is measurable , µ(A ∩ A2) = 0.}

Then pf0(G) = pf(G).

Proof: It is clear that pf(G) ≤ pf0(G). To prove the inverse inequality, let A

be a measurable set with µ(A∩A2) = 0. Then B = A−(A∩A2) ⊆ A has the same

measure as A and B ∩B2 ⊆ B ∩ A2 = ∅. This shows that pf(G) ≤ pf0(G). �

3.2. Complex representations of profinite groups

In this section we will gather some facts about profinite groups that will be

used later. Our final aim in this section is to show that any non-trivial complex

continuous representation of SLk(Zp) (respectively Sp2k(Zp)) factors through a

non-trivial representation of SLk(Z/(pnZ)) (respectively Sp2k(Z/(pnZ))) for some

n (See Corollary 3.2.1). In the next section we will find a lower bound for such a

representation.

We call a family I of normal subgroups of an arbitrary group G a filter base

if for all K1, K2 ∈ I there is a subgroup K3 ∈ I which is contained in K1 ∩K2.

Now let G be a topological group and I a filter base of closed normal subgroups,

and for K,L ∈ I define K � L if and only if L is a subgroup of K. Thus I

is a directed set with respect to the order � and the surjective homomorphisms

qKL : G/L −→ G/K, defined for K � L, make the groups G/K into an inverse

system. Write

Ĝ = lim←−(G/K).

There is a continuous homomorphism

θ : G −→ Ĝ

with kernel
⋂
K∈I K, whose image is dense in Ĝ. We have the following

Proposition 3.2.1 (See [69], proposition 1.2.2). If G is compact then θ is surjec-

tive; if G is compact and
⋂
K∈I K = {id} then θ is an isomorphism of topological

groups.
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Moreover we have,

Proposition 3.2.2 (See [69], proposition 1.2.1). Let (G,ϕn) be an inverse limit

of an inverse system (Gn) of compact Hausdorff topological groups and let L be

an open normal subgroup of G. Then kerϕn ≤ L for some n.

For the profinite group SLk(Zp) consider the following surjective homomor-

phism

0 −→ Kn −→ SLk(Zp)
ϕn−→ SLk(Z/(pnZ)) −→ 0,

where ϕn is induced by the canonical surjective homomorphism Zp −→ Z/(pnZ).

Clearly the set I ofKn is a filter base and
⋂
Kn = I, therefore by Proposition 3.2.1

we have

SLk(Zp) = lim←− SLk(Z/(pnZ)).

Similarly

Sp2n(Zp) = lim←− Sp2k(Z/(pnZ)).

The following proposition is a standard fact in Galois representation, however for

the sake of completeness we will prove it.

Proposition 3.2.3. Let G be a profinite group, and assume ρ : G −→ GLm(C)

is a continuous representation. Then the kernel of ρ is an open subgroup, hence

Im(ρ) is a finite subgroup of GLm(C).

Proof: First we show that there exists a neighborhood of the identity element

in GLm(C) that does not contain any subgroup other than the trivial subgroup.

Let

exp : glm(C) −→ GLm(C),

be the exponential map of the Lie group GLm(C), where glm(C) is the Lie algebra

of the Lie group GLm(C). Let U1 be an open neighborhood of 0 ∈ glm(C) on

which the exponential map is a diffeomorphism. Set U = (1/2)U1 ( if it is

necessary, we will take U = (1/2k)U1 for some k big enough). Let H be a non-

trivial subgroup of GLm(C) contained in exp(U). Then one can choose X ∈ U

such that a = exp(X) ∈ H and 2X ∈ U1 \ U . This shows that

a2 = exp(2X) ∈ exp(U1) \ exp(U),
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which is a contradiction since a2 ∈ H ⊆ exp(U). Therefore U is a neighborhood

of the identity element in GLm(C) that does not contain any subgroup other than

the trivial subgroup.

Then V := ρ−1(U) is an open subset of G containing the identity and from

the properties of profinite groups, we know that V contains an open subgroup,

say H. This implies that ρ(H) = 1 and hence H ≤ ker ρ. Therefore ker ρ is open

thus Im(ρ) is finite. �

This result implies the following:

Corollary 3.2.1. Let ρ : SLk(Zp) −→ GLm(C) be a non-trivial representation.

Then ρ factors through a non-trivial representation of SLk(Z/(pnZ)) for some n.

Proof: By Proposition 3.2.3, ker ρ is an open normal subgroup, therefore by

Proposition 3.2.2 we have Kn ≤ ker ρ, for some n, where

0 −→ Kn −→ SLk(Zp)
ϕn−→ SLk(Z/(pnZ)) −→ 0.

Therefore ρ factors through a non-trivial representation of

ρ̄ : SLk(Z/(pnZ)) −→ GLm(C). (3.2.1)

�

Theorem 3.2.1 is also valid for Sp2k(Zp).

3.3. Root functions

Our approach to obtain the minimal degree of all non-trivial representations

of SLk and Sp2k, is to consider an appropriate abelian subgroup of these groups.

Then by looking at its image under the given representation in GLd(C) where

d is the dimension of the representation, we will show that, these matrices have

many different eigenvalues and then we will prove that the dimension of the

representation is big. To make this idea precise, let us recall a basic fact from

linear algebra.

Definition 3.3.1. Let S be a family of matrices in Md(C). For a function

r : S −→ C,
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define

V (r) := {v ∈ Cd : Sv = r(S)v for all S ∈ S}.

A map r : S −→ C will be called a root of S if V (r) 6= {0}. Moreover V (r) is

called a root subspace.

The following proposition is a special case of Theorem 15 in section 9.5. of [42].

Proposition 3.3.1. Let S be a commuting family of d×d unitary matrices. Then

S has only a finite number of roots. If r1, . . . , rt are all the distinct roots of S

then

(1) V (ri) is orthogonal to V (rj) for i 6= j.

(2) Cd = V (r1)⊕ · · · ⊕ V (rt).

3.3.1. Root functions for the special linear groups

Let L be the abelian subgroup of SLk(Z/(pnZ)) defined by

L =


Ik−1 x

0 1

 : x ∈ (Z/(pnZ))k−1

 ,

where x is a column vector. Moreover let H be the subgroup of SLk(Z/(pnZ))

consisting of matrices of the form

H =


σ 0

0 1

 : σ ∈ SLk−1(Z/(pnZ))

 .

It is easy to see that H normalizes L. Indeed we haveσ 0

0 1

Ik−1 x

0 1

σ 0

0 1

−1

=

Ik−1 σx

0 1

 . (3.3.1)

Let

ρ : SLk(Z/(pnZ)) −→ GLd(C), (3.3.2)

be a non-trivial representation. Note that SSL := ρ(L) is an abelian group. Next

proposition shows that H acts on the root functions and the root subspaces of

SSL.
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Proposition 3.3.2. Let r be one of the roots in the decomposition in Proposi-

tion 3.3.1 and let h ∈ H. For any s = ρ(l) ∈ SSL, define

rh(s) := r(ρ(hlh−1)).

Then rh is also a root for SSL, and V (rh) = ρ(h−1)V (r).

Proof: First note that since H normalizes L, the map rh is well-defined. For

w ∈ V (r) and l ∈ L, we have

ρ(l)(ρ(h−1)w) = ρ(h−1)(ρ(hlh−1)w)

= r(ρ(hlh−1))ρ(h−1)w

= rh(ρ(l))(ρ(h−1)w).

(3.3.3)

This shows that rh is a root for SSL, and ρ(h−1)V (r) ⊆ V (rh). To show the

equality let v ∈ V (rh), then for any l ∈ L we have

ρ(l)(ρ(h)v) = ρ(h)(ρ(h−1lh)v) = r(ρ(l))(ρ(h)v),

so ρ(h)V (rh) ⊆ V (r). �

Consider the following matrices

ei :=



1 0

1
...

. . . 1

1
...

1 0

0 0 1


→ ith row ,

that are some elementary matrices. Notice that the values of the root functions

are the eigenvalues of the matrices, so their values are roots of unity. We recall

that SLk(Z/(pnZ)) is generated by the elementary matrices ((by row-and-column

reduction of integral matrices to compute elementary divisors), and all elementary

matrices are conjugate to e1. Therefore we have the following lemma.

Lemma 3.3.1. If ρ(e1) = I, then ρ is a trivial representation.

Now let ρ be a faithful representation then we claim the following.
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Lemma 3.3.2. There exists a root r for SSL, such that r(ρ(e1)) = ζ, where ζ is

a primitive pnth root of unity.

Proof. Let us denote the roots of SSL by r1, . . . , rt. Assume that for all

1 ≤ i ≤ t we have ri(ρ(e1)) = ζmipn , where p | mi. Assuming this, we will show

that ρ(ep
n−1

1 ) = I, which is a contradiction since ρ is a faithful representation and

the order of e1 is pn.

By Proposition 3.3.1 we have

Cd = V (r1)⊕ · · · ⊕ V (rt).

For an arbitrary element v ∈ Cd write

v = v1 + · · ·+ vt,

where vi ∈ V (ri). Therefore for any integer m we have

(ρ(e1))mv = r1(ρ(e1))mv1 + · · ·+ rt(ρ(e1))mvt

= ζm1m
pn v1 + · · ·+ ζmtmpn vt.

(3.3.4)

In particular for m = pn−1 we have

ρ(ep
n−1

1 )v = v1 + · · ·+ vt = v.

Hence ρ(ep
n−1

1 ) = I. �

Now we can prove Theorem 1.1.2 for SLk(Z/(pnZ)).

Proof of Theorem 1.1.2 for mf (SLk(Z/(pnZ))) when k ≥ 3: Let

ρ : SLk(Z/(pnZ)) −→ GLd(C),

be a faithful representation. First note that L, as an abstract group, is isomor-

phic to the direct sum of k − 1 copies of the cyclic group Z/(pnZ). Notice that

{e1, . . . , ek−1} is the standard basis of L. We will occasionally deviate from our

standard notation for the group operation and use additive notation for group

operation on L, when this isomorphism is used. For instance, we will write e1 +e2

instead of e1 · e2.

By Lemma 3.3.2 there is a root r for SSL such that r(ρ(e1)) = ζm1
pn , where

gcd(m1, p) = 1. We also assume that for 2 ≤ i ≤ k − 1 we have r(ρ(ei)) = ζmipn
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where 0 ≤ mi ≤ pn − 1. For t ∈ (Z/(pnZ))∗ and x2, . . . , xk−1 ∈ Z/(pnZ) whose

values will later be assigned, define

α = α(t, a2, · · · , ak−1) =



t a2 a3 · · · ak−1 0

0 t−1 0

0 0 1 0
...

...
. . .

...

1

0 0 · · · 0 1 0

0 0 · · · 0 0 1


∈ H.

