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RESUME

Gowers [31], dans son article sur les matrices quasi-aléatoires, étudie la question,
posée par Babai et Sés, de I'existence d’une constante ¢ > 0 telle que tout groupe
fini possede un sous-ensemble sans produit de taille supérieure ou égale a c|G|.
En prouvant que, pour tout nombre premier p assez grand, le groupe PSLy(F),)
(d’ordre noté n) ne possede aucun sous-ensemble sans produit de taille cn®/?, il
y répond par la négative.

Nous allons considérer le probleme dans le cas des groupes compacts finis, et
plus particulierement des groupes profinis SLx(Z,) et Spoy,(Z,). La premiere partie
de cette these est dédiée a I’obtention de bornes inférieures et supérieures exponen-
tielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite
d’établir préalablement une borne inférieure sur la dimension des représentations
non-triviales des groupes finis SLix(Z/(p"7Z)) et Spy,(Z/(p"Z)). Notre théoreme
prolonge le travail de Landazuri et Seitz [49], qui considerent le degré minimal des
représentations pour les groupes de Chevalley sur les corps finis, tout en offrant
une preuve plus simple que la leur.

La seconde partie de la these a trait a la théorie algébrique des nombres. Un
polynome monogene f est un polynome unitaire irréductible a coefficients entiers
qui endengre un corps de nombres monogene. Pour un nombre premier ¢ donné,
nous allons montrer, en utilisant le théoreme de densité de Tchebotariov, que la
densité des nombres premiers p tels que t? — p soit monogene est supérieure ou
égale & (¢ — 1)/q. Nous allons également démontrer que, quand g = 3, la densité

des nombres premiers p tels que Q(/p) soit non monogene est supérieure ou égale

A 1/9.
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Mots clés: groupes profinis, représentations complexes, opérateur
de Hilbert-Schmidt, décomposition en valeurs singuliéres, théoréme de

densité de Chebotarev, corps monogénique, équation de Thue.
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ABSTRACT

Gowers [31] in his paper on quasirandom groups studies a question of Babai and
S6s asking whether there exists a constant ¢ > 0 such that every finite group G has
a product-free subset of size at least ¢|G|. Answering the question negatively, he
proves that for sufficiently large prime p, the group PSLy(F,) has no product-free
subset of size > cn®?, where n is the order of PSLy(TF,,).

We will consider the problem for compact groups and in particular for the
profinite groups SL(Z,) and Sp,;(Z,). In Part I of this thesis, we obtain lower
and upper exponential bounds for the supremal measure of the product-free sets.
The proof involves establishing a lower bound for the dimension of non-trivial
representations of the finite groups SLi(Z/(p"Z)) and Spy,(Z/(p"7Z)). Indeed,
our theorem extends and simplifies previous work of Landazuri and Seitz [49],
where they consider the minimal degree of representations for Chevalley groups
over a finite field.

In Part II of this thesis, we move to algebraic number theory. A monogenic
polynomial f is a monic irreducible polynomial with integer coefficients which
produces a monogenic number field. For a given prime ¢, using the Chebotarev
density theorem, we will show the density of primes p, such that t¢ — p is mono-
genic, is greater than or equal to (¢ — 1)/q. We will also prove that, when ¢ = 3,
the density of primes p, which Q(/p) is non-monogenic, is at least 1/9.
Keywords. Profinite group, Complex representation, Hilbert-Schmidt
operator, Singular value decomposition, Chebotarev density theorem,

Monogenic field, Thue equation.
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Chapter 1

INTRODUCTION

In this chapter we will give a general sketch of our thesis. We will mainly focus
on general ideas and present the results of the thesis, which are divided into two
main chapters. The first one concerns density results in additive combinatorics
on compact groups, and the other one studies the distribution of monogenicity of

a family of polynomials. We will also set some notations and definitions.

1.1. PRODUCT-FREE SETS IN GROUPS

Additive combinatorics has been investigated extensively over the last decade
and now consists of a variety of tools from graph theory, group theory, number
theory, algebraic geometry and many other methods in mathematics. Amazingly,
in the last decade, computer science has also contributed in this branch of math-
ematics, and raised many important questions that turn out to be challenging
for mathematicians. For instance “expander graphs” are highly connected sparse
finite graphs. One might interpret these graphs as networks that transmit infor-
mation very fast but in the same time that are very economical, meaning that
they do not have many cables. It is important for computer scientists to de-
sign such a network. Various deep mathematical theories have been used to give
explicit constructions of expander graphs, including the Kazhdan property (T')
from representation theory of semisimple Lie groups, the Ramanujan Conjecture
(proved by Deligne) from the theory of automorphic forms, and more. Lubotzky’s

survey paper [51] is an excellent reference for the theory of expander graphs.



Another aspect of additive combinatorics is the multiplicative (or additive)
structure of groups. To single out one example, let us mention a famous theorem
of Schur, which states that for any k, there exists N = N(k) such that for any
partition of the set {1,..., N} into k subsets, there exist numbers z,y, z in the
same subset (where x = y is allowed) such that z+y = z. One approach to prove
Schur’s theorem, is to use “Ramsey theory” which is a graph theoretical concept
(See [50], Chapter 8). It is very interesting to observe how different sets of ideas
can be put together and prove this beautiful theorem.

In contrast to Schur’s theorem, one might ask for which subsets A of the
positive integers, the equation x +y = z does not have any solutions in A. These
sets are called “product-free” sets. More formally:

Definition 1.1.1. For a given group G, a subset A C G is called a product-free
set if there are no solutions to the equation xy = z, with x,y,z € A.

Remark 1.1.1. We use “multiplicative structure” typically in the non-commutative
setting and “additive structure” in the commutating setting. Indeed we defined
product-free sets for multiplicative groups, however the same definition holds for
additive groups. In that case product-free sets are called ‘sum-free” sets. But
in this thesis, for simplicity, the multiplicative notation will be used even when
working in the additive case.

More intuitively, a subset A C G is product-free if
APNA=0,

where
A? ={xy x,y € A}

First remark to point out, regarding to this definition, is that if a subset A C G
has any group structure inside, then A can not be a product-free set. In other
words, a product-free set is very rigid. Indeed this phenomenon turns out to be a
source of many investigations in additive combinatorics. To illustrate this point,
let us mention an observation. Let GG be a finite group of order n, and let A be a

subset of G. Suppose that |A| > n/2. Let us denote

At={at:ac G}



For every g € G we have
lgAT N Al = |gA™ |+ |A| — |[gA " UA| >n/2+n/2—n=0,

hence for some aq,as € A we have gal_1 = ay. Therefore g = aja, € AA which
implies that A% = G.

From this, one can ask if for some group G of order n, there exists a product-
free set of size exactly n/2.
Example 1.1.1. The set of quadratic non-residue modulo prime p is an example
of a product-free set in the multiplicative group ¥y, of size (p —1)/2.

Then almost immediately the following questions arise:
Question 1. How big is the largest product-free subset of G ¢
Question 2. How many product-free subsets of G are there?

Both of these questions have been considered by many mathematicians from
different point of views. In this thesis, we mainly concentrate on Question 1.

Question 2 was motivated by a conjecture of Cameron and Erdés [10], where
they conjectured that the number of sum-free subsets of {1,2,--- ,n} is O(2"/?).
Alon [1], Calkin [9], and Erdés and Granville (unpublished) proved independently

that the number of sum-free subsets of {1,2,--- ,n} is

2n/2+o(n).

The Cameron and Erdés conjecture was eventually proven by Ben Green [38].
Back to Question 1, we fix some definitions and notations.

Definition 1.1.2. For a given finite group G, let o(G) denote the size of the

largest product-free set in G, and the “product-free density” is defined by

pf(G) : a(G)

=T (1.1.1)

To clarify our definition, let us remark one more time that we defined this
notation for multiplicative groups, however the same definition holds for additive
groups. In that case product-free density is called “sum-free density”. But
in this thesis, for simplicity, the multiplicative notation will be used even when

working in the additive case.
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Lemma 1.1.1. Forn > 2,

a(Z/(nZ)) =n/2, if n is even,
(1.1.2)
a(Z/(nZ)) > |(n+1)/3] if n is odd.

Proof: First notice that for any given group G, if A C G is a product-free
set, then for any a € A we have aA N A = (), hence

G| = [A] + [aA] = 2[A].
Therefore pf(G) < 1/2. Now we approximate «(Z/(nZ)). If n is even, take
A={1,3,5,...,n— 1},

Then A is a product-free set since for x,y € A, we have that x + y is even, while

the elements of A are odd. For an odd n, take
A={kk+1,....2k—1} ={k+75:0<j <k-—1},
where k := [(n+1)/3]. For x,y € A we have
2k—1<2k<z+4+y<4dk—-2<n+k,
so in this case also, A is a product-free set. O

Notice that if n > 3 is odd then
[(n+1)/3] >2n/7.

So from Lemma 1.1.1 we have

Corollary 1.1.1. For n > 2 we have
pf(Z/(nZ)) > 2/7. (1.1.3)

We remark that this inequality is sharp, since Rhemtulla and Street [58] proved
that
2
p(Z/(T2) x -+ x Z/(1Z)) = =,

g
m

for all m.
Moving to general groups, we remark that the following simple observation is

very useful.



Lemma 1.1.2. Let H be a proper normal subgroup of G then
pf(G) > pf(G/H).

Proof: Consider the natural projection 7 : G — G/H. Let A be a product-
free subset in G/H, then 7—!(A) is a product-free set in G. So we have

a(G) > |7~ (A)] = |Al | ker 7| = |A||H].

So if we take A C G/H to be a maximal product-free set, then

pE(G) = O"(G? > |“T|(‘;T” = [G‘f”H] = pf(G/H).

O

Example 1.1.2. For any non-trivial abelian group G of even order, notice that

we have a surjective homomorphism

G — 7/(22),
therefore
1

From the fundamental theorem of finite abelian groups, we know that any
finite abelian group G is isomorphic to a direct sum of finite cyclic groups. More

precisely
G=Z/(mZ) S L) (nol) & - - - & L[ (ny L),
for some integers n; € N. So we obtain

Corollary 1.1.2. For any non-trivial abelian group G, we have
pf(G) > 2/7.

For abelian groups, we also have a geometric picture that heuristically gives

us a product-free set of density 1/3. From the circle
St ={e.0< 6 <1},

take a sector
A= {e¥:1/3 <0 <2/3}.

Then A is product-free set (See Figure 1.1). Note that the cyclic group Z/(nZ)



S

FIGURE 1.1. Product-free set in St

can be arranged into the circle by considering the group of nth roots of unity, and
then in Z/(nZ) we get a product-free set of density roughly 1/3. As mentioned
earlier, any abelian group is the product of cyclic groups, then basically in any
abelian group we can get a product-free set of density roughly 1/3. Green and
Ruzsa (See Theorem 1.5 [39]), used Fourier analysis methods to prove this.

If something can be proven for abelian groups, then it is often possible to
generalize it to solvable groups. To be more precise, let us recall a definition of
solvable groups.

Let G be a non-trivial group. Recall that the commutator of z,y € G is

[z, y] = zyz Tty

The group G’ generated by the commutators in G is called the commutator or
first derived subgroup of G. Notice that G’ is a normal subgroup of G and G /G’
is an abelian group. The second derived subgroup of G is G?) := (G')’; the third

is G® := (G?)'; and so on. So we have the following normal series
GQG'QGmQG@Q.._

Definition 1.1.3. A group G is called solvable if G*) =1 for some k.
Example 1.1.3. The following groups are solvable.
1. Abelian groups.

2. p-groups. Indeed any nilpotent group is solvable.
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Solvable groups indeed are those groups that are constructed from an “abelian
tower”.

Corollary 1.1.3. If G is a solvable group then
pf(G) > 2/7.

Proof: Since G is solvable, then G’ is a pure normal subgroup of G since
otherwise G*) = G for all k which is a contradiction to the definition of solvable

groups. But G/G’ is an abelian group then by Lemma 1.1.2 we have
pf(G) > pf(G/G') > 2/7.
O

Another way to construct a product-free set is to take a pure subgroup of G,
and consider one of its non-trivial cosets. More precisely.
Lemma 1.1.3. Let H be a subgroup of index k > 2 and let A = xH be a non-
trivial coset of H. Then A is a product-free set.

Proof: We have
(xh1)(zhe) = (vhs) <= & = hy'hshy " € H, (1.1.4)
which is a contradiction, since x ¢ H. O

Therefore, to construct a big product-free set, we need to find a subgroup
with small index. From the classification of finite simple groups it can be shown

that every finite simple group of order n has a subgroup of index at most Cn®/7

and hence a product-free set of size at least en*/7.

These examples motivated Babai and Sés [3] to ask:
Question 3 (Babai and Sés). Does there exist a constant ¢ > 0 such that every
group of order n has a product-free set of size > cn?

As we saw earlier, Babai and Sés’ question is true for solvable groups. So
if one wants to give a negative answer to this question, then one needs to look

at those groups that are as non-abelian as possible. For instance, simple groups

might be a good candidate for a counterexample.
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The special linear group of degree n over a field F' is the set of n by n matrices
with determinant 1. More formally

Definition 1.1.4.
SL.(F) :={A € M,(F) : det(A) = 1}. (1.1.5)

It is clear that SL, (F) is not a simple group since 1 is in its center. Instead

we can look at the projective special linear group defined by
PSL,(F) := SL,(F)/{*I}.

For the finite field IF, the group PSL,(F) is a finite simple group, except for n = 2
and F = Fy or Fj.

Gowers in his remarkable paper on quasirandom groups [31], gives a neg-
ative answer to Question 3 and proves that for sufficiently large prime p, the

8/9 where n is the order of

group PSL,(F,) has no product-free subset of size cn
PSLy(F,). Gowers’ theorem, apart from its intrinsic interest, has important appli-
cations. Indeed Nikolov and Pyber [55], by using Gowers’ theorem, have obtained
improved versions of recent theorems of Helfgott [41] and of Shalev [65] concerning
product decompositions of finite simple groups. Gowers method, which is known
as Gowers’ trick, has also appeared in several other papers, namely [64, 62].

Behind Gowers’ result lies the fact that PSLy(IF,) has no nontrivial irreducible
representation in low dimensions. The same property has been used by Lubotzky;,
Phillips and Sarnak [52] to show that the Ramanujan graphs are expanders. In-
deed, finding a lower bound for the dimension of non-trivial representations of a
group has many applications in number theory and additive combinatorics. Sar-
nak and Xue in their remarkable paper [61], exploited this and introduced the
concept of high multiplicity of non-trivial eigenvalues. This concept then became
ubiquitous in number theory and additive combinatorics. For instance, in order
to show that SLg(Z/(p"7Z)) is an expander family, with respect to an appropriate
generating set, Bourgain and Gamburd [7, 8] needed this bound and obtained a
lower bound for the degree of all faithful representations of SLo(Z/(p"Z)).

Let us very briefly explain how representation theory will participate in this

sort of question. We consider a more general setting. For subsets A, B,C of a
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group G, we would like to know when the following equation is verified:
Ty = 2z, reAyeB,zel. (1.1.6)

Notation 1. Let us denote the vector space of all functions from G to C by
CY. Sometimes it is more appropriate to denote this space by L*(G), since then
Fourier analysis can be applied to G.

For any two functions fi, fo € C%, the convolution is defined as follows:

Ji* fay Zfl ) f2(z™1y) Zflyx ) fo(@

zeG zeG

Therefore to show that zy = z has a solution, one needs to show that for some

zeC,

Laxlp(z)= Y 1#0. (1.1.7)
€A YEB ZEC

So if one can show that the support of the function 14 % 15 is a big set, then we
can perhaps show that there is a solution for the equation xy = 2. So let assume
that A and B are reasonably big sets in a group G, then we would like to show
that AB fills up almost all of the group G. A usual method of attack is to prove
that 14 x 15 is an almost constant function. So we seek the following strategy:
we need to show that 14 * 13 has small variance.

To be more precise, let us set some notations. Notice that C® is an inner-

product space. Indeed for fi, fo € C%, we define

(fi. f2) =) hx)f2 (1.1.8)

zeG

Then we can define the L?-norm on C%. For f € CY, define

I1£113 = => |f(x

zeG

First, we compute the mean of 14 % 1.

Lemma 1.1.4.

Al|B
SRERLIL]
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Proof:
E(ly%1p) = ZlA*lB Z > Lalzy)1s(y)
|G| zeG |G| z€G \yeG
Z Z La(zy™") | 1s(y)
e
yeG \ze€G
_ |AllB|
e
OJ
Set
={reG:14*1p(x) =0}
Our aim is to show that X is a small set.
Lemma 1.1.5. We have
2
1X| < ﬁ ||1A*1B—IE(1A>|<IB)||2. (1.1.9)
— \|4]|B] ?
Proof:
1Ta* 1 —E(Lax 1g)ll; = Y |14 15(x) — W
zeG
> |laxlp(a
TEY ‘G|
\AHB|)2
=(——] [X]
( G|
O

Then if the variance |14 * 15 — E(14 * 15)]|, is small, we can deduce that |X|
is small, which in particular implies that C' € ¥, if C' is big enough. We remark
that

1ax1p —E(1a*1p)|l, = |[(1a —E(14)) * 15],. (1.1.10)
For technical reasons, it is easier to work with a “normalized function”, where we

normalize a function by subtracting its mean. More precisely we define:

Definition 1.1.5.
L3(G) = {f € LA(G) : E(f) = 0}.
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Notice that 14 —E(14) € LE(G) since E(14 —E(14)) = 0. We prefer to work
with 14 —E(14) (or 15 — E(B)) rather than 14.

Now the question changes to
Question 4. Let f1, fo € L*(G), and assume that at least one of them belongs to
LA(G). What can we say about || f1 * fal|2?

The first attempt to answer this question is to use the Cauchy-Schwarz in-
equality. Indeed, we have

Lemma 1.1.6. Let fi, fo € L*(G) then

11 Follz < IGIY2) fuloll foll2- (1.1.11)

Proof: From the Cauchy-Schwarz inequality we have
o\ 1/2
> Ay ™))

1/2
[f1# fall2 = <Z!f1*f2(x)|2> =1
zeG z€@ |yeq

S @ K*’EZGMWI)'Q) (y;;fQ(yV)])l/z

= G2l fullzll follo-

O

But this inequality is not sharp enough to show that the variance is small. It
turns out that when the minimal dimension of all non-trivial representations of
G is big enough then the above inequality can be improved significantly.

Definition 1.1.6. Let G be a finite group and let us define

m(G) = min d,,

where d, denotes the dimension of an irreducible representation p. Here we
denote the trivial representation by 1.

The following theorem gives an answer to Question 4.
Theorem 1.1.1 (Babai-Nikolov-Pyber). Let fi, fo € L*(G). If at least one of
f1, f2 belongs to LE(G), then
Gl
m(G)

From this theorem we can prove the following result:

1/2
1o % felle < ( ) TARIAN (1.112)
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Corollary 1.1.4 (Gowers [31]). For a finite group G, let A, B,C C G be so that
G

AIBIICT >

Then ABNC # 0. In particular if |A] > |G|m(G)~Y3, then A is not a product-free
set. Therefore

pf(G) < m(G)~1/3,

Proof: From (1.1.9) and Theorem 1.1.1 we have

)
QJ@O (14— E(14)) * 153
<

G G
V|1HJ’3|> | ‘)HlA E(14) 301153

) (1.1.13)
e ) G
< AllB
(|A||B| micy P
ap
SR i o T}
A ~
by hypothesis, which implies that C' € 3. So ABNC # 0. d

For PSLy(F,), from a theorem due to Frobenius (See [17], Theorem 3.5.1), we

have
m(PSLy(F,)) = (p — 1)/2.

Clearly |PSLy(F,)| ~ p* and this shows that the minimal degree of non-trivial
representations of PSLy(F,) is roughly |PSLy(F,)|/3.

Corollary 1.1.5.
5 \ /3
f(PSLy(F,)) < [ —— )
pr(PSLa(F,) < ()

One might consider a similar problem for compact groups. Indeed, a finite
group should be seen as a compact group with the counting measure, so the
next generalization of finite groups is compact groups with the normalized Haar
measure.

Let G be a compact, Hausdorff, second countable topological group and u
denote the Haar measure on G, normalized so that u(G) = 1. Note that since

(G is compact, and hence unimodular, a left Haar measure is automatically right
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invariant. Similar to the finite case, a measurable subset of A is said to be
product-free if A2N A = (). We define the product-free measure by
Definition 1.1.7. Let G be a compact group with normalized Haar measure p.

