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Abstract

We consider a renewable resource being exploited in common by firms that compete
both in the output market and in the exploitation of the resource. We show that
the introduction of the slightest cost differentiation among the firms can have a drastic
effect on the nature of the equilibria that may be expected as compared to the identical
cost case. To do this, we take as a benchmark case a Markov Perfect Nash Equilibrium
that exists with identical cost firms, with the property that the firms play a linear
strategy up to some endogenously determined threshold level of the stock and the static
Cournot equilibrium strategy beyond that threshold. Having shown that an equilibrium
of that nature is not sustainable with asymmetric cost, we fully characterize a Markov
Perfect Nash Equilibrium of the differential game for that case.

Résumé

Nous envisageons le cas d’une ressource naturelle renouvelable exploitée en commun par
des firmes qui se concurrencent à la fois dans le marché du produit et dans l’exploitation
de la ressource. Nous montrons que l’introduction de la moindre différence de coûts
entre les firmes peut avoir un effet drastique sur la nature de l’équilibre, à comparer
avec le cas de coûts identiques. Pour ce faire, nous prenons comme point de référence
un équilibre de Nash markovien parfait qui existe dans le cas de firmes identiques
et qui a la propriété que les firmes jouent une stratégie linéaire jusqu’à une borne
supérieure endogène du stock et la stratégie correspondant à l’équilibre de Cournot
statique au-delà de cette borne. Après avoir montré qu’un équilibre de cette nature
n’est pas soutenable avec des coûts asymétriques, nous proposons une caractérisation
complète d’un équilibre de Nash markovien parfait au jeu différentiel correspondant à
ce cas.



1 Introduction

Studies of the economic dynamics of common pool resource exploitation typically assume

that the economic agents exploiting the resource are all identical. Yet, in many situations,

the heterogeneity of the agents is an inescapable characteristic of the problem. Think for

example of the case of fisheries, where it is common to find a number of big multinational

fishing firms competing with many small local fishermen for the exploitation of a common

fishing ground. These big firms have access to large scale technologies and consequently face

considerably lower marginal costs than the small local fishermen. Similarly, aquifers are often

shared by a few large capacity users — for instance big bottling firms — and many small

capacity users.1 In such cases, it seems important to take into account the heterogeneity of

the agents in order to properly characterize the non-cooperative equilibria. It is the purpose

of this paper to introduce some form of heterogeneity into a common pool resource model

and to analyze the impact of this heterogeneity on the equilibrium outcome of the dynamic

game being played by the agents. The emphasis is put on how the slightest heterogeneity

can have a drastic effect on the type of equilibria that can be expected, as compared to the

homogeneous agents case.

More precisely, we consider the exploitation of a renewable resource stock by a finite

number of two types of agents: a low marginal cost type, which we will call the “big firms”

for short, and a high marginal cost type, which we will call the “small firms”. The total

number of firms, which we will assume fixed, will thus be divided into two groups of firms,

identical within groups but different across groups. The situation will be modeled as an

oligopolistic differential game in which the two groups of firms have access to the same

renewable natural resource pool, which they exploit in common. They then sell their harvest

on the same output market. They are therefore competing both in the output market and

in the exploitation of the common pool resource. We restrict attention to non-cooperative

equilibria in stationary Markov strategies, that is decision rules that are contingent only on

1The prevalence of asymmetries is well illustrated in Ostrom and Gardner (1993). Their purpose and
approach are however quite different from ours; they are interested in the emergence through bargaining of
institutions to manage the commons in the face of heterogeneous agents.
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the current state of the game. In our context, those decision rules specify the firm’s resource

extraction rate as a function of the current stock of the resource.

A number of authors have analyzed the problem of the exploitation of a common pool

resource in a differential game framework. Amongst them, Levhari and Mirman (1980),

Clemhout and Wan (1985), Plourde and Yeung (1989), Fischer and Mirman (1992, 1996),

Dockner and Sorger (1996), Dockner et al. (2000), Gaudet and Lohoues (2008), consider

cases where the agents involved compete for the exploitation of the resource, but do not

compete on the output market. In those papers, the benefit functions of the agents depend

only on their own production, not on that of their rivals. In this paper, the agents compete

in the output market as well as in the exploitation of the resource, as in Benchekroun (2003,

2008), Karp (1992) and Mason and Polasky (1997). As in this paper, those authors assume

benefit functions that depend not only on the agents’ own production, but also, through

the output market, on the production of their rivals. However, they assume identical agents

when comes the time to derive equilibrium strategies. We will allow for heterogeneous agents.

Our model is closely related to the identical-agents model of Benchekroun (2003, 2008),

which we take as a point of comparison to illustrate equilibrium impacts of heterogeneity.

