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                                                                 Résumé  

La recherche de nouvelles voies de correction de la scoliose idiopathique a une longue 

histoire. Le traitement conventionnel de la scoliose idiopathique est présenté par le port  du 

corset ou par la correction opératoire de la déformation. Depuis leur introduction, les deux 

méthodes ont prouvé leur efficacité. Cependant, malgré des caractéristiques positives 

évidentes, ces méthodes peuvent causer un nombre important d'effets indésirables sur la 

santé du patient. Les techniques sans fusion pour le traitement de la scoliose semblent être 

une alternative perspective de traitement traditionnel, car ils apportent  moins de risques et 

des complications chirurgicales que les méthodes conventionnelles avec la  conservation de 

la mobilité du disque intravertébral. Cependant, l'utilisation de techniques mentionnées 

exige une connaissance profonde de la modulation de croissance vertébrale. L'objectif 

principal de la présente étude est d'estimer le potentiel d'agrafes à l’AMF de moduler la 

croissance des vertèbres porcines en mesurant la croissance osseuse sur la plaque de 

croissance de vertèbres instrumentées en comparaison avec le groupe contrôle. 

La méthode est basée sur la loi de Hueter-Volkmann. Nous avons choisi  NiTi agrafes à  

l’AMF pour notre étude et les porcs de race Landrace comme un animal expérimental. Les 

agrafes ont été insérés sur 5 niveaux thoracique de T6 à T11. En outre, les radiographies ont 

été prises toutes les 2 semaines. La présence d'agrafes en alliage à mémoire de forme a 

produit la création de courbes scoliotiques significatives dans 4 de 6 animaux chargés et le 

ralentissement considérable de la croissance osseuse (jusqu'à 35,4%) comparativement aux 

groupes contrôle et sham. L'étude a démontré in vivo le potentiel d'agrafes en alliage à 

mémoire de formes de moduler la croissance des vertèbres en créant des courbes 

scoliotiques sur les radiographies et en ralentissant le taux de croissance sur les plaques de 

croissance instrumenté. La position précise de l'agrafe est essentielle pour la modulation de 

croissance osseuse et le développement de la scoliose expérimentale.  

 

Mots-clés: agrafes en alliage à mémoire de formes, la modulation de croissance, le 

traitement sans fusion, scoliose.                                
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                                                   ABSTRACT 

The search for a new ways of correction of idiopathic scoliosis was started long ago. 

Conventional treatments of idiopathic scoliosis comprise predominantly bracing and open 

correction of the deformity. Since their introduction, both methods have proven effective. 

However, despite evident positive characteristics, these methods can pose a significant 

number of undesirable effects to patient health.. There for fusionless techniques for the 

treatment of scoliosis seems to be a perspective alternative of traditional treatment as it 

presents less surgical risks and complications then conventional methods including 

maintenance of disc mobility. However the use of mentioned techniques demands a deep 

knowledge of vertebral growth modulation. The principal objective of present study is to 

estimate the potential of SMA staples to modulate the growth of porcine vertebrae by 

measuring bone growth on the growth plate of instrumented vertebrae in comparison with 

the control group.  

The method is based on the Hueter-Volkmann law. We choose NiTi SMA staples for our 

study and Landrace domestic pigs as an experimental animal. The staples were inserted on 

5 thoracic levels from T6 to T11. Additionally, radiographs were taken every 2 weeks.  

The presence of shape memory alloy staples led to creation of significant scoliosis curves in 

4 of 6 loaded animals and considerable slowing of bone growth (up to 35.4.%) 

comparatively to control and sham groups. 

The study has demonstrated in vivo the potential of the shape memory alloy staples to 

modulate the growth of vertebrae by creating scoliotic curves on radiographs and by 

slowing the growth rate on the instrumented growth plates. Accurate position of the staple 

is essential for the bone growth modulation and the development of experimental scoliosis.    

   

Keywords : Shape memory alloy staples, growth modulation, fusionless treatment, 

scoliosis. 
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                                     Introduction  

Spinal deformities are known for the whole period of human history. Ancient works 

of philosophy, religion, myths, and fairy tales dating back as far as 3500 BC invoke images 

of people with spinal deformity [1]. The term scoliosis (from Ancient Greek: 

σκολιος skolios "crooked") was widely used even in times of Hippocrates (460-370 BC), he 

also was one of the firs doctors who started to treat this condition [1]. With the 

development of medical science and the science in tote, the definition of scoliosis has 

evolved from simple “curve” to modern definition of scoliosis as a complex three 

dimensional spinal deformity that results from both known and unknown causes in patients 

of all ages [1]. Above all types of scoliosis, idiopathic scoliosis represents our point of 

interest as it’s the most common type of spinal deformity, accounting for nearly 80% of 

patients with structural scoliosis [1]. 

Nowadays, conventional treatment of idiopathic scoliosis depends on the angle of 

the curve and its progression. However, whether a brace or an open reduction will be 

chosen for each particular patient, these methods often carry a number of undesirable side 

effects:  the need of wearing a brace during many months or several years creates obvious 

difficulties for the patient that can affect his or her compliance; it lowers patient’s self 

estimation and causes cosmetic problems. In case of operative treatment those effects are 

more serious: vast operative approach to the spine, significant traumatisation of tissues 

during the mobilisation and skeletisation of the spine, significant blood loss and need of 

transfusion, limited range of motion after the fusion and cosmetic defect.  It is a great 

challenge for patient, his relatives as well for the treating doctor. 

  Because of the mentioned reasons, the search for new corrective methods of 

scoliotic curves is an important issue, in order to improve patient quality of life and to 

minimise the side effects of standard treatment. The search for a new, less invasive method 

of treatment had started almost in the same time as the rods were introduced into clinical 

practice. From our point of view, fusionless surgical treatment of scoliosis (such as SMA 

staples in our case) is a potentially effective alternative to the conventional surgical 
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procedures. It has a number of advantages such as: preservation of motions in the 

instrumented spine segment, less invasive procedure (in many cases can be held by 

endoscopic approach), less potential risks for the patient, possibility of growth after the 

surgery and more acceptable cosmetic defects.  

However, such innovative approach to the patient needs a solid scientific 

background. Since the first works published in 1950s [1, 2] to the present time, a 

considerable number of data regarding fusionless methods of treatment was brought to 

light. All of them are based on a well-known principle called Hueter-Volkmann Law [3, 4]. 

This law proposes that growth is retarded by increased mechanical compression, and 

accelerated by reduced loading in comparison with normal values [3, 4].  . The modulation 

of vertebral growth was achieved by application of different types of implants: rigid or 

flexible tethers (Peter O. Newton M.D and al., John T. Braun, MD and al.), custom made 

implants (Donita Bylski-Austrow, Eric Wall and al.), external Ilizarov fixator  (Ian Stokes 

and al., M. Cancel and al.) and SMA staples. The last method wasn’t just tried in animal 

studies, but also there is a group of researchers headed by Randal R. Betz MD and al. who 

used SMA staples to treat scoliosis in adolescents. We choose the same type of implants for 

our study because of its relative safety and simplicity in regard of instrumentation and 

because it was already used in humans.  

This master degree project aims to demonstrate the potential of SMA staples to 

modulate the growth of porcine vertebrae on both microscopic and macroscopic scales. We 

measured the rate of vertebral growth on instrumented vertebral growth plate and estimated 

the development of scoliotic curve on the radiographs. We hope that by gathering these 

data we will approach more closely to the introducing of fusionless methods of treatment of 

scoliosis in clinical practice.     

The present work consists of 5 chapters. The first chapter is a review of literature 

started with the descriptive anatomy of spine. The second part presents objectives and 

methods followed by scientific article, which is the third chapter. The last two chapters are 

results and discussion with conclusion. 
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CHAPTER 1    Literature overview 

In this chapter we will review the bone growth, bone tissue morphology the methods of 

bone growth modulation. For the  descriptive anatomy of spine and scoliosis please look: 

Annexe 1.    

1.1. Bone growth 

 

1.1.1. Morphology of the Growth Plate 

 

The understanding of growth plate (GP) morphology and structure is important to a 

research study. The growth plate can be divided into a series of anatomic zones that 

represent unique morphological and biochemical stages during the process of chondrocyte 

differentiation. In the resting zone, the ratio of extracellular matrix to cell volume is high 

and the cells are in a relatively quiescent state. In the proliferating zone, chondrocytes 

assume a flattened appearance, begin to divide, and become organized into columns. In the 

zone of maturation, the synthesis of extracellular matrix allows the recently divided cells to 

separate from each other. This extracellular matrix consists predominantly of collagens and 

proteoglycans as well as other noncollagenous proteins  [5, 6].  (Figure 1.1). 
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  Figure 1. 1: Growth plate zones (adapted  from [7]).  

1.2. Scoliosis 

In present time, the majority of authors define scoliosis as a complex three–

dimensional deformity of the spine . Practically, three-dimensional refers to lateral bending 

of the spine combined with rotation of the affected vertebral segments. The most common 

type of scoliosis is idiopathic scoliosis accounting for nearly 80% of patients with structural 

scoliosis[5, 10]. The term idiopathic implies that a definitive cause of the disease has yet to 

be discovered.  In younger patients, this type of spinal deformity can be divided into three 

groups based on age at onset of symptoms:  

1) Infantile idiopathic scoliosis (0-3 years)        

2) Juvenile idiopathic scoliosis (4-9 years) 

3) Adolescent idiopathic scoliosis (10 years to the end of skeletal growth.) 

Scoliosis revealed subsequent to the end of bone growth is defined as adult scoliosis.  

Since adolescent idiopathic scoliosis (AIS) is the most common among those identified 

here, it deserves a more detailed overview[11].  
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1.2.1      Prevalence    

                  Following numerous studies on the subject, researchers have come to the 

conclusion that sex of the patient plays an important role in the prevalence of AIS. The 

prevalence of radiographic curves measuring at least 10 degrees ranges from 1.5% to 3.0%, 

of curves exceeding 20 degrees from 0.3% and 0.5%, and of curves exceeding 30 degrees 

from 0.2% and 0.3%.   The ratio of affected females to males (Figure 1.2) is 1:1 for curves 

between 6 and 10 degrees, 1.4:1 for curves between 11 and 20 degrees, 5.4:1 for curves 

exceeding 21 degrees but not requiring treatment, and 7.2:1 for curves requiring 

orthopaedic intervention [11, 12]  .  