Using (3.3.1), a simple computation shows that

αe1α
−1 = te1, αe2α

−1 = t−1e2 + a2e1, αeiα
−1 = ei + aie1 (3 ≤ i ≤ k − 1).

By Proposition 3.3.2, we have rt,a2,··· ,ak−1
:= rα is a root and

rα(ρ(e1)) = r(ρ(αe1α
−1)) = r(ρ(te1)) = ζtm1

pn ,

rα(ρ(e2)) = r(ρ(αe2α
−1)) = r(ρ(t−1e2 + a2e1)) = ζt

−1m2+a2m1
pn ,

rα(ρ(ei)) = r(ρ(αeiα
−1)) = r(ρ(ei + aie1)) = ζmi+aim1

pn (3 ≤ i ≤ k − 1).

(3.3.5)

Now, since gcd(m1, p) = 1, by varying the values of t, a2, . . . , ak−1 we can get at

least

ϕ(pn)p(k−2)n = (pn − pn−1)p(k−2)n,

different roots. This shows that the dimension of the representation space has to

be at least

(pn − pn−1)p(k−2)n.

�

Now let ρ be a non-trivial representation. Then we have

Lemma 3.3.3. Let ρ be a non-trivial representation, then there exists a root r

for SSL, such that r(ρ(e1)) = ζm1
pn , where m1 is non-zero in Z/(pnZ).
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Proof: If for all roots we have ri(ρ(e1)) = 1, then similar to the proof of

Lemma 3.3.2 we can deduce that ρ(e1) = I. But by Lemma 3.3.1 we saw that if

ρ(e1) = I then ρ is a trivial representation. That is a contradiction. �

Proof of Theorem 1.1.2 for m (SLk(Z/(pnZ))) when k ≥ 3: Let

ρ : SLk(Z/(pnZ)) −→ GLd(C), (3.3.6)

be a non-trivial representation. Since ρ is not a trivial representation then by

Lemma 3.3.1, we deduce that ρ(e1) 6= I. With the same notation we used in the

previous proof, we obtain the following identities similar to (3.3.5).

rα(ρ(e1)) = r(ρ(αe1α
−1)) = r(ρ(te1)) = ζtm1

pn ,

rα(ρ(e2)) = r(ρ(αe2α
−1)) = r(ρ(t−1e2 + a2e1)) = ζt

−1m2+a2m1
pn ,

rα(ρ(ei)) = r(ρ(αeiα
−1)) = r(ρ(ei + aie1)) = ζmi+aim1

pn (3 ≤ i ≤ k − 1).

(3.3.7)

The only difference is that, here m1 is non-zero in Z/(pnZ), whereas in the previ-

ous proof it was coprime to p. So by varying the values of t, a2, . . . , ak−1 we can

get at least pk−1 − pk−2 different roots. �

For SL2(Z/(pnZ)) this method does not work. Instead we present a different

proof.

Proof of Theorem 1.1.2 for mf (SL2(Z/(pnZ))): Let

ρ : SL2(Z/(pnZ)) −→ GLd(C),

be a faithful representation and set

a :=

1 1

0 1

 .

Let A := ρ(a) 6= I. Since the order of a is pn and ρ is faithful, then A has a

non-trivial eigenvalue ζ which is a primitive pnth root of unity, since otherwise

Ap
n−1

= I,

which is a contradiction.
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Notice that a is conjugate to am, where m is a square in (Z/(pnZ))∗. Therefore

A is conjugate to Am. Hereafter m will be an arbitrary quadratic residue in

Z/(pnZ). This implies that A and Am would have the same set of eigenvalues.

But ζm is an eigenvalue of Am. The number of square elements in (Z/(pnZ))∗ is

ϕ(pn)/2. Therefore A has at least ϕ(pn)/2 different eigenvalues. So

d ≥ ϕ(pn)

2
.

�

For m (SL2(Z/(pnZ))), the same method gives the bound (p− 1)/2.

3.3.2. Root functions for the symplectic groups

Let J denote the 2k × 2k matrix

J :=

 0 Ik

−Ik 0

 .

The symplectic group is defined as follows

Sp2k(Z/(pnZ)) :=
{
A ∈ GL2k(Z/(pnZ)) : AJAT = J

}
.

Elements of this group can be describe by the following relation:α β

γ δ

 ∈ Sp2k(Z/(pnZ))⇐⇒

α β

γ δ

 αT −βT

−γT δT

 = I2k.

In particular if σ ∈Mk(Z/(pnZ)) is a symmetric matrix thenIk σ

0 Ik

 ∈ Sp2k(Z/(pnZ)).

It is known that the reduction map

Sp2k(Z) −→ Sp2k(Z/(pnZ)),

is a surjective homomorphism (See [54], Theorem VII.21). Moreover Sp2k(Z) is

generated by (See [57] Section §5, Proposition 2, or [5], Chapter III)Ik σ

0 Ik

 , J =

 0 Ik

−Ik 0

 ,
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where σ is a symmetric matrix. ButIk Ik

0 Ik

 Ik 0

−Ik Ik

Ik Ik

0 Ik

 =

 0 Ik

−Ik 0

 .

From these we have the following lemma.

Lemma 3.3.4. The following matrices are a generating set for Sp2k(Z), and

hence a generating set for Sp2k(Z/(pnZ)),Ik σ1

0 Ik

 ,

Ik 0

σ2 Ik

 ,

where σTi = σi for i = 1, 2.

Notice that for a symmetric matrix σ ∈Mk(Z/(pnZ)), we have 0 Ik

−Ik 0

Ik σ

0 Ik

 0 −Ik
Ik 0

 =

 Ik 0

−σ Ik

 .

Therefore Ik σ

0 Ik

 ∼Sp2k(Z/(pnZ))

 Ik 0

−σ Ik

 ,

where ∼Sp2k(Z/(pnZ)) means that they are conjugate in Sp2k(Z/(pnZ)). Therefore

if ρ is a representation of Sp2k(Z/(pnZ)), such that for all symmetric matrices

σ ∈MkZ/(pnZ), we have

ρ

Ik σ

0 Ik

 = I,

then ρ is trivial.

Similar to SLk(Z/(pnZ)), we are looking for an abelian group in Sp2k(Z/(pnZ)),

so that a big subgroup of Sp2k(Z/(pnZ)) acts on it. Take the following subgroup.

LSp :=


Ik σ

0 Ik

 : σ = σT

 ⊆ Sp2k(Z/(pnZ)).

Also define

H :=


α 0

0 α̃

 : α ∈ GLk(Z/(pnZ))

 ⊆ Sp2k(Z/(pnZ)),
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where α̃ := (αT )−1. We remark that H acts by conjugation on LSp.α 0

0 α̃

Ik σ

0 Ik

α 0

0 α̃

−1

=

Ik ασαT

0 Ik

 . (3.3.8)

One can think of the action of H on LSp, as the action of GLk(Z/(pnZ)) on

quadratic forms. More precisely, for a symmetric matrix σ we have the following

quadratic form

qσ(x) := xσxT ,

where x is a row matrix. Then the action of H on LSp would be the same as the

action of α on qσ. This interpretation will significantly simplify our calculations.

Indeed, if for all row vectors we have qσ(x) = 0 then we can conclude σ = 0, since

σ is a symmetric matrix. Therefore to compute the action of H on LSp, we need

to compute qσ(xα). These computations will appear very soon. In the sequel we

will use the following notations. For 1 ≤ i, j ≤ k, Eij will be denoted for the

symmetric k by k matrix such that the (i, j) and (j, i) entries are 1 and all others

are zero. We have

Lemma 3.3.5.

qEij =

2xixj i 6= j

x2
i i = j

. (3.3.9)

Denote

Gij :=

Ik Eij

0 Ik

 ∈ LSp.

We remark that if i1 6= j1 and i2 6= j2 then the quadratic form 2xi1xj1 is equivalent

to 2xi2xj2 . This in particular says that

Gi1j1 ∼H Gi2j2 ,

where ∼H here means that those two matrices are conjugate under the action of

H on LSp. Moreover since the quadratic form x2
i is equivalent to x2

j then

Gii ∼H Gjj.

Based on what we mentioned above, we have the following
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Lemma 3.3.6. Let ρ be a representation of Sp2k(Z/(pnZ)), so that

ρ(G11) = ρ(G12) = I, (3.3.10)

then ρ is a trivial representation.

Also for ai ∈ Z/(pnZ) and t ∈ (Z/(pnZ))∗, define

α = αt,a1,...,ak−1
:=



t a1 a2 · · · ak−1

0 1 0 0

0 0 1 0
...

. . .
...

0 0 0 · · · 1


∈ GLk(Z/(pnZ)). (3.3.11)

Hence

α :=

α 0

0 α̃

 ∈ H.
For a row vector x = (x1, · · · , xk) ∈ (Z/(pnZ))k, we have

xα = (tx1, a1x1 + x2, a2x1 + x3, · · · , ak−1x1 + xk). (3.3.12)

So for 1 ≤ i, j ≤ k,

qEij(xα) = x
(
αEijα

T
)
xT . (3.3.13)

From (3.3.12) and Lemma 3.3.5 we have

qE11(xα) = t2x2
1

qE1j
(xα) = 2taj−1x

2
1 + 2tx1xj (2 ≤ j ≤ k)

qE22(xα) = a2
1x

2
1 + 2a1x1x2 + x2

2

qE2j
(xα) = 2a1aj−1x

2
1 + 2a1x1xj + 2aj−1x1x2 + 2x2xj (3 ≤ j ≤ k).

(3.3.14)

From (3.3.8,3.3.13) and (3.3.14), we have the following identities which are

crucial in our proof.
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Lemma 3.3.7.

αG11α
−1 =

α 0

0 α̃

G11

α 0

0 α̃

−1

= Gt2

11

αG1jα
−1 =

α 0

0 α̃

G1j

α 0

0 α̃

−1

= G
2taj−1

11 Gt
1j (2 ≤ j ≤ k)

αG22α
−1 =

α 0

0 α̃

G22

α 0

0 α̃

−1

= Ga12

11 G
a1
12G22

αG2jα
−1 =

α 0

0 α̃

G2j

α 0

0 α̃

−1

= G
2a1aj−1

11 Ga1
1jG

aj−1

12 G2j (3 ≤ j ≤ k).

(3.3.15)

Now let

ρ : Sp2k(Z/(pnZ)) −→ GLd(C),

be a non-trivial representation. Set SSp := ρ(LSp). Proof of the following propo-

sition is similar to Proposition 3.3.2.

Proposition 3.3.3. Let r be one of the roots in the decomposition in Proposi-

tion 3.3.1 and let h ∈ H. For any s = ρ(l) ∈ SSp, define

rh(s) := r(ρ(hlh−1)).

Then rh is also a root for SSp, and V (rh) = ρ(h−1)V (r).