As in Benchekroun (2003, 2008), we consider a renewable natural resource characterized by

a concave growth function which is approximated by two linear segments, and we assume

that all the firms sell the product of their harvest on the same output market, characterized

by a downward sloping linear demand function. Benchekroun (2003) assumes two identi-

cal players exploiting the resource at zero marginal cost and focuses on the effects on the

equilibrium resource stock of a unilateral restriction of the exploitation of one firm and the

corresponding adjustment in the rival’s exploitation. Benchekroun (2008) assumes a finite

number of firms and determines the impact of a change in the implicit growth rate of the

resource on firms’ extraction and profits. We assume a finite number of firms split into

two groups and differentiated by their marginal costs. We focus on the effects of the cost

asymmetry on the individual equilibrium strategies and the aggregate harvest rate.

In Benchekroun (2003), it is shown that there exists a Markov Perfect Nash Equilibrium
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(MPNE) with the following characteristics: below some initial threshold level of the resource

stock, the resource is not harvested at all, hence allowing the resource to grow; follows an

interval of the stock, up to some second threshold, over which each firm’s harvesting decision

is a linear and increasing function of the resource stock; beyond that last threshold, each

firm’s harvest rate is a constant that corresponds to the static Cournot equilibrium.

We will see that cost asymmetry has a drastic effect on this type of equilibrium: there

cannot exist, as in Benchekroun (2003, 2008), a MPNE with the characteristic that linear

strategies are played over some interval, followed by the firms playing the static Cournot

equilibrium. This leads us to conclude that if there exits a MPNE which is such that beyond

some high enough level of the stock the Cournot static equilibrium is to be played, it must

be the case that non linear strategies are played in the preceding stock interval.

However, there does exist a MPNE where linear strategies are played over some interval

of the stock, with the upper bound of the interval being maintained by an impulse control

on the part of the high marginal cost firms. This means that stocks higher than this upper

bound will not be sustainable in this equilibrium. Such an equilibrium also differs from the

identical firms equilibrium of Benchekroun (2003) by the fact that the interval characterized

by linear strategies is preceded by two subintervals: one where no harvesting takes place and

one where only the low marginal cost firms produce. There may of course also exist other

MPNE such that linear strategies are played over some interval of the stock, while higher

stock levels remain sustainable.

In the next section, we present the model. We then characterize a MPNE in Section 3,

while emphasizing how the presence of cost asymmetries rules an equilibrium of the same

nature as that found in the benchmark case of identical firms. Section 4 offers concluding

remarks.

2 The model

Consider a natural resource that is commonly owned and exploited by n firms divided into

two groups: a group of nb “big” firms and a group of ns “small” firms, with ns + nb = n.
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They are identical within a group but differ between groups by their (constant) marginal

costs. The representative member from a given group i, i = s, b, has a marginal cost wi. We

will assume that

Assumption 1: ws > wb.

Hence the big firms have a cost advantage over the small firms, which bear a greater marginal

cost.

Denote by x(t) the stock of the resource at time t and by qk(t) the rate of harvest of a

given firm k, k = 1, . . . , n. The inverse demand function for the output is

P (Q) = a− bQ, (1)

where a and b are two positive constants. We assume that a− wi > 0, i = s, b.

As in Benchekroun (2003), we assume that the natural growth function of the resource

takes the form

g(x) =

 δx for x ≤ k/2

δ (k − x) for x > k/2
(2)

where δ and k are positive parameters reflecting the characteristics of the ecosystem. The

parameter δ represents the intrinsic growth rate of the resource, while the parameter k

represents the carrying capacity of the ecosystem.

We assume that the intrinsic growth rate of the resource satisfies

Assumption 2: (i) δ >
(n2 + 1) r

2
and (ii) δ ≥ 2(n2 + 1)(a− wb)

(n+ 1)2bk
,

where r is the discount rate, assumed the same for all the firms. The assumption in (i) that

δ/r is strictly bounded from below serves to guarantee the existence of a strictly interior

equilibrium steady-state stock. It is common in the literature (see for instance Benchekroun
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(2003), Dockner and Sorger (1996) or Dutta and Sundaram (1993a,b)). As for the assumption

in (ii), it is made to simplify the exposition, as will be explained shortly (on page 8). 2

We restrict attention to equilibria in stationary Markov strategies. Stationary Markov

strategies in this context are decision rules that specify a firm’s harvest rate as a function

of the current resource stock: qk(t) = φk(x(t)). Firm k, k = 1, . . . , n, takes the strategies of

its (n− 1) rivals as given in choosing its own decision rule, qk = φk(x) in order to maximize

the present value of its flow of instantaneous profits:

Jk =

∫ ∞
0

e−rt

{[
P

(
qk +

∑
l 6=k

φl(x)

)
− wk

]
qk

}
dt (3)

subject to

ẋ = g(x)− qk −
∑
l 6=k

φl(x) (4)

and

qk ≥ 0, lim
t→∞

x(t) ≥ 0. (5)

We are looking for a Markov Perfect Nash Equilibrium (MPNE). An n-tuple of stationary

Markov strategies (φ1 (x) , ..., φn (x)) constitutes a MPNE of this dynamic game if, for every

possible initial condition x(0) = x0, it simultaneously solves the above problem for k =

1, 2, ..., n. Since we have two groups of firms and firms are identical within each group, it

suffices to find a pair of Markov strategies (φs (x) , φb (x)) which gives an n-tuple composed

of ns decision rules φs (x) and nb decision rules φb (x) that satisfies this property.

