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Résumé 

L’inflammation: Une réponse adaptative du système immunitaire face à une insulte 

est aujourd’hui reconnue comme une composante essentielle à presque toutes les maladies 

infectieuses ou autres stimuli néfastes, tels les dommages tissulaires incluant l’infarctus du 

myocarde et l’insuffisance cardiaque. Dans le contexte des maladies cardiovasculaires, 

l’inflammation se caractérise principalement par une activation à long terme du système 

immunitaire, menant à une faible, mais chronique sécrétion de peptides modulateurs, 

appelés cytokines pro-inflammatoires. En effet, la littérature a montré à plusieurs reprises 

que les patients souffrant d’arythmies et de défaillance cardiaque présentent des taux élevés 

de cytokines pro-inflammatoires tels le facteur de nécrose tissulaire alpha (TNFα), 

l’interleukine 1β (IL-1β) et l’interleukine 6. De plus, ces patients souffrent souvent d’une 

baisse de la capacité contractile du myocarde.  

Le but de notre étude était donc de déterminer si un lien de cause à effet existe entre 

ces phénomènes et plus spécifiquement si le TNFα, l’IL-1β et l’IL-6 peuvent affecter les 

propriétés électriques et contractiles du cœur en modulant le courant Ca2+ de type L (ICaL) 

un courant ionique qui joue un rôle primordial au niveau de la phase plateau du potentiel 

d’action ainsi qu’au niveau du couplage excitation-contraction. Les possibles méchansimes 

par lesquels ces cytokines exercent leurs effets seront aussi explorés. 

Pour ce faire, des cardiomyocytes ventriculaires de souris nouveau-nées ont été mis 

en culture et traités 24 heures avec des concentrations pathophysiologiques (30 pg/mL) de 

TNFα, IL-1β ou IL-6. Des enregistrements de ICaL réalisés par la technique du patch-clamp 

en configuration cellule entière ont été obtenus par la suite et les résultats montrent que le 

TNFα n’affecte pas ICaL, même à des concentrations plus élevées (1 ng/mL). En revanche, 

l’IL-1β réduisait de près de 40% la densité d’ICaL. Afin d’examiner si le TNFα et l’IL-1β 

pouvaient avoir un effet synergique, les cardiomyocytes ont été traité avec un combinaison 

des deux cytokines. Toutefois aucun effet synergique sur ICaL n’a été constaté. En outre, 

l’IL-6 réduisait ICaL significativement, cependant la réduction de 20% était moindre que 

celle induite par IL-1β. 
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Afin d’élucider les mécanismes sous-jacents à la réduction de ICaL après un 

traitement avec IL-1β, l’expression d’ARNm de CaV1.2, sous-unité α codante pour ICaL, a 

été mesurée par qPCR et les résultats obtenus montrent aucun changement du niveau 

d’expression. Plusieurs études ont montré que l’inflammation et le stress oxydatif vont de 

pair. En effet, l’imagerie confocale nous a permis de constater une augmentation accrue du 

stress oxydatif induit par IL-1β et malgré un traitement aux antioxydants, la diminution de 

ICaL n’a pas été prévenue. 

Cette étude montre qu’IL-1β et IL-6 réduisent ICaL de façon importante et ce 

indépendamment d’une régulation transcriptionelle ou du stress oxydatif. De nouvelles 

données préliminaires suggèrent que ICaL serait réduit suite à l’activation des protéines 

kinase C mais des études additionelles seront nécessaires afin d’étudier cette avenue. Nos 

résultats pourraient contribuer à expliquer les troubles du rythme et de contractilité 

observés chez les patients souffrant de défaillance cardiaque. 

 

 

Mots-clés : cytokines, inflammation, insuffisance cardiaque, canaux ioniques, arythmies 
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Abstract 

Cytokines are immune system modulators that are secreted in response to an insult. 

Even though on the short term they play a crucial role in the healing process, the prolonged 

secretion of pro-inflammatory cytokines, locally or systemically, has many deleterious 

effects.  For almost 20 years reports of alteration in serum cytokine levels have been 

emerging in patients with various heart failure aetiologies, however it is only recently that 

the role of inflammation in heart pathologies is being more and more studied. Indeed, 

several studies have shown that patients suffering from heart failure or arrhythmias have 

high levels of cytokines. Three particularly of these cytokines in particular are highly 

present and together they play a central role in the inflammatory response. Tumour 

Necrosis Factor alpha (TNFα), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) are 

secreted chronically by immune cells or the cardiomyocytes themselves and can possibly, 

as shown by animal studies, induce cardiac remodelling, hypertrophy, apoptosis, fibrosis 

and generation of highly reactive oxidative species (ROS) among other effects. 

Furthermore, accumulating evidence suggests that these pro-inflammatory cytokines are not 

only important mediators of cardiac remodelling that can contribute to worsening of heart 

failure but they have also been linked to cardiac arrhythmias and prolongation of action 

potential. Overall, the findings suggests a strong role for pro-inflammatory cytokines in 

affecting cardiac function and inducing electrical remodelling, thus we hypothesised that 

high levels of pro-inflammatory cytokines can affect the electrical and subsequently the 

contractile properties of the heart. 

Thus, the aim of this project was to help establish the effects of the above 

mentioned cytokines on the electrical and contractile properties of cardiac myocytes while 

exploring the mechanisms by which these cytokines mediate their effect. Using cultured 

intact mouse neonatal ventricular cardiomyocytes which were treated chronically with 

various cytokines, at a pathophysiological concentration (30 pg/mL), the specific objective 

of this study was to measure the direct effect of chronic cytokine treatment on the L-type 

calcium current (ICaL), an important ionic current responsible for the plateau phase of the 
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action potential and in the excitation contraction coupling (ECC) and the current l and 

subsequently, determine via which pathways cytokines are able to affect the calcium 

current. 

Patch-clamp experiments in the whole-cell voltage-clamp configuration were used 

to measure L-type calcium current and showed that ICaL was not affected by TNFα. 