Similar to Lemma 3.3.2 we have

Lemma 3.3.8. When ρ is a faithful representation, then there exists a root r for

SSp, such that r(ρ(G11)) = ζ, where ζ is a primitive pnth root of unity.

We are ready to prove Theorem 1.1.2 for Sp2k(Z/(pnZ)).

Proof of Theorem 1.1.2 for mf (Sp2k(Z/(pnZ))): Let

ρ : Sp2k(Z/(pnZ)) −→ GLd(C), (3.3.16)

be a faithful representation. Pick a root r for SSp such that r(ρ(G11)) = ζmpn , where

gcd(m, p) = 1. This root exists by Lemma 3.3.8. For this root let r(ρ(G1j)) = ζ
mj
pn
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for 2 ≤ j ≤ k. With the same notation as in Proposition 3.3.3 and (3.3.15) we

have

rα(ρ(G11)) = ζt
2m
pn

rα(ρ(G1j)) = ζ
2aj−1tm+tmj
pn , (2 ≤ j ≤ k).

(3.3.17)

Notice that the number of different squares in (Z/(pnZ))∗ is ϕ(pn)/2. So by

varying t, a1, . . . , ak−1, we will obtain at least

ϕ(pn)p(k−1)n

2
,

different roots. �

Proof of Theorem 1.1.2 for m (Sp2k(Z/(pnZ))): Now let

ρ : Sp2k(Z/(pnZ)) −→ GLd(C), (3.3.18)

be a non-trivial representation. We mentioned earlier that when ρ is not a trivial

representation then either ρ(G11) 6= I or ρ(G12) 6= I. So we split the proof into

two cases.

Case I: Let ρ(G11) 6= I. Then we will show that there is a root r for SSp

such that

r(ρ(G11)) = ζmpn ,

where m 6= 0 in Z/(pnZ). Suppose that there is no such root. Let denote all the

roots of SSp by r1, r2, · · · , rt, and assume that for any i, we have ri(ρ(G11)) = 1.

By Proposition 3.3.1 we have

Cd = V (r1)⊕ · · · ⊕ V (rt).

For an arbitrary element v ∈ Cd write

v = v1 + · · ·+ vt,

where vi ∈ V (ri). Therefore

(ρ(G11))v = r1(ρ(G11))v1 + · · ·+ rt(ρ(G11))vt

= v1 + · · ·+ vt

= v.

(3.3.19)
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So ρ(G11) = I which is a contradiction. Hence there is a root r for SSp such that

r(ρ(G11)) = ζmpn , where m 6= 0 in Z/(pnZ). For this root let r(ρ(G1i)) = ζmipn for

2 ≤ i ≤ k. So (3.3.15) implies that

rα(ρ(G11)) = ζt
2m
pn

rα(ρ(G1j)) = ζ
2aj−1tm+tmj
pn , (2 ≤ j ≤ k).

(3.3.20)

So by varying t, a1, . . . , ak−1, we will obtain at least 1
2
(p− 1)p(k−1) different roots.

Case II: Let ρ(G11) = I. In this case then we have ρ(G12) 6= I. Pick a root

r for SSp such that r(ρ(G12)) = ζmpn , where m 6= 0 in Z/(pnZ). Assume that for

this root r(ρ(G2j)) = ζmipn for 2 ≤ j ≤ k. Then by (3.3.15) we have

rα(ρ(G12)) = r(ρ(G2ta1
11 ))r(ρ(Gt

12)) = r(ρ(Gt
12)) = ζtmpn .

Also

rα(ρ(G22)) = r(ρ(G
a21
11))r(ρ(Ga1

12))r(ρ(G22)) = r(ρ(Ga1
12))r(ρ(G22)) = ζa1mpn r(ρ(G22)).

Moreover for 3 ≤ j ≤ k we have

rα(ρ(G2j)) = r(ρ(G
2a1aj−1

11 ))r(ρ(G
aj−1

12 ))r(ρ(Ga1
1j ))r(ρ(G2j))

= ζ
aj−1m
pn r(ρ(Ga1

1j ))r(ρ(G2j)).
(3.3.21)

So by varying t, a1, . . . , ak−1, we will obtain at least (p− 1)p(k−1) different roots.

Therefore the minimal degree of a non-trivial representation is 1
2
(p−1)p(k−1). �

From these theorem we can prove Theorem 1.1.3.

Proof of Theorem 1.1.3. Using Theorem 1.1.2 along with Corollary 3.2.1,

we can establish Theorem 1.1.3. �

3.4. Hilbert-Schmidt operators and product-free sets

Our aim in this section is to give a proof for Theorem 1.1.4 and Corollary 1.1.6.

We use several standard facts from functional analysis, however we are not trying

to give a complete proof of these facts. The reader can consult with [59] for

details. Let G be a compact, second countable, Hausdorff topological group with
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a normalized Haar measure µ. For f1, f2 ∈ L2(G), the convolution f1∗f2 ∈ L2(G)

is defined by

(f1 ∗ f2)(x) :=

∫
G

f1(xy−1)f2(y) dµ(y).

For any given f1, f2 ∈ L2(G), from the Cauchy-Schwartz inequality we have

‖f1 ∗ f2‖2 ≤ ‖f1‖2‖f2‖2. (3.4.1)

Our objective in this section is to prove a stronger form of this inequality. For fi-

nite groups, Gowers [31] applies the singular value decomposition to the adjacency

matrix attached to a finite bipartite graph, to obtain a stronger inequality. In

order to generalize this to all compact groups, we will invoke Hilbert-Schmidt in-

tegral operator along with the singular value decomposition. Assume f1 ∈ L2
0(G).

To prove Theorem 1.1.4 note that by subtracting the constant c =
∫
G
f2 dµ from

f2 and noticing that f1 ∗ c = 0, without loss of generality, we can assume that

f2 ∈ L2
0(G). We consider the following kernel

K(x, y) := f1(xy−1).

Since G is a compact group, then we have K(x, y) ∈ L2(G×G). For this kernel,

we define the following integral operator

ΦK : L2(G) −→ L2(G)

h 7−→ ΦK(h),
(3.4.2)

where

ΦK(h)(x) :=

∫
G

K(x, y)h(y)dµ(y) ∈ L2(G). (3.4.3)

It is clear that ΦK(h)(x) = (f1 ∗ h)(x). In order to prove Theorem 1.1.4, we need

to show that

‖ΦK|
L2
0(G)
‖2
op ≤

1

m(G)
‖f1‖2

2. (3.4.4)

We first remark that ΦK is a compact operator. Indeed, for K ∈ L2(G × G),

consider the operator ΦK , as it defined in (3.4.3), which is called an integral

operator with the kernel K. We have,



85

Lemma 3.4.1. The integral operator ΦK : L2(G) −→ L2(G) is a Hilbert-Schmidt

operator and hence is compact. The norm of ΦK is given by,

‖ΦK‖HS = ‖K‖L2(G×G). (3.4.5)

One can easily see that

Φ∗K(h)(y) =

∫
G

K(x, y)h(x)dµ(x).

Since G is not commutative, ΦK is not necessarily a self adjoint operator.

Lemma 3.4.2 (singular value decomposition). Let H be a separable Hilbert space

and T ∈ B(H) be a compact operator (not necessary self adjoint). Then there

exists two orthonormal sets {en} and {e′n} in H such that

T (ei) = λie
′
i, T ∗(e′i) = λiei, i = 1, 2, . . .

where

λ1 ≥ λ2 ≥ · · · ≥ 0,

and for any x ∈ H

T (x) =
∑
i≥1

λi〈x, ei〉e′i. (3.4.6)

Moreover, by (3.4.6), we have ‖T‖op = λ1.

Using these lemmas we will now prove:

Proof of Theorem 1.1.4: Consider the restriction operator

Φ1 := ΦK|
L2
0(G)

: L2
0(G) −→ L2

0(G),

defined by (3.4.2) and apply the singular value decomposition to obtain orthonor-

mal bases {en} and {e′n} in L2
0(G) such that

Φ1(ei) = λie
′
i,

where

λ1 ≥ λ2 ≥ · · · ≥ 0.

For Φ∗1Φ1, which is a self-adjoint Hilbert-Schmidt operator, let V1 be the eigenspace

of Φ∗1Φ1 correspondence to λ2
1. Since Φ∗1Φ1 is a compact operator then

dimV1 <∞.
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Let us remark that from the singular value decomposition we have

‖Φ1‖op = ‖ΦK|
L2
0(G)
‖op = λ1.

So we deduce

‖Φ1‖2
op dimV1 = λ2

1 dim(V1) ≤
∞∑
i=1

λ2
i

≤ ‖Φ∗KΦK‖2
HS

≤ ‖ΦK‖2
HS = ‖K‖2

L2(G×G)

=

∫
G

∫
G

|f1(xy−1)|2dµ(y)dµ(x) = ‖f1‖2
2.

We show that dimV1 ≥ m(G), and this would finish the proof. We will construct

an action of G on V1 by defining for every h ∈ V1 and g ∈ G

Tgh(x) := h(xg).

We need to verify that,

Tg(Φ
∗
1Φ1(h)) = Φ∗1Φ1(Tgh). (3.4.7)

Since G is compact and hence unimodular we have,

Φ1(Tgh)(x) =

∫
G

f1(xy−1)h(yg)dµ(y)

=

∫
G

f1(x(zg−1)−1)h(z)dµ(z)

=

∫
G

f1(xgz−1)h(z)dµ(z)

= Tg(Φ1(h))(x).

By acting Φ∗1 from the left we obtain (3.4.7). Since V1 is a subspace of L2
0(G), it

does not contain the constant function, and hence this linear action is non-trivial.

This induces a non-trivial representation of G in the unitary group U(V1), thus

dimV1 ≥ m(G). �

Proof of Corollary 1.1.6. Apply the inequality to f1 = 1A and f2 = 1B −

µ(B). �

Now we can proof Theorems 1.1.5.
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Proof of Theorem 1.1.5: Let

S := {y ∈ G : (1A ∗ 1B)(y) = 0}.

Thus

µ(S)1/2µ(A)µ(B) =

(∫
S

|(1A ∗ 1B)(y)− µ(A)µ(B)|2 dµ(y)

)1/2

≤
(∫

G

|(1A ∗ 1B)(y)− µ(A)µ(B)|2 dµ(y)

)1/2

= ‖1A ∗ 1B − µ(A)µ(B)‖2.

But via Corollary 1.1.6 we can deduce that

µ(S)1/2µ(A)µ(B) ≤

√
µ(A)µ(B)

m(G)
,

therefore

µ(S) ≤ 1

m(G)µ(A)µ(B)
.

This implies that µ(C \ S) > 0, since otherwise we get

µ(C)µ(A)µ(B) ≤ 1

m(G)
,

which is a contradiction. Hence there exists a set of positive measure of y ∈ C so

that 1A ∗ 1B(y) 6= 0, which means that AB ∩ C has positive measure.

