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Résumé 
L’accumulation de triglycérides (TG) dans les hépatocytes est caractéristique de la stéatose 

hépatique non-alcoolique (SHNA). Cette dernière se produit dans diverses conditions dont 

le facteur commun est le métabolisme anormal des lipides. Le processus conduisant à 

l'accumulation des lipides dans le foie n’a pas encore été totalement élucidé. Toutefois, des 

lipides s'accumulent dans le foie lorsque les mécanismes qui favorisent leur exportation 

(oxydation et sécrétion) sont insuffisants par rapport aux mécanismes qui favorisent leur 

importation ou leur biosynthèse. De nos jours il est admis que la carence en œstrogènes est 

associée au développement de la stéatose hépatique. Bien que les résultats des études 

récentes révèlent l'implication des hormones ovariennes dans l'accumulation de lipides dans 

le foie, les mécanismes qui sous-tendent ce phénomène doivent encore être étudiés.  En 

conséquence, les trois études présentées dans cette thèse ont été menées sur des rates 

ovariectomizées (Ovx), comme modèle animal de femmes post-ménopausées, pour étudier 

les effets du retrait des œstrogènes sur le métabolisme des lipides dans le foie, en 

considérant l'entraînement physique comme étant un élément positif pouvant contrecarrer 

ces effets. Il a été démontré que l'entraînement physique peut réduire l'accumulation de 

graisses dans le foie chez les rates Ovx. 

Dans la première étude, nous avons montré que chez les rates Ovx nourries à la diète riche 

en lipides (HF), les contenus de TG hépatiques étaient élevées (P < 0.01) comparativement 

aux rates Sham, 5 semaines après la chirurgie. Le changement de la diète HF par la diète 

standard (SD) chez les rates Sham a diminué l’accumulation de lipides dans le foie. 

Toutefois, chez les rates Ovx, 8 semaines après le changement de la HF par la SD le niveau 

de TG dans le foie était maintenu aussi élevé que chez les rates nourries continuellement 

avec la diète HF. Lorsque les TG hépatiques mesurés à la 13e semaine ont été comparés aux 

valeurs correspondant au retrait initial de la diète HF effectué à la 5e semaine, les niveaux 

de TG hépatiques chez les animaux Ovx ont été maintenus, indépendamment du 

changement du régime alimentaire; tandis que chez les rats Sham le passage à la SD a 

réduit (P < 0.05) les TG dans le foie. Les mêmes comparaisons avec la concentration des 
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TG plasmatiques ont révélé une relation inverse. Ces résultats suggèrent que la résorption 

des lipides au foie est contrée par l'absence des œstrogènes. Dans cette continuité, nous 

avons utilisé une approche physiologique dans notre seconde étude pour investiguer la 

façon dont la carence en œstrogènes entraîne l’accumulation de graisses dans le foie, en 

nous focalisant sur la voie de l'exportation des lipides du foie. Les résultats de cette étude 

ont révélé que le retrait des œstrogènes a entraîné une augmentation (P < 0.01) de 

l’accumulation de lipides dans le foie en concomitance avec la baisse (P < 0.01) de 

production de VLDL-TG et une réduction l'ARNm et de la teneur en protéines 

microsomales de transfert des triglycérides (MTP). Tous ces effets ont été corrigés par la 

supplémentation en œstrogènes chez les rates Ovx. En outre, l'entraînement physique chez 

les rates Ovx a entraîné une réduction (P < 0.01) de l’accumulation de lipides dans le foie 

ainsi qu’une diminution (P < 0.01) de production de VLDL-TG accompagnée de celle de 

l'expression des gènes MTP et DGAT-2 (diacylglycérol acyltransférase-2). Des études 

récentes suggèrent que le peptide natriurétique auriculaire (ANP) devrait être au centre des 

intérêts des recherches sur les métabolismes énergétiques et lipidiques. Le ANP est relâché 

dans le plasma par les cellules cardiaques lorsque stimulée par l’oxytocine et exerce ses 

fonctions en se liant à son récepteur, le guanylyl cyclase-A (GC-A). En conséquence, dans 

la troisième étude, nous avons étudié les effets du blocage du système ocytocine-peptide 

natriurétique auriculaire (OT-ANP) en utilisant un antagoniste de l’ocytocine (OTA), sur 

l'expression des gènes guanylyl cyclase-A et certains marqueurs de l’inflammation dans le 

foie de rates Ovx. Nous avons observé une diminution (P < 0.05) de l’ARNm de la GC-A 

chez les rates Ovx et Sham sédentaires traitées avec l’OTA, tandis qu’une augmentation (P 

< 0.05) de l'expression de l’ARNm de la protéine C-réactive (CRP) hépatique a été notée 

chez ces animaux. L’exercice physique n'a apporté aucun changement sur l'expression 

hépatique de ces gènes que ce soit chez les rates Ovx ou Sham traitées avec l’OTA.  

En résumé, pour expliquer l’observation selon laquelle l’accumulation et la 

résorption de lipides dans le foie dépendent des mécanismes associés à des niveaux 

d’œstrogènes, nos résultats suggèrent que la diminution de production de VLDL-TG 

induite par une déficience en œstrogènes, pourrait être un des mecanismes responsables de 
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l’accumulation de lipides dans le foie.  L’exercice physique quant à lui diminue 

l'infiltration de lipides dans le foie ainsi que la production de VLDL-TG indépendamment 

des niveaux d'œstrogènes. En outre, l'expression des récepteurs de l’ANP a diminué par 

l'OTA chez les rates Ovx et Sham suggérant une action indirecte de l’ocytocine (OT) au 

niveau du foie indépendamment de la présence ou non des estrogènes. L’axe ocytocine-

peptide natriurétique auriculaire, dans des conditions physiologiques normales, protègerait 

le foie contre l'inflammation à travers la modulation de l’expression de la GC-A.   

 

Mots-clés: Stéatose hépatique, ovariectomie, rat, hormones ovariennes, diète riche en 

lipides, protéine microsomale de transfert des triglycérides (MTP), diacylglycérol 

acyltransférase-1 et -2 (DGAT-1 et -2), entraînement en endurance, récepteur hépatique de 

GC-A, antagoniste de l’ocytocine (OTA). 
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Abstract 
Excessive accumulation of triglycerides (TGs) in hepatocytes is the characteristic of non-

alcoholic hepatic steatosis (NAHS). NAHS occurs in various conditions in which abnormal 

fat metabolism is a common factor. The primary processes leading to lipid accumulation in 

the liver are not well understood. However, lipid in the form of TG accumulates within 

liver cells when mechanisms that promote their removal (by oxidation or secretion) cannot 

keep pace with mechanisms that promote lipid import or biosynthesis. Today, it is well 

accepted that estrogen deficiency is associated with the development of a state of hepatic 

steatosis. Although recent findings indicated the implication of ovarian hormones in liver 

lipid accumulation, mechanisms underlying this phenomenon need to be further 

investigated. Therefore, the three studies presented in this thesis have been conducted in 

ovariectomized (Ovx) rats, as animal model of post-menopausal women, to investigate the 

effects of estrogen withdrawal on liver fat metabolism and considering the effects of 

exercise training as a positive counteractive factor. It has been shown that exercise training 

can reduce liver fat accumulation in Ovx rats. 

In the first study, we showed that in high fat (HF) fed animals, liver TG content was 

higher (P < 0.01) in Ovx compared to Sham rats as soon as 5-week after the surgery. 

Switching from the HF to a standard (SD) diet resulted in a decrease in liver fat 

accumulation in Sham animals. However, 8 weeks after the diet switch, liver fat 

accumulation was as high in Ovx rats as those maintained on the HF diet. When liver TG 

content measured at week 13 was compared to initial pre-switching values (week 5), liver 

TG levels in Ovx animals were maintained at the same level independently of the diet 

switch, while in Sham rats switching to a SD diet reduced liver TG accumulation (P < 

0.05). The same comparisons with plasma TG levels revealed an opposite relationship. 

These results may be taken as evidence that indeed liver fat resorption is hampered in the 

absence of estrogens. To go one step further, we used a physiological approach in our 

second study to investigate how estrogen deficiency affects liver fat accumulation putting 
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an emphasis on the pathway of lipid exportation from the liver. Results of this study 

showed that estrogen withdrawal resulted in higher (P < 0.01) liver fat accumulation 

concomitantly with lower (P < 0.01) very low density lipoprotein-triglyceride (VLDL-TG) 

production and lower mRNA and protein content of hepatic microsomal triglyceride 

transfer protein (MTP). All of these effects in Ovx rats were corrected with estrogen 

supplementation. Moreover, exercise training in Ovx rats reduced (P < 0.01) liver fat 

accumulation and further reduced (P < 0.01) hepatic VLDL-TG production along with gene 

expression of MTP and diacylglycerol acyltransferase-2 (DGAT-2). A recent growing body 

of literature suggests that atrial natriuretic peptide (ANP) hormone should be the interest of 

new investigations in the field of energy and lipid metabolism. ANP is released from the 

heart into plasma by oxytocin (OT) stimulation and exerts its biological action by binding 

to its receptor, guanylyl cyclase-A (GC-A: ANP receptor). Therefore, in the third study, we 

investigated the effects of blocking the oxytocin-atrial natriuretic peptide (OT-ANP) 

system, using an OT antagonist (OTA), on the gene expression of hepatic guanylyl cyclase-

A and some inflammatory markers in the liver of Ovx rats. Hepatic GC-A mRNAs were 

decreased (P < 0.05) in Ovx and Sham OTA-treated rats in the sedentary state, contrary to 

hepatic C-reactive protein (CRP) mRNA expression that increased in these animals (P < 

0.05). Exercise training had no effect on hepatic expression of these genes in both Sham 

and Ovx rats receiving OTA. 

Overall, our results point to the interpretation that hepatic fat accumulation and 

resorption are dependent on mechanisms associated with a normal estrogenic status; 

indicating that a decrease in VLDL-TG production might be a contributing factor 

responsible for the hepatic fat accumulation induced by estrogen deficiency. Exercise 

training lowers liver fat accretion and VLDL-TG production independently of the estrogen 

levels. Moreover, hepatic expression of ANP receptors is decreased by OTA in both Sham 

and Ovx rats suggesting an indirect action of the OT system on the liver independently of 

the estrogenic status of the animal. Oxytocin-atrial natriuretic peptide axis may contribute 

to the protection of hepatic tissue under normal physiological conditions such as reducing 
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inflammatory markers within the hepatocytes by exerting its role through guanylyl cyclase-

A expression.  

 

Keywords: Hepatic steatosis, Ovariectomy, Rat, Ovarian hormones, High-fat diet, 

Microsomal triglyceride transfer protein (MTP), Diacylglycerol acyltransferase-1 and -2 

(DGAT-1 and -2), Endurance training, Hepatic GC-A receptor, Oxytocin antagonis (OTA). 
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Introduction 
Obesity is now recognized as a major public health problem that constitutes a risk 

factor for life-threatening diseases such as type 2 diabetes and cardiovascular disease.  

These disorders represent major causes of morbidity and mortality throughout the world. 

Excess caloric intake and/or dietary fat intake along with sedentarity play a central role in 

inducing obesity which translates not only on peripheral fat accumulation but additionally 

impacts on fat accumulation in the liver (Liu, Bengmark et al. 2010). In fact, the majority of 

non-alcoholic fatty liver disease (NAFLD) patients are obese (Marchesini, Brizi et al. 

2001). NAFLD represents a spectrum of liver diseases that range from simple non-

alcoholic hepatic steatosis (NAHS), to a more severe stage termed non-alcoholic 

steatohepatitis which may in turn progress to hepatic fibrosis, cirrhosis, and liver failure 

(Patrick-Melin, Kalinski et al. 2009). Although it is a very common disorder, NAFLD has 

only recently gained broader interest among physicians and scientists (Duvnjak, Lerotic et 

al. 2007). Excessive fat accumulation within hepatocytes has been reported to play an 

important role in the development of insulin resistance and is even considered as a hepatic 

component of the metabolic syndrome (Kadowaki, Hara et al. 2003; Samuel, Liu et al. 

2004; Marchesini, Marzocchi et al. 2005). The importance of the phenomenon is 

highlighted by recent data suggesting that ectopic fat in liver may be even more important 

than visceral fat in characterization of metabolically benign obesity in humans (Stefan, 

Kantartzis et al. 2008). 

There is accumulating evidence that estrogen deficiency increases the risk of hepatic 

steatosis in post-menopausal women (Park, Jeon et al. 2006; Suzuki and Abdelmalek 2009) 

as well as in different animal models (Deshaies, Dagnault et al. 1997; Picard, Deshaies et 

al. 2000). Hepatic steatosis is twice as common in post-menopausal women as in pre-

menopausal women (Hagymasi, Reismann et al. 2009). It thus seems that menopause plays 

a central role in the pathogenesis of NAHS in women. However, strong valuable evidence 

on the protective effects of estrogen on the liver is lacking (Volzke, Schwarz et al. 2007; 

Frith and Newton 2010). The increased risk of liver lipid infiltration in post-menopausal 

women is, therefore, a concern that needs to be well characterized, especially in relation to 
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the high dietary fat intake of Western societies. Over the last decade, the laboratory of Prof. 

Jean-Marc Lavoie has been using ovariectomized (Ovx) rat model as an experimental 

model of human post-menopausal obesity. The studies conducted in his laboratory 

convincingly indicated the importance of estrogen withdrawal on hepatic fat accumulation 

(Latour, Shinoda et al. 2001; Shinoda, Latour et al. 2002; Paquette, Shinoda et al. 2007). 

However, it was not until recently that our group started to investigate the underlying 

mechanisms of the relationship between estrogen deficiency and liver lipid infiltration. 

Therefore, the purpose of the studies presented in this thesis was to extend our 

understanding regarding the development of NAHS associated with estrogen deficiency 

state using an Ovx rat model.  

In the first study, we designed an experiment to test the hypothesis that the livers of 

Ovx rats are resistant to reversal of liver lipid infiltration. To verify our hypothesis, we 

stimulated fat accretion in livers of Ovx and Sham rats by submitting them to a high fat 

(HF) diet (containing 43% of its energy from lipids) and evaluated reversal of liver fat 

accumulation by switching the feeding to a standard (SD) diet (containing 12.5% of its 

energy from lipids). Results of this study supported our hypothesis. Also, the results 

suggest that liver fat infiltration in Ovx rats is not solely related to an increased hepatic 

lipid uptake, but also facilitated by an intra-hepatic mechanism related to the absence of 

estrogens. Results of this study led us to test a mechanism that might explain liver fat 

accumulation in Ovx rats. In line with this, we used a physiological approach in the second 

study to determine if hepatic very low density lipoprotein-triglyceride (VLDL-TG) 

production is altered following a 3-h infusion of lipids in Ovx rats. We also measured the 

hepatic gene expression and the protein content of microsomal triglyceride transfer protein 

(MTP), a molecule that exerts a central role in the synthesis and secretion of hepatic VLDL 

(Gibbons, Wiggins et al. 2004).  

The protective effects of exercise training on some of the mechanisms involved in 

hepatic lipid accumulation in this hormonal context, such as liver lipogenesis and lipid 

oxidation, have been recently investigated (Pighon, Gutkowska et al. 2010). To 
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complement these studies, we also examined the effects of exercise training on hepatic 

VLDL-TG production and gene expression of related makers in Ovx rats and compared 

these responses with the effects of 17β-estradiol supplementation. Finally, it has been 

suggested that cardiac oxytocin-atrial natriuretic peptide (OT-ANP) system is under 

estrogenic control and it is positively influenced by exercise training (Gutkowska, Paquette 

et al. 2007). In the last study, we investigated the OT-ANP system in Ovx rats with a 

hepatico-metabolic approach. Many studies have shown an organ-protective effect of ANP 

against serious liver damages such as ischemia/reperfusion (I/R) injury (Bilzer, Witthaut et 

al. 1994; Gerbes, Vollmar et al. 1998; Kiemer, Vollmar et al. 2000; Kiemer, Gerbes et al. 

2002; Carini, De Cesaris et al. 2003; Gerwig, Meissner et al. 2003; Kulhanek-Heinze, 

Gerbes et al. 2004). In addition, OT-ANP axis has been shown to have an effect on lipid 

metabolism via increased lipolysis (Moro, Crampes et al. 2004). This triggers our interest 

in investigating if this axis influence lipid metabolism in liver. Therefore, the aim of this 

study was to investigate the metabolic actions of OT antagonist (OTA) in liver of Ovx rats 

and if exercise training plays a role in these actions.  

This thesis consists of three chapters. Chapter 1 is devoted to the review of the 

literature which is divided into three sections: the objective of the first section is to provide 

the reader with an overview of NAHS, with an emphasis on major metabolic pathways 

associated with this phenomenon; in the second section, we review the role of estrogen in 

the development of hepatic steatosis with a special attention given to hepatic lipid 

elimination via the VLDL-TG production pathway; lastly, we review the OT-ANP system 

focusing on the ANP receptor; guanylyl cyclase-A (GC-A) and its physiological and 

metabolic functions. Chapter 2 introduces the original research articles of this thesis that are 

presented according to the format required by the journals to which they are published or 

submitted. Finally, chapter 3 provides a general discussion and conclusion on the findings 

of the thesis. 

 



 

 

Chapter 1: Review of literature  

1.1 Non-alcoholic hepatic steatosis (NAHS) 

As the worldwide obesity epidemic continues to increase, the prevalence of NAHS, 

will become increasingly prominent (Pillai and Rinella 2009). NAHS has been identified as 

an independent risk factor of insulin resistance, metabolic syndrome, and cardiovascular 

disease (Johnson, Sachinwalla et al. 2009). In recent years, high dietary fat intake has been 

considered as a main contributing factor for obesity (Satia-Abouta, Patterson et al. 2002) 

inducing several obesity related metabolic deteriorations including liver lipid infiltration 

(Marchesini, Marzocchi et al. 2005; Kotronen, Westerbacka et al. 2007). Both alcoholic 

and non-alcoholic fatty liver are characterized by lipid deposition in hepatocytes. NAFLD 

is defined as accumulation of fat in the liver which exceeds 5% to 10% of liver weight in 

individuals who do not use significant amounts of alcohol (Neuschwander-Tetri and 

Caldwell 2003). Almost one quarter of adults in many industrialized countries have 

excessive hepatic fat accumulation (Lazo and Clark 2008). There is currently no accepted 

treatment for NAHS. To date, the most effective treatments for this disease are lifestyle 

changes like diets inducing weight reduction and exercise (Postic and Girard 2008). 

Importantly, post-menopausal women are sub-group of the population that is particularly at 

an increased risk of hepatic fat accumulation. There are several evidences indicating that, 

indeed, menopause is associated with an increased risk of hepatic steatosis development 

(Clark 2006; Volzke, Schwarz et al. 2007). Increased risk of liver lipid infiltration in post-

menopausal women is, therefore, a concern that needs to be characterized especially in 

relation to the high dietary fat intake of Western societies. The origin of the fat (mainly TG) 

that accumulates in the liver is complex and only partially understood (Pessayre and 

Fromenty 2005; Postic and Girard 2008). On the other hand, it is a condition usually 

associated with obesity, diabetes, and insulin resistance. The overall mechanism of liver fat 

accumulation involves an imbalance between lipid availability (from circulating lipid 

uptake or de novo lipogenesis) and lipid disposal (through fat oxidation or triglyceride-rich 

lipoprotein secretion). In the following sections we will review the metabolic pathways 
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implicated in the metabolism of lipids in liver that may have an incidence on hepatic fat 

accumulation.  

1.1.1 Free fatty acid (FFA) influx into the liver 

The mammalian body greatly relies on fatty acids as suppliers of chemically stored 

energy, building blocks of cellular membranes and signal transducers (van der Vusse 2009). 

The main source of fatty acids is dietary lipid, digested in the gastro-intestinal tract by the 

catalytic action of pancreatic hydrolytic enzymes. Part of fatty acid production also 

originates from synthesis in the liver using carbohydrates as substrate. Large amounts of 

fatty acids are stored in fat cells in adipose tissue. Fatty acids are transported in the body 

via the lymphatic and vascular systems. Basically, two transport forms are used: fatty acids 

are transported as TG, the main lipid component of circulating lipoproteins such as 

chylomicrons (CM) and VLDL, or FFA (van der Vusse 2009). FFA whether obtained 

through dietary sources or produced via de novo lipogenesis, may generally undergo three 

fates: stored intracellularly in adipose tissue in the form of TG (Yu and Ginsberg 2005), 

exported from the liver into the plasma in the form of VLDL-TG, or used as an energy 

source via FFA oxidation. FFA may also be stored in non-adipocyte cells as TG which is 

usually a source of lipotoxicity (Manco, Calvani et al. 2004). Non-adipose TG storage 

usually happens in situations where available FFA exceeds the catabolic capacity of 

peripheral tissues, or when adipose tissue storage is impaired (Yu and Ginsberg 2005). It 

has been shown that mammalian liver is normally capable of storing considerable amounts 

of TG. The liver accommodates TG in storage droplets in the cytosol of hepatocytes 

(Gibbons, Islam et al. 2000).  

It is now proposed that the development of NAHS is closely linked to an excess 

flow of FFA toward the liver (Cusi 2009). Potential sources of FFA for liver fat consist of: 

(1) peripheral fats stored in adipose tissue that flow to the liver by the plasma FFA pool; (2) 

FFAs synthesized within the liver through de novo lipogenesis; (3) dietary fatty acids that 

are transported through CM from the intestine to the FFA pool and then to the liver; and (4) 
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uptake of CM remnants by the liver (Fig. 1) (Adiels, Olofsson et al. 2008; Postic and Girard 

2008). Using a multiple stable isotope approach in humans, Donnelly et al. (Donnelly, 

Smith et al. 2005) estimated that while 60% of the accumulated TG in the hepatic steatosis 

conditions originates from plasma FFA pool, approximately 10% comes from the diet and 

about 30% from de novo lipogenesis. 

Catecholamines (e.g. epinephrine and norepinephrine) and insulin are the major 

hormones that control lipolytic activity. On the adipocyte surface catecholamines bind to its 

receptor and stimulate lipolysis though β-adrenergic receptors (β-ARs) coupled to 

stimulatory GTP-binding protein (Gs). Activation of Gs proteins stimulates the adenylate 

cyclase (AC), the enzyme that catalyzes the formation of cyclic adenosine monophosphate 

(cAMP) (Duncan, Ahmadian et al. 2007). Increasing concentrations of cAMP in the cell 

activates protein kinase A (PKA) (Belfrage, Fredrikson et al. 1982), which catalyzes the 

phosphorylation and subsequent activation of hormone sensitive lipase (HSL) (Holm 2003; 

Duncan, Ahmadian et al. 2007; Granneman and Moore 2008). Activated HSL is able to 

break down TGs to fatty acids and glycerol (Arner and Langin 2007). The cAMP/PKA-

HSL pathway has long been considered to be the only regulator of adipocyte lipolytic 

cascade (Langin 2006). However, a novel lipolytic pathway in human adipocytes which 

does not involve cAMP has been observed, this pathway acts through natriuretic peptides 

(NPs) (Lafontan, Moro et al. 2005). NPs bind to their specific receptors (this action will be 

explained in details in the section of metabolic effects of NPs) on human fat cells and 

subsequently activate protein kinase G (PKG), which causes phosphorylation and activation 

of HSL. It seems that these NPs stimulate lipolysis to the same extent as catecholamines 

(Arner and Langin 2007). On the other hand, insulin acts as a potent inhibitor of lipolysis 

via binding to its receptor. Binding of insulin to its receptor stimulates the degradation of 

cAMP using the enzyme phosphodiesterase 3B (PDE 3B), leading to a decreased activity of 

PKA and inhibition of HSL activity (Arner and Langin 2007).  

It appears that insulin resistance in adipose tissue plays an important role in the 

pathogenesis of NAHS. In the insulin resistance state, the inhibitory action of insulin on  
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Figure 1. Sources of fatty acids for liver fat. Fatty acids (FA) may enter the liver via 4 different pathways:  

(1) FFA derived from adipose tissue, (2) hepatic de novo lipogenesis (DNL), (3) spillover of FA from 

lipolysis of chylomicron (CM)-triglycerides (TG) into the FFA pool, (4) and uptake of TG from CM 

remnants. Adapted from Adiels et al.  (Adiels, Olofsson et al. 2008). 
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adipocyte lipolysis is impaired, thus resulting in an increase in the rate of adipocyte 

lipolysis and an increased influx of FFA into the liver (Browning and Horton 2004; Zak 

and Slaby 2008). Additionally, fatty acid flux into the plasma FFA pool is more facilitated 

in insulin resistance by decreasing glucose uptake in adipocytes which reduces glycerol-3-

phosphate levels, thus reducing the reutilization of fatty acids for TG synthesis (Tamura 

and Shimomura 2005). Moreover, it has been shown that the severity of NAHS is 

positively related to the visceral fat accumulation independently of body mass index 

(Eguchi, Eguchi et al. 2006). In this regard, in vitro evidence indicates that lipolytic 

sensitivity to catecholamines is higher in fat cells from intra-abdominal adipose tissue than 

from subcutaneous fat of the gluteal/femoral region (Richelsen, Pedersen et al. 1991). 

Furthermore, this study shows that the antilipolytic effect of insulin is greater in fat cells 

from subcutaneous than from intra-abdominal adipose tissue suggesting the enhanced 

lipolytic activity in intra-abdominal adipose tissue. Higher fatty acid flux from this depot 

into the portal circulation is primarily taken up by the liver (Horowitz 2001) providing an 

important source of substrate for hepatocellular TG synthesis (Bradbury and Berk 2004). 

Nevertheless, it has been reported that the major source of FFA delivered to the liver might 

be derived from FFA released from subcutaneous adipose tissue during postabsorptive 

conditions through the systemic circulation (Fabbrini, Sullivan et al. 2010). As a whole, 

Adiels et al. suggest that the increased release of fatty acids to the liver from adipose tissue 

is the most important factor in liver fat accumulation (Adiels, Olofsson et al. 2008).  

On the other hand, dietary fatty acids after entering the circulation through CM from 

the intestine can be taken up by the liver as CM remnants. Alternatively, lipoprotein lipase 

(LPL) catalyzes the release of fatty acids from the CMs at a rate that exceeds tissue uptake, 

resulting in a spillover of these fatty acids into the plasma FFA pool (Barrows and Parks 

2006). The contribution of dietary fatty acids to liver TGs, therefore, depends on the fat 

content of the diet (Adiels, Olofsson et al. 2008). It has been shown that NAHS is linked to 

obesity for which caloric overconsumption is considered as a main factor (Festi, Colecchia 

et al. 2004). Since dietary fat is the most energy-dense macronutrient, with about 38 kJ/g 
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(in comparison, carbohydrate and protein only provide about 17 kJ/g), an increase in 

dietary fat intake can easily promote an increase in energy intake (Schrauwen and 

Westerterp 2000). It is well established that HF diets induce deleterious metabolic effects in 

both rodents and humans (Kraegen, Clark et al. 1991; Ghibaudi, Cook et al. 2002; Satia-

Abouta, Patterson et al. 2002). Animal studies clearly indicate that the ingestion of a HF 

diet in sedentary rats results in obesity which is accompanied by liver lipid infiltration 

(Collin, Chapados et al. 2006; Gauthier, Favier et al. 2006). There are also studies in human 

identifying high dietary fat intake as a main contributing factor to obesity (Satia-Abouta, 

Patterson et al. 2002) that induced several obesity related metabolic deteriorations including 

liver lipid infiltration (Marchesini, Marzocchi et al. 2005; Kotronen, Westerbacka et al. 