Define the product-free measure of G by
pf(G) = sup{u(A) : A C G is measurable , AN A* = (}}.
Let U,(C) be the unitary group on C" defined by
Un(C) := {X € M,(C) : XX* =1, },

where X* is the complex conjugate of X. Notice that U;(C) = S'. Indeed, uni-
tary groups have a very rich geometric structure. This geometric structure might
produce some product-free sets (See Figure 1.1). We can make these groups
simpler to study by considering unitary matrices with the determinant 1, and
denote this group by SU,(C), which is called the special unitary group. Gow-
ers [31] asked if pf(SU,) < ¢” for some ¢ < 1. The available methods only give
polynomial bounds for these groups.

A special class of compact groups that will be studied in this thesis are profi-
nite groups, which are defined as the projective limit of finite groups. Using
their close connection to finite groups, we can establish exponential lower and
upper bounds for the product-free measure. Indeed, profinite groups are topo-
logical groups that are compact and totally disconnected. These groups appear
naturally once we want to study a sequence of finite groups that can be patched
together. An example to keep in mind is the ring of p-adic integers that is defined
by

Z, = {(xn) e [1@/"2)) : wass = 2 (mod pn)}.

Analytically, this ring is a “completion” of the ring of integers with respect to
prime ideal (p). So these several interpretations of profinite groups make their
theory very rich. Roughly speaking, understanding properties of profinite groups
often reduces to finite quotients. This idea will be essential when we will study

their representations.
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1.1.1. Statement of our theorems for product-free sets

Let us now turn to our contribution in this thesis. This is joint work with
Keivan Mallahi-Karai.

For the finite Chevalley group defined over a finite field, say G(F,), Landazuri
and Seitz [49], in their important paper, gave a complete list of minimal degrees of
non-trivial representations of G(F,). However, it seems that the similar question
has not been considered for G(Z/(p"7Z)).
Remark. It is possible to use the theory of simple Lie algebras over C to con-
struct simple groups of matrices over any field. This was discovered by Claude
Chevalley [15]. Very briefly, for a given simple Lie algebra, one can study its
automorphisms. The Chevalley group is a subgroup of this automorphism group.
The generators of the Chevalley group are constructed with the help of a ba-
sis of the Lie algebra called a Chevalley basis . However in this thesis we only
consider the following cases of Chevalley groups: projective special linear groups
PSL,(F,), or projective special sympletic groups PSpo(F,), and their extensions
to SLg(Z/(p"Z)) and Spy,(Z/(p"7Z)). However, we believe that some of these
results can be extended to Chevalley groups because of their connections to sim-
ple Lie algebras. To see more about the Chevalley groups we refer the reader
to [11, 12, 13, 60].

Let us first set some definitions. For a ring R, we define the special linear

group, denoted by SLx(R), by
SLi(R) :={X € Mi(R) : det X = 1}. (1.1.14)
Now let J denote the 2k by 2k matrix defined by

7. 0 I
—I; O

The symplectic group is defined as follows:
Spa(R) == {A € My (R) : AJA" = J}. (1.1.15)

In this thesis, we will study lower bounds for the minimal degree of the non-trivial

representations of all the groups SLy(Z/(p"Z)) and Sp,y(Z/(p"7Z)) (which are the
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same as the minimal degree of the non-trivial continuous representations of the
profinite groups SLx(Z,) and Spy;(Z,)). Let us extend Definition 1.1.6 to general
groups (not necessarily finite groups).

Definition 1.1.8. For a given group G the minimal degree of non-trivial repre-
sentations is defined by

m(G) := mind,, (1.1.16)
p#1

where the minimum s taken over all non-trivial representations of G, and d,,

denotes the degree of the representation p. We will also denote

my(G) = min d,,
where the minimum is taken over the set of all faithful representations, where a
faithful representation is an injective representation.
Remark 1.1.2. For compact groups, we impose the natural restriction that all
representations are continuous.
Remark 1.1.3. In what follows p always denote an odd prime.

Our first theorem gives a minimal degree of all non-trivial representations
of some classical groups. This indeed extends and simplifies previous work of
Landazuri and Seitz, where they consider the minimal degree of representations
for Chevalley groups over a finite field.

Theorem 1.1.2. In the table below, the third column gives a lower bound for the
degree of any non-trivial representations of the group G(Z/(p"Z)) where G is one

of the groups listed in the first column. In other words,

m(G(Z/(p"Z))) = MG, p).

Similarly, the forth column gives a lower bound for the degree of any faithful
representation of G(Z/(p"Z)). In other words:

my(G(Z/(p"Z))) = hy (G, p,n).
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Then we have the following table

minimal degree of non-trivial representations | minimal degree of faithful representations
G | k > h(G,p) > hy(G,p,n)

SLy | 2 >3- 1) > (")

SL, | >3 > pk=l — pk=2 > (pr — pn1)plk=2n

Spyy, | > 2 > L(p—1)pFt > L(pn — pr-typtk-bn

Remark 1.1.4. Bourgain and Gamburd [7], using a theorem of Clifford, found
the following lower bound for m;(SLa2(Z/(p"Z)):

prE(p? — 1)

my(SLa(2/ (7)) = T2

(1.1.17)

Even though our bound is slightly weaker than the one obtained in [7], it is asymp-
totically equivalent. Our method is also more elementary and can be applied to
other classes of Chevalley groups. For instance for SO, (Z/(p"Z)), the group of

orthogonal matrices with the determinant 1, we can also show that

my(SO3.(Z/(p"Z))) > o(p")p** ="

As any finite dimensional representation of a profinite group factors through
a finite quotient, we have:
Theorem 1.1.3. Let G be one of the groups listed in the table above and G(Z,)
denote the compact group of p-adic points of G. Then the minimal degree of all
non-trivial continuous representations of G(Z,) is bounded below by h(G,p). In
other words

m(G(Zp)) > MG, p).

Moreover, we will consider Babai and Sés’s question for the profinite groups
SLk(Z,) and Sp,y,(Z,). In this context, using representation bounds, we can get an
upper bound for the measure of the product-free sets in SLi(Z,) and Spy,(Z,).
Using the spectral theory of compact operators we will prove an extension of
Theorem 1.1.1 to compact groups.

Remark 1.1.5. In this thesis, all topological groups considered will be Hausdorff
and second countable. By a representation of these groups we mean a continuous

complex representation.
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Theorem 1.1.4 (Mixing inequality). Let G be a compact topological group such
that any non-trivial representation of G has dimension at least m(G). Let f1, f2 €
L*(G) and suppose that at least one of f1, fa belongs to LE(G), which is the space

of functions with zero mean. Then

1
| f1x fall2 < \/mHﬁHzHﬁHz- (1.1.18)

This theorem has an immediate corollary.
Corollary 1.1.6. Let G be a compact topological group such that any non-trivial
representation of G has dimension at least m(G). Let A, B C G be two measurable

sets then

p(A)p(B)

1 1p = w(A)p(B)l2 < m(G)

(1.1.19)

For compact groups we can therefore deduce the following:
Theorem 1.1.5. Suppose G is a compact topological group such that any non-
trivial representation of G has dimension at least m(G). If A,B,C C G such
that

then the set AB N C has a positive measure. Moreover, if
m(EUABIC) > .
then
p{(z,y,2) € Ax BxC:ay =z} > (1—n)u(A)uB)u(C). (1.1.20)

By Theorem 1.1.3 and Theorem 1.1.5 we get the following result:
Corollary 1.1.7. The product-free measure of the profinite groups G(Z,) for the

groups G, given in Theorem 1.1.2, is bounded from above by:
pE(G(Z,)) < W(G,p) "2,

These upper bounds in particular imply that:
Corollary 1.1.8. If A is a measurable subset of the groups G = G(Z,) with
w(A) > h(G,p)~Y3, then A> = G.
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Proof: For every g € G(Z,), set B= A and C' = gA~'. Since

pA(B)(C) = u(A)* > h(G, p),

then by Theorem 1.1.3 and Theorem 1.1.5, ABNC # (. If + € ABN C then

T = gag1 = ayay for ay,as, a3 € A which proves the claim. O

Let Tyy1 be an infinite regular tree of degree k+ 1. The automorphism group
Aut(Ty11) of Tyyq is the group of isometries of the vertex set of Ty, ; with respect
to the discrete metric d, where d(u,v) is the smallest number of edges on a path
in Ty, connecting v and v. In other words, by an automorphism of Ty,; we

mean a permutation of the set of vertices of T, that preserves adjacency.

Definition 1.1.9. For a sequence z,, € Aut(Tyy1), we define
Ty —> T,

if for any v € Tyy1, there exits n, so that for all n > n,, we have x,(v) = z(v).

With this topology, called pointwise convergence topology, one can show that
Aut(Ty41) is a locally compact topological group. We fix a vertex O of Ty 1 to
which we may occasionally refer as the root. Let Aj,; be the stabilizer of O in
Aut(Ty+1). It can be shown that Ag.; is a compact group. In fact, every z € Ayyq
fixes O and thereby permutes the set of all (k+ 1)k~ vertices of distance j from

O, for every j > 1. This induces a homomorphism
00 Aprr — Bpgypi-1,

where ¥, denotes the symmetric group on {1,2,...,m}. We can now define

the following “congruence subgroups” and then provide a system of fundamental
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open sets around the identity automorphism:
Cj = {.1' S Ak+1 . Uj(.ﬁE) = Zd}
Then

Apgr = limAy1/C;. (1.1.21)

For more details we refer to Section 2.6 or Bass and Lubotzky’s book [4]. We will
obtain lower and upper bounds for the product-free measure for the group A;{H
defined as
Definition 1.1.10. An automorphism x € Ayiq is called positive if o;(x) is
an even permutation for all 7 > 1. The group of all positive automorphisms is
denoted by A;H.

We will prove:

Theorem 1.1.6. For all k > 6 we have

1 1

1 SR < (1.1.22)

k+1

1.2. THE DENSITY OF MONOGENIC NUMBER FIELDS

In this section, which involves more algebraic number theory techniques, we
study certain arithmetic properties of number fields.

By a number field, we mean a finite extension of the field of rational numbers.
Historically, algebraic number theory is about arithmetic properties of integral
polynomials. For instance, for a given integral irreducible polynomial f(x), one
might be interested to find the density of those primes p, so that f(z) (mod p)
is irreducible over F,[z]. Another example would be to compute the density of
primes p so that f(z) (mod p) splits over F,[z]. Let us, before going any further,
set some notations.

Let f(x) € Z[x] be a monic polynomial of degree n, and assume that
ay, Qg, ..., 0y,

are roots of f(z) in its splitting field denoted by Ey. The Galois group of f(z)
is often denoted by Gal; := Gal(E;/Q). Notice that the Galois group of f(x)



22

permutes the roots of the polynomial. The discriminant is defined as follows:

Discy = A2 = ( I (w —aj)> : (1.2.1)

1<i<j<n

where

A= H (Oéi—Oéj).

1<i<j<n

Since f(z) is a monic integral polynomial, A is an algebraic integer that is a root

of a monic integral polynomial. For ¢ € Galy we have
o(A) =sgn(o)A.
Hence for all o € Gal; we get
o(Discy) = Discy.

This implies that Discy € Z, since it is a rational integer. Clearly Discy = 0
means that f(x) is not separable, i.e., a; = «;, for some i # j. Therefore we just
consider separable polynomials.

Similarly we can define the discriminant for number fields. Let K/Q be a

number field of degree n. The ring of integers of K is defined by
Ok :={z € K : z is an algebraic integer over K }.

K

e
Ox  |n

|l Q
/

Z

One can show that Ok is a free Z-module of rank n. Then linear algebra can be
invoked to define some concepts. Let A be a ring, E a free A-module of finite
rank and let u be an endomorphism of E. If a base {e;} of E has been chosen

and if (a;;) is the matrix for v with respect to this base, then the trace of w is

defined by

Tr(u) = Z Qi

i

Notice that this quantity is independent of the choice of base.
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Definition 1.2.1. For an algebraic integer 5 € Ok, the trace of 3, denoted by
Tri (), is defined by the trace of the linear transformation

OK — OK
(1.2.2)
T — fx.

Notice that Trg/q(f) is a rational integer, since Ok is a free Z-module. We
define the discriminant of K by
Definition 1.2.2. Let f31,..., 8, be an integral basis for Ox. We define

DlSC(K) = det(TrK/@(ﬁzﬁj)) (123)

Remark 1.2.1. More generally, let O be a free Z-module, then the discriminant
of O can be defined similarly to Definition 1.2.2.
There is another way to define the discriminant. Since the degree of K over

Q is n, then there are exactly n embeddings of K into C.

Let us denote them by oy,...,0,. It is a standard fact in algebraic number

theory that for z € K,

Trsgle) = 3 oi(a).

1
Therefore,

Triso(BiBi) = > ou(Biy) = Y ou(Bi)oi(3;)-
l l

Put
01(,81) 01(6n)

Un(ﬂl) Jn(ﬁn)

then we have the following matrix equality

(Tri/o(B:85)) = AA™.

Hence we showed
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Lemma 1.2.1.
2

o1(1) ... o1(Bn)

Disc(K) = det (1.2.4)

Un(ﬂl) Un(ﬂn)

For a given monic irreducible polynomial f(x) € Z[x] we can associate a
number field. Let a be a root of f(z), we can consider K := Q(«). So one might
ask about the discriminant of K = Q(«) and its relation to the discriminant of
f(z). Since f(x) is a monic integral polynomial then « is an algebraic integer.
So

Zla] C Ok.

Lemma 1.2.2. For an irreducible monic polynomial f(x) € Z[z|, with an alge-

braic integer root o, we have
Disc(Z]a]) = Discy.

Proof: Since 8, = 1,8, = a, 83 = o?,..., 3, = o™ ! is an integral basis for
Z[a], then
oi(B) ... o1(Bn)

on(f1) - on(Bn)

is a Vandermonde matrix, hence

Disc(Z[a]) = ( H (o — Ozj)) = Discy,

1<i<j<n

where
fl@)=(z—a)...(z — ).
O

We recall the elementary divisor theorem. For proof see [60] Theorem 1,
section 1.5.
Theorem 1.2.1. Let O be a free Z-module of rank n. And let M be a free Z-
submodule of O with rank n. Then there exists a basis {1, ...,Ln} for O, and

non-zero integers a, . .., a,, so that
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® ;| a.
o {a1f1,...,a,0,} is a basis for M.
From this important theorem we can deduce
Theorem 1.2.2. Let « be a root of a monic, irreducible integral polynomial f(x),

and suppose K := Q(«), then
Disc; = [Ok : Z[a]]*Disc(K),

Proof: Let {f,..., 0.} be a basis for Ok so that {a101,...,a,5,} is a basis
for Z[a]. From Theorem 1.2.1 such a basis exists. By Lemma 1.2.2 we know

Discy = Disc([Z]a]]). Notice that

Disc(Z[a]) = det(Trg q(aa;35;))
= (a1...a,)* det(Trg0(B:5;))

= (ai ...a,)*Disc(K).

Remark that

(H az-) = [0k : Z[a]].
]

The discriminant is one of the main tools in algebraic number theory. It
reveals many arithmetic properties of f(z). For instance one can show that
when the discriminant of a given polynomial of degree n is square-free then its
Galois group is isomorphic to .5, the symmetric group of n elements. This would
convince us to ask how it is possible that a random integral polynomial has a
square-free discriminant. Recall that the height of an integral polynomial f(x)
is the maximum of the absolute value of all its coefficients.

Definition 1.2.3. Call an irreducible monic integral polynomial f(x) € Z|x]

essential if
Discy = Disc(K),

where K = Q(«), and « is a root of f(x).

The following conjecture is due to Hendrik Lenstra [2].
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Conjecture 1 (Lenstra). Let n > 2. The probability that a random irreducible
monic integral polynomial of degree n and height < X is essential should tend to
6/m as X — oo.

Notice that from Theorem 1.2.2 we have
Disc; = [Ok : Z[a]]*Disc(K).

So if Discy is square-free then Discy = Disc(K'), which means that f is essential.

Moreover, from this, we deduce that
Ok : Z[a]] =1,

hence

This motivates the following definition.
Definition 1.2.4. Let K be an algebraic number field of degree n and Oy its
ring of integers. K 1is called monogenic if there exists an element o € Ok such
that Ok = Z|a].

Notice that when f(x) is essential then, by the definition, Disc; = Disc(K)
therefore by Theorem 1.2.2 we have [Ok : Z[a]] = 1 which implies that

therefore K is monogenic.

It is a classical problem in algebraic number theory to identify if a number
field K is monogenic or not. In the 1960s, Hasse [40] asked if one could give an
arithmetic characterization of monogenic number fields. The quadratic and cyclo-
tomic number fields are monogenic, but this is not the case in general. Dedekind
[18] was the first who noticed this by giving an example of a cubic field generated
by a root of t3 — ¢ — 2t — 8.

Definition 1.2.5. Let f(t) € Z[t] be a monic irreducible polynomial. f(t) is
called monogenic if Ox = Zla], where K = Q(«) and « is a root of f(t).
Let us mention some remarks. The discriminant of a polynomial is itself a

polynomial in several variables. For instance the discriminant of cubic polynomial
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ax® + bx? + cx + d is
F(a,b,c,d) = 18abcd + b*c* — 4b°d — 4ac® — 27ad*.

Then it is interesting to count the number of |a|, |0, |¢|, |d| < T, so that F(a,b, ¢, d)
is square-free. This question seems very hard for general degrees. For small de-
grees however, this has been done by several mathematicians [44, 37]. For a given
polynomial f(z, ..., x,) € Z[z1,...,x,|, assuming abc-conjecture, Poonen [56] in
his striking paper, by generalizing a fundamental work of Granville [33], com-
puted the density of x € Z" such that f(x) is square-free (See [56] (Theorem
3.2)). Let us recall the abe-conjecture.

Conjecture 2 (Oesterlé and Masser ). For any given € > 0 there exists a constant

ke such that if a,b and ¢, are coprime positive integers for which
a+b=c,

then
1+€

c < ke H D

p prime
plabe

To see more about this interesting conjecture see Granville and Tucker’s pa-
per [35]. As far as I know, there are not many results regarding the probability of
a randomly chosen polynomial of degree n having square-free discriminant. One
might also ask about the density of monogenic number fields when they are sorted
by their discriminants. More formally

lim #{K : K monogenic : |Disc(K)| < X}?
X 00 #{K : |Disc(K)| < X} '

For cubic and quartic fields, this question has been studied by Bhargava and
Shankar [6], Theorem 4.1, where we refer the reader to their paper since it requires
some background to state their results precisely.

In Chapter 5 we have used the Chebotarev density theorem to study the
distribution of a family of monogenic polynomials. In order to fix notations, let

us review some concepts and definitions. Let K/Q be a finite Galois extension of
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degree [ with Galois group G = Gal(K/Q) and discriminant D. For a prime p,

and a prime p above p, we can speak about the decomposition group, i.e.,
D, ={oceG:0o(p)=p}

Denote k(p) := Ok /p, then we have a well defined surjective homomorphism

Dy — Gal(x(p)/F)
(1.2.5)
o — 0,

where
g(x+yp)=o0c(z)+p.

The kernel of this homomorphism is called the inertia subgroup, denoted by I,,,
which measures the ramification degree. Indeed for a prime p coprime to D,
from a well-known fact in the realm of algebraic number theory, we have that
p is unramified in K, and the map defined by (1.2.5) is an isomorphism. Since
Gal(k(p)/F,) is a cyclic group generated by the Frobenius element, denoted by
Frob,, i.e., Frob,(A\) = AP, then there is a unique element in the Galois group,
denoted by o, such that &, = Frob,,.

oy is also called the Frobenius element, and one can show that this element is
unique up to conjugation. Indeed, for a different prime p’ above p, we observe that
o, and o, are conjugate, and therefore when we study our objects, considering
them in a conjugacy class, it is more convenient to write o, instead of o,. It is
very important to notice that a prime p splits completely if and only if o, = id.