For the second statement let define

Σ := {(a, b, c) ∈ A×B × C : ab = c}.

Notice that

µ(Σ) = 〈1A ∗ 1B, 1C〉 = 〈1A ∗ (1B − µ(B)), 1C〉+ µ(A)µ(B)µ(C). (3.4.8)

By Cauchy-Schwartz inequality we have

〈1A ∗ (1B − µ(B)), 1C〉2 ≤ ‖1A ∗ (1B − µ(B))‖2
2‖1C‖2

2

= ‖1A ∗ 1B − µ(A)µ(B)‖2
2µ(C)

≤ µ(A)µ(B)µ(C)

m(G)
.

Thus if
µ(A)µ(B)µ(C)

m(G)
≤ η2µ(A)2µ(B)2µ(C)2,
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which is fulfilled by our assumption, we deduce that

|〈1A ∗ (1B − µ(B)), 1C〉| ≤ ηµ(A)µ(B)µ(C),

thus

µ(Σ) ≥ µ(A)µ(B)µ(C)− ηµ(A)µ(B)µ(C) = (1− η)µ(A)µ(B)µ(C)

�

Remark 3.4.1. One can also establish another inequality. For f1 = 1A and

f2 = 1B − µ(B), notice that

‖f2‖2
2 = µ(B)(1− µ(B)).

Thus by Theorem 1.1.4 we have

µ(G− AB)1/2µ(A)µ(B) ≤

√
1

m(G)
µ(A)1/2 (µ(B)(1− µ(B)))1/2 ,

therefore

1− 1− µ(B)

m(G)µ(A)µ(B)
≤ µ(AB).

3.5. Automorphisms of regular trees

The goal of this section is to obtain lower and upper bounds on the product-

free measure of the group of positive automorphisms of a rooted regular tree. Let

us recall the definition of the group of A+
k+1 that appeared in the statement of

Theorem 1.1.6.

Definition 3.5.1. An automorphism x ∈ Ak+1 is called positive if σj(x) is an

even permutation for all j ≥ 1. We will denote the group of all positive automor-

phisms by A+
k+1.

First, notice that A+
k+1 is a closed subgroup of Ak+1 and hence a profinite

group. In fact, the group can also be represented by

A+
k+1 = lim←−A

+
k+1/C

+
j , (3.5.1)

where

C+
j :=

{
x ∈ A+

k+1 : σj(x) = id
}
.

In what follows, let Altk+1 ≤ Σk+1 denote the alternating group on k+1 symbols.
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To prove Theorem 1.1.6, we first prove a lemma. Let us define the following

set.

L :=
{

(v1, . . . , vk+1) ∈ Fk+1
2 : v1 + · · ·+ vk+1 = 0

}
. (3.5.2)

We have

Lemma 3.5.1. Let k ≥ 6 be an integer and let L be the group defined in (3.5.2).

Moreover assume that

ρ : L −→ GLd(C),

is a non-trivial representation of L, such that

ρ(v1, . . . , vk+1) = ρ(vi1 , . . . , vik+1
),

for any even permutation (i1, . . . , ik+1) of the set {1, . . . , k + 1}. Then d ≥ k − ε

where ε = 0 if k is even and ε = 1 when k is odd.

Proof. We will show that ρ is faithful when k + 1 is odd and | ker(ρ)| ≤ 2

when k + 1 is even. For 0 6= v ∈ L, define

I(v) := {1 ≤ i ≤ k + 1 : vi = 1}.

First we show that if for some 0 6= v ∈ ker(ρ) we have |I(v)| = 2, then

the representation ρ is a trivial. To show this note that for every w ∈ L with

|I(w)| = 2, we can find σ ∈ Altk+1 such that σ(v) = w. Therefore by the property

of ρ we can deduce that ρ(w) = 0. This implies that ker(ρ) = L, hence ρ should

be a trivial representation.

Now assume that ρ is not a faithful representation and suppose 0 6= v ∈ ker(ρ)

is chosen such that |I(v)| is minimal. Since ρ is non-trivial then |I(v)| = 2j > 2.

Without loss of generality assume that v = (1, 1, . . . , 1, 0, . . . , 0) where the first

2j entries are equal to 1 and the rest are zero.

If k+1 is odd then we can consider the 3-cycle σ = (1, 2, 2j+1) ∈ Altk+1. Now

it is easy to see that σ · v− v has 1 in only two positions, hence σ(v)− v ∈ ker(ρ),

with |I(σ(v) − v)| = 2. But this, as was shown above, implies that ρ is a trivial

representation. So for odd k + 1 we deduce that ρ is a faithful representation.

A similar argument can be made when k + 1 is even and | ker(ρ)| > 2. This

show that ρ is faithful when k + 1 is odd and | ker(ρ)| ≤ 2 when k + 1 is even.
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In either case ρ(L) is isomorphic to Fk−ε2 . The set ρ(L) can be simultaneously

diagonalized with diagonal entries being ±1. Now it is clear that d ≥ k−ε, where

ε = 0 if k is even and ε = 1 when k is odd. �

We will need the following fact from the representation theory of finite groups:

Theorem 3.5.1 (See [29] Exercise 5.5). For k ≥ 6, the minimum dimension of

non-trivial representations of Altk is k − 1.

From these lemmas, we will prove Theorem 1.1.6.

Proof of Theorem 1.1.6: For the lower bound, note that

σ1 : A+
k+1 −→ Altk+1,

is surjective. Let H be the subgroup of Altk+1 consisting of those permutations

that fix k + 1. H is clearly isomorphic to Altk. Now, apply Lemma 1.1.3 to

the subgroup σ−1
1 (H) to obtain an open subgroup of index k + 1 in A+

k+1. This

establishes the lower bound.

For the upper bound, we need to show that for the group A+
k+1, the minimal

degree of all non-trivial continuous representations is k − 1. By (3.5.1) then we

should prove that Fj := A+
k+1/C

+
j does not have any non-trivial representation of

dimension less than k − 1.

For j = 1, we will get F1 = Altk+1, and then by Theorem 3.5.1, for k ≥ 5,

all the non-trivial representations have dimension greater than or equal to k. For

the sake of clarity and notational simplicity, we will present the argument for

j = 2. The argument readily extends to an arbitrary j ≥ 2. Suppose ρ to be a

non-trivial representation of F2. It is easy to see that

F2
∼= Altk+1 n (Σk × · · · × Σk)

+︸ ︷︷ ︸
k+1

,

where

(Σk × · · · × Σk)
+︸ ︷︷ ︸

k+1

:=

(σ1, . . . , σk+1) ∈ (Σk × · · · × Σk)︸ ︷︷ ︸
k+1

:
k+1∏
i=1

sgn(σi) = 1

 .

and Altk+1 acts by permuting the factors.
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If the restriction of ρ to Altk+1 is non-trivial then we are done by Theo-

rem 3.5.1. Suppose that the restriction of ρ to Altk+1 is trivial. Clearly

Altk × · · · × Altk︸ ︷︷ ︸
k+1

� (Σk × · · · × Σk)
+︸ ︷︷ ︸

k+1

,

Again, we can assume that the restriction of ρ to each one of the factors is trivial,

since otherwise we can apply Theorem 3.5.1 to obtain the bound k − 1.

Therefore let assume that ρ is trivial over Altk × · · · × Altk︸ ︷︷ ︸
k+1

. So ρ factors

through the quotient

k+1︷ ︸︸ ︷
(Σk × Σk × · · · × Σk)

+ / (Altk × Altk × · · · × Altk)︸ ︷︷ ︸
k+1

.

For (σ1, σ2, . . . , σk, σk+1) ∈
k+1︷ ︸︸ ︷

(Σk × · · · × Σk)
+, we recall that since the restriction

of ρ to Altk+1 is trivial we have

ρ(σ1, σ2, . . . , σk, σk+1) = ρ(σi1 , σi2 , . . . , σik , σik+1
),

for any even permutation (i1, i2, . . . , ik, ik+1) of the set {1, . . . , k, k + 1}. Notice

that

k+1︷ ︸︸ ︷
(Σk × · · · × Σk)

+

Altk × · · · × Altk︸ ︷︷ ︸
k+1

∼= L, (3.5.3)

where L was defined in (3.5.2). Therefore we obtain a non-trivial representation

of L that satisfies in the conditions of Lemma 3.5.1, so we have

dim ρ ≥ k − ε ≥ k − 1.

For j ≥ 3, the group Fj is isomorphic to an iterated semi-direct product of

alternating groups as above and a similar argument establishes the lower bound

on the degree of nontrivial representation. Applying Theorem 1.1.5 completes

the proof. �



92

3.6. Product-free measure of the ring of p-adic integers

It is possible to compute the exact value of product-free measure for connected

abelian Lie groups. Let Tk denote the k-dimensional torus. Then,

Theorem 3.6.1. For any k ≥ 1 we have pf(Tk) = 1/3.

Proof: The proof is similar to the proof given in [47] where only open sets A

are considered. We will show that in fact there is no need to restrict to consider

just the open sets. First we show that pf(Tk) ≤ 1/3. Suppose that A is a product-

free subset with µ(A) = 1/3 + β for some β > 0. We will show that there is an

open product-free set U such that

µ(U) ≥ 1/3 + β/2.

We will write this part of the proof, which is valid for any compact group, using

the multiplicative notation. First choose a compact set K ⊆ A with µ(K) ≥ 1/3+

β/2. Clearly K is a product-free set and since K is compact d(K,K2) = ε > 0,

where we use d as shorthand for dTk . Let Uδ be the δ-neighborhood of K, i.e., the

set of points u ∈ Tk such that d(u, k) < δ for some k ∈ K. We will show that for

δ small enough Uδ will be a product-free set as well. Let u1, u2, u3 ∈ Uδ. So there

exist k1, k2, k3 ∈ K such that d(ui, ki) < δ for i = 1, 2, 3. Using the invariance of

d we have

d(u2u3, k2k3) ≤ d(u2u3, k2u3) + d(k2u3, k2k3)

= d(u2, k2) + d(u3, k3) < 2δ.

From here we have

d(u1, u2u3) ≥ d(k1, k2k3)− d(k1, u1)− d(k2k3, u2u3) ≥ ε− 3δ.

So if we choose δ = ε/4 we will have d(u1, u2u3) > ε/4 which shows that

Uε/4 ∩ U2
ε/4 = ∅.