Furthermore, no effect at a significantly higher concentration of TNFα (1 ng/mL) could be 

observed. In contrast, chronic treatment of cardiomyocytes with IL-1β depressed ICaL by up 

to 40 %. Furthermore, when combining TNFα with IL-1β, two cytokines often reported to 

act synergistically, no further reduction in ICaL current density compared to IL-1β treatment 

alone was observed, showing the specificity of IL-1β response. Expression studies using 

qPCR to quantify the mRNA of CaV1.2, the underlying alpha subunit channel which 

encodes for ICaL, were conducted in order to determine if the reduction in current is due to a 

cytokine mediated change in gene expression. We found that none of the cytokines 

significantly affected levels of CaV1.2 mRNA.  

A key component of the inflammatory response is the induction of oxidative stress. 

Indeed, when challenged with cytokines cardiomyocytes exhibited significant increases in 

ROS level. In an attempt to reverse the depression of ICaL in response to IL-1β, we treated 

myocytes concurrently with antioxidants and IL-1β. While we observed a significant 

decrease in intracellular ROS levels, antioxidant therapy failed to restore current density, 

indicating thus, that ROS produced in response to cytokines does not regulate ion channels. 

New preliminary data suggests a role for members of the protein kinase C family in 

regulating the properties of CaV1.2 in response to cytokines. Nonetheless, exploring this 

avenue will require substantial experimentation and will be the subject of future work. 

Overall our experiments will help provide a better understanding of the role of 

cytokines in regulating the electric and contractile properties of cardiomyocytes in the 

setting of inflammatory cardiomyopathies. 

 

Keywords : cytokines, inflammation, heart failure, ion channels, arrhythmia 
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 1 Introduction 

Cardiovascular disease (CVD) is one of the leading causes of death in developed 

countries. In the United States, more than 60 million people are thought to be affected by 

some form of cardiovascular disease and total deaths due to CVD account for roughly 40% 

deaths in the population.1 With a constantly increasing risk in the prevalence of CVD, 

hospitalisation costs in turn keep increasing, presenting an important burden on 

governments and society.2 According to Canadian Institute for Health Information (Ottawa, 

Ont.: CIHI, 2008) in Canada, the costs of hospitalisation related to circulatory conditions 

such as angina and heart attacks costs up to 3.3 billion dollars per year, with heart failure 

and myocardial infarction ranking in the top five most expensive condition in 2005. 

Cardiovascular disease, a term commonly used to refer to various diseases affecting 

the heart and circulatory systems, encompasses a series of different and complex diseases 

where each can have its own etiology. The list includes hypertension, myocardial 

infarction, heart failure, arrhythmia and atherosclerosis to name a few, and together they 

have been the subject of decades of research which has allowed us to gain significant 

insights into the fundamental aspects of the pathologies down to the molecular levels while 

opening therapeutic venues that, undoubtedly, have contributed to patient longevity and 

improvement of quality of life. As different as these diseases might seem to be from one 

another, the last decade or so has been filled with prominent scientific findings that are now 

helping us draw a new picture, and shift our vision of how we perceive CVD. Trends and 

patterns have emerged and indeed, in our search for the molecular mechanisms that 

underlie complex diseases such as heart failure and atherosclerosis, common cellular or 

molecular processes which were once thought to be distinct for a type of pathology are now 

being recognised as a common link between different cardiovascular diseases.3, 4 

One of the most important biological processes that illustrate this phenomenon is 

inflammation. In fact inflammation is now not only considered to be a crucially important 

aspect of atherosclerosis,5 but it was also shown to be a common factor in diseases such as 

hypertension, ischemic heart disease and heart failure.6 In the context of heart disease, 

inflammation has recently taken on new definitions and today prominent investigators in 
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the field of inflammation provide new concepts that are believed to be at the core of several 

CVDs that are characterised by a chronic low-grade inflammation.4 Under these states, the 

triggers of inflammation are not necessarily the classical inducers of inflammation such as 

bacteria, viruses or tissue damage, but instead they verge into a less known area of the field, 

where inflammation is triggered by a tissue malfunction and homeostatic imbalance which 

over time can, in an attempt to restore balance, remain in a persistent state or even worsen. 

This process is thought to play a pivotal role in multiple chronic diseases including 

atherosclerosis and heart failure.4 

Perhaps one of the most important and inherent properties of inflammation is the 

secretion of different modulators, such as pro-inflammatory cytokines, chemokines, 

vasoactive amines among other effectors, by macrophages and neutrophils.7 These peptides 

are thought to be the main effectors and modulators of the signalling cascades that can lead 

to amelioration, or under chronic conditions worsen the pathology, as seen in several heart 

diseases.4 Research using animal and cellular models has extensively used cytokines in 

order to understand their role, particularly in the heart. Even though several groups have 

already started teasing out the various pathways that lead to cardiac remodelling including 

hypertrophy and apoptosis in response to cytokines,8, 9 an important aspect that remains 

poorly understood is the effects of these cytokines on one of the fundamental properties of 

the heart: the ‘electricity’, which is generated by a myriad of ion channels each with a 

distinct function, the whole impeccably organised, carefully synchronised and when they 

play in concert they give rise to a heart rhythm.10 Unbalancing the finely regulated 

electrical circuitry of the heart proves to be particularly detrimental considering it will 

induce various types of arrhythmias that cause an irregular asynchronous heart beat and 

lead in some cases to sudden cardiac death. 

The first part of the introduction of this master thesis will begin by discussing of the 

role of chronic inflammation in a context of infection and how it can negatively affect 

cardiac function. This will be followed by a review of inflammation under aseptic 

conditions such as myocardial infarction, atrial fibrillation, and heart failure. The topics of 
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the introduction will touch upon clinical data and supporting evidence from animal models, 

while providing specific details about three of the main cytokines in heart disease TNFα, 

IL-1β and IL-6 and how they are implicated in heart disease. In the second part of the 

introduction and the result sections the focus will switch to the fundamental cardiac 

electrophysiology and then data generated by members of our laboratory, including myself, 

that demonstrate how pro-inflammatory cytokines are able to affect ion channels will be 

presented while discussing some on the possible mechanisms involved. 