 

 

 

 

 

 

 

 

                    Figure 1.2: The ratio boys\girls by age (adapted  from [9]).  

1.2.2       Etiology  

The definitive etiology of idiopathic scoliosis remains unknown. However, hereditary 

factors are proven to play a significant role in the development of this pathological 

condition. The studies conducted by Wynne-Devies in her family survey indicated that 

approximately one-fourth of patients with IS had a relative who was affected with scoliosis, 

although no clear mode of inheritance was discovered from the data [11].  
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1.2.3       Natural history 

The majority of patients diagnosed with mild idiopathic scoliosis never experience 

problems as a result of their condition. Reports in the literature indicate that individuals 

with untreated curves less than 20 degrees are at low risk for progression, particularly as 

they approach skeletal maturity. Some patients, however, have curves that continue to 

progress over the years and ultimately lead to health problems. Thus, it is important to 

recognize the factors associated with curve progression; patient sex, remaining growth, 

curve magnitude, and curve pattern. Factors of no predictive value for curve progression 

before skeletal maturity include a family history of scoliosis, patient height-to-weight 

ratios, lumbosacral transitional anomalies, thoracic kyphosis, lumbar lordosis, and spinal 

balance [8]. In order to evaluate the possibility of progression of the curve, mainly two 

methods are used: Risser's sign (Figure 1.3) (a skeletal marker) and, in females, menarchal 

status (a physiologic marker).Risser's sign is a radiographic measurement based on the 

ossification of the iliac apophysis, which is divided into four quadrants.  Risser's sign 

proceeds from grade 0, no ossification, to grade 4, in which all four quadrants of the 

apophysis show ossification ("capping"). Once the ossified apophysis has fused completely 

to the ilium (Risser grade 5), the patient is considered fully skeletally mature. Patients with 

Risser grade 0 or 1 (and, to a lesser extent, grade 2) are at the greatest risk for curve 

progression because a significant amount of spinal growth remains. Menarchal status is a 

clinical measurement applicable only to females. A premenarchal girl is still in the active 

growth period. Following menarche, she enters the deceleration phase of growth, and the 

likelihood of curve progression lessens [8]. 
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Figure 1.3:  Risser's sign proceeds from grade 0 (no ossification) to grade 4 
           (adapted  from [13]).  
 

1.2.4  Classification 

 

1.2.4.1     Cobb angle 

There are several classification systems used in clinical practice. Radiography was, and 

remains, the basic diagnostic method in evaluating a scoliotic curve. Usually a standing 

posterior-anterior view of the patient’s spine is necessary, additional views are taken as 

indicated. The Cobb method is used to measure the degree of scoliosis on the posterior-

anterior radiograph (Figure 1.4). In addition to the degree, the curves should be described 

as “right” or “left,” based on their curve convexity. Standard measurement error is 3 to 5 

degrees for the same observer and 5 to 7 degrees for different observers when the same 

endvertebrae are used for measurements. Curves are named for the location of the apex 

vertebrae, and may be described as thoracic, lumbar, thoracolumbar, cervical, or double 

major (two curves in different spinal regions) [14, 15]. 
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         Figure 1.4: Cobb method of measuring the degree of scoliosis (adapted from[15] ). 
 
 

Curves less than 10 to 15 degrees are considered to be small, require no active treatment 

and are simply monitored, unless the patient's bones are very immature and progression is 

likely. Moderate curves, between 25 and 45 degrees, in patients lacking skeletal maturity 

have previously been treated with bracing.  In patients with a curve severe enough to 

require surgery (greater than 45 degrees in adolescents and greater than 50 degrees in 

adults), rod placement and bone grafting may be necessary to achieve partial or complete 

correction [11, 15].  

 

 

1.2.4.2. King-Moe classification 

In 1983, King and colleagues introduced a radiographic classification system for adolescent 

idiopathic scoliosis in which five different curve types were described (Figure 1.5). The 

classification system determined the severity of a case based on Cobb angle and flexibility 

index from  bending radiographs.  King type I represents an S-shaped curve crossing the 

midline of the thoracic and lumbar curves. The lumbar curve is larger and more rigid than 

the thoracic curve. The flexibility index in the bending radiographs is negative. King type II 

is an S-shaped curve where both the thoracic major curve and the lumbar minor curve cross 

over the midline. The thoracic curve is larger. King type III represents a thoracic curve 

where the lumbar curve does not cross the midline. King type IV represents a long thoracic 
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curve where the fifth lumbar vertebra is centered over the sacrum, but the fourth lumbar 

vertebra is already angled in the direction of the curve. King type V represents a thoracic 

double curve where the first thoracic vertebra angles into the convexity of the upper curve. 

Together with its progressiveness this classification has its disadvantages: 

- The sagittal profile is not included in the evaluation; and 

- So-called “double and triple major curves” (scoliosis forms with two or three major 

curves) are not considered[5, 16]. 

 
                           Figure 1.5: King classification of scoliotic curves (adapted  from [16]). 
 

1.2.4.3      Lenke classification 

In 1997, Lenke introduced a new classification system, much more complex than the King 

system, for idiopathic scoliosis.  Goals of the new classification system were, namely, to 

allow for more acceptable comparisons among the various types of operative treatments 

available, as to support a treatment-based approach to the patient. Determination of the 

scoliosis type is based on survey spine radiographs in two planes, as well as right and left 

side bending radiographs with the following parameters [5, 16]. 

The curve type is determined by the localization, degree, and flexibility of the manifested 

curves. For localization purposes, the curve apex is defined as: 

- Upper thoracic localization: Curve apex between Th2 and Th6 

- Thoracic localization: Curve apex between Th6 and intervertebral disc Th11/12 
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- Thoracolumbar localization: Curve apex between Th12 and L1 

- Lumbar localization: Curve apex between intervertebral disc L1/2 and L4. 

 

 Determination of the flexibility of the curve. 

The flexibility is assessed either based on the residual curve in the bending radiograph or 

the extent of kyphosis. A curve is defined as structural if the bending Cobb angle exceeds 

25° or the kyphosis angle exceeds 20°. 

The following six curve types can be defined using these parameters: 

-Type I (main thoracic, major curve thoracic only)  

• The major curve is structural, the others are not. 

- Type II (double thoracic, 2 thoracic curves) 

• The thoracic major curve and the upper thoracic minor curve are structural; all 

others are non- structural. 

-Type III (double major, 2 major curves) 

• The thoracic, thoracolumbar or lumbar curve is structural; the thoracic curve is 

larger than the thoracolumbar or lumbar curve. If there is an upper thoracic curve, it 

is not structural. 

-Type IV (triple major, 3 major curves) 

• All three curves are structural; the thoracic curve is the major curve. 

- Type V (primary thoracolumbar/lumbar, major curve thoracolumbar or lumbar only) 

• The major curve is located in the thoracic-to-lumbar transition or in the lumbar 

spine and is structural; the upper thoracic or thoracic minor curve is not structural. 

- Type VI (primary thoracolumbar/lumbar, main thoracic) 

• The thoracolumbar or lumbar major curve is structural; the thoracic minor curve is 

also structural, but its Cobb angle is at least 5° smaller[16]. 

1.2.5  Management 

Management of AIS is a complex process; the main goal is the prevention of the 

progression of scoliotic curves. The selection of a treatment method for each particular case 

depends predominantly on the severity of the curve. There are three therapeutic options:  
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- Observation 

      - Bracing 

      - Surgery  

 For curves between 0 and 20 degrees (Cobb angle), which represents the majority of 

patients with AIS, the sole option is observation.   

1.2.5.1 Bracing  

Based on the natural history of idiopathic curves, brace treatment should, in general, keep 

curves below 40 degrees or below the point at which they have the potential to cause an ill 

effect on the health of the patient[17]. The indications for bracing are: Cobb angle between 

20 to 40 degrees, risk of progression, and cosmetic defect caused by the curve[18]. 

Corrected forces are provided during the external application of the brace, which 

concurrently correct the curve.. Below are two types of braces used in clinical practice 

(Figure 1.6). 

 

 

 

 

 

 

 

 

 

            Figure 1.6. Brace types (a) Milwaukee, (b) Boston (adapted from[19]).          

             

1.2.5.1       Surgical treatment 

Indications of a need for surgical intervention in patients with AIS vary in each 

particular case, nonetheless there are certain basic criteria for such a  clinical decision. The 

                 a)                b) 
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strongest indication for surgery is a curve that reaches 45° to 50°. This is especially 

relevant to thoracic  curves, due toevidence thatprogression continues subsequent to the 

completion  of growth [20]. In the case of lumbar curves there are no respiratory problems, 

however once the curve exceeds 60˚ it can result in considerable back pain and should be 

treated[21]. Cosmetic defect is another non negligible reason for surgery, especially in 

female patients. Over the past several decades the choice of instrumentation system has 

changed from a simple Harrington rod to a variety of intruments used in present time. Most 

commonly, all past and present methods  require fusion of affected vertebrae. The goals of 

instrumentation include  the correction of the lateral curve, reduction of the rib hump, 

correction of rotation, rigidity of fixation to aid in obtaining fusion and safety. Recently, 

two criteria have become increasingly popular in the conventional treatment of AIS: the 

elimination of post operative immobilization and the correction of vertebral rotation.The 

first is responsible for the popularization of the Luque (Figure 1.7) method and the second 

for the Cotrel-Dubousset system[11].  Further to several studies undertaken by Dubousset 

[22] and Mullaji[23], it is better to postpone surgical intervention for as long as possible in 

an effort to further maturation of bone tissue  

       

 

 

 

 

                             

                       

 

 Figure 1.7. Cotrel-Dubousset (a) and Luque (b) rod systems (adapted from  [24]).                       

 

                                 a)                        b) 
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1.3       Experimental methods of growth modulation 

Currently the operative treatment of choice for idiopathic scoliosis with a curve 

greater than 40˚ is, most often, open reduction through fusion of one or several spine 

segments using a rode system. However, this method often carries a number of undesirable 

side effects: vast operative approach to the spine, significant traumatisation of the tissues 

during the mobilisation and skeletisation of the spine, significant blood loss and need of 

transfusion, limited range of motion after the fusion, cosmetic defect, etc. Even a less 

invasive intervention, for example bracing, can create   difficulties for the patient affecting 

his or her compliance.  These are typically cosmetically based issues that may lead to 

feelings of decreased self-esteem. It is for these reasons that the pursuit of new methods for 

correcting scoliotic curves remains an important issue, both to improve patient quality of 

life and to minimize the side effects of standard treatment. Since the 1950s there have been 

attempts [2, 25] to find new methods to treat scoliosis using vertebral body stapling and 

other fusionless techniques. Fusionless surgical treatment of scoliosis is a potentially 

effective alternative to conventional surgical procedures. It has a number of advantages 

such as the preservation of  motions in the instrumented spine segment, a less invasive 

procedure (in many cases it can be performed by endoscopic approach), fewer potential 

risks for the patient, the possibility of growth after the surgery, and more acceptable 

cosmetic defects. The following will provide an overview of recently published studies 

representing the main directions of different researchers on the subject of experimental 

methods for creating scoliotic curves.  