2007). Taken together, the main contributing factor for excess TG accumulation in NAHS 

seems to be the increased release of fatty acids from adipose tissue and dietary fatty acids, 

which flow to the liver via the FFA pool. 

1.1.2 Metabolic pathways contributing in the development of NAHS 

NAHS occurs when there is an imbalance between pathways of lipid accumulation 

and lipid elimination. TGs consisting of a glycerol and three long chain fatty acids (LCFA) 

are the main lipid component in the liver (Choi and Diehl 2008). The four pathways leading 

to hepatic TG accumulation include: (1) increased lipid uptake by liver (2) increased 

hepatic de novo lipogenesis (3) reduced hepatic oxidation of fatty acids and (4) diminished 

export of lipids from the liver (Fig. 2). Imbalance between these metabolic steps will 

increase TG accumulation within the cytoplasm of hepatocytes (Wei, Rector et al. 2008). In 

the next section we will explain the intra-hepatic-related metabolic pathways leading to 

NAHS.  
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Figure 2. Overview of the four main pathways involved in the development of NAHS and their 

regulatory factors. NAHS is characterized by (1) an increase in the uptake of lipids by the liver, (2) an 

increase in hepatic de novo lipogenesis (DNL), and an insufficient elimination of excess liver triacylglycerol 

(TAG) by means of (3) hepatic lipid oxidation and (4) very low density lipoprotein (VLDL) assembly and 

secretion. HSL, hormone sensitive lipase; LPL, lipoprotein lipase; FAT/CD36, fatty acid translocase/cluster 

of differentiation 36; SREBP-1c, sterol regulatory element-binding protein-1c; ChREBP, carbohydrate 

response element-binding protein; LXR, liver X receptors; PPAR, peroxisomal proliferator-activated 

receptors; AMPK, AMP-activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor gamma 

coactivator-1 alpha; MTP, microsomal triglyceride transfer protein; DGAT, diacyglycerol acyltransferase; 

ARF-1, ADP-ribosylation factor 1; ApoB, apolipoprotein B. Taken from Lavoie et al.  (Lavoie and Gauthier 

2006). 
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1.1.2.1 Fatty acid uptake pathway 

Circulating FFAs, either of dietary or endogenous origin (adipose tissue lipolysis), 

provide most of the hepatic lipid content in the development of NAHS (Musso, Gambino et 

al. 2009). It seems that the rate of hepatic FFA uptake depends on the delivery of FFA to 

the liver and the liver’s ability for FFA transport (Fabbrini, Sullivan et al. 2010). LCFA 

cross the mammalian cells either through the diffusion or the facilitated protein-mediated 

mechanism (Bradbury and Berk 2004). Over 90% of the LCFA uptake into tissues 

including hepatocytes is mediated by proteins through a facilitated mechanism (Stump, Fan 

et al. 2001). Several membrane proteins that are involved in the uptake of LCFA have been 

identified. The most important of these proteins are: fatty acid translocase (FAT, also 

known as cluster of differentiation 36 (CD36)), long chain fatty acyl-coenzyme A 

synthetases (LACS) and fatty acid transport protein (FATP). Stahl (Stahl 2004) suggested a 

model for LCFA uptake in which, LCFA are either transported directly by FATP 

complexes across the plasma membrane or alternatively, are first accumulated on the 

plasma membrane by binding to CD36, which subsequently gives the fatty acids to the 

FATP (Fig. 3). After uptake, LCFA is activated quickly by LACS to prevent efflux. In  

addition, binding of intracellular LCFA and acyl-CoA to fatty acid binding protein (FABP) 

and acyl-CoA binding proteins (ACBP) facilitate the unloading of transporters and act as an 

intracellular fatty acid buffer (Fig. 3) (Stahl 2004). FFA and fatty acyl-CoA bounded to 

FABP and ACBP transport them to intracellular compartments for metabolism or the 

nucleus to interact with transcription factors (Nguyen, Leray et al. 2008). 

Any condition that constantly raises plasma FFA concentrations (obesity, metabolic 

syndrome and type 2 diabetes) will lead to increased hepatic FFA uptake (Bradbury 2006). 

For instance, HF diet in rats resulted in significantly higher plasma FFA leading to hepatic 

steatosis (Gauthier, Couturier et al. 2003). In contrast, in mice lacking HSL, plasma FFA  
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Figure 3. A model for cellular fatty acid uptake. Extracellular long chain fatty acids (LCFA) might directly 

bind to fatty acid transport protein (FATP) complexes (blue) and be transported into cells. Alternatively, 

LCFA could bind first to cluster of differentiation 36 (CD36) (yellow), which hands on the LCFA to FATP 

dimmers. Intracellular LCFA are coupled to coenzyme A (CoA) by long chain fatty acyl-CoA synthetase 

(LACS, green), preventing their efflux, while fatty acid binding proteins (FABP) act as a cytoplasmic buffer 

for incorporated LCFA (ACBP acyl-CoA binding protein). Taken from Stahl et al.  (Stahl 2004). 
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concentration is low and as a consequence no steatosis is observed (Voshol, Haemmerle et 

al. 2003). In this regard, it has been shown that following a HF diet or fasting, the liver of 

LFABP (liver type FABP) knockout mice (LFABP-/-) were protected from steatosis while 

wild type mice developed fatty liver in both situations (Martin, Danneberg et al. 2003; 

Newberry, Xie et al. 2006). Newberry et al. (Newberry, Xie et al. 2003) also showed that in 

response to 48-h fasting, wild type mice demonstrated a 10-fold increase in hepatic TG 

content while LFABP-/- mice demonstrated only a 2-fold increase. In this last study the 

lower hepatic TG content observed in LFABP-/- mice was due to a reduction in fatty acids 

uptake by the liver in a situation of increased mobilization from adipocytes TG stores and 

FFA availability due to the fasted state, and not by increased hepatic TG secretion or fatty 

acid oxidation, since both of them were reduced in LFABP-/- mice. In another study it was 

reported that gene expression and/or protein content of FAT/CD36 were increased in liver 

of obese subjects with NAFLD compared with those who have normal intra-hepatic TG 

content (Greco, Kotronen et al. 2008; Fabbrini, Magkos et al. 2009).  

1.1.2.2 De novo lipogenesis pathway 

Fatty acid synthesis is expressed in two major tissues, liver and adipose tissues, but 

the relative contribution of these sites to de novo lipogenesis is variable among species. In 

human, it appears that the liver is the major site of de novo lipogenesis (Patel, Owen et al. 

1975), while in rodents, both liver and adipose tissue are important (Pullen, Liesman et al. 

1990). In adipose tissue, de novo synthesis of fatty acids contributes to fat deposition and 

long term energy reservoir while in the liver, synthesized fatty acids are exported via 

lipoprotein production, and thus provide an energy source for the body and structural 

component for membrane building (Nguyen, Leray et al. 2008). The de novo lipogenic 

pathway is highly dependent upon nutritional and hormonal conditions as it is now clearly 

established that insulin and glucose are required for lipogenic enzyme transcription 

(Foufelle and Ferre 2002). Conditions associated with high rates of lipogenesis, such as a 

low fat/high carbohydrate diet, hyperglycemia and hyperinsulinemia, are associated with a 



 

 

 

14

shift in cellular metabolism from lipid oxidation to TG synthesis, thereby increasing the 

availability of liver TG (Postic and Girard 2008). The two key transcriptional regulators in 

hepatic de novo lipogenesis, sterol regulatory element-binding protein-1c (SREBP-1c) and 

carbohydrate responsive element-binding protein (ChREBP), are respectively activated in 

response to insulin and glucose, and control lipogenic gene expressions such as acetyl-CoA 

carboxylase (ACC) and fatty acid synthase (FAS) (Fig. 4)  (Dentin, Girard et al. 2005). It 

appears that abnormal transcription of one or two of these regulators can result in 

accumulation of TG in the liver. The role of SREBP-1c in the pathogenesis of fatty liver 

has been explored in different animal models. SREBP-1c levels are elevated in fatty livers 

of obese, insulin resistant and hyperinsulinaemic ob/ob mice (Shimomura, Bashmakov et 

al. 1999; Shimomura, Matsuda et al. 2000). Conversely, expression of lipogenic enzymes 

and liver fatty acid infiltration are dramatically reduced by SREBP-1c suppression (Sekiya, 

Yahagi et al. 2003; Teran-Garcia, Adamson et al. 2007). On the other hand, studies using 

ChREBP-/- rodents have indicated that hepatic ChREBP is required for the normal lipogenic 

response to a carbohydrate load (Iizuka, Bruick et al. 2004). Dentin et al. (Dentin, Pegorier 

et al. 2004) demonstrated that glycolytic and lipogeneic gene expression is synergistically 

regulated by SREBP-1c and glucose acting through ChREBP and showed that decreased 

hepatic ChREBP gene expression resulted in reducing lipogenic gene expressions of FAS 

and ACC. It seems like liver de novo lipogenesis is a highly regulated metabolic pathway in 

which transcription factors such as liver X receptor (LXR), SREBP-1c, and ChREBP play 

an important role over the enzymes involved in de novo synthesis of fatty acids including 

ACC, FAS, and stearoyl-coenzyme A desaturase-1(SCD-1) (Strable and Ntambi 2010). In 

humans, it has been reported by Schwarz et al. (Schwarz, Linfoot et al. 2003) that the 

contribution of FFA synthesized from hepatic de novo lipogenesis in liver TG formation 

was 4 times higher in hyperinsulinemic patients with NAFLD compared to healthy 

subjects. Hyperinsulinemia and hyperglycemia, often found in a context of NAFLD, and 

their effect on SREBP-1c and ChREBP respectively, (Girard, Perdereau et al. 1994) are 

therefore likely to induce an abnormal increase in lipogenic activity and  
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Figure 4. SREBP-1c and ChREBP act in synergy to regulate lipogenic gene expression. The 

phosphorylation of glucose in glucose 6-phosphate, by hepatic glucokinase, is an essential step for glucose 

metabolism as well as for the induction of glycolytic and lipogenic genes. The recent identification of 

ChREBP has shed light on the possible mechanism whereby glucose affects gene transcription. The activity 

of ChREBP requires a mechanism of phosphorylation/dephosphorylation which is determined by the relative 

activity of protein phosphatase 2A (PP2A), regulated by X5P concentrations. SREBP-1c, which is induced by 

insulin, also plays an important role in mediating insulin signaling on lipogenic gene expression. These two 

transcription factors work synergistically to induce transcription of the lipogenic genes in the presence of 

glucose and insulin. Adapted from Dentin et al.  (Dentin, Girard et al. 2005). 
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contribute to the development of NAFLD. After converting fatty acids into TG, TG can 

then be stored as lipid droplets within hepatocytes or secreted into the blood as VLDL, but 

they can also be hydrolyzed and the fatty acids channeled towards the β-oxidation pathway 

(Postic and Girard 2008).  

1.1.2.3 Hepatic lipid oxidation  

Lipid oxidation is one of the lipid elimination pathways in the liver. Fatty acid 

oxidation is the main source of energy for skeletal muscle and the heart, while the liver 

oxidizes fatty acids mostly under the conditions of prolonged fasting, during illness and 

increased physical activity (Wei, Rector et al. 2008). Fatty acid oxidation in the liver takes 

place in three sub-cellular organelles: the β-oxidation occurs in mitochondria and 

peroxisomes, whereas ω(omega)-oxidation occurs in the smooth endoplasmic reticulum 

(Tessari, Coracina et al. 2009). It seems that peroxisome proliferator–activated receptor α 

(PPARα) plays a key role in these oxidation systems by transcriptionally controlling their 

important enzymes. Although mitochondria and peroxisomes have similar function (β-

oxidation), there is a difference between these two pathways for fatty acid oxidation. 

Peroxisomal β-oxidation is responsible for the metabolism of very LCFA while 

mitochondrial β-oxidation is responsible for the oxidation of short, medium, and long chain 

fatty acids (Nguyen, Leray et al. 2008). Short and medium chain fatty acids (12 carbon or 

less) freely enter the mitochondria and via intra-mitochondrial oxidation results in the 

formation of acetyl-CoA (Wei, Rector et al. 2008). LCFA (14 carbon or more) entry into 

the mitochondria is regulated by the activity of the enzyme carnitine palmitoyl transferase-1 

(CPT-1) (Kerner and Hoppel 2000). Therefore this enzyme is considered as a rate limiting 

step in the oxidation of fatty acids (Horowitz 2001). Once inside the mitochondria, the fatty 

acids proceed through a sequence of metabolic processes to synthesize adenosine 

triphosphate (ATP) for energy. Destruction in any of these processes could reduce fat 

oxidation resulting in liver lipid accumulation (Horowitz 2001). For instance, it has been 

shown that the activity of mitochondrial respiratory chain complex is decreased in the liver 
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of patients and animal models with NAFLD (Perez-Carreras, Del Hoyo et al. 2003; Garcia-

Ruiz, Rodriguez-Juan et al. 2006). Moreover, many enzymes are implicated in 

mitochondrial β-oxidation and deficiency of these enzymes can lead to the development of 

hepatic steatosis. For instance, mice with disrupted medium chain and very long chain acyl-

CoA dehydrogenase genes manifest defects in fatty acid oxidation that likely lead to the 

observered micro and macrovascular hepatic steatosis found in these mice (Wei, Rector et 

al. 2008). As we mentioned earlier, peroxisomal β-oxidation metabolizes very LCFA (> 

C20) (Musso, Gambino et al. 2009). Deficiency in peroxisomal β-oxidation enzymes has 

been recognized as an important cause of microvesicular steatosis and steatohepatitis (Fan, 

Pan et al. 1998). Long chain and very long chain fatty acids are also metabolized by the 

cytochrome P450 CYP4A ω-oxidation system to dicarboxylic acids that provide as 

substrates for peroxisomal β-oxidation (Reddy and Hashimoto 2001). Dicarboxylic acids 

are toxic for mitochondria, since they inhibit fatty acid oxidation system (Macdonald and 

Prins 2004). An effective peroxisomal β-oxidation system is needed to minimize the 

deleterious effects of dicarboxylic and other toxic fatty acids to prevent hepatic steatosis 

(Musso, Gambino et al. 2009).  

1.1.3 Hepatic VLDL-TG production 

This section on VLDL-TG production will be presented as a separate one in regards 

to its importance for the work presented in this thesis. Lipoproteins are particles that 

contribute to overall metabolic homeostasis by transporting hydrophobic lipids including 

TG and cholesterol ester (CE) (Dixon 1970) in the circulation to and from different tissues 

in the body (Mason 1998). Transport of TG throughout the body is crucial for the 

maintenance of whole body energy balance. A particular lipoprotein class termed VLDL is 

the primary vehicle synthesized by the liver for the transport of endogenous TG (Mason 

1998). In the body, two types of lipoproteins mainly transport TG to peripheral tissues such 

as muscle and adipocytes: CM and hepatic VLDL. CMs produced by enterocytes transport 
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the majority of TG from nutrition while VLDL synthesized and secreted by hepatocytes 

transport TG from the liver (Gibbons, Wiggins et al. 2004). 

For many years it has been thought that the major role of VLDL was the effective 

control of the plasma glucose concentration by transporting de novo fatty acids synthesized 

in liver toward adipose tissue for storage as TG  (Schwarz, Linfoot et al. 2003). This view 

has been challenged by the fact that, even under conditions in which hepatic de novo 

lipogenesis is high, the hepatic VLDL-TG is not derived from this source but from pre-

formed fatty acids entering the liver from adipose tissue (Gibbons 1990; Hellerstein, 

Schwarz et al. 1996). VLDL-TG is hydrolyzed by LPL to fatty acids which are stored in 

adipose tissue. Therefore, liver plays a very important protective role in efficiently 

modulating plasma FFA concentrations. Liver, as a valuable buffer, removes fatty acids 

from the circulation, temporarily stores them as a benign derivative (TG) and secretes them 

at a later time as VLDL when the period of maximum danger is passed (Gibbons, Wiggins 

et al. 2004). However, although fat may accumulate in liver substantially, the capacity of 

liver tissue for TG storage is limited (Berk and Stump 1999). It seems that higher liver lipid 

concentrations resulting from enhanced entrance of fatty acids, high rate of de novo 

lipogenesis, down-regulated fatty acid oxidation (or their combinatory effect) increases the 

secretion of VLDL-TG from the liver (McGarry, Mannaerts et al. 1977; Schwarz, Linfoot 

et al. 2003). The importance of hepatic TG for the assembly and secretion of VLDL is 

supported by in vivo observations that the secretion of VLDL increases with increasing 

hepatic concentrations of lipids (Adiels, Taskinen et al. 2006). 

1.1.3.1 Mechanism of hepatic VLDL-TG production 

The hepatic VLDL-TG production is a complex mechanism that involves several 

regulatory molecules and enzymes, which takes place in the membrane and lumen of 

endoplasmic reticulum (ER: the secretory apparatus) (Gibbons, Wiggins et al. 2004) (Fig. 

5). In the process of VLDL assembly, the newly formed cytosolic TG pool from 

extracellular fatty acids or de novo synthesized endogenous fatty acids, is not directly 
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Figure 5. Role of the cytosolic and microsomal pools of liver TG in the assembly of VLDL in ER. For 

explanation refer to text and see list of abbreviations for meaning of acronyms. Taken from Lavoie et al. 

(Lavoie and Gauthier 2006). 
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incorporated into the VLDLs. Extracellular fatty acids from the plasma come into the 

hepatocyte and are esterified by diacylglycerol acyltransferase-1 enzyme (DGAT-1, also 

called overt DGAT) producing TG which is stored in the cytosol (cytosolic TG pool). Most 

of the TG utilized for the assembly of VLDL in the ER of the hepatocyte, is mobilized by 

lipolysis of the cytosolic TG pool (through the lipolytic action of arylacetamide deacyclase 

(AADA) and TG hydrolase (TGH)). The products of lipolysis are re-esterified by 

diacylglycerol acyltransferase-2 enzyme (DGAT-2, also called latent DGAT) producing the 

microsomal TG pool in ER membrane (Fig. 5). Some of these microsomal TGs are recycled 

to the cytosol and some are channeled into a TG-rich VLDL precursor. The formation of 

this precursor is positively regulated by MTP and negatively regulated by insulin (Gibbons, 

Wiggins et al. 2004).  

A useful working model of VLDL assembly originates from the data of Alexander 

et al. in 1976  (Alexander, Hamilton et al. 1976). This model proposes that TG becomes 

associated with apolipoprotein B (apoB) in at least two distinct stages of the assembly 

process (Shelness and Sellers 2001). In the first stage, a small quantity of TG is transferred 

to apoB in the ER forming small apoB-containing VLDL precursors which is dependent 

upon MTP (Rustaeus, Stillemark et al. 1998). The second stage of VLDL formation, 

referred as the maturation phase, is characterized by the fusion of the apoB-containing 

VLDL precursor with a larger droplet of TG resulting in a ready for secretion mature 

VLDL (Rava, Ojakian et al. 2006). The details of this process remain unclear, but it seems 

that the formation of TG-rich particle and fusion of this molecule with the VLDL precursor 

is dependent on the activity of the ADP-ribosylation factor-1 protein (ARF-1) that activates 

phospholipase D (PLD) to form phosphatidic acid (Gordon 1997; Asp, Claesson et al. 

2000) (Fig. 6). It has been shown that inhibition of ARF-1 slows down the maturation 

phase of VLDL assembly without affecting the formation of the apoB-containing precursor 

(Rustaeus, Lindberg et al. 1995). VLDL particles are mostly composed of TG (60%), 

phospholipids (15%), cholesterol (15%) and proteins (10%) (Gordon, Wetterau et al. 1995). 

Secretion of hepatic VLDL is an effective way for eliminating hepatic TG, thus preventing  
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Figure 6. Targets for the regulation of the TG-rich particle precursor of VLDL. Phosphatidic acid 

formed by the ARF-1-mediated activation of phospholipase D (PLD) contributes TG either to the TG-rich 

VLDL precursor particle or to the mature VLDL. Taken from Gibbons et al. (Gibbons, Wiggins et al. 2004). 
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potential liver TG accumulation. Accordingly, any alteration in the regulation of this 

mechanism could contribute to the development of NAHS. 

1.1.3.2 Molecular mediators of hepatic VLDL-TG production 

1.1.3.2.1 Microsomal triglyceride transfer protein (MTP)   

MTP is a heterodimer protein complex primarily present in the lumen of the 

endoplasmic reticulum in hepatocytes and enterocytes. It consists of a unique large (97-

kDa) subunit and a smaller multifunctional subunit (58-kDa) which is identical to protein 

disulfide-isomerase (PDI) (White, Bennett et al. 1998; Mohler, Zhu et al. 2007). The large 

subunit possesses lipid transfer activity on the complex (Jamil, Dickson et al. 1995; 

Mohler, Zhu et al. 2007) and PDI mediates the folding of the large apoB protein during 

translation (van Greevenbroek, van Meer et al. 1996). The complex is responsible for the 

transport of neutral lipid (TG and CE) between the phospholipid surfaces of the ER 

(Gordon, Jamil et al. 1994; Benoist, Nicodeme et al. 1996). It is essential for the assembly 

of VLDLs by liver and CMs by small intestine (Gordon and Jamil 2000; Hussain, Shi et al. 

2003). Synthesis of TG and CE is beneficial in avoiding toxicities associated with excess 

FFA and free cholesterol (Hussain and Bakillah 2008). MTP is expressed primarily in 

tissues that synthesize apoB containing lipoproteins such as liver and small intestine 

(Shoulders, Brett et al. 1993; Nakamuta, Chang et al. 1996). Its expression in other tissues 

including myocardium, ovary, testis, kidney, and retina as well as mouse brown and white 

adipose tissue has also been reported (Shoulders, Brett et al. 1993; Nielsen, Perko et al. 

2002; Li, Presley et al. 2005; Swift, Kakkad et al. 2005). Since some of these tissues do not 

express apoB, MTP might be implicated in other aspects of lipid trafficking or storage 

(Mohler, Zhu et al. 2007).  

MTP lipid transfer activity is involved in importing TGs into the lumen of the ER. 

In addition to its lipid transfer activity, MTP physically interacts with apoB (Hussain, Iqbal 

et al. 2003). The absolute requirement for the role of MTP in VLDL-TG assembly is shown 

by the clinical condition of abetalipoproteinaemia, a recessive genetic disease in humans 
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characterized by a mutation of the MTP gene (Gregg and Wetterau 1994), and from 

experimental studies in liver-specific MTP knockout mice (Raabe, Veniant et al. 1999). 

The absence of MTP in abetalipoproteinemia patients results in concentrations of plasma 

apoB undetectable in these patients (Wetterau, Aggerbeck et al. 1992; Shoulders, Brett et 

al. 1993). Similarly, the deletion of the MTP gene in mice liver resulted in impaired 

secretion of VLDL (Raabe, Flynn et al. 1998; Raabe, Veniant et al. 1999). Moreover, a 

polymorphism of this gene in human has been associated with the development of NAFLD 

(Gambino, Cassader et al. 2007). 

1.1.3.2.2 Apolipoprotein B (ApoB) 

Circulating plasma TG is a mixture of lipoprotein which is derived either from 

intestine (CMs) or the liver (VLDL). Lipoproteins are characterized by different densities 

and apoprotein compositions. A critical element of VLDL is a large protein of apoB which 

seems to preserve the structural integrity of the lipoprotein by associating both with the 

outer hydrophilic shell and with the hydrophobic core (Dixon and Ginsberg 1993; Gruffat, 

Durand et al. 1996). ApoB can be found in two types: apoB100 and apoB48. The name of 

apoB48 comes from the fact that its molecular weight is approximately 48% of apoB100. In 

human, apoB100 is associated with VLDL and is synthesized exclusively in the liver, while 

apoB48 is synthesized exclusively by enterocytes (intestinal absorptive cells) and is 

associated with CMs (Krishnaiah, Walker et al. 1980; Chen, Habib et al. 1987; Yao and 

McLeod 1994). ApoB is synthesized in the ER of hepatocytes where it is combined with 

lipids stored in liver (predominantly with TG) to form VLDL particles as it passes through 

the secretory pathway and is secreted into plasma as a lipid-rich lipoprotein particle (Mason 

1998). It appears that lipids contained in VLDL cannot be secreted in the absence of apoB 

(Cartwright and Higgins 1996). When the availability of TG is not sufficient for the 

formation of VLDL, apoB is degraded and VLDL particle formation is reduced (Mason 

1998). A genetic defect in apoB100 has been shown to be associated with impaired VLDL-
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TG production resulting in the excess deposition of TG in the liver (Badaloo, Reid et al. 

2005; Schonfeld, Yue et al. 2008). 

1.1.3.2.3 Diacylglycerol acyltransferase (DGAT)-1 and-2 

DGAT is an endoplasmic reticulum membrane-associated enzyme that catalyzes the 

final step of TG synthesis by facilitating the linkage of 1, 2 diacylglycerol (DAG) to a long 

chain fatty acyl-CoA. There are two isoforms of the enzyme: the overt (visible) type (on the 

cytosolic side of ER membrane; DGAT-1) that catalyzes the synthesis of TG destined to 

cytoplasmic droplets, and latent (invisible) type (on the lumen side of ER membrane; 

DGAT-2) that catalyzes the TG synthesis for VLDL formation (Owen, Corstorphine et al. 

1997). DGAT-2 is expressed primarily in the liver, intestine, and white adipose tissue, 

whereas DGAT-1 is expressed in all tissues (Cases, Smith et al. 1998; Cases, Stone et al. 

2001). It has been shown that greater activities of both DGATs are implicated in the 

increased rate of hepatic TG secretion and intracellular accumulation of TG in ob/ob, 

suggesting causal importance of both DGATs for the steatosis and hypertriglyceridemia 

observed in the ob/ob genotype (Waterman and Zammit 2002).  

However, the precise role of each enzyme in hepatic TG synthesis and VLDL 

secretion is unclear. Since it appears that cytosolic droplet TG cannot be incorporated 

directly into VLDL formation, the relative activities of these two functions of DGAT may 

have a significant impact on the level of triglyceridemia as well as on the development of 

hepatic steatosis (Yamazaki, Sasaki et al. 2005). DGAT-1 lacking mice have normal liver 

and plasma TG levels but are resistant to HF diet induced obesity through a mechanism 

involving increased energy expenditure as well as enhanced sensitivity to insulin and leptin 

(Smith, Cases et al. 2000). In contrast, DGAT-2 deficient mice which die shortly after birth 

because of lipopenia (an abnormally small amount or a deficiency of lipids in the body) and 

severe skin abnormality have large reductions in carcass, liver, and plasma TG as well as 

plasma FFA and glucose (Stone, Myers et al. 2004). Recently, Liu et al. showed that 

inhibition of DGAT-2 in wild type mouse liver resulted in decreased VLDL secretion in a 
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dose dependent manner and reduced plasma TG, total cholesterol, and apoB (Liu, Millar et 

al. 2008). In this last study, inhibition of DGAT-2 in DGAT-1 knockout mice produced the 

same effect. This indicates that DGAT-2 is the isoform responsible for synthesizing TG 

targeted for secretion and that presence and absence of DGAT-1 does not affect the 

process.  

1.1.3.3 Regulation of hepatic VLDL-TG production 

The regulation of hepatic VLDL-TG production depends mainly on lipid 

availability, activity of molecular mediators, mostly key MTP enzyme, and insulin (Julius 

2003). The importance of the VLDL-TG production’s molecular mediators including MTP 

has been reviewed earlier. In the next section the two other important regulators, lipid 

availability and insulin, are discussed. 