 

 

1.1 Inflammation and Heart Disease: Complex Partners 

 

1.1.1 Human Immunodeficiency Virus (HIV) and Heart Disease 

 HIV is a retrovirus which causes Acquired Immunodeficiency Syndrome (AIDS), a 

disease which affects millions of lives worldwide. HIV infects immune CD4+ T helper 

cells, leading to their progressive decline. This severely limits the infected individual from 

cell-mediated immunity, which leads to an increased susceptibility to infection by 

opportunistic pathogens along with other complications.11  

 Several years after the discovery of the HIV in 1981 the life expectancy of infected 

individuals remained extremely poor and topped at most 18 months. Even though they do 

not present a cure, today’s therapies using Antiretroviral Therapy (ART) aimed at limiting 

viral replication have significantly decreased morbidity and mortality in HIV patients and 

has prolonged the life expectancy of patients up to decades.12-14 Indeed, it is estimated that 

more than half of the people in the United States currently living with HIV will be older 

than 50 years of age by the year 2015.15 With the constantly increasing life expectancy of 

HIV patients, their risk of complications from non-AIDS diseases has also been increasing 

at significantly higher rates compared to the general aging population.13 Amongst these 

diseases, CVD is of particular prevalence in HIV patients. In fact, a study has demonstrated 

that HIV is an independent risk factor for CVD that has the same magnitude of the standard 

well established CVD risk factors.16 Furthermore, several studies have demonstrated that 

HIV patients have several abnormalities in their ECGs such as a longer QT interval 

compared to the general population, and an increased risk of mortality from ventricular 

arrhythmias, sudden cardiac death and other cardiac complications.17-20 Interestingly, 

several of the drugs used in ART have been associated with an increase in the duration of 

the QT interval in patients, which poses as a risk factor for arrhythmia. However, in 2005 

Sani MU et al.  provided substantial evidence demonstrating that HIV itself was directly 

correlated with a prolongation of the QTc interval, independently of any pharmacological 

agent.21 The implications of these findings are considerable, because they strongly suggest 

that an underlying feature of HIV infection is directly affecting, at least in part, the 
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electrical properties of the heart. Perhaps unsurprisingly, pro-inflammatory markers and 

cytokine levels in HIV infected individuals are particularly high: C-reactive protein, D-

dimer, IL-6, IL-1β, TNFα to name a few;22, 23and even though they are the prime suspects it 

was still unclear if or how they participated in cardiac pathology and arrhythmia risk in 

HIV patients.  

Significant insight on the effects of these cytokines on the heart came from a mouse 

model of HIV.24 These mice showed symptoms that closely resembled the human 

symptoms of HIV, and interestingly, we showed that they also had a longer QT interval 

(i.e. a longer repolarisation period, as measured by ECG), which is a prominent risk factor 

for arrhythmias. These findings demonstrated that in a mouse model of HIV, in the absence 

of any pharmacological intervention or other disease or confounding variables, HIV alone 

was able to negatively affect the electrical functions of the heart. Since HIV mice were a 

transgenic model that expressed one of the HIV viral genes, these mice did not have a ‘real’ 

infection per se or any circulating viruses which could directly impact the cardiac function. 

However, what HIV mice did share with HIV patients was an elevated level of circulating 

pro-inflammatory cytokines. We therefore hypothesised initially that these pro-

inflammatory cytokines were responsible for mediating the adverse effects on the electrical 

properties of the heart. Indeed, our laboratory subsequently went on to generate evidence in 

support of this hypothesis which showed that pro-inflammatory cytokines can alter various 

ion currents in the heart and therefore can potentially be implicated in the generation of 

arrhythmias. These findings will be discussed further. 

 

1.1.2.1 Inflammation in Myocardial Infarction 

 As previously mentioned, inflammation is now widely recognised as a key 

component of several cardiovascular diseases. Whether the cause or triggers are viral, such 

as HIV, microbial, or tissue damage as seen in acute myocardial infarction (myocardial 

infarction), unresolved inflammation that becomes chronic and noxious can adversely 

affect cardiac function. Interestingly, it appears that the degree of inflammation, measured 
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by markers or cytokines levels from serum or organ biopsies, is positively correlated with 

the degree of disease. Thus, regardless of the source of inflammation, it is the degree of 

inflammation itself that is of major importance in CVD.25 Conditions where inflammation 

plays a crucial role are numerous; however, a particularly important condition is 

myocardial infarction, where inflammation seems to be of an extremely critical nature. 

 Myocardial infarction is a condition where the rupture of an atherosclerotic plaque 

causes the occlusion of a coronary artery, thus blocking blood flow to areas of the 

myocardium and resulting in damage, death, or necrosis of cardiac tissue. Ischemic cardiac 

tissue which is subsequently reperfused initiates a potent inflammatory response that varies 

in proportion to the duration of ischemia.26 Perhaps the first report demonstrating the 

adverse role of inflammation in myocardial infarction came from a canine model of 

myocardial infarction dating back to the early 70s. When dogs were given corticosteroids 

after induction of myocardial infarction, infarct size (i.e. the necrotic cardiac area) was 

significantly reduced. This observation lead the authors to conclude that the pathogenesis of 

myocardial infarction is, at least in part, mediated by activation of the inflammatory 

cascade that promotes detrimental outcome on the heart.27 These findings subsequently lead 

to administration of corticosteroids in patients with acute myocardial infarction in an 

attempt to limit damage and reduce infarct zone. The results were catastrophic as patients 

suffered from increased risk of ventricular tachycardia, and even worse, their infarct zone 

was further enlarged.28 The importance of these findings lies in the fact that they lead the 

scientific community to realise the complexity of the inflammatory response by 

acknowledging its crucial role in tissue repair and in the reinstatement of cardiac 

homeostasis. In other words, limiting infarct size is important, however equally important 

are processes mediated by inflammation such as wound healing and formation of a stable 

scar that can help limit detrimental outcome. The findings of this study also help focus the 

research onto looking for specific targets within the inflammatory cascade that could be 

modulated in order to enhance cardiac outcome.  
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1.1.2.2 Inflammation in Heart Failure 

  