 

1.3.1 T.Braun, M.D. et al. 

 Studies undertaken by a group of researchers and headed by John T. Braun, M.D. 

[26-29] led to the publication of a number of articles on the experimental methods of 

creating and correcting scoliosis using either  anterior vertebral body stapling or anterior 

ligament tethers attached to bone anchors. The experimental animal model used in these 

studies was the Spanish X-crossed female goat, selected both for its overall size and size of 
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the components of its spine, similar to that of a juvenile human. At the beginning of the 

study the animals were 6-8 weeks in age and  weighed between 6.4-11.8 kg. Two methods 

were used to create scoliosis deformity. 

 

Rigid posterior asymmetric tethering  

This method was used in 40 goats [29]. Of the animals that survived, 82 % 

developed progressive, structured idiopathic type curves convex to the right thoracic spine. 

Six of 33 animals failed to develop a scoliotic curve. Following the procedure, the average 

initial curves measured 42° and increased to 60° over the six to15 week tethering period.  

                                                                                                             

Flexible posterior asymmetric tethering 

This method was used in 24 goats. Of the animals that survived, 91 % developed 

progressive structural, lordoscoliotic curves. The curves increased from an initial average 

of 55.4 ° to 74.4° over an eight week tethering period. Both groups of animals were later 

used for the correction of experimental scoliosis through two methods: anterior thoracic 

stapling and bone anchors with ligament tethers..            

                                                                                 

Results 

In both groups the authors observed correction of scoliosis after the application of 

staples: 14° for the first group and from the average of 73.4° ± 8.4° to 69.9° ± 9.7° for the 

second. The conclusion was made that anterior vertebral body stapling is an effective 

method for the correction of moderately severe scoliosis deformity in a goat model. Greater 

correction was observed in the stapled goats versus untreated [28]. 

        

1.3.2 Peter O. Newton M.D. et al. 

   A group of researchers from the University of California headed by Peter O. 

Newton M.D. performed several studies using flexible tether, either steel or polyethylene, 
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to create an experimental scoliosis in porcine and bovine models [30-31]. The first study 

was held using a porcine model for growth modulation [31]. 

 

Description of study 

 Twelve seven-month-old mini-pigs underwent instrumentation with a vertebral 

staple-screw construct connected by a polyethylene tether over four consecutive thoracic 

vertebrae. The instrumented levels were from T8 to T11. Monthly radiographs, computed 

tomography and magnetic resonance imaging scans (made after the spines were harvested), 

histological findings, and biomechanical findings were evaluated. Analysis of variance was 

used to compare preoperative, six-month postoperative and twelve-month postoperative 

data. The first six mini-pigs grew for six months after instrumentation, and the latter six 

mini-pigs grew for twelve months after instrumentation[30]. 

 

Results. 

 The radiographic data collected preoperatively, immediately after the operation and 

monthly, demonstrated the significant growth of the Cobb angles on the sagittal plane in 

two groups of animals. For the six month group, the growth of the curve was from 0°±2° 

preoperatively to 13°±4° after six months. For the twelve month group the angles were 

0°±2 preoperatively, 15°±4° after six months and 30°±13° after a twelve month period. 

There was no significant change in angles on the sagittal plane before and after the 

instrumentation in both groups. Vertebral body wedging, with decreased height on the side 

of the tether, was observed starting one month postoperatively and progressed over each 

animal’s survival period. Preoperative vertebral body wedging was significantly less than 

that observed at six or twelve months (p ≤ 0.001), and wedging observed at twelve months 

was significantly greater than that observed at six months (p ≤ 0.001). 

  

Conclusion 
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This study confirms the ability of a flexible tether, either steel or polyethylene 

attached to the vertebral bodies anteriorly, to limit adjacent vertebral growth. This is 

comparable to how physeal-bridging staples alter growth in long bones. 

 

 

Bovine model 

The second study held by this group of researches was called “Spinal growth 

modulation with an anterolateral flexible tether in an immature bovine model”. An 

immature bovine model was used to evaluate multilevel anterolateral flexible tethering in a 

growing spine. In 17 calves, a vertebral staple and two 6.5 mm wide and 45 mm long 

titanium cancellous vertebral screws were placed with bicortical fixation. Two 

nontensioned 3/16“ stainless steel cables were placed to connect both sets of screws at all 

four levels and secured with set screws. For each animal, dorsoventral and lateral 

radiographs of the thoracic spine were taken immediately after surgery and after harvest. 

Vertebral body height and width, and disc height measurements were performed. Computed 

tomography (CT) was performed on 11 spines [30]. 

 

Results 

After six months of growth, the control group continued to have essentially no 

coronal or sagittal deformity (3.9°±3.9° and 1.4° ± 3.3°, respectively). Deformities were 

created in all spines in the tether group in both the coronal plane and sagittal plane (on 

average 37.6°±10.6° and 18.0°± 9.9°, respectively). Over a six month period, vertebral 

body heights in the control group grew an average of 9.7 mm ±2.0 mm per level, resulting 

in a 34% length increase over the four surgical levels. Final average vertebral body width 

was 33.5±2.5 mm. Control disc thickness increased 100% over these six months (from an 

average of 2.1±0.2 mm to 4.0 ±0.4 mm). Immediate postoperative radiographs showed no 

differences in initial Cobb measurements between the control and tether groups in either the 

coronal or sagittal planes. After six months of growth, the control group continued to have 

essentially no coronal or sagittal deformity (3.9°±3.9° and 1.4° ± 3.3°, respectively). 
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Deformities were created in all spines in the tether group in both the coronal plane and 

sagittal plane (on average 37.6°±10.6° and 18.0°± 9.9°, respectively). Over six months, 

vertebral body heights in the control group grew an average of 9.7 mm ±2.0 mm per level, 

resulting in a 34% length increase over the four surgical levels. Final average vertebral 

body width was 33.5±2.5 mm. Control disc thickness increased 100% over these six 

months (from an average of 2.1±0.2 mm to 4.0 ±0.4 mm).  

 

Conclusion 

Radiographic analysis in this study confirmed the creation of a coronal and sagittal 

plane spinal deformity over the six month growth period. The double tether construct 

provided appropriate fixation in the vertebral bodies and consistently created notable 

vertebral wedging compared with controls.  

 

1.3.3 Donita Bylski-Austrow, Eric Wall et al. 

This group of researchers from the department of orthopaedics, Cincinnati 

Children’s Hospital Medical Center, used a porcine model to test the hypothesis that 

scoliotic curvatures may be repeatedly created using anatomically based vertebral staples 

and thoracoscopic surgical procedures [32-34]. Custom spine staples were implanted into 

the midthoracic spines of seven domestic pigs, weighing 240 to 334N (54–75 lbs), which 

corresponds to approximately three to four months of age. Six staples (per pig were 

implanted into the left side of adjacent vertebrae across discs T6–T7 to T11–T12 using a 

thoracoscopic procedure. Each staple spanned one intervertebral disc and two growth plates 

just anterior to the rib heads. Each staple was fixed to the vertebral bodies using two bone 

screws. Following surgery, the animals were maintained for eight weeks. Anteroposterior, 

lateral, and right oblique (staple true view) radiographs were taken immediately after 

surgery, at two, four, six, and eight weeks, and again after spine harvest.. 
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Results 

 In the coronal view, Cobb angles in the remaining five animals at the beginning of 

the study and at two, four, six and eight weeks were 0.8° (±1.8), 5.1° (± 2.0), 7.3° (±1.1), 

9.1° (±2.3), and 16.4° (±5.4), respectively. Cobb angles at eight weeks in vivo were 

significantly different than the immediate postoperative values (P< 0.01). Radiographs 

taken after the spine harvest gave better image quality and control. In these, Cobb angles 

averaged 22.4° (±2.8) without load and 21.4° (±4.0) with applied moment; the negligible 

difference of 1° (±2) indicated that the curves were not flexible. The angles measured after 

harvest were markedly different than initial values (P < 0.0001). The largest curvatures 

occurred in the right oblique plane, perpendicular to the staples. Angles at 0, 2, 4, 6 and 8 

weeks were 7° (±2.6), 11° (±5.6), 12.6° (±9.4), 12.5° (±7.0), and 17.8° (±10.5), 

respectively. Following the spine harvest, Cobb angles averaged 26° (±8.7) and curvatures 

were significantly different than initial values (P < 0.01). 

 

Conclusion. 

Spinal hemiepiphysiodesis using custom staples with bone screw fixation and 

minimally invasive surgical procedures repeatedly induced coronal plane spine curvature in 

a live porcine model. Mean sagittal plane curvature did not increase with postoperative 

time. If eventually successful clinically, these techniques may slow the progression of, or 

perhaps even correct, spine deformity without arthrodesis [34]. 

 

1.3.4 Randal R. Betz MD et al.  

Several studies have been published by this group of researchers describing the use 

of stapling methods for the treatment of patients with adolescent idiopathic scoliosis [34-

37]. This was a retrospective review of patients who had undergone vertebral stapling for 

treatment of AIS (Figure 1.15), either as a primary treatment or as an alternative to their 

current treatment of bracing. Inclusion criteria for this review are onset after nine years of 

age and skeletally immature with a Risser sign ≤ 2. Twenty-one consecutive patients met 
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the inclusion criteria and have had vertebral body stapling of 27 curves. The preoperative 

curves ranged from 18° to 52°. The average age at surgery was 12.0 years (range 10–14 

years). This group of 21 patients was analyzed for feasibility and safety. Ten patients with 

at least a follow-up and preoperative curves < 50° will be analyzed to determine the success 

of the procedure. The staple is inserted into the pilot holes, the position is confirmed with 

fluoroscopic image. The pilot holes for a second two prong staple, to be placed posterior to 

the first staple, can be seen.  