1.1.3.3.1 Liver lipid availability  

For lipoprotein synthesis, four sources of fatty acids are used: de novo lipogenesis, 

cytoplasmic TG stores, fatty acids derived from lipoproteins taken up directly by the liver, 

and plasma FFA (Julius 2003). It appears that de novo lipogenesis plays a minor role in 

regulating VLDL synthesis. However, it is clearly elevated under conditions of high 

carbohydrate intake. On the other hand, plasma FFAs which seem to play an important role 

in hepatic TG storage (Diraison and Beylot 1998) also stimulate hepatic VLDL production. 

It has been shown that an increased delivery of fatty acids increases the secretion of VLDL-

TG from the liver tissue (Lewis, Uffelman et al. 1995; Lewis 1997). Moreover, the 

importance of liver fat content for the assembly and secretion of VLDL has been 

demonstrated by in vivo turnover studies (Adiels, Taskinen et al. 2006). Secretion of VLDL 

increases with increasing concentrations of liver lipids and cytoplasmic TG stores appear to 

fundamentally contribute to VLDL-TG (Adiels, Olofsson et al. 2006; Fabbrini, Mohammed 

et al. 2008) (Fig. 7). In fact, the relationship between oxidation and esterification of fatty 

acids in hepatocytes appears to be important in regulating the VLDL synthesis: an 

enhanced esterification is accompanied by increased VLDL  
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Figure 7. Relationship between liver fat and basal hepatic VLDL-TG secretion. Basal VLDL-TG 

secretion rate increases linearly with increasing amount of intra-hepatic fat content within the normal range of 

liver fatness. Taken from Magkos (Magkos 2009). 
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secretion (Julius 2003). In addition, it has been suggested that hepatic TG concentration 

may positively regulate hepatic MTP activity and gene expression (Taguchi, Omachi et al. 

2002).  

1.1.3.3.2 Insulin and hepatic VLDL-TG production 

Studies that investigated the acute effect of insulin on VLDL kinetics indicate a 

decreased secretion of VLDL-TG (Lewis, Uffelman et al. 1993). Insulin seems to stimulate 

the suppression of some factors that are responsible for the normal transfer of the newly 

mobilized TG pool into the TG-rich VLDL precursor (Wiggins and Gibbons 1992; 

Gibbons, Wiggins et al. 2004) (Fig. 5 and 6). In general, insulin decreases VLDL formation 

by two mechanisms: (A) indirectly by regulating the amount of fatty acids in the 

circulation, and (B) by direct suppression of the production of VLDL in the liver, 

independently of the availability of fatty acids (Malmstrom, Packard et al. 1998). Since the 

VLDL production is regulated by the availability of intra-hepatic substrates, insulin may 

indirectly interfere with the production of hepatic VLDL by its anti-lipolytic effect on 

adipose tissue (Coppack, Jensen et al. 1994). Acute hyperinsulinemia in humans suppressed 

plasma FFA, inhibiting VLDL-TG production (Lewis, Uffelman et al. 1993). On the other 

hand, several mechanisms have been proposed for the molecular mechanisms involved in 

the direct suppression of VLDL by insulin. For instance, it has been shown that insulin can 

directly reduce the MTP gene expression via negatively regulating promoter region of MTP 

(Lin, Gordon et al. 1995), thus decreasing the rate of synthesis and secretion of VLDL. It 

seems that insulin down-regulates MTP expression through activation of the mitogen 

activated protein kinase (MAPK) pathway (Allister, Borradaile et al. 2005). Insulin also 

suppresses hepatic VLDL secretion by directly interfering with the maturation phase of 

VLDL assembly by the activation of phosphoinositide 3-kinase (PI3-K) in rat hepatocytes 

(Sparks and Sparks 1994; Sparks, Phung et al. 1996; Phung, Roncone et al. 1997). In 

agreement with these observations, results reported by Brown and Gibbons using labeled 

method in cultured rat hepatocytes suggest that insulin signaling via PI3-K inhibited the 
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maturation phase of VLDL assembly by preventing bulk lipid transfer to a VLDL 

precursor, thus enhancing the degradation of apoB (Brown and Gibbons 2001). Moreover, 

Lin et al. showed that the mRNA levels and secretion rate of apoB were decreased by 31% 

and 43% respectively, when cultured hepatocytes were incubated with insulin (Lin, Gordon 

et al. 1995).  

1.1.3.4 Exercise and hepatic VLDL-TG production 

Regular exercise has broad beneficial effects on the lipoprotein profile (Kraus, 

Houmard et al. 2002). It is well known that exercise training results in lowering plasma TG 

concentration in obese/overweight (Kelley, Kelley et al. 2005) and also in healthy subjects 

(Kelley, Kelley et al. 2004; Kelley and Kelley 2006). Since hepatic VLDL-TG production 

is a component of plasma TG concentration, it is reasonable to think that hepatic VLDL 

production is reduced following exercise training, thus resulting in improved plasma TG. In 

animals, it has been shown that exercise training is associated with reduced rate of hepatic 

VLDL-TG secretion (Simonelli and Eaton 1978; Lira, Tavares et al. 2008). In support of 

these results, the effects of interval aerobic training on in vivo hepatic VLDL production in 

human has been recently reported (Tsekouras, Magkos et al. 2008). After two months of 

exercise training, a 35% decrease in VLDL-TG secretion rate in the exercise group 

compared to the non-exercise control group was observed. The effects of exercise training 

on decreased intra-abdominal adipose tissue and liver fat along with increased insulin 

sensitivity are probably the primary mechanisms whereby exercise training could bring 

about a decrease in hepatic VLDL secretion. Decreased intra-abdominal fat is expected to 

limit the delivery of FFA to the liver through the portal vein (Nielsen, Guo et al. 2004) thus 

in turn leading to lower VLDL-TG secretion (Bjorntorp 1990; Chan, Barrett et al. 2004). 

However, the reduction in VLDL-TG secretion after exercise training occurs even in the 

absence of changes in body weight and body composition (Tsekouras, Magkos et al. 2008). 

Furthermore, high levels of physical activity are inversely associated with liver fat 

accumulation (Perseghin, Lattuada et al. 2007; Spassiani and Kuk 2008; Zelber-Sagi, 
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Nitzan-Kaluski et al. 2008) the latter being directly associated with basal VLDL-TG 

secretion rate (Fabbrini, Mohammed et al. 2008). In this regard, it has been suggested that 

stimulated lipid oxidation and reduced lipid synthesis in liver by exercise via possible 

mechanisms such as activation of AMP-activated kinase pathway, might play a role in 

VLDL-TG production (Lavoie and Gauthier 2006). Nevertheless, the effects of exercise 

training on liver TG and VLDL-TG production require further investigation especially in 

light of their important role in metabolic deregulation. 

To our knowledge, little is known on the effects of exercise training on the intra-

hepatic regulation of VLDL production and enzymes involved such as MTP. In two recent 

studies in animals, a 60% reduction in hepatic MTP gene expression (Lira, Tavares et al. 

2008) and a 25% reduction in hepatic MTP protein content with exercise training have been 

reported (Chapados, Seelaender et al. 2009). Moreover, reduced VLDL-apoB100 secretion 

rate and total apoB100 after a single, prolonged bout of moderate-intensity endurance 

exercise has been reported (Magkos, Wright et al. 2006). The exact mechanisms underlying 

these observations are not clear, however, it is speculated a possible role of insulin 

sensitivity following exercise training. Since whole-body as well as liver insulin sensitivity 

is increased after either a single bout or chronic exercise training (Devlin, Hirshman et al. 

1987; Mikines, Sonne et al. 1988; Perseghin, Price et al. 1996; Magkos, Tsekouras et al. 

2008), it is possible that insulin-sensitization after exercise reduces plasma FFA availability 

(Magkos, Mohammed et al. 2009) and brings temporal decrease in MTP protein content in 

the liver (Kamagate and Dong 2008). Therefore, this would be consistent with reduced 

hepatic VLDL-TG secretion (Tsekouras, Magkos et al. 2008) and VLDL-apoB100 (Alam, 

Stolinski et al. 2004) observed 2-3 days after exercise training in human. However, the 

counteracting effect of increased post-exercise FFA availability should be considered in the 

hepatic VLDL-TG secretion process (Magkos, Mohammed et al. 2009).   It seems that most 

of the suppressing action of insulin on hepatic VLDL-TG secretion is mediated by the 

diminution in plasma FFA availability (Lewis, Uffelman et al. 1995). In this regard, it has 

been shown that greater fatty acid availability after exercise does not stimulate VLDL-TG 
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secretion; probably because of the increase in fatty acid oxidation and possibly also fatty 

acid use for restoration of tissue TG stores (Magkos, Wright et al. 2006). Considering the 

parameter of time after exercise, Magkos hypothesizes that exercise-induced 

hypotriacylglycerolemia could be mediated by a combination of increased VLDL-TG 

clearance early after exercise (< 24h) and reduced VLDL-TG secretion at later time points 

(2-3 days) (Magkos 2009).  

1.2 Implication of estrogen withdrawal in the development of 

hepatic steatosis 

1.2.1 Sources of estrogens 

Having major effects on the reproductive physiology, sex steroids such as estrogens, 

androgens, and progestogens are hormones produced primarily by the reproductive glands 

(Henderson 2009). Conventionally, estrogens (e.g. 17β-estradiol) and progestogens (e.g. 

progesterone) are classified as female sex hormones and androgens (e.g. testosterone) as 

male sex hormones. Estrogens play key roles in development, maturation and maintenance 

of female reproductive function (Ackerman and Carr 2002). Additionally, in both men and 

women they exert a wide range of biological actions in the cardiovascular, musculoskeletal, 

immune, and central nervous systems (Gustafsson 2003). Estrogens belong to a C18 steroid 

family primarily synthesized in ovary from cholesterol. The biosynthesis of estrogens is 

from C19 steroid precursors which is catalyzed by enzyme aromatase cytochrome P450 

(Simpson 2003). This enzyme is found in several human tissues and cells including ovarian 

cells, the placenta, adipose tissue, skin, bone, and the brain; and it locally catalyzes the 

conversion of C19 steroids to estrogens (Nelson and Bulun 2001). However, the type of 

estrogens produced at each tissue site is different: ovary produces 17β-estradiol (estradiol: 

E2), while adipose tissue and the placenta synthesize estrone (E1) and estriol (E3), 

respectively (Ackerman and Carr 2002). E2 is the predominant form in non-pregnant pre-

menopausal women, E1 is produced during menopause, and E3 is the primary estrogen of 
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pregnancy. It seems that the most potent estrogen produced in the body is E2 (Heldring, 

Pike et al. 2007). The ovaries are the principle source of estradiol in pre-menopausal 

women which functions as a circulating hormone to act on distal target tissues; while in 

post-menopausal women when the ovaries reduce the production of estrogen, estradiol is 

produced in a number of extra-gonadal sites such as the mesenchymal cells of adipose 

tissue including that of the breast, osteoblasts and chondrocytes of bone, the vascular 

endothelium and aortic smooth muscle cells, and numerous sites in the brain and acts 

locally at these sites as a paracrine or even intracrine factor (Simpson 2003). It appears that 

in post-menopausal women when the ovaries reduce the production of estrogen, the adrenal 

cortex is the principal source of C19 precursors which are aromatized to estrogens by 

adipose tissue (Grodin, Siiteri et al. 1973).  

1.2.2 Mechanisms of estrogen actions 

About half a century ago, Jensen and Jacobsen suggested that the biological effects of 

estrogens are mediated by a protein receptor (Jensen 1962). It is now accepted that the 

cellular signaling of estrogen is mediated through two estrogen receptors (ERs): the original 

ERα and the recently discovered ERβ (Hewitt and Korach 2002). The ERs are members of 

a steroid/thyroid hormone super-family of nuclear receptors which share a common 

structural and functional organization with distinct domains that are responsible for ligand 

binding, DNA binding, and transcriptional activation (Nilsson, Makela et al. 2001). They 

are composed of three independent but interacting functional domains: the A/B domain (the 

amino-terminal region or NH2-terminal), the C domain (the DNA-binding region), and the 

D/E/F domain (the ligand binding region) (Nilsson, Makela et al. 2001). The N-terminal 

domain of ERs encodes a ligand-independent activation function (AF-1) which is involved 

in protein-protein interactions and transcriptional activation of target-gene expression while 

AF-2 is hormone-dependent and located in the ligand binding domain (Tora, White et al. 

1989; Berry, Metzger et al. 1990; Onate, Boonyaratanakornkit et al. 1998). AF-1 domain is 

very active in ERα while it is yet unclear how AF-1 of ERβ contributes to the 
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transcriptional activity of the receptor and its activity in ERβ is negligible (Cowley and 

Parker 1999; Hall, Couse et al. 2001). Activation of ERs, such as binding a ligand to ER, 

triggers conformational alterations in the receptor leading (via different signaling pathways) 

to stimulation and/or suppression of the transcription of genes with important physiological 

functions (Ciocca and Roig 1995; Matthews and Gustafsson 2003). The multifaceted 

mechanisms of E2 and ER signaling are presented in Fig. 8 (Hall, Couse et al. 2001). The 

classical mechanism of estrogen’s genomic action involves estrogen binding specifically to 

its receptors that causes an allosteric change in the structure of receptor which converts the 

receptor to an active form. In this active conformation the receptors have the ability to bind 

to specific regulatory elements (EREs) of genes to activate or suppress their function 

(Ackerman and Carr 2002) (classical ligand-dependent signaling) (Fig. 8). However, ERs 

can regulate the expression of other estrogen-responsive genes without directly binding to 

DNA through ERE-independent pathway (Bjornstrom and Sjoberg 2005) (ERE-

independent signaling) (Fig. 8). One example of ERE-independent genomic action of 

estrogen is the inhibition of cytokine interleukin-6 (IL-6) expression through the interaction 

between ERα and nuclear factor-kappa B (NF-κB). This occurs through protein-protein 

interaction and prevents NF-κB from binding to and stimulating expression from the IL-6 

promoter (Galien and Garcia 1997). Moreover, both ERs can interact with the fos/jun 

transcription factor complex on the activator protein 1 (AP1) sites and stimulate gene 

expression (Webb, Nguyen et al. 1999). In addition to estrogen-mediated activation (ligand 

binding), other signaling pathways can modulate ER in the absence of estrogen through 

phosphorylation (ligand-independent activation of ERs) (Fig. 8). For instance, extra-cellular 

signals such as polypeptide growth factors like epidermal growth factor (EGF) and insulin-

like growth factor-1 (IGF-1) as well as the intracellular effector cAMP are able to activate 

ER and increase the expression of ER target genes (Smith 1998). Growth factor activation 

of ER requires the N-terminal AF-1 domain of the receptor; while, the effects of elevated 

intracellular cAMP are mediated through AF-2 (El-Tanani and Green 1997). Finally,  
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Figure 8. The multifaceted mechanisms of E2 and ER signaling. The biological effects of E2 are mediated 

through at least four ER pathways. 1,  Classical ligand-dependent, E2-ER complexes bind to EREs in target 

promoters leading to an up- or down-regulation of gene transcription and subsequent tissue responses. 2, 

Ligand-independent. Growth factors (GF) or cyclic adenosine monophosphate (cAMP) (not shown) activate 

intracellular kinase pathways, leading to phosphorylation (P) and activation of ER at ERE-containing 

promoters in a ligand-independent manner. 3, ERE-independent, E2-ER complexes alter transcription of 

genes containing alternative response elements such as AP-1 through association with other DNA-bound 

transcription factors (Fos/Jun), which tether the activated ER to DNA, resulting in an up-regulation of gene 

expression. 4, Cell-surface (nongenomic) signaling, E2 activates a putative membrane associated binding site, 

possibly a form of ER linked to intracellular signal transduction pathways that generate rapid tissue responses. 

Taken from Hall et al. (Hall, Couse et al. 2001). 
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evidence is accumulating that estrogen action in vivo is complex and often involves 

activation of cytoplasmic signaling cascades in addition to genomic actions mediated 

directly through ERα and β (Segars and Driggers 2002) (nongenomic signaling) (Fig. 8). 

E2 has been shown to exert rapid nongenomic biological effects through membrane bound 

subpopulations of ER (Kelly and Levin 2001; Evinger and Levin 2005; Revankar, Cimino 

et al. 2005). Nongenomic estrogen actions are frequently associated with the activation of 

various protein kinase cascades including ER and membrane-coupled tyrosine kinase 

pathways such as MAPK signaling pathway in a variety of cell types (Hall, Couse et al. 

2001). For example, there is increasing evidence that some of the vascular protective 

effects of E2 through ERα are mediated by a nongenomic mechanism involving a biphasic 

activation of endothelial nitric oxide synthase by estrogen through the MAPK (Chen, 

Yuhanna et al. 1999) and phosphatidylinositol 3-kinase/Akt pathways (Mendelsohn 2000; 

Simoncini, Hafezi-Moghadam et al. 2000). 

Although our understanding has changed largely during the past decade, it is 

anticipated that additional mechanisms of E2 and ER signaling and tissue response will be 

revealed providing a more clear understanding of the spectrum of estrogen action (Hall, 

Couse et al. 2001). Moreover, it is now well known that the effects of estrogens are not 

limited to the female reproductive system and almost all tissues are under estrogenic 

influence (Ciocca and Roig 1995; Matthews and Gustafsson 2003). The metabolically 

active tissues such as liver appear to be particularly sensible to the estrogenic effects 

concerning different functions including liver lipid metabolism. In this regard, the 

continued use of in vitro and animal models will certainly facilitate the development of 

novel potential interventions or pharmaceuticals for the treatment of estrogen-associated 

pathologies (Hall, Couse et al. 2001).  

1.2.3 Estrogen deficiency and hepatic steatosis 

Loss of ovarian function due to menopause results in decreased circulating estrogen 

levels consequently leading to deleterious metabolic disturbances. Ovariectomy and 
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menopause have been shown to increase body weight and adipose tissue in animals and 

humans (Pallier, Aubert et al. 1980; Tonkelaar, Seidell et al. 1989). More specifically, 

menopausal status in women concurs with a shift in body fat from the gluteal to the 

abdominal region (Carr 2003). Although whether age or menopause per se influences fat 

distribution remains controversial, results form a very recent 30-month longitudinal study 

indicated that menopause has an independent effect on an increase in fat mass and an 

increase in central obesity linking lack of estrogen to central obesity (Ho, Wu et al. 2010). 

This phenomenon can be explained by different mechanisms of estrogenic actions 

indicating a lower LPL activity, an increased lipolytic responsiveness, and a change in the 

sensitivity of femoral and abdominal adipocytes resulting in an increased abdominal fat 

deposits during transitional and post-menopausal stages (Lindberg, Crona et al. 1990; Price, 

O'Brien et al. 1998; Ferrara, Lynch et al. 2002; Misso, Jang et al. 2005). Considering the 

causes of metabolic disturbances after menopause, it has been known for a long time that 

estrogens act centrally to decrease food consumption and increase ambulatory activity 

(Wade, Gray et al. 1985). Estrogens have an indirect role in the regulation of appetite and 

body fat by acting through other tissues that regulate appetite, energy expenditure or 

metabolism (Mastorakos, Valsamakis et al. 2010). ERs are extensively distributed in 

hypothalamus, the primary site in brain which regulates energy balance, and the effects of 

estrogens on both energy intake and expenditure are well recognized (Cooke and Naaz 

2004). Therefore, withdrawal of estrogenic action can contribute to the development of 

obesity (particularly central obesity) by affecting two main components of energy balance 

(food intake and energy expenditure), thus playing an important role in the pathology of 

obesity and metabolic syndrome.   

In association with the above mentioned consequences, NAHS is twice as common 

in post-menopausal compared to pre-menopausal women (Hagymasi, Reismann et al. 

2009). Menopause as a natural state of estrogen deficiency has been shown to increase the 

risk of hepatic steatosis. In a Korean study, it was determined that the menopausal status 

contributes as a potential risk factor in the incidence of NAFLD in women (Park, Jeon et al. 
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2006). In a recent study that included 808 women aged 40–59 years, it was confirmed that 

the menopausal status is indeed associated with a state of hepatic steatosis (Volzke, 

Schwarz et al. 2007). This shows that endogenous estrogens might play a protective role 

against the development of hepatic steatosis. Therefore, one of the tissues particularly 

affected by fat accumulation in post-menopausal women (Clark 2006; Volzke, Schwarz et 

al. 2007) as well as in estrogen deficient animals (Deshaies, Dagnault et al. 1997; Picard, 

Deshaies et al. 2000; Paquette, Shinoda et al. 2007; Pighon, Paquette et al. 2009) is liver. It 

is clear that lack of central effects of estrogens are indirectly involved in liver fat 

accumulation via increased fatty acid flow into the liver (arising from higher intra-

abdominal fat depositions resulting most likely from increased food intake and decreased 

energy expenditure). However, there are different observations that indicate estrogen 

withdrawal induced liver fat accumulation is not solely associated with the reduced central 

actions of estrogens (Roy and Wade 1977; Wade and Gray 1979). For instance, it has been 

reported that despite similar food intake, estrogen-deficient-pair-fed animals gained 

markedly more weight than did Sham animals and nearly as much as estrogen-deficient-ad 

libitum animals (Fisher, Kohrt et al. 2000). Here, intra-hepatic pathways leading to liver 

lipid accumulation in estrogen deficient states will be shortly reviewed. 

Laboratory animal studies provide quite convincing evidence that estrogen 

deficiency can affect lipid metabolism in the liver. Mouse models of estrogen deficiency 

such as aromatase knockout (ArKO) mice which cannot synthesize endogenous E2 have 

been shown to present with age-progressive obesity and hepatic steatosis (Hewitt, Boon et 

al. 2003), the latter resulting from elevated hepatic TG that was reversed by E2 replacement 

(Hewitt, Pratis et al. 2004). In these studies, authors reported that the presence of hepatic 

steatosis was due in part to an increase in expression of enzymes involved in de novo 

lipogenesis (indicated by significant up-regulation of FAS, and ACC) and transporters 

involved in LCFA uptake (indicated by increased levels of adipocyte differentiated 

regulatory protein: ADRP, a fatty acid transporter) in the state of estrogen deficiency 

(Hewitt, Pratis et al. 2004). In another study on ArKO mouse model by Toda et al., the 
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presence of hepatic steatosis due to disruption in β-oxidation has also been reported (Toda, 

Takeda et al. 2001). E2 treatment reversed these disturbances in this mouse model of 

estrogen deficiency (Nemoto, Toda et al. 2000).  

Another model to study the decline in estrogen levels in post-menopausal women is 

the Ovx rat model which is considered as an experimental model of post-menopausal. Ovx 

model may also induce the characteristic features of the metabolic syndrome occurring in 

menopause. Mukherjea et al. in 1975 demonstrated that ovariectomy in rats increased the 

percentage of total lipids in the liver (Mukherjea and Biswas 1975). Although this 

observation was confirmed by more recent studies in an attempt to prevent obesity and 

abnormalities of lipid metabolism induced by ovariectomy in a rat model (Deshaies, 

Dagnault et al. 1997; Picard, Deshaies et al. 2000), until recently there was no study to 

investigate the mechanisms of the contribution of estrogen withdrawal in liver lipid 

infiltration. Recent data show that the ovarian hormonal status has important ectopic effects 

at the molecular level in the liver rather than only central effects of food consumption and 

energy expenditure (D'Eon, Souza et al. 2005). There has been some progress concerning 

estrogen deficiency and liver lipid metabolism that needs to be extended. It has been shown 

that estrogen withdrawal in animals is implicated in pathogenic pathways of hepatic 

steatosis such as stimulation of lipogenic pathway and inhibition of lipid oxidation process 

in the liver. Using pair-feeding model, D’Eon and colleagues studied the expression of 

genes involved in hepatic lipogenesis in the Ovx-control and OvxE2 replacement mice 

(D'Eon, Souza et al. 2005). They reported that E2 in Ovx mice inhibited fat storage in liver 

by demonstrating the observations that E2 supplementation decreased hepatic expression of 

the lipogenic gene SREBP-1c (80%), and its downstream target genes ACC-1 (40%) and 

FAS (60%) compared to Ovx-control rats. These results were confirmed by Paquette et al. 

who showed increased hepatic expression and protein levels of lipogenic factor, SREBP-1c 

in Ovx rats that was corrected with E2 replacement (Paquette, Wang et al. 2008). 

Moreover, a recent study has shown that pair-feeding Ovx mice presented Ovx-induced 

liver hepatic steatosis that was accompanied by increased hepatic PPAR-γ gene expression 
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(known to stimulate a program of lipogenesis) and downstream lipogenic gene expression 

(FAS and ACC) (Rogers, Perfield et al. 2009). Similar results have been reported in a study 

by Na et al. in HF fed Ovx rats (Na, Ezaki et al. 2008). However, it has to be mentioned 

that Rogers et al. (2009) recently concluded that Ovx-induced hepatic steatosis might be 

associated with decreased energy expenditure, without altering energy intake linking the 

causal central effects of estrogens withdrawal. Alternatively, findings of Toda et al. (2001) 

on ArKO mice indicated a pivotal role of estrogens in supporting constitutive hepatic 

expression of genes involved in fatty acid β-oxidation and in maintaining lipid homeostasis. 

In Ovx rats, Paquette et al. reported that the rate of fatty acid oxidation was diminished by 

34% in liver slices (Paquette, Chapados et al. 2009). Moreover, reduced hepatic gene 

expressions implicated in lipid oxidation including HSL and PPAR-α (key transcriptional 

regulator of fatty acid oxidation) were also reported in Ovx animals (Na, Ezaki et al. 2008; 

Paquette, Wang et al. 2008). In almost all of these studies, it has been shown that 17β-

estradiol replacement prevented the accumulation of lipids in the liver of Ovx animals and 

properly regulated the gene expression of the lipogenic and oxidative pathways in liver. 

These results have been confirmed in a recent study from our lab in which it was reported 

that disturbed liver gene expressions of important lipogenic and lipid oxidative molecules 

(increased SREBP-1c, ChREBP, SCD-1, ACC and decreased PPAR-α) were corrected with 

E2 supplementation in Ovx animals (Pighon, Gutkowska et al. 2010). These molecular 

results, therefore, suggest that estrogens do act on peripheral tissues such as liver 

contributing to disturbances in liver fat metabolism. If lipid oxidation and lipogenesis are 

contributing factors, the contribution of VLDL-TG production and secretion pathways as 

possible mechanisms involved in the development of hepatic steatosis in an estrogen 

deficient state is not well established. 

1.2.4 Estrogen withdrawal and hepatic VLDL-TG production 

Picard et al. reported that Ovx in female Sprague-Dawley rats resulted in a two-fold 

increase in liver TG and administration of E2 prevented this effect (Picard, Deshaies et al. 
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2000). On the other hand, treatment of Ovx rats with E2 increased plasma TG significantly 

over those of control animals (Picard, Deshaies et al. 2000). This elevation in plasma TG 

levels by estrogen supplementation could be due to a direct estrogenic action on the 

production and secretion of VLDL-TG by liver. Estrogens are known to elevate serum TG 

levels in both rats (Russell, Amy et al. 1993; DiPippo, Lindsay et al. 1995) and humans 

(Matthews, Meilahn et al. 1989; Love, Newcomb et al. 1990; Love, Wiebe et al. 1991; 

Walsh, Schiff et al. 1991; Barrett-Connor 1993) and this has been suggested to be due to 

increased hepatic VLDL production by estrogens (Krauss and Burkman 1992). For 

instance, Walsh et al. reported oral E2 replacement therapy in post-menopausal women 

increased the mean concentration of VLDL-apoB by 30% by increasing its production rate 

by 82% thus leading to conclusion that the increase in serum TG levels results from 

increased production of triglyceride-rich VLDL (Walsh, Schiff et al. 1991). In this latter 

study the metabolism of VLDL was measured by endogenously labeling its protein 

component, apoB. However, very few studies have evaluated the physiological effects of 

Ovx-induced hepatic steatosis on intra-hepatic regulators of VLDL-TG production 

mechanism. In a study by Lemieux et al. conducted on female Sprague-Dawley rats treated 

by acolbifene (ACOL: having estrogen-like actions on energy and lipid metabolism in 

rodents), it was found that VLDL-TG secretion was decreased and in turn was associated 

with MTP mRNA levels (Lemieux, Gelinas et al. 2005). Therefore, hepatic VLDL-TG 

production associated with estrogen removal is beginning to be elucidated. 