For an integer n, let a be coprime to n. By Dirichlet’s theorem in primes for
arithmetic progressions, we have

m(z,n,a) =#{p<z:p=a (modn)}~ :;Eg (1.2.6)

The Chebotarev density theorem is a generalization of the Dirichlet’s theorem.
Let C C Gal(K/Q) be a subset stable under conjugation, i.e., 7Ct~! C C. The
Chebotarev density theorem says that

€]

ﬂc(x)::#{pgx:UPEC}N[K:Q]

m(x). (1.2.7)
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Let us pick an example to show that how Dirichlet’s theorem can be recovered
by the Chebotarev density theorem. Taken K = Q((,), one can see that p splits
completely in K if and only if p =1 (mod n), hence for C = id, the set of primes
that split completely is the same as the set of primes p for which p =1 (mod n).
Notice that [K : Q] = ¢(n). Therefore

#{p<z:p=1 (mod n)}—#{pgx:ap—id}wzgg, (1.2.8)

thus recovering Dirichlet’s theorem. Let us mention an application of the Cheb-
otarev density theorem whose proof will be presented in Chapter 4. Let f(z) €
Z[z] be a monic polynomial of degree n with discriminant D # 0. For a prime
number p, coprime to D, we define

Definition 1.2.6. X, (f):= the degree of the splitting field of f(x) (mod p).

We consider the average of this random variable.

)= Jim | = 3 X0 ] (129)
gcd(];%)zl

if it exists. We will use the Chebotarev density theorem to prove
Theorem 1.2.3. Assume that Galois group of f(x) is the symmetric group Sy,
where n is the degree of f(x). Then

in(f) =, -2 +O(M>, (1.2.10)

logn logn

C = 2\/(2 /OOO log log (1 - et) dt). (1.2.11)

1.2.1. Statement of our theorems for monogenic fields

where

In this section we present our theorems on monogenic number fields. Our first
theorem is the following.
Theorem 1.2.4. Let p and q be prime numbers, where q > 3. Consider the

polynomial

fp(t) =1t —p.
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Then, we have
lim inf L#{p <x: fy(t) is monogenic } > q;l,
e 7o) q
where w(x) denotes the number of primes less than x.

The idea is to find a congruence condition on p such that f,(t) = t? —p
is monogenic. This condition on p reads as p?! # 1 (mod ¢*). Then we use
the Chebotarev density theorem to count these primes. We will also present an
elementary method to count these primes by using Dirichlet’s theorem on primes
in arithmetic progressions.

When ¢ = 3, using a description of an integral basis for a pure cubic field
(Theorem 5.1.1), and an explicit computation, we notice that the index form (see
Lemma 5.1.1) of Q(+/hk2) is represented by ha® — ky® when h? # k* (mod 9) and
(ha® —ky?)/9 for h? = k> (mod 9). Thus Q(v/hk?2) being monogenic is equivalent
to integral solubility of

had +ky> =1 if h* £ k* (mod 9); (12.12)
ha® +ky> =9 ifh*=k* (mod9).
In particular when p is a prime, Q(/p) is monogenic for p = +2,£5 (mod 9).
For p = £1 (mod 9) we obtain the following equation

pr’ +y* =0. (1.2.13)

By counting those primes p = £1 (mod 9) where 9 is not a cube in F,, we will
find a lower bound for the density of non-monogenic cubic fields Q(/p). Notice
that when p = —1 (mod 9), then 9 is a cube in [F,. Therefore we restrict ourself
by considering primes of the form p = 1 (mod 9), and computing the density of
these primes where 9 is not a cube modulo them. Let K = Q((o, \3/5), where (g
is a primitive 9’th root of unity. Since a prime p splits completely in K if and
only if p=1 (mod 9) and 9% =1 (mod p). Then by applying the Chebotarev
density theorem, we get

Theorem 1.2.5. The density of primes p = 1 (mod 9) such that the following

Thue’s equation

pr® +y’ =09,
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does not have any solution in integers x,y, is at least 1/9. This set of primes
produces non-monogenic cubic fields Q(/p).

We can also describe these primes by the following
Theorem 1.2.6. Q(/p) is non-monogenic for those primes p = 1 (mod 9) which
can be represented by Tx? + 3xy + 9y>.

We will also remark some other connections to a phenomenon called Fuler-

Kronecker constant.
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Chapter 2

PRELIMINARIES FOR CHAPTER 3

In this chapter, we will cover some background for Chapter 3.

2.1. BIPARTITE GRAPHS AND GOWERS’ TRICK

In this section we will sketch Gowers’ idea for counting the number of solutions
to the equation xy = z. This method will then be developed further in Chapter 3.
We denote the vector space of all functions from G to C by C%. Let us recall

that C% is an inner-product space. Indeed, for fi, fo € C¢ we define

(fro fo) =) fil@) fal2), (2.1.1)

zeG

and the Ly-norm on C¢ = L?(G) is defined by

A3 = (f, ) =D (@)

zeG

Remark 2.1.1. We will use the notation C when we wish to see it as a vector
space. However, sometimes CY is denoted by L*(G) when we want to emphasize
its functional analytic properties.

Our aim in this section is to prove the following theorem in detail, which is
indeed a special case of Theorem 1.1.1. We will then mention how this can be
modified to compact groups.

Theorem 2.1.1 (Gowers [31]). Let G be a finite group of order n, all of whose

non-trivial representations have dimension greater than or equal to m(G). Let A
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be a subset of G and let f € L*(G) be a function so that Y, f(x) =0, then

nl Al \ /2 al o\ L2
s sle< () W= (25 ) Ialalle

The convolution operator over a finite dimensional vector space can be un-

derstood by the language of graph theory and of course by functional analysis.
Gowers’ approach was to consider the graph theoretical interpretation, by relating
the trace of biadjacency matrix of a bipartite graph to the number of edges.
Definition 2.1.1. For a finite group G of order n, consider subset A of G. We
define the following bipartite graph, denoted by G. The vertex set of G consists
of two copies of G, and {x,y} € E(G), if and only if for some a € A, y = ax.

<!vlll>
<IAIll>

FiGURE 2.1. Bipartite Graph

Then each vertex of G is of degree |A|, and the number of edges in G is n|A|.
Let us recall the definition of the biadjacency matrix of a bipartite graph. Let
G = {z1,2s,...,2,}, then by our definition {z;, z;} € E(G) if and only if z; = ax;
for some a € A. In other words {z;,7;} € E(G) if and only if 14(z;z;') = 1.

Then the biadjacency matrix of the graph G, denoted again by G, simply is

La(mayh) 1a(aeas') ..o 1a(ma;t)
La(moryh) 1a(aoxs?) ... 1a(mex;t)
G = | 1a(zszy?) lalwszy') ... la(zsz;?h)
La(zpzyh) 1a(zeryt) .0 La(zez;?h)

We define the convolution operator.

Definition 2.1.2. Consider the following operator
a:Cf — Y

fr—=alf),

(2.1.2)
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where

@NW = 3 @)= L)) = (Lax o)
zelG zeG
{zy}eE(G)
We also recall the definition of the norm of an operator.

Definition 2.1.3. For the operator «, the norm of « is defined by

_ e fll2
lallop == sup i
o£rer2@) |1 f1]2

Since in Theorem 2.1.1, >~ . f(x) = 0, we restrict ourself to this subspace.

Definition 2.1.4.

L3(G) = {f €LXG): ) fla)= 0} ={f e L*G): (f,15) = 0}.
zeG
Indeed we have

Lemma 2.1.1. Let f € L3(G), then af € L3(G). Hence the following map is
well defined.

04|L3(G) : Ly(G) — Li(G).
Proof: For f € L3(G) we get

S @f)y) =D 1alyr ") f(x)

yeG yeG zeG
- ZZlA(yafl)f(x) (2.1.3)
zeG yel@
=AY f(x)=0.
zeG

O

Therefore, to prove Theorem 2.1.1 we need to prove the following inequality

loif s ILas flls _ (1G] Y2
ol 30l = sup =0 S < e Mk
BN ™ rerse) Fll2 orrerzey 1712 m(G)
(2.1.4)

Let 0, be the characteristic function of the set {x}, then {d, },cq is an orthonormal
basis of C%. The following lemma is easy to prove.
Lemma 2.1.2. The matriz of a with respect to this basis is the biadjacency matriz

of the bipartite graph G.
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Proof: Let G = {z1,...,x,}, then to find for instance the first column of the
matrix associated to the operator a we need to write ad,, with respect to the

basis {d,,}. We have

n

04511 = Z(aéﬂ?l ) ($j>696]'

J=1

= Z(1A % 0,) ()00, (2.1.5)

n
=D Lalwjar "),
j=1
Hence the first column of o with respect to this basis is the column vector

lA(xlxl_l)

1A(1'2[E1_1)

La(zjzrt)

1A(Z‘nZL’1—1>

which is exactly the first column of the biadjacency matrix of G. O

Since A C G is not necessarily a symmetric set, i.e., A # A~ the matrix
representation of the operator « is not necessarily a symmetric matrix. In other
words, the biadjacency matrix of the bipartite graph G can be a non-symmetric
matrix.

Now let us recall an important theorem in linear algebra: let 7' be a symmetric
operator on an inner product space V. Then by the spectral theorem one can find
an orthonormal basis for V| say {vi,vs,...,v,}, so that the matrix of T with
respect to this basis is a diagonal matrix. Perhaps it is appropriate to mention
that this is equivalent to saying that any quadratic form can be diagonalized
orthogonally. When T is not symmetric however, we have the following theorem.
Theorem 2.1.2 (Singular value decomposition). Let V' be an inner product space
with norm denoted by |.|, and let T be any linear map on V. Then there exist

two orthonormal bases {uy,...,u,} and {vi,...,v,} such that the matriz of T
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with respect to these bases is

A1
Ao : (2.1.6)
An
where \y > --- >\, > 0. Moreover
T ||op == iup % =\

Proof: Let v be a non-zero vector such that |7'(v)|/|v| is maximized. Now
suppose that w is any vector orthogonal to v. We claim that T'(w) is also orthog-

onal to T'(v). To prove this claim let € be a small real number. Then

|T(v+cw)|* = (T(v) + T (w), T(v) + T (w)) 2.17)
= [T@) + 2eR((T(v), T(w)) + [T (w)]* N
Moreover since v is orthogonal to w,

v+ ew|® = Jv]* + *|w]?,

as (v,w) = 0. Since v was chosen so that |T'(v)|/|v| to be maximized then we

have
2 2
T+ =0l _ TP o1
v + ew|? [v]?
therefore
T (v + ew)/? - v+ ew|?
TP = P
From this inequality and (2.1.7) we have
2 2 2|12
2R(T (). Tw)) T _ o1

TP TR = P

But this implies that R((T'(v),T(w))) = 0, since otherwise £ can be chosen so
small with the same sign as R((T'(v), T'(w))), such that (2.1.9) is not fulfilled. We
also have S((T'(v), T(w))) = 0, by choosing iw and repeating the above argument.
Therefore we will get a linear transformation from the orthogonal complement

of (v) to the orthogonal complement of (T'(v)).

T : (v)r — (T(v))* .



40

By induction, 7" has a matrix of the required form. Now set

vy =wv/|vl,
=T()/IT(w)] =T (v1)/|T(v1)l, (2.1.10)
= [T (vl
then T'(vy) = Ajwy, which proves the theorem. O

Remark 2.1.2. As shown in the proof, we have

| T'(w)]

A= max —=— =||T on-
2 O;Awe(i(l)l ‘w‘ || |<v1>l|| D

This remark will be invoked afterward.
For the vector space CY with norm || - ||, and operator a, defined in (2.1.2),
we will apply Theorem 2.1.2 to get two orthonormal bases for C¢ so that, with

respect to these bases, « is a diagonal matrix with the diagonal elements
AMZA 22N 20,

so that
lrllop = Ar-
Remark 2.1.3. With the same notation as Theorem 2.1.2, \?’s are the eigen-
values of aa*. We will, by abuse of notation, call \; the ‘eigenvalues” of «.
The eigenvalues of o will give some information about the number of edges of
the bipartite graph G. More precisely, we have

Lemma 2.1.3. For the bipartite graph G, with biadjacency matriz also denoted
by G, we have

n|A| =|E(9)| = Tr(gg") = ZA
where n s the order of G.

Proof: We have

Tr(GG") =Y 1alyz™") =n|A| = [EG)].

yeG zeG
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To show that Tr(GGT) = >""" | A?, by Theorem 2.1.2 we can find two orthogonal

matrices, say Xy and X, such that

¥1GY, =

Therefore
Tr (GG7) = Tr ((zlgzz) (21G%) ) Zv
O

From Theorem 2.1.2 we see that |||, = A;. In the following lemma we will
find a graph interpretation of the norm of a.

Lemma 2.1.4. We have

lllop = Ar = [ Al

moreover the multiplicity of the eigenvalue A\ is one, i.e.,

Remark 2.1.4. [t is worth mentioning that for a k-reqular graph X one can show
that

o )\ =k.

o A\, has multiplicity 1, if and only if X is connected.

Proof of Lemma 2.1.4: For two complex numbers a, b notice that
0 < |a—b]*=|al* + |b]* — ab — ab,

then

(ab + ab) < |a|® + |b]*. (2.1.11)
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For any f € CY, from the above inequality we have

lafllz = 1N = 10ax HyF =

ZlA yr !

yeG yeG yeG |zeG
(s 1A<yxl>f<x>) > 1A<yzl>—f<z>>
yeG \zeG z€G
— Z f(x) ZL“ yr )1a(yz"") (2.1.12)
r,z€G yeG
1
<5 2 (F@P+1F)F) D Lalye™)1aly=")
z,z€G yeG
S IIELS ) DRI
zeG zeG yelG
But
DY lalyr1alyz") = AP,
zeG yeG
therefore for any 0 # f € C% we have
o/l _
1f1l2
This implies that
lallop < |A.

Now, for the constant function 1¢(g) = 1, we have

lolglla = VIG]IAL

(2.1.13)
[lellz = VIG],
hence
lalgl|2
el

From this we deduce that |||, = |A]. To show that the multiplicity of A\; is 1

notice that when a # b we have
(ab+ ab) < |a* + |b]*.
which gives a strict inequality in (2.1.12). O

We use this lemma along with Theorem 2.1.2 to prove the following important

corollary which will play an essential role in the proof of Theorem 2.1.1.
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Corollary 2.1.1. Let Ay be the second largest eigenvalue of o, then the following

set is a linear subspace of C%

W:=<{feC"“: Zf(x) =0, and lofllz =X,
2 1715

Proof: From Theorem 2.1.2 and Lemma 2.1.4, we obtain an orthogonal basis

fis.-, fnof CY | with fi = 1g, such that afy,...,af, are orthogonal and

_llalls
7l

Also, as we saw in the proof of Theorem 2.1.2, we have

Ai

(7 <1g>l — <alg>J',
hence W C (1¢)*. Moreover by Remark 2.1.2 we also have

laf|l
= max -—— = |« on- 2.1.14
0£fele)t ||f||2 H |L(2)(G)|| D ( )

W is obviously closed under scalar multiplication, then we just need to show that
W is closed under addition. If v, vy € W (v, v are functions), then by (2.1.14)

we have

lla(vr £ v2)]2 < Agllvr £ 2| (2.1.15)
Moreover, by the parallelogram law we have
lac(vr + wa)lf5 + [la(vr = v2) 3 = 2llex(va)l]3 + 2l|ex(va)]]3
= Ao (2[|vr[[3 + 2[|vaf3) (2.1.16)
= Xo([lor + w213 + [lor — va3).
Then from (2.1.15) and (2.1.16) we have
le(vr £ v2)l2 = Aaflor £ w22,
which shows that W is a subspace. 0

Now let
D= A== A,

then we show that [ is big if G does not have any non-trivial representation with

small degree. The idea is to define a non-trivial action of G on W, which induce
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a non-trivial representation and then use the fact that the group G' does not have
small representations.

Lemma 2.1.5. For g € G and f € CY, define T,f € CY by

Ty f(x) := f(xg)-

This action of G on C has the following properties:
DA Tgfllz = 1l fl2-
2) la(Tyf)ll2 = llafll
3) B(T,f) = E(f).

Proof: For 1), we have
ITy(DI5 = D_1F(xg)* = 3 [F@)* = 1115
z€G e
To prove 2) we remark that

(T Ny) = (La* T f)(y) = Y Talya™") f(xg)

zeG

= 3" Lalyg(zg) ) (xg) (2.1.17)

zeG
= Ty(af)(y).
Then o(T, f) = T,(cuf ), therefore by 1) we can show 2). To prove the last property

notice that

S Tf(x) =) flzg) =) flx). (2.1.18)

zeG zeG zeG

Hence we have 3) as well. O

By Lemma 2.1.5 we deduce that G acts on W, however we need to show that
this action in non-trivial.

Lemma 2.1.6. G acts non-trivially on W.

Proof: Since any non-zero function f in W is a non-constant function, there

exists g € G such that T, f # f. So G acts non-trivially on WW. O

Proof of Theorem 2.1.1: From Lemma 2.1.3 we have

> M =IGllAlL
i=1
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With the notation of Corollary 2.1.1, let
No= A== A

then
)5 < |G]IA]. (2.1.19)

But G acts non-trivially on W by Lemma 2.1.6. Hence from this action we get a

non-trivial representation of G, so
[ =dim W > m(G).

Therefore by (2.1.19) we have

2 < 1GUA _ [Gl1A]
l m(G)
but as mentioned in (2.1.14)
Ay = Ha’L?)(G)HOW
SO
GlIAN™?
el 2 llop < wa) )

O

As we saw, the main idea in Gowers’ proof was to estimate ||af|| when the
average of [ is zero. So one might ask a more general question. For given compact

group G, let us define

LYG) := {heLQ(G):/Ghdu:O}.

Notice that L3(G) is a Hilbert subspace of L*(G). Let f1, fo € L*(G) and at least
one of fi, f> belongs to LZ(G). What can we say about ||f; * fol|2?

To answer to this question we step back and look at what we have done for
finite groups, from a more abstract point of view. One of the main identities that

appears in Gowers’ proof was

1G] ms := Tr(GG") = Al (2.1.20)

From functional analysis, we know that any Hilbert-Schmidt operator has a prop-

erty similar to (2.1.20). Moreover, we used the singular value decomposition
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to diagonalize the convolution operator a. Fortunately when an operator over a
Hilbert space is compact, we have the singular value decomposition. So we should

see when our convolution operator is compact. We consider the following kernel

K(z,y) == filzy™).

Since G is a compact group, we have K(z,y) € L*(G x G). For this kernel, we
define the following integral operator
O : L*(G) — L*(G)

(2.1.21)
h—s ®g(h),

where

B()(a) = | Kl y)h(du(w) = [ filey Mhiw)dnty) = (1<) (a).
¢ ¢ (2.1.22)
We should remark that the operator @5 indeed should be compared with the
definition of o (See (2.1.2)). Therefore, to evaluate || f1 * f2||» when f; € L3(G),
we need to compute the norm of H(I)K‘Lg(G)”OW since
o
12xlracllop = o X 12l H%)ZHQ-
In Chapter 3 we will consider these operators and answer the question we asked
about the size of || f * fa]|2. To sketch the idea, first notice that @ is a Hilbert-
Schmidt operator, and hence is a compact operator. We will then use singular
value decomposition theorem, which is valid for compact operators, to write the

spectrum of (I)K|Lg((;)> say

AL > Ay > >0
From the singular value decomposition we will have
A= ”(I)K‘Lg(G)HOP'

A} is indeed an eigenvalue of the self adjoint operator ® | 12 Pkl 13()- We will
see, using representation theory, that the multiplicity of A? in the spectrum is big

if the compact group G does not have a small dimensional representation.
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2.2. THE PETER-WEYL THEOREM AND PRODUCT-FREE SETS

In this section we will give another approach to approximate the product-free
measure of compact groups. By using the famous Peter-Weyl theorem we will
prove the following theorem.

Theorem 2.2.1. Let G be a compact group. With the notation used in Defi-
nition 1.1.8, let A C G be a measurable set so that u(A)® > 1/m(G). Then
A3 =G.

This theorem is essentially due to Emmanuel Breuillard, who reproved Gowers’
theorem 1.1.4 for finite groups. However his method can be modified to be used
for compact groups. Indeed this method clearly shows how representation theory
comes to play in the context of “group expansion”. The main idea is to show

that, for any element g € G

Ta*x1a%14(g) = p{(z,y,2) € G : 2yz = g} # 0,

where g is the normalized Haar measure. Set f := 14 %14 % 14. It is standard in
number theory and additive combinatorics, to look at the Fourier coefficients of
a function which gives much information about the original function. Indeed we
will write f with regard to its Fourier expansion, and will derive a contradiction
if f(g) = 0 for some g € G. However, in order to prove the above theorem, we
need to recall some facts from Fourier analysis on compact groups. The main tool
that we will use in this section is Parseval’s theorem; the compact groups case is
due to Peter and Weyl. To give a better illustration of the Peter-Weyl theorem,
we start from finite groups, and gradually we will move to compact groups. For
more details on Fourier analysis over finite groups see [68]. First we recall some
basic definitions.