Despite the advances in the clinical management of myocardial infarction, several 

complications often arise that worsen the pathology and lead patients into more severe and 

chronic conditions, notably heart failure (heart failure). The causes of this shift from 

myocardial infarction to heart failure seem to be a mixture of tissue necrosis and ventricular 

remodelling. Ventricular remodelling is a complex process used to describe changes in the 

properties of the myocardium which include thinning of the left ventricular wall, chamber 

dilation, compensatory hypertrophy that initially acts to maintain stroke volume but 

eventually decompensates thus, exacerbating  the condition and contributing to increasing 

interstitial fibrosis, oxidative stress and other noxious stimuli.29 The induction of this 

detrimental ventricular remodelling is thought to be caused by neurohormonal stimulation 

which in patients is often associated with chronic β-adrenoceptor stimulation and Renin-

Angiotensin-System (RAS) deregulation. Both of these are potent inducers of chronic 

inflammatory pathways.30 Indeed accumulating evidence suggest that cytokines, the 

mediators of inflammation, play a prominent role in cardiac contractility, promoting 

apoptosis and fibrosis and other adverse remodelling that occurs in heart failure.  

 

1.1.2.3 Atrial Fibrillation 

 

The inducers of inflammation are many, and even if myocardial infarction and heart 

failure are initially induced by tissue damage, there are other clinically important cardiac 

conditions where inflammation is present independent of tissue damage or infection where 

cytokines also seem to promote a worse outcome. A typical example illustrating this would 

be atrial fibrillation (AF). AF is the most prevalent form of arrhythmia encountered in 

clinical practice and contributes significantly to mortality and morbidity of patients.31 AF is 

characterised by excessively disorganised, rapid impulses and contractions of the atria that 
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leads to irregular conduction of the cardiac influx to the ventricles posing as a risk for the 

individual. Despite the prevalence of AF, the mechanisms by which it is brought about and 

sustained remain poorly understood. Ionic remodelling has been proposed as the main 

mechanism for AF; however, the processes which ultimately lead to electrical remodelling 

are not well known.32, 33 Interestingly, several studies have demonstrated a prominent role 

for inflammation in AF.34 In one particular study, when plasma levels of C-reactive protein 

(CRP), a strong marker of inflammation, were measured in patients suffering from atrial 

arrhythmia, investigators found a significantly higher level of CRP compared to matched 

control individuals. Furthermore, patients who suffered chronic AF had higher levels of 

CRP measured against CRP levels from patients with short term (paroxysmal) AF and an 

episode of AF within 24 hours also elevated plasma CRP levels significantly higher than 

other AF patients.35 These findings suggested a prominent role for inflammation in AF and 

in the induction of abnormal rhythm and electrical imbalance. Increasing evidence suggests 

that pro-inflammatory cytokines participate in the induction of electrical remodelling and in 

the creation of substrates for AF such as increased collagen depositions and fibrosis 

produced by cytokine-activated cardiac fibroblasts.  

 

1.2 From inflammation to cytokines: how do they affect 

the heart? 

 

The clinical and experimental evidence provided so far in the context of infectious 

disease (HIV), tissue damage (myocardial infarction) or simply tissue malfunction (some 

cases of heart failure or AF) strongly supports a common role for inflammation in inducing 

pathogenesis. It is important to emphasise once again that inflammation itself is not to be 

portrayed as a toxic condition because its role in tissue repair and homeostasis is of 

unequivocal importance.26 However, when inflammation becomes persistent and 
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uncontrolled it begins to exacerbate the medical condition. Indeed, it is only when the 

initial phase of inflammation fails to resolve the effects on an insult that the door opens for 

a new level of chronic inflammation characterised by activation of several signalling 

cascades that may have a detrimental net outcome.36 As already mentioned, cytokines are 

the principal mediators of the inflammatory response. Small peptides normally secreted by 

various immunoregulatory cells such as macrophages and neutrophils, these cytokines play 

a crucial role in activating the signalling pathways that are, at least in principle, aimed at 

restoring tissue homeostasis.4 The family of cytokines is ever-expanding and in the last few 

years tens of new members have been discovered.36 Of note, as modulators of 

inflammation, cytokines have different roles, while some are pro-inflammatory such as 

TNFα, IL-1β and IL-6 there are other anti-inflammatory cytokines, IL-10 being one of the 

most widely recognised. For our purposes pro-inflammatory cytokines will be referred to 

simply as cytokines, and the terms will be used interchangeably considering the focus of 

our topic will be exclusively pro-inflammatory cytokines. The cytokine pathways are of 

extreme complexity. This complexity arises at least in part from their numbers and 

interconnected signalling, but also from their individually distinct regulation where 

heterodimerisation, protein maturation, nuclear translocation, and cytokine receptor 

regulation are only some of the processes that have been describes in cytokinology.37, 38 

 Despite the complexity of cytokine biology there have been constant patterns that 

have emerged from clinical and experimental studies where a handful of cytokines have 

always been correlated with the pathogenesis of a disease, notably of cardiac nature. 

Elevated in both HIV patients and HIV mouse,39 myocardial infarction, heart failure6, 25, 40, 

41, AF42, 43, TNFα, IL-1β and IL-6 have become a hallmark in the pathogenesis of 

inflammation and the role they play in disease has been the focus of years of research. In 

the next section, detailed molecular structure and signalling cascades of the three 

aforementioned cytokines will be presented, along with experimental or clinical data when 

available that demonstrate their role in mediating cardiac disease. 
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1.2.1 Tumour Necrosis Factor alpha 

 
TNFα is a cytokine which belongs to the TNF superfamily which include about 19 

members 44. TNFα can be 

produced in various different 

cells ranging from 

macrophages, T cells, mast 

cells, to fibroblasts and 

cardiomyocytes.45 The mature 

and soluble form of TNFα is a 

17.35 kDa trimeric protein..46 

Figure 1 illustrates the 

computer generated 3-

dimensional model based on the 

crystal structure of the human 

TNFα. 