1.2.5 Exercise training and estrogen withdrawal-induced hepatic steatosis  

Interestingly, interventions that reduce hepatic fat content are often accompanied 

with important improvements in metabolic functions including insulin sensitivity (Petersen, 

Dufour et al. 2005). On the other hand, it is generally accepted that increasing physical 

activity improves features of the metabolic syndrome even in the absence of weight loss 

(Ross, Janssen et al. 2004; Nassis, Papantakou et al. 2005). Therefore, it is appropriate to 

investigate the preventive effects of exercise training in estrogen-deficient state which is 
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characterized with increased hepatic lipid accumulation. However, the precise information 

on the role of exercise training as a preventive and/or a treatment factor on estrogen 

withdrawal-induced liver lipid infiltration is scarce. The primary goal of our research group 

is the investigation of the effects of exercise training on hepatic steatosis in animal models. 

In 2003, our group has reported that exercise training if pursued at the same time of a HF 

diet, completely prevents the HF diet-induced hepatic steatosis (Gauthier, Couturier et al. 

2003). Moreover, working on an Ovx rat model, some works from our lab indicated that 

exercise training in the form of resistance program could be an asset in preventing 

ovariectomy-induced liver fat infiltration (Corriveau, Paquette et al. 2008; Pighon, Paquette 

et al. 2009; Pighon, Paquette et al. 2009). More recently, in an attempt to determine 

whether a training state protects against the metabolically deleterious effects of Ovx on 

liver and adipocyte fat accumulation in rats, we demonstrated that training conducted 

concurrently with estrogen withdrawal has protective effects, particularly on liver fat 

accumulation (Pighon, Barsalani et al. 2010). No protective effect of a previous exercise 

training state on Ovx-induced liver and adipocyte fat accumulation was observed in this 

study. Although all of these studies were not aimed at investigating underlying 

mechanisms, the authors speculated that mechanisms such as increased energy expenditure 

and activated metabolic pathways in liver by exercise training might be involved. 

Moreover, as previously mentioned it has been shown by our group and others that estrogen 

withdrawal in Ovx animals is involved in the stimulation of lipogenic pathway and 

inhibition of lipid oxidation process in the liver. In this regard, Pighon et al. very recently 

reported that endurance exercise training reduces fat accumulation in liver of Ovx rats 

possibly via regulation of key molecules involved in lipogenesis and lipid oxidation 

(Pighon , Gutkowska et al. 2010). They suggested that exercise training acts like estrogens 

and prevents lipid accumulation in the liver of Ovx rats possibly through proper regulation 

of key intra-hepatic molecules implicated in lipogenesis and lipid oxidation; and/or through 

its secondary effects on lowering adipocytes fat gain. It has been suggested that estrogen 
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receptor gene expression may mediate some of the adaptive effects of endurance training in 

liver of Ovx rats (Paquette, Wang et al. 2007). 

On the other hand, to our knowledge, there is no information on the effects of 

exercise training on intra-hepatic regulation of VLDL synthesis and/or secretion and 

molecules involved in Ovx animals. A recent experimental study showed that exercise 

training in HF fed rats resulted in a reduction in plasma TG concentrations and lower 

hepatic MTP protein content suggesting an effect of exercise training on decreasing TG 

synthesis and exportation from the liver in the form of VLDL  (Chapados, Seelaender et al. 

2009). 

1.3 Oxytocin-Atrial natriuretic peptide (OT-ANP) system 

1.3.1 Oxytocin 

Oxytocin (OT) is a neurohypophysial nonapeptide hormone mainly synthesized in 

the hypothalamus that belongs to the pituitary hormone family (Gimpl and Fahrenholz 

2001; Elabd, Basillais et al. 2008). OT is also synthesized in many other peripheral tissues 

such as uterus, placenta and testis. It is released from the posterior pituitary gland into the 

circulation in response to a variety of stimuli such as lactation, parturition, or certain kinds 

of stress and regulates the function of peripheral target organs (Gimpl and Fahrenholz 

2001). OT performs its actions by binding to the OT receptor (OTR), a G-protien coupled 

receptor (Barberis, Mouillac et al. 1998). Traditionally, OT had been known as a female 

reproductive hormone essential for reproduction through its action on uterine contraction at 

parturition and milk ejection (Gimpl and Fahrenholz 2001). However, new emerging data 

during the last two decades reveal the implication of OT in other important functions such 

as social behavior (e.g. sexual behavior, maternal behavior and relationship), food intake 

and cardiovascular functions (Gutkowska, Jankowski et al. 1997; Jankowski, Hajjar et al. 

1998; Gimpl and Fahrenholz 2001; Lim and Young 2006). Nishimori et al. have 

demonstrated that OT knockout (OT-/-) and OTR knockout (OTR-/-) mice have no obvious 
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deficits in fertility or reproduction including parturition (Nishimori, Young et al. 1996; 

Nishimori, Takayanagi et al. 2008). Moreover, it has been reported in a recent study that 

OT plays a role in regulation of energy homeostasis because OTR-/- male mice exhibited 

late-onset obesity with increases in abdominal fat pads and fasting plasma TG (Takayanagi, 

Kasahara et al. 2008). Although it was not confirmed in this study, OT has also been shown 

to be implicated in regulation of food intake (inhibitory effect) in rats (Arletti, Benelli et al. 

1989; Olson, Drutarosky et al. 1991). OT has also been identified as a major regulator of 

cardiovascular functions (McCann, Antunes-Rodrigues et al. 2002; Antunes-Rodrigues, de 

Castro et al. 2004). Recently it was shown that the heart and large vessels like aorta and 

vena cava are the sites of OT synthesis (Gutkowska, Jankowski et al. 2000; Jankowski, 

Wang et al. 2000; Gimpl and Fahrenholz 2001). In fact, it appears that OT plays a role in 

the embryonic development of cardiomyocytes in newborn rats (Jankowski, Danalache et 

al. 2004). Moreover, it has long been known that acute and chronic OT treatments induce 

natriuresis and causes a fall in mean arterial pressure (Gutkowska, Jankowski et al. 2000). 

Until the discovery of the natriuretic family, the mechanism of these functions was not 

clear. In heart and vascular beds, OTRs mediate the action of OT to release ANP, a potent 

natriuretic and vosorelaxant hormone, into plasma which slows the heart and reduces its 

force of contraction, decreases blood volume and regulates local vascular tone (Favaretto, 

Ballejo et al. 1997; Gutkowska, Jankowski et al. 1997; Gutkowska, Jankowski et al. 2000). 

There is accumulating evidence that physiological functions of OT are mediated by ANP 

(Gutkowska, Jankowski et al. 1997; Gutkowska and Jankowski 2008). 

1.3.2 ANP: synthesis and secretion 

In addition to being a very efficient pump, heart is also an important endocrine 

organ that produces and secretes a family of related peptide hormones called the natriuretic 

peptides (NPs) (Howarth, Al-Shamsi et al. 2006). There are three types of NPs: atrial, brain 

(B-type), and C-type NPs (ANP, BNP, and CNP; respectively). Their principal roles are 

mediating natriuretic, diuretic, vasorelaxant, and antimitogenic responses which results in 
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lowering blood pressure and maintaining fluid volume homeostasis thus regulating 

cardiovascular, renal, and endocrine homeostasis (de Bold, Borenstein et al. 1981; de Bold 

1985; Brenner, Ballermann et al. 1990; Kojima, Minamino et al. 1990). All three types of 

NPs have highly homologous structure although, they have distinct sites of synthesis, bind 

to specific cell surface receptors, and probably exert distinct biological functions (Brenner, 

Ballermann et al. 1990; Koller, de Sauvage et al. 1992; Venugopal 2001). The biological 

actions of NPs are mediated through the interaction with specific cell surface NP receptors 

(NPRs) in different target tissues (Fig. 9) (Pandey 2005). Three types of NPRs have been 

characterized, natriuretic peptide receptor-A, -B, and -C, (NPRA, NPRB, and NPRC). Both 

NPRA and NPRB contain guanylyl cyclase (GC) catalytic domain, therefore they also 

named as GC-A and GC-B, respectively (Garbers 1992; Koller, de Sauvage et al. 1992). 

ANP (with a high affinity) and BNP (with a lower affinity) preferentially bind to GC-A 

receptor (Tremblay, Desjardins et al. 2002; Kuhn 2003). GC-A is found not only in many 

known target organs for NPs such as kidney and blood vessels but also in metabolic organs 

including adipose tissue (Okamura, Kelly et al. 1988; Sarzani, Paci et al. 1993; Sarzani, 

Dessi-Fulgheri et al. 1996). GC-B is abundant in the brain and organs of the genito-urinary 

tract and is more specific for the physiological ligand of CNP (Dessi-Fulgheri, Sarzani et al. 

2003). NPRC that lacks the intracellular domain of GC has a role as a clearance/buffering 

receptor that binds and incorporates NPs into cytoplasm and inactivates them, regulating 

circulating plasma NP levels (Dessi-Fulgheri, Sarzani et al. 2003) (Fig. 9). 

It seems that these NPs are increased in response to hemodynamic overload such as 

congestive heart failure. However, ANP appears to be the predominant NP under normal 

hemodynamic conditions having some important metabolic effects such as lipolytic action 

in human fat cells (Moro, Galitzky et al. 2004; Pandey 2005).  ANP is the most studied and 

the first described member in NPs hormone family which was given a number of different 

names such as atrial natriuretic factor (ANF), cardionatrin, cardiodilatin, and atriopeptine 

(Potter, Abbey-Hosch et al. 2006). ANP is predominantly synthesized in the atrial  
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Figure 9. A schematic representation of the natriuretic peptides to specifically activate the natriuretic 

peptide receptors; NPRA, NPRB, and NPRC, is indicated. The solid lines connect the receptors with their 

preferred ligand. The extracellular ligand-binding domains, transmembrane regions, and intracellular regions 

containing protein kinase-like domains (KHDs) and guanylyl cyclase (GC) catalytic domains of NPRA and 

NPRB are indicated. The NPRA and NPRB are shown to generate the second messenger cGMP. Similarly, 

ligand-binding domain, transmembrane region, and short cytoplasmic tail of NPRC are indicated. NPRA, 

natriuretic peptide receptor-A; NPRB, natriuretic peptide receptor-B; and NPRC, natriuretic peptide receptor-

C. Taken from Pandey (Pandey 2005). 
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myocytes of the heart. However, the ventricle and a variety of extra-cardiac tissues also 

produce ANP but at a much less lower level than the atrium (Pandey 2005). The 

mechanism for control of ANP release by OT from the heart is not well understood. 

However, Gutkowska et al. have proposed a mechanism in which blood volume expansion 

by baroreceptor input to the brain stem, evokes the release of OT from the neurohypophysis 

in the blood that reaches to the heart and acts on OTRs to cause release of ANP (Fig. 10) 

(Gutkowska, Jankowski et al. 1997). It has been shown that intravenous injection of OT in 

rats induced a dose-related increase in plasma ANP levels (Haanwinckel, Elias et al. 1995). 

Conversely, administration of OT antagonist (OTA) inhibits ANP release (Favaretto, 

Ballejo et al. 1997; Gutkowska, Jankowski et al. 1997; Pournajafi-Nazarloo, Perry et al. 

2007; Gutkowska and Jankowski 2008) (Fig. 11). In addition, unpublished data from the 

Gutkowska’s lab (Jankowski et al. 2010) indicates that OTA administration decreased 

plasma ANP concentrations by about 60% in Ovx spontaneously hypertensive rats. Taken 

together, these results suggest the presence of an intra-cardiac oxytocinergic system that 

controls basal ANP release (Pournajafi-Nazarloo, Perry et al. 2007).  

1.3.3 GC-A/NPRA: signal transduction 

GC-A (NPRA) is the dominant form of the NPRs found in peripheral organs and mediates 

most of the known actions of ANP and BNP (Pandey 2005). GC-A is a 135 KDa trans-

membrane protein detected in high levels in rodent heart, lung, kidney, adrenal, testis, and 

liver tissues (Goy, Oliver et al. 2001; Muller, Mukhopadhyay et al. 2004; Gutkowska, 

Paquette et al. 2007). ANP exerts its biological effects by binding to GC-A and leads to the 

synthesis and accumulation of intracellular second messenger, cGMP (Drewett and Garbers 

1994; Lucas, Pitari et al. 2000; Chujo, Ueki et al. 2008). The production of cGMP results 

from ANP binding to the extracellular domain of GC-A which allosterically regulates 

increased specific activity of the GC-coupled receptors (Drewett and Garbers 1994; 

Garbers and Lowe 1994). In turn, the intracellular cGMP stimulates some cellular and  
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Figure 10. Schematic diagram of proposed mechanism of OT induced ANP release in the right atrium. 

Blood volume expansion by baroreceptor input to the brain stem evokes the release of OT from the 

neurohypophysis that circulates to the heart and acts on OTrs to cause release of ANP. OTr stimulation results 

in the elevation of intracellular [Ca++] which in turn stimulates cellular exocytosis and also stimulates ANP 

secretion by the heart. ANP then acts by its receptors in the right atrium to activate Gc. The released cGMP 

decreases the rate of cardiac contraction by an action on the sinoatrial node and, at the same time, decreases 

the force of contraction of the cardiac myocytes. As the ANP reaches the right ventricle, it may possibly 

reduce the force of ventricular contraction. Because there are OTr in the ventricle, these may cause local 

release of ANP which further decreases force of contraction. ANP has a vasodilatory action mediated by 

cGMP. In combination with the direct actions of ANP in the heart, a rapid reduction in circulating blood 

volume ensues, which may explain the fact that rapid volume expansion during 1 min in the rat is only 

accompanied by a transient release of ANP. The rapid reduction in the blood volume via ANP would remove 

the stimulus by the baroreceptors for stopping further secretion of OT and in turn ANP.   

Amyocyte, atrial myoctye; SANc, sinoatrial node cell; OT, oxytocin; OTr, oxytocin receptor; ANPg, ANP 

secretory granule; ANPr, ANP receptor; Gc, guanylyl cyclase; C, cardiac contraction; R, heart rate;   increase;   

     decrease. Taken from Gutkowska et al.  (Gutkowska, Jankowski et al. 1997). 
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Figure 11. Changes over time from initial release of ANP from perfused heart with buffer alone or with 

oxytocin (10-6 mol/liter) in the presence or absence of OTA, compound V1 (10-7 and 10-6 mol/liter). Data 

are the mean ± SEM of five to nine experiments each. Insert represents values obtained from the mean ± SEM 

of total ANP released by each of the various treatments over 25 min perfusion period. *, P<0.001 versus 

control; **, P<0.002 versus OT (10-6 M). Taken from Gutkowska et al. (Gutkowska, Jankowski et al. 1997). 
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physiological responses by interacting with cGMP-dependent protein kinases (PKG), 

cGMP-gated ion channels (CGN), and cGMP-regulated cyclic nucleotide 

phosphodiesterases (PDEs) (Lincoln and Cornwell 1993). It seems that ATP is required for 

the stimulation of GC catalytic activity which increases the efficacy of the receptor function 

and enhances the generation of cGMP (Fig. 12) (Pandey 2005).  

1.3.4 Metabolic functions of ANP/GC-A in the liver 

Although, since the discovery of ANP in 1980 (de Bold, Borenstein et al. 1981), 

comprehensive roles of NPs in the regulation of blood pressure and cardiovascular 

homeostasis have been widely documented, a recent growing body of literature suggests 

that NPs should be the interest of new investigations in the field of energy and lipid 

metabolism. It has been shown that NPs were able to stimulate lipolysis (potency order of 

the lipolytic effect: ANP>BNP>CNP) (Dessi-Fulgheri, Sarzani et al. 2003). In fact, ANP is 

considered a lipolytic agent which has been reported to play a remarkable role in the 

control of lipid mobilization in humans (Moro, Crampes et al. 2004). ANP has been shown 

to promote human adipose tissue lipolysis through cGMP mediated HSL (the rate limiting 

enzyme of lipolytic cascade) activation (Sengenes, Bouloumie et al. 2003; Birkenfeld, 

Boschmann et al. 2006). Increased cGMP by ANP induces the phosphorylation of HSL 

through the activation of a PKG independent of the classical pathway of adipose tissue 

lipolysis (cAMP/PKA-regulated metabolic pathway under the control of catecholamines 

and insulin) (Sengenes, Moro et al. 2005). The lipolytic efficiency of ANP has been 

confirmed several times through intravenous administrations in pharmacological doses in 

humans that resulted an increase in plasma FFA and glycerol levels (Dessi-Fulgheri, 

Sarzani et al. 2003; Moro, Pillard et al. 2008). Furthermore, Birkenfeld et al. have shown 

that increased ANP-mediated lipolysis led to increase in postprandial lipid oxidation rate 

and energy expenditure in humans (Birkenfeld, Budziarek et al. 2008). In this study, the 

investigators infused human ANP in 12 healthy non-overweight men subjects before,  
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Figure 12. Schematic representation of ANP-dependent activation and post-binding events of GC-

A/NPRA. ANP binding activates GC-A/NPRA in ATP-dependent manner, which leads to enhanced 

production of second messenger cGMP. An increased accumulation of intra-cellular cGMP activates cGMP 

dependent protein kinase (PKG), which plays a critical role in ANP-dependent biological responsiveness. 

cGMP can also activate phosphodiesterases (PDEs) as well as cGMP-gated ion channels (CGN) to activate 

ANP-dependent cellular and physiological functions. Finally, ligand–receptor complexes of GC-A/NPRA are 

internalized into the intra-cellular compartments and a larger proportion of ligand-receptor complexes are 

degraded in the lysosomal compartments. However, a small population of receptor is dissociated from the 

ligand and recycles back to the plasma membrane. Adapted from Pandey (Pandey 2005). 
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during, and 2-h after ingestion of a standardized HF test meal. Beside a decrease in blood 

pressure in the postprandial phase, plasma ketone concentrations, used to reflect hepatic 

lipid oxidation, were increased sharply after ANP infusion compared with placebo. These 

data are interesting in a sense that they connect the effects of NPs in lipid metabolism 

possibly affecting the pathophysiology of obesity and obesity-related disorders such as 

hypertension (Dessi-Fulgheri, Sarzani et al. 2003). Although conflicting data exist, some 

findings raise the possibility that reduced NP activity is a manifestation of insulin resistance 

and the metabolic syndrome particularly in obese individuals (Wang, Larson et al. 2004; 

Wang, Larson et al. 2007). It seems that ANP exhibits its lipolytic action through the local 

balance of GC-A and NPRC expressions in target tissues (Sarzani, Strazzullo et al. 2004). 

In this regard, a very recent study by Nakatsuji et al. showed that insulin, an anti-lipolytic 

hormone, may effectively promote lipogenesis in part by reducing lipolytic action of ANP 

via decreasing GC-A mRNA level while increasing NPRC in adipocytes (Nakatsuji, Maeda 

et al. 2010). More importantly, new findings of Miyashita et al. indicate that NP-GC-A 

system has a significant role in mitochondrial biogenesis, fat oxidation and oxygen 

consumption demonstrating that the activation of this cascade would be therapeutically 

beneficial for the treatment of obesity, insulin resistance, fatty liver, and the metabolic 

syndrome (Miyashita, Itoh et al. 2009) (Fig. 13). Miyashita et al. used three types of 

genetically engineered mice: BNP transgenic mice that overexpress BNP in liver at super 

physiological levels of 100 times that of normal physiological conditions (BNP-Tg mice), 

PKG transgenic mice that overexpress cGMP-dependent protein kinase (cGK-Tg mice) and 

GC-A knockout mice (GC-A+/- mice). BNP-Tg mice fed HF diet resisted diet-induced 

obesity and insulin resistance and had lower total body, muscle, and liver fat in accordance 

with increased whole-body fat oxidation and increased mitochondrial biogenesis in skeletal 

muscle compared to wild type HF fed mice. cGK-Tg mice were leaner than controls even 

on SD diet and were protected against HF diet-induced obesity and liver fat accumulation 

and was associated with giant mitochondria in the skeletal muscle. GC-A+/- mice resulted in  
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Figure 13. Proposed role of ANP and BNP in energy metabolism under conditions of normal diet and 

activity levels vs. HF diet and inactivity. ANP and BNP induce cGMP signaling through GC-A, whereas 

NPR-C inactivates these peptides. The functional balance of GC-A to NPR-C therefore regulates their 

biological effect at the tissue level. cGMP/cGK signaling promotes lipolysis and adiponectin secretion in 

adipose tissue and mitochondrial biogenesis and fat oxidation in skeletal muscle (left panel). This dual action 

of NPs may confer resistance to obesity and type 2 diabetes. In contrast, reduced GC-A expression and 

increased NPR-C expression during HF feeding and/or inactivity depress cGMP signaling in adipose tissue 

and muscle leading to increased fat mass, ectopic fat deposition, insulin resistance, and increased 

susceptibility to type 2 diabetes (right panel). Taken from Moro and Smith. (Moro and Smith 2009).   
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promotion of obesity in mice. An interesting characteristic of this study was the observation 

that HF diet reduced the expression of GC-A suggesting that HF diet may diminish the 

response to NP stimulation and decrease mitochondrial biogenesis and fat oxidation (Fig. 

13), although the precise mechanisms need to be explored (Moro and Smith 2009). 

Therefore, although today our knowledge of the functions of ANP is broader, its role in 

lipid metabolism has yet to be elucidated particularly in the important metabolic tissue that 

constitutes the liver.  

Several studies reported organ-protective effects of ANP against serious tissue 

damages such as liver ischemia/reperfusion (I/R) injury (Bilzer, Witthaut et al. 1994; 

Gerbes, Vollmar et al. 1998; Kiemer, Vollmar et al. 2000; Kiemer, Gerbes et al. 2002; 

Carini, De Cesaris et al. 2003; Gerwig, Meissner et al. 2003; Kulhanek-Heinze, Gerbes et 

al. 2004). I/R is a major cause of acute tissue failure which prompts a release of reactive 

oxygen species (ROS) and pro-inflammatory mediators (Colletti, Remick et al. 1990; 

Jaeschke 1991). It seems that the hepato-protection role of ANP in I/R damage is associated 

with its anti-inflammatory potential due to its potency to inhibit the production of 

inflammatory mediators (Kiemer, Vollmar et al. 2000). This protective effect of ANP was 

shown to be mediated by its GC-A receptor signaling pathway reducing the activation of 

the redox-sensitive NF-κB and subsequently lowering the pro-inflammatory mediators such 

as tumor necrosis factor α (TNF-α) (Kiemer, Hartung et al. 2000; Kiemer, Vollmar et al. 

2000; Tsukagoshi, Shimizu et al. 2001). Therefore, ANP, its GC-A receptor, and signaling 

pathway has been suggested as new therapeutic targets to protect liver cells against 

preservation injury (Gerbes, Vollmar et al. 1998). However, besides I/R conditions, it is 

less known if ANP exerts protective effects and regulate inflammation in the liver in 

normal physiological conditions and if the action of ANP is mediated by OT. 

1.3.5 OT-ANP system: effects of estrogen and exercise training 

It has been known for many years that estrogen has marked effects on OT 

physiology stimulating OT release into the circulation (Yamaguchi, Akaishi et al. 1979; 
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Amico, Seif et al. 1981). The puberty, castration, and the oestrus cycle have been known to 

alter the expression of OT transcripts in hypothalamus suggesting that estrogen regulates 

the expression of OT (Van Tol, Bolwerk et al. 1988; Caldwell, Brooks et al. 1989; Miller, 

Ozimek et al. 1989). The relationship between estrogen and OT regulation seems to be 

complex. In rats, treatment with estrogen was sufficient to increase OT mRNA expression 

in the hypothalamus (Chung, McCabe et al. 1991). On the other hand, neonatal OT 

treatment in female rats increased heart OTR, ANP, and ERα mRNA expressions 

(Pournajafi-Nazarloo, Papademeteriou et al. 2007; Pournajafi-Nazarloo, Perry et al. 2007). 

However, it has been shown that estrogen through ER can directly influence OT gene 

promoter activity (Richard and Zingg 1990). In agreement with this, estrogen was reported 

to increase OT release and binding to OTR (Schumacher, Coirini et al. 1993). Furthermore, 

the stimulating effect of estrogen on ANP has been shown in many studies (Mukaddam-

Daher, Jankowski et al. 2002). Gutkowska et al. reported that plasma ANP concentrations 

were low in Ovx rats that was re-established by E2 supplementation; and also they have 

shown that gene expression of cardiac ANP and GC-A were decreased in Ovx rats while E2 

replacement increased OT and OTR mRNAs in aorta of Ovx rats (Wang, Gutkowska et al. 

2003; Gutkowska, Paquette et al. 2007). The control of hypothalamic OT and cardiac ANP 

synthesis and release by estrogen and ER-mediated mechanisms has been reported in 

animal models (Jankowski, Rachelska et al. 2001; van Eickels, Grohe et al. 2001; 

Jankowski, Wang et al. 2005). Although limited data are available on the effects of 

estrogen on NPs in humans (Karjalainen, Ruskoaho et al. 2004), observed higher 

circulating levels of ANP in women than in men and also during pregnancy suggests that 

female sex steroids have some influence on the OT-ANP system (Rutherford, Anderson et 

al. 1987; Clerico, Iervasi et al. 1998). Moreover, it has been shown that three months of 

hormone replacement therapy in post-menopausal women significantly increased 

circulating levels of ANP (Maffei, Del Ry et al. 2001). Several factors have been associated 

with exercise-induced beneficial effects on cardiovascular system such as decreased heart 

rate and blood pressure, circulating blood volume regulation along with various metabolic 
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processes. For instance, the improvement in cardiovascular control observed after 

endurance exercise training because of increased hypothalamic OT density in rats 

(increased OT content and gene expression) (Braga, Mori et al. 2000; Martins, Crescenzi et 

al. 2005). Moreover, it has been demonstrated that exercise training provokes the increased 

synthesis and release of ANP whose cardio-protective effects have been explained earlier 

(Tanaka, Shindo et al. 1986; Guezennec, Fournier et al. 1989; Barletta, Stefani et al. 1998; 

Ohba, Takada et al. 2001; Edwards 2002). The main stimulating factor of ANP release is 

atrial expansion or intra-atrial pressure. Greater maximal cardiac output along with 

augmented respiratory movement and limb muscular activity during exercise cause 

significant increase in venous return and results in atrial distension, which stimulate ANP 

release (Pan 2008). Circulating ANP levels, rise during short exercise bouts of increasing 

intensities (Moro, Crampes et al. 2004). In searching the precise mechanism, it has been 

recently reported that endurance exercise has direct influence on cardiac OT-ANP system 

(Gutkowska, Paquette et al. 2007). In that study, cardiac OT, OTR, ANP, and GC-A gene 

expressions were decreased in Ovx rats compared to control group. However, 8-week 

exercise training in these rats counteracted the effects of Ovx normalizing most of these 

genes in the heart.  