Notice that K ⊆ Uε/4, so

µ(Uε/4) ≥ 1/3 + β/2.
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U := Uε/4 is the open set that we were looking for. Now let us assume that A is

an open product-free subset of

Tk = T1 × · · · × T1,

with µ(A) = 1/3 + β. Again, by possibly exchanging β with β/2, we can assume

that A is a finite disjoint unions of boxes of the form: I1 × I2 · · · × Ik where

Ij is an interval in the j-th copy of T1. Choose a large prime number p. Set

ζ = exp(2πi/p) and let

Gp
∼= Z/(pZ)× · · · × Z/(pZ),

be the elementary abelian p-group in Tk consisting of all elements of order p.

Note that Gp contains pk elements. Consider a box I := I1 × I2 · · · × Ik and let

hj be the length of Ij. It is easy to see that

|Gp ∩ I| ≥ (ph1 − 1) · · · (phk − 1) = pkµ(I) +O(pk−1).

By adding up over all boxes we will get

|Gp ∩ A| ≥ pkµ(A) +O(pk−1).

Since Gp is a finite p-group, by Green-Ruzsa theorem (see Theorem 3.6.2) we

have pf(Gp) ≤ 1/3 + 1/(3p). Since A is product-free we must have

(1/3 + β/2) +O(1/p) ≤ 1/3 + 1/(3p),

which as p→∞ gives a contradiction. Hence pf(Tk) ≤ 1/3. Set

B := {e2πiθ : 1/3 ≤ θ ≤ 2/3},

then notice that

B × T× · · · × T,

is a product-free set in Tk of density 1/3. So we have pf(Tk) = 1/3. �

For finite abelian groups, the exact value of pf(G) is explicitly given by:

Theorem 3.6.2. (Green-Ruzsa, cf. [39]) Suppose G is a finite abelian group of

size n.

(1) If n is divisible by a prime p ≡ 2 (mod 3), then pf(G) = 1/3 + 1/(3p)

where p is the smallest such p.
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(2) Otherwise, if 3|n, then pf(G) = 1/3.

(3) Otherwise, pf(G) = 1/3 − 1/(3m) where m is the largest order of any

element of G.

Using a result of Green and Ruzsa [39] we will also compute the product-free

measure of the ring of p-adic integers.

Theorem 3.6.3. The product-free measure of the additive groups of p-adic inte-

gers Zp and power series Fp[[t]] are respectively given by

pf(Zp) =

1/3 + 1/(3p) if p ≡ 2 mod 3

1/3 otherwise
.

pf(Fp[[t]]) =


1/3 + 1/(3p) if p ≡ 2 mod 3

1/3 if p = 3

1/3− 1/(3p) if p ≡ 1 mod 3

.

(3.6.1)

Proof of Theorem 3.6.3: First we will give the proof for Zp. Let

φn : Zp −→ Z/(pnZ),

be reduction modulo pn for n ≥ 1. For p ≡ 2 (mod 3), it is easy to verify that,

if S ⊆ Z/(pZ) is a product-free set of density 1/3 + 1/(3p), provided by Green-

Ruzsa theorem, then φ−1
1 (S) ⊆ Zp will be a set of the same density. Hence for

p ≡ 2 (mod 3) we have

pf(Zp) ≥ 1/3 + 1/(3p), p ≡ 2 (mod 3).

For p ≡ 1 (mod 3), consider the subset of Z/(pnZ):

Sn =

{⌊
pn + 1

3

⌋
, . . . , 2

⌊
pn + 1

3

⌋
− 1

}
⊆ Z/(pnZ).

By Lemma 1.1.3 we have

pf(Zp) ≥ sup
n≥1

|Sn|
pn

= sup
n≥1

⌊
pn+1

3

⌋
− 1

pn
=

1

3
.

Hence we have

pf(Zp) ≥ 1/3, p ≡ 1 (mod 3).
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For p = 3, by Green-Ruzsa theorem, we have a product-free set of density 1/3, so

pf(Z3) ≥ 1/3.

On the other hand, suppose A is a measurable product-free subset of Zp ( or

Fp[[t]]) with µ(A) larger than the function given on the right side of (3.6.1), that

we denote it by f(p). Choose a compact subset A1 ⊆ A such that µ(A1) =

f(p)(1 + ε) for some ε > 0. By (3.1.1) we have

lim
n→∞

φ(A1)

pn
= f(p)(1 + ε).

So there exists an integer m such that for all n ≥ m, the set φn(A1) ⊆ Z/(pnZ)

has density larger that f(p)(1 + ε/2). By the theorem of Green and Ruzsa, this

implies that there exist xn, yn, zn ∈ A1 such that φn(xn + yn − zn) = 0. Since

A1 is compact, after passing to a subsequence, there exist x, y, z ∈ A1 such that

xn → x, yn → y, zn → z. Now, since xn + yn − zn → 0, we have x+ y = z, which

is a contradiction.

The proof for Fp[[t]] is similar. The only difference is that all of the finite

quotients of Fp[[t]] are elementary p-groups. Hence when p ≡ 1 (mod 3), it is the

third condition in Green-Ruza theorem that applies. �
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Part II: Algebraic number theory and

monogenic fields





Chapter 4

PRELIMINARIES FOR CHAPTER 5

4.1. Average degree of splitting fields

In this section we will give an example, that illustrates how the Chebotarev

density theorem appears in some arithmetic questions.

For σ ∈ Sn, let ord(σ) be the order of σ. The distribution of ord(σ) was

studied by Erdös and Turán in a beautiful series of papers on “statistical group

theory” [22, 23, 24, 25, 27, 26, 28]. Define the average order of elements of Sn to

be

µn :=
1

n!

∑
σ∈Sn

ord(σ). (4.1.1)

Solving a conjecture of Erdös and Turán, Goh and Schmutz [30] proved that

log(µn) ∼ C

√
n

log n
n −→∞, (4.1.2)

where

C = 2

√(
2

∫ ∞
0

log log

(
e

1− et

)
dt

)
. (4.1.3)

Stong in his paper [67] strengthens this theorem by providing an error term. He

proved

log(µn) = C

√
n

log n
+O

(√
n log log n

log n

)
. (4.1.4)

In this section we consider the following problem. Let f(x) ∈ Z[x] be a monic

polynomial of degree n with discriminant D. For a prime number p, coprime to

D, let us denote Xp(f) to be the degree of the splitting field of f(x) (mod p).
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We are interested in the following quantity

µn(f) := lim
t→∞

 1

π(t)

∑
p≤t

gcd(p,D)=1

Xp(f)

 . (4.1.5)

A motivation to study this quantity is a nice result of Dixon and Panario [20],

where they fix a prime p and consider the distribution of the degree of the splitting

field of certain family of polynomials in Fp[x]. Let the Galois group of f(x) be

the symmetric group Sn. We will show that the degree of the splitting field of

f(x) (mod p) is the same as the order the Frobenius element in the Galois group.

Then by using Stong’s theorem and Chebotarev density theorem we will prove

Theorem 1.2.3.

4.1.1. Dedekind’s lemma

In this section we recall a fundamental lemma due to Dedekind. This lemma

translates arithmetic properties of a polynomial into group theoretical properties

of the Frobenius element in the Galois group of a polynomial.

Let f(x) be a polynomial with coefficients in a field F . The discriminant of

f(x) is defined to be D := Df = ∆2
f where

∆f =
∏

1≤i<j≤n

(αi − αj),

where α1, . . . , αn are the roots of f(x) in some splitting field. The discriminant

essentially tells us when we have a repeated root.

Now let f(x) ∈ Z[x] be a monic polynomial of degree n with integer coefficients

and let E = Ef = Q(α1, α2, . . . , αn) be its splitting field over Q. Let Gf =

Gal(E/Q) be the Galois group of f(x). Suppose that p is a prime such that p

does not divide the discriminant D of f(x), in particular, we suppose that the

roots of f are simple. Let f̄(x) be the reduction of f(x) modulo p. Then the

roots of f̄(x) are also simple. Let A = Af = Z[α1, . . . , αn] and let p be a prime

ideal of A such that p ∩ Z = (p). Such an ideal exists since A is integral over Z.

For such a prime we can define a unique element in the Galois group of f(x),

which is called the Frobenius automorphism.
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Lemma 4.1.1 (Dedekind). Let f(x) be a monic irreducible polynomial with dis-

criminant D, and assume p does not divide D, where p is a prime. Let E be the

splitting field of f(x). Then there exists an element σp ∈ Gal(E/Q), unique up

to conjugation, such that

σp(a) ≡ ap mod p,

for all a ∈ A. Moreover if f̄(x) = φ1(x) · · ·φg(x), with φi(x) irreducible over Fp
of degree ni, then σp, when viewed as a permutation of the roots of f(x), has a

cycle decomposition σ1 · · ·σg with σi of length ni.

We will follow closely John Labute’s explanation of Tate’s proof.

Proof (Tate): The field Ef̄ = A/p = Fp[ᾱ1, ᾱ2, . . . , ᾱn] is a splitting field for

f̄(x), where ᾱ is the residue class of α modulo p. The group Gf̄ = Gal(Ef̄/Fp) is

cyclic generated by the Frobp. Set

Dp = {σ ∈ Gf |σ(p) = p}.

This is a subgroup of Gf called the decomposition group at p. Every automor-

phism σ ∈ Dp induces an automorphism σ̄ ∈ Gf̄ , given by σ̄(ᾱ) = σ(α). The

homomorphism

ϕ : Dp −→ Gf̄

σ 7−→ σ̄,
(4.1.6)

is injective. We now show that it is surjective by showing that the fixed field of

ϕ(Dp) has Fp as its fixed field.

Let a ∈ A. Then, by the Chinese Remainder Theorem, there is an element

α ∈ A such that α ≡ a (mod p) and α ≡ 0 (mod σ−1(p)) for all σ ∈ Gf \ Dp.

Then

g(x) =
∏
σ∈Gf

(x− σ(α)) ∈ Z[x].

Notice that

ḡ(x) = xm
∏
σ∈Dp

(x− σ̄(ā)) ∈ Fp[x],

for some m. It follows that the conjugates of ā are all of the form σ̄(ā) which

implies that the fixed field of ϕ(Dp) is Fp .
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Therefore there is a unique element in Gf , denoted by σp, such that

σp(a) ≡ ap mod p.

�

This lemma will play an important role in our study of the distribution of the

degree of the splitting field of f̄(x). The following lemma is easy to prove.

Lemma 4.1.2. For f(x) ∈ Z[x], let f̄(x) = φ1(x) · · ·φg(x), with φi(x) irreducible

over Fp of degree ni, then

Xp(f) = lcm(n1, . . . , ng). (4.1.7)

By Lemma 4.1.1, the order of σp is also

lcm(n1, . . . , ng).