 

Results. 

 Feasibility was demonstrated in each patient as surgery was successful for the 

placement of staples at every planned level. Two patients had only one staple placed, 

instead of two, at the upper thoracic level because of small vertebral body size. 

 

 

 

 

 

 

 

 

 

 

No patient required conversion to open thoracotomy for placement of staples. There were 

no major complications and just three minor complications (14%) in the stapling group. 

One patient had a segmental spinal vein that was punctured by a staple prong, requiring 

conversion of the thoracoscopic portal to a mini-incision and ligation of the vein. A second 

patient developed a chylothorax from a staple prong puncture of the thoracic duct at T12. 

One patient developed pancreatitis. For the 10 patients evaluated for utility, the average 

preoperative curve measured 35±3.7° (range 28°–40°) and average follow-up curve 

Figure 1.8. Vertebral body stapling  (adapted  from [36]). 
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measured 37±10.2° (range 22°–55°). After 1-year follow-up, the change in the curves 

ranged from a decrease of 16° to an increase of 19°.Three of the six had significant 

improvement: Case 1, 16° Case 2, 8°; and Case 8, 11°. Four of the 10 (40%) showed 

progression of 19°, 10°, 10°, and 7°, respectively. One of the 10 (10%) progressed beyond 

50°; this patient underwent surgery for progression of her thoracic curve. 

 

1.3.5  Ian A.F. Stokes et al. 

Based on the author’s previous studies of the bone growth modulation, the aim of 

this study [39]  was to document the alteration of growth at two different anatomical 

growth plate locations, for three differing levels of sustained stress, in three different 

species, and for animals of differing ages.  Growth plates at two anatomical sites (proximal 

tibia, and caudal vertebra) were subjected to sustained compression or distraction stress in 

three animal species (rat rabbit, calf), using an external loading apparatus. The tibial growth 

plate only was used in rabbits, while both growth plates (tail vertebral and proximal tibial) 

were used in rats and calves. In rats and rabbits, two ages of animals were studied, with 

older animals having about 75% of the growth rate of younger animals. The sustained stress 

magnitudes applied to each loaded growth plate had target values of either 0.1 MPa 

(distraction), 0 MPa (sham), 0.1 MPa (compression) or 0.2 MPa (high compression). The 

contralateral tibia and adjacent unloaded vertebrae provided internal controls for each 

animal, while the animals that had the apparatus installed, without spring forces, provided 

the sham. Thus, data were included in this study from 41 rats, 39 rabbits and 18 calves. 

 

Results 

In most cases the growth plates under tensile stress had increased growth relative to 

controls (the two younger rats’ growth plates were the exception), but this finding was 

complicated by the ‘sham’ effect (altered growth associated with application of the loading 

apparatus, but without loads applied). Generally, the sham-loaded growth plates were 

observed to have lesser growth rates than their controls. After compensating for the ‘sham’ 
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effect by subtracting the mean value from each of the corresponding values for loaded 

growth plates, growth decreased on average by between 2 and 38 % in the nominally 0.1 

MPa compression groups, and decreased by between 19 and 61 percent in the nominally 0.2 

MPa compression groups. It was increased by 2 to 36 % for distracted growth plates. 

 

Conclusion 

The relationship between actual stress and percentage growth modulation (percent 

difference between loaded and control growth plates) appeared to be linear, and 

quantitatively similar. Relationships were found for all three species, for different ages of 

animals, and at both anatomical locations, although a substantial difference between tibiae 

and vertebrae was determined. All groups had a significant correlation between growth 

alteration and stress. As expected, distraction accelerated growth and compression slowed 

growth. Doubling the compressive stress approximately doubled the proportional reduction 

in growth rates[39]. 

 

 

1.4        General conclusion 

We undertook this study in order to determine the impact of the implantation of SMA 

(shape memory alloy) staples on the vertebral growth. Using the series of control 

radiographs  as well as the histological analyses of vertebral growth plates we tried to 

observe both : macroscopic (experimental scoliosis) and microscopic (bone growth rate)  

responses of the porcine vertebral column to the insertion of SMA. It was the first study of 

its kind, which combined one side vertebral body stapling with the mentioned earlier 

methods of control.        
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CHARTER 2     Objective and Hypothesis  

 

The goals of this study is to demonstrate that unilateral  vertebral body stapling can create 

an experimental scoliosis curve more then 5° and affects vertebral  growth causing the 

decrease of more then 20% of growth rate comparatively to the  control group.   

In order to confirm the above statements we had to fulfill several objectives: 

1) Elaborate  the optimal surgical procedure, including surgical approach, methods of 

anaesthesia and post-operative management of animals; 

2) Choose the method of growth plate labelling, using the recent experiments held in 

our center and several control labellings; 

3) Make a histological analyses of vertebral body growth plates for every group of 

animals in order to estimate an compare the growth rates between them.  
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 CHARTER 3   Materials and Methods  

 

3.1            Introduction 

In this chapter we will review the methods, animal models and materials used in this 

study.   

 

3.2           Animal model 

The animal model of the Landrace domestic pig (Figure 3.1) was selected for the 

present study. The reasons for such a selection are based on several anatomical and 

physiological similarities between a human adolescent and a domestic pig, including the 

size of the thoracic vertebrae. The concentrated growth of female pigs from three months of 

age to sexual maturity at six months of age is comparable to human bone growth during 

adolescence, but in a much shorter period of time. 

 

 

 

 

 

 

 

 

 

                                           Figure 3.1:  Experimental animal. 

The twelve female Landrace domestic pigs, three months of age, arrived one week prior to 

surgery in order to pass a necessary quarantine. The animals were treated according to 
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protocols approved by the institutional committee of good practice in research at Saint-

Justine Hospital based on the norms established by the Canadian Council on Animal Care 

(CCAC). 

The animals were divided into three groups: 

1. The first group, composed of six pigs, were instrumented using 10mm U-shape Ni-Ti 

SMA staples and instruments for their application designed by Medtronic Sofamor-Danek 

(Memphis, USA).  

2. The second group of three animals were used as the sham group in order to study the 

influence of a surgical procedure on bone growth without staple placement.  

3. The third group of three animals were used as the control group. 

  

The Ni-Ti (Nitinol) SMA memory alloy staples (Figure 3.2) used in this study are 

U-shaped implants with four prongs joined with a laminar bridge portion including an 

aperture at its center.  

 

 

 

 

 

 

 

                                      Figure 3.2: Memory alloy staple 

 

Nitinol’s properties are derived from a reversible, solid state phase transformation 

known as a martensitic transformation [40]. At high temperatures, Nitinol assumes an 

interpenetrating simple cubic crystal structure referred to as austenite (also known as the 

parent phase). At low temperatures, Nitinol spontaneously transforms to a more 

complicated “monoclinic” crystal structure known as martensite. The temperature whereby 
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austenite transforms to martensite is generally referred to as the transformation temperature. 

More specifically, martensite begins to form at the so-called Ms temperature, and is 

considered complete at the Mf temperature. Crucial to Nitinol’s properties are two 

important aspects of this phase transformation. First,the transformation is “reversible” 

meaning that heating above the transformation temperature will revert the crystal structure 

to the simpler austenite phase. Upon heating, however, there is a slight upward shift in the 

temperatures, now beginning at the As temperature, and finishing at the Af temperature. 

The second key point is that the transformation in both directions is instantaneous. 

Martensite's crystal structure (known as a monoclinic, or B19' structure) has the unique 

ability to undergo limited deformation, about a 6-8% strain, without breaking atomic bonds. 

When martensite is reverted to austenite by heating, the original austenitic structure is 

returned, regardless of whether the martensite phase was deformed. Thus, the name "shape 

memory" refers to the fact that the shape of the high temperature austenite phase is 

"remembered," even though the alloy is severely deformed at a lower temperature.  A great 

deal of force can be produced by preventing the reversion of deformed martensite to 

austenite, in many cases, more than 100,000 psi. In an ordinary alloy, the constituents are 

randomly positioned on the crystal lattice, however since Nitinol is an intermetallic 

compound, the atoms (in this case, nickel and titanium) have very specific locations in the 

lattice.  

 

 

3.3 Surgical protocol 

The pigs fasted for a period of twelve hours preoperatively. For transport, the 

animals were placed in a restraining cage and the following sedative medications were 

injected fifteen minutes prior to surgery: atropine 0.04mg/kg, azaperone 4.0mg/kg, 

ketamine 25mg/kg I\M via a 21G catheter. 

Once asleep, the animal was covered with a blanket and transported to the 

department of experimental surgery (9th floor, Block 9). The animal was then placed on the 
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surgical table equipped with a heating mat in the prone position. Following the anaesthesia, 

delivered by mask using Isoflurane 2.5% / L O2, an intravenous catheter (22G) was 

inserted in the ear vein and held in place with tape. During the surgery 0.9%  NaCl was 

administered intravenously at a rate of 10ml/kg/hour. Injection of propofol (10 mg/ml, 

dose: 1.66mg/kg) was made via IV catheter. Following the loss of reflex (relaxation of the 

jaw), the pig was intubated (xylocaine spray to the vocal cords and introduction of the 

endotracheal tube sized between 5.5 and 6.5) using a laryngoscope and connected to the 

respirator for anaesthesia maintenance through the flow of 10ml/kg anaesthetic gas 

(mixture of Isoflurane 1.5% / litre of oxygen).Throughout the surgery both the heart rate 

and oxygen saturation were monitored.  

In order to properly identify one animal from the next, each pig was assigned a 

number by place of a tag through a hole in the ear. The animal was placed in the left lateral 

position and attached to the surgical table with pull strings. The conductive cauterisation 

plate was placed on the right hip and the surgical site was shaved and cleaned with 

chlorhexidine solution and Betadine. The level of anaesthesia was continuously verified 

through stimulation of the nasal septum or the anal sphincter.  A sterile field was placed 

over the pig’s chest revealing only the surgical site. 

An incision was made in the seventh intercostal space on the right chest wall. Until 

the pleural cavity, all tissue layers were passed using a thorough haemostasis. The use of 

the costal retractor provided the space required for passage of the graft instruments. 

Previously cooled to 0°C, sterile Ni-Ti staples were expanded and implanted to enclose two 

adjacent growth plates spanning an intervertebral disc space at five different thoracic levels 

from T6 to T11.    