 

1.4 General objective of the thesis and presentation of the 

manuscripts 

NAHS results from lipid metabolism disorder which leads to lipid accumulation 

within hepatocytes in the absence of excessive alcohol consumption (Duvnjak, Lerotic et al. 

2007). NAHS is the hepatic manifestation of the metabolic syndrome, with insulin 

resistance as the main pathogenetic mechanism and considered as an independent predictor 

of cardiovascular disease (Vanni, Bugianesi et al. 2010). There is accumulating evidence 

that estrogen deficiency is associated with the development of hepatic steatosis in post-



 

 

 

55

menopausal women (Park, Jeon et al. 2006; Suzuki and Abdelmalek 2009) as well as in 

different animal models (Deshaies, Dagnault et al. 1997; Picard, Deshaies et al. 2000). The 

goal of the research program presented in this thesis is to further adresse the current 

understanding of the development of NAHS related to estrogen deficiency state. In 

previous section, the contributing mechanisms to the development of NAHS have been 

generally described including increased FFA influx into the liver, liver lipid uptake, de 

novo lipogenesis and decreased hepatic lipid oxidation. The contribution of VLDL-TG 

production mechanism in NAHS was presented in details. Then, the literature on the 

implication of estrogen deficiency in liver lipid infiltration and the effect of exercise 

training were discussed. Moreover, new interests on the investigation concerning the role of 

OT-ANP system in the field of energy and lipid metabolism have been presented.  

This thesis consists of three original research articles that have been conducted in 

ovariectomized rats, an animal model of post-menopausal women. These studies investigate 

the effects of estrogen withdrawal on liver fat metabolism and emphesize the effects of 

exercise training as a counteractive measure. In the first study, we designed an experiment 

to test the hypothesis that liver of Ovx rat is resistant to resorption of fat accumulation. 

Eight weeks after switching from a HF to a SD diet, Ovx rats accumulated as much fat in 

the liver as Ovx rats maintained on a HF diet. In contrast, Sham animals had lower levels of 

liver fat accumulation after the diet switch. Moreover, the results of this study led us to 

conduct our second study in which we used a physiological approach to determine if 

hepatic VLDL-TG production is altered following a 3-h infusion of lipids in Ovx rats. 

Results of this second study suggest that a decrease in VLDL production might be a 

contributing factor responsible for hepatic fat accumulation known to occur with estrogen 

withdrawal. In addition, in this study we showed that exercise training lowers VLDL-TG 

production, as well as gene expression of important regulatory molecules in VLDL 

assembly: MTP and DGAT-2, independently of the estrogen levels. Lastly, new emerging 

data on the metabolic effects of OT-ANP system triggered our interest in investigating if 

this axis may influence the lipid metabolism in the liver of Ovx animals. The findings of 
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our third study suggest that OT-ANP axis may contribute to the protection of hepatic tissue 

by reducing inflammatory markers through hepatic GC-A receptor.  
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Abstract 

Ovarian hormones have been shown to regulate liver lipid accumulation in rats. The 

present study was designed to evaluate liver lipid resorption in ovariectomized (Ovx) rats. 

Ovx and sham-operated (Sham) rats were submitted to a high-fat (HF; 43 % kcal fat as 

energy) diet for 5 weeks and then either maintained on this diet or switched to a standard 

(SD; 12.5% kcal fat as energy) diet till weeks 8 and 13 (n = 8 rats/group). Body weight, 

energy intake, liver and intra-abdominal fat accumulation and plasma metabolic profile 

were determined. Body weight was significantly (P<0.01) higher in Ovx than in Sham 

groups at all times and switching diet did not alter the body weight pattern. The weight of 

the intra-abdominal fat depots and plasma leptin levels, along with liver triacylglycerol 

(TAG) concentrations, were significantly higher (P<0.01) in Ovx than in Sham rats. 

Switching diet reduced intra-abdominal fat depot weight and plasma leptin in all groups. 

Switching diet also resulted in a decrease in liver fat accumulation in Sham rats at all times. 

However, 8 weeks after the diet switch (week 13) liver fat accumulation was as high in Ovx 

rats as those maintained on the HF diet. When liver TAG values measured at week 13 were 

compared to initial pre-switching values (week 5), liver TAG levels in Ovx animals were 

maintained at the same level independently of the diet switch, while in Sham rats switching 

to a SD diet reduced liver TAG accumulation (P<0.05). The same comparisons with plasma 

TAG levels revealed an opposite relationship. These data suggest that liver lipid resorption 

in Ovx animals is more related to the ovarian hormone status than to the type of ingested 

diet.  

 

Keywords: Hepatic steatosis, Ovarian hormones, Intra-abdominal fat pads, Plasma 

triacylglycerols, Leptin 
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1. Introduction 

      Obesity is now recognized as a major public health problem that constitutes a risk factor 

for life-threatening diseases such as type 2 diabetes and cardiovascular disease, as well as 

some types of cancer [9]. These disorders represent major causes of morbidity and 

mortality in industrialized countries, and are increasing problems in developing countries as 

well [23]. In recent years, high dietary fat intake has been proposed as a main contributor to 

obesity [19]. It is well established that high-fat (HF) diets induce several obesity related 

metabolic deteriorations, including liver lipid infiltration, which has been recognized as an 

integral feature of the metabolic syndrome [6, 11]. 

There is accumulating evidence that estrogen deficiency is associated with the 

development of hepatic steatosis in different animal models [3, 13, 16] as well as in post-

menopausal women [1, 15, 25]. Hepatic steatosis is twice as common in postmenopausal 

women as in pre-menopausal women [1, 15]. Liver lipid infiltration in postmenopausal 

women is, therefore, a concern that needs to be characterized, especially in relation to the 

high dietary fat intake of western societies. In a recent study, our group [14] reported that 

ovariectomy (Ovx) in rats resulted in a progressive accumulation of fat in liver over a 13- 

week period, which was highly amplified by a high-fat diet. However, plasma FFA levels 

were not markedly increased in Ovx rats, indicating that liver lipid infiltration could hardly 

be attributed to increased hepatic lipid uptake. It was suggested that estrogens act intra-

hepatically as a protective tool against liver lipid infiltration. For this reason, reversal of 

lipid accumulation in liver may be complicated by estrogen deprivation. The present 

experiment was designed to test the hypothesis that livers of Ovx animals are resistant to 

reversal of liver lipid infiltration. Liver lipid infiltration was enhanced in Ovx and Sham 

rats by a HF diet containing 43% of its energy from lipids. Reversal was induced by 

switching from the ingestion of a HF to a standard (SD) diet containing 12.5% of its 

energy from lipids. In the Ovx group 8 weeks after switching from the HF to the SD diet 

there was no liver lipid resorption.  
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2. Materials and methods 

2.1. Animal care 

Female Sprague–Dawley strain rats (n = 80, Charles River, St-Constant, PQ, 

Canada), weighing 180–200 g (6 weeks of age) upon their arrival were housed individually 

and had ad libitum access to food and tap water. The diet, now referred to as the standard 

diet (SD; 12.5% lipid, 63.2% carbohydrate, and 24.3% protein; kcal) consisted of usual 

pellet rat chow (Agribrands Purina Canada, Woodstock, Ontario, Canada). Their 

environment was controlled in terms of light (12:12-h light–dark cycle starting at 06:00 

AM), humidity (53%) and room temperature (20–23 °C). All experiments described in this 

report were conducted according to the directives of the Canadian Council on Animal Care. 

2.2 Surgery 

Three days after their arrival, rats were randomly divided into ten groups (n=8 

rats/group). Rats in five of these groups underwent Ovx surgery and the other five groups 

were sham-operated (Sham). Ovx was conducted according to the technique described by 

Robertson et al. [18]. For surgery, rats were anesthetized using a mixture of ketamine-

xylazine (61.5-7.6 mg/kg, ip). Animals were injected with antibiotics (Tribrissen 24%; 

0.125 cm3/kg, sc) for 3 days, beginning on the day before surgery. 

2.3. Groups and Diet Protocol 

 Immediately after surgery, all Ovx and Sham animals were fed a HF diet for 5 

weeks. Following this 5-week period, one Sham-HF and one Ovx-HF group was killed at 5 

weeks and the remaining 4 Ovx and 4 Sham groups were divided in half with half 

continuing on the HF and half switched to the SD diet for 3 and 8 additional weeks. The HF 

diet consisted of 43% lipid, 38% carbohydrate, and 19% protein (kcal) and was provided in 

small pellets from Harlan, Teklad (WI, USA). The lipids included in the HF diet consisted 

of 35.2% saturated and 64.4% unsaturated (70.2% MUFA and 29.8% PUFA). Details of 

this diet have been presented elsewhere [5]. On the whole, 10 groups of rats were 

sacrificed. Two groups of animals were sacrificed at week 5 (Sham and Ovx), while 4 

groups were sacrificed at weeks 8 and 13, respectively (Sham and Ovx fed SD or HF diet, 

respectively). All rats were weighed daily and their food intake in g was monitored 3 
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Louis, Missouri, USA). Although small amount of free glycerol may be produced from 

hydrolysis of phospholipids, it is considered as negligible. Frayn and Maycock [4] have 

shown that omitting removal of phospholipids leads to only a ±2% error in the 

determination of muscle TAG. Plasma TAG concentrations were measured with an 

enzymatic colorimetric assay available from Sigma (St-Louis, Missouri, USA). Plasma 

glucose concentration was determined with the use of a glucose analyzer Yellow Springs 

Instruments 2300 (Yellow Springs, Ohio, USA). Plasma Insulin and leptin concentrations 

were determined with commercially available radioimmunoassay kits (Linco Research, St-

Charles, Missouri, USA). 

2.6. Statistical analysis 

Values are expressed as mean ±S.E. Statistical analyses were performed using a 

two-way ANOVA for non-repeated measures using diet (continuous HF or HF switched to 

SD) and surgery as the main effects at times 8 and 13 weeks, analyzed separately, and 

excluding time point 5 weeks (since no diet treatment was given at that time). In a second 

step, the effect of time was analyzed separately in Ovx and Sham rats using a one-way 

ANOVA for non-repeated measures. This second statistical analysis was performed to 

better characterize the effects of time including comparison with time 0.  Fisher LSD post-

hoc test was used in the event of a significant (P<0.05) F ratio. Relationship between liver 

triacylglycerol and plasma triacylglycerol concentrations was evaluated by linear regression 

analysis. 
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3. Results         

As expected, body weight was higher (P<0.01) in Ovx rats after the initial 5 weeks 

(Table 1). This was associated with an initial (5 weeks) higher (P<0.01) energy intake in 

Ovx animals. Although energy intake was not different anymore after the first 5 weeks 

between Ovx and Sham rats, Ovx rats maintained a higher body weight throughout the 

experiment. For an unknown reason, energy intake was somewhat higher (P<0.05) in some 

groups of rats during the first 5 weeks, although all rats were all fed the same HF diet. Body 

weight was increased significantly (P<0.05) in all groups throughout the experiment with 

the exception of the non-significant gain of body weight between weeks 5 and 8 in Sham 

and Ovx rats that switched diet. This may be attributed to the reduction in energy intake 

that resulted from the switch from the HF to the SD diet in both Sham (P<0.06) and Ovx 

(P<0.05) groups. A reduction in energy intake with time was also observed in Ovx-HF rats. 

Energy intake was also somewhat (P<0.05) higher in Sham and Ovx rats that switched diet 

compared to their respective groups in the last few weeks of the experiment. However, the 

effects of the diet switch on energy intake were the same in Sham and Ovx rats as they 

were observed in both groups at the same times. 

Ovx, as compared to Sham operation, resulted in higher (P<0.01) sum of muscles 

weights along with lower (P<0.01) uterus weight after the initial 5 weeks and throughout 

the following 8 weeks, whether rats switched to the SD diet or not (Table 2). Switching diet 

did not affect any of these variables when compared to rats maintained on the HF diet. 

Comparisons of values measured at 8 and 13 weeks to initial 5-week values revealed that 

the sum of muscle weight in Sham rats were higher (P<0.01) with time. In Ovx rats, 

however, there was no gain in the sum of muscle weights whether rats switched diet or not. 

Most of the effects of Ovx on the sum of muscle weight were already observed after 5 

weeks and were maintained in the following weeks. Femur weight was higher (P<0.01) 

with time in all groups. 

Liver TAG concentrations were higher (P<0. 05) in Ovx compared to Sham rats as 

soon as 5 weeks after the surgery (Fig. 1A). The higher liver TAG levels in Ovx compared 

to Sham rats were maintained throughout the following 8 weeks, independently of the diet. 



 

 

 

65

Switching from the HF to the SD diet resulted in lower (P<0.01) liver TAG levels in Ovx 

and Sham rats at the 8-week time point when compared to rats maintained on the HF diet. 

When the 8- and 13-week results were further analyzed by comparing them to the initial 5- 

week values, high liver TAG levels in Ovx rats were maintained whether the rats switched 

diet or not, while in Sham rats the switch of the diet reduced the HF-induced liver fat 

accumulation. These comparisons reveal that the 13-week measurements point the Ovx 

animals resistant to liver resorption. On the other hand, Ovx did not affect plasma TAG 

levels (Fig. 1B). Switching of HF to SD diet resulted in higher (P<0.05) plasma TAG levels 

in all groups when compared to rats maintained on the HF diet. As for the liver TAG data, 

we further analyzed plasma TAG values by comparing them to values measured at week 5. 

These analyzes revealed the opposite of the response found for liver TAG levels at week 

13. The switching of the diet resulted in higher (P<0.05) plasma TAG levels compared to 

week 5 in Sham rats, while in Ovx rats plasma TAG levels were maintained after the switch 

of the diet (Fig. 1B).  

When compared to the Sham groups the Ovx groups had a higher (P<0.05) 

accumulation of fat in the intra-abdominal and subcutaneous depots along with higher 

levels of plasma leptin at all times, independently of the switching of the diet (Fig. 2). The 

switching of the diet compared to continuous high-fat feeding resulted in lower (P<0.05) 

fat accumulation in all the fat depots after 8 weeks and lower (P<0.05) plasma leptin levels 

after 8 and 13 weeks in Sham as well as in Ovx groups. The switching of the diet did not 

affect fat depots weight after 13 weeks either in Sham and Ovx groups. Time comparisons 

using the 5-week initial values reveal similar changes of fat depots weight in Sham and 

Ovx rats. On the other hand, plasma leptin levels in Ovx rats at week 13 were higher (P< 

0.05) compared to initial 5-week values, which was not the case after the switch of the diet 

(Fig. 2C). This may be taken as an indication that plasma leptin was more sensible to the 

diet switch that adipose fat mass, at least in Ovx rats. 

Plasma glucose, insulin and FFA levels were not, on the whole, affected by the Ovx 

and the switch of diet (Table 3). The only significant comparisons found were lower  (P< 

0.05) plasma glucose concentrations with time in Ovx animals, lower  (P<0.05) insulin 
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levels in Ovx compared to Sham rats at week 13, and higher (P<0.05) plasma FFA 

concentrations with time (week 5 vs 13) in all groups with the exception of Ovx rats that 

switched diet.  

Fig. 3 shows the relationship between the levels of hepatic and plasma TAG using 

individual values for all rats throughout the experiment. This comparison reveals a modest, 

but significant negative relationship (R= - 0.235; P<0.04). 
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4. Discussion 

The present study was designed to test the hypothesis that once liver is infiltrated 

with lipids, reduction of fat accumulation is more difficult in Ovx than in rats with an intact 

estrogen production. To do that, we stimulated fat accretion in livers of Ovx and Sham rats 

by submitting them to a HF diet and evaluated reversal of liver TAG accumulation by 

switching feeding to a SD diet. Results of this approach show that, at week 13 (8 weeks 

after switching), liver of Ovx animals is as much infiltrated with lipids whether these 

animals switched to the SD diet or were maintained on the HF diet. When compared to the 

5-week initial values, liver TAG concentrations in Ovx rats did not show any significant 

reduction after the diet switch. In contrast, after switching to the SD diet, liver fat 

accumulation in the Sham rats was lower. These results may be taken as evidence that 

indeed liver fat resorption is hampered in absence of estrogens. In a recent study we 

observed that ovariectomy-induced liver lipid infiltration was completely prevented by 

estrogen replacement [14]. Taken together, our results support the interpretation that liver 

fat infiltration in Ovx rats is not solely related to an increased hepatic lipid uptake, but also 

facilitated by an intra-hepatic mechanism related to the absence of estrogens.   

The reduction in uterus weight, measured at the end of the experiment, along with 

the higher body weight, clearly indicate that the ovariectomies performed in this study were 

successful. As reported in previous studies, Ovx resulted in a significant gain in body 

weight accompanied by an increase in energy intake [12, 17]. The increase in body weight 

induced by Ovx was the result of both an increase in all fat depot weights and in the sum of 

muscle weights. Shifting from the HF to the SD diet resulted in a decrease in energy intake 

with time in both Sham and Ovx rats. This may explain the absence of significant gain in 

body weight between weeks 5 and 8 in both Sham and Ovx rats that switched diet. The 

decrease in energy intake may be attributed to the change from the HF to SD diet rich in 

carbohydrates, although a decrease in energy intake was also observed in the Ovx-HF rats 

that did not switch the diet. The decrease in energy intake in Ovx-HF rats was not as 

pronounced, however, since it did not affect the gain in body weight between weeks 5 and 

8. Most importantly, the changes in energy intake and body weight gain with the switch of 
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the diet were similar in Sham and Ovx animals as no interaction effects between diet and 

surgery were found throughout the 13 weeks. This means that the changes in energy intake 

with the switch of the diet cannot explain the absence of resorption of liver TG 

accumulation in Ovx rats at the 13-week time point. One may argue that the switch of the 

diet decreased energy intake somewhat more in Ovx than in Sham rats (~15 vs 10 

kcal/day). This, however, should have facilitated liver fat resorption in Ovx which is in 

contrast to what we observed. Finally, adipose tissue fat mass accumulation was reduced 

similarly in Sham as well as in Ovx rats after switching diet, indicating that the switch of 

the diet had similar effects on body composition in Ovx and Sham rats. This observation 

reinforces the concept that liver TG resorption in Ovx rats is hampered by mechanisms 

related to the absence of estrogens. 

One of the factors that support the contention that liver fat resorption is hampered in 

Ovx animals is its association with low plasma TAG levels. A lowering of plasma TAG 

levels has been previously observed in Ovx rats [10], while the existence of an inverse 

association between high liver TAG and low plasma TAG levels has been suggested in one 

of our recent study [14]. It is striking that the decrease in liver TAG following the diet 

switch in the present Sham rats at week 13 is associated with the highest plasma TAG 

concentrations, while the absence of changes in liver TAG in Ovx was associated with an 

absence of changes in plasma TAG. The mirror effect between the response of liver and 

plasma TAG levels was observed in the other groups as well. When all values in the present 

study for liver and plasma TAG for each rat were compared, a modest, but significant 

inverse relationship was found between these two variables (Fig. 3). Plasma TAG levels are 

mainly determined by the activity of the lipoprotein lipase and the hepatic production of 

very low density lipoproteins (VLDL). Low plasma TAG levels may, therefore, constitute 

an indication that VLDL production by the liver is reduced in Ovx animals. Estrogens have 

been shown to stimulate hepatic synthesis of apolipoprotein B-100 involved in VLDL 

synthesis [7, 20, 24]. Removal of estrogens in Ovx animals may, therefore, result in a 

reduction in VLDL production by the liver and in turn explain a decrease in liver fat 

resorption. Although this interpretation is obviously limited by the absence of direct 
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measurements of hepatic VLDL production, it constitutes an interesting hypothesis to 

explain the intra-hepatic effect of estrogen removal on liver TAG metabolism. 

Besides a reduction in hepatic VLDL production, there are other factors that may 

explain the observation that fat accumulation was not reduced in liver of Ovx rats following 

the diet switch. One of the factor that is directly associated with the development and 

possibly the maintenance of liver lipid infiltration is hepatic fatty acid uptake that is directly 

proportional to plasma FFA concentrations [26]. However, in our previous works, we did 

not observe any effect of Ovx on plasma FFA levels [14, 22]. Plasma FFA levels in the 

present study were higher with time but to a similar extend in Ovx and Sham rats. Although 

statistically non-significant, plasma FFA levels appear to be lower following the shift of the 

diet in Ovx rats (week 13). This should have contributed to a reduction in liver TAG levels. 

Plasma FFA levels, therefore, can hardly be associated with the absence of effect of the diet 

shift on liver TAG levels in the Ovx group. In the same vein, it is interesting to observe that 

fat pad accumulation and plasma leptin levels were affected similarly by the diet switch in 

Ovx and Sham rats. This suggests that the effect of estrogen removal on the maintenance of 

liver fat accumulation is specific to the liver and reemphasizes the contention that in 

absence of a normal estrogenic status, liver fat resorption is dissociated from the diet and its 

associated effects on peripheral fat accumulation or diminution. Alternatively, lipid 

oxidation and de novo lipogenesis may be affected by the removal of estrogens. There is 

little information on the role of estrogens on both of these pathways. There is evidence that 

estrogens decreased the expression of lipogenic genes in liver and promote partitioning of 

FFA toward oxidation rather than storage [2]. Recent data from our group also indicate that 

oxidation is reduced in Ovx compared to Sham rats (unpublished observation).  

There is no indication that the present switch of the diet in Sham and Ovx rats 

resulted in a perturbation of glucose metabolism as judged from the present plasma glucose 

and insulin values. Liver fat accumulation has been reported to result in the development of 

insulin resistance [21]. There is at the present time no clear indication in the literature that 

Ovx in rat results in a perturbation of glucose metabolism. Studies using precise technique 

such as the hyperinsulinemic-euglycemic clamp will be needed to clarify this point. 
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In summary, results of the study indicate that 8 weeks after shifting from a HF to a 

SD diet, Ovx rats accumulate as much fat in liver as Ovx rats maintained on a HF diet. In 

contrast, Sham animals had lower levels of liver fat accumulation after the diet switch. 

These results indicate that Ovx rats are resistant to liver fat resorption induced by a change 

in the composition from HF to SD diet and suggest that hepatic fat accumulation and 

resorption are dependent on mechanisms associated with a normal estrogenic status. On a 

clinical point of view, the present data suggest that the removal of excess fat accumulation 

in liver may be complicated by the absence of estrogens in post-menopausal women.  
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Legends to figures 

Fig.1. Liver (mg/g of liver) and plasma triacylglycerol (TAG) concentrations in 

ovariectomized (Ovx) and sham-operated (Sham) rats fed a high-fat diet (HF) for 13 weeks 

and Ovx and Sham rats fed a HF diet for 5 weeks and then switched to a standard diet (SD) 

for the next 3 and 8 weeks. Values are means ± SE with n = 7-8 rats/group. + Significantly 

different from the corresponding Sham groups, P<0.05, ++ P<0.01. * Significantly different 

from corresponding group continuously fed the HF diet, P<0.05, ** P<0.01. & Significantly 

different from corresponding Sham and Ovx values measured at week 5, P<0.05, &&P< 

0.01. 

 

Fig.2. Sum of 3 intra-abdominal fat pad weights (mesenteric, retroperitoneal, and 

urogenital), subcutaneous fat pad weight, and plasma leptin concentrations in 

ovariectomized (Ovx) and sham-operated (Sham) rats fed a high-fat diet (HF) for 13 weeks 

and Ovx and Sham rats fed a HF diet for 5 weeks and then switched to a standard diet (SD) 

for the next 3 and 8 weeks. Values are means ± SE with n = 8 rats/group. + Significantly 

different from the corresponding Sham groups, P<0.05, ++ P<0.01. * Significantly different 

from corresponding group continuously fed the HF diet, P<0.05, ** P<0.01. & Significantly 

different from corresponding Sham or Ovx values measured at week 5, && P<0.01. 

 

Fig.3. Relationship between individual liver and plasma triacylglycerol (TAG) levels  

(n = 76, P<0.04) for all rats in all nutritional conditions.  
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Table 1. Body weight (BW) and energy intake (EI) in ovariectomized (Ovx) and sham-

operated (Sham) rats fed a high-fat diet (HF) for 13 weeks and Ovx and Sham rats fed a HF 

diet for 5 weeks and then switched to a standard diet (SD) for the next 8 wk.  

 
Values were measured throughout the experiment for the rats sacrificed at week 13. 

Values are means ± SE, n = 8 rats/group. + Significantly different from corresponding Sham 

groups, P<0.05, ++ P<0.01. * Significantly different from corresponding group continuously 

fed the HF diet, P<0.05. All values inside brackets ( [ ) are significantly different from the 

values of week 6. NS The only values that are not significantly increased compared to the 

preceding time value. 
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Table 2. Uterus weight, femur weight, and sum of 4 muscles weights in ovariectomized 

(Ovx) and sham-operated (Sham) rats fed a high-fat diet (HF) for 13 weeks and Ovx and 

Sham rats fed a HF diet for 5 weeks and then switched to a standard diet (SD) for the next 3 

and 8 weeks.   

 
Values are means ± SE, n = 8 rats/group. + Significantly different from corresponding Sham 

groups, P<0.05, ++ P<0.01. & Significantly different from corresponding Sham or Ovx 

values measured at week 5, P<0.05, && P<0.01.  
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Table 3. Plasma glucose, insulin, and free fatty acid (FFA) in ovariectomized (Ovx) and 

sham-operated (Sham) rats fed a high-fat diet (HF) for 13 weeks and Ovx and Sham rats 

fed a HF diet for 5 weeks and then switched to a standard diet (SD) for the next 3 and 8 

weeks.   

 
Values are means ± SE, n = 5-8 rats/group. + Significantly different from corresponding 

Sham group, P<0.05.  & Significantly different from corresponding Ovx values measured at 

week 5, P<0.05, && P<0.01.  
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Fig.1 
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Fig.2 
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Fig.3 
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Abstract  

The present study was designed to investigate the effects of estrogen withdrawal and 

exercise training on hepatic very low density lipoprotein-triglyceride (VLDL-TG) 

production and on expression of genes involved in hepatic VLDL synthesis in response to 

lipid infusion. Female Sprague-Dawley rats underwent ovariectomy (Ovx), sham surgery 

(Sham), and Ovx with 17β-estradiol supplementation (OvxE2) before being subdivided into 

sedentary (Sed) and trained (Tr) groups for 8 weeks. Exercise training consisted of 

continuous running on a rodent treadmill 5 times/wk. At the end of the 8-week period, all 

rats in the fasted state were intravenously infused with a 20% solution of Intralipid for 3-h 

followed by an injection of Triton WR-1339 to block lipoprotein lipase activity. Plasma TG 

accumulation was subsequently measured during 90 min to estimate VLDL-TG production. 

An additional control group consisting of Sham-Sed rats was infused with saline (0.9% 

NaCl). Estrogen withdrawal resulted in higher (P<0.01) liver fat accumulation 

concomitantly with lower (P<0.01) VLDL-TG production and lower mRNA and protein 

content of hepatic microsomal triglyceride transfer protein (MTP). All of these effects in 

Ovx rats were corrected with estrogen supplementation. Training in Ovx rats reduced 

(P<0.01) liver fat accumulation and further reduced (P<0.01) hepatic VLDL-TG 

production along with gene expression of MTP and diacylglycerol acyltransferase-2 

(DGAT-2). It is concluded that VLDL-TG synthesis and/or secretion is decreased in Ovx 

rats probably via MTP regulation and that this decrease may constitute one of the factors 

involved in hepatic fat accumulation. The training effect on reducing VLDL production 

was independent of the estrogenic status. 