In the next section, we characterize a MPNE for this non-cooperative differential game.

2Clearly, if the right-hand side of (ii) is greater than the right-hand side of (i), then satisfying (ii) satisfies
(i); and vice-versa.
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3 Characterization of an equilibrium

The Hamilton-Jacoby-Bellmann equation (HJB) associated with the problem of firm k, k =

1, . . . , n, is

rVk (x) = Max
qk

{(
a− wk − b

(
qk +

∑
l 6=k

φl(x)

))
qk + V ′k (x)

(
g(x)− qk −

∑
l 6=k

φl(x)

)}
.

(6)

The interior solution to the right-hand side must satisfy3

a− wk − 2bqk − b
∑
l 6=k

φl(x)− V ′k(x) = 0. (7)

Using the symmetry among firms that belong to the same group, we seek to determine a

MPNE where firms that belong to the same group have identical strategies. Thus we have

(ni + 1) qi + njqj =
a− wi − V ′i (x)

b
, i, j = b, s, i 6= j. (8)

The solution of this system of two equations in qs and qb expressed in terms of the value

functions is given by

qi =
a− wi − V ′i (x)− nj

[
(wi + V ′i (x))− (wj + V ′j (x))

]
b (n+ 1)

, i, j = b, s, i 6= j, (9)

and the total quantity harvested as a function of the value functions can therefore be written

Q = (nsqs + nbqb) =
na− nsws − nbwb − nsV ′s (x)− nbV ′b (x)

b (n+ 1)
. (10)

The following proposition describes such a MPNE when not all the firms are of the same

type.

3Notice that the right-hand side of the HJB, which is to be maximized with respect to qk, is strictly
concave in qk, its second derivative being −2b.
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Proposition 1 Given Assumptions 1 and 2 and strictly positive levels of the stock x̄b <

x1s < x2s, to be defined, then, for any ni ∈ {1, .., n− 1}, there exists a MPNE characterized

by strategies φi (x), i = s, b which satisfy the following properties:

1. over the interval [0, x̄b), no firm produces;

2. over the interval [x̄b, x1s), only the big firms produce;

3. over the interval [x1s, x2s], both types of firms produce using linear strategies;

4. a stock larger than x2s is not sustainable.

The proof is by construction. We begin by characterizing a MPNE over the subinterval

[x1s, x2s]. To do this, let

A = −(n+ 1)2 b

n2

(
δ − r

2

)
< 0 (11)

and

Bi =

(
δ − r

2

)
n2δ

[(
n2 + 1

)
(a− wi) + nj

(
2δ − (n2 + 1) r

n (δ − r)

)
(wi − wj)

]
(12)

where i, j = s, b, i 6= j, and define

x1i = − 1

A

(
2δ − (n2 + 1)r

2n2δ

)[
a− wi + nj

(
(2 + n) δ − r
n (δ − r)

)
(wi − wj)

]
(13)

and

x2i = −Bi

A
. (14)

Note that since A > 0 and Bb > Bs > 0 (from Assumption 1 and Assumption 2(i)), we have

x1s > 0 and x1b < x1s < x2s < x2b.
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Furthermore, from Assumption 2(ii) we have

x2b ≤
k

2
.

Since x2b > x2s, this will assure that the interval [x1s, x2s] lies in the increasing part of the

growth function g(x).4

We can now prove that the following proposition holds over the interval [x1s, x2s]:

Proposition 2 Let φi (x), i = s, b, denote the linear harvesting strategies

φi(x) =


fs(x) ≡ α(x− x1s), for i = s

fb(x) ≡ α(x− x1s) +

(
2δ − (n2 + 1)r

2n2b(δ − r)

)
(ws − wb), for i = b,

(15)

defined over the interval [x1s, x2s] and where

α =
−A

b(n+ 1)
=
n+ 1

n2

(
δ − r

2

)
, (16)

and x1s and x2s are given respectively by (13) and (14). The n-uple (φs, ..., φs, φb..., φb)

composed of ns strategies φs (x) and nb strategies φb (x) constitutes a MPNE for the game

described in (3) to (5) for x ∈ [x1s, x2s].

Proof. See Appendix A.

As shown in Appendix A, the value function that generates the above equilibrium in

linear strategies over the interval [x1s, x2s] is quadratic and given by

Vi(x) =
A

2
x2 +Bix+ Ci (17)

4This avoids having to calculate different linear strategies for the subintervals [x1s, k/2] and (k/2, x2s],
without significant loss in insight.
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where the coefficients A and Bi are given by (11) and (12), and Ci is as expressed in the

Appendix. Since A is negative, we have V ′′i (x) < 0 for i = s, b. We can see that

qs(x1s) = fs(x1s) = 0 and V ′s (x2s) = 0, (18)

while

qb(x1s) = fb(x1s) > 0 and V ′b (x2s) > 0, (19)

since x2b > x2s and V ′′b (x) < 0.