Animals from the sham group underwent identical surgical procedure exclusive of 

staple insertion. Rather, four holes were made in the cortical bone tissue at the same level 

as the instrumented group. The surgery was finished by thorough closure of the wound by 

means of absorbable and non-absorbable suture filaments. 

The wound was covered with Opsite spray and a Fentanyl patch (7.5mg) was 

applied on the ear as an analgesic. The animals also received the antibiotic Excenel 
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(3mg/kg) administered intravenously in the neck 24 hours prior to surgery and two days 

following the surgery. Postoperatively, the pigs were held in communal cages of four.  

 

3.4    Radiographic control 

The radiographs were generated biweekly, for a period of eight weeks 

postoperatively, and on the day of sacrifice (five in total) under general anaesthesia using 

the same sedative mixture administered during surgery (atropine 0.04mg/kg,  4.0mg/kg  

azaperone, 100mg/ml ketamine 25mg/kg  IM via  21G catheter). Concomitantly, the pigs 

were weighted in order to calculate the necessary medication dosage.   

Two radiographic views were taken every time and included posterior-anterior and lateral 

(Figure 3.3.).  

 

 

 

 

 

 

 

 

 

 

 

 

                        a)                                                                                      b)  

        Figure 3.3 (a, b): Posterior-anterior (a) and lateral (b) radiographs of porcine spine.   
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These goal of the postoperative images are to provide a constant control for staple 

position, measurement of Cobb’s angle and wedging of vertebrae in order to compare data 

between all experimental groups. The measurements were performed via the programme 

Synapse 3.1.1. 

 

3.5    Growth plate labelling.  

Following two previous test studies of bone growth labelling, the decision was made 

to use Calcein Sigma (Fluorescein-bis (methyliminodiacetic acid)) as a growth labelling 

agent. The approved standard protocol for bone labelling was used. The concentration of 

calcein used in this study was 20 mg/kg, in order to ensure prominent fluorescent lines 

under the microscope. A mixture of calcein and sodium bicarbonate (NaHCO3, 10 mg/kg) 

was dissolved in 500 ml of 0.9% NaCl. Previously sedated animals, having had the same 

sedation for the surgery and radiographs, were injected slowly into the ear vein with a 

labelling mixture using a simple Manifold. In total two injections of calcein six days apart 

were made, one on the seventh day and one 24 hours prior to sacrifice.   

At the end of the study, once the animals reached six months of age, the pigs were 

sedated using Ketamine and then euthanized using Euthanyl 240 mg/kg intravenously. 

Following the euthanasia, a spinal segment containing vertebrae T6 to T11 was dissected 

from each animal. Excessive connective and bone tissues were removed and the blocks of 

vertebrae were immerged in 10% solution of formaldehyde.  

 

3.5.1      Plasticisation of vertebrae and cutting      

In order to have thin slices of vertebrae for the microscopy, the harvested vertebrae 

should be impregnated in MMA (methyl methacrylate) solution. For this purpose, all of the 

harvested samples have passed through the following steps of tissue preparation for 

plasticisation presented in the Table 3.1 below. After plasticisation, which can take from 

one to three weeks, the blocks of paired vertebrae were cut using an Isomet 1000 precision 
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saw to form brick shaped blocks of two vertebrae containing two neighbourhood growth 

plates and an intervertebral disc between them. Two sequences (sequence A and B) of 6 

micrometer thin sections were cut on each vertebra-disc-vertebra bloc at the level of ventral 

prongs (sequence A) and between ventral and dorsal prongs (sequence B) using Leica 

SM2500 Microtome (Figure 3.4 and 3.5). Each sequence consists of 10 sections made 25 

micrometres apart. 

                      

 

                Table 3.1. Plasticisation of vertebrae   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                                     b)     

                     Figure 3.4 ( a, b).   Vertebra-disc-vertebra bloc (a) and sections (b).    

Solution Time of exposure 

Initial buffered  Formol 24 (change the solution if it turns red) 

Buffered Formol 1 to 3 day(s) 

Buffered Formol 3 to 5 days 

Buffered Formol 3 to 5 days 

Alcohol 80% one day and one night (3 changes) 

Alcohol 95% one day and one night(2 changes) 

Alcohol 100% 3-5 days (4 changes) 

Xylene 7-9 hours (4 changes) 

MMA0% 3-5 days (2 changes) 

MMA1% 5-7 days (2 changes) 

MMA3.8% 9-11 days (3 changes) 

MMA3.8% Final solution 
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                                            Figure 3.5.  Sequences A and B.    

3.5.2      Growth rate measurement       

The cut sections were evaluated under the fluorescent optic microscope Leica DMR 

suing a polarised filter for calcein and a UV lamp. In order to understand how compressive 

forces created by shape memory alloy staples are distributed on the subjacent tissues, every 

growth plate was virtually divided into four zones, zone 4 being closest to the staple and 

zone 1 the furthest (Figure 3.6). The average daily growth rate was calculated by measuring 

the distance between the two fluorescent lines on the growth plate (Figure 3.7), in 

micrometres, and dividing the number by six, the number of days between calcein 

injections. These measurements were executed using custom  software. The average growth 

rates were calculated for every zone over each vertebra in all three groups of animals. 

 

 

 

 

 

 

 

                                                   

 
Figure 3.6: Four zones of growth plates 
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3.6    Statistical analyses 

In order to confirm or disapprove our scientific hypothesis we made a  post-hoc 

analyses of both|: Cobb angles and growth rates which were compared between groups 

using values recorded pre-operatively and immediately prior to euthanasia. Because of the 

number of experimental animals we used non-parametric Wilcoxon tests to interpret these 

data using SPSS software. Group sample sizes were determined using a significance of 

α=0.05 and a power of p=0.80.  Measures (Cobb angles and growth rates) were repeated by 

two different observers [41]. 

 

 

 

                    

 

 

 

 Figure 3.7. Two fluorescent lines of calcein 
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                 CHAPTER  4  Scientific article 

The contribution of the first author of the article is about 70 % (tissue processing,  growth 

rate and Cobb angle measurements, preparation for the surgery), Isabelle Villemure 

(scientific background of the study, study design), Mark Driscoll (assistance in the surgery, 

statistics), Stefan Parent (scientific background of the study, study design, performance of 

the surgery, study management). The article is submitted  on the xx of xxxx 2012 for the 

publication in Spine, the journal of Lippincott Williams & Wilkins. 
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4.1.1     Structured Abstract 

Study Design: Twelve Landrace domestic pigs were instrumented using memory shape 

alloy (SMA) staples to evaluate their ability to impose growth modulation on thoracic 

vertebrae. 

Objective: Evaluate the growth modulation potential of SMA staples on thoracic vertebral 

growth plates in control, sham, and instrumented groups by means of measured radiological 

changes. 

Summary of Background Data: Over the past few decades, numerous published studies 

have proposed different growth modulation approaches with the objective of correcting 

idiopathic scoliosis without fusion. However, measures of growth rate changes caused by 

SMA staples have yet to be evaluated in a large animal model. 

Methods: A group of six three month old female domestic pigs was instrumented using 

10mm U-shape Ni-Ti memory alloy staples at the thoracic level from T6 to T11. Three 

animals underwent surgery without vertebral body stapling (sham group), while two 

animals served as a control. Postoperatively, posterior-anterior (PA) and lateral (LAT) 

radiographs of the thoracic spine were taken biweekly. After a period of three months, a 

bone labelling agent (calcein) was injected intravenously at eight and two days prior to 

sacrifice. In order to measure the growth rate, two thin slide sequences at the level of the 

ventral prongs (sequence A) and between ventral and dorsal prongs (sequence B)  of all 

involved growth plates were evaluated under fluorescent microscope. 

Results: A scoliosis curve (5.8±3,2) developed in all instrumented animals. For sequence A, 

mean growth rates reached 12.73±3.9, 19.03±1.8 and 18.97±1.96µm/day for the 

instrumented, sham and control groups respectively. Correspondingly, the rates of sequence 

B were 12.47±2.9, 20.01±1.84 and 19.26±2.2µm/day. 

Conclusion: Vertebral stapling induced spinal curvatures and decreases vertebral growth 

rate in the instrumented animals. Optimal positioning of the staple is essential for bone 

growth modulation and development of experimental scoliosis. Bone growth is mostly 

affected immediately underneath the staple. 

Key Words: shape memory alloy staples, growth modulation, fusionless treatment, scoliosis 
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4.1.2 Introduction  

Conventional treatments of idiopathic scoliosis comprise predominantly bracing and 

open correction of the deformity. The former is used to treat scoliotic curves with a Cobb 

angle up to 40°, while the latter is reserved for severe cases and entails a permanent 

implantation of spinal instrumentation with vertebral fusion. Since their introduction, both 

methods have proven effective. However, despite evident positive characteristics, these 

methods can pose a significant number of undesirable effects to patient health. Bracing is a 

long term treatment implemented over a period of one to two years and requires the 

permanent wearing of an orthosis, which proves both physically and   psychologically 

challenging for the patient1.  The shortcomings corresponding to open reduction of scoliotic 

curves are obviously more severe and include important surgical intervention, significant 

blood loss, high cost of the procedure, and permanent vertebral fusion. These inadvertent 

and concurrent side effects set it amongst the surgical treatments with the most significant 

long-term impact in orthopedic surgery. 

For these reasons, fusionless techniques offer a prospective alternative to traditional 

treatments of scoliosis.  Fusionless techniques present significantly less surgical risk and 

complication than conventional methods through the maintenance of disc mobility. To date, 

there exist different technical approaches proposed in order to correct the deformity while 

maintaining the natural flexibility of the spine. Betz R. et al. used SMA staples to treat 

scoliosis in young patients2 and promoted their technique as an alternative to bracing1. 

Conversely, Wall E. et al.3 used their implants on a porcine model as an alternative to open 

reduction4. Other methods of creating experimental scoliosis included the use of flexible or 

rigid tethers5. However, these studies did not evaluate the impact of implants on the growth 

rate of vertebrae in large animals. Such data could be essential in understanding the 

distribution of load on the growth plates of instrumented vertebrae. Moreover, it may 

provide confirmation that the Hueter-Volkmann law, which correlates bone growth rate to 

local loading, plays an important role in the development of scoliosis.  

Therefore, the goal of this research is to create a scoliosis curve using SMA staples 

and to measure the growth rate on the growth plates of thoracic vertebrae of pigs. Similar 
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studies on bovine and rat tails6,7 demonstrated a slowing of bone growth up to 30% 

compared to control animals. It is expected that this research will yield similar results.  