The mature and soluble sTNFα 

(i.e. circulating) form is initially 

produced as a precursor protein 

composed of a trimer of 26 kDa 

homomonomers embedded in 

the membrane known as 

transmembrane TNFα or tmTNFα. Following cleavage by the TNFα-Converting-Enzyme 

(TACE), tmTNFα is released into the circulation as the sTNFα.45Even though both soluble 

and transmembrane forms of TNFα possess a biological activity the production of either 

forms is strictly controlled and will depend on several different parameters such as the 

nature of inducing stimulus, metabolic state of the cell, TACE activity and TACE inhibitors 

such as metalloproteinases.47 Both sTNFα and tmTNFα are capable of binding two 

Figure 1. Proposed 3-dimensional structure of TNFα. 

Model based on the crystal structure of the human TNFα 

cytokine. Top view of protein showing three 

homomonomers of 17 kDa each, that trimerise to form the 

mature homotrimer soluble form of the TNFα protein.47  



11 

 

 

Figure 2. Summary diagram of TNFα biology. TNFα producing cells produce a tmTNF

initially which can bind to TNFR2 and induce signalling cascades such as activation of 

NF- κB. The sTNFα, after TACE cleavage is released from the cell and will bind 

preferentially to TNFR1. Induction of apoptosis via sTNFα requires internalisation of the

ligand-receptor complex, which can be inhibited by FLICE (Fadd-like IL-1β-converting 

enzyme) or alternatively by reverse signalling via tmTNF or antagonist antibodies such as 

infliximab or adalimumab. (Adapted from 45) 

receptors, TNFR1 and TNFR2. These two receptors differ mainly in their affinity for 

ligands.In humans the sTNF binds with higher affinity to TNFR1 (dissociation constant of 

[Kd] ~20 pM) compared to TNFR2 ([Kd] ~400 pM) while tmTNFα binds TNFR2 with 

higher affinity.48 Other differences between these two receptors include cellular expression 

profiles, cytoplasmic tail structures and signalling mechanisms. However it is widely 

accepted that most of the effects of sTNFα are attributable to TNFR1 signalling.45 TNFα 

signalling is of high complexity due to the differences that exists between the two receptors 

and the various signalling cascades associated downstream of each receptor but also 

because the tmTNF can act as a reverse receptor and actually serve as a negative feedback 

on the TNFα activated cascades such as of NF-κB and apoptosis,  thus acting similarly to a 

TNFα antagonist.49 The TNFα cytokine biology is summarised in the schematic diagram of 

figure 2.  
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Since the discovery of an association between TNFα and heart failure in 1990,50 

innumerable reports have emerged in an attempt to elucidate its role in the pathogenesis of 

cardiac disease.51 Clinically, increasing levels of TNFα in patients have been associated 

with the deterioration heart function according to of the New York Heart Association 

(NYHA) classification of heart failure. Furthermore, studies have also shown that TNFα 

and notably TNFR1, due to its much longer half-life compared to the 30 minutes of sTNFα, 

are strong predictors of mortality in the population.52 TNFα has been since regarded as a 

central cytokine in the inflammatory response and it has been associated with a list of 

devastating and pleiotropic effects on the myocardium based on several experimental 

studies. Early reports using cultured myocytes attributed a pro-hypertrophic role for 

TNFα.53 Indeed when cardiomyocytes were cultured for several days in TNFα-containing 

media, cellular capacitance, leucine incorporation and levels of reactive oxidative species 

were all significantly increased. Additionally, TNFα was shown to significantly reduce 

contractility in cardiomyocytes.54 Furthermore, when canine hearts were infused with 

TNFα, the result was an impairment of left ventricular function. Experimental data 

suggested that TNFα up-regulated matrix metalloproteinases expression which in turn 

increased Nitric Oxide (NO). NO has a negative inotropic effect but can also uncouple β-

adrenoceptors from adenyl cyclase thus, contribute further to reduction in contraction. 

Comparable results were obtained when TNFα was overexpressed in the murine heart.55 

The effects of TNFα over-expression were a severe ventricular and atrial remodelling, 

which ultimately leads to a dilated cardiomyopathy, reduction of ejection fraction and an 

electrical remodelling which increases susceptibility to arrhythmia.55, 56 

Globally, the overwhelming evidence in support of a deleterious role for TNFα, 

whether it is in heart disease or other inflammatory disorders such as rheumatoid arthritis, 

has led to the development of therapies aimed at antagonising the effects of TNFα. Even 

though many of the drugs prescribed to heart failure patients, such as angiotensin-

converting-enzyme inhibitors or β-blockers might have some anti-inflammatory effect,57 

the need for a specific and potent treatment was increasing.25 The therapies subsequently 

developed which are aimed at neutralizing TNFα made largely use of antibodies. Currently 
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there are three antibodies used in clinical practice (adalimumab, human monoclonal; 

infliximab, a chimeric human/mouse monoclonal antibody; etanercept, a soluble receptor 

construct) and others being developed such as certolizumab and golimumab and other less 

or not used pharmacological agents that directly suppress or modify TNFα production.58 

The mechanisms by which TNFα antagonists actually neutralise TNFα are not well known 

but they implicate at least a direct binding to TNFα and blockade of the receptor binding 

sites.45  

Despite the significant success of TNF antagonist therapy in inflammatory 

conditions such as Crohn’s disease or rheumatoid arthritis the efficacy of anti-TNF therapy 

in heart failure proved to be more than just poor and in fact contributed to increased 

mortality in some cases.59 Many explanations have been forwarded by the scientific 

community in order to explain these results and it would appear that the adverse effects of 

antagonising TNFα would possibly be linked to the high specificity of antibodies that 

reduce TNFα concentration below a threshold required for tissue repair. Additionally, some 

antibodies might bind the tmTNFα in cardiomyocytes that are actively producing TNFα 

thus inducing cardiomyocyte apoptosis.25 Alternatively some have regarded the TNF 

blockade therapy as ineffective due to redundancy in the inflammatory cascade where a 

myriad of other cytokines, such as IL-6, remain at elevated levels and mediate the 

pathogenesis of disease independently of TNFα.60 

1.2.2 Interleukin 1 beta 

 Along with TNFα, IL-1β is one of the key pro-inflammatory cytokines that are at 

the top of the inflammatory cascade. Since its discovery in 1976, several studies have 

subsequently focused on understanding and characterising the fundamental properties of 

IL-1β at a genomic and protein level.61-63 The IL-1β protein is a 17.5 kDa 153 amino acid 

peptide which is produced initially as a 35 kDa precursor that  has no biological activity.64 

Maturation of the precursor form involves cleavage by Caspase-1, originally termed 

interleukin-1β-converting-enzyme, and release of the soluble and mature form of IL-1β, 

which is known to have an extremely wide repertoire of activities in several different 



14 

 

 

cellular systems including induction of more IL-1β.65 Figure 3 illustrates a typical IL-1β 

activation cascade. 