The aggregate harvesting rate over the interval [x1s, x2s] is Q(x) = nsfs(x) +nbfb(x). By

Assumption 2(i), we have

Q′(x) = nα > δ = g′(x) ∀x ∈ [x1s, x2s].

Therefore, there exists a unique steady-state resource stock in the interval [x1s, x2s] and it is

stable. It is given by

x∗ =

(
1

nα− δ

){
nαx1s − nb

(
2δ − (n2 + 1)r

2n2b(δ − r)

)
(ws − wb)

}
. (20)

We now consider the characterization of equilibrium strategies for x ∈ [0, x1s). For x in

that interval, we will have a corner solution for the ns small firms, since qs(x1s) = 0. Thus

only big firms may be active and the problem reduces to finding the equilibrium strategy of

the nb big firms over that interval.

Proposition 3 Let φi (x), i = s, b, denote the strategies

φs(x) = 0 for x ∈ [0, x1s)
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and

φb(x) =

 0 for x ∈ [0, x̄b)

h(x) for x ∈ [x̄b, x1s)

where h(x) is a continuous monotone increasing function of x, to be defined, which satisfies

h(x̄b) = 0 and is such that Vb(x) is continuously differentiable at x1s and x̄b. The n-uple

(φs, ..., φs, φb..., φb) composed of ns strategies φs (x) and nb strategies φb (x) constitutes a

MPNE for the game described in (3) to (5) for x ∈ [0, x1s).

Proof. Since the right-hand side of the HJBs (6), which is to be maximized with respect

to qk, is strictly concave in qk, and since qs(x1s) = 0, it follows that we have a corner solution

for the small firms for all x ∈ [0, x1s). Therefore φs(x) = 0 over the interval being considered,

as stated in the proposition.

There remains to determine an equilibrium strategy for the big firms. This will involve

finding a x̄b such that φb(x̄b) = 0, with Vb(x) continuously differentiable in the neighborhood

of x1s. Given that qs(x) = 0 for all x ∈ [0, x1s), and using the symmetry of the firms within

the group, an interior solution to the right-hand of the HJB (6) of the typical firm of type b

requires

a− wb − (nb + 1) bφb(x)− V ′b (x) = 0.

It follows that

φb(x) =
a− wb − V ′b (x)

(nb + 1) b
. (21)

Substituting into the HJB gives

rVb (x) =

(
a− wb − n2

bV
′
b (x)

nb + 1

)(
a− wb − V ′b (x)

(nb + 1) b

)
+ δV ′b (x)x. (22)
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The requirement that φb(x̄b) = 0 means that

V ′b (x̄b) = a− wb.

The solution to such a differential equation can be characterized implicitly. Letting

p = V ′b (x), we have dp
dx

= V ′′b (x). Then, differentiating the differential equation (22) with

respect to x gives

(r − δ) pdx
dp
− δx =

(
2n2

b

(nb + 1)2b

)
p− (a− wb)(n2

b + 1)

(nb + 1)2b

The general solution to this first-order differential equation in x is

x (p) = C1p
−δ
δ−r −

(
2n2

b

(2δ − r)b(nb + 1)2

)
p+

(
(a− wb)(n2

b + 1)

δb(nb + 1)2

)

where C1 is the arbitrary constant. In order to guarantee that Vb(x) is continuously differ-

entiable at x1s this constant is chosen such that at x = x1s we have p = limx→x+1s
V ′b (x). In

other words, C1 is determined implicitly by

x
(
V ′b (x1s)

+
)

= x1s,

where V ′b (x1s)
+ = limx→x+1s

V ′b (x) is obtained from the solution over the interval [x1s, x2s]

given by Proposition 2.

As for the value of x̄b, it must satisfy V ′b (x̄b) = a − wb, and hence p = a − wb. It is

therefore given implicitly by

x (a− wb) = x̄b.

Once the value of x̄b determined we obtain V (x̄b) from (22) and the value function Vb (x)

over [0, x̄b). It can be checked that value function Vb (x) is continuously differentiable in the

neighborhood of x̄b. That the harvesting rate of the big firms is a continuous monotone
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increasing function of x for x ∈ [x̄b, x1s) follows directly from (21), since we have x′(p) < 0

and hence dp
dx

= V ′′b (x) < 0. Furthermore, since x′′(p) > 0, it is a strictly convex function of

x.

From (17), we have that the value function from which the solution in linear strategies

over the interval [x1s, x2s] was obtained is, for the firms of type b,

Vb (x) ≡ A

2
x2 +Bbx+ Cb

and therefore

V ′b (x1s)
+ = Ax1s +Bb.

Substituting for A, Bb and x1s, we find that

V ′b (x1s)
+ = a− wb + b(nb + 1)fb(x1s),

where, from Proposition 2,

fb(x1s) =

(
2δ − (n2 + 1)r

2n2b(δ − r)

)
(ws − wb).

This is the production of the typical big firm when x = x1s under the equilibrium linear

strategies for the interval [x1s, x2s]. The left-hand and right-hand derivatives of Vb(x) at

x = x1s must be equal to assure the requirement that it be continuously differentiable.