 

Keywords: hepatic steatosis, microsomal triglyceride transfer protein, diacylglycerol 

acyltransferase-1 and -2, lipid infusion 
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Introduction  

          Excessive storage of hepatocellular triglycerides (TG) has been recently identified as 

an independent risk factor of insulin resistance, metabolic syndrome, and cardiovascular 

disease [1]. One segment of the population that is particularly inclined to increased hepatic 

fat accumulation is postmenopausal women. Two third of postmenopausal women are 

considered overweight or obese and 43% present the metabolic syndrome [2]. Recent 

evidences indicate that menopause is indeed associated with the development of a state of 

hepatic steatosis [3, 4]. It seems, however, that liver fat accumulation observed with 

estrogen withdrawal is not strictly due to overall fat accumulation but also to deregulation 

of lipid metabolism in liver. 

          Increased lipid uptake by liver through estrogen withdrawal-induced hyperphagia 

could partially explain hepatic fat accumulation [5]. However, pair-feeding does not 

completely prevent fat accumulation in liver (unpublished data and [6]). Recent insight into 

molecular regulation of metabolic pathways possibly involved in reduced estrogen action in 

liver revealed an increase in gene expression of molecules involved in de novo lipogenesis 

and a reduction in gene expression of proteins involved in lipid oxidation [7]. Physiological 

evidence that fatty acid oxidation is reduced in liver of ovariectomized (Ovx) animals has 

also been recently reported [8]. On the other hand, there is no clear evidence as to whether 

estrogen withdrawal reduces lipid exportation from the liver through a reduction in very 

low density lipoprotein (VLDL) synthesis and/or secretion. Oral estradiol in 

postmenopausal women has been reported to increase the production rate of large VLDL-

apolipoprotein B [9]. Alternatively, Ovx with and without estradiol treatment has been 

reported to be without effect on TG production in Sprague-Dawley rats under anesthesia 

[10]. Therefore, whether estrogen removal is indeed associated with a change in VLDL 

production remains to be elucidated. The first purpose of the present study was to use a 

physiological approach to determine if VLDL-TG production is altered in Ovx rats.  

          VLDL assembly and secretion is a complex mechanism that involves several 

regulatory molecules including microsomal triglyceride transfer protein (MTP) and 

diacylglycerol acyltransferase-1 and -2 (DGAT-1 and -2) [11]. MTP is a protein complex 
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present in the lumen of the endoplasmic reticulum (ER) that has a capacity to transport 

significant quantities of lipids from the ER membrane to developing lipoprotein particles 

within the lumen of ER [12]. MTP activity is rate limiting for VLDL assembly and 

secretion [13]. DGATs are microsomal enzymes that catalyze the final steps in 

triacylglycerol synthesis [14]. It has been reported that the relative activities of the two 

types of DGAT may have a significant impact on the level of TG as well as on the 

development of steatosis [15]. To complement our investigation of estrogen withdrawal on 

VLDL-TG production, we measured the hepatic gene expression and the protein content of 

MTP along with the gene expression of DGAT 1 and 2. 

          Evidence of the impact of exercise training in the prevention and attenuation of 

hepatic steatosis is now well documented in humans and in animals [1, 16, 17]. Chronic 

exercise in obese Zucker rat has been shown to reduce TG production [18]. Hepatic VLDL-

TG secretion rate has also been recently reported to decrease following exercise training in 

humans [19], and in Sprague-Dawley rats fed a high-fat (HF) diet [20]. A decrease in 

hepatic protein content of MTP in HF fed rats and in the cachectic animals following 

exercise training has also been reported [20, 21]. However, it is not known if exercise 

training also reduces VLDL production in Ovx animals especially since we hypothesized 

that VLDL production is reduced in Ovx animals. The second purpose of the present study 

was to examine the effects of exercise training on hepatic VLDL-TG production and gene 

expression of related markers in Ovx rats and to compare these responses with 17β-

estradiol supplementation. 
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Materials and Methods 

Animal care 

          Female Sprague-Dawley strain rats, (Charles River, St-Constant, PQ, Canada) 230-

250 g  upon their arrival were housed individually and had free access to standard rat chow 

(12.5% fat, 63.2% carbohydrate, 24.3% protein; kcal, Agribrands Purina Canada, 

Woodstock, ON, Canada) and tap water. Their environment was maintained at 20-23 °C, 

under light-controlled 12:12-h light/dark cycle starting at 6:00 AM. The present study was 

conducted according to the Guidelines of the Canadian Council on Animal Care after 

institutional approval. 

Surgery 

          Four days after their arrival, animals underwent bilateral ovariectomy (Ovx) without 

and with 17β-estradiol supplementation (OvxE2) or were sham operated (Sham). Animals 

were injected with antibiotics (Tribrissen 24%; 0.125 mL/kg SC) for 3 days beginning with 

the day before surgery. Ovariectomy was performed according to the technique described 

by Robertson et al. [22] under isoflurane anesthesia. For OvxE2 rats, a small 17β-estradiol 

pellet (0.72 mg; 0.012 mg/d) with a biodegradable carrier binder efficient for 60 days 

(catalogue no. SE-121; Innovative Research of America, Sarasota, FL, USA) was 

implanted subcutaneously in the dorsal neck. El-Mas and Abdel-Rahman [23] previously 

showed that this estrogen regimen produces physiological levels of the hormone. A placebo 

60-day pellet containing the binding carrier only was used in all other rats (catalog no. SC-

111). 

Groups and exercise protocol 

          Three days after surgery, Sham, Ovx and OvxE2 rats were sub-divided into sedentary 

(Sed) and trained (Tr) groups. Each group was considered as complete when a minimum of 

8 rats/group was reached for all groups. Exercise training program consisted of continuous 

running on a motor-driven rodent treadmill (Quinton Instruments, Seattle, WA, USA) 5 

times/wk for the duration of the experiment. During the first 3 weeks, rats were 

progressively run from 15 min/day at 15 m/min, 0% slope up to 45 min/day at 26 m/min, 6 
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% slope. Thereafter, the training program was kept at 60 min at 26 m/min, 10% slope for 

the last 5 week. All trained animals were restrained from training 48 h before sacrifice.  

Surgical procedures 

          Rats were anesthetized with a mixture of ketamine - xylazine (61.5 - 7.6 mg/kg, ip).  

A vertical incision made in the front of the neck permitted the location and the insertion of 

a cannula into the right jugular.  In brief, a polyethylene tubing (catalogue no. 427411, 

0.58-mm inner diameter × 0.97-mm outer diameter, Becton Dickinson) filled with saline-

heparin (5U /ml) was inserted into the right jugular vein and the distal extremity was 

tunnelled subcutaneously and exteriorized at the nape of the neck.  The catheter was glued 

in place using Vet Bond (3M Animal Care Products) and all incisions were sutured closed.  

Once in place, the catheter was filled up with a 30% glycerol in heparin-saline (5U/ml) 

solution to keep it patent.  Rats were allowed a 3-day post-operative recovery before being 

submitted to the experimental procedures. 

Infusion study 

          Food was removed from cages at least 12 h before sacrifice. On the morning of the 

experiment, catheters were flushed with saline-heparin (5U/ml) and connected through 

polyethylene tubing to a KDS100 syringe infusion pump (KD Scientific Inc, New Hope 

PA, USA).  The infusion line was hanged above the cage and permitted the rat complete 

freedom of movement.  Rats received a 3-h intravenous infusion of 20% Intralipid (Baxter 

Corporation, Sherbrooke, Canada) at a rate of 0.4 ml/h. As used in several previous 

publications [20, 24], the lipid infusion allows measurement of the capacity of the liver to 

secrete VLDL in response to a large lipid load and eliminates potential confounders such as 

variations in endogenous lipid input. It has been speculated that Intralipid TG-FFA 

delivered to the liver during the infusion reached the liver as albumin-bound FFA after 

lipolysis in the circulation by either lipoprotein or hepatic lipase [24]. Blood was 

withdrawn from the right jugular vein at different time points during the experiment by the 

same infusion line after being completely rinsed with saline-heparin (5U/ml).  In addition to 

the experimental groups, a group of Sham-Sed rats, now referred to as control, was 
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submitted to all testing procedures with the exception that they were infused with saline 

(0.9% NaCl) instead of Intralipid. 

Determination of in vivo TG secretion 

          After the 3-h lipid or saline (control group) infusion, rats received an intravenous 

injection of Triton WR-1339 (500mg/kg) (25301-02-4, Sigma-Aldrich) diluted in saline. 

Triton WR-1339 is a non ionic detergent that effectively blocks lipoprotein lipase activity 

in vivo and therefore inhibits VLDL hydrolysis. Under these circumstances, accumulation 

of plasma TG is considered a good estimate of liver VLDL secretion [24].  Blood samples 

were collected in precooled tubes containing ethylenediaminetetraacetic acid (EDTA) 

(15%) as an anticoagulant at the end of the lipid infusion (preinjection) and at 30, 60 and 90 

min after the Triton WR-1339 injection. Plasma was immediately centrifuged and used for 

plasma TG determination. VLDL-TG production was determined as the total area 

calculated for the 90 min period. 

Blood and tissue samplings 

          At the end of the experiment and after complete anaesthesia with a mixture of 

ketamine xylazine (61.5 - 7.6 mg/kg, ip), the abdominal cavity was rapidly opened 

following the median line of the abdomen. Blood was rapidly (< 45 s) drawn from the 

abdominal vena cava (∼4 ml) into syringes pretreated with EDTA (15%). Blood was 

centrifuged (3000 RPM for 10 min, 4 °C; Beckman GPR Centrifuge) and the plasma kept 

for free fatty acid (FFA), glucose, insulin and leptin determinations. The liver was excised, 

the median lobe immediately clamp-frozen was used for triacylglycerol determination, 

mRNA and protein extraction and quantification. The mesenteric, retroperitoneal, 

urogenital and subcutaneous fat depots were, thereafter, rapidly excised and weighed. The 

plasma samples were stored at –78 °C until analyses. 

Analytical procedures 

          Plasma TG levels were determined with an enzymatic colorimetric assay available 

from SIGMA (Saint-Louis, MO, USA). Liver TG concentrations were estimated from 

glycerol released after ethanolic KOH hydrolysis by using commercial kit from SIGMA 

(Saint-Louis, MO, USA). Plasma glucose concentrations were determined with the use of a 
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glucose analyzer (Yellow Springs Instruments 2300, Yellow Springs, OH, USA).  Plasma 

FFA levels were measured with commercially available kits from Roche Diagnostics 

(Mannheim, Germany). Plasma insulin and leptin concentrations were determined with 

radioimmunoassay kits distributed by LINCO Research (St. Charles, MO, USA). 

RNA isolation and quantitative real-time (RT) polymerase chain reaction (PCR)      

          RNA extraction and cDNA preparation. Quick-frozen tissue samples of the liver were 

powdered with cold mortar and pestle, and approximately 100 mg was used for the 

isolation of RNA. Total RNA was extracted by the guanidine thiocyanate method and 

mRNA purified using PureLink RNA Mini Kit (Invitrogen) according to the 

manufacturer’s instruction. Total RNA was reverse transcribed in a final volume of 100 μL 

using the High Capacity cDNA Reverse Transcription Kit with random primers (Applied 

Biosystems, Foster City, CA, USA) as described by the manufacturer. Reverse transcribed 

samples were stored at -20°C. A reference RNA (Human reference total RNA, Stratagene, 

Ca, USA) was also transcribed in cDNA. 

qPCR Reactions- Taqman® Gene Expression Assays – Endogenous controls. Gene 

expression level for endogenous controls was determined using prevalidated Taqman Gene 

Expression Assays (Applied Biosystems). PCR reactions for 384 well plate formats were 

performed using 2 µl of cDNA samples (25-50 ng), 5µl of the Fast Universal qPCR 

MasterMix (Applied Biosystems), 0.5 µl of the TaqMan Gene Expression Assay (20X) and 

2.5 µl of water in a total volume of 10 µl. The following assay was used as endogenous 

control: GAPDH (glyceraldehyde-3-phosphate dehydrogenase). 

qPCR Reactions- Universal Probe Library (UPL) Assays. Gene expression level 

was determined using assays designed with the Universal Probe Library from Roche 

(www.universalprobelibrary.com). This technology utilizes short hydrolysis probes of 8 or 

9 bases. The high melting temperature characteristic of longer probes is retained by using 

Locked Nucleic Acid (LNA) nucleotide chemistry in these shorter probes. Because probes 

are only 8 or 9 bases long, each probe can hybridize to over 7000 transcripts; thus, a set of 

100 probes can enable the quantification of virtually any transcript in a transcriptome. PCR 

reactions for 384 well plate formats were performed using 2 µl of cDNA samples (25 ng), 5 
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µl of the Fast Universal qPCR MasterMix (Applied Biosystems), 2 µM of each primer and 

1 µM of a UPL probe in a total volume of 10 µl.The primer sets served to generate 

amplicons are presented in Table 1.  

Detection and analysis. The ABI PRISM® 7900HT Sequence Detection System 

(Applied Biosystems) was used to detect the amplification level and was programmed with 

an initial step of 3 minutes at 95˚C, followed by 45 cycles of: 5 seconds at 95˚C and 30 

seconds at 60˚C. All reactions were run in triplicata and the average values of Cts were 

used for quantification. GAPDH was used as endogenous controls. The relative 

quantification of target genes was determined using the CT method. Briefly, the Ct 

(threshold cycle) values of target genes were normalized to an endogenous control gene 

(GAPDH) ( CT = Ct target – Ct GAPDH) and compared with a calibrator: CT = Ct 

Sample - Ct Calibrator. Relative expression (RQ) was calculated using the sequence detection 

system (SDS) 2.2.2 software (Applied Biosystems) and the formula is RQ = 2- CT. 

Microsomal triglyceride transfer protein western blotting 

          Briefly, 100mg of liver was hemogenized in TPER containing protease inhibitor 

(10µl/ml pepstatin, and 1mM phenylmethanesulfonyl fluoride (PMSF) and 100U Trasylol) 

using a polytron and centrifuged at 12000g, 4ºC for 10 min. The infranatant was collected 

with a blunt-tipped Pasteur pipette and stored at -80 ºC until MTP determination. MTP 

content in the liver was determined by Western blotting. All samples (10µg of proteins) 

were separated on a 7.5% SDS-polyacrylamide gel and electro transferred onto Hybond-C 

extra nitrocellulose membrane (Amersham). Membranes were blocked overnight in Tris-

Buffered saline containing 0.05% Tween 20 (TBS-T 0.05%) and 5% nonfat dry milk at 

4ºC. The blot was then incubated with an anti-rabbit MTP antibody (kindly provided by Dr. 

David Gordon, Bristol-Myers-Squibb) for 60 min at room temperature. After two washes in 

TBS-T (0.05%) and two washes in TBS-T (0.05%) contacting 0.5% nonfat dry milk, the 

membrane was incubated for 30 min with an anti-rabbit, anti-mouse IgG-POD (BM 

Chemiluminescence Western Blotting Kit, catalogue  no.11520709001, Roche Diagnostics) 

at room temperature. Then the membrane was washed four times for 20 min each time in 

TBS-T (0.05%) before a chemiluminescence substrate (catalogue no. 11520709001, Roche 
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diagnostics) was applied to the membrane. The resulting signal was detected on scientific 

imaging films (Amersham). The bands were quantified with Image J software and 

expressed as arbitrary units. Equal protein loading was determined using Monoclonal anti-

β-Actin antibody, produced in mouse (product No. A 5441; SIGMA, Saint- Louis, MO, 

USA). 

Statistical analysis 

          Values are expressed as mean ± S.E. Statistical analysis were performed using a two-

way ANOVA for nonrepeated measures using surgery and training as the main effects at 

common time points, excluding control group (since no exercise treatment were given at 

that time). Fisher’s PLSD posthoc test was used in the event of a significant (P <0.05) F 

ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

93

Results 

          Body weight was higher (P < 0.01) in Ovx compared to Sham and OvxE2 rats in 

both Sed and Tr groups (Table 2). Intra-abdominal fat pad weights and plasma leptin 

concentrations were also higher in Ovx than in Sham (P < 0.05) and OvxE2 rats (P < 0.01). 

Training decreased (P < 0.05) values of both of these variables in Sham and Ovx groups. 

Surgery did not affect plasma insulin and glucose concentrations with the exception of 

lower (P < 0.01) glucose levels in OvxE2 rats (Table 2). Training lowered (P < 0.01) both 

plasma insulin and glucose values in all groups. 

          Plasma FFA levels were largely lower in all lipid-infused groups 90 min after the 

Triton injection most likely as a result of their conversion into TG by the liver (Fig.1A). A 

significant (P < 0.05) effect of Tr was found for plasma FFA in all groups.  Liver TG levels 

measured at the end of the experiment were higher (170 %) higher in Ovx than in Sham (54 

± 4.4 vs 20.4 ± 1.7 mg/g; P<0.01; Fig. 1B). The Ovx-induced hepatic TG accumulation was 

strongly prevented by 17β-estradiol supplementation. Exercise training resulted in a large 

reduction (P < 0.01) in hepatic fat accumulation in Ovx and to a lesser extent (P < 0.05) in 

Sham rats. 

          To estimate the effect of training and/or estrogen deficiency and replacement on 

hepatic VLDL-TG synthesis and secretion at the end of the lipid infusion period, the 

lipoprotein lipase was momentarily blocked with Triton WR-1339 injection. The resulting 

accumulation of TG in plasma reflected the hepatic VLDL-TG synthesis and secretion. 

Statistical analyses were conducted only for values of total area calculated for the 90 min 

period. VLDL-TG accumulation was significantly (P < 0.01) lower in Ovx than in Sham 

rats (Fig. 2B). Estrogens supplementation reincreased VLDL-TG accumulation to the level 

of Sham animals. Plasma TG accumulation was lower (P < 0.01) in Tr compared to Sed 

rats in all surgery groups. 

          As for plasma VLDL-TG accumulation, MTP mRNA levels and protein content were 

significantly lower (P < 0.01) in liver of Ovx animals compared to Sham rats (Fig. 3).The 

Ovx-induced lower MTP gene expression was completely prevented by 17β-estradiol 

replacement. Similarly to plasma VLDL-TG accumulation, MTP mRNA levels and protein 
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content were lower (P < 0.01) following exercise training in all groups (Fig. 3).  To go one 

step further, we measured gene expression of DGAT-1 and-2, two enzymes involved in 

VLDL synthesis. There was no effect of estrogen levels or Tr on gene expression of 

DGAT-1 (Fig. 4A). On the other hand, DGAT-2 mRNA levels were slightly lower in Ovx 

than in Sham and OvxE2 rats, but the difference did not reach the statistical significance (P 

< 0.1). DGAT-2 mRNA levels were, however, lower (P < 0.05) in Tr animals in all groups 

(Fig. 4B). 
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Discussion  

          The emergence of estrogens as an important regulator of hepatic lipid homeostasis is 

becoming increasingly clear. In the present study, we addressed the question if VLDL-TG 

production is reduced in Ovx rats. Since hepatic VLDL production is primarily substrate-

driven [25-27], VLDL-TG production in the present study was measured in response to 

lipid infusion. Using this physiological approach, the present results indicate that VLDL-

TG production is reduced in Ovx rats. In addition, we report data showing that the liver 

protein content and mRNA levels of MTP, a key factor in VLDL synthesis, is reduced in 

Ovx rats. Finally, we found that VLDL-TG production, as well as mRNA levels of MTP 

and DGAT-2, are decreased following exercise training independently of the estrogenic 

level. 

Effect of estrogen removal and supplementation on hepatic VLDL-TG production 

          The present data on liver fat accumulation are consistent with previous findings of 

the development of a state of hepatic steatosis in Ovx animals and its prevention by 17β-

estradiol supplementation [7, 28]. These observations suggest that estrogens act as a 

protective tool to keep normal lipid accumulation in the liver. In link with this observation, 

the present study, using a physiological approach, clearly indicates that plasma VLDL-TG 

levels are decreased in Ovx rats, thus suggesting a reduction in VLDL synthesis and/or 

secretion with estrogen withdrawal. Supporting this interpretation, the decrease in plasma 

VLDL-TG accumulation in Ovx-Sed rats was completely prevented by estrogen 

supplementation in accordance with the reduction in liver fat accumulation. These data, 

therefore, may be taken as an indication that a reduction in VLDL production by the liver 

may be a contributing factor responsible for the large hepatic fat accumulation observed in 

Ovx rats. 

          To support the physiological finding that indeed VLDL production is decreased in 

Ovx rats, we measured gene expression of MTP, a molecule that exerts a central regulatory 

role in VLDL assembly and secretion [13].  Our study provides the first molecular evidence 

that hepatic MTP mRNA is decreased (-31%) by estrogen withdrawal. This observation 

was confirmed at the protein level (-28%). Such a decrease in MTP mRNA, as well as in 
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VLDL-TG secretion rate, has previously been found in Sprague-Dawley rats treated with 

the selective estrogen receptor modulator (SERM) acolbifene (ACOL) [29]. Reduced MTP 

mRNA and protein content in liver of Ovx rats was reestablished by estrogen replacement 

to levels measured in Sham animals. This strongly suggests that indeed estrogens regulate 

MTP gene expression. In addition, we measured gene expression of DGAT-1 and -2. The 

lack of response of DGAT-1 to estrogen withdrawal may be related to the fact that this 

enzyme is involved in TG synthesis that accumulates in hepatocytes and not the TG 

incorporated into VLDL. DGAT-2 is more relevant to estrogen action on VLDL synthesis 

since it catalyzes the final step of the synthesis of TGs that are going to be incorporated into 

VLDL [11]. Accordingly, knockdown of DGAT-2 with antisense oligonucleotide reduces 

VLDL-TG and ApoB secretion in mice [30]. Taking into account the limitation that 

DGAT-2 mRNA levels measured in the present Ovx rats only show a tendency (~ 30%) to 

be decreased and reincreased with E2 supplementation, these results may be taken as a 

further indication that VLDL-TG synthesis is indeed reduced with estrogen withdrawal.  

          Molecular mechanisms by which estrogens regulate transcription of target genes in 

VLDL-TG production pathway are not well known. The biological effects of estrogen are 

mediated by genomic and nongenomic mechanisms [31]. The classical genomic mechanism 

of estrogen action involves activation of its nuclear receptors (ERs) α and β, receptors 

dimerization, and subsequently binding to estrogen response elements (EREs) located in the 

promoters of target genes [5, 32]. Besides the classical model, estrogen has also been 

shown to have rapid non-genomic actions mediated through a subpopulation of ER α and 

ER β that is located at the plasma membrane [33, 34]. This model may indirectly influence 

gene expression, through the activation of signal transduction pathways that eventually act 

on target transcription factors. Nongenomic actions of estrogen are frequently associated 

with the activation of various protein kinase cascades [35] like mitogen-activated protein 

kinase (MAPK) and phosphoinosital (PI) 3-kinase (PI 3-kinase) signaling pathways [31]. It 

is thus possible that estrogens affect gene expressions of target genes involved in liver lipid 

exportation through protein-protein interaction in the nucleus and/or activation of signal 

transduction pathways at the plasma membrane. It seems that estrogens are involved in the 
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regulation of all pathways (i.e. de novo lipogenesis, lipid oxidation [7, 8] and exportation) 

of liver lipid accumulation. However, the contribution of each pathway under estrogen 

deficiency status is unclear and needs to be revealed by further investigations. It must also 

be acknowledged that hyperphagia, well known to occur in Ovx rats [36], may also be a 

contributing factor to the present effects of estrogen withdrawal in liver.  

Effect of exercise training on hepatic VLDL-TG production 

          As previously reported, we observed that endurance exercise training prevented the 

accumulation of lipids in the liver of Ovx rats [36]. Interestingly, the present results also 

show that plasma VLDL-TG levels were also reduced by exercise training in all groups, 

including the Ovx rats for which VLDL-TG levels were already reduced by the absence of 

estrogens. VLDL-TG production has been recently reported to be reduced following 

training in HF fed rats and in humans [19, 20]. In addition, the direct effect of exercise 

training on the reduction of gene expression of key molecules involved in VLDL-TG 

synthesis has been recently reported [20, 21].  In the present study, hepatic MTP mRNA 

and protein content as well as DGAT-2 mRNA levels were suppressed by exercise training 

in all groups including the Ovx animals. This suggests that the effects of exercise training 

and estrogen withdrawal on VLDL-TG synthesis and/or secretion are additive. 

Furthermore, the additive effects suggest that these two actions may take place through 

different pathways. On the other hand, the reduction in VLDL-TG synthesis with exercise 

training was accompanied by a reduction in liver TG levels. This is opposite to what we 

observed with estrogen withdrawal. This may be explained by the fact that exercise training 

increases the use of lipids, therefore, reducing body fat accumulation and substrate delivery 

to the liver. Accordingly, intra-abdominal fat pad weights were lower in the present Ovx 

rats submitted to the training program.  

 It has been suggested that the mechanisms underlying decreased hepatic VLDL-TG 

secretion following exercise training are regulated by insulin [19]. It is well documented 

that hepatic VLDL production is suppressed in response to insulin action, resulting in a 

decreased release of VLDL into the circulation [37]. Insulin exerts an inhibitory effect on 

hepatic MTP gene expression [38, 39]. On the other hand, it is well known that exercise 
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training improves insulin sensitivity [40]. Insulin sensitivity was not measured in the 

present study, but our results of lower plasma insulin levels observed following training in 

all groups may be taken as an indication of improved insulin sensitivity. It is, therefore, 

reasonable to assume that Tr in Ovx rats might reduce VLDL-TG secretion, not only as a 

result of a reduction in substrate availability, but also by reducing, as in Sham and OvxE2 

rats, the action of key molecules (i.e. MTP) involved in synthesis and/or secretion. 

          In summary, results of the present study indicate that VLDL-TG accumulation 

following lipoproteinlipase blockade, as well as gene expression of liver MTP, a molecule 

that exerts a central regulatory role in VLDL assembly, are reduced in Ovx rats. These 

results suggest that a decrease in VLDL production might be a contributing factor 

responsible for hepatic fat accumulation known to occur with estrogen withdrawal. In 

addition, exercise training lowered VLDL-TG production, as well as gene expression of 

MTP and DGAT-2, independently of the estrogen levels. This suggests that exercise 

training regulates VLDL production through a different pathway than the estrogenic 

pathway. 
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Legends 

Fig.1. A) Plasma free fatty acid (FFA) concentrations and B) liver triacylglycerol (TG) in 

sham-operated (Sham), ovariectomized (Ovx) and ovariectomized with 17β-estradiol 

supplementation (OvxE2) rats measured in sedentary (Sed) and trained (Tr) states, before 

(0 min) and 90 min after injection of Triton WR-1339 for FFA and at the end of the 

experiment for liver TG. Values at time 0 are taken after 3-h infusion of Intralipid in all six 

experimental groups while the control group (Sham-Sed) was infused with saline. Values 

are means ± S.E., n = 7-10 for FFA rats/group and n = 7-12 for liver TG. ** Significantly 

different from Sham, P < 0.01. && Significantly different from OvxE2, P < 0.01. + 

Significantly different from Sed, P < 0.05, ++ P < 0.01.  