 

 

 

 

 

                                    

 

 

 

 

 

 

Figure 3. Diagram of a Typical IL-1β Production Cascade. (1) IL-1β or IL-1α bind to 

the same receptor IL-1RI and facilitates recruitment of its accessory protein IL-1RAcP. 

Intracellular Toll-IL1-Receptors (TIR) approach from each other (2) and recruit Myeloid 

differentiation primary response 88 (MyD88), phosphorylate Interleukin 1-Recepetor-

Associated-Kinase (IRAK) along with IKKβ which activates NF-κB (3) leading to 

activation of transcription of IL-1β gene or other genes (4). Once IL-1β transcripts are 

translated into the precursor form of IL-1β (5) caspase-1 produced elsewhere cleaves IL-1β 

into its mature form which is secreted as shown in (6). Modified from 67. 
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Steps 1 to 4 in figure 3 are the basic signalling cascades that are activated after IL-

1β binding to the IL-1RI (structure shown in figure 4)66 and are common to several other 

cascades with different downstream targets: in this particular case the production of 

additional IL-1β in response to IL-1β binding is 

illustrated. However, binding of IL-1β increases 

the transcription of hundreds of genes within 30 

minutes and this effect can last several hours.65  

Decades of research into the downstream 

targets activated by IL-1β have led us to a great 

understanding of the cytokine biology related to 

the interleukin 1 family which comprises 11 

members to date.64, 67 Several prominent 

researchers including Dr. Charles A. Dinarello, 

considered to be the founding father of cytokines, 

in particular the interleukin 1 family, have 

provided crucial information that significantly 

broadened our understanding of the IL-1 

mechanisms which have ultimately led to the 

development of anti-IL-1β based therapies for 

treatment of several inflammatory diseases. The 

regulation of IL-1β proves to be distinct from other 

cytokines and is very tightly controlled. In fact, 

several negative feedback mechanisms aimed at 

terminating the IL-1β response have evolved in the 

IL-1 biological system and they include the 

presence of a decoy receptor which has no 

intracellular tails and thus mediates no response 

because it fails to recruit MyD88, and a naturally occurring receptor antagonist that is a 

potent negative regulator of the IL-1 cascades.67 Indeed, the anti-IL-1 therapies developed 

Figure 4. IL-1β, IL-1R1 and IL-

1RAcP Structure and Interaction. 

Molecular structure and surface 

representation of IL-1β bound to its 

main receptor IL-1RI and accessory 

receptor IL-1RAcP. Modified from 
66. 
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include the administration of IL-1Ra (interleukin 1 receptor antagonist), the natural 

antagonist of the receptor, which was proven to be effective in several diseases and became 

a standard therapy in autoinflammatory disorders.68, 69 Of note, autoinflammatory diseases 

are not to be confused with autoimmune diseases. The former refers to a dysfunction of the 

mediators of innate immunity i.e. macrophages and neutrophils which become chronically 

activated and secrete cytokines locally or systemically whereby anti-cytokine therapy is 

often effective in reducing adverse outcomes. Conversely, in autoimmunity the principal 

cause of disease is a malfunction in T cells and the instigators of inflammation become T 

cells and B cells themselves. Treatment of autoimmune disease requires at least 

immunosuppression therapy and administration of anti-cytokines is considered trivial.70 

In the heart, the pathogenesis of IL-1β has also been extensively researched ever 

since it was noted that serum IL-1β are elevated in patients suffering from heart disease 

such as myocardial infarction, heart failure, or dilated cardiomyopathy.71-74 However the 

mechanistic insight only came from in in vitro or animal models which examined the direct 

effects of IL-1β on the myocardium. In one report using human cardiac tissues, treatment 

with IL-1β for a few hours resulted in a significant decrease in contractility.75 Additional 

studies demonstrated that IL-1β might also have negative inotropic and chronotropic effects 

most likely due to changes it induces in calcium homeostasis and calcium handling.75 

Cardiomyocyte hypertrophy was also observed in several animal studies which were in 

some cases attributed to nitric oxide signalling (NO) via the inducible Nitric Oxide 

Synthase (iNOS) while in some other cases it involved instead p38 MAP kinase signalling. 

Last but not least in vitro studies have also suggested that IL-1β might also be involved in 

apoptosis and altered expression of α and βMHC expression.76  

Altogether, these observations strongly suggest that IL-1β may recapitulate several 

of the adverse effects and phenotypes typically seen in heart failure. As a result the need to 

develop therapies aimed at antagonising IL-1β was appreciable and became a goal for 

clinical medicine. In fact anti-IL-1 treatments was one of the first cytokine specific 

treatments that emerged, and it was not until later that anti-TNFα therapies were 
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developed.70 Treatments aimed at reducing IL-1β proved to be efficacious in several 

chronic and autoinflammatory conditions such as gout, type-2 diabetes, smoldering 

multiple myeloma, post-myocardial infarction heart failure and osteoarthritis.77 

Interestingly, patients suffering from type-2 diabetes, today considered an autoimmune (and 

inflammatory) condition, have also an increased risk of cardiac disease such as myocardial 

infarction. Diabetic patients who suffered from myocardial infarction have an even higher 

risk of a subsequent myocardial infarction, which suggests a positive feedback loop where 