Definition 2.2.1. Let V' be a finite dimensional C-vector space of dimension n.
For a given finite group G, a linear representation is an homomorphism from

G to the group of invertible transformations of V. In other words
p:G— GL(V),

is a group homomorphism. n is called the dimension of the representation p.
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Remark 2.2.1. When p is given, we say that V is a representation space of G
(or even simply, by abuse of language, a representation of G ).

Let us give some examples:
Example 2.2.1. The first example is the classic Dirichlet characters. For an in-
teger n, a Dirichlet character modulo n is a group homomorphism from (Z/(nZ))"*
to C*. These are all one dimensional representations.

Another example is the reqular representation.

Example 2.2.2. Let G be a finite group. Let V' be a C-vector space with basis

{eg}QGG'

For s € G, let ps be a linear transformation that maps ey to esq. From this we
get a representation of dimension |G|. This representation is called the reqular
representation and detects much of the group theoretical structure of G.

We pick another example.
Example 2.2.3. Let S5 be the symmetric group with three elements. Also let V

be a C-vector space with basis
{617 €2, 63}'

For any o € Ss, let p, be a linear transformation that maps e; to ey;). More

precisely, for v = aje; + ases + azes we have
P (V) = a1€(1) + G2e5(2) + A3€4(3)-

This provides a representation of dimension 3. Notice that the following set is

inwvariant under the action of Ss.
W={veC®: a =ay=as}

In particular V' has an Ss-invariant subspace.

From the examples above we see that the representation V' can be sometimes
decomposed into smaller representations. When this cannot happen we say that
the representation is irreducible.

Definition 2.2.2. Let (p, V') be a representation of a finite group G. p is called

wrreducible when V- does not have any invariant subspace under the G-action.
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Of course any one dimensional representation is irreducible. One can show
that all of the irreducible representations of a finite abelian group are one dimen-
sional.

Example 2.2.4. In this example we determine all of the irreducible representa-
tions of Z/(nZ). For h =0,...,n — 1 we define
Xn: Z/(nZ) — C*

2nihk
k—e =

(2.2.1)

These representations are all the irreducible representations of Z/(nZ). The set
of all of these representations will be denoted by Zm)
These representations indeed, gives us the Fourier analysis on Z/(nZ). Let us
recall it, since this would gives a better understanding of the Peter-Weyl theorem.
Let f € L*(Z/(nZ)) be a function, then the Fourier coefficient of f with

—

respect to a representation x € Z/(nZ) is defined by

Fo) =)= > fll)xk).
k  (mod n)
Notice that f is an element of L%ZW)). We have the following theorem, known
as Fourier inversion.

Theorem 2.2.2 (Fourier inversion for Z/(nZ)).

fo) == 3 Tooxt) (222)

X€EL/(nZ)
Also we have the following theorem, which is sometimes called Plancherel’s
formula.
Theorem 2.2.3 (Parseval’s theorem for Z/(nZ)). For a function f € L*(Z/(nZ))

we have
1 ~
2 1L 2
£ = A f 1l

Now let G be a finite group, and let f € L?(G). For any irreducible represen-

tation (p, V,) of G we can similarly define the Fourier coefficient.

Fo) =" fg)nla)-

geG
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Let us emphasize the difference when G is a an abelian group. Indeed, when G
is abelian, p is one dimensional, so the Fourier coefficient is a complex number.
But for a general group, p is not necessary one dimensional, so f(p) is a linear
transformation of V,. The Fourier inversion formula now reads:

Theorem 2.2.4 (Fourier inversion for finite groups). Let f € L*(G) then
1 i —
flg) = €] > d,Try, (f(p)p(g 1)) : (2.2.3)
o

where the sum is over all the irreducible representations (p,V,) of dimension d,.
Moreover we have Parseval’s identity.

Theorem 2.2.5 (Parseval’s theorem for finite groups). Let f € L*(G) then

21 YAYIAY:
nm:@;mmwwmw, (2.2.4)

~ ~

where f(p)* is the conjugate transpose of the matriz f(p).

Let us go further and consider the circle group. For S! one can observe that
the irreducible finite-dimensional representations are 1-dimensional, hence are
given by additive characters. The exponential functions z — €™®, where n is an
integer, are examples of all additive characters. For a function f € L?*(S'), define
the Fourier coefficient of f by

1 )
L= — —inz Jo.
c o7 f(x)e x

Then by Parseval’s theorem we have

1 2 2
3 [ H@F = e

neL

the Peter-Weyl’s theorem is indeed a vast generalization of Parseval’s theorem.
As we saw for finite groups and for S!, by Parseval’s theorem the L?*-norm of a
function can be expressed by the L?-norm of its Fourier transform.

We define a finite-dimensional representation of a topological group G on a
finite-dimensional complex vector space V' = C” to be a continuous homomor-
phism p of G into GL,,(C) . The continuity condition means that in any basis of
V' the matrix entries of p(g) are continuous for g € G. It is equivalent to say that
g — p(g)v is a continuous function from G into V for each v in V. Indeed we

have
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Theorem 2.2.6 (Peter-Weyl). If G is a compact group, then the linear span of all
matriz coefficients for all finite-dimensional irreducible unitary representations of
G is dense in L*(G).

For more details, we refer the reader to an excellent reference with many
examples [48]. Let us set some notations. Let f € L*(G) be a square integrable
function with respect to the normalized Haar measure y, meaning that u(G) = 1.

For a continuous representation p, define the Fourier transform of f by

7o) = /G £(9)p(9)dp(g). (2.2.5)

From the Peter-Weyl’s theorem, we have the following well known theorems.
Theorem 2.2.7 (Fourier inversion formula for compact groups). Let G be a

compact group and let f € L*(G). Then
1(9) = do(F(0). pl9)) s, (22.6)

where the sum s over all the continuous irreducible representations. Moreover,

the Hilbert-Schmidt inner product, denoted by (.)us is defined by
(A, B)ys :==Tr(AB"),

where B* is the complex conjugate.
Remark 2.2.2. Here we consider all representations to be unitary, which can be
done by Weyl’s unitary trick since G is a compact group.

Notice that

[ABlas < | Alls|Bllms- (2.2.7)

We also have
Theorem 2.2.8 (The Parseval-Plancherel theorem). For a compact group G, let
f € L*G). Then

113 =" doll F(0)II3s (2:2.8)

where the sum is over all the continuous irreducible representations.
Consider the function 14, then from Plancherel’s theorem, we can deduce the

following
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Lemma 2.2.1. For any non-trivial continuous irreducible representation m, we

have

u(A) = m(G)|[Ta(m) |-

Proof: Notice that ||14]|3 = (A), so by Plancherel’s theorem we have

u(A) = dollTa(p)lirs = dallTa(m)liErs = m(G) | Ta(m)llrs-

peG

Now we prove Theorem 2.2.1.

Proor OoF THEOREM 2.2.1. To prove Theorem 2.2.1, we will consider f to

be 14%14%14. Then we will show that f(g) # 0 for any g € G. This in particular

implies that g € A3, and hence G = A3. Suppose f(g) = 0 for some g € G. We

will derive a contradiction. Notice that

hence from the Fourier inversion formula we have

0=f(g) =Y d,(Ta(p)*. p(9)) s

ped

= 1A+ dy(Ta(p)?, p(9) 5.

p#1

Therefore

> " d,(1a(p)*, p(9))nis

p#1

<> d, [(Tale)" pl9)ns|

p#1

u(A)* =

= >, [(Ta(o)2. pl9) Talp) Vs

p#1

(2.2.9)

(2.2.10)
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Notice that ||p(9)1a(p)*|ls = ||1a(p)|| s since p(g) is an unitary matrix, there-
fore from (2.2.10) we have

pAP < 37, [T p(9)Talp) s

p#1
<> dolTalp)llusllp(9)Ta(p) llus  (by Cauchy-Schwarz)
p#1
<> do|Talp) s
p#1
A —
< 2L S TR 3 (by Lemma 22.1)
m(G) &~
peCG
1(A)
—u(A).
m(G) (A)
Hence
s o [HA) 3o 1 2.2.11
HA) <[ B i) = ) < (22.11)
which is a contradiction. O

Then by Theorem 1.1.2 we can prove Corollary 1.1.8.

2.3. MINIMAL DEGREE OF NON-TRIVIAL REPRESENTATIONS OF

FINITE GROUPS

As we saw in Gowers’ proof, to show that the multiplicity of the second
eigenvalue is high, one needs to show that the minimal degree of any non-trivial
representation of a given group G is big. These groups are called “quasirandom
group” by Gowers [31]. This concept is highly related to the nature of the group.
For instance, for a given group G, let p be a one dimensional representation, then
this representation factors through G/G’, where G’ is the commutator subgroup.
Conversely, any representation of G/G’ gives a representation of G. Since G/G" is
an abelian group, then G/G’ has exactly [G : G'] one dimensional representations.
Hence we have

Lemma 2.3.1. The number of one-dimensional representations of G, is [G : G'].



o4

Therefore if a group G is perfect, meaning that G = G, all of its non-trivial
representations have dimension bigger or equal than 2. For a finite non-abelian
simple group G of order n however, Jordan showed that every non-trivial repre-
sentation of G has dimension at least v/log n/2. This was rediscovered by Gowers
as well (See [31], Theorem 4.7).

Frobenius wrote down the character table of SLy(F,), and then proved that
any non-trivial representation of this group has dimension at least (p—1)/2. How
can one get such bound without finding the character table? We will describe a
method which we call the “eigenvalue multiplicity principle”. The idea is very
simple. For an n x n complex matrix A, n is obviously greater than or equal to
the number of distinct eigenvalues. Let us describe how this simple observation
gives us a bound for the minimal degree of a non-trivial representation.

To illustrate this principle we first consider a hypothetical situation. After
words we will come back to more concrete examples.

Lemma 2.3.2. Suppose that G s finite group, and let
p:G— GL4(C),
be a non-trivial representation. For an element g € G of order p, let us assume
that
pg = plg) # 1,
where I is the identity matriz in GL4(C). Moreover assume that g is conjugate

to g, for all integers 1 <t <p—1. Thend>p—1.

Proof: Since the order of g is p and p, is not the identity matrix, then at

2mim

least one of the eigenvalues of p, is ;" :==e » , where ged(m,p) = 1.

Notice that (/™ is an eigenvalue of py = pl. But g is conjugate to g', hence
pg is also conjugate to pg,. Any two conjugate matrices have the same set of
eigenvalues. Hence C;”t is also an eigenvalue of p,. From this we get p — 1

different eigenvalues, so d > p — 1. O

Now let us look at an example. Take the symmetric group of n-elements, where
n > 5. The commutator subgroup of S, is A,, which has index 2. Therefore S,

has only two one dimensional representations. One is the trivial representation
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and the other one is the sign representation, which assigns to each element of
o € S, its sign sgn(o).
Lemma 2.3.3. Forn > 5, let

p: S, — GL4(C),

be an irreducible representation of dimension greater than or equal to 2. Then p
15 a faithful representation, meaning that p is an injective homomorphism.
S, acts on C™ by permuting the coordinates. More precisely, for ¢ € S,, and

v =aie; + -+ + ape,, we define
0.0 = a1€s(1) + -+ + UnCo(n)- (2.3.1)

This does not give us an irreducible representation. Notice that the subspace W

defined by
W={veC:a=ay=-=a,},

is fixed by S,,. However, W is irreducible (it has dimension 1), and one can show
that the complement,
Wt = {vEC”:Zai:O},
i

is an irreducible representation of degree n —1. Frobenius and Schur have studied
representation theory of the symmetric group. Indeed in modern language there is
a correspondence between the set of irreducible representation of .S,, and “Specht
Modules”. Using this correspondence one can show that, for n > 6, the minimal
degree of non-trivial representations of the simple group A, is n — 1.

Here we just consider S,, when p is a prime greater than 5, and use the
eigenvalue multiplicity principle to show that the degree of any irreducible rep-
resentation of S, beside the trivial one and the sign representation, is at least
p — 1. First we prove the following lemma.

Lemma 2.3.4. Forn > 5, let H be a normal subgroup of S, such that
HnN A, ={id},

where A,, is the alternating group on n letters. Then H is the trivial subgroup.
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PRrROOF. First we show that H has at most two elements. Suppose id # o € H,

therefore sgn(o) = —1, since H N A,, = {id}. Hence
o’ e HNA, ={id} = oc=0"".
Let 7 € H be an another element of H different from o and id, then
or€ HNA,={id} =71=0"'=0,
which is a contradiction. Therefore H = {id,c}. But H is a normal subgroup,
therefore for any n € S,, we have
no =om,

so o belongs to the center of S,. It is well known that the center of S, is trivial,

hence H is a trivial subgroup. O
From this lemma we can prove Lemma 2.3.3.

Proof of Lemma 2.3.3: Note that ker p<1S,,, therefore ker pN A,, < A,,. But
A, is a simple group for n > 5. Hence ker p = A, or p is faithful. Let

kerp = A,,

then we have the following representation of S, /A, = Z/(2Z),

p:Sn/A, — GLy4(C)
(2.3.2)
oA, — p(o).
Notice that an invariant subspace of C? under the action of p, remains invariant
under the action of p. So p is an irreducible representation of dimension greater

than or equal to 2. But this is a contradiction, since Z/(27Z) has only two one

dimensional irreducible representations. U
Theorem 2.3.1. For a prime p > 5, let
p: S, — GL4(C),

be an irreducible representation of dimension greater than or equal to 2, then

d>p—1.
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Proof: Take the permutation

g=(1,2,....,p—1,p).

By Lemma 2.3.3, p is faithful therefore

pg # 1.

For 1 <t < p— 1, notice that g and ¢' have the same cyclic structure so g is
conjugate to g*, for all integers 1 < ¢t < p— 1. Moreover the order of g is p. Then
by Lemma 2.3.2 we deduce d > p — 1. U

In this argument, we just picked one eigenvalue, and then produced many
other eigenvalues from it. In our proof for the minimal degree of non-trivial
representations of SLy(Z/(p"Z)), we manipulate this argument, and instead of
picking just one eigenvalue, we pick many eigenvalues. To do this, we will consider

the root functions. We postpone this argument to Chapter 3.

2.4. SOME REMARKS ON COMPACT OPERATORS

In this thesis, we always consider our Hilbert space to be separable, meaning
that it has a countable basis, or equivalently has a countable dense subset. A
typical example would be L?(G), when G is a compact group.

Let X, Y be normed spaces. An operator T from X to Y is called bounded if

there is a number M so that for any x € X we have
IT(2)lly < M|z x-

Definition 2.4.1. The vector space of all bounded linear operators from X to'Y,
will be denoted by B(X,Y).

In linear algebra, we mostly work with finite matrices. Compact operators
are the natural generalization of matrices.
Definition 2.4.2. A linear transformation T' € B(X,Y’) is compact, if for any
bounded sequence {x,} in X, the sequence {T(x,)} in'Y contains a convergent

subsequence.
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To illustrate this definition, let us give some examples. An operator T €
B(X,Y), is called a finite rank operator when its image is a finite dimensional
vector space. Let T be a finite rank operator with image Z = Im(T). Now,
for any bounded sequence {z,} in X, the sequence {T(x,)} is bounded in Z,
so by the Bolzano-Weierstrass theorem this sequence must contain a convergent
subsequence. Hence T is compact. This in particular implies the following lemma.
Lemma 2.4.1. Let X be a Banach space. Let {Ty} be a sequence of bounded,
finite rank operators which converges to T € B(X), then T is compact.

When H is a Hilbert space, the converse of the above theorem is also valid.
Lemma 2.4.2. Let T' € B(H) be a compact operator, then there is a sequence of
finite rank operators {Ty} which converges to T in B(H).

This indeed would justify our attempt to study compact operators for our
problem. Notice that, when T € B(H) is compact, Ty, — T, where T}, are
finite rank. Therefore T} — T™. Hence T™ is also a compact operator. Another
interesting property of compact operators is closedness that they form an ideal in
B(H). This means that for two bounded operators S, T, if at least one of them
is compact, ST is compact.

Now we consider a specific family of compact operators, which are called
Hilbert-Schmidt operators.

Lemma 2.4.3. Let H be a Hilbert space with norm denoted by ||-||. Let T € B(H)
be a bounded operator, and assume {e;}, and {e;} are two orthonormal basis for

H, then
D ATE)IP = ITE* (24.1)

Proof: By Parseval’s identity

IT (el = (T (e, ef) .

J
and

1T (e = Z [{es, T* (5.
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Therefore

LIS MH W
- ZZ“%T*(@'”

=D T (DI
=D IT (eI

(2.4.2)

O

With this theorem for 7' € B(H) we can define a norm which is called
Hilbert-Schmidt norm.
Definition 2.4.3. An operator T' € B(H) is called a Hilbert-Schmidt operator

when for some orthonormal basis {e;}, hence for any orthonormal basis, we have

ST ()P < o

For these operators, the Hilbert-Schmidt norm is defined by

ITVs =D IT (el

To justify this definition we remark that for a finite matrix A, we have

|Al5s = Tr(AA") => A7,

where A* is the complex conjugate of A and \? are the eigenvalues of AA* (See

Theorem 2.1.2). We should mention that the usual norm of an operator is defined

by

|7 (=)
[T Nlop == = sup [|T(z)].
otzen || 7| ”xﬁ?_il

The following lemma which will be needed for Chapter 3.
Lemma 2.4.4. For any T, S € B(H), we have

ITSs < T sl S s

Proof: For any operators T',S € B(#), and an orthonormal basis {e;}, we

have

ITSIIEs = D ITS(e)l* < ITI5, D IS eal* = ITIZ, 1S 11zs- (2.4.3)
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Now let e; be a unit vector, then by extending this to an orthonormal basis {e;}

we observe that

1T ()l < [T [|s,

therefore

IT]lop < T s
From this and (2.4.3), we have the required inequality. O

Moreover the following properties of Hilbert-Schmidt operators.
Lemma 2.4.5. Let H be a separable Hilbert space and let T € B(H) then
a) T is Hilbert-Schmidt if and only if T* is Hilbert-Schmidt.
b) If either S or T is Hilbert-Schmidt, then ST is Hilbert-Schmidt.
c) If T is Hilbert-Schmidt then it is compact.

In Chapter 3 we will give some other properties of Hilbert-Schmidt operators.

2.5. PROFINITE GROUPS

In this section, we will spend some time to explain some basic properties of
profinite groups. Historically, the notion of profinite groups first appeared in the
theory of Galois correspondence. Indeed let E/F be a finite Galois extension,
and assume that H C Gal(E/F). Then Gal(E/L) = H, where L is the fixed
field of H. But when E/F is an infinite Galois extension, this is not necessarily
true. Krull was the first to put a topology, called the “Krull topology”, on
Gal(E/F). This topology is Hausdorff, compact and totally disconnected. With
this topology one can show that Gal(E/L) = H, where H is the closure of H.
The Krull topology is essential in the theory of Galois Cohomology.

Another example of profinite group is the ring of p-adic integers, denoted by
Z,. Let us recall that

Z, = {(xn) e [1@/('2)) : wars = 2 (mod p")} .
Abstractly we have reduction maps

On L) ("L — ) (p"Z), (2.5.1)
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and then
Zy = {2 = (2,) € [[@/(0"D) : pnrmaia(e) = mal2)}
where 7, is projection map.

Z)(p"t L) —e— L/ (p"Z)
AN

Tn+1 Tn,

—

Put the discrete topology on Z/(p"Z), then by Tychonoft’s theorem [[Z/(p"Z)

P

is compact. Using this, one can that Z, is a compact ring. This motivates us to
consider the following concepts. A directed set is a partially ordered set I such
that for all 71,45 € I there is an element j € I for which 7; < j and 7, < j.

Definition 2.5.1. An inverse system (X;, yi;) of topological spaces indexed by
a directed set I consists of a family (X;)ier of topological spaces and a family
0ij + X; — X, fori < j, of continuous maps such that y;; is the identity map

Idx,, for each i and @;jpjr = pi, whenever 1 < j < k.