 

Fig.2. A) Accumulation of plasma triglyceride (TG) concentrations and B) total area under 

the plasma triglyceride concentrations curves in sham-operated (Sham), ovariectomized 

(Ovx) and ovariectomized with 17β-estradiol supplementation (OvxE2) rats measured in 

sedentary (Sed) and trained (Tr) states, before (0 min) and 30, 60, and 90 min after 

injection of Triton WR-1339. Values at time 0 are taken after 3-h infusion of Intralipid in 

all six experimental groups while the control group (Sham-Sed) was infused with saline. 

Values are means ± S.E., n = 6-11 rats/group. Statistical analyses were conducted only for 

values of total area under the curves for 90 min.   
 ** Significantly different from Sham, P < 0.01. && Significantly different from OvxE2, P < 

0.01. ++ Significantly different from Sed, P < 0.01.  

 

Fig.3. A) mRNA abundance and B) protein content of microsomal triglyceride transfer 

protein (MTP) in liver of sham-operated (Sham), ovariectomized (Ovx) and ovariectomized 

with 17β-estradiol supplementation (OvxE2) measured in sedentary (Sed) and trained (Tr) 

states at the end of the experiment. The six experimental groups received a 3-h infusion of 

Intralipid while the control group (Sham-Sed) was infused with saline. MTP protein content 

was measured by Western blotting and expressed in arbitrary units (AU). Values are means 

± S.E., n = 6-11 rats/group for mRNA and n = 6-8 for protein content rats/group. ** 
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Significantly different from Sham, P < 0.01. && Significantly different from OvxE2, P < 

0.01. ++ Significantly different from Sed, ++ P < 0.01.  

 

Fig.4. A) Hepatic diacylglycerol acyltransferase-1 (DGAT-1) and B) DGAT-2 mRNA 

levels in sham-operated (Sham), ovariectomized (Ovx) and ovariectomized with 17β-

estradiol supplementation (OvxE2) measured in sedentary (Sed) and trained (Tr) states. The 

six experimental groups received a 3-h infusion of Intralipid while the control group 

(Sham-Sed) was infused with saline. Values are means ± S.E., n = 6-10 for DGAT-1 and n 

= 8-12 for DGAT-2 rats/group.  + Significantly different from Sed, P < 0.05.  
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Table 1. Oligonucleotide primers used for quantitative real-time polymerase chain reaction. 

Genes Accession no Sense primer (5′-3′) Antisense primer (5′-3′) 

MTP NM_001107727.1 
 

GCGAGTCTAAAACCCGAGTG 
 

CACTGTGATGTCGCTGGTTATT 
 

DGAT-1 NM_053437.1 AAGGGTCAAGGCCAAAGC TTGTCCGGATAGCTTACAGTGTT 

DGAT-2 NM_001012345.1 AGGATCTGCCCTGTCACG GTCTTGGAGGGCCGAGAG 

GAPDH NM_017008 CCCTCTGGAAAGCTGTGG AGTGGATGCAGGGATGATG 

 
 

MTP: microsomal triglyceride transfer protein; DGAT-1: diacylglycerol acyltransferase-1; 

DGAT-2: diacyglycerol acyltransferase-2; GAPDH: glyceraldehyde-3-phosphate 

dehyrogenase  
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Table 2. Body composition and plasma leptin, glucose, and insulin concentrations in sham 

operated (Sham), ovariectomized (Ovx), and Ovx rats with 17 β-estradiol supplementation 

(OvxE2) in sedentary (Sed) and trained (Tr) states. 

  

Control  

        Sham 

 

        Ovx 

 

        OvxE2 

 

 

Sed Tr Sed Tr Sed Tr 

 
Body weight (g) 
 

 
329±7 

 
314±8 

 
326±8 

 
390±7** 

 
369±8** 

 
312±11&& 

 
298±8&& 

 
Intra-abdominal 
fat   
weight (g) 
 

 
28 ±2.6 

 
26±2.6 

 
20±2.4++ 

 
39±3* 

 
23±2.9*++ 

 
22±2.3&& 

 
15±2.2&& 

 
Leptin (ng/ml) 
 

 
3.9±0.8 

 
5.1±1.1 

 
1.8±0.5+ 

 
12.9±2.0**

 
3.0±0.8**++ 

 
4.4±1.3&& 

 
1.9±0.5&& 

 
Glucose (mM) 
 

 
7.42±0.3 

 
8.45±0.4 

 
7.22±0.2++

 
8.75±0.8 

 
7.69±0.2++ 

 
7.56±0.5&&

 
5.88±0.2&&++

 
Insulin (pM) 
 

 
100±17 

 
111±15 

 
72±18++ 

 
145±23 

 
68±12++ 

 
89±12 

 
59±7++ 

        
 

The six experimental groups received a 3-h infusion of Intralipid while the control group 

(Sham-Sed) was infused with saline. Values are mean ± S.E., n = 6-12 rats/group 
* Significantly different from Sham, P < 0.05, ** P < 0.01. && Significantly different from 

OvxE2, P < 0.01. + Significantly different from Sed P < 0.05, ++ P < 0.01.  

 

 

 

 

 



 

 

 

108

Fig. 1. 
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Fig. 2. 

0

1

2

3

4

5

6

7

8

9

10

11

12
A

Time (min)

Pl
as

m
a 

TG
 (m

M
)

9060300

 
 

0

100

200

300

400

500

600

700
B

++

&& &&
++

++**
**Control

TrTr SedSedTrSed

OvxE2

Ovx

Sham

Pl
as

m
a 

TG
To

ta
l a

re
a 

(m
M

/ 0
 to

 9
0 

m
in

)

 
 

 

 

 



 

F

 

 

 

 

Fig. 3. 

                   

                   

Li
ve

r M
TP

 m
RN

A

                M

                   

Li
ve

r M
TP

 p
ro

te
in

/B
-a

ct
in

 (a
rb

itr
ar

y 
un

its
)

0.0

0.3

0.6

0.9

1.2

1.5 A

Contro

MTP protein 

       β-actin 

0.0

0.1

0.2

0.3

0.4

0.5
B

Contro

++ol

TrSed

Sham

 

          

          

++
ol

TrSed

Sham

**

&&

++
**

Tr SedSed

O

Ovx

 

    

&&

++**

**

Tr SedSed

O

Ovx

&&&
++

Trd

OvxE2

 

    

&

&&
++

Trd

OvxE2

 

 

  

 

 

 

110



 

 

 

111

Fig. 4. 
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Abstract 

The objective of present study was to investigate effects of blocking oxytocin-atrial 

natriuretic peptide (OT-ANP) system by OT antagonist (OTA), on hepatic guanylyl 

cyclase-A (GC-A) mRNA, in ovariectomized (Ovx) rats. In the second step, we tested the 

adaptation of this system to exercise training. Since both OT and ANP possess anti-

inflammatory potential, we measured gene expression of some inflammatory markers in the 

liver of OTA-treated rats. Ovx and sham-operated (Sham) female Sprague-Dawley rats 

were kept in a sedentary (Sed) or trained (Tr) state for 8 wk. Ten days before sacrifice, Ovx 

and Sham rats were sub-divided into OTA and vehicle-treated groups (0.1 μg/g BW, daily 

IP injections). Hepatic GC-A mRNAs were decreased (P < 0.05) in Ovx and Sham OTA-

treated rats in Sed state. Exercise training had no effect on hepatic GC-A mRNA in these 

groups. Conversely, training increased (P < 0.01) GC-A mRNA in vehicle-treated Ovx rats 

while an opposite effect was found in Sham rats. Hepatic C-reactive protein (CRP) mRNA 

increased in Ovx and Sham OTA-treated rats in Sed state (P < 0.05). Training had no 

effects on hepatic CRP mRNA in any groups. Hepatic nuclear factor-kappa B (NF-κB) 

protein content was not affected by OTA and training but was higher (P < 0.05) in all Ovx 

rats. Although Ovx caused an increase in liver fat, intra-abdominal, and subcutaneous fat 

pad weights along with plasma leptin concentrations (P < 0.01), OTA administration did 

not influence the response of these variables with the exception of a significant (P < 0.01) 

OTA effect in Ovx Sed rats resulting in higher subcutaneous fat pad weight. The present 

data indicate that a blockade of the OT-ANP axis results in down-regulation of hepatic GC-

A mRNA that is associated with an increased hepatic CRP mRNA. These effects were not 

influenced by ovariectomy or exercise training. 
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Introduction 

  Oxytocin (OT) is a nonapeptide hormone that is largely produced in hypothalamus 

[1] and released into blood stream from the posterior lobe of pituitary gland. This hormone 

has long been recognized as a factor for fluid and electrolyte homeostasis, maintenance of 

blood volume and importantly for its role during parturition and lactation [2]. New study 

demonstrates that OT plays essential roles in the regulation of energy homeostasis because 

oxytocin receptor (OTR)-deficient male mice exhibited late-onset obesity with increases in 

abdominal fat pads and fasting plasma triacylglycerol (TAG) [3]. The mechanism of this 

deficiency is unknown and may involve the liver function. OT also sub serves other 

important physiological fuctions such as the ones involving cardiac natriuretic peptide 

system [4]. Circulating OT binds to OTR in the right atrium and activates its receptor. 

Activated OTR stimulates atrial natriuretic peptide (ANP) release into plasma from atrial 

myocytes [5, 6]. This polypeptide hormone is primarily expressed and stored in the atria, 

although it is present at lower concentrations in other tissues such as the ventricles and 

kidney [7].  

  ANP acts through its signaling receptor guanylyl cyclase type A receptor (GC-A) 

[8] which has been highly expressed in the rodent heart [9], lung, kidney, adrenal, testis, 

and liver tissues [10, 11]. It has been shown that intravenous injection of OT induced a 

dose-related increase in plasma ANP levels [12]. Conversely, administration of oxytocin 

antagonist (OTA) inhibits ANP release by blocking OTR [4, 6, 13].  

  Since ANP discovery, most of the studies have focused on its renal and 

cardiovascular effects [14, 15]. However, there is increasing evidence for other biological 

effects of ANP [16]. For instance, ANP has been reported to increase lipid mobilization in 

subcutaneous adipose tissue during exercise in overweight men [17]. In a recent study, 

Miyashita et al., using a series of mouse transgenic models, convincingly demonstrated that 

natriuretic peptides/cGMP cascades exert significant roles in mitochondrial biogenesis, fat 

oxidation, and oxygen consumption [18]. This led to the interpretation that natriuretic 

peptides are new players in energy metabolism [19]. In liver, ANP was reported to have a 

protective action against ischemia-reperfusion (I/R) injury through its effect on macrophage 
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activation and reduction in reactive oxygen species (ROS) production [20]. Moreover, the 

marked augmentation of nuclear factor-kappa B (NF-κB) binding activity during 

reperfusion was prevented in ANP-pretreated livers. These effects of ANP on the liver are 

mediated by membrane bound GC-A receptor [21]. However, besides I/R conditions, it is 

not known if ANP exerts a physiological action on liver in normal physiological conditions 

and if the action of ANP is mediated by OT.  

  The aim of present study was to investigate whether OTR blockage targets liver. 

The OTR expression in the liver is low because the methylation of the CpG island in the 

OTR gene promoter suppresses its transcription [22]. Therefore, we hypothesized that the 

treatment with OTA will predominantly target ANP in the heart and, indirectly, the gene 

expression of ANP receptor in the liver. Since we recently reported that gene expressions of 

cardiac ANP and GC-A were under estrogenic control [9] the present experiment was 

conducted in ovariectomized (Ovx) and Sham rats. To evaluate one possible effect of OT-

ANP system in liver, we measured hepatic gene expression of some inflammatory markers 

and hypothesized that these markers should increase following blockade of OT-ANP axis. 

Finally, exercise training was demonstrated to positively influence cardiac OT-ANP 

system, this positive effect of exercise training being shown in estrogen deficient condition 

[9]. Therefore, a second objective of the study was to test the hypothesis that exercise 

training stimulates the hepatic GC-A gene expression in OTA administrated rats leading to 

positive outcomes of exercise training, especially in estrogen deficient state.  
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Materials and Methods 

Animal care: Female Sprague-Dawley strain rats (n = 56) weighing 180-200 g (6 

wk old), obtained from Charles River (St-Constant, PQ, Canada), were housed individually 

and maintained at 20-23 °C, under light-controlled 12:12-h light/dark cycle starting at 6:00 

AM. 

Animals had free access to standard rat chow (12.5% fat, 63.2% carbohydrate, 24.3% 

protein; Kcal, Agribrands Purina Canada, Woodstock, ON) and tap water. The 

experimental protocols were conducted according to the Guidelines of the Canadian 

Council on Animal Care after institutional approval. 

Surgical procedures: Two days after their arrival in our laboratory, the rats were 

randomly assigned to eight experimental groups (n = 7 rats/group). Four groups underwent 

ovariectomy surgery (Ovx), and four groups were sham-operated (Sham). Ovx was 

performed according to the technique described by Robertson et al [23]. For surgery, 

animals were anesthetized with isoflurane inhalation. Animals were treated with antibiotics 

(Tribrissen 24%; 0.125 ml/kg, sc) for 3 days, beginning on the day before surgery. Body 

weight (BW) and food intake in g were monitored every other day. 

Training protocol: Both Ovx and Sham rats were divided into sedentary (Sed) and 

trained (Tr) groups. Ovx and Sham Sed groups remained sedentary and Ovx and Sham Tr 

groups underwent endurance training consisting of continuous running on a motor-driven 

rodent treadmill (Quinton Instruments, Seattle, WA), 5 times/wk for 8 wk. Exercise 

intensity was progressively increased from 15 min/day at 15 m/min, 0% slope, up to 

60 min/day at 26 m/min, 8% slope, for the last 5 weeks of the program. At the end of this 8 

weeks training period, rats were killed 48 h after the last training session.  

Injection procedure: Sham and Ovx rats from the training and sedentary groups 

were divided into two subgroups: OTA and vehicle-treated groups. Rats received a dose 

(200 µl) of drug or vehicle, respectively, which was intra-peritoneally administrated once a 

day for 10 consecutive days until the day before sacrifice. The drug solutions were prepared 

freshly before the experiments. All injection experiments took place at 9:00 AM, and the 

whole injection procedure for one rat lasted about 60 s. The dosage for OTA [d(CH2)5
1, 
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Tyr(Me)2, Orn8]-vasotocin, (Peninsula Laboratories, a Division of Bachem, Belmont, CA, 

USA) was estimated at approximately 0.1 μg/g BW. This dose of OTA was used because 

there is extensive literature indicating that it can affect a variety of physiological and 

behavioral responses in rats and voles [24-26].  

Blood and tissue sampling: All rats were killed between 9:00 and 12:00 AM. Food 

was removed from their cage 2 h before sacrifice. Immediately after complete anesthesia 

(pentobarbital sodium; 50 mg/kg, IP), the abdominal cavity was opened along the median 

line of the abdomen, and approximately 5 ml of blood were collected from the abdominal 

vena cava (<45 s) into syringes pretreated with EDTA (15%). Then, blood was centrifuged 

at 3,000 rpm, 4 °C, for 10 min (Beckman GPR Centrifuge), and plasma was kept at -78 °C 

for further analysis. The liver, uterus, femur, intra-abdominal (mesenteric, urogenital, 

retroperitoneal) fat depots and subcutaneous fat pad along with the skeletal muscles of the 

right limb (soleus, plantaris, and gastrocnemius) were removed. The liver median lobe was 

rapidly excised and quickly freeze-clamped in liquid nitrogen then processed for TAG, 

mRNA, and protein extraction and quantification. All tissue samples were weighted 

(Mettler AE 100) and then frozen immediately in liquid nitrogen and stored along with 

plasma samples at -78 °C until analysis were performed. Uterus were excised and weight to 

confirm the Ovx and sham operation. The right femur weight was obtained following a 

short boiling period in a KOH (10%) solution in order to remove the surrounding tissue. 

 Biochemical analyses: Liver TAG concentrations (mg/g of liver) were estimated 

from glycerol released after ethanolic potassium hydroxide hydrolysis, using commercial 

kits from Sigma (St. Louis, Missouri, USA). Plasma insulin and leptin concentrations were 

determined with radioimmunoassay kits distributed by Linco Research (St. Charles, 

Missouri, USA). Plasma glucose concentrations were determined with the use of a glucose 

analyzer (Model 2300; Yellow Springs Instruments, Yellow Springs, OH). Plasma TAG 

concentrations were measured by enzymatic colorimetric assay with kits available from 

Sigma (St. Louis, Missouri, USA). 

 Isolation of RNA and quantitative real-time (RT) polymerase chain reaction 

(PCR): Total RNA was extracted from freeze-clamped livers with Trizol reagent 
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(Invitrogen Life Technologies, Inc., Burlington, ON) according to the manufacturer’s 

protocol. To remove genomic DNA, RNA samples were incubated with 2 U of 

deoxyribonuclease I (DNase I; Invitrogen Life Technologies, Inc.) per microgram of RNA 

for 30 min at 37°C. PCR was carried out in the iCycler IQ Real Time PCR detection system 

(Bio-Rad Laboratories, Inc., Hercules, CA), using SYBR green chemistry. The samples 

were analyzed in duplicate. For amplification, 2 µL of diluted cDNA were added to a 20 μL 

reaction mixture containing 1X iQ SYBR Green Supermix (Bio-Rad laboratories, Inc.) and 

200 nM forward and reverse primers. The thermal cycling program was 95°C for 2 min, 

followed by 40 cycles of 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 s. The 

primers were purchased from Invitrogen Life Technologies, Inc. Primers sets served to 

generate amplicons (Table 1). Optical data were recorded during the annealing step of each 

cycle. After PCR, the reaction products were melted for 1 min at 95°C, the temperature was 

lowered to 55°C, and then gradually increased to 95°C in 1.0°C increments, 10 s per 

increment. Optical data were collected over the duration of the temperature increments, 

with a dramatic decrease in fluorescence occurring. This was done to ensure that only one 

PCR product was amplified per reaction. The relative expression of the RT-PCR products 

was determined by the ΔΔCt method. This method calculates relative expression using the 

equation: fold induction = 2-[ Ct] where Ct = the threshold cycle, ie, the cycle number at 

which the sample’s relative fluorescence increases to more than the background 

fluorescence, and ΔΔCt = [Ct gene of interest (unknown sample) – Ct glyceraldehyde-3-

phosphate dehydrogenase (unknown sample)] – [Ct gene of interest (calibrator sample) – Ct 

glyceraldehyde-3-phosphate dehydrogenase (calibrator sample)]. One of the control 

samples was chosen as the calibrator sample and tested in each PCR. Each sample was run 

in duplicate, and the mean Ct was taken in the ΔΔCt equation. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was chosen for normalization because this gene showed 

consistent expression relative to other housekeeping genes among the treatment groups in 

our array experiments. 

 Western blot analyses: Liver samples (~ 100 mg) were prepared by 

homogenization in modified RIPA buffer [1x phosphate-buffered saline, 1% Igepal CA-
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630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 10 mg/ml 

phenylmethylsulfonyl fluoride, aprotinin, 100 mM sodium orthovanadate, and 4%  protease 

inhibitor] and then centrifuged at 10,000g for 20 min at 4°C. The supernatants were 

collected, and protein concentration was determined by modified Bradford assay. Thirty 

micrograms of total protein were applied to each well of 10% polyacrylamide gel and 

electrophoresed for 2 h at 130 V along with a set of molecular weight markers (RPN800, 

Amersham Biosciences). The resolved protein bands were then transferred onto 

polyvinylidene difluoride membranes (Hybond-C; Amersham-Pharmacia) at 30 V for 120 

min, at room temperature, using a transfer buffer (25 mmol/l Tris base, 192 mmol/l glycine, 

and 20% methanol). The blots were blocked overnight at 4°C with blocking buffer (5% 

nonfat milk in 10 mmol/l Tris, pH 7.5, 100 mmol/l NaCl, 0.1% Tween 20). The membrane 

were then probed with specific primary antibody: NF-κB (1:2,000) obtained from Cell 

Signaling) overnight at 4°C. As an internal control, blots were probed with a GAPDH 

antibody (1:15,000; Sigma). They were then washed in triethanolamine-buffered saline 

washing buffer (10 mmol/l Tris, pH 7.5, 100 mmol/l NaCl, 0.1% Tween 20) and incubated 

with horseradish peroxidase conjugated immunoglobulin G (anti-rabbit; Santa Cruz 

Biotechnology). The blots were detected by a chemiluminescence detection system 

(RPN2132, Amersham-Pharmacia) and visualized by exposure to Kodak X-Omat film. 

Densitometric measurement of the bands was performed using Image J software. 

 Statistical analysis: Values are expressed as mean ± SE. Statistical analyses were 

performed using a three-way ANOVA for non-repeated measures using surgery, OTA and 

training as the main effects. Fisher’s post hoc test was used in the event of a significant (P 

< 0.05) F ratio. 
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Results  

Body weight (P < 0.01) and energy intake were higher (P < 0.05) and uterus weight 

was lower (P < 0.01) in Ovx compared to Sham rats (Table 2). All of these variables were 

not affected either by training or the OTA administration. Femur weight was higher (P < 

0.01) with training in all groups. A small but significant (P < 0.05) decrease in femur 

weight with OTA administration was found in all groups. The sum of leg muscle weights 

was higher (P < 0.01) in Ovx than in Sham rats while unchanged by OTA and significantly 

(P < 0.01) increased following training in Ovx animals (Table 2).  

Gene expression levels of hepatic GC-A measured in the Sed state were 

significantly (P < 0.05) decreased in Sham and Ovx rats injected with OTA compared to 

respective groups receiving only the vehicle (Fig. 1a). Hepatic GC-A mRNA was not 

affected by training in OTA injected rats. In non-injected OTA rats, however, hepatic GC-

A gene expression was decreased (P < 0.05) in Sham rats and increased (P < 0.01) in Ovx 

rats by training. There was no isolated effect of Ovx on GC-A mRNA. 

 To evaluate the potential effect of a reduction in the OT-ANP axis in liver, we 

measured some inflammatory markers. Ovx resulted in lower (P < 0.01) hepatic C-reactive 

protein (CRP) mRNA in all Sed rats with and without OTA administration (Fig. 1b). 

Opposite to the GC-A gene response, OTA administration resulted in a significant (P < 

0.05) increase in hepatic CRP mRNA in Sham and Ovx rats measured in the Sed state. On 

the other hand, training had no significant effect on hepatic CRP gene expression. Protein 

content of NF-κB on the whole was increased (P < 0.05) in Ovx animals independently of 

the training state or the OTA injection (Fig. 2). 

Liver TAG levels were higher (P < 0.01) in Ovx than in Sham rats independently of 

OTA administration (Fig. 3a). Training resulted in lower (P < 0.05) hepatic fat 

accumulation in Ovx rats. Plasma TAG levels were lower (P < 0.01) in Ovx than in Sham 

rats independently of the training state and the OTA administration (Fig. 3b). Intra-

abdominal and subcutaneous fat pat weights as well as plasma leptin levels were higher (P 

< 0.01) in Ovx than in Sham rats in the Sed state in both OTA and vehicle-injected 

conditions (Fig. 4). These differences disappeared in Tr rats. There was no effect of OTA in 
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any of these variables with the exception of a significant (P < 0.01) OTA effect resulting in 

higher subcutaneous fat pad weight found in Ovx Sed rats (Fig. 4b).  

Higher (P < 0.05) plasma glucose concentrations was found in Ovx rats 

independently of the Tr state and OTA administration (Fig. 5a). Training was associated 

with a significant (P < 0.05) decrease in plasma insulin levels in Ovx and Sham rats 

independently of OTA administration (Fig. 5b).  
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Discussion 

The main finding of the present study is that OTA administration over 10 days 

down-regulated hepatic GC-A gene expression in Sham as well as in Ovx rats. This 

strongly suggests an indirect action of the OT system on liver independently of the 

estrogenic status of the animal. OTA administration also resulted in an increase in CRP 

mRNA levels, an important pro-inflammatory marker synthesized in the liver. This is in 

line with previous suggestions that a reduction in ANP action in the liver during 

reperfusion may result in an increase in pro-inflammatory response [27]. A small but 

significant decrease in femur weight with OTA administration is consistent with the recent 

observations that OT is involved in osteogenesis and protection against osteoporosis [28]. 

Finally, it seems that exercise training does not play an essential role in these actions. 

1. GC-A in OTA-injected groups 

The down-regulation of the ANP receptor gene expression in liver of OTA-injected 

rats may be taken as an indication that the inhibition of OT-ANP system targets the liver. In 

this context, it is reasonable to speculate that ANP release from the heart was inhibited by 

cardiac OTR blockade in OTA-injected rats thus leading to a decrease in hepatic GC-A 

gene expression. Plasma ANP levels were not measured in the present study. However, in a 

previous study from our group (Jankowski et al. 2010, unpublished data), it was found that 

the same OTA administered at the same dose for 10 days decreased plasma ANP 

concentrations by about 60% in Ovx spontaneously hypertensive rats. Recent findings 

demonstrated that even a single injection of OTA to neonatal rats decreases cardiac ANP 

mRNA expression [13]. The reduction in hepatic GC-A mRNA in OTA animals was 

observed in Sham as well as in Ovx rats. This indicates that the reduction of GC-A gene 

expression by rat treatment with OTA was not further aggravated by the absence of 

estrogens. It is possible that the effect of OTA administration completely overcomes the 

estrogen withdrawal in regulating ANP receptors in liver.  On the other hand, GC-A gene 

expression was not reduced in Ovx animals injected with the vehicle but the OTA treatment 

blocked response of liver GC-A mRNA to training exercise. Interestingly, the training 

response in Sham rats injected with the vehicle was manifested by down-regulation and in 
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the Ovx rats injected with the vehicle by up-regulation of GCA mRNA. Although exercise 

training has been reported to have several corrective effects of metabolic disturbances, the 

exercise training could not compensate the negative effect of OTA treatment at least as far 

as ANP receptor expression is concerned.  

One of the known effects of ANP action in liver is a protective effect against I/R 

injury [21, 29]. This effect takes place through, among others, a reduction in inflammatory 

markers. Based on these observations, we postulated that a blockade of the OT-ANP 

system would result in reduction of the ANP protective action in the liver under the present 

physiological conditions, thus causing an increase in gene expression of inflammatory 

markers. Supporting this hypothesis, we found that CRP gene expression was indeed 

increased in liver of OTA-injected rats and as for GC-A mRNA reduction, in Sham as well 

as in Ovx animals. CRP is an important pro-inflammatory marker synthesized and secreted 

by the liver. CRP levels increase very fast in response to trauma, inflammation, and 

infection and decrease just as rapidly with the resolution of the condition. Thus, the 

measurement of CRP is commonly used to monitor various inflammatory states [30].  

The present increase in CRP mRNA reinforces the concept that a reduction in ANP 

receptors could contribute to increase in inflammatory markers in the liver. On the other 

hand, NF-κB protein content was, on the whole, higher in Ovx than in Sham rats indicating 

that the absence of estrogens is a factor that triggers an increase in pro-inflammatory 

markers in the liver. This finding is in agreement with previous reports [31]. However, 

opposite to CRP, the protein content of NF-κB was not affected by OTA administration. 