the increases in inflammation, and IL-1β in particular, may 

contribute greatly to worsening cardiac pathologies. Thus 

anti-IL-1 therapy might be profitable for diabetic patients 

on a twofold basis: reduce inflammation to ameliorate 

diabetes and decrease the diabetes-mediated risk of heart 

disease. Therapies aimed at antagonising IL-1β make use of 

the naturally occurring IL-1 receptor antagonist. IL-1Ra is a 

form of IL-1β that binds to same receptor IL-1RI but illicit 

no response (figure 5). Thus, it appeared to be the ideal 

treatment because even though a recombinant form, it is a 

naturally occurring protein that will bind with high affinity 

to the same receptor of IL-1β thus blocking access to IL-1β 

and, most importantly, without causing side effects.77 For 

example in rheumatoid arthritis patients, administration of 

anakinra (IL-1Ra) resulted in comparable improvement of 

symptoms compared to other therapies but with fewer side 

effects.70 Additionally, in type 2 diabetes patients, 

inflammation induced by free fatty acids, leptin and IL-1β 

itself cause a toxicity to liver β-cells that could also be 

reduced by administration of IL-1Ra thus contributing to the 

possible reinstatement of their function78. However, in heart 

disease patients there have been very few studies examining 

Figure 5. IL-1Ra Signaling. 

IL-1Ra binds to IL-1RI 

similarly to IL-1β however 

fails to recruit IL-1RAcP and 

thus occupies the receptor 

but produces no response. 

The recombinant IL-1Ra 

anakinra produces the same 

effects as the naturally 

occurring IL-1Ra. Modified 

from 67. 
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the role of anti-IL-1 therapy. One prominent study was amongst patients with 

STEmyocardial infarction (ST Segment Elevated Myocardial Infarction), a condition with a 

high mortality risk. When a daily dose of anakinra was given along with the therapy after 

angioplasty, echocardiographic and blood tests results taken 14 days post-surgery showed a 

significant reduction in ventricular remodelling and in plasma CRP levels. Furthermore, 

after 18 months, none of the patients who received anakinra developed heart failure 

whereas 60% of placebo patients went into a stage IV heart failure.79 Thus it appeared that 

anakinra was able to significantly improve cardiac outcome after myocardial infarction by 

reducing adverse remodelling, however it remains to be investigated whether anti-IL-1β 

therapy is effective in patients with non-

myocardial infarction chronic heart failure.  

1.2.3 Interleukin 6 

 The third and last cytokine that will be 

discussed is interleukin 6. Along with TNFα and 

IL-1β, IL-6 has long been considered to be at the 

top of the inflammatory cascade; however the role 

it has in the pathogenesis of cardiac disease is 

much less understood. Several clinical studies have 

pointed out a strong association between IL-6, 

severity of heart failure and mortality risk. 

Additionally, IL-6 has been proposed by some to 

be a stronger predictor of prognosis than CRP.80 In 

fact in one particular study, IL-6 levels were shown 

to be predictive of all causes of mortality in elderly 

males, thus highlighting its possible role in low 

grade chronic diseases that are often found in the ageing population.80 There have been 

however some confounding data on a clinical and basic science level regarding the role of 

IL-6 in the heart. One reason might be the difficulties encountered in measuring IL-6 in 

Figure 6. 3-Dimensional Structure of 

IL-6. IL-6 structure shows 4 α helices A, 

B, C and D along with 3 receptor binding 

sites encircled. Modified from 81. 
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serum of patients due to its extremely short half-life or sex differences as shown by the 

study conducted on British women, where contrary to men, there was no association 

between IL-6 and coronary heart disease.6 

IL-6 is synthesised as a precursor 212 amino acid peptide, which is subsequently 

cleaved to form the mature 185 amino acid protein. Figure 6 shows the structure of IL-6, 

which comprise four long α-helices (A, B, C and D) that are arranged in an up-up-down-

down topology.81 IL-6 can be produced by a number of cells including a range of 

inflammatory cells but also cardiomyocytes and fibroblasts. The signalling of IL-6 is 

mediated by IL-6R and another common receptor glycoprotein 130 (gp130), a 

transmembrane protein crucial for mediating intracellular signalling.81 Figure 7 summarises 

IL-6 signalling: once bound to its receptor, IL-6R dimerises with gp130 leading to an 

Figure 7. IL-6R signalling pathways. IL-6 binds to IL-6R (1) which subsequently dimerises 

with gp130 (2) allowing the recruitment and activation of downstream cascades such as 

JAK/STAT, AKT and MEK/ERK. Modified from 6. 
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activation of JAK/STAT 1/3 which may regulate various aspects of cell survival growth or 

differentiation. Additionally PI3K/AKT, MEK and ERK1/2 pathways are also activated.6 

 As previously mentioned, clinically, IL-6 has almost always emerged as an 

important marker for heart disease and predictor of mortality. However, in animal studies 

the image is less clear and several studies have yielded mixed results regarding the specific 

effects of IL-6. It is established that increased STAT3 signalling is essential after 

myocardial infarction where it might play a cardioprotective role while it also permits a 

preconditioning before myocardial infarction. Conversely, diminishing STAT3 abolishes 

all of these positive effects.82 However, IL-6 activates these pathways via gp130 yet the 

negative outcomes in patients are clearly correlated with IL-6 serum levels thus adding 

ambiguity in regards to the specific role of IL-6. Nonetheless, a prominent study examining 

the role of gp130 concluded that chronic or long term activation of JAK/STAT3 

downstream of gp130 is actually detrimental whereas only early and short term activation 

proves to be cardioprotective. Indeed, by using transgenic mice for a mutant form of gp130 

which does not terminate the STAT3 signalling cascade, myocardial infarction induced in 

these mice resulted in a severe ventricular remodelling and higher mortality compared to 

control mice.83 It was only when this signalling cascade was blocked, that the adverse 

effects seen in transgenic were reduced. Thus it appears that the chronic secretion of IL-6 in 

an attempt to restore homeostasis will result in a deregulation of the STAT3 signalling 

pathways leading to its constant activation, a phenomenon associated with detrimental 

outcome. 