X

@V ‘\%‘j
X, — X;

The sets for which no other topology is specified will be regarded as topological

J

spaces with the discrete topology. If each X; is a topological group and each
©;; is a continuous homomorphism, then (X;, ¢;;) is called an inverse system of
topological groups; an inverse system of topological rings is defined similarly.
Example 2.5.1. Assume I = N and let p be a prime. Let G; = Z/(p'Z) for
each i, and for i < j let ¢;; : G; — G; be the reduction homomorphism. Then
(G, pi;) is an inverse system of finite rings.

Definition 2.5.2. An inverse limit (or projective limit) (X, ;) of an inverse
system (X, ij) of topological spaces (resp. groups, rings) is a topological space
(resp. group, ring) X together with a compatible family ¢; : X — X; of con-
tinuous maps (resp. continuous homomorphisms) with the following universal

property: whenever 1; 1 Y — X; is a compatible family of continuous maps from
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a space Y (resp. of continuous homomorphisms from a group or a ring Y), there

is a unique continuous map (resp. continuous homomorphism) ) : Y — X such

that w1 = ; for each 1.

Y (2.5.2)

\
N

pij— X; =Y

J
4

Now let (X, ¢;;) be an inverse system, then the inverse limit of this inverse
system, denoted by @Xi, exists. To define this, we simply mimic the construc-
tion of Z,,.

Hm X := {x = (z;) € HXi D pims(x) = Wl(x)} . (2.5.3)

Here 7; stands for the projection map. A topological space is called totally dis-
connected when the connected component of each element has only one element.
Lemma 2.5.1. Let (X;, ¢;;) be an inverse system, with inverse limit X := @Xi,
then

1) If each X; is Hausdorff, so is X.

2) If each X; is compact and Hausdorff, so is X.

3) If each X; is totally disconnected, so is X .

Therefore if all X; are discrete then X is Hausdorff, compact and totally
disconnected.

Definition 2.5.3. A topological group G is called profinite when G is Hausdorff,
compact and totally disconnected.

One can show that any profinite group is an inverse limit of finite groups. To
emphasize the vital role of profinite groups, let us mention that

Gal@/Q) = lim  Gal(E/Q).
ﬁnitg/galois
This relation is very important, since by this one can reduce any continuous
representation of Gal(Q/Q) to a linear representation of a finite quotient. In

Chapter 3, inspired by these arguments, we will give some other properties of
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profinite groups which are relevant to our work. We will work with continuous

representations of the profinite group SLy(Z,).

2.6. REGULAR TREES

This section is devoted to the automorphism group of regular trees. A treeis a
connected non-empty graph without circuits. For instance the following diagram

is a 3-regular tree. Another way to visualize a regular tree is to look at the Cayley

FIGURE 2.2. Rooted tree

graph of the free group F,,.

Trees have been source of many important contributions in mathematics. We
pick an example merely to show its importance. Thara [45] in 1966 proved that
every torsion-free subgroup G of SLy(Q,) is a free group. Serre [63] reproved
this theorem using trees. Serre’s idea was to connect this group to a tree via
the fundamental group of a topological space. Indeed he showed that G act
freely (“without fixed points”) on a tree X. The idea is roughly that G is the
universal cover of X/G, hence G may then be identified with the fundamental
group m1(X/G) of the quotient graph X/G, a group which is obviously free. In
this thesis we are more interested in the automorphism group of a tree. Let us
set up some notations for this group.

Let Ti11 be aregular tree of degree k+1. The automorphism group Aut(7Ty1)
of Ty is the group of isometries of the vertex set of Ty ; with respect to the
discrete metric d, where d(z,y) is the smallest number of edges on a path in Ty,

connecting x and y. In other words, by an automorphism of 7T;,; we mean a
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permutation of the set of vertices of Ty, that preserves adjacency. Notice that

Aut(Ty41) acts transitively on Ty, 1. For a sequence o, € Aut(Tjy1), we define
o, — O,

if for any = € Ty, there exists n, so that for all n > n,, we have o,(z) = o(x).
With this topology, called pointwise convergence topology, one can show that
Aut(Ty41) is a locally compact topological group. We can define this topology via
a subbasis for the topology. We fix a vertex O of T, which we may occasionally
refer as the root. Let Ay, be the stabilizer of O in Aut(Ty,1). For any = € T,

there is a an element o € Aut(Tk11), so that 0,(O) = x, therefore
JIAk+10y7 T,y € Tk+17

is a subbasis of the topology.

Lemma 2.6.1. Ay is compact.

Proof: Let {0,} be a sequence in Aii1. Let {zog = O, 21, 29,...} be the set
of vertices of the tree Tj,1. Notice that ¢,(O) = O. Since o, is an isometry, for

any k the following set is a finite set
{on(zr)}-
Therefore for a subsequence, say ay,, we have
Tayy (5(;1) — O-am(xl) e O'aln(xl) - ...

Now we look at the finite set {0, (z2)}. There is a subsequence of ay,,, denoted

by as,, so that
Oy (T2) = 0oy (T2) =+ + = 04y, (T2) = - - -
We construct these subsequences inductively and define
0 (%) := 0y ().

Then o,,, — 0. U
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It turns out that Ag,; is a profinite group. In fact, every o € A, fixes O
and thereby permutes the set of all (k+ 1)k7~! vertices of distance j from O, for

every j > 1. This induces a homomorphism

©j Apyr — S(k—s—l)kzﬂ'*la
where S,,, denotes the symmetric group on {1,2,...,m}. We can now define the
following “congruence subgroups” that provide a system of fundamental open sets
around the identity automorphism:
Cj = {O' € Ak+1 . QOj(O') = Zd}
We have
Ak—i—l = @Ak+l/0j' (261)

We will speak more about this group in Chapter 3.






Chapter 3

PRODUCT-FREE SUBSETS OF PROFINITE
GROUPS

Authors: Mohammad Bardestani, Keivan Mallahi-Karai.

In this chapter we will prove our theorems which were stated in Section 1.1.1.
This chapter is organized as follows: In Section 3.1 we will recall some definitions
and set the notations. Moreover in this section we will establish some elementary
properties of the product-free measure. In Section 3.2 we gather some facts
about the representation theory of profinite groups. In Section 3.3 we will prove
Theorem 1.1.2. Gowers’ proof [31] uses the language of quasirandom graphs. We
will translate his argument to direct arguments in functional analysis involving
Hilbert-Schmidt operators which is more suitable for compact groups. This is

done in Section 3.4. In Section 3.5 we will prove Theorems 1.1.5, 1.1.6.

3.1. PRODUCT-FREE MEASURE
For a profinite group
G = @Gi,
the Haar measure can be easily described as a “limit” of counting measures. More

precisely, for an open set U C G we have,

(3.1.1)

where
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is the continuous projection (See Definition 2.5.2).
Moving to product-free measure, let us recall its definition. Let G be a com-
pact group with normalized Haar measure . We recall the definition of the

product-free measure of G.
pf(G) := sup{u(A) : A C G is measurable , AN A% = ()}.

First note that pf(G) < 1/2. This follows from the fact that if AN A% = () then
for each x € A, the sets A and z A are disjoint and have the same Haar measure.
When G is a non-trivial group then one can also easily see that pf(G) > 0 as
we now show: Let G be a compact group. It is known that the topology of G
is given by a bi-invariant metric (see Corollary A4.19 in [43].) Let dg be such a
metric and D = diam(G) be the diameter of G which is defined by

dim(G) = sup{dg(z,v) : z,y € G}.

Let us also denote f(r) = u(B(x,r)) (note that the bi-invariance of dg implies
that the volume of the ball is independent of its center.) Then we have

Proposition 3.1.1.
pf(G) > f(D/3) > 0.

Proof: Choose y, z € G such that dg(y, z) = D and let x = 2~'y. We have,
da(z,2?) = dg(1,2) = dg(z, z2) = da(z,y) = D. (3.1.2)

For u,v € B(x, D/3) we have

2D
da(uv, %) < dg(wv, uz) + dg(uz, v*) = dg(v, 2) + dg(u, ) < =

Then uv € B(x?,2D/3) and hence uv ¢ B(z, D/3) since otherwise we would have

D 2D
da(z, 2?) < dg(z,uwv) + dg(w, 2%) < 3 + =5 = D,

which contradicts (3.1.2). This shows that B(x, D/3) is a product-free set. [

We would also like to remark that one can give an alternative definition by

replacing ANA? = () with u(ANA?) = 0. However, these turn out to be equivalent:



69

Proposition 3.1.2. Suppose G is an infinite compact group with Haar measure

. Define
pfo(G) = sup{u(A) : A C G is measurable , u(AN A?) = 0.}
Then pty(G) = pt(G).

Proof: It is clear that pf(G) < pf,(G). To prove the inverse inequality, let A
be a measurable set with (AN A?) = 0. Then B = A—(ANA?) C A has the same
measure as A and BN B> C BN A% = (). This shows that pf(G) < pfy(G). O

3.2. COMPLEX REPRESENTATIONS OF PROFINITE GROUPS

In this section we will gather some facts about profinite groups that will be
used later. Our final aim in this section is to show that any non-trivial complex
continuous representation of SLi(Z,) (respectively Spy,(Z,)) factors through a
non-trivial representation of SLy(Z/(p"Z)) (respectively Spy.(Z/(p™Z))) for some
n (See Corollary 3.2.1). In the next section we will find a lower bound for such a
representation.

We call a family Z of normal subgroups of an arbitrary group G a filter base
if for all Ky, Ky € Z there is a subgroup K3 € Z which is contained in Ky N K.
Now let GG be a topological group and Z a filter base of closed normal subgroups,
and for K, L € 7 define K < L if and only if L is a subgroup of K. Thus Z
is a directed set with respect to the order < and the surjective homomorphisms
gxr : G/L — G/K, defined for K < L, make the groups GG/K into an inverse
system. Write

G = lim(G/K).

There is a continuous homomorphism

~

0:G—G

with kernel (1.7 K, whose image is dense in G. We have the following
Proposition 3.2.1 (See [69], proposition 1.2.2). If G is compact then 0 is surjec-
tive; if G is compact and (\er K = {id} then 0 is an isomorphism of topological

groups.
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Moreover we have,
Proposition 3.2.2 (See [69], proposition 1.2.1). Let (G, p,) be an inverse limit
of an inverse system (Gy,) of compact Hausdorff topological groups and let L be
an open normal subgroup of G. Then ker p,, < L for some n.
For the profinite group SLk(Z,) consider the following surjective homomor-
phism
0 — K, — SLi(Z,) 2 SLi(Z/(p"Z)) — 0,

where ¢, is induced by the canonical surjective homomorphism Z, — Z/(p"Z).
Clearly the set Z of K, is a filter base and (] K, = I, therefore by Proposition 3.2.1

we have

SLi(Zp) = Jim SLy(Z/(p"Z)).
Similarly

SPon(Zp) = lim Spyy (Z/ (p"Z)).

The following proposition is a standard fact in Galois representation, however for
the sake of completeness we will prove it.

Proposition 3.2.3. Let G be a profinite group, and assume p : G — GL,,(C)
1s a continuous representation. Then the kernel of p is an open subgroup, hence

Im(p) is a finite subgroup of GL,,(C).

Proof: First we show that there exists a neighborhood of the identity element
in GL,,(C) that does not contain any subgroup other than the trivial subgroup.
Let

exp : gl,,(C) — GL,,(C),

be the exponential map of the Lie group GL,,(C), where gl,,,(C) is the Lie algebra
of the Lie group GL,,(C). Let U; be an open neighborhood of 0 € gl,,(C) on
which the exponential map is a diffeomorphism. Set U = (1/2)U; ( if it is
necessary, we will take U = (1/2%)U; for some k big enough). Let H be a non-
trivial subgroup of GL,,(C) contained in exp(U). Then one can choose X € U
such that a = exp(X) € H and 2X € U; \ U. This shows that

a* = exp(2X) € exp(Uh) \ exp(U),
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which is a contradiction since a® € H C exp(U). Therefore U is a neighborhood
of the identity element in GL,,(C) that does not contain any subgroup other than
the trivial subgroup.

Then V := p~}(U) is an open subset of G containing the identity and from
the properties of profinite groups, we know that V' contains an open subgroup,
say H. This implies that p(H) = 1 and hence H < ker p. Therefore ker p is open
thus Im(p) is finite. O

This result implies the following:
Corollary 3.2.1. Let p : SLy(Z,) — GL,,(C) be a non-trivial representation.
Then p factors through a non-trivial representation of SLg(Z/(p"7Z)) for some n.

Proof: By Proposition 3.2.3, ker p is an open normal subgroup, therefore by

Proposition 3.2.2 we have K,, < ker p, for some n, where
0 — K, — SLy(Z,) 2% SLL(Z/(p"Z)) — 0.
Therefore p factors through a non-trivial representation of

7 SLW(Z/(p"Z)) — GLy(C). (3.2.1)

Theorem 3.2.1 is also valid for Spy(Z,).

3.3. ROOT FUNCTIONS

Our approach to obtain the minimal degree of all non-trivial representations
of SLj and Sp,;, is to consider an appropriate abelian subgroup of these groups.
Then by looking at its image under the given representation in GL4(C) where
d is the dimension of the representation, we will show that, these matrices have
many different eigenvalues and then we will prove that the dimension of the
representation is big. To make this idea precise, let us recall a basic fact from
linear algebra.

Definition 3.3.1. Let S be a family of matrices in My(C). For a function

r:S§— C,
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V(r):={veC’: Sv=r(Sw foralScS}.

A mapr: S — C will be called a root of S if V(r) # {0}. Moreover V (r) is
called a root subspace.

The following proposition is a special case of Theorem 15 in section 9.5. of [42].
Proposition 3.3.1. Let S be a commuting family of dx d unitary matrices. Then
S has only a finite number of roots. If ry,...,ry are all the distinct roots of S
then

(1) V(r;) is orthogonal to V (r;) fori # j.

(2)Cl=V(r)® - aV(r).

3.3.1. Root functions for the special linear groups

Let L be the abelian subgroup of SL(Z/(p"7Z)) defined by

L= cx € (Z/("2) ¢
0 1

where = is a column vector. Moreover let H be the subgroup of SLi(Z/(p"Z))

consisting of matrices of the form
o 0 .
H = - c0 € SL_1(Z/(p"Z))

It is easy to see that H normalizes L. Indeed we have

-1

o 0 L1 x o 0 _ I, ox . (3.3.1)
0 1 0 1 0 1 0 1
Let
p:SLi(Z/(p"Z)) — GL4(C), (3.3.2)

be a non-trivial representation. Note that Ssi, := p(L) is an abelian group. Next

proposition shows that H acts on the root functions and the root subspaces of

Ssr.
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Proposition 3.3.2. Let r be one of the roots in the decomposition in Proposi-

tion 3.3.1 and let h € H. For any s = p(l) € SsL, define
rh(s) == r(p(hlh™1)).
Then 1y, is also a root for Ssi,, and V (ry) = p(h~1)V (r).

Proof: First note that since H normalizes L, the map rj is well-defined. For

w e V(r)and [ € L, we have
p(D(p(h™Hw) = p(h™")(p(hlh™ )w)
=r(p(hth™ ")) p(h™ Hw (3.3.3)

= ru(p(1))(p(h™Hw).

This shows that rj, is a root for Ssr,, and p(h=")V(r) C V(ry). To show the
equality let v € V(ry,), then for any [ € L we have

p(1)(p(R)v) = p(k) (p(h~ h)v) = r(p(1)) (p(h)o),
so p(R)V (1) € V(7). 0

Consider the following matrices

1 0
1
B 1 |— ¢th row ,
e = X
110
0 0 1

that are some elementary matrices. Notice that the values of the root functions
are the eigenvalues of the matrices, so their values are roots of unity. We recall
that SL(Z/(p"Z)) is generated by the elementary matrices ((by row-and-column
reduction of integral matrices to compute elementary divisors), and all elementary
matrices are conjugate to e;. Therefore we have the following lemma.

Lemma 3.3.1. If p(ey) = I, then p is a trivial representation.

Now let p be a faithful representation then we claim the following.
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Lemma 3.3.2. There exists a root r for Ssi,, such that r(p(e1)) = ¢, where ¢ is

a primitive p™th root of unity.

PROOF. Let us denote the roots of Ss;, by r1,...,r;. Assume that for all
1 <4 <t we have ri(p(e1)) = (', where p | m;. Assuming this, we will show
that p(ezl’nfl) = [, which is a contradiction since p is a faithful representation and
the order of e; is p".

By Proposition 3.3.1 we have
C'=V(r) @ - dV(r).
For an arbitrary element v € C¢ write
V=U1 + -+ Vg,

where v; € V/(r;). Therefore for any integer m we have

(pler))™v =ri(pler))™vr + - -+ 1e(p(er)) vy

(3.3.4)
= (o' "v1 A+ s+ Gy
In particular for m = p"~! we have
ple? Yo =uv 4+, =0
Hence p(e’l’n_l) =1 O

Now we can prove Theorem 1.1.2 for SLi(Z/(p"Z)).

Proof of Theorem 1.1.2 for m; (SLy(Z/(p"Z))) when k > 3: Let
p:SLg(Z/(p"Z)) — GL4(C),

be a faithful representation. First note that L, as an abstract group, is isomor-
phic to the direct sum of k — 1 copies of the cyclic group Z/(p"Z). Notice that
{e1,...,ex_1} is the standard basis of L. We will occasionally deviate from our
standard notation for the group operation and use additive notation for group
operation on L, when this isomorphism is used. For instance, we will write e; +e5

instead of e; - es.

mi1

o> where

By Lemma 3.3.2 there is a root r for Sgr, such that r(p(e;)) =

m;

ged(my,p) = 1. We also assume that for 2 <4 < k — 1 we have r(p(e;)) = (pn
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where 0 < m; < p" —1. For t € (Z/(p"7Z))* and xs,...,xx_1 € Z/(p"Z) whose

values will later be assigned, define

t as as ap—1 |0
0 ¢! 0
0 0 1 0
a=oat,ay, - ,ap_1)=1 + c | € H
1
0o 0 - 0 1 |0
o o0 --- 0 0 |1

Using (3.3.1), a simple computation shows that

acia”t =te;, aesa Tt =tTley fage;, acal=¢ +ae; (3<i<k—1).

By Proposition 3.3.2, we have 7,4, ... 4, _, := 7o 1s a root and

k—1

ra(pler)) = r(plaeia™)) = r(p(ter)) = G,

r(p(tflez + a2€1)) — Ct;1m2+a2m17

ra(p(ez)) = r(p(aea™))

p
ra(p(es)) = r(plae;a™)) = r(ple; + aer)) = Qn™  (3<i<k-—1).
(3.3.5)
Now, since ged(my,p) = 1, by varying the values of ¢, aq, ..., a;_1 we can get at
least
(p(pn)p(k—Q)n _ (pn i pn—l)p(k—Q)n,

different roots. This shows that the dimension of the representation space has to
be at least

nfl) (k72)n'

(" —p" p

Now let p be a non-trivial representation. Then we have
Lemma 3.3.3. Let p be a non-trivial representation, then there exists a root r

for Ssi,, such that r(p(e1)) = (', where my is non-zero in Z/(p"Z).

P
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Proof: If for all roots we have r;(p(e;)) = 1, then similar to the proof of
Lemma 3.3.2 we can deduce that p(e;) = I. But by Lemma 3.3.1 we saw that if

p(e1) = I then p is a trivial representation. That is a contradiction. O

Proof of Theorem 1.1.2 for m (SLy(Z/(p"Z))) when k > 3: Let
p: SLi(Z/(p"2)) — GL4(C), (3.3.6)

be a non-trivial representation. Since p is not a trivial representation then by
Lemma 3.3.1, we deduce that p(e1) # I. With the same notation we used in the

previous proof, we obtain the following identities similar to (3.3.5).

_ rtmy

ralp(er) = r(placia™)) = r(p(ter)) = ¢,
ra(p(ea) = r(placsa™)) = r(p(t~"es + azer)) = G ™o,

ra(ple)) = r(placia™)) = r(ple; + aier)) = QU™ (3<i<k—1).
(3.3.7)

The only difference is that, here m; is non-zero in Z/(p"Z), whereas in the previ-
ous proof it was coprime to p. So by varying the values of ,as,...,a;_1 we can

get at least p*~1 — p*~2 different roots. O

For SLo(Z/(p™Z)) this method does not work. Instead we present a different

proof.