Hepatic protein content of NF-κB was not changed either by exercise training in Ovx rats 

although training resulted in a decrease in liver fat accumulation. It is possible that ANP 

action in the liver may not take place through the NF-κB pathway. Surprisingly, 

ovariectomy resulted in lower CRP mRNA in spite of the large increase in liver fat. It has 

been suggested that estrogen withdrawal-mediated decrease in CRP may not represent 

down-regulation of the inflammatory response [32]. 
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1.1 Metabolic parameters 

  As previously reported liver and adipose tissue fat accumulation was higher in Ovx 

rats and reduced in Ovx-Tr animals [33, 34]. Liver and intra-abdominal fat accumulation in 

Ovx rats was not affected by OTA administration. This argues against a role for OT in fat 

accumulation in these tissues. However, fat accumulation in subcutaneous tissue was higher 

in OTA- than in vehicle-injected Ovx animals. It is interesting to recall that exercise-

induced lipid mobilization in subcutaneous tissue has been reported to be mainly related to 

natriuretic peptides in overweight men [17]. It is thus possible that the absence of ANP in 

OTA-Ovx rats might have contributed to the higher increase in fat accumulation in the 

subcutaneous tissue of these rats. However, subcutaneous fat accumulation was reduced 

similarly in exercise trained rats whether they were injected with OTA or the vehicle. Since 

the action of ANP in the study of Morro et al. [17] was during exercise, it is uncertain if 

ANP might play a role important enough to influence fat accumulation on a long term 

basis.  

2. GC-A in non-receiving OTA groups  

  Even though exercise training was without effect on the reduced GC-A gene 

expression in OTA-injected rats, the response in Sham rats was quite different. 

Interestingly, GC-A mRNA response was opposite according to the presence or the absence 

of estrogen. GC-A gene expression was reduced in Sham and increased in Ovx rats 

following training. Interestingly, the same type of response has been previously observed in 

the right atrial tissue [9]. The response of GC-A mRNA to exercise training in the present 

Sham rats suggests that exercise training had compensatory action only in estrogen 

deprived state. Although it remains speculative, it is possible that under normal estrogenic 

conditions, exercise training reduced ANP receptors expression in liver because ANP 

action in liver is a protective mechanism that does not need to be maintained under the 

training state. Under estrogen withdrawal conditions, however, liver fat is increased and the 

protective role of ANP in liver must be accentuated.  
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2.1 Metabolic parameters 

   In our study, ovariectomy showed a tendency to decrease in hepatic GC-A mRNA, 

while Gutkowska et al. reported cardiac GC-A gene expression significantly decreased by 

ovariectomy. Interestingly hepatic CRP mRNA level was significantly lower in Ovx than in 

Sham rats in sedentary state. Our observation is similar to previous reports indicating that 

ovariectomy significantly reduced plasma CRP in rats [35] and 17β-estradiol replacement 

increase plasma CRP levels in rats [32, 36, 37]. The mechanism by which estrogen- 

mediated elevations in CRP levels remains unknown. The present data of liver TAG 

content in vehicle receiving rats was consistent with previous findings on the development 

of hepatic steatosis after ovariectomy, showing higher liver TAG content in Ovx than in 

Sham rats. According to a previous study from our group, reduction in lipid oxidation and 

an increase in lipogenic gene expressions are defective mechanisms leading to lipid 

accumulation in the liver of Ovx rats [38].  

  In addition to liver fat accumulation, we found increased adiposity fat mass by 

ovariectomy, as previously observed, [9] corroborating the important role played by 

estrogens in adipose tissue fat regulation. We observed that treatment with OTA stimulated 

subcutaneous fat mass in Ovx rats. This is an interesting observation considering that recent 

data in GC-A knockout mice suggest that high fat diet induce obesity at least partially 

through down-regulation of GC-A receptor [18]. Both adipose tissue fat mass accumulation 

and liver TAG content were reduced by training in Ovx animals. The level of reduction in 

adipose tissue with training appears to be higher than the level of reduction in the liver, 

suggesting that removal of excess fat accumulation by ovariectomy in the liver may be 

more complicated than in the adipose tissue in the absence of estrogen. The decrease of 

plasma TAG following ovariectomy is quite common, and is reverse of liver TAG content. 

The existence of such an inverse association between high liver TAG and low plasma TAG 

levels has also been observed in a recent study [39].  

In summary, findings of the present study suggest that OT-ANP axis may contribute 

to the protection of hepatic tissue under physiological conditions. ANP may exert its role 

through GC-A expression to reduce inflammatory markers within the hepatocytes. The 
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mechanism by which ANP triggers hepatic protection against inflammation via GC-A, and 

transduction pathway(s) has yet to be defined. 
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Table 1. RT-PCR primer sequences

Gene Sense Primer (5'-3') Antisense Primer (5'-3') Accession No.

    

GC-A ATCACAGTGAATCACCAGGAGTTC AGATGTAGATAACTCTGCCCTTTCG NM012613 

 

CRP CTTCTCTCAGGCTTTTGGTCA GCTTCCAGTGGCTTCTTTGA NM017096 

    

GAPDH TTCAATGGCACAGTCAAGGC TCACCCCATTTGATGTTAGCG NM017008 

 
 

GC-A: guanylyl cyclase type A receptor, CRP: C-reactive protein, GAPDH: 

glyceraldehyde-3-phosphate dehydrogenase 
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Table 2. Body weight, energy intake, uterus, femur and the sum of leg muscle weights in 

sham-operated (Sham) and ovariectomized (Ovx) rats either kept sedentary (Sed) or trained 

(Tr) for 8 wk and either injected with oxytocin antagonist (OTA) or vehicle. 

 Sham-vehicle Sham-OTA Ovx-vehicle Ovx-OTA 

Body weight, g 
Sed 
Tr 

 
303 ± 7 
305 ± 7 

 
290 ± 7 
298 ± 8 

 
  346 ± 10++ 

343 ± 8++ 

 
347 ± 9++ 

  341 ± 14++ 

Energy intake, kcal/day 
Sed 
Tr 

 
74 ± 3 
74 ± 3 

 
69 ± 2 
71 ± 2 

 
76 ± 2+ 
75± 1+ 

 
80 ± 2+ 
73 ± 3+ 

Uterus, g 
Sed 
Tr 

 
0.62 ± 0.08 
0.67 ± 0.06 

 
0.54 ± 0.04 
0.63 ± 0.07 

 
0.1 ± 0.007+ 
0.1 ± 0.004++ 

 
    0.09 ± 0.007+ 

0.1 ± 0.01++ 

Femur weight, g 
Sed 
Tr 

 
0.67 ± 0.02 

     0.72 ± 0.03&&

 
0.65 ± 0.02* 

     0.68 ± 0.02*&&

 
0.64 ± 0.02 

     0.72 ± 0.03&& 

 
0.6 ± 0.03* 

        0.68 ± 0.02*&& 

Sum of muscle weights, g 
Sed 
Tr 

 
2.1 ± 0.04 
2.2 ± 0.07 

 
2.0 ± 0.07 
2.0 ± 0.06 

 
2.2 ± 0.07++ 

     2.5 ± 0.05&&++ 

 

 
2.1 ± 0.06++ 

     2.5 ± 0.13&&++ 
 

 
 

Values are means ± SE, n = 6 rats/group. * Significantly different from respective vehicle 

group P < 0.05. + Significantly different from respective Sham group P < 0.05, ++P < 0.01. 
&& Significantly different from respective sedentary group P < 0.01. 
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Figure legends 

 Fig. 1 a) Hepatic guanylyl cyclase type A receptor (GC-A) mRNA levels and b) Hepatic 

C-reactive protrotein (CRP) mRNA levels in sham-operated (Sham) and ovariectomized 

(Ovx) rats either kept sedentary (Sed) or trained (Tr) for 8 wk and either injected with 

oxytocin antagonist (OTA) or vehicle. Values are means ± SE, n = 6 rats/group. * 

Significantly different from respective vehicle group P < 0.05, ** P < 0.01. ++ Significantly 

different from respective Sham group P < 0.01. & Significantly different from respective 

sedentary group P < 0.05, &&P < 0.01. 

 

 Fig. 2 Hepatic nuclear factor-kappa B (NF-κB) protein content in sham-operated (Sham) 

and ovariectomized (Ovx) rats either kept sedentary (Sed) or trained (Tr) for 8 wk and 

either injected with oxytocin antagonist (OTA) or vehicle. Values are means ± SE, n = 6 

rats/group. + Significantly different from respective Sham group P < 0.05. 

 

 Fig. 3 a) Liver triacylglycerol (TAG) concentrations and b) plasma levels of TAG in sham-

operated (Sham) and ovariectomized (Ovx) rats either kept sedentary (Sed) or trained (Tr) 

for 8 wk and either injected with oxytocin antagonist (OTA) or vehicle. Values are means ± 

SE, n = 6 rats/group. + Significantly different from respective Sham group P < 0.05, ++ P < 

0.01. & Significantly different from respective sedentary group P < 0.05. 

 

Fig. 4 a) Intra-abdominal (mesenteric, retroperitoneal, and urogenital), b) subcutaneous fat 

pad weight, and c) plasma leptin concentrations in sham-operated (Sham) and 

ovariectomized (Ovx) rats either kept sedentary (Sed) or trained (Tr) for 8 wk and either 

injected with oxytocin antagonist (OTA) or vehicle. Values are means ± SE, n = 6 

rats/group. ** Significantly different from respective vehicle group P < 0.01. ++ 

Significantly different from respective Sham group P < 0.01. & Significantly different from 

respective sedentary group P < 0.05, && P < 0.01. 
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Fig. 5 a) Plasma concentrations of glucose and b) insulin in sham-operated (Sham) and 

ovariectomized (Ovx) rats either kept sedentary (Sed) or trained (Tr) for 8 wk and either 

injected with oxytocin antagonist (OTA) or vehicle. Values are means ± SE, n = 6 

rats/group. + Significantly different from respective Sham group P < 0.05. & Significantly 

different from respective sedentary group P < 0.05. 
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Fig 1.  
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Fig 3. 
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Fig 4. 
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Fig 5.  
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Chapter 3: General discussion and conclusion 

3.1 General discussion 

The general goal of the three studies presented in this thesis was to determine 

contributing factors related to the development of NAHS in an estrogen deficient state. 

Menopausal transition in women represents an experimental environment to study the role 

of estrogen on fat and body weight along with related deleterious metabolic complications 

(Shi and Clegg 2009). On the other hand, since estrogen secretion does not cease rapidly 

following the last menses in women, making menopause a relatively long and gradual 

process, collection and interpretation of data regarding the estrogen deficiency and 

aforementioned parameters seems to be complicated (Demerath, Towne et al. 1999; 

Longcope 2001). Ovariectomy in rodents that consists of bilateral removal of the ovaries, 

results in reductions in circulating estrogens and leads to increased food intake and body 

weight, thus resulting in increased adipose tissue and liver fat accretion (Pighon, Paquette 

et al. 2009). Therefore, although not perfect, the Ovx animal model provides an appropriate 

research tool to mimic the post-menopausal hormonal status to study the phenomenon of 

hepatic steatosis as well as to better understand certain adaptations of estrogen withdrawal 

in response to endurance exercise training. 

At first, it should be noted that the conclusions in all of three studies are limited to 

the used of the experimental model. In fact, the interpretation of results obtained from Ovx 

rats must be made with caution when it comes to transpose them to humans. We have to 

take into account that while menopause in women implies a continuum reduction of 

estrogen, Ovx in rats is an aggressive method of estrogen withdrawal which may result in 

metabolic alterations that may differ from those associated with menopause in human. 

Moreover, it would have been preferable to impose in our Ovx rats an energy restriction 

equivalent to the food intake of Sham rats to prevent the confounding effect of Ovx-

induced hyperphagia. In addition, the model of NAHS induction by a diet rich in fat is 

perhaps not representative of all cases associated with obesity. Nevertheless, we believe 

that the results obtained from the present Ovx animal model provide valuable information 
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on estrogen withdrawal induced hepatic steatosis. In the three studies, all ovariectomized 

animals depicted an increase in body mass and adiposity with a significant reduction in 

uterus weight. These morphologic changes, typically associated with Ovx in many studies, 

confirm the quality of our ovariectomy surgeries (Wade, Gray et al. 1985; Deshaies, 

Dagnault et al. 1997; Picard, Deshaies et al. 2000; Lemieux, Picard et al. 2003; Paquette, 

Shinoda et al. 2007).  

The three studies conducted confirmed the results of previous studies on the relation 

between the estrogen withdrawal and the development of hepatic steatosis in rats (Paquette, 

Shinoda et al. 2007; Paquette, Wang et al. 2008). In all cases, ovariectomy induced an 

important accumulation of lipids in the form of TG in the liver. In the first study we found 

that the fat accumulation in the liver was not reduced following an 8-week diet switch from 

HF to SD. This experiment was designed to test the hypothesis that once liver is infiltrated 

with lipids, reduction of fat accumulation is more difficult in Ovx than in rats with a normal 

estrogen production. To verify this hypothesis, we stimulated fat accretion in livers of Ovx 

and Sham rats by submitting them to a HF diet and evaluated reversal of liver TG 

accumulation by switching feeding to a SD diet. Results of this approach showed that, at 

week 13 (8 weeks after switching), liver of Ovx animals was as much infiltrated with lipids 

whether these animals switched to the SD diet or were maintained on the HF diet. Our data 

on energy intake with the switch of the diet could not explain the absence of resorption of 

liver TG accumulation in Ovx rats. Moreover, the switch of the diet had similar effects on 

body composition in both Ovx and Sham rats. Taken together, these observations point to 

the interpretation that liver fat resorption is hampered in the absence of estrogens and 

support the contention that liver fat infiltration in Ovx rats is not exclusively related to an 

increased hepatic lipid uptake, but also facilitated by an intra-hepatic mechanisms related to 

the absence of estrogens. In this regard, some evidence has recently been gathered 

indicating that estrogen deprivation might affect intra-hepatic pathways leading to 

excessive lipid accumulation. Augmented lipogenesis (shown by increased expression of 

important lipogenic genes such as SREBP-1c, SCD-1, PPAR-γ, FAS, and ACC) along with 

reduced lipid oxidation (shown by decreased fatty acid oxidation rate and expressions of 
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HSL and PPAR-α) has been reported in liver of Ovx rodents thus supporting the 

interpretation that indeed estrogens act locally in liver increasing the risk of metabolic 

disturbances (D'Eon, Souza et al. 2005; Na, Ezaki et al. 2008; Paquette, Wang et al. 2008; 

Paquette, Chapados et al. 2009; Rogers, Perfield et al. 2009; Pighon, Gutkowska et al. 

2010).  

An interesting abservation in our first study was the observation of an inverse 

association between high liver TG and low plasma TG levels in all experimental groups. 

Since plasma TG concentrations are mainly determined by the activity of the LPL and the 

hepatic VLDL-TG production, we hypothesized that VLDL-TG production in liver of Ovx 

rats is decreased thus resulting in lower plasma TG levels in these animal.  Estrogens are 

known to elevate serum TG levels in both rat (Russell, Amy et al. 1993; DiPippo, Lindsay 

et al. 1995) and human (Matthews, Meilahn et al. 1989; Love, Newcomb et al. 1990; Love, 

Wiebe et al. 1991; Walsh, Schiff et al. 1991; Barrett-Connor 1993) and this has been 

suggested to be due to increased hepatic VLDL production by estrogens (Krauss and 

Burkman 1992).  

Based on the postulate that estrogens are linked to the VLDL pathway, we 

conducted a second study targeting the elimination mechanism of liver lipids in Ovx rats, 

that is, hepatic VLDL-TG production along with the expression of MTP, a molecule that 

exerts a central regulatory role in VLDL assembly and secretion. The data reported in this 

study were consistent with previous findings of the development of a state of hepatic 

steatosis in Ovx animals and its prevention by E2 supplementation (Paquette, Wang et al. 

2008). Results of our physiological approach indicated that VLDL-TG production was 

decreased in Ovx rats, suggesting a reduction in VLDL synthesis and secretion with 

estrogen withdrawal. Moreover, our study provided the first molecular evidence that 

hepatic MTP gene expression decreased (~ -30%) by estrogen withdrawal. Both of these 

responses were re-established by E2 replacement. These observations suggest that 

estrogens act as a protective tool to keep normal lipid accumulation in the liver and indicate 

that a reduction in VLDL production by the liver may be a contributing factor responsible 
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for the large hepatic fat accumulation observed in Ovx rats. Molecular mechanisms by 

which estrogens regulate liver lipid metabolism and related target genes are not well 

known. It is possible that estrogens affect gene expressions of target genes involved in liver 

lipid exportation through protein-protein interaction in the nucleus and/or activation of 

signal transduction pathways at the plasma membrane. As mentioned earlier, it seems that 

estrogens are involved in the regulation of other pathways of liver lipid accumulation. 

However, the contribution of each pathway under estrogen deficiency status is unclear and 

needs to be revealed by future investigations considering the limitations of our present 

studies. The assessment of hepatic VLDL-TG production rate in this project was carried out 

by measuring plasma concentrations of TG over a period of 90 min following the 3-h lipid 

infusion and injection of Triton WR-1339 to block LPL activity while the rats were alive 

under otherwise normal physiological conditions. The analysis of TG levels in plasma is 

regarded as an estimate of the synthesis and secretion of hepatic VLDL (Lewis, Uffelman 

et al. 1995; Zhang, Hernandez-Ono et al. 2004). It would have been more appropriate to 

proceed to the quantification of plasma apoB to obtain a more precise rate of the synthesis 

and secretion of hepatic VLDL. Infusion of stable isotopes may also have offered a more 

reliable approach for measuring in vivo VLDL-TG kinetics (Adiels, Olofsson et al. 2008). 

However, the information obtained with the use of the present approach has proven to be 

effective in evaluating the production of hepatic VLDL (Chapados, Seelaender et al. 2009). 

Since recent results indicated that exercise training has a significant reducing effect 

on Ovx-induced fat accumulation in liver (Corriveau, Paquette et al. 2008; Pighon, Paquette 

et al. 2009; Pighon, Paquette et al. 2009; Pighon, Barsalani et al. 2010), we also examined 

the effects of exercise training on hepatic VLDL-TG production and gene expression of 

related makers in Ovx rats. Surperisingly, our results show that plasma VLDL-TG levels 

were also reduced by exercise training in all groups, including the Ovx rats for which 

VLDL-TG levels were already reduced by the absence of estrogens. Liver MTP and 

DGAT-2 mRNA levels were also suppressed by exercise training. The direct effect of 

exercise training on the diminished gene expression of key molecules involved in VLDL-

TG synthesis resulting in reduced VLDL-TG production has been recently reported (Lira, 
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Tavares et al. 2008; Tsekouras, Magkos et al. 2008; Chapados, Seelaender et al. 2009). 

Given that intra-abdominal fat pad weights were lower in our Ovx animals submitted to the 

training program, this may primarily be explained by the fact that exercise training 

increases the use of lipids, therefore reducing body fat accumulation and the availability of 

lipids taken up by the liver. However, a very recent research work from our lab reported 

that exercise training, similarly to estrogens reduces fat accumulation inside the liver of 

Ovx rats through regulation of key molecules involved in lipogenesis and lipid oxidation 

(Pighon, Gutkowska et al. 2010). Moreover, since insulin has an inhibitory impact on 

hepatic VLDL-TG production, improved insulin sensitivity (observed as lower plasma 

insulin levels) following exercise training might be a contributing factor in exercise-

reduced VLDL synthesis and/or secretion. Taken together, these data indicate that 

endurance exercise training is an effective intervention for the improvement of lipid profile 

in Ovx animals not only by reducing the FFA release from adipose tissue and liver, but also 

by positively affecting intra-hepatic pathways of lipid accumulation. Nevertheless, these 

interpretations should be confirmed by further studies employing more precise models 

(such as pair-feeding) and measuring insulin sensitivity using more sophisticated 

techniques. 

Finally, in an attempt to broaden our knowledge of the metabolic functions of OT-

ANP system we conducted our third study to investigating the possibility that OTR 

blockage targets liver lipid metabolism. We hypothesized that the treatment with OTA (for 

ten consecutive days before sacrifice day) will reduce ANP synthesis in the heart and, in 

turn, the gene expression of ANP receptor in the liver. Since it has been recently reported 

that gene expressions of cardiac ANP and GC-A were under estrogenic control 

(Gutkowska, Paquette et al. 2007) this experiment was conducted in Ovx and Sham rats. 

The key finding of the study was that OTA administration over 10 days down-regulated 

hepatic GC-A gene expression in both Sham and Ovx rats; suggesting an indirect action of 

the OT system on the liver independently of the estrogenic status of the animal. It seems 

that the effect of OTA administration overcomes the estrogen withdrawal in regulating 

ANP receptors in liver. This finding also may be an indication that inhibition of OT-ANP 
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system targets the liver demonstrating that OTA treatment targets directly cardiac ANP and 

indirectly hepatic ANP receptor. The main limitation of this study was that because of some 

technical problems we were not able to measure plasma ANP levels in a reasonable time 

frame. However, in a previous study from our group (Jankowski et al. 2010, unpublished 

data) the same interventions of OTA administration decreased plasma ANP concentrations 

by about 60% in Ovx rats. In addition, based on the observations that ANP plays a 

protective role against I/R injury through a reduction in inflammatory markers, we 

postulated that a blockade of the OT-ANP system would result in decreased protective 

effect of the ANP in the liver under the normal physiological conditions. Supporting this, 

OTA administration resulted in an increase in CRP mRNA levels, an important pro-

inflammatory marker synthesized in the liver. However, the protein content of NF-κB was 

not affected by OTA administration. This may indicate that ANP action in the liver does 

not take place via NF-κB pathway. However, the mechanism by which ANP triggers 

hepatic protection against inflammation via GC-A, and transduction pathway(s) has yet to 

be defined. In this regard, employment of older animal models is suggested for the 

investigation of the relevant effects of post-menopausal hormonal state and/or OT-ANP 

system on the inflammatory markers. As for the results of this study, a blockade of the OT-

ANP axis results in down-regulation of hepatic GC-A gene expression that is associated 

with an increased hepatic CRP gene expression which occurs independently of the 

estrogenic status. Moreover, although exercise training has been reported to have several 

corrective effects of metabolic disturbances, the exercise training could not compensate the 

negative effects of OTA treatment. We also observed that treatment with OTA stimulated 

subcutaneous fat mass in Ovx rats without effects on TG content in plasma and liver. Both 

adipose tissue fat mass accumulation and liver TG content were reduced by training in Ovx 

animals but the level of reduction in adipose tissue was higher than the level of reduction in 

the liver, suggesting that removal of excess fat accumulation by ovariectomy in the liver 

may be more complicated than in the adipose tissue in the absence of estrogen. Again, this 

implies the intra-hepatic effects of estrogen withdrawal on liver lipid infiltration.  
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It has been demonstrated that the accumulation of liver TG observed in HF feeding 

is mostly the result of an increase in FFA uptake (Gauthier, Favier et al. 2006). We did not 

observe such augmentation in plasma FFA levels in Ovx rats, which may be consistent with 

the loss of the lipolytic action of estrogens in visceral adipose tissue (D'Eon, Souza et al. 

2005). However, increased lipid uptake by liver as the consequence of the central effects of 

estrogen withdrawal (such as increased food intake which results in higher total and intra-

abdominal fat) may primarily explain the development of Ovx-induced NAHS. 

Nevertheless, Fisher et al. demonstrated that despite a similar food intake, Ovx-pair fed 

animals gained markedly more weight than did Sham animals and nearly as much as Ovx-

ad libitum animals (Fisher, Kohrt et al. 2000). D’Eon et al. also reported that estrogen 

decreased adiposity in Ovx rodents not confounded by differences in food intake (D'Eon, 

Souza et al. 2005). Unpublished data from our lab also showed that despite a certain 

resorption of hepatic steatosis, pair-feeding in Ovx rats did not completely prevent liver fat 

accretion in estrogen deficiency state and the degree of liver lipid infiltration was 

significantly higher in Ovx rats than in Sham animals (Fig. 14A). Supporting this, the 

results of our second study on food intake demonstrate that the large increase in liver fat in 

Ovx group can hardly be explained by the higher energy intake in these estrogen deprived 

animals (Fig. 14B). Only E2 replacement prevented the development of Ovx-induced 

NAHS as shown in Fig. 14B as previously reported (Paquette, Shinoda et al. 2007; 

Paquette, Wang et al. 2008; Pighon, Barsalani et al. 2010; Pighon, Gutkowska et al. 2010). 

Therefore, we can conclude that estrogen withdrawal favors the development of NAHS 

even in the absence of excessive energy intake suggesting that alterations of intra-hepatic 

mechanisms including reduced VLDL-TG production are most likely contributing factors 

in the pathology Ovx-induced NAHS.   
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A) 

 

Figure 14A. Effect of energy restriction in Ovx rats equivalent to food intake of intact rats on the 

hepatic TG accumulation. n = 8/group. sham-operated (Sham), ovariectomize (Ovx), and Ovx group with 

energy restriction (OvxPF). * Significantly different from Sham,  P < 0.05. + Significantly different from Ovx,  

P < 0.05. Taken from (Paquette A. 2008). 

B)

Figure 14B. a) Energy intake and b) Liver TG content in sham-operated (Sham), ovariectomize (Ovx), and 

Ovx rats with 17β-estradiol supplementation (OvxE2) in sedentary (Sed) and trained (Tr) states. n = 8-10 

rats/group for energy intake and  n = 7-12 for liver TG.  ** Significantly different from Sham, P < 0.01; && 

Significantly different from OvxE2, P < 0.01;   + Significantly different from Sed, P < 0.05,   ++ P < 0.01. 
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Taken together, observations from the three studies indicate the important role of 

estrogen in the regulation of lipid metabolism in the liver. These data also indicate that liver 

fat infiltration in Ovx rats is not solely related to an increased hepatic lipid uptake, but also 

facilitated by an intra-hepatic mechanisms related to the absence of estrogens. Among these 

mechanisms a reduction in hepatic VLDL-TG production seems to be of importance. In 

addition, the demonstration of the reduction in gene expression of ANP receptors in OT 

blocked animals may be of importance in further work on the action of OT-ANP system in 

liver. Experimental approaches employed in the studies of this thesis may be useful for 

developing future design projects on the identification of the intra-cellular mechanisms 

which have yet to be elucidated in estrogen deficient-induced hepatic steatosis. 

3.2 Conclusion 

The overall results of the studies that comprise this thesis indicate the emergence of 

estrogens as an important regulator of hepatic lipid homeostasis. Results from this thesis 

reinforce the concept that estrogens act as a protective tool to keep normal lipid 

accumulation in the liver. These data also support the interpretation that liver fat infiltration 

in Ovx rats is not exclusively related to an increased hepatic lipid uptake, but also 

facilitated by an intra-hepatic mechanisms related to the absence of estrogens. We provide 

evidences that hepatic fat accumulation and resorption are dependent on mechanisms 

associated with a normal estrogenic status, more specifically; a decrease in VLDL-TG 

production might be a contributing factor responsible for hepatic fat accumulation induced 

by estrogen deficiency. In addition, we showed that endurance exercise training lowers 

liver fat accretion and VLDL-TG production independently of the estrogen levels. Lastly, 

results from the third study suggest that the OT-ANP axis may contribute to the protection 

of hepatic tissue under normal physiological conditions.  ANP may exert its role through 

GC-A expression to reduce inflammatory markers within hepatocytes. However, the 

present results do not provide any evidence that the action of OT-ANP axis on liver is 

influenced by ovariectomy or exercise training. The OT-ANP axis action on metabolic 
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activity in liver is unknown and may reveal to be very important in the near future as it was 

the case for its action in the heart. 

On a clinical point of view, the results of this PhD thesis suggest that the reduction 

of excess fat accumulation in the liver may be complicated by the absence of estrogens in 

post-menopausal women and emphasizes the importance of preventive strategies. 

Furthermore, the data from this thesis indicates that exercise training in post-menopausal 

women could prevent menopausal associated hepatic steatosis and consequently lead to an 

improvement in lipid profile and prevent the development of cardiovascular diseases.  
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