Therefore we have the following:

Corollary 4.1.1. We have the following identity,

Xp(f) = ord(σp). (4.1.8)

Now we can invoke Chebotarev’s density theorem. If f(x) (mod p) splits into

distinct monic irreducible factors, with n1 linear factors, n2 quadratic factors, etc,

then we say that λ = (n1, n2, . . . ) is the splitting type of f(x) modulo p. For each

splitting type λ we have ∑
j

jnj = n. (4.1.9)

Indeed λ is a partition of n, denoted by λ ` n. We have the same phenomenon

in the symmetric group. The conjugacy classes of Sn correspond to the cycle

structures of permutations; that is, two elements of Sn are conjugate in Sn if and

only if they consist of the same number of disjoint cycles of the same length. For

any permutation σ ∈ Sn, we know that we can write σ as a product of disjoint

cycles. If σ splits into n1 cycle of length one, n2 transposition, etc. Then we say

that λ = (n1, n2, . . . ) is the splitting type of σ. Therefore the conjugacy classes

in Sn correspond to the partitions of n. For any partition λ = (n1, n2, n3, . . . , ng),
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i.e,
∑

j jnj = n, the size of the conjugacy class of the permutation corresponding

to λ is

n!

1n1n1!2n2n2! . . . gngng!
= n!δ(λ) (4.1.10)

where here δ(λ) = (1n1n1!2n2n2! . . . gngng!)
−1. By Dedekind’s Lemma 4.1.1, we

can say that the splitting type of f(x) (mod p) is the same as the splitting type

of σp. Therefore we have the following lemma

Lemma 4.1.3. Assume that Galois group of f(x) is the symmetric group Sn,

where n is the degree of f(x). For any partition λ = (n1, n2, n3, . . . , ng) of n, by

Chebotarev’s density theorem we have

# {p ≤ t : f(x) (mod p) has type λ}
π(t)

∼ δ(λ). (4.1.11)

For a partition λ = (n1, n2, . . . , ng) of n, notice that the order of the element

of Sn corresponding to λ is lcm(n1, n2, . . . , ng), which will be denoted by lcm(λ).

By Lemma 4.1.3 and Corollary 4.1.1 we have the following

Lemma 4.1.4.

µn(f) =
∑
λ`n

δ(λ)lcm(λ). (4.1.12)

Therefore we have

∑
λ`n

δ(λ)lcm(λ) =
1

n!

∑
λ`n

n!δ(λ)lcm(λ)

=
1

n!

∑
σ∈Sn

ord(σ)

= µn,

(4.1.13)

which by (4.1.4) proves Theorem 1.2.3.

4.2. Splitting of prime ideals in Kummer extensions

Consider the polynomial f(x) = xq − 2 where q is an odd prime. Then the

splitting field of f(x) is Kq := Q(ζq,
q
√

2). The following diagram will illustrate
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this number field

Kq := Q(ζq,
q
√

2)

Q(ζq)

q−1

Q( q
√

2)

q

Q

In this diagram Q(ζq) is a Galois extension over Q, hence N := Gal(Kq/Q(ζq)) is

a normal subgroup of G := Gal(Kq/Q). Also H := Gal(Kq/Q( q
√

2)) is a subgroup

of G. Let us recall the definition of the semidirect product.

Definition 4.2.1. Let N and H be groups and let ϕ be a homomorphism from H

into Aut(N). Let denote · the (left) action of H on N determined by ϕ. Let G

be the set of ordered pairs (n, h) with n ∈ N and h ∈ H and define the following

multiplication on G:

(n1, h1)(n2, h2) := (n1h1 · n2, h1h2).

With this operation G is a group, called the semidirect product of N and H, and

denoted by N oϕ H.

Therefore G ∼= N o H. Moreover we have N ∼= (Z/(qZ)) = Fq and H ∼=

(Z/(qZ))∗ = F∗q = Aut(Fq). In other words

Gal(Kq/Q) ∼= Fq o Aut(Fq).

Notice that the group Fq o Aut(Fq) is isomorphic to Aff(Fq), the group of all

affine maps of Fq. This group has natural matrix representation:

Aff(Fq) ∼=


a b

0 1

 : a ∈ F∗q, b ∈ Fq

 . (4.2.1)
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One can give an explicit isomorphism between the Galois group of f(x) = xq − 2

and Aff(Fq).

Ψ : Gal(Kq/Q) −→


a b

0 1

 : a ∈ F∗q, b ∈ Fq


σ 7−→

a(σ) b(σ)

0 1

 ,

(4.2.2)

where σ(ζq) = ζ
a(σ)
q , and σ( q

√
2) = ζ

b(σ)
q

q
√

2. By this explicit isomorphism we have

Lemma 4.2.1. A prime p splits completely in Kq if and only if p ≡ 1 (mod q)

and 2
p−1
q ≡ 1 (mod p).

There are several ways to show this, but in Chapter 5, we will consider the

following method.

Proof: Let p ≡ 1 (mod q) and 2
p−1
q ≡ 1 (mod p). With these conditions, by

computing the discriminant of f(x) = xq − 2, we can show that p is unramified

in Kq. Let σp be the Artin symbol corresponding to the prime p, then we show

that Ψ(σp) = 1, hence σp = 1. This shows that p splits completely. Since p is

unramified, then by properties of the Artin symbol we have

ζpq = σp(ζq) = ζa(σp)
q =⇒ a(σp) ≡ p (mod q). (4.2.3)

But p ≡ 1 (mod q), so a(σp) = 1. Let p be a prime in Kq above p, then

ζb(σp)
q 21/q = σp(2

1/q) ≡ 2p/q (mod p) =⇒ 21/q
(
ζb(σp)
q − 2(p−1)/q

)
∈ p. (4.2.4)

Notice that p is unramified, so 21/q 6∈ p, hence
(
ζ
b(σp)
q − 2(p−1)/q

)
∈ p. Since

2
p−1
q ≡ 1 (mod p), then

(
ζ
b(σp)
q − 1

)
∈ p. But p is unramified, therefore b(σp) = 0.

Hence Ψ(σp) = 1 so p splits completely.

Conversely, assume that p splits completely. Then σp is a trivial element. So

a(σp) = 1, and b(σp) = 0. But

ζpq = σp(ζq) = ζa(σp)
q = ζq =⇒ p ≡ 1 (mod q), (4.2.5)

and

21/q = ζb(σp)
q 21/q = σp(2

1/q) ≡ 2p/q (mod p) =⇒ 21/q
(
2(p−1)/q − 1

)
∈ p. (4.2.6)
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But 21/q 6∈ p, therefore(
2(p−1)/q − 1

)
∈ p ∩ Z = (p) =⇒ 2(p−1)/q ≡ 1 (mod p). (4.2.7)

�

We would like to emphasize that this method will appear several times in

Chapter 5.



Chapter 5

THE DENSITY OF A FAMILY OF

MONOGENIC NUMBER FIELDS

Author: Mohammad Bardestani.

In this chapter we will prove our theorems which were stated in Section 1.2.1.

5.1. Monogenic fields and Diophantine equations

Generally speaking, we need to solve a Diophantine equation in order to show

a number field is monogenic. It is useful to recall the following well-known state-

ment.

Lemma 5.1.1. Let K be a number field of degree n and α1, . . . , αn ∈ OK be

linearly independent over Q. Set M = Zα1 + · · ·+ Zαn. Then

Disc(M) = (OK :M)2Disc(K).

In particular,

Disc(α) = Ind(α)2Disc(K),

if α ∈ OK and K = Q(α), where Ind(α) = (OK : Z[α]).

Choosing an integral basis for K and writing α with respect to this integral

basis, one can see that Ind(α) is a homogeneous form. In this section, we will

focus on cubic fields.

Let K = Q( 3
√
m), with m ∈ Z being a cube-free number, be a cubic field.

We can assume that m = hk2 with h, k > 0 and hk is square-free. The following

theorem is due to Dedekind [19].
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Theorem 5.1.1 (Dedekind). If K := Q(θ), where θ = 3
√
m, with m as given

above, then

(i) For m2 6≡ 1 (mod 9), we have Disc(K) = −27(hk)2, and the numbers{
1, θ,

θ2

k

}
, (5.1.1)

form an integral basis.

(ii) For m ≡ ±1 (mod 9), we have Disc(K) = −3(hk)2, and the numbers{
1, θ,

k2 ± k2θ + θ2

3k

}
, (5.1.2)

form an integral basis.

Notice that this theorem shows Q( 3
√
p) is monogenic for primes p ≡ ±2,±5

(mod 9) which verifies Theorem 1.2.4 for q = 3. For p ≡ ±1 (mod 9), by invoking

Theorem 5.1.1 we obtain the following integral basis for K = Q( 3
√
p),{

1, θ,
1± θ + θ2

3

}
,

where θ = 3
√
p. Let

α = a+ bθ + c
1± θ + θ2

3
∈ OK ,

and assume α′, α′′ are its conjugates. It is easy to see
α− α′ = (θ − θ′)

((
b± c

3

)
− cθ′′

3

)
α− α′′ = (θ − θ′′)

((
b± c

3

)
− cθ′

3

)
α′ − α′′ = (θ′ − θ′′)

((
b± c

3

)
− cθ

3

) , (5.1.3)

where θ′ and θ′′ are the conjugates of θ. Therefore

Disc(α) = Disc(θ)

((
b± c

3

)3

− p
( c

3

)3
)2

= −33p2

((
b± c

3

)3

− p
( c

3

)3
)2

= −3p2

(
3b3 ± 3b2c+ bc2 +

±1− p
9

c3

)2

,

thus

Ind(α) = |3b3 ± 3b2c+ bc2 +
±1− p

9
c3|.
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So to determine monogenicity of Q( 3
√
p), for primes of the form p ≡ ±1 (mod 9),

we need to find the integral solutions of

|3b3 ± 3b2c+ bc2 +
±1− p

9
c3| = 1. (5.1.4)

Multiplying by 9 in (5.1.4) we obtain an equivalent equation

|(3b± c)3 − pc3| = 9, (5.1.5)

which, for primes p ≡ ±1 (mod 9), is equivalent to

px3 + y3 = 9.

Therefore we obtain

Lemma 5.1.2. For p ≡ ±1 (mod 9), Q( 3
√
p) being monogenic reduces to

px3 + y3 = 9, (5.1.6)

having an integral solution.

Remark 5.1.1. Here, for simplicity, we found the index form of Q( 3
√
p), but the

same computation gives us (1.2.12).

Hence to construct a non-monogenic Q( 3
√
p), it would be enough to find a

prime p ≡ ±1 (mod 9), such that (5.1.6) does not have any integral solution.

One can find some of those primes by studying the equation locally, for instance

those primes p, such that 9 is not a cube modulo p. Notice that 9 is a cube if and

only if 3 is a cube in Fp. Therefore we will briefly study the number of solutions

of h(t) := t3 − 3 in a finite field Fp, denoted by Np(h(t)), for all primes p ≥ 5.

Lemma 5.1.3.

Np(h(t)) =


1 if p ≡ 2 (mod 3)

0 if p = 7x2 + 3xy + 9y2

3 if p = x2 + xy + 61y2

.