 

4.1.3            Materials and methods 

The animal model of the Landrace domestic pig was selected for the present study. 

The reasons for such a selection are based on several anatomical and physiological 

similarities between a human adolescent and a domestic pig, including the size of the 

thoracic vertebrae. The concentrated growth of female pigs from three months of age to 

sexual maturity at six months of age is comparable to human bone growth during 

adolescence, but in a much shorter period of time. 

The twelve female Landrace domestic pigs, three months of age, arrived one week 

prior to surgery in order to pass a necessary quarantine. The animals were treated according 

to protocols approved by the institutional committee of good practice in research at Saint-

Justine Hospital based on the norms established by the Canadian Council on Animal Care 

(CCAC). 

The animals were divided into three groups: 

1.   The first group, composed of six pigs, were instrumented using 10mm U-shape Ni-Ti 

SMA staples and instruments for their application designed by Medtronic Sofamor-Danek 

(Memphis, USA).  

2.   The second group of (n=3)were used as the sham group in order to study the influence 

of a surgical procedure on bone growth without staple placement.  

3.  The third group (n=2)animals were used as the control group. 

 

The Ni-Ti (Nitinol) SMA memory alloy staples used in this study are U-shaped 

implants with four prongs joined with a laminar bridge portion including an aperture at its 

center.  
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4.1.3.1    Surgical Protocol 

 The pigs fasted for a period of twelve hours preoperatively. After the sedation with  

ketamine,  atropine and  azaperone each animal was covered with a blanket and transported 

to the department of experimental surgery. There, the surgery was performed under the 

general anaesthesia delivered by mask using Isoflurane 2.5% / L O2 and intravenous 

propofol. In order to properly identify one animal from the next, each pig was assigned a 

number by place of a tag through a hole in the ear. 

An incision was made in the seventh intercostal space on the right chest wall. The 

pleura was incised and the thoracic cavity was entered. The use of the costal retractor 

provided the space required for passage of the instruments. Previously cooled to 0°C, sterile 

Ni-Ti staples were expanded and implanted to enclose two adjacent growth plates spanning 

an intervertebral disc space at five different thoracic levels from T6 to T11 (Figure 4.1).   

 

  

 

 

 

 

 

The surgery was finished by thorough closure of the wound by means of absorbable 

and non-absorbable suture filaments. The wound was covered with Opsite spray and a 

Fentanyl patch (7.5mg) was applied on the ear as an analgesic. The animals also received 

the antibiotic Excenel (3mg/kg) administered intramuscularly in the neck 24 hours prior to 

surgery and two days following the surgery. Postoperatively, the pigs were held in 

Figure 4.1 : Insertion of the staples 
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communal cages of four. Animals from the sham group underwent identical surgical 

procedure exclusive of staple insertion. Rather, four holes were made in the cortical bone 

tissue at the same level as the instrumented group. 

 
 

4.1.3.2      Radiographic control 

The radiographs were acquired biweekly over eight weeks postopoeratively and on 

the day of sacrifice (five in total) under general anaesthesia using the same sedative mixture 

utilized during the surgery (atropine, azaperone and ketamine). Concomitantly, the pigs 

were weighted in order to calculate the necessary medication dosage.  Two radiographic 

views were taken every time and included posterior-anterior and lateral. These images are 

to provide a constant control for staple position, measurement of Cobb’s angle and wedging 

of vertebrae in order to compare these data between all experimental groups. All 

measurements were performed via the programme Synapse 3.1.1. 

 

4.1.3.3 Bone growth labelling and tissue preparation  

Calcein Sigma (Fluorescein-bis (methyliminodiacetic acid)) was used as a bone 

growth labelling agent. Two intravenous injections of calcein at the dose of 20 mg/kg were 

subsequently administrated eight and two days prior to sacrifice. At the end of the study, 

once the animals were six months of age,  the pigs were sedated using Ketamine and then 

euthanized using Euthanyl 240 mg/kg intravenously. Following the euthanasia, a spinal 

segment containing vertebrae T6 to T11 was dissected from each animal. Excessive 

connective and bone tissues were removed and the blocks of vertebrae were immerged in 

10% solution of formaldehyde. Each block was divided into five segments containing two 

adjacent growth plates and the adjoining intervertebral disc.  In order to have a thin slice of 

vertebrae for the microscope, all segments were impregnated with MMA (methyl 

methacrylate) solution. Two sequences (A and B) of six micrometer thin sections were cut 

on each vertebra-disc-vertebra bloc at the level of ventral prongs (sequence A) and between 
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ventral and dorsal prongs (sequence B) (Figure 4.2) using Leica SM2500 Microtome. Each 

sequence consisted of ten sections taken twenty-five micrometres apart. 

 

 

 

 

 

 

4.1.3.4 Growth rate measurement       

The cut sections were evaluated under the fluorescent optic microscope. Every 

growth plate was virtually divided into four zones, zone four being closest to the staple and 

zone one the furthest (Figure 4.3).  

 

 

 

 

 

 

 

 

 

The growth rate was calculated by measuring the distance between the two created 

fluorescent lines in the growth plate (Figure 4.4) in micrometres and dividing the number 

by six, the number of days between calcein injections. These measurements, in micrometers 

per day, were executed using custom Mathlab 7.0 software. The average growth rates were 

calculated for every zone over each vertebra in all three groups of animals. 

   Figure 4.3: Four zones of growth plate 

   Figure 4.2. Two sequences of sections. 
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4.1.3.5  Statistical analyses 

Group sample sizes were determined using a significance of α=0.05 and a power of 

p=0.80.  Post-hoc analyses were compared between groups using values recorded pre-

operatively and immediately prior to euthanasia (Cobb angles).  Non-parametric Wilcoxon 

tests were utilized to interpret this data.  Measures (Cobb angles and growth rates) were 

repeated by two different observers. 

 

4.1.4          Results 

The estimated blood loss during the operation was 20-40 ml. Minor infection at the 

site of operation occurred in two instrumented animals. One of these animals   was 

euthanized as a result of severe infection during the post-operative period.  Consequently, 

data received from this animal were excluded from the analysis. A decision was made to 

operate on one animal from the control group in order to maintain six instrumented porcine. 

Thus, the study persisted with 11 experimental animals, including six instrumented, three 

sham and two control pigs. 

 

Figure 4.4: Growth plate under the microscope 
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4.1.4.1    Radiographs 

Radiographs taken immediately following the operation did not reveal, in all three 

groups of animals, any considerable angular deviation of the spine on the posterior-anterior 

images. Table 4.1 demonstrates no development of significant scoliotic curves within the 

control group when comparing initial and final radiographs (p=1.0).  

         Table 4.1. Cobb angle in all groups 

 

 

 

 

 

 

 

 

 

 

The same statement holds true for the sham group (p=0.51). Final radiographs of the 

instrumented group demonstrate the development of significant scoliotic curves compared 

to initial images (p<0.05) with an average Cobb angle of 5.8°± 3.2°. The comparison of 

final Cobb measures between all three groups revealed a significant difference between the 

instrumented group and both the control and sham groups (p=0.04 and 0.02 respectively) 

and the absence of an insignificant difference between the sham and control groups (p≥0.5). 

Further analyses of radiographs revealed that a considerable number of staples were 

displaced with respect to the ideal position. Spinal columns in which the SMA staples were 

most accurately positioned demonstrate the greatest Cobb angles. As an example we can 

take animal 4, which developed a scoliotic curve of 9°(most significant in loaded group). 

Group  Animal Cobb angle before        
       treatment 

 

     

 

Cobb angle after        
   treatment 

In
st

ru
m

en
te

d
 1 1°  6° 

2 0°  4° 

3 0°  7° 

4 0°  9° 

5 2°  3° 

6 0°  6° 

S
h

a
m

 1 1°  0° 

2 0°  0° 

3 0°  0° 

C
o
n

tr
o
l 1 0°     0° 

2 0°     0° 
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Evaluation under the microscope revealed an accurate positioning of the staples as 

compared with the other animals.        

 

4.1.4.2 Bone growth measurement  

The average growth rate in the control group measured both from sequence A and B 

was 19.4±2.2 µm/day. No significant variation of the growth rate, measured across the four 

growth plate zones within the control group, was observed. Results obtained from the sham 

group were similar to those of the control group. An average growth rate of 19.5±1.8 

µm/day was documented without notable distribution differences of the growth rate in all 

four growth plate zones. The comparison between these two groups showed no statistically 

significant differences between growth rate measurements (p=0.73 and 0.62 for the 

sequence A and B respectively). As for the instrumented group, the average growth rate 

was measured at 12.6 ±3.9 µm/day. To better understand the pattern  in which the insertion 

of the staples modifies the growth rate, the average growth rates in zone three and four 

from the instrumented group (just beneath the prong of staples) were compared with the 

respective values from the control and sham groups. The statistical analyses for these data 

showed the instrumented group’s growth rate of 10.88±5.23 to be significantly less than the 

sham’s at 19.1±2.1 µm/day (p<<0.01) and the control’s at 19.14±1.99 µm/day (p<<0.01) 

for the sequence A. Sequence B yielded similar results. The mean instrumented group’s 

growth rate of 11.04±3.9 µm/day was significantly less than the sham’s at 20.02±2.04 

µm/day (p<0.01) and the control’s at 19.74±2.11µm/day (p<0.01). However, there is 

considerable variation in the growth rate between different growth plates in each 

experimental animal.  

 

4.1.5      Discussion 

The comparative analyses of radiographs and growth plate labelling between control 

and sham groups revealed no significant differences, indicating that the surgical procedure 

itself does not affect the vertebral growth. On the other hand, the presence of SMA staples 
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led to the creation of significant scoliotic curves in four of six instrumented animals and 

considerable slowing of bone growth (up to 33%) in comparison to control and sham 

groups. Similar studies performed on a rat model1,2  had approximately the same difference 

between growth rates in control and instrumented groups. However, certain technical 

difficulties were encountered during this experimentation. Due to the relatively small 

incision and the absence of radioscopic control during the surgical procedure not all staples 

were placed accurately around the two adjacent growth plates and intervertebral disc. This 

explains why Cobb angles did not reach significant degrees in all experimental animals as 

well as the discrepancy in growth rate measurements in the instrumented group. The key 

factor that influenced the modification of the growth rate was the position of the staple. The 

accurate positioning of the staple also led to an unequal distribution of the load on a plate, 

resulting in the highest growth rate measured in zone one and the lowest growth rate 

measured in zone four.  The discrepancy in growth rates between different zones is 

presented on a graph below (Figure 4.5). 