Proof of Theorem 1.1.2 for m; (SL2(Z/(p"Z))): Let
p:SLe(Z/)(p"7Z)) — GL4(C),

be a faithful representation and set

Let A := p(a) # I. Since the order of a is p" and p is faithful, then A has a

non-trivial eigenvalue ( which is a primitive p"th root of unity, since otherwise
n—1

AT

which is a contradiction.
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Notice that a is conjugate to a™, where m is a square in (Z/(p"Z))". Therefore
A is conjugate to A™. Hereafter m will be an arbitrary quadratic residue in
Z/(p"Z). This implies that A and A™ would have the same set of eigenvalues.
But (™ is an eigenvalue of A™. The number of square elements in (Z/(p"Z))" is

©(p™)/2. Therefore A has at least ¢(p™)/2 different eigenvalues. So

o).

d>
-2

For m (SLy(Z/(p™Z))), the same method gives the bound (p — 1)/2.

3.3.2. Root functions for the symplectic groups

Let J denote the 2k x 2k matrix

0 I
—1I; 0

J =

The symplectic group is defined as follows
Spok(Z/(p"Z)) := {A € GLo(Z/(p"Z)) : AJAT = J}.
Elements of this group can be describe by the following relation:

B . a f ol —pT
€ Spok(Z/(p"Z)) <= = I
v 4 v &) \—" o

In particular if o € M(Z/(p"Z)) is a symmetric matrix then

I,
0 I

€ Spoy(Z/(p" L))
It is known that the reduction map

Spay(Z) — Spor(Z/(p" L)),

is a surjective homomorphism (See [54], Theorem VII.21). Moreover Spy,(Z) is

generated by (See [57] Section §5, Proposition 2, or [5], Chapter III)

Ik g 0 ]k
0 I,/ I, 0
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where o is a symmetric matrix. But

I, Iy I, O I, I 0 I
0 I -1, I 0 I —I, 0

From these we have the following lemma.
Lemma 3.3.4. The following matrices are a generating set for Spo,(Z), and
hence a generating set for Spy.(Z/(p"Z)),

Ik o1 Ik 0

Y Y

0 [k 09 Ik

where ol = o; fori=1,2.

Notice that for a symmetric matrix o € My(Z/(p"Z)), we have

0 Ik Ik o 0 _]k o Ik 0
—Ik 0 0 Ik [k: 0 —0 Ik
Therefore
[k o Ik 0
"~Spay(Z/(pZ)) )
0 L) Y o I

where ~gp, (z/(pnz)) means that they are conjugate in Spy,(Z/(p"Z)). Therefore
if p is a representation of Spy,(Z/(p"Z)), such that for all symmetric matrices
o € MyZ/(p"Z), we have

I, o

0 Iy
then p is trivial.

Similar to SLy(Z/(p"Z)), we are looking for an abelian group in Sp,,(Z/(p"Z)),
so that a big subgroup of Sp,,(Z/(p"Z)) acts on it. Take the following subgroup.
I, o

Lg, = co =0 3 CSpy(Z/(p"Z)).
0 I

Also define

H 3 ") e L@z b < S/ 7)),

(o



79

where & := (a®)™!. We remark that H acts by conjugation on Lg,.
-1
a 0 I, o a 0 _ I, aca® | (338)
0 « 0 I 0 « 0 Iy
One can think of the action of H on Lg,, as the action of GLg(Z/(p"Z)) on
quadratic forms. More precisely, for a symmetric matrix ¢ we have the following

quadratic form

4o () =zt

where  is a row matrix. Then the action of H on Lg, would be the same as the
action of v on ¢q,. This interpretation will significantly simplify our calculations.
Indeed, if for all row vectors we have ¢, (z) = 0 then we can conclude o = 0, since
o is a symmetric matrix. Therefore to compute the action of H on Lg,, we need
to compute ¢, (za). These computations will appear very soon. In the sequel we
will use the following notations. For 1 < 4,5 < k, E;; will be denoted for the
symmetric k£ by k matrix such that the (4, j) and (j,7) entries are 1 and all others

are zero. We have

Lemma 3.3.5.
qE,; = . (3.3.9)
x? 1=
Denote
I, Lk
Gij = S LSp'
0 I

We remark that if i1 # j; and i # j then the quadratic form 2z;, x;, is equivalent

to 2z;,x;,. This in particular says that
Gi1j1 ~H Gi2j27

where ~ g here means that those two matrices are conjugate under the action of

2

H on Lg,. Moreover since the quadratic form 7 is equivalent to a:? then

Gii ~H ij.

Based on what we mentioned above, we have the following
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Lemma 3.3.6. Let p be a representation of Spyy(Z/(p"7Z)), so that

p(G1) = p(Gr2) = 1,

then p is a trivial representation.

Also for a; € Z/(p"Z) and t € (Z/(p"Z))", define

toay ay - Gp
0 1 0 0
O = OQq,..a5_1 “— 0 0 1 0 € GLk(Z/(an))
0 0 0 1
Hence
a 0
a = € H.
0 «
For a row vector z = (z1,- -+ ,2x) € (Z)(p"Z))*, we have
ro = (txy, 121 + T2, a1 + X3, -+, Ap_1T1 + Tp).

So for 1 <i,5 <k,

qr,;(za) = z (aEya”) o

From (3.3.12) and Lemma 3.3.5 we have

qp,, (va) = 'z}

Gy, (v0r) = 2ta;_ 27 + 2ta, 2, (2<j<k)

2 2 2
0B, (Ta) = ajx] + 2a1x129 + 75

Iy, (va) = 2a1aj_1x§ + 2017125 + 2017172 + 22075 (3<j<k).

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

From (3.3.8,3.3.13) and (3.3.14), we have the following identities which are

crucial in our proof.
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Lemma 3.3.7.
—1
. a 0 a 0 2
CYGHOé = G11 = Gll
0 « 0 «
—1
— ——1 «Q O « 0 2ta;—1 vt .
aGa = 0 & Gy 0 a =G Gy (2<j<k)
o o
-1
o a 0 a 0 @12 vy
CYGQQO& = 0 a G22 0 & = Gll G12G22
(6 [0
-1
J— —1 Q O « 0 2a1a‘,1 a1 A1 .
O!ngOé = 0 & ng 0 & = Gll J Glelé ng (3 S ] S k‘)
o o
(3.3.15)
Now let

P Spor(Z/(p"Z)) — GL4(C),

be a non-trivial representation. Set Sgp, := p(Ls,). Proof of the following propo-
sition is similar to Proposition 3.3.2.

Proposition 3.3.3. Let r be one of the roots in the decomposition in Proposi-

tion 3.8.1 and let h € H. For any s = p(l) € Sgp, define
ru(s) == r(p(hIh1)).

Then 1y, is also a root for Ssp, and V (ry) = p(h=1)V (r).

Similar to Lemma 3.3.2 we have
Lemma 3.3.8. When p is a faithful representation, then there exists a root r for
Ssp, such that r(p(G11)) = ¢, where ¢ is a primitive p"th root of unity.

We are ready to prove Theorem 1.1.2 for Sp,,(Z/(p"Z)).

Proof of Theorem 1.1.2 for my (Spy,(Z/(p"Z))): Let
P Spoi(Z/(p"Z)) — GL4(C), (3.3.16)

be a faithful representation. Pick a root r for Sg;, such that r(p(G11)) = (i, where

ged(m, p) = 1. This root exists by Lemma 3.3.8. For this root let r(p(G1;)) = ¢’
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for 2 < j < k. With the same notation as in Proposition 3.3.3 and (3.3.15) we

have

ralp(Gi)) = ¢4

2a;_1tm-+tm; . (3317)
ra(p(Gry)) = G’ L(2<i<k).

Notice that the number of different squares in (Z/(p"Z))" is ¢(p")/2. So by

varying t, aq,...,ax_1, we will obtain at least
o(pm)ptE—Hn
2 )
different roots. O

Proof of Theorem 1.1.2 for m (Spy,(Z/(p"Z))): Now let
P Spa(Z/(p"2)) — GL4(C), (3.3.18)

be a non-trivial representation. We mentioned earlier that when p is not a trivial
representation then either p(Gyy) # I or p(Gi2) # I. So we split the proof into
two cases.

Case I: Let p(Gy1) # I. Then we will show that there is a root r for Ss,
such that

r(p(Gi1)) = G,
where m # 0 in Z/(p"Z). Suppose that there is no such root. Let denote all the

roots of Sgp, by r1, 7, -+, 7, and assume that for any ¢, we have r;(p(G11)) = 1.

By Proposition 3.3.1 we have
C'=V(r) @ DV (r).
For an arbitrary element v € C? write
V=01 + -+ Vg,

where v; € V/(r;). Therefore
(p(Gu))v = r1(p(Gra))or + - - - + (G Jur
=v+ -+ (3.3.19)

= .
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So p(Gy1) = I which is a contradiction. Hence there is a root r for Sg, such that
r(p(G11)) = ¢k, where m # 0 in Z/(p"Z). For this root let r(p(G1;)) = (' for
2 < i< k. So (3.3.15) implies that

re(p(Gur)) = GL"

ottt (3.3.20)
ra<p(G1j)) = Cp:lljil m+ mJ, (2 < ] < k‘)
So by varying t,ay, ..., ax_1, we will obtain at least %(p — 1)p®*=Y different roots.

Case II: Let p(Gy;) = I. In this case then we have p(G12) # I. Pick a root
r for Sg, such that r(p(G12)) = (i, where m # 0 in Z/(p"Z). Assume that for
this root 7(p(Go;)) = (' for 2 < j < k. Then by (3.3.15) we have

ra(p(Giz)) = r(p(Gii™)r(p(Ghy)) = r(p(Ghy)) = ¢
Also
ra(p(Gaz)) = T(P(Gﬁ))T(P(G‘fé))r(p(@m)) =r(p(G13))r(p(Ga2)) = (i r(p(Gaz))-

Moreover for 3 < 7 < k we have

ra(p(Gay) = r(p(GHT " ))r(p(Gly ) (p(G53)r(p(Gay)

=G (p(GY}))r(p(Goy))-

(3.3.21)

So by varying t,ay, ..., ax_,, we will obtain at least (p — 1)p*~" different roots.

Therefore the minimal degree of a non-trivial representation is %(p —1p=b. O
From these theorem we can prove Theorem 1.1.3.

Proof of Theorem 1.1.3. Using Theorem 1.1.2 along with Corollary 3.2.1,
we can establish Theorem 1.1.3. O

3.4. HILBERT-SCHMIDT OPERATORS AND PRODUCT-FREE SETS

Our aim in this section is to give a proof for Theorem 1.1.4 and Corollary 1.1.6.
We use several standard facts from functional analysis, however we are not trying
to give a complete proof of these facts. The reader can consult with [59] for

details. Let G be a compact, second countable, Hausdorff topological group with
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a normalized Haar measure p. For fi, f» € L*(G), the convolution f;* fo € L*(G)
is defined by

(fr # fo) () = /G f(ey ™) faly) duly).

For any given fi, fo € L*(G), from the Cauchy-Schwartz inequality we have

1f1 % falla < [ full2l[ f2l2- (3.4.1)

Our objective in this section is to prove a stronger form of this inequality. For fi-
nite groups, Gowers [31] applies the singular value decomposition to the adjacency
matrix attached to a finite bipartite graph, to obtain a stronger inequality. In
order to generalize this to all compact groups, we will invoke Hilbert-Schmidt in-
tegral operator along with the singular value decomposition. Assume f; € L3(G).
To prove Theorem 1.1.4 note that by subtracting the constant ¢ = | ¢ f2dp from
f2 and noticing that f; x ¢ = 0, without loss of generality, we can assume that

f2 € LE(G). We consider the following kernel

K(z,y) == filzy™).

Since G is a compact group, then we have K(x,y) € L*(G x G). For this kernel,

we define the following integral operator

Py : L*(G) — L*(G)
(3.4.2)
h—s O (h),

where
Brc(h)(z) == /G K (. y)h(y)dp(y) € L*(G). (3.4.3)

It is clear that ®x(h)(z) = (f1 *h)(z). In order to prove Theorem 1.1.4, we need
to show that

1
) 2 < — Al 3.44
H KlL%(G)HOP = m(G) Hf1H2 ( )

We first remark that ®j is a compact operator. Indeed, for K € L*(G x G),
consider the operator ®g, as it defined in (3.4.3), which is called an integral

operator with the kernel K. We have,
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Lemma 3.4.1. The integral operator ®x : L*(G) — L*(G) is a Hilbert-Schmidt

operator and hence is compact. The norm of @k is given by,

[Pk llms = | K[r2@xa)- (3.4.5)

One can easily see that

@i (h)(y) = /G K, p)h(z)du(z).

Since G is not commutative, @ is not necessarily a self adjoint operator.
Lemma 3.4.2 (singular value decomposition). Let H be a separable Hilbert space
and T € B(H) be a compact operator (not necessary self adjoint). Then there

exists two orthonormal sets {e,} and {e]} in H such that
T(Gl) = /\ie;, T*(G;) = )\Z‘Gi, 1= 1, 2, ce

where

A=Ay > 20,

and for any v € ‘H

T(x) = Az, e)el. (3.4.6)

i>1
Moreover, by (3.4.6), we have ||T||q,p = A1.

Using these lemmas we will now prove:

Proof of Theorem 1.1.4: Consider the restriction operator

Oy i=Dp L(G) — LA(G),

(@)
defined by (3.4.2) and apply the singular value decomposition to obtain orthonor-
mal bases {e,} and {e/,} in L3(G) such that

@1(61-) = )\16/

27

where

A=A > >0

For ®7®,, which is a self-adjoint Hilbert-Schmidt operator, let V; be the eigenspace

of ®;®; correspondence to A?. Since ®;®; is a compact operator then

dim V] < oo.
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Let us remark that from the singular value decomposition we have
||q)1||0p = ||(PK|L(2)(G) ||0p = A
So we deduce
1112, dim V3 = AT dim(V;) < ) A7
i=1
< 2k ®rlls
< ||(I)K||%{s = ”K”%%ch)
= [ [ 15te ) Pautdute) = 113

We show that dim V}; > m(G), and this would finish the proof. We will construct

an action of G on Vj by defining for every h € V; and g € G

T,h(x) :== h(zg).
We need to verify that,

Ty(D7D1(h)) = ©TD1(T,h). (3.4.7)
Since G is compact and hence unimodular we have,
B(Th)(e) = [ Ay hlg)dty)

= [ Alalzg™) M hedn:)

= [ Alag=h)dnte)

= Ty(®1(h))(x).

By acting @} from the left we obtain (3.4.7). Since V} is a subspace of L2(G), it
does not contain the constant function, and hence this linear action is non-trivial.

This induces a non-trivial representation of GG in the unitary group U(V}), thus

dim V; > m(G). 0

Proof of Corollary 1.1.6. Apply the inequality to f; = 14 and fy = 1 —
w(B). O

Now we can proof Theorems 1.1.5.
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Proof of Theorem 1.1.5: Let
S:={yeG:(lax1p)(y) =0}
Thus

1/2
W(S) 2 u( Ay(B) = ( [ 1045 10)0) — nauB)F du(y)>

< ([ 10 10000 — ()P o)) "

= [[1a* 1p = p(A)pu(B) |-

But via Corollary 1.1.6 we can deduce that

u(S) 2 u(A)pu(B) <

therefore
1

w(S) < )
= S AnE)
This implies that pu(C\ S) > 0, since otherwise we get

which is a contradiction. Hence there exists a set of positive measure of y € C so
that 14 * 15(y) # 0, which means that AB N C has positive measure.

For the second statement let define
Y :={(a,b,c) e Ax BxC:ab=c}.
Notice that
W(E) = (L4 1p,10) = (La+ (Lp — p(B)), 1c) + p(A)u(B)u(C).  (348)
By Cauchy-Schwartz inequality we have
(Lax (1p — u(B)),1c)* < [[La* (1p — u(B))I3[11c 3

= [[La* 15 — p(A)u(B)|[51(C)
< MA)p(B)u(C)

Thus if
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which is fulfilled by our assumption, we deduce that
[(La* (1 — u(B)), 1e)| < nu(A)pu(B)u(C),
thus
u(E) = p(A)p(B)u(C) = nu(A)u(B)u(C) = (1 = n)u(A)u(B)u(C)
O

Remark 3.4.1. One can also establish another inequality. For f; = 14 and

fo =1 — u(B), notice that

I£2113 = w(B)(1 — u(B)).

Thus by Theorem 1.1.4 we have

w(G = AB)2u(A)u(B) < mu(z‘l)”2 (u(B)(1 — u(B))"?,
therefore
1 —pu(B)
L OB <P

3.5. AUTOMORPHISMS OF REGULAR TREES

The goal of this section is to obtain lower and upper bounds on the product-
free measure of the group of positive automorphisms of a rooted regular tree. Let
us recall the definition of the group of Aal that appeared in the statement of
Theorem 1.1.6.

Definition 3.5.1. An automorphism x € Ayiq is called positive if o;(x) is an
even permutation for all 5 > 1. We will denote the group of all positive automor-
phisms by AZH.

First, notice that ALl is a closed subgroup of Ai.; and hence a profinite

group. In fact, the group can also be represented by
A, = lmAY,, /O (35.1)

where
C;f = {m € Agﬂ co4(z) = id}.

In what follows, let Alty,; < 3,1 denote the alternating group on k4 1 symbols.
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To prove Theorem 1.1.6, we first prove a lemma. Let us define the following

set.
L= {(vl, e Upsr) EFET b = 0} ) (3.5.2)

We have
Lemma 3.5.1. Let k > 6 be an integer and let L be the group defined in (3.5.2).

Moreover assume that

p: L — GL4(C),

1s a non-trivial representation of L, such that

p<U17 R 7Uk+1) = )0(7),’1, R 7Uik+1>7

for any even permutation (i1, ...,ix+1) of the set {1,....k+1}. Thend >k — ¢

where € = 0 if k is even and € = 1 when k is odd.

PrROOF. We will show that p is faithful when £ + 1 is odd and |ker(p)| < 2
when k + 1 is even. For 0 # v € L, define

Iv)={1<i<k+1:v =1}

First we show that if for some 0 # v € ker(p) we have |I(v)] = 2, then
the representation p is a trivial. To show this note that for every w € £ with
|I(w)| = 2, we can find o € Alty1; such that o(v) = w. Therefore by the property
of p we can deduce that p(w) = 0. This implies that ker(p) = £, hence p should
be a trivial representation.

Now assume that p is not a faithful representation and suppose 0 # v € ker(p)
is chosen such that |/(v)| is minimal. Since p is non-trivial then |I(v)| = 2j > 2.
Without loss of generality assume that v = (1,1,...,1,0,...,0) where the first
27 entries are equal to 1 and the rest are zero.

If k41 is odd then we can consider the 3-cycle o = (1,2,25+1) € Altyy1. Now
it is easy to see that o -v —v has 1 in only two positions, hence o(v) — v € ker(p),
with [I(o(v) — v)| = 2. But this, as was shown above, implies that p is a trivial
representation. So for odd k£ 4+ 1 we deduce that p is a faithful representation.

A similar argument can be made when k + 1 is even and |ker(p)| > 2. This

show that p is faithful when k + 1 is odd and |ker(p)| < 2 when k + 1 is even.
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In either case p(L£) is isomorphic to F5°. The set p(L) can be simultaneously
diagonalized with diagonal entries being £1. Now it is clear that d > k —¢€, where

e=01if k is even and € = 1 when £ is odd. O

We will need the following fact from the representation theory of finite groups:
Theorem 3.5.1 (See [29] Exercise 5.5). For k > 6, the minimum dimension of
non-trivial representations of Alty is k — 1.

From these lemmas, we will prove Theorem 1.1.6.

Proof of Theorem 1.1.6: For the lower bound, note that
o1 : A—kl—-i-l — Altk_H,

is surjective. Let H be the subgroup of Alt;,; consisting of those permutations
that fix £ + 1. H is clearly isomorphic to Alty. Now, apply Lemma 1.1.3 to
the subgroup o; '(H) to obtain an open subgroup of index k + 1 in A}, ;. This
establishes the lower bound.

For the upper bound, we need to show that for the group AZH, the minimal
degree of all non-trivial continuous representations is k — 1. By (3.5.1) then we
should prove that F; := A,/ C;-r does not have any non-trivial representation of
dimension less than £ — 1.