Let E := Q[t]
(h(t))

be the cubic field defined by h(t), with the splitting field L,

which contains the quadratic field K := Q(
√
−3). Let η1 = 3

√
3, η2, η3 be the
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conjugates of 3
√

3, then define

∆ :=
∏

1≤i<j≤3

(ηj − ηi).

For a prime p ≥ 5, consider the Frobenius automorphism associated to p, say σp ∈

Gal(L/Q); which is unique up to conjugation. Regarding σp as a permutation in

S3, we observe

σp(∆) = sgn(σp)∆.

Therefore σp being even implies that σp is a trivial element in Gal(K/Q), thus

p splits completely in K. Also when σp is an odd permutation, σp is not an

identity element, therefore p is inert in K. This shows sgn(σp) =
(
p
3

)
, where(

.
3

)
denotes the Legandre symbol. Therefore p ≡ 2 (mod 3) implies that σp is

a transposition, thus h(t) = 0 has a unique solution in Fp. For p ≡ 1 (mod 3),

σp is an even permutation, so h(t) = 0 has either zero or three solutions in Fp.

Hence for p ≡ 1 (mod 3), if 3 is a cube in Fp we have Np(h(t)) = 3, and if 3 is

not a cube then Np(h(t)) = 0.

One might find an alternative proof for this fact that t3 − 3 has only one

solution for p ≡ 2 (mod 3), by looking at the homomorphism

F∗p −→ F∗p

a −→ a3,

and noticing that this an isomorphism. For p ≡ 1 (mod 3), we have 3’th root

of unity in Fp, so one have either zero or three solutions. However the former

method is more general, and can be applied for general polynomials.

Using the cubic residue symbol, one can show that for primes p ≥ 5, p can be

presented by x2 + xy+ 61y2 if and only if p ≡ 1 (mod 3) and 3 is a cubic residue

modulo p. Indeed this was conjectured by Euler and proved by Gauss (see [16]).

Reduction theory of positive definite, integral binary quadratic form is easy

to describe. For such a given form f(x, y) = ax2 + bxy + cy2, by SL2(Z) change

of variable we can obtain a simpler form f ′(x, y) = a′x2 + b′xy + c′y2, where

|b′| ≤ a′ ≤ c′ and in case |b′| = a′, then b′ = a′; and in case a′ = c′, then b′ ≥ 0.

The discriminant of x2 + xy + 61y2 is −243 which has the class number 3. More
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precisely, using the reduction algorithm explained briefly, there are, up to SL2(Z)

change of variables, three binary quadratic form with discriminant −243. Namely

x2 + xy + 61y2, 7x2 ± 3xy + 9y2, which there are in the same genus. When p ≡ 1

(mod 3), then p can be presented by only one of the form x2 + xy + 61y2 or

7x2 + 3xy + 9y2. Indeed we have the following

Lemma 5.1.4. Let f1, f2 be two integral binary quadratic forms of the same

discriminant which represent the same prime, say p. Then they are GL2(Z)-

equivalent.

Proof: Consider an integral binary quadratic form, say f(x, y) = ax2 + bxy+

cy2, that presents a prime p, then we can assume f(x, y) = px2 + bxy + cy2.

Consider

γ =

 1 0

m 1

 ∈ SL2(Z),

then

γ.f(x, y) := f((x, y)γ) = px2 + (2pm+ b)xy + (c+ bm+ pm2)y2

= px2 + b′xy + c′y2.

We can choose m such that

−p < 2pm+ b ≤ p,

so we have shown that any integral binary quadratic form that represents a prime

p is SL2(Z)-equivalent to px2 + b′xy + c′y2, where −p < b′ ≤ p. Under GL2(Z)-

equivalence, we can assume 0 ≤ b′ ≤ p. This determines b′ ( and hence c′)

uniquely and finishes the proof. �

Lemma 5.1.3 shows px3 + y3 = 9 does not have any integral solutions for

those primes p ≡ 1 (mod 9), which p can be represented by the quadratic form

7x2 + 3xy + 9y2, and hence Lemma 5.1.2 gives a proof for Theorem 1.2.6. Using

the Chebotarev density theorem we can also count these primes and then prove

Theorem 1.2.5. Let K = Q(ζ9,
3
√

9), where ζ9 is a primitive 9’th root of unity.

We will show
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Lemma 5.1.5. A prime p splits completely in K if and only if p ≡ 1 (mod 9)

and 9
p−1
3 ≡ 1 (mod p).

Since we will use the Chebotarev density theorem several times, let us recall

it briefly. Let K be a number field and assume L/K is a Galois extension. To

each prime ideal P of K unramified in L there corresponds a certain conjugacy

class C of Gal(L/K) consisting of the set of Frobenius automorphisms σ attached

to the prime ideals P of L which lie over P. Denote this conjugacy class by

the Artin symbol
(
L/K
P

)
. For a given conjugacy class C of Gal(L/K), let πC(x)

denote the number of prime ideals P of K unramified in L such that
(
L/K
P

)
∈ C

and NL/K(P) ≤ x. By abuse of notation, the Frobenius automorphism is also

represented by the Artin symbol.

Theorem 5.1.2 (Chebotarev density theorem, see[53]).

lim
x→∞

πC(x) =
|C|

[L : K]
π(x). (5.1.7)

Therefore

Proof of Theorem 1.2.5: Note that for p ≡ 1 (mod 9), 9
p−1
3 ≡ 1 (mod p)

is equivalent to 9 being a cube in Fp. Lemma 5.1.5 and the Chebotarev density

theorem implies

1

π(x)
#{p ≤ x : p ≡ 1 (mod 9), 9 is not a cube in Fp} −−−→

x→∞

1

6
− 1

18
=

1

9
.

�

Let us denote ω the primitive cube root of unity. To prove Lemma 5.1.5, we

need the following, which is easy to prove.

Lemma 5.1.6. Let K = Q(ζ9,
3
√

9), then the following map is an isomorphism

ψ : Gal(K/Q) −→ Z
3Z

o
(

Z
9Z

)∗
σ −→ (a(σ), b(σ)),

where σ( 3
√

9) = ωa(σ) 3
√

9 and σ(ζ9) = ζ
b(σ)
9 .

This lemma implies
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Proof of Lemma 5.1.5: Let p be an unramified prime in K and σp the

Frobenius automorphism associated to p; which is unique up to conjugation.

Then

ζ
b(σp)
9 = σp(ζ9) ≡ ζp9 (mod p),

where p is a prime above p. Since p is unramified we conclude that b(σp) ≡ p

(mod 9). The same reason implies for such a p,

ωa(σ)9
1
3 = σp(9

1
3 ) ≡ 9

p
3 (mod p) =⇒ (ωa(σ) − 9

p−1
3 ) ∈ p.

Let p ≡ 1 (mod 9) and 9
p−1
3 ≡ 1 (mod p). Notice that p is unramified since

gcd(p, 3) = 1, so

(i) b(σp) ≡ p ≡ 1 (mod 9), thus b(σ) = 1.

(ii) ωa(σ) − 9
p−1
3 ∈ p which implies ωa(σ) − 1 ∈ p, hence a(σ) = 0.

Thus ψ(σp) = (0, 1), therefore σp is the identity element. This means p splits

completely. Conversely, if p splits completely then a(σ) = 0 and b(σ) = 1, which

implies

(i) ζ9 ≡ ζp9 (mod p) =⇒ p ≡ 1 (mod 9).

(ii) 9
1
3 ≡ 9

p
3 (mod p) =⇒

(
9
p−1
3 − 1

)
∈ p ∩ Z = (p).

This finishes the proof. �

Since t3 + 9 is an irreducible polynomial then a famous conjecture due to

Bunyakovsky says that there should be infinitely many prime of the form t3 + 9

which are congruent to ±1 modulo 9. These primes produce monogenic fields.

This shows the difficulty of characterizing monogenic fields even for pure cubic

extensions. Monogenicity of cyclic cubic fields has been studied by Dummit and

Kisilevsky [21].

5.2. Eisenstein polynomials and Monogenic fields

Recall that a polynomial f(t) = tn + an−1t
n−1 + · · · + a1t + a0 is called an

Eisenstein polynomial at a prime p when

(i) p | ai for all 0 ≤ i ≤ n− 1,

(ii) p2 - a0.
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Let f(t) = tn +an−1t
n−1 + · · ·+a1t+a0 be an Eisenstein polynomial at p, and let

K be the field generated by a root of f(t), say α, i.e., K = Q(α). We will show

that for any integers, c0, c2, . . . , cn−1,

NK/Q(c0 + c1α + · · ·+ cn−1α
n−1) ≡ cn0 (mod p), (5.2.1)

for which we deduce the following

Lemma 5.2.1. suppose K = Q(α), where α is a root of an Eisenstein polynomial

at p, then

p - [OK : Z[α]].

Proof: Let p|[OK ,Z[α]], therefore there exists an algebraic integer

θ ∈ OK \ Z[α],

so that pθ ∈ Z[α]. Hence for some integers c0, c1, . . . , cn−1 we have

pθ = c0 + c1α + · · ·+ cn−1α
n−1,

so

pnNK/Q(θ) = NK/Q(c0 + c1α + · · ·+ cn−1α
n−1) ≡ cn0 (mod p),

which implies p | c0. Note that p‖NK/Q(α), so this process and (5.2.1), imply

p | ci for all i, which is a contradiction. �

Lemma 5.2.1 will allow us to find an arithmetic condition on p such that fp(t)

produce a monogenic field. To prove Lemma 5.2.1, it remains to prove (5.2.1).

Proof of (5.2.1): Let E be the Galois closure of K, and assume P is a

prime in E above p. Since p | ai, then αi ∈ P, where α = α1, α2, . . . , αn are the

conjugates of α. Note that

NK/Q(c0 + c1α + · · ·+ cn−1α
n−1) =

n∏
i=1

(c0 + c1αi + · · ·+ cn−1α
n−1
i ),

This implies

NK/Q(c0 + c1α + · · ·+ cn−1α
n−1)− cn0 ∈ P ∩ Z = (p),

which proves the equation. �
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In a monogenic field K, the field discriminant is equal to the discriminant of

the minimal polynomial of α, where OK = Z[α]. Also, by using the Dedekind’s

Theorem 5.2.1, it is easy to see how a prime splits, by looking at how the minimal

polynomial of θ splits modulo primes. More precisely

Theorem 5.2.1 (Dedekind). Let K be a number field such that OK = Z[α], for

some α. Let f(x) be the minimal polynomial of α and denote f̄ the reduction of

f modulo a prime p. Let

f̄(x) = P1(x)e1 · · ·Pg(x)eg ,

then

pOK = Pe1
1 · · ·Peg

g .