Therefore, substituting the value of V ′b (x1s)
+ into (21) we can see that the harvesting rate

of the big firms is continuous at x1s, with no jump occurring.

There remains to consider x > x2s. For that purpose, we can state the following:

Proposition 4 Conditional on the linear strategies described in Proposition 2 being adopted

over the interval [x1s, x2s], there exists a candidate for equilibrium which is such that, if

x > x2s, the small firms bring down the resource stock to x2s by impulse control, with the

12



result that a stock greater than x2s is not sustainable.

Proof. First note that

qSCi =
a− (ni + 1)wi + njwj

b(n+ 1)
, i, j = b, s, i 6= j

are the equilibrium quantities which would be produced in an equivalent static Cournot game,

where the input (the resource being harvested) is considered abundant. The corresponding

total quantity is

QSC =
na− nsws − nbwb

b(n+ 1)
. (23)

Making use of (18) and (19), we get from (9) and (10)

qb (x2s) = qSCb −
(ns + 1)V ′b (x2s)

(n+ 1) b
< qSCb (24)

qs (x2s) = qSCs +
nbV

′
b (x2s)

(n+ 1) b
> qSCs (25)

and

Q(x2s) = QSC − nbV
′
b (x2s)

b (n+ 1)
< QSC . (26)

Notice that if nb = 0, so that n = ns, then qs(x2s) = qSCs and Q(x2s) = QSC . We

then have the identical-firms situation analyzed in Benchekroun (2003), where, for x ≥ x2s,

the firms play the static Cournot equilibrium forever, reaching a stable steady state in the

decreasing part of the growth function.5

When the firms are not identical, if the initial stock were sufficiently large, namely some

x ≥ QSC/δ, and if QSC < δk/2 (≡ maxx g(x)), the firms could still play the static Cournot

equilibrium forever, since the stock would then converge to a stable steady state along the

5The same is also true if instead ns = 0 so that qb(x2b) = qSC
b and Q(x2b) = QSC . In Benchekroun (2003)

ws = wb = 0, so that the distinction is irrelevant.
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downward sloping part of the growth function, as in the identical-firm context. The static

Cournot equilibrium still qualifies as a potential MPNE for x > x2s. Each firm’s discounted

sum of payoffs would then be

πSCk
r
≡ [a− wk − bQSC)]qSCk

r
for k = b, s

with QSC and qSCk and given by (23), (24) and (25).

For the small firms, this payoff is smaller than what they can earn if the stock is at x2s

with the firms playing the equilibrium in linear strategies of the interval [x1s, x2s]. The small

firms would then each be producing more than in the static Cournot equilibrium, while total

production would be smaller and hence the market price higher. Indeed, using the fact that

V ′s (x2s) = 0, we get from (6) that the HJB for the typical small firm evaluated at x2s is

rVs(x2s) = [a− ws − bQ(x2s)]qs(x2s) ≡ πs.

From (25) and (26) we have πs > πSCs and hence

Vs(x2s) =
πs
r
>
πSCs
r
. (27)

Therefore, for any x > x2s, given that the big firms play their static Cournot strategy, it is

in the small firms’ interest to instantaneously reduce the stock to x2s, through an impulse

control, so as to have the firms play the equilibrium in linear strategies of Proposition 2

instead of the static Cournot equilibrium. As for the big firms, given that the small firms

adopt a harvest rate that maintains x2s, playing their static Cournot output for any x > x2s

leaves them no worst off. Hence, neither type of firms has an incentive to unilaterally deviate.

As a result, a stock greater than x2s is not sustainable in this MPNE.

Notice that the small firms would not allow the stock to grow beyond x2s even in the

case where the big firms continue to follow their linear strategy defined in Proposition 2 for

[x1s, x2s], since V ′s (x2s) = 0 and V ′′s (x) < 0 for x > x2s, which means that following the
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equilibrium in linear strategy for x > x2s implies for the small firms a smaller payoff than

Vs (x2s).

Notice also that if the small firms adopt a strategy for x > x2s that prescribes an impulse

control that instantly brings the stock to x2s, then the big firms’ extraction for x > x2s is

not payoff relevant. In particular, their best response over (x2s,∞) to that strategy by the

small firms could include a continuation of their linear strategy defined in Proposition 2 for

[x1s, x2s], as well as playing the static Cournot quantity.

If the initial stock is sufficiently large but QSC > δk/2, then the static Cournot equilib-

rium cannot be played forever, since the stock would be decreasing. In that case, the stock

would reach x2s in finite time; again x > x2s is not sustainable.

Since the firms will be playing the linear strategies of Proposition 2 for x ∈ [x1s, x2s], the

stock will converge to the stable steady state x∗ given by (20).