 

 

 

 

 

  

 

Nonetheless, the spines with precisely inserted staples demonstrated the 

development of significant curves and slowing of bone growth. The development of 

relatively small scoliotic curves in comparison to those in other similar studies3,4  can be 

explained by the constructive differences of implants used and the smaller number of 

instrumented vertebrae. Porcine spines, due to their physiological characteristics, tend to be 

a good experimental model. The size and the form of porcine vertebrae are similar to those 

Figure 4.5. Distribution of the growth rate in 4 zones. 
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in humans and rapid growth during the first six months of life closely mimic patterns 

experienced during the adolescent growth spurt. However, being a quadruped animal, the 

pigs experience less axial stress5 on their spinal column and have a more rigid rib cage 

which can influence the final outcome of an experiment. 

In conclusion, the present study demonstrates the in vivo potential of SMA staples 

to modulate vertebral growth by creating scoliotic curves on radiographs and by slowing 

the growth rate on instrumented growth plates. Accurate positioning of the SMA staple is 

essential for optimal bone growth modulation and the corresponding development of 

experimental scoliosis. Growth modulation predominantly takes place directly underneath 

the staple prongs (zone 4). For further studies, it is recommended to explore a more 

effective method of accurate staple insertion and to increase the number of instrumented 

vertebrae. 
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CHAPTER 5 Results 

5.1      General information 

One of the original pigs from the loaded group was euthanized and excluded from 

the study because of severe postoperative infection. which could not be treated with 

antibiotics. The decision to sacrifice the animal was made to relieve its suffering. The 

second animal from the same group demonstrated significant  displacement of the staples 

that made a calculation of the growth rate impossible,   however radiographic data from the 

animal were included in the study. In order to maintain six animals in the loaded group, a 

pig from the control group was operated on. Thus, the final number of animals was 11, 

including  six loaded, three sham and two control.  

5.2       Radiographic control 

Radiographs taken immediately following the operation didn’t reveal, in all three 

groups of animals, any considerable angle deviation of the spine on the posterior-anterior 

and lateral images (Figure 5.1). 

 

 

 

 

 

 

 

 

                      a)                                             b)                                          c) 

      Figure 5.1(a,b,c): The initial PA radiographs of thoracic spine of animals from a) 

control, b)loaded and c) sham groups. 
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The analysis of initial and final radiographs for all groups of animals revealed no 

development of significant scoliosis curves in the control group (p=1), the same results 

were obtained for the sham group (p=0.51). The comparison of  final Cobb angles for the 

loaded group indicated a development of significant scoliosis curves in the final 

radiographs (p<0.05), compared to  initial images with  an average Cobb angle of 5.8°± 

3.2°.       

 The comparison of final results between all three groups revealed a significant 

difference between the loaded group and both the control and sham groups (p=0.04 and 

0.02 respectively), and an insignificant difference between the sham and control groups 

(p≥0.5). The results of radiological control are presented in their entirety in Table 5.1. 

Visual analysis of radiographs revealed that a considerable number of staples were 

displaced with respect to the ideal position. Spinal columns where staples were most 

accurately positioned demonstrated greater Cobb angles. 

 

            Table 5.1. Cobb angles in three groups of animals.   

 

 

 

 

 

 

 

 

 

 

 

Group Animal 
Cobb angle 

beginning of  study 
Cobb angle end of 

study 

L
o

a
d

ed
 

1 1° 6° 

2 0° 4° 

3 0° 7° 

4 0° 6° 

5 2° 3° 

6 0° 9° 

S
h

a
m

 1 1° 0° 

2 0° 0° 

3 0° 0° 

C
o
n

tr
o

l 1 0° 0° 

2 0° 0° 
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5.3        Bone growth measurement       

As seen in the article, we obtained the decrease of the bone groth in the loaded group of 

animals, for which the average growth rate was measured at 12.6 ±3.9 µm/day. Which 

gives us 35.7% decrease of the growth rate when compared with the control group and  

35.4%  decrease in comparison whith the sham group.  The comparison of the growth rate 

data between control and sham groups showed no significant differences between growth 

rate measurements (p=0.73 and 0.62 for the sequence A and B respectively). Table 5.2 and 

Figure 5.2 are demonstrating the comparison of the growth rate between three groups of  

 

 

 

           Table 5.2. Average growth rate in three groups of animals.   
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Figure 5.2: Diagrams representing an average growth rate in three groups of animals.  

 

In the result section of the  same article we showed the growth rate values obtained 

in different zones of the growth plate (more precisely in zones 3 and 4). Even more 

significant decrease of growth rate in loaded group  was observed in these zones when 

compared with respective zones of control and sham groups. The average  growth rate in 

zones 3 and 4  was less up to 43.5% then in sham and control groups. The results were very 

similar for both: sequence A and sequence B. Figure 5.3 and Table 5.3 are representing the 

average growth rate in zones 3 and 4 for all three groups of animals  

         

 

Figure 5.3. Diagrams representing an average growth rate in three groups of animals (zones 

3and4). 
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         Table 5.3. Average growth rate in three groups of animals(zones 3and 4) .   

 

 

 

 

 

 

 

 However, there is considerable variation in the growth rate between different growth plates 

in each experimental animal. The key factor that influenced the modification of the growth 

rate was the position of the staple. The accurate positioning of the staple also led to an 

unequal distribution of load on a plate, resulting in the highest growth rate measured in 

zone 1 and the lowest growth rate measured in zone 4 (closest to the staple). The 

discrepancy in growth rates between different zones on a loaded growth plate is presented 

on graphs below (Figure 5.4 and 5.5).       

a)                                                              b) 

 Figure 5.4: Accurate positioning (a) of the staple has resulted in notable decrease (b) of 

growth rate in two neighbor growth plates. 
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a)                                                                 b) 

Figure 5.5:  The staple is displaced (a). Only the distal T9 growth plate was compressed 

(b). 

 

Thus our results showed that the position around two growth plates is very important in 

order to obtain a maximum decrease of the growth rate. In the next chapter we will discuss 

the results of this study.  
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 CHAPTER 6 Discussion  

  

  The aim of the present study was to estimate the ability of memory alloy staples to modify 

the growth of thoracic vertebrae by creating local compression of two neighbouring growth 

plates around which every staple was inserted. In order to characterise those modifications 

two methods were selected, namely a series of radiographs and growth plate labelling. In 

addition, the study also attempted to understand what supplementary factors (i.e. surgical 

techniques, position of the staple or local tissue reaction) could influence the final results. 

The analysis of radiographs and growth plate labeling has led to the following statements: 

-   The insertion of memory alloy staples affects the growth rate. The lowest growth rate 

was obtained in zone 4, which represents the closest part of the growth plate just beneath 

the staple;  

-  The calculation of the bone growth rate also revealed a decrease of bone growth in the 

loaded group, which is significantly different from the data obtained from both the sham 

and control animals; 

-  The insertion of memory alloy staples created a significant scoliosis curve in four of six 

animals from the loaded group when compared with the sham and control groups; 

-  The comparison of both sets of data (radiographs and bone labelling) showed no notable 

difference between the sham and control groups, meaning that the surgical procedure did 

not influence the growth of vertebrae; 

-  The variability of data obtained from the loaded group can be explained by the fact that, 

objective reasons (small incision, structural characteristics of animal), not all staples were 

positioned precisely around two adjacent growth plates; 

 

          In general, the two hypothesis were tested and proven. A considerable slowing of   

average bone growth was obtained in the loaded group (up to 35.7%) compared to the 

control and sham groups, and even more (up to 43.5%) in zones 3 and 4. These results are 

compatible with similar studies by Cancel [42] and Stokes [39] on the rat model,which had  
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a decrease from 15 to 29% and from 2 to 38% respectively. Together with the works of 

mentioned authors this is another useful contribution for better understanding of the bone 

growth modulation.. The analysis of post operative radiographs revealed that only four of 

six loaded animals developed a significant scoliosis curve superior to 5˚. Though the 

creation of scoliosis was a desirable part of this study and reflects the ability of vertebral 

stapling to modify the longitudinal growth of vertebrae, it is not considered the main goal 

of this research. The development of relatively small scoliosis curves, in comparison to 

those obtained in other similar studies held by Wall [34] (average Cobb angle of 22.4˚±2.8˚ 

could be explained by  differences in an implants design, more rigid fixation of the implants 

using screws, and an increased number of instrumented levels involved in their studies. Due 

to a relatively small incision and the absences of radioscopic control during the surgical 

procedure, not all staples were placed accurately around two neighboring growth plates and 

intervertebral disc.    

The importance of accurate staple insertion is demonstrated through the data obtained from 

animal six in the loaded group. On the column of this animal, the staples are positioned 

more precisely than in the other loaded spines, leading to the development of the largest 

scoliosis curve (9˚) of the entire experiment (Figure5.1). 

            Figure 6.1. Final PA radiograph of thoracic spine of animal 6. The presence of 9˚ 

scoliosis curve. 
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The Porcine spine, due to its physiological characteristics, is considered  to be a good 

experimental model. The size and the form of porcine vertebrae are similar to those in 

humans and rapid growth during the first six months of life closely mimic patterns 

experienced during the adolescent growth spurt. However, being a quadruped animal, the 

pig experiences less axial stress on its spinal column and has a more rigid rib cage which 

can influence the final outcome of the experiment. 
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CHAPTER 7  Conclusion 

 

The selection of experimental animal, materials, methods of bone growth labeling 

and operative technique used in this study has allowed the in vivo demonstration of shape 

memory alloy staple potential to modulate vertebral growth. This was supported by the 

staples ability to create scoliotic curves, confirmed via radiograph analyses, and by slowing 

the vertebral growth rate of instrumented growth plates. Several test animals were used to 

establish optimal techniques for bone labeling in large animals, such as pigs, as well as the 

necessary time delay between two injections of labeling agents (calcein). According to 

common scientific practice, the study incorporated three groups of experimental animals: 

control, sham and loaded. A sham group was included to prove the surgical procedure, 

without insertion of the staple, does not affect the vertebral bone growth. Results of both 

radiological control and bone growth labeling obtained in all three groups were compared 

using non-parametric Wilcoxon tests. The data from the loaded group were statistically 

different from those of control and sham groups. The main hypothesis was verified and the 

lowest growth rate was observed in the loaded group.  Nevertheless, difficulties during the 

study were encountered which included the inaccurate position of a considerable number of 

staples in the loaded group.  No radioscopic control during the surgical procedure was 

available and only a relatively small incision in the thorax provided the surgical viewing 

field.  Consequently, these limitations perhaps led to inaccurate staple insertion, the most 

distant vertebra from the incision being the most difficult. Utilizing a small incision 

operative approach was dictated by the risk of post operative septic complications.  Despite 

these shortcomings, results obtained in the loaded group demonstrated a statistically 

significant decrease in the average growth rate and development of scoliotic curves when 

compared with control and sham groups. 
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The staples showed their ability to create enough compressive force between the 

prongs to locally (zones 3 and 4) reduce the growth of vertebra by up to 33%; however, it is 

believed that the high rigidity of the porcine thoracic spine hindered the staple’s 

performance and allowed only for the creation of  scoliotic curves up to 9˚. 