For j = 1, we will get F; = Altg,1, and then by Theorem 3.5.1, for k& > 5,
all the non-trivial representations have dimension greater than or equal to k. For
the sake of clarity and notational simplicity, we will present the argument for
j = 2. The argument readily extends to an arbitrary j > 2. Suppose p to be a

non-trivial representation of F,. It is easy to see that

= Altk_H X (Ek X X Ek)+,

kot
where
k+1
\(Zk; NP, Ek)t;: (01,...,Oks1) e\(Ek X oo X Z’C),: Hsgn(ai) =1

and Alty 1 acts by permuting the factors.
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If the restriction of p to Altg,; is non-trivial then we are done by Theo-

rem 3.5.1. Suppose that the restriction of p to Alt,; is trivial. Clearly

:Alth"'XAlt]ES](ZkX"'XEk)+,

k+1 k+1

Again, we can assume that the restriction of p to each one of the factors is trivial,
since otherwise we can apply Theorem 3.5.1 to obtain the bound k — 1.

Therefore let assume that p is trivial over Alty x ---x Alty. So p factors

e
through the quotient
k+1
(Ek sz X sz)+/(AItk XAltk X XAltk).
e
k+1
For (01,09,...,0%,0k41) € sz X oo X Zk)J:, we recall that since the restriction
of p to Alty, is trivial we have
P(Ula 02y...,0k, 01@-&-1) == p(gila giga ... 7o-ik7 Uik+1)7
for any even permutation (i,4s, ..., %, ix41) of the set {1,... k,k+ 1}. Notice
that
k1
rZ X oo X X +
(2 DM L, (3.5.3)

éltk X X AIJE]E

~
k+1

where £ was defined in (3.5.2). Therefore we obtain a non-trivial representation

of £ that satisfies in the conditions of Lemma 3.5.1, so we have
dimp>k—e>k—1.

For 5 > 3, the group F} is isomorphic to an iterated semi-direct product of
alternating groups as above and a similar argument establishes the lower bound
on the degree of nontrivial representation. Applying Theorem 1.1.5 completes

the proof. O
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3.6. PRODUCT-FREE MEASURE OF THE RING OF p-ADIC INTEGERS
It is possible to compute the exact value of product-free measure for connected

abelian Lie groups. Let T* denote the k-dimensional torus. Then,

Theorem 3.6.1. For any k > 1 we have pf(T*) = 1/3.

Proof: The proof is similar to the proof given in [47] where only open sets A
are considered. We will show that in fact there is no need to restrict to consider
just the open sets. First we show that pf(T*) < 1/3. Suppose that A is a product-
free subset with p(A) = 1/3 4 f for some § > 0. We will show that there is an
open product-free set U such that

pU) = 1/3+5/2.

We will write this part of the proof, which is valid for any compact group, using
the multiplicative notation. First choose a compact set K C A with u(K) > 1/3+
B/2. Clearly K is a product-free set and since K is compact d(K, K?) = ¢ > 0,
where we use d as shorthand for dpx. Let Us be the d-neighborhood of K, i.e., the
set of points u € T* such that d(u, k) < & for some k € K. We will show that for
0 small enough Us will be a product-free set as well. Let uy, us,uz € Us. So there
exist ki, ko, ks € K such that d(u;, k;) < 6 for i = 1,2,3. Using the invariance of

d we have
d(UQU:g, kgk?g) S d(UQU?,, ngg) + d(kngg, kgk?g)

= d(U27 k?g) + d(U3, k?g) < 26.

From here we have
d(uy,uguz) > d(ky, koks) — d(ky,u1) — d(keks, ugus) > € — 34.
So if we choose § = €/4 we will have d(uy,usus) > €/4 which shows that
UgsNUZ, = 0.

Notice that K C U4, so

w(Uea) > 1/3+ B/2.
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U := U4 is the open set that we were looking for. Now let us assume that A is

an open product-free subset of
TF =T! x ... x T,

with u(A) = 1/3 4 8. Again, by possibly exchanging § with 5/2, we can assume
that A is a finite disjoint unions of boxes of the form: Iy X Iy--- X I, where
I; is an interval in the j-th copy of T'. Choose a large prime number p. Set

¢ = exp(2mi/p) and let
Gy 2)(E) x - x ) (47),

be the elementary abelian p-group in T* consisting of all elements of order p.
Note that G}, contains p* elements. Consider a box [ := I; x I--- x I;; and let

hj be the length of I;. It is easy to see that
Gy NI > (phy = 1) -+ (phy, = 1) = p* (D) + O(p* ).
By adding up over all boxes we will get
Gy N Al > pFu(A) + O™,

Since G is a finite p-group, by Green-Ruzsa theorem (see Theorem 3.6.2) we

have pf(G,) < 1/3+1/(3p). Since A is product-free we must have

(1/3+8/2) + O(1/p) < 1/3+1/(3p),
which as p — oo gives a contradiction. Hence pf(T*) < 1/3. Set
B:={":1/3<0<2/3},
then notice that
BxTx---xT,

is a product-free set in T* of density 1/3. So we have pf(T*) = 1/3. O

For finite abelian groups, the exact value of pf(G) is explicitly given by:
Theorem 3.6.2. (Green-Ruzsa, cf. [39]) Suppose G is a finite abelian group of
size n.

(1) If n is divisible by a prime p = 2 (mod 3), then pf(G) = 1/3 + 1/(3p)

where p is the smallest such p.
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(2) Otherwise, if 3|n, then pf(G) = 1/3.
(3) Otherwise, pf(G) = 1/3 — 1/(3m) where m is the largest order of any
element of G.
Using a result of Green and Ruzsa [39] we will also compute the product-free
measure of the ring of p-adic integers.
Theorem 3.6.3. The product-free measure of the additive groups of p-adic inte-

gers Z, and power series Fp[[t]] are respectively given by

iy i wp=2 meas
\ 1/3 otherwise
(1/3 +1/(3p) #f p=2 mod 3 (3.6.1)
P (1) = { 1/3 T
| 1/3-1/(3p) ifp=1 mod3

Proof of Theorem 3.6.3: First we will give the proof for Z,. Let
¢n : ZP — Z/(an)7

be reduction modulo p™ for n > 1. For p = 2 (mod 3), it is easy to verify that,
if S C Z/(pZ) is a product-free set of density 1/3 + 1/(3p), provided by Green-
Ruzsa theorem, then ¢7'(S) C Z, will be a set of the same density. Hence for

p =2 (mod 3) we have
pf(Z,) > 1/3+1/(3p), p=2 (mod 3).
For p =1 (mod 3), consider the subset of Z/(p"Z):

S, = Hpn; 1J 2 {pn; 1J - 1} C Z)(p"T).

By Lemma 1.1.3 we have

S| |52 -1 1
f Z > sup —=sup—mMmMM = —.
pf(Z,) > Sup = = sup 3

Hence we have

pf(Z,) > 1/3, p=1 (mod 3).
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For p = 3, by Green-Ruzsa theorem, we have a product-free set of density 1/3, so
pf(Z3) > 1/3.

On the other hand, suppose A is a measurable product-free subset of Z, ( or
IF,[[t]) with (A) larger than the function given on the right side of (3.6.1), that
we denote it by f(p). Choose a compact subset A; C A such that u(A;) =
f(p)(1 + ¢€) for some € > 0. By (3.1.1) we have

lim o) = f(p)(1 +e).

n—o00 pn

So there exists an integer m such that for all n > m, the set ¢,(A41) C Z/(p"Z)
has density larger that f(p)(1+ €/2). By the theorem of Green and Ruzsa, this
implies that there exist x,,y,, 2z, € A; such that ¢,(z, + y, — 2z,) = 0. Since
Ay is compact, after passing to a subsequence, there exist x,y, 2 € Ay such that
Tp = TyYn — Y, 2n — 2. Now, since x, + y, — 2, — 0, we have z + y = 2z, which
is a contradiction.

The proof for F,[[t]] is similar. The only difference is that all of the finite
quotients of F,[[t]] are elementary p-groups. Hence when p =1 (mod 3), it is the

third condition in Green-Ruza theorem that applies. 0]
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Chapter 4

PRELIMINARIES FOR CHAPTER 5

4.1. AVERAGE DEGREE OF SPLITTING FIELDS

In this section we will give an example, that illustrates how the Chebotarev
density theorem appears in some arithmetic questions.

For o € S, let ord(o) be the order of o. The distribution of ord(c) was
studied by Erdos and Turdn in a beautiful series of papers on “statistical group
theory” [22, 23, 24, 25, 27, 26, 28]. Define the average order of elements of .S, to
be

1
[y = Hé ord(o). (4.1.1)

Solving a conjecture of Erdés and Turdan, Goh and Schmutz [30] proved that

n

log(tn) ~ C

4.1.2

C:2\/(2/Ooologlog<l_eet) dt). (4.1.3)

Stong in his paper [67] strengthens this theorem by providing an error term. He

where

proved

log1
log(p,) = O [ 4 o (Yloglogny (4.1.4)
logn logn

In this section we consider the following problem. Let f(z) € Z[z] be a monic

polynomial of degree n with discriminant D. For a prime number p, coprime to

D, let us denote X,(f) to be the degree of the splitting field of f(z) (mod p).
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We are interested in the following quantity

wf) = Jim | =5 3 X0 |- (4.1.5)
gcd(lzya,%):l

A motivation to study this quantity is a nice result of Dixon and Panario [20],
where they fix a prime p and consider the distribution of the degree of the splitting
field of certain family of polynomials in [F,[z]. Let the Galois group of f(z) be
the symmetric group S,,. We will show that the degree of the splitting field of
f(z) (mod p) is the same as the order the Frobenius element in the Galois group.
Then by using Stong’s theorem and Chebotarev density theorem we will prove

Theorem 1.2.3.

4.1.1. Dedekind’s lemma

In this section we recall a fundamental lemma due to Dedekind. This lemma
translates arithmetic properties of a polynomial into group theoretical properties
of the Frobenius element in the Galois group of a polynomial.

Let f(x) be a polynomial with coefficients in a field F'. The discriminant of
f(x) is defined to be D := Dy = A} where

Af: H (O‘i_&j)ﬂ

1<i<j<n

where a, ..., a, are the roots of f(z) in some splitting field. The discriminant
essentially tells us when we have a repeated root.

Now let f(z) € Z[z] be a monic polynomial of degree n with integer coefficients
and let £ = Ey = Q(aq,az,...,0,) be its splitting field over Q. Let Gy =
Gal(E/Q) be the Galois group of f(z). Suppose that p is a prime such that p
does not divide the discriminant D of f(z), in particular, we suppose that the
roots of f are simple. Let f(z) be the reduction of f(x) modulo p. Then the
roots of f(z) are also simple. Let A = A; = Z[ay,...,a,] and let p be a prime
ideal of A such that pNZ = (p). Such an ideal exists since A is integral over Z.

For such a prime we can define a unique element in the Galois group of f(x),

which is called the Frobenius automorphism.
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Lemma 4.1.1 (Dedekind). Let f(x) be a monic irreducible polynomial with dis-
criminant D, and assume p does not divide D, where p is a prime. Let E be the
splitting field of f(x). Then there exists an element o, € Gal(E/Q), unique up

to conjugation, such that
op(a) =a? mod p,

for all a € A. Moreover if f(z) = ¢1(z) -+ dy(x), with ¢;(z) irreducible over F,
of degree n;, then o,, when viewed as a permutation of the roots of f(z), has a
cycle decomposition oy - - - o4 with o; of length n;.

We will follow closely John Labute’s explanation of Tate’s proof.

Proof (Tate): The field Ef = A/p = Fy[an, @y, ..., &y is a splitting field for

f(x), where & is the residue class of o modulo p. The group G = Gal(Ef/F,) is
cyclic generated by the Frob,. Set

Dy = {0 € Gylo(p) = p}.

This is a subgroup of G called the decomposition group at p. Every automor-
phism ¢ € D, induces an automorphism & € Gy, given by 7(a) = o(a). The

homomorphism

(4.1.6)
o+— 0,
is injective. We now show that it is surjective by showing that the fixed field of
©(Dy) has IF, as its fixed field.
Let a € A. Then, by the Chinese Remainder Theorem, there is an element
a € A such that @ = a (mod p) and o = 0 (mod o~ !(p)) for all ¢ € G; \ D,.

Then

Notice that

for some m. It follows that the conjugates of a are all of the form &(a) which

implies that the fixed field of p(Dy) is F), .
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Therefore there is a unique element in G, denoted by oy, such that
op(a) =a” mod p.
O

This lemma will play an important role in our study of the distribution of the
degree of the splitting field of f(x). The following lemma is easy to prove.
Lemma 4.1.2. For f(z) € Z[x], let f(z) = ¢1(z) - - dy(z), with ¢;(x) irreducible

over IF,, of degree n;, then
X,(f) =lem(ng, ..., ng). (4.1.7)
By Lemma 4.1.1, the order of o, is also
lem(ng, ..., ng).

Therefore we have the following:

Corollary 4.1.1. We have the following identity,
X,(f) = ord(ay). (4.1.8)

Now we can invoke Chebotarev’s density theorem. If f(z) (mod p) splits into
distinct monic irreducible factors, with ny linear factors, no quadratic factors, etc,
then we say that A = (nq,ng,...) is the splitting type of f(z) modulo p. For each
splitting type A we have

> jnj=n. (4.1.9)

J

Indeed A is a partition of n, denoted by A - n. We have the same phenomenon
in the symmetric group. The conjugacy classes of S,, correspond to the cycle
structures of permutations; that is, two elements of S,, are conjugate in S,, if and
only if they consist of the same number of disjoint cycles of the same length. For
any permutation o € 5,, we know that we can write o as a product of disjoint
cycles. If o splits into n; cycle of length one, n, transposition, etc. Then we say
that A = (n1,ne,...) is the splitting type of 0. Therefore the conjugacy classes

in S,, correspond to the partitions of n. For any partition A = (ny, ng,ng, ..., ny),
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ie, > ;Jnj = n, the size of the conjugacy class of the permutation corresponding

to A is

n!

— nld(\) (4.1.10)

17 12n2n5! L gianyg!

where here 6(\) = (1™ny!12"2ny!. .. ¢g"n,!)"t. By Dedekind’s Lemma 4.1.1, we
can say that the splitting type of f(z) (mod p) is the same as the splitting type
of o,. Therefore we have the following lemma

Lemma 4.1.3. Assume that Galois group of f(x) is the symmetric group S,,
where n is the degree of f(x). For any partition X = (nq,ne,ns,...,ng) of n, by

Chebotarev’s density theorem we have

#{p <t: f(x) (mod p) has type \} N
m(t)

5(N). (4.1.11)

For a partition A = (ny,ne,...,n,) of n, notice that the order of the element
of S,, corresponding to A is lem(ny, no, ..., n,), which will be denoted by lem(\).
By Lemma 4.1.3 and Corollary 4.1.1 we have the following
Lemma 4.1.4.

pn(f) = 6(Mlem(N). (4.1.12)

AFn
Therefore we have

> 6(Mlem(N) = % > nls(A)lem(A)

AFn " AFn

— % Z ord(o) (4.1.13)

’ O'ESn

= HUn,

which by (4.1.4) proves Theorem 1.2.3.

4.2. SPLITTING OF PRIME IDEALS IN KUMMER EXTENSIONS

Consider the polynomial f(x) = 27 — 2 where ¢ is an odd prime. Then the
splitting field of f(x) is K, := Q({,, ¥2). The following diagram will illustrate
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this number field

Q&g V2

/\
\/

In this diagram Q((,) is a Galois extension over Q, hence N := Gal(K,/Q((,)) is
a normal subgroup of G := Gal(K,/Q). Also H := Gal(K,/Q(+/2)) is a subgroup
of GG. Let us recall the definition of the semidirect product.

Definition 4.2.1. Let N and H be groups and let ¢ be a homomorphism from H
into Aut(N). Let denote - the (left) action of H on N determined by ¢. Let G
be the set of ordered pairs (n,h) with n € N and h € H and define the following

multiplication on G:
(nl,hl)(nm hz) = (nlhl s o, hlhz)-

With this operation G is a group, called the semidirect product of N and H, and
denoted by N x, H.

Therefore G = N x H. Moreover we have N = (Z/(qZ)) = F, and H =
(Z/(qzZ))" = F; = Aut(F,). In other words

Gal(K,/Q) = F, x Aut(F,).

Notice that the group F, x Aut(F,) is isomorphic to Aff(F,), the group of all

affine maps of IF,. This group has natural matrix representation:

b
AfE) = (" ") caembeR, . (4.2.1)
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One can give an explicit isomorphism between the Galois group of f(z) = 27 —2

and Aff(F,).

a b
U Gal(K,/Q) — ra €, bel,
01

(4.2.2)

where o ((,) = (g @) and o(/2) = ¢2)¥/2. By this explicit isomorphism we have
Lemma 4.2.1. A prime p splits completely in K, if and only if p =1 (mod q)
and 2"7 =1 (mod p).

There are several ways to show this, but in Chapter 5, we will consider the

following method.

Proof: Let p=1 (mod ¢) and 2" =1 (mod p). With these conditions, by
computing the discriminant of f(x) = 27 — 2, we can show that p is unramified
in K,. Let o, be the Artin symbol corresponding to the prime p, then we show
that W(o,) = 1, hence 0, = 1. This shows that p splits completely. Since p is

unramified, then by properties of the Artin symbol we have
& =0p(¢) = ¢ = alo,) =p  (mod q). (4.2.3)
But p=1 (mod q), so a(o,) = 1. Let p be a prime in K, above p, then
Cg(rfp)gl/q - ap(21/q) — 9p/4 (mod p) = 9l/a (Cg(op) — 2(10—1)/q) ep.  (4.24)

Notice that p is unramified, so 219 ¢ p, hence (dj("p’ — 2(p_1)/q> € p. Since
2" =1 (mod p), then (gg(“p) — 1) € p. But p is unramified, therefore b(o,) = 0.
Hence ¥(o,) = 1 so p splits completely.

Conversely, assume that p splits completely. Then o, is a trivial element. So

a(o,) =1, and b(o,) = 0. But

(¢ =0,(C) = =¢,=>p=1 (mod q), (4.2.5)
and

211 = (Mow)ote = g (21/7) = 2P/1 (mod p) = 217 (2D — 1) € p. (4.2.6)
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But 27 ¢ p. therefore
(2(1’*”/‘1 _ 1) cpNZ=(p) = or—1/a =1 (mod p). (4.2.7)
0

We would like to emphasize that this method will appear several times in

Chapter 5.



Chapter 5

THE DENSITY OF A FAMILY OF
MONOGENIC NUMBER FIELDS

Author: Mohammad Bardestani.

In this chapter we will prove our theorems which were stated in Section 1.2.1.

5.1. MONOGENIC FIELDS AND DIOPHANTINE EQUATIONS

Generally speaking, we need to solve a Diophantine equation in order to show
a number field is monogenic. It is useful to recall the following well-known state-
ment.
Lemma 5.1.1. Let K be a number field of degree n and ay,...,a, € Ok be
linearly independent over Q. Set M = Zaoy + - -+ + Zav,. Then

Disc(M) = (Ok : M)?Disc(K).

In particular,
Disc(a) = Ind(a)?Disc(K),
if « € Ok and K = Q(«), where Ind(a) = (Ok : Z[a]).

Choosing an integral basis for K and writing a with respect to this integral
basis, one can see that Ind(«a) is a homogeneous form. In this section, we will
focus on cubic fields.

Let K = Q(y/m), with m € Z being a cube-free number, be a cubic field.
We can assume that m = hk? with h, k > 0 and hk is square-free. The following
theorem is due to Dedekind [19].
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Theorem 5.1.1 (Dedekind). If K := Q(0), where 8 = /m, with m as given
above, then

(i) For m* #1 (mod 9), we have Disc(K) = —27(hk)?, and the numbers

6)2
1,0, — d.1
{105} (1)
form an integral basis.
(ii) For m = 41 (mod 9), we have Disc(K) = —3(hk)?, and the numbers

k% + k20 + 62
1,0, —— 5.1.2
{0200, (5.12)

form an integral basis.
Notice that this theorem shows Q(/p) is monogenic for primes p = £2, £5
(mod 9) which verifies Theorem 1.2.4 for ¢ = 3. For p = £1 (mod 9), by invoking
Theorem 5.1.1 we obtain the following integral basis for K = Q(¢/p),

1+ 2
{1707#}a

where 0 = Y/p. Let

1+ 2
a:a+b0+c#€(’)[(,

and assume o', ¢ are its conjugates. It is easy to see

a=a/ =(0-0)((b+5) - %)
a—a"=(0-0")((b+£) <L) , (5.1.3)
o == (0 =0 ((b£5) - %)

where 6" and 0" are the conjugates of 6. Therefore
Di pise®) (=€) —p (E)')
isc(a) = Disc(0) (( §> —p <§> )
3 e 3\ 2
< (5)' ()
P < 3/ ~P\3
+1-p 4\’
= —3p? (3b3 + 3b%c + bc? + Tpcf‘) ,

thus

+1—
Ind(a) = [3b® £ 3b%c + bc® + Tpc3|.
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So to determine monogenicity of Q(¥/p), for primes of the form p = £1 (mod 9),

we need to find the integral solutions of
136 & 3% + be? + #cﬂ ~1 (5.1.4)
Multiplying by 9 in (5.1.4) we obtain an equivalent equation
1(3b £ ¢)® — pc®| =9, (5.1.5)
which, for primes p = +1 (mod 9), is equivalent to
pr® +y* = 0.