Notice that the result of Proposition 4 is conditional on the equilibrium in linear strategies

being played over the interval [x1s, x2s]. This means that, contrary to the identical-firms case

of Benchekroun (2003), playing the static Cournot equilibrium for x > xs is not sustainable

in the presence of the slightest cost-differentiation among firms, if the equilibrium in linear

strategies is played over the interval [x1s, x2s]. It follows that if there exists a MPNE with

the property that the static Cournot equilibrium is played forever beyond some level of the

stock, then it must be the case that this is preceded by an interval over which non-linear

strategies are played. Such an equilibrium should also have the property that both types

of firms would reach a maximum of their respective value function at the level of stock at

which the static Cournot strategies set in. This is not the case of the equilibrium in linear

strategies over [x1s, x2s] posited in Proposition 4, since V ′b (x2s) > 0.

Taking for granted that the linear strategies of Proposition 2 are played over the interval

[x1s, x2s], there may well exist other types of equilibria for which x > x2s is sustainable. To

see this, let x̃ denote a steady state in the decreasing part of the growth function which can

be supported by a MPNE for x > x2s. Let W (x) denote the corresponding value function,

with V (x) representing the quadratic value function (17) over the interval [x1s, x2s], and let
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p(x) = a− bQ(x). Then we can write

πs(x2s)− πs(x̃) = [p(x2s)− ws]qs(x2s)− [p(x̃)− ws]qs(x̃)

= [p(x2s)− ws][qs(x2s)− qs(x̃)] + b[Q(x̃)−Q(x2s)]qs(x̃)

From (9) and (10) and the fact that V ′s (x2s) = 0, we know that

qs(x2s)− qs(x̃) =
nbV

′
b (x2s)

(n+ 1)b
− nsW

′
s(x̃) + nbW

′
b(x̃)

(n+ 1)b
+
W ′
s(x̃)

b
(28)

and

Q(x̃)−Q(x2s) =
nbV

′
b (x2s)

(n+ 1)b
− nsW

′
s(x̃) + nbW

′
b(x̃)

(n+ 1)b
, (29)

where it can be assumed that W ′
i ≥ 0, i = s, b, for, if W ′

i < 0, firms of type i could increase

their profits by destroying some of the stock. Substituting in the above yields

πs(x2s)− πs(x̃) = [p(x2s)− ws]
W ′
s(x̃)

b
+ [p(x2s)− ws + bqs(x̃)][Q(x̃)−Q(x2s)]. (30)

We can see that the sign of πs(x2s)−πs(x̃) depends crucially on the sign of Q(x̃)−Q(x2s).

If Q(x̃) − Q(x2s) ≥ 0, then πs(x2s) − πs(x̃) > 0, in which case there will be an impulse

control by firms s to maintain x2s. The static Cournot falls in this category, since it implies

W ′
i (x̃) = 0, and hence Q(x̃) − Q(x2s) > 0. However, we cannot exclude the existence of

equilibria for which πs(x2s)−πs(x̃) < 0. If such equilibria exist we would necessarily observe

that Q(x̃)−Q(x2s) < 0 and there would be no incentive to maintain x2s.

Remark: It is interesting to note that we have Vs(x2s) = πs
r
> πSCs

r
.and qs (x2s) > qSCs (see

27 and 25 in the proof of Proposition 4). The small firms can earn a larger payoff than they

woull earn in an equivalent static Cournot game where the input is considered abundant

(i.e., in the absence of renewability constraint).
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4 Conclusion

Asymmetries among economic agents exploiting in common stocks of natural resources are

very frequently encountered. In spite of that fact, they are practically ignored in the lit-

erature on the economics of common pool resources. A reason for this is arguably that

dealing with asymmetries considerably increases the difficulties of characterizing the equi-

libria, particularly in the context of a dynamic oligopolistic game. An important conclusion

to be drawn from this paper is that it would be a mistake to assume that the nature of

the equilibria found in the symmetric situation can be replicated in an asymmetric context.

At the very least, great caution should be exercised, since an equilibrium that holds in the

symmetric case may not be robust to the introduction of the slightest heterogeneity among

the agents.

Indeed, we have shown that the introduction of cost heterogeneity among agents can

have a drastic effect on the nature of equilibrium that can be supported, as compared to

the homogeneous agents case. The benchmark case was taken to be one in which a common

pool of a renewable resource is harvested by identical agents and where a MPNE exists

with the following properties: below some initial threshold level of the resource stock, the

resource is not harvested at all, hence allowing the resource to grow; follows an interval

of the stock, up to some second threshold, over which each agents’s harvesting decision

is a linear and increasing function of the resource stock; beyond that last threshold, each

agents’s harvest rate is a constant that corresponds to the static Cournot equilibrium. It

was shown here that if the agents are instead divided between low and high marginal costs

ones, keeping other things the same, playing the static Cournot strategies beyond some

endogenously determined interval of the stock over which linear strategies are played is not

sustainable as an equilibrium. The reason for this is that for stock levels greater than the

upper bound of the interval over which the linear strategies are played, the agents with the

higher marginal cost can earn a larger payoff by bringing back the stock to that upper bound

via an impulse control; hence stock levels greater than that upper bound are not sustainable

in this equilibrium. We do show that acting in this way constitutes a MPNE, which we fully
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characterize. An interesting feature of this equilibrium is that the high cost agents can earn

a larger payoff than they would earn in an equivalent static Cournot game with unlimited

renewability of the resource as an input.