 The obtained results and difficulties encountered during this study have allowed for 

the elaboration of several recommendations for further scientific explorations:                       

- Improve operative techniques in order to more precisely control the insertion of 

implants by improving visualization.  This may be achieved by  making a wider 

surgical approach or using two incisions in the thorax. 

- Increase the number of experimental animals in order to have more statistically 

robust data. 

- Increase the number of instrumented vertebrae in order to produce a bigger scoliotic 

curve in loaded animals. 

-  Search for an experimental animal with a less rigid thorax or loosen the rigidity by 

costotomy or costectomy. 

- The use of special techniques to create an artificial scoliosis by applying an 

asymmetric tether, as performed in the study by Braun [29] followed  by an 

insertion of staples in order to understand how the staples will affect the bone 

growth in conditions which are maximally approached to those seen in scoliotic 

patients. 

            

The need for improved techniques for the treatment of adolescent idiopathic 

scoliosis remains a priority due to certain objective limitations of conventional treatments. 

The use of memory alloy staples seems to be a prospective approach in the treatment of 

AIS. This study has demonstrated the staple’s promising ability to modulate the growth of 

vertebrae in pigs. However, further investigations are needed in order to elaborate a precise 

technique of their use in clinical practice.      
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                              Annexe 1 

 

The descriptive anatomy of spine.  

 

The vertebral column functions as a strong pillar for the support of the trunk and the 

cranium, provides articular surfaces for the attachment of the ribs, and affords protection 

for the spinal cord and the roots of the spinal nerves. It transmits the weight of the trunk to 

the inferior extremities. Although forming a continuous support-bearing column, it is 

flexible enough to permit bending of the trunk in various directions. The vertebral canal, 

which follows the different curves of the column, accommodates and protects the spinal 

cord; it is formed by the superimposition of the vertebrae in each of which there is a 

vertebral foramen. Despite its flexibility, the vertebral column is sufficiently firm and 

strong to serve as a base of origin for many ligaments and muscles and as a lever for the 

spinal muscles, which function to maintain the upright position of the trunk [8]. 

Figure 0 : Schematic image of the spine (adapted from [8]). 
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The human vertebral column in an adult consists of 33-35 vertebrae arranged in five 

regions: cervical, thoracic, lumbar, sacral and coccygeal (Fig.A.1).  

 

Cervical spine 

 

The cervical region consists of seven relatively mobile vertebrae (Figure A.2). Their 

smaller size reflects the fact that they bear less weight than the larger inferior vertebrae. 

Although the cervical IV discs are thinner than those of inferior regions, they are relatively 

thick compared to the size of the vertebral bodies they connect. The relative thickness of 

the discs, the nearly horizontal orientation of the articular facets, and the small amount of 

surrounding body mass give the cervical region the greatest range and variety of movement 

of all the vertebral regions (Table A.1). 

 

Table A.1. The range of motion in cervical spine (males) (adapted from [43]).  

 

 

  

 

 

 

 

 

 

 

                                                             Figure A.2 Cervical vertebrae (adapted from  [44]).   

Motion Degree  

Flexion 50˚ 

Extension 60˚ 

Left Lat Flex 45˚ 

Right Lat Flex 45˚ 

Left Rotation 80˚ 

Right Rotation 80˚ 
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Thoracic spine 

 

Thoracic vertebrae (Figure A.3) lie in the upper back. The primary characteristic of these 

vertebrae are their costal facets for the articulation with ribs. These costal facets and other 

characteristics  are presented below. The middle four thoracic vertebrae (T5-T8) are 

representative of all the typical features. The articular processes of thoracic vertebrae 

extend vertically with paired, nearly coronally oriented articular facets that form an arc 

centered in the IV disc. This arc permits rotation and some lateral flexion of the vertebral 

column in this region, in fact, the greatest degree of rotation is permitted here. Attachment 

of the rib cage combined with the vertical orientation of articular facets and overlapping 

spinous processes limits flexion and extension, as well as lateral flexion. The T1-T4 

vertebrae share features of cervical vertebrae, while the T9-T12 vertebrae share features of 

lumbar vertebrae including tubercles similar to their accessory and mammillary processes 

[8]. 

 

  

 
 

 

Figure A.3: Thoracic vertebrae (adapted from [8]). 
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Lumbar spine. 

 
Lumbar vertebrae are located in the lower back between the thorax and sacrum (Figure 

A.4). Because the weight they support increases toward the inferior end of the vertebral 

column, lumbar vertebrae have massive bodies, accounting for much of the thickness of the 

lower trunk in the median plane. Their articular processes extend vertically, with articular 

facets sagittally oriented initially (beginning abruptly with the T12-Ll joints) but becoming 

more coronally oriented as the column descends. The L5-S1 facets are distinctly coronal in 

orientation [8]. 

 

Sacrum 

 

The large, triangular, wedged-shaped sacrum is usually composed of five fused sacral 

vertebrae in adults (Figure A.5). It is located between the hip bones and forms the roof and 

posterosuperior wall of the posterior pelvic cavity. 

 

Figure A.4 :  Lumbar vertebrae (adapted from [45]). 
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Coccyx 

 

The coccyx (Figure A.5), its name derived through comparison  to a cuckoo's beak, 

is usually formed of four small segments of bone, the most rudimentary parts of the 

vertebral column. In each of the first three segments may be traced a rudimentary body, 

articular and transverse processes; the last piece (sometimes the third) is a mere nodule of 

bone, without distinct processes. All the segments are devoid of pedicles, laminae, and 

spinous process, and, consequently, of intervertebral foramina and spinal canal 

Significant motion occurs only between the 25 superior vertebrae. Of the nine inferior 

vertebrae, the five sacral vertebrae are fused in adults to form the sacrum and, after 

approximately age of 30, the four coccygeal vertebrae fuse to form the coccyx. The 

lumbosacral angle occurs at the junction of, and is formed by, the long axes of the lumbar 

region of the vertebral column and the sacrum. The vertebrae gradually become larger as 

the vertebral column descends to the sacrum, and then become progressively smaller 

toward the apex of the coccyx. This change in size is related to the fact that successive 

vertebrae bear an increasing amount of the body's weight as the column descends. The 

vertebrae reach maximum size immediately superior to the sacrum, which transfers the 

weight to the pelvic girdle and the sacroiliac joints. The vertebral column is flexible 

 Figure A.5 :  Sacrum and Coccyx (adaped from  [46]). 
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because it consists of many relatively small bones, called vertebrae (singular = vertebra), 

that are separated by resilient IV discs. The 25 cervical, thoracic, lumbar, and first sacral 

vertebrae also articulate at synovial zygapophysial joints, which facilitate and control the 

vertebral column's flexibility. Although the movement between two adjacent vertebrae is 

small, in aggregate the vertebrae and IV discs uniting them form a flexible yet rigid column 

that protects the spinal cord they surround [47].  

 

Structure and function of intervertebral discs  

The disc consists of a nucleus pulposus and an anulus fibrosus (Figure A.6). The 

superficial layers of the anulus have been cut and spread apart to show the direction of the 

fibers. It is important to note that the combined thickness of the rings of the anulus is 

diminished posteriorly, in other words the anulus is thinner. The fibrogelatinous nucleus 

pulposus occupies the center of the disc and acts as a cushion and shock-absorbing 

mechanism. The pulpy nucleus flattens and the anulus bulges when weight is applied, as 

occurs during standing and more so during lifting.  

 

 

 

 

 

 

 

During flexion and extension movements, the nucleus pulposus serves as a fulcrum. 

The anulus is simultaneously placed under compression on one side and tension on the 

other [47]. 

Figure A.6:  Structure of intervertebral discs (adapted from [48]).  
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Ligaments of the spine 

The ligaments of the spine maintain a crucial role in the stability and function of the 

vertebral column. The ligaments are not only responsible for keeping the components of the 

entire structure together, but are also fundamental in permitting movement of the spine. 

They serve as strings that prevent excessive movement of the column and, by storing  

elastic energy, help the muscles to regain an upward position of the spine making them 

more efficient.  The main ligaments (Figure A.7) of Spinal Column (SC) are outlined 

below:  

 

                Figure A.7: Ligaments of the spine (adapted from [47]).    

- The anterior longitudinal ligament runs from the base of the skull along the front of 

each vertebral body and disc and down the anterior sacrum. It resists backward 

bending and limits the forward curve of the neck and lumbar regions. 
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- The posterior longitudinal ligament runs along the back aspect of the vertebral bodies 

and discs and down into the canal that lies within the sacrum. It tightens with forward 

bending. 

- The facet joint capsule, a balloon like structure that wraps around each facet joint, 

has sensory receptors that guide the movement between adjacent vertebrae. 

- The ligamentum flavum connects the back of the vertebral arches and forms the back 

wall of the spinal canal. It is known as the yellow ligament because of the colour 

imparted by the preponderance of elastic fibers. Off to the sides, it fuses with the 

facet joint capsules. In the midline, it turns posteriorly to become the interspinous 

ligament. Lengthened by flexion (forward bending) of the spine, its elastic fibers 

supply a strong returning force.  

- The interspinous ligament runsg between the spinous processes. Its anterior fibers are 

rich in elastin and blend with the ligamentum flavum, while the posterior fibers blend 

with the supraspinous ligament. 

- The intertransverse ligaments bind the ends of the transverse processes and resist side 

bending to the opposite side.  

- The supraspinous ligament connects the tips of the spinous processes and goes on to 

join with the thoracolumbar fascia [47]. 

 