Hence it is natural to see how prime splitting forces a number field to be non-

monogenic. This idea was first noticed by Hensel. Indeed he constructed a family

of C3-extensions over Q, such that 2 splits completely, and since in F2[t] there are

only two linear polynomials, he deduced that these fields are non-monogenic.

Hensel’s idea can be extended easily to construct infinitely many non-monogenic

Abelian number fields. Indeed let l ≡ 1 (mod n) be a prime and assume n ≥ 3.

Denote the unique Cn-subfield of Q(ζl) by Kn(l). The same method used to prove

Lemma 5.2.3 shows that a prime p splits completely in Kn(l) if and only if p 6= l

and tn − p has a solution in Fl. Therefore, for a prime l ≡ 1 (mod n), if tn − 2

has a solution in Fl, then Kn(l) cannot be non-monogenic. Notice that different

l produces different Cn fields since the discriminant of Kn(l) is a function of l.

So we need to count, the number of prime l ≡ 1 (mod n) such that 2 is a n’th

power in Fl. Consider the Kummer extension Q(ζn,
n
√

2) and observing

Gal(Q(ζn,
n
√

2)/Q) ↪→ (Z/(nZ)) o (Z/(nZ))∗ .

Lemma 5.2.2. A prime p splits completely in Q(ζn,
n
√

2) if and only if p ≡ 1

(mod n) and tn − 2 has a solution in Fp.

By the inequality [Q(ζn,
n
√

2) : Q] ≤ nϕ(n) and the Chebotarev density theo-

rem we obtain

lim
x→∞

1

π(x)
{l ≤ x : l ≡ 1 (mod n), Kn(l) is non-monogenic} ≥ 1

nϕ(n)
.
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Remark 5.2.1. Let K/Q be a cyclic extension of prime degree l ≥ 5. Gras [36]

in her beautiful paper, using a result of Leopoldt, showed that K is non-monogenic

unless 2l + 1 = p is a prime and K = Q(ζp + ζ−1
p ).

Thus we have constructed infinitely many non-monogenic Cn-extension over

Q, such that 2 splits completely. For a given Abelian group

G = Cn1 × Cn2 × · · · × Cnt ,

choose a non-monogenic Cni-field, say Kni , for 1 ≤ i ≤ t, with coprime discrimi-

nants. Put K = Kn1 · · ·Knt . Notice that 2 splits completely in Kni , therefore 2

splits completely in K, which shows that K is non-monogenic.

We can extend this idea further. For a prime number l, the field K := Q(ζl2)

is a Galois extension with cyclic Galois group (Z/(l2Z))
∗
. Let η be its generator

and put H := 〈ηl〉. Denote by Kl the fixed field of H, therefore [Kl : Q] = l and

Gal(K/Kl) ∼= H.

Lemma 5.2.3. p splits completely in Kl if and only if pl−1 ≡ 1 (mod l2).

Proof: Assume a prime p splits completely in Kl, and let σp :=
(
K/Q
p

)
be

the Frobenius automorphism associated to p, then

σp|Kl =

(
K/Q
p

)∣∣∣∣
Kl

=

(
Kl/Q
p

)
= id.

Therefore σp ∈ Gal(K/Kl) ∼= H. But p 6= l is unramified in K, thus σp(ζl2) = ζpl2 ,

since σp(ζl2) ≡ ζpl2 (mod p), where p is a prime in K above p. Under the canonical

isomorphism

Gal(K/Q) ∼=
(

Z
l2Z

)∗
,

we see that p ∈ H = 〈ηl〉, therefore for some integer t,

p ≡ ηtl (mod l2) =⇒ pl−1 ≡ 1 (mod l2).

Conversely, let

pl−1 ≡ 1 (mod l2).

Assume that p ≡ ηt (mod l2) for some integer t. Hence

1 ≡ pl−1 ≡ ηt(l−1) (mod l2) =⇒ l | t,
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therefore p ∈ H which implies that

σp ∈ Gal(K/Kl).

This means
(
Kl/Q
p

)
= id, hence p splits completely in Kl. �

Corollary 5.2.1. Let l be a prime such that for some prime p < l, pl−1 ≡ 1

(mod l2) then Kl is non-monogenic.

As an application of Lemma 5.2.3 and the Chebotarev density theorem, one

can calculate the density of

#{p ≤ x : pl−1 6≡ 1 (mod l2)},

which we will use to prove our main theorem.

Theorem 5.2.2. With the notations of Lemma 5.2.3 we have

#
{
p ≤ x : pl−1 6≡ 1 (mod l2)

}
=
l − 1

l
π(x)(1 + o(1)).

Proof: Note that C = Gal(Kl/Q)− {e} is stable under conjugation, where e

is the identity element in the Galois group, and C corresponds to the set of non-

split primes by Lemma 5.2.3, therefore the Chebotarev density theorem implies

our theorem. �

Remark 5.2.2. As Professor Andrew Granville has pointed out to the author,

Theorem 5.2.2 can also be proven by Dirichlet’s theorem on primes in arithmetic

progressions.

We have all ingredients to prove Theorem 1.2.4.

Proof of Theorem 1.2.4: Let K := Efp = Q(α) be the field obtained by

adjoining a root of fp(x) to Q. Since fp(x) is an Eisenstein polynomial at p, we

have that

p - [OK : Z[α]].

It is easy to see that

|Disc(fp)| = qqpq−1,
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therefore q might divide [OK : Z[α]]. For pq−1 6≡ 1 (mod q2) we see that

fp(t+ p) = (t+ p)q − p

= tq +

(
q

1

)
ptq−1 + · · ·+

(
q

q − 1

)
pq−1t+ (pq − p),

which implies fp(t+p) is an Eisenstein polynomial at the prime q so by Lemma 5.2.1

we obtain

q - [OK : Z[α− p]] = [OK : Z[α]],

therefore fp(t) is monogenic. Thus

#{p ≤ x : fp(t) is monogenic} ≥ #{p ≤ x : pq−1 6≡ 1 (mod q2)},

which combined with Theorem 5.2.2 proves our theorem. �

As was already mentioned, Theorem 1.2.4 can also also be proven without

using the Chebotarev density theorem. Indeed, for 1 ≤ i ≤ q − 1, consider the

following change of variable

f(t+ i) = (t+ i)q − p = tq +

q−1∑
j=1

(
q

j

)
tjiq−j + (iq − p),

so to obtain an Eisenstein polynomial at q, we need to have the conditions p ≡

iq ≡ i (mod q) and p 6≡ iq (mod q2) that also imply pq−1 6≡ 1 (mod q2). By the

prime number theorem in arithmetic progressions, we get

lim
x→∞

1

π(x)
{p ≤ x : p ≡ i (mod q), p 6≡ iq (mod q2)}

= lim
x→∞

1

π(x)
{p ≤ x : p ≡ iq + qs (mod q2), 1 ≤ s ≤ q − 1}

=
q − 1

q(q − 1)
=

1

q
.

This also proves Theorem 1.2.4. However the Chebotarev density theorem would

give a better error term.

It should be mentioned that the simple change of variable x + 1 also gives

interesting examples.
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Example 5.2.1. Let m = 2k be a power of 2, and assume p ≡ 3 (mod 4) is a

prime. Then f(x) = xm − p is an Eisenstein polynomial at p, with discriminant

−mmpm−1. We now remark that

k

(
m

k

)
= m

(
m− 1

k − 1

)
,

which implies

f(x+ 1) = (x+ 1)m − p = xm +
m−1∑
j=1

(
m

j

)
xj + (1− p),

is an Eisenstein at 2, therefore

2 - [OK : Z[ m
√
p− 1]] = [OK : Z[ m

√
p]].

So Q( 2k
√
p) is a monogenic number field.

Eisenstein polynomials essentially give us a number field which contains a to-

tally ramified prime. Indeed, by Lemma 5.2.1 and the Dedekind theorem (see [53],

Proposition 8.3), we have the following well-known result.

Lemma 5.2.4. Let K = Q(α), where α is the root of an Eisenstein polynomial

at a prime p. Then p is totally ramified in K.

For primes p, q such that

pq−1 6≡ 1 (mod q2),

p and q are totally ramified in the number field obtained by adjoining a root

of fp(t) = tq − p, therefore fp(t)’s generate a family of number fields which are

totally ramified only at two primes.

5.3. Some final remarks

We can also fix a prime p and vary q in tq − p. For example, when p = 2, we

want to understand for which prime q, tq − 2 is monogenic. We should therefore

understand the distribution of primes q such that

2q−1 6≡ 1 (mod q2).

This is an interesting question, as it can be shown that if 2q−1 6≡ 1 (mod q2),

then the first case of Fermat’s Last Theorem holds. Indeed, we expect that there
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are only few primes q such that 2q−1 ≡ 1 (mod q2). As far as I know, 1093 and

3511 are the only primes known to satisfy this relation. For a number field K,

let ζK(s) be the Dedekind zeta function of K, and assume its Laurent expansion

at s = 1 is

ζK(s) = c−1(s− 1)−1 + c0 + c1(s− 1) + · · · (c−1 6= 0).

Ihara [46] in his interesting paper defined an analogue to the Euler-Kronecker

constant

γK =
c0

c−1

,

which is the same as the usual Euler constant for K = Q. Let Kq be the field

we defined in Lemma 5.2.3 (q = l) and denote γq := γKq . Assuming GRH, Ihara

proved (see [46], Corollary 3)

Theorem 5.3.1 (Ihara). Assuming GRH, if lim inf γq
q

= 0, then for each prime

p, there are finitely many q such that

pq−1 ≡ 1 (mod q2).

Therefore by considering these above assumptions we see, for a fixed p, most of

the time tq−p is monogenic. These primes are called Wieferich primes. Motivated

by Fermat’s last theorem, Granville in his interesting paper [32] has studied these

primes. Moreover, Granville and Soundararajan [34] in their remarkable paper

related these primes to a conjecture of Erdös asking if every positive integer is

the sum of a square-free number and a power of 2. It seems possible to use the

effective Chebotarev density theorem, to obtain some averaging result for the

distribution of q mentioned above.

For a given prime q ≥ 3, it would be interesting to classify the monogenicity

of Kp := Q(ζq, q
√
p) when p(6= q) varies. Note that a prime l splits completely

in Kp if and only if l ≡ 1 (mod q), and p
l−1
q ≡ 1 (mod l). Therefore, by using

Hensel’s idea mentioned earlier, if the least prime in the arithmetic progression

n ≡ q (mod q) is less than q(q − 1), then there are infinitely many p such that

Kp is non-monogenic, namely those p, for which p
l−1
q ≡ 1 (mod l). Chang [14]

considered this problem for q = 3 and proved that Q( 3
√

2, ω) is essentially the only

monogenic field among the family Q( 3
√
p, ω). However, it seems that for q ≥ 5
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the question is more delicate. Perhaps generalizing his methods might gives some

characterization.
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