It can of course not be ruled out that other MPNE exist such that linear strategies

are played over some interval of the stock, while higher stock levels remain sustainable.

Showing their existence and characterizing such equilibria remains a challenging task for

future research. One thing is clear however: if there exists a MPNE in the asymmetric case

analyzed here such that static Cournot strategies are played beyond some stock threshold,

it must be the case that in the interval preceding that threshold non-linear strategies have

been played, in sharp contrast with the symmetric case.
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Appendix

A Proof of Proposition 2

We need to solve the problem of firm k, k = 1, . . . , n, as stated in (3) to (5). This will

determine its best response, over the interval [x1s, x2s], to the strategies φi(x) of the n − 1

other firms resulting from the MPNE proposed in Proposition 2.

Substituting for qs and qb from (9) into the HJB (6) of each type of firm, we obtain the

following non-linear system of differential equations in (Vb (S) , Vs (S)):

rVk (x) = (a− wk − b (nsqs + nbqb)) qk + V ′k (x) (δx− (nsqs + nbqb)) , k = b, s

where qs and qb are given by (9). Recall that, by Assumption 2(ii), the interval [x1s, x2s] lies

in the increasing part of the growth function, for which g(x) = δx.

Given the linear-quadratic structure of the game over the interval being considered, we

search for quadratic value functions of the form

Vk =
Ak
2
x2 +Bkx+ Ck, k = b, s

where Ak, Bk and Ck are parameters to be determined.

If we rewrite the HJBs using this form of the value function we get, for i, j = s, b, i 6= j,

{
b (n+ 1)2Ai

(
δ − r

2

)
+ (niAi + njAj)

2
}
x2

+
{
b (n+ 1)2Bi (δ − r)− Ai

[(
n2 + 1 + 2nj

)
(a− wi) + 2ninj (wi − wj)

]
+ 2njAj [(a− wi)− nj (wi − wj)] + 2 (niAi + njAj) (niBi + njBj)

}
x

+ [(a− wi)− nj (wi − wj)]2 −Bi

[(
n2 + 1 + 2nj

)
(a− wi) + 2ninj (wi − wj)

]
+ 2njBj [(a− wi)− nj (wi − wj)] + (niBi + njBj)

2 − (n+ 1)2 brCi

= 0
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Since this second degree polynomial must hold for all x ∈ [x1s, x2s], all its coefficients must

be set to zero. Doing so gives us a solution for the unknowns Ai, Bi and Ci, namely

Ai = Aj = A = −(n+ 1)2b

n2

(
δ − r

2

)

Bi =

(
δ − r

2

)
n2δ

[(
n2 + 1

)
(a− wi) + nj (wi − wj)

[2δ − (n2 + 1) r]

n (δ − r)

]
and

Ci =
1

(n+ 1)2 br

{
[(a− wi)− nj (wi − wj)]2 + (niBi + njBj)

2

− (a− wi)
[(
n2 + 1

)
Bi + 2nj (Bi −Bj)

]
− 2nj (wi − wj) (niBi + njBj)

}
Taking into account the fact that we must have As = Ab = A, write

Vi (x) ≡ A

2
x2 +Bix+ Ci, i = b, s.

and define

fi (x) ≡ 1

b (n+ 1)
[−Ax+ (a− wi −Bi)− nj (wi − wj +Bi −Bj)] , i, j = b, s, i 6= j.

The stock levels x1i are those for which fi(x) = 0, that is

x1i =
1

−A
[Bi − (a− wi) + nj (Bi −Bj + wi − wj)]

=
1

−A

(
2δ − (n2 + 1)r

2n2δ

)[
a− wi + nj

(
(2 + n) δ − r
n (δ − r)

)
(wi − wj)

]
.

We may therefore write

fi (x) ≡ −A
b (n+ 1)

[x− x1i] = α (x− x1i) ,
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and

fb (x)− fs (x) =
A

b (n+ 1)
[x1b − x1s]

=

(
2δ − (n2 + 1)r

2n2b(δ − r)

)
(ws − wb).

It immediately follows that

fs(x) = α (x− x1s)

and

fb(x) = α (x− x1s) +

(
2δ − (n2 + 1)r

2n2b(δ − r)

)
(ws − wb),

as stated in the proposition.

The stock level x2s, which defines the upper bound of the interval considered, is the one

that maximizes Vs(x) and hence given by V ′s (x2s) = 0, or

x2s = −Bs

A
.

We can similarly determine the stock level x2b as that which satisfies V ′b (x2b) = 0, that

is x2b = −Bb/A. It lies outside the interval [x1s, x2s], since x2b > x2s, as does x1b, since

x1b < x1s.