Therefore we obtain

Lemma 5.1.2. For p=+1 (mod 9), Q(¢/p) being monogenic reduces to
pr’ +y® =9, (5.1.6)

having an integral solution.
Remark 5.1.1. Here, for simplicity, we found the index form of Q(¥/p), but the
same computation gives us (1.2.12).

Hence to construct a non-monogenic Q(¢/p), it would be enough to find a
prime p = £1 (mod 9), such that (5.1.6) does not have any integral solution.
One can find some of those primes by studying the equation locally, for instance
those primes p, such that 9 is not a cube modulo p. Notice that 9 is a cube if and
only if 3 is a cube in F,. Therefore we will briefly study the number of solutions
of h(t) :=t* — 3 in a finite field F,, denoted by N,(h(t)), for all primes p > 5.
Lemma 5.1.3.

1 ifp=2 (mod 3)
Np(h(t)) =30 if p=T22+ 3zy + 9> -

3 if p=a®+ zy+ 61y?

Let £ := (g([g) be the cubic field defined by h(t), with the splitting field L,

which contains the quadratic field K := Q(v/=3). Let 1, = +/3,72,73 be the
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conjugates of v/3, then define
A= I =m0
1<i<;j<3
For a prime p > 5, consider the Frobenius automorphism associated to p, say o, €
Gal(L/Q); which is unique up to conjugation. Regarding o, as a permutation in
S3, we observe

op(A) = sgn(o,)A.

Therefore o, being even implies that o, is a trivial element in Gal(K/Q), thus
p splits completely in K. Also when o, is an odd permutation, o, is not an
identity element, therefore p is inert in K. This shows sgn(o,) = (%), where
(5) denotes the Legandre symbol. Therefore p = 2 (mod 3) implies that o, is
a transposition, thus h(t) = 0 has a unique solution in F,. For p =1 (mod 3),
0, is an even permutation, so h(t) = 0 has either zero or three solutions in F,,.
Hence for p = 1 (mod 3), if 3 is a cube in F, we have N,(h(t)) = 3, and if 3 is
not a cube then N,(h(t)) = 0.

One might find an alternative proof for this fact that 3 — 3 has only one
solution for p =2 (mod 3), by looking at the homomorphism

FP IFP
3
a— a’,

and noticing that this an isomorphism. For p = 1 (mod 3), we have 3’th root
of unity in IF,, so one have either zero or three solutions. However the former
method is more general, and can be applied for general polynomials.

Using the cubic residue symbol, one can show that for primes p > 5, p can be
presented by x? + zy + 61y? if and only if p = 1 (mod 3) and 3 is a cubic residue
modulo p. Indeed this was conjectured by Euler and proved by Gauss (see [16]).

Reduction theory of positive definite, integral binary quadratic form is easy
to describe. For such a given form f(z,y) = az? + bry + cy?, by SLy(Z) change
of variable we can obtain a simpler form f'(x,y) = d'z? + Vay + c'y?, where
Ib'| < a' < and in case || = @, then b’ = d/; and in case ' = ¢/, then V/ > 0.

The discriminant of 22 + zy + 61y? is —243 which has the class number 3. More
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precisely, using the reduction algorithm explained briefly, there are, up to SLy(Z)
change of variables, three binary quadratic form with discriminant —243. Namely
2% + zy + 61y?, 7o & 3zy + 9y?, which there are in the same genus. When p = 1
(mod 3), then p can be presented by only one of the form x? + xy + 61y* or
722 + 32y + 9y%. Indeed we have the following

Lemma 5.1.4. Let fi, fo be two integral binary quadratic forms of the same
discriminant which represent the same prime, say p. Then they are GLy(Z)-

equivalent.

Proof: Consider an integral binary quadratic form, say f(z,y) = ax?®+ bxy +
cy?, that presents a prime p, then we can assume f(z,y) = px? + bzy + cy’.
Consider

10

Y= ESLQ(Z),
m 1

then

v.f(@,y) = f((z,y)) = px® + (2pm + b)zy + (¢ + bm + pm?)y°

= pz? + Vay + 2
We can choose m such that
—p < 2pm + b < p,

so we have shown that any integral binary quadratic form that represents a prime
p is SLy(Z)-equivalent to px? + V'zy + y?, where —p < V' < p. Under GLy(Z)-
equivalence, we can assume 0 < b < p. This determines b’ ( and hence ¢’)

uniquely and finishes the proof. O

Lemma 5.1.3 shows pz® + > = 9 does not have any integral solutions for
those primes p = 1 (mod 9), which p can be represented by the quadratic form
722 + 3zy + 932, and hence Lemma 5.1.2 gives a proof for Theorem 1.2.6. Using
the Chebotarev density theorem we can also count these primes and then prove
Theorem 1.2.5. Let K = Q((y, v/9), where (g is a primitive 9’th root of unity.
We will show



112

Lemma 5.1.5. A prime p splits completely in K if and only if p = 1 (mod 9)
and 9" =1 (mod p).

Since we will use the Chebotarev density theorem several times, let us recall
it briefly. Let K be a number field and assume L/K is a Galois extension. To
each prime ideal 8 of K unramified in L there corresponds a certain conjugacy
class C of Gal(L/K) consisting of the set of Frobenius automorphisms o attached
to the prime ideals P of L which lie over 8. Denote this conjugacy class by
the Artin symbol (L/TK> For a given conjugacy class C of Gal(L/K), let m¢(x)

B
and Np,x () < x. By abuse of notation, the Frobenius automorphism is also

denote the number of prime ideals 8 of K unramified in L such that <L/—K) eC

represented by the Artin symbol.
Theorem 5.1.2 (Chebotarev density theorem, see[53]).

m(x). (5.1.7)

| e
Jim me(z) = L K]

Therefore

Proof of Theorem 1.2.5: Note that for p =1 (mod 9), 9% =1 (mod p)
is equivalent to 9 being a cube in F,. Lemma 5.1.5 and the Chebotarev density

theorem implies

1 1 1
—#{p<z:p=1 (mod9),9isnotacubeinF,} — - — — =

()

Let us denote w the primitive cube root of unity. To prove Lemma 5.1.5, we
need the following, which is easy to prove.

Lemma 5.1.6. Let K = Q((y, v/9), then the following map is an isomorphism

7z Z\"
¥ Gal(K/Q) — o (9*2)

o — (a(0),b(0)),

where 0(v/9) = w9 and o({y) = CS(")'

This lemma implies



113

Proof of Lemma 5.1.5: Let p be an unramified prime in K and o, the

Frobenius automorphism associated to p; which is unique up to conjugation.

Then
o) = 5,(¢G) = ¢ (mod p),

where p is a prime above p. Since p is unramified we conclude that b(c,) = p

(mod 9). The same reason implies for such a p,

ya
3

W93 = 0,(95) =95 (mod p) = (W@ —9"F) € p.

Let p = 1 (mod 9) and 9" =1 (mod p). Notice that p is unramified since
ged(p,3) =1, so

(i) b(op) =p=1 (mod 9), thus b(o) = 1.

(ii) w?) — 9% € p which implies w*®) — 1 € p, hence a(o) = 0.
Thus ¢(o,) = (0,1), therefore o, is the identity element. This means p splits
completely. Conversely, if p splits completely then a(c) = 0 and b(c) = 1, which
implies

(i) o =¢ (modp)=p=1 (mod9).

(ii) 9% = 9% (mod p) — (9* - 1) cpnZ=(p).
This finishes the proof. [l

Since #3 + 9 is an irreducible polynomial then a famous conjecture due to
Bunyakovsky says that there should be infinitely many prime of the form ¢ + 9
which are congruent to +1 modulo 9. These primes produce monogenic fields.
This shows the difficulty of characterizing monogenic fields even for pure cubic
extensions. Monogenicity of cyclic cubic fields has been studied by Dummit and

Kisilevsky [21].

5.2. EISENSTEIN POLYNOMIALS AND MONOGENIC FIELDS

Recall that a polynomial f(t) = t" + a, t" ' + -+ + ait + ag is called an
Eisenstein polynomial at a prime p when
(i) p|a; forall 0 <i<n-—1,
(i) p* 1 ao.



114

Let f(t) = t"+a,_1t" ' +---+ait +ap be an Eisenstein polynomial at p, and let
K be the field generated by a root of f(t), say «, i.e., K = Q(a). We will show

that for any integers, co, co, ..., cph_1,
Ngjglco +cia+ -+ ¢ ') = ¢ (mod p), (5.2.1)

for which we deduce the following
Lemma 5.2.1. suppose K = Q(«), where « is a oot of an Eisenstein polynomial

at p, then
p1 [0k : Z[a]].
Proof: Let p|[Ok, Z[a]], therefore there exists an algebraic integer

VRS OK\Z[CK],

so that pf € Z[a]. Hence for some integers cg, c1, ..., ¢,—1 we have

Pl =co+cra+ -+

S0
P"Nijo(0) = Nkjglco + cra+ -+ 4 co10™ ) = ¢ (mod p),

which implies p | ¢y. Note that p|[Nk/g(«), so this process and (5.2.1), imply

p | ¢; for all 7, which is a contradiction. O

Lemma 5.2.1 will allow us to find an arithmetic condition on p such that f,(¢)

produce a monogenic field. To prove Lemma 5.2.1, it remains to prove (5.2.1).

Proof of (5.2.1): Let E be the Galois closure of K, and assume P is a
prime in E above p. Since p | a;, then a; € P, where a = oy, ag, ..., a, are the

conjugates of a. Note that

NK/Q(CO taa+ -+ Cn—lan_l) = H(Co +ca;+ -+ Cn—la?_1)7
i=1

This implies

Nijgleo +era+-+eaa"™) —cg € PNZ = (p),

which proves the equation. U
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In a monogenic field K, the field discriminant is equal to the discriminant of
the minimal polynomial of «, where Ox = Z[a]. Also, by using the Dedekind’s
Theorem 5.2.1, it is easy to see how a prime splits, by looking at how the minimal
polynomial of 6 splits modulo primes. More precisely
Theorem 5.2.1 (Dedekind). Let K be a number field such that Ok = Zla], for
some a. Let f(x) be the minimal polynomial of o and denote f the reduction of

f modulo a prime p. Let

f(x) = Pr()™ - Pylx)™,
then
PO = P B

Hence it is natural to see how prime splitting forces a number field to be non-
monogenic. This idea was first noticed by Hensel. Indeed he constructed a family
of C3-extensions over Q, such that 2 splits completely, and since in Fy[t] there are
only two linear polynomials, he deduced that these fields are non-monogenic.

Hensel’s idea can be extended easily to construct infinitely many non-monogenic
Abelian number fields. Indeed let [ = 1 (mod n) be a prime and assume n > 3.
Denote the unique C,-subfield of Q({;) by K, (l). The same method used to prove
Lemma 5.2.3 shows that a prime p splits completely in K, () if and only if p # (
and t" — p has a solution in F;. Therefore, for a prime [ = 1 (mod n), if t" — 2
has a solution in I, then K, (l) cannot be non-monogenic. Notice that different
[ produces different C,, fields since the discriminant of K, (I) is a function of .
So we need to count, the number of prime [ = 1 (mod n) such that 2 is a n’th

power in ;. Consider the Kummer extension Q((,, ¥/2) and observing

Gal(Q(Go, ¥/2)/Q) = (Z/(nZ)) % (Z/(nZ))" .

Lemma 5.2.2. A prime p splits completely in Q(,, ¥/2) if and only if p = 1
(mod n) and t™ — 2 has a solution in F,.
By the inequality [Q((, ¥/2) : Q] < ng(n) and the Chebotarev density theo-

rem we obtain

1
lim —{l<z:l=1 (modn),K,(l) is non-monogenic} >

oo () ng(n)’
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Remark 5.2.1. Let K/Q be a cyclic extension of prime degree | > 5. Gras [36]
in her beautiful paper, using a result of Leopoldt, showed that K is non-monogenic
unless 2l +1 =p is a prime and K = Q((, + C;l).

Thus we have constructed infinitely many non-monogenic C),-extension over

Q, such that 2 splits completely. For a given Abelian group
G=0Cpy XCpyy X xCp,,

choose a non-monogenic C, -field, say K,,, for 1 < ¢ < ¢, with coprime discrimi-
nants. Put K = K, --- K,,,. Notice that 2 splits completely in K,,,, therefore 2
splits completely in K, which shows that K is non-monogenic.

We can extend this idea further. For a prime number [, the field K := Q((;2)
is a Galois extension with cyclic Galois group (Z/(I?Z))". Let n be its generator
and put H := (n'). Denote by K; the fixed field of H, therefore [K;: Q] = [ and
Gal(K/K)) = H.

Lemma 5.2.3. p splits completely in K, if and only if p'~t =1 (mod 1?).

Proof: Assume a prime p splits completely in K, and let o, := (KT{Q) be

the Frobenius automorphism associated to p, then

e (59) - (49w

p
Therefore 0, € Gal(K/K;) = H. But p # [ is unramified in K, thus 0,(¢2) = (5,

since 0,,((2) = (2 (mod p), where p is a prime in K above p. Under the canonical

isomorphism
Gal(re/Q) = ()

. “\rz)

we see that p € H = (n!), therefore for some integer t,
p=n" (mod?) = p'=1 (mod ?).

Conversely, let

p'=1 (mod ?).
Assume that p =7’ (mod [?) for some integer ¢t. Hence

-1 _  t(i-1)

l=p =1 (mod I*) =1 | ¢,
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therefore p € H which implies that
o, € Gal(K/K)).
This means (K’T@> = id, hence p splits completely in K. ([l

Corollary 5.2.1. Let | be a prime such that for some prime p < [, p~' =1
(mod I?) then K; is non-monogenic.
As an application of Lemma 5.2.3 and the Chebotarev density theorem, one

can calculate the density of

#p<a:p ™t #1 (mod *)},

which we will use to prove our main theorem.

Theorem 5.2.2. With the notations of Lemma 5.2.3 we have

[—-1

#{p<a:p'#1 (mod?)} = TW(JJ)(l +0(1)).

Proof: Note that C = Gal(K;/Q) — {e} is stable under conjugation, where e
is the identity element in the Galois group, and C corresponds to the set of non-
split primes by Lemma 5.2.3, therefore the Chebotarev density theorem implies

our theorem. O

Remark 5.2.2. As Professor Andrew Granville has pointed out to the author,
Theorem 5.2.2 can also be proven by Dirichlet’s theorem on primes in arithmetic
PTrogressions.

We have all ingredients to prove Theorem 1.2.4.

Proof of Theorem 1.2.4: Let K := Ey, = Q(«a) be the field obtained by
adjoining a root of f,(z) to Q. Since f,(x) is an Eisenstein polynomial at p, we

have that
p1 Ok : Zla]].
It is easy to see that

|Disc(f,)| = ¢'p*™",
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therefore ¢ might divide [Ok : Z[a]]. For p?~! # 1 (mod ¢*) we see that

fot+p)=(@{+p)?—p

=174 (z)ptq—l 4+ .4 (qg 1)pq_1t—|— (pq _p)7

which implies f,(t+p) is an Eisenstein polynomial at the prime ¢ so by Lemma 5.2.1

we obtain
¢ 1[0k : Zla — p]] =[Ok : Z]o]],

therefore f,(t) is monogenic. Thus

#{p <+ f,(t)is monogenic} > #{p<z:p £1 (mod )},
which combined with Theorem 5.2.2 proves our theorem. Il

As was already mentioned, Theorem 1.2.4 can also also be proven without
using the Chebotarev density theorem. Indeed, for 1 < ¢ < ¢ — 1, consider the

following change of variable
qg—1
friy=(eriy—p=er 3 (V)i 0 p),
j=1

so to obtain an Eisenstein polynomial at ¢, we need to have the conditions p =
i? =1 (mod ¢) and p # i? (mod ¢?) that also imply p?~! # 1 (mod ¢?). By the

prime number theorem in arithmetic progressions, we get

1
lim —{p<z:p=i (modgq),p#i? (modq¢*)}

1
:Ilgglo%{pgx:pziq—kqs (mod ¢*),1 < s<q—1}
q—1 1
q¢=1) ¢

This also proves Theorem 1.2.4. However the Chebotarev density theorem would
give a better error term.
It should be mentioned that the simple change of variable z 4+ 1 also gives

interesting examples.
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Example 5.2.1. Let m = 2% be a power of 2, and assume p = 3 (mod 4) is a

prime. Then f(x) = 2™ — p is an Eisenstein polynomial at p, with discriminant

—m™p" L. We now remark that

() =)

fa+l)=(@+ )" —p=a™+ ~ (T;)xuu—p),

j=1

which implies

3

15 an Fisenstein at 2, therefore

24 Ok : Z[ /5 — 1] = [Ox : Z] /7).

So Q( 3/p) is a monogenic number field.

Eisenstein polynomials essentially give us a number field which contains a to-
tally ramified prime. Indeed, by Lemma 5.2.1 and the Dedekind theorem (see [53],
Proposition 8.3), we have the following well-known result.

Lemma 5.2.4. Let K = Q(«), where « is the root of an Eisenstein polynomial
at a prime p. Then p is totally ramified in K.
For primes p, ¢ such that

pt#£ 1 (mod ¢°),

p and ¢ are totally ramified in the number field obtained by adjoining a root
of f,(t) = t9 — p, therefore f,(t)’s generate a family of number fields which are

totally ramified only at two primes.

5.3. SOME FINAL REMARKS

We can also fix a prime p and vary ¢ in t¢ — p. For example, when p = 2, we
want to understand for which prime ¢, t7 — 2 is monogenic. We should therefore

understand the distribution of primes ¢ such that
2171 £1  (mod ¢?).

This is an interesting question, as it can be shown that if 2971 £ 1 (mod ¢?),

then the first case of Fermat’s Last Theorem holds. Indeed, we expect that there
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are only few primes ¢ such that 297! = 1 (mod ¢?). As far as I know, 1093 and
3511 are the only primes known to satisfy this relation. For a number field K,
let (x(s) be the Dedekind zeta function of K, and assume its Laurent expansion

at s=11s
(k(s)=c_i(s—1)" +eco+ei(s—1)+-- (c1 #0).

Thara [46] in his interesting paper defined an analogue to the Euler-Kronecker
constant

Co

TK = —,

C1
which is the same as the usual Euler constant for K = Q. Let K, be the field
we defined in Lemma 5.2.3 (¢ = [) and denote v, := vx,. Assuming GRH, Ihara
proved (see [46], Corollary 3)
Theorem 5.3.1 (Thara). Assuming GRH, if lim inf%‘? = 0, then for each prime

p, there are finitely many q such that
p'=1 (mod ¢?).

Therefore by considering these above assumptions we see, for a fixed p, most of
the time t9—p is monogenic. These primes are called Wieferich primes. Motivated
by Fermat’s last theorem, Granville in his interesting paper [32] has studied these
primes. Moreover, Granville and Soundararajan [34] in their remarkable paper
related these primes to a conjecture of Erdos asking if every positive integer is
the sum of a square-free number and a power of 2. It seems possible to use the
effective Chebotarev density theorem, to obtain some averaging result for the
distribution of ¢ mentioned above.

For a given prime ¢ > 3, it would be interesting to classify the monogenicity
of K, := Q((y, ¢/p) when p(# q) varies. Note that a prime [ splits completely
in K, if and only if / = 1 (mod ¢), and pFTl = 1 (mod [). Therefore, by using
Hensel’s idea mentioned earlier, if the least prime in the arithmetic progression
n = q (mod q) is less than ¢(¢ — 1), then there are infinitely many p such that
K, is non-monogenic, namely those p, for which pl_Tl = 1 (mod [). Chang [14]
considered this problem for ¢ = 3 and proved that Q(¥/2, w) is essentially the only
monogenic field among the family Q(/p,w). However, it seems that for ¢ > 5
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the question is more delicate. Perhaps generalizing his methods might gives some

characterization.
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