21



References

Benchekroun, Hassan (2003) ‘Unilateral production restrictions in a dynamic duopoly.’ Jour-
nal of Economic Theory 111, 214–239

(2008) ‘Comparative dynamics in a productive asset oligopoly.’ Journal of Economic The-
ory 138, 237–261

Clemhout, S., and H. Y. Wan (1985) ‘Dynamic common property resources and environmen-
tal problems.’ Journal of Optimization Theory and Applications 46, 471–481

Dockner, E., and G. Sorger (1996) ‘Existence and properties of equilibria for a dynamic game
on productive assets.’ Journal of Economic Theory 71, 209–227

Dockner, E., S. Jorgensen, N. V. Long, and G. Sorger (2000) Differential Games in Eco-
nomics and Management Science (Cambridge: Cambridge University Press)

Dutta, P.K., and R.K. Sundaram (1993a) ‘The tragedy of the commoncs.’ Economic Theory
3, 413–426

(1993b) ‘How different can strategic models be?’ Journal of Economic Theory 60, 42–61

Fischer, R., and L. J. Mirman (1992) ‘Strategic dynamic interactions: Fish wars.’ Journal
of Economic Dynamics and Control 16, 267–287

(1996) ‘The compleat fish wars: Biological and dynamic interactions.’ Journal of Environ-
mental Economics and Management 30, 34–42

Gaudet, G., and H. Lohoues (2008) ‘On limits to the use of linear markov strategies in com-
mon property natural resource games.’ Environmental Modeling and Assessment 13, 567–
574

Karp, L. (1992) ‘Social welfare in a common property oligopoly.’ International Economic
Review 33, 353–372

Levhari, D., and L. J. Mirman (1980) ‘The great fish war: An example using a dynamic
cournot-nash solution.’ Bell Journal of Economics 11, 322–334

Mason, C., and S. Polasky (1997) ‘The optimal number of firms in the commons: A dynamic
approach.’ Canadian Journal of Economics 30, 1143–1160

Ostrom, E., and R. Gardner (1993) ‘Coping with asymmetries in the commons: Self-
governing irrigation systems can work.’ The Journal of Economic Perspectives 7(4), 93–112

Plourde, C., and D. Yeung (1989) ‘Harvesting of a transboundary replenishable fish stock:
A noncooperative solution.’ Marine Resource Economics 6, 57–70

22



 

 

Récents cahiers de recherche du CIREQ 
Recent Working Papers of CIREQ 

 
Si vous désirez obtenir des exemplaires des cahiers, vous pouvez les télécharger à 
partir de notre site Web http://www.cireqmontreal.com/cahiers-de-recherche 
If you wish to obtain copies of the working papers, you can download them directly 
from our website, http://www.cireqmontreal.com/cahiers-de-recherche 
 

13-2011 Ehlers, L., I.E. Hafalir, M. Bumin Yenmez, M.A. Yildirim, "School Choice with 
Controlled Choice Constraints : Hard Bounds versus Soft Bounds", novembre 
2011, 43 pages  

14-2011 Sprumont, Y., "Constrained-Optimal Strategy-Proof Assignment : Beyond the 
Groves Mechanisms", décembre 2011, 18 pages  

01-2012 Long, N.V., V. Martinet, "Combining Rights and Welfarism : A New Approach 
to Intertemporal Evaluation of Social Alternatives", janvier 2012, 43 pages 

02-2012 Atewamba, C., G. Gaudet, "Pricing of Durable Nonrenewable Natural 
Resources under Stochastic Investment Opportunities", novembre 2011, 
24 pages 

03-2012 Ehlers, L., "Top Trading with Fixed Tie-Breaking in Markets with Indivisible 
Goods", mars 2012, 25 pages 

04-2012 Andersson, T., L. Ehlers, L.-G. Svensson, "(Minimally) -Incentive Compatible 
Competitive Equilibria in Economies with Indivisibilities", avril 2012, 13 pages  

05-2012 Bossert, W., H. Peters, "Single-Plateaued Choice", mai 2012, 15 pages 

06-2012 Benchekroun, H., G. Martín-Herrán, "Farsight and Myopia in a Transboundary 
Pollution Game", juillet 2012, 19 pages  

07-2012 Bossert, W., L. Ceriani, S.R. Chakravarty, C. D'Ambrosio, "Intertemporal 
Material Deprivation", juin 2012, 21 pages 

08-2012 Bossert, W., Qi, C.X., J.A. Weymark, "Extensive Social Choice and the 
Measurement of Group Fitness in Biological Hierarchies", juillet 2012, 
25 pages 

09-2012 Bossert, W., K. Suzumura, "Multi-Profile Intertemporal Social Choice", 
juillet 2012, 20 pages 

10-2012 Bakis, O., B. Kaymak, "On the Optimality of Progressive Income 
Redistribution", août 2012, 42 pages  

11-2012 Poschke, M., "The Labor Market, the Decision to Become an Entrepreneur, 
and the Firm Size Distribution", août 2012, 29 pages  

12-2012 Bossert, W., Y. Sprumont, "Strategy-proof Preference Aggregation", 
août 2012, 23 pages 

13-2012 Poschke, M., "Who Becomes an Entrepreneur? Labor Market Prospects and 
Occupational Choice", septembre 2012, 49 pages 