1.3 Cytokines and Ion Channels 

1.3.1 Cardiac Action Potential and Modulation by Cytokines 

 

The inflammatory response in general and cytokines in particular are of crucial 

importance when it comes to disease. Indeed the role of inflammation in mediating the 

pathogenesis of chronic heart disease could not be emphasised enough. We have so far 
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discussed its role in several clinically relevant cardiac pathologies such as heart failure. 

However, the implications of cytokines extend far beyond the scope of this work, and even 

though we have gained significant insight on the specific role of a myriad of cytokines in 

heart disease, the findings discussed previously are far from complete and several venues 

remain to be explored in order to better understand how cytokines affect the heart. 

A fundamental property of cardiac tissue is its ability to conduct current and 

contract. This is made possible by a complex system of tightly regulated ion channels 

coupled to a contractile machinery. When they both function in harmony, the result is the 

initiation of an electric influx that propagates in an organised and predictable way across 

the heart allowing subsequent contraction. Deregulating ion channels can have profound 

effects, in fact if the electrical flux was to be perturbed this could lead to a chaotic 

dispersion of the electrical activity which would trigger irregular and asynchronous heart 

beats termed arrhythmia, a life threatening condition.  

The effects of inflammation in increasing adverse risk and worsening of cardiac 

disease have now been attributed to several processes such as cardiac remodelling, however 

it is still not well understood how inflammation, and pro-inflammatory cytokines in 

particular, could modulate cardiac ion channels. Several clinical observations have allowed 

us hypothesis that cytokines can alter ion channel properties, thus adding another level of 

complexity to their list of adverse effects in cardiac pathologies. Indeed, the QT interval 

measured on the ECG, which is an index of ventricular repolarisation, is lengthened in HIV 

patients, independently of anti-retroviral therapy drugs.21 An increased QT interval presents 

itself as a risk factor for lethal arrhythmias termed torsades de pointes which can lead to 

sudden cardiac arrest84 and the fact that an ECG is a measure of electrical activity provides 

irrefutable evidence that ion channel activity is being altered. Furthermore, in patients 

suffering from arrhythmias, high levels of cytokines, notably TNFα, have been observed.85 

Thus, overall these observations suggest a causative link between cytokines, modulation of 

ion channels and pre-disposition to arrhythmias. The mechanisms by which cytokines are 

able to affect ion channels are yet to be elucidated. But before exploring the effects of the 

cytokine-mediated regulation of ion channels, a brief introduction to cardiac 
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electrophysiology will be provided in order to outline the electrical activity of the heart and 

its origins.  

A fundamental property of several different types of cardiac cells, known as 

cardiomyocytes, whether derived from the atria or ventricle, is their ability to display an 

electrical activity termed action potential in response to an electrical stimulus. Even though 

cardiac myocytes originating from different parts of the heart have different action potential 

properties, they all share a common set of essential mechanisms which allow the induction 

of an AP. The root of the electrical activity lies in ion transport. As with any eukaryotic cell 

with a bilayer plasma membrane, diffusion of electrically charged ion across the membrane 

is nearly impossible. Cardiomyocytes however, have evolved a complex set of ion 

channels, which are membrane-bound proteins that allow passive transport (or active in 

some instances) of ions across the membrane. These ion channels are not simple openings 

that allow the ions to go in and out of the cell, but they tightly regulate ion flow in an ion-

specific and voltage-dependent manner. This means that for each of the main ions in the 

circulation (e.g. Na+, K+, Ca2+ or others), there are specific ion channels that will conduct, 

with a high degree of selectivity, only one particular ion. For our purposes, we will only 

focus on three types of ion channels: the ventricular voltage-gated, sodium, potassium and 

calcium channels. These families of ion channels play the largest role in shaping the action 

potential. The ionic mechanisms responsible for generating an action potential were first 

described in the giant squid axon by the Hodgkin-Huxley model in 1952.86 Significant 

research and development into field of electrophysiology came afterwards with the 

invention of the patch-clamp technique, a method that allows the direct quantification of 

current or, ion flow, across these channels.87 
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Figure 8. Human and Mouse Ventricular Action Potentials. Human ventricular action 

potential (AP) (left) compared to mouse AP (right). Note the speed of the mouse AP and the 

difference in the ion current profile, where IKs and IKr are absent and repolarization is 

mediated by IKur and Iss in the mouse ventricle. Additionally, ICaL is significantly smaller 

compared to human counterpart. Altogether these differences could explain the speed of the 

mouse AP and the absence of a plateau phase. Modified from 88. 

The ventricular action potential is composed of several different phases, where each 

phase is the result of an activation and inactivation of a set of ion channels. The left panel 

of Figure 8 shows a diagram of a human ventricular action potential with the several ion 

channels that are responsible for its generation. Adjacent to it, is the mouse action potential 

that has a different configuration due to the different expression profile of ion channels. In 

the introduction we will focus on the mouse ion currents particularly the sodium current 

IKur IKur 
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(INa), potassium currents (Ito, IKur, Iss, IK1) and the L-type calcium current (ICaL). See 

Abbreviation List for the full names of these ion currents. Importantly, in adult mouse 

ventricular myocytes, repolarisation is mediated by Ito, IKur, IK1 in addition, Iss a steady-state 

K+ current might also participate.88-91 

 

The human ventricular action potential comprises five phases. As previously 

mentioned, Figure 8 illustrates these phases on the left panel along with the respective 

currents underlying each phase. The right panel, on the other hand, displays the mouse 

action potential with its underlying currents. While at rest, cardiomyocytes are negatively 

charged compared to the extracellular milieu. The voltage difference across the membrane 

of a ventricular cardiomyocyte, measured by an electrode grounded to the extracellular 

environment, is about -90 mV. At this voltage, only a few channels are active, such as the 

inward rectifying potassium channel Kir 2.1 which encodes for IK1, a current that play a 

crucial role in maintaining resting membrane potential.92 When sensing a strong 

depolarisation (i.e. an electrical impulse that will shift the resting membrane potential 

enough towards a more positive value) this triggers the fast depolarisation phase, termed 

phase 0, where the sodium channels NaV1.5 sense the depolarisation and quickly activate to 

open allowing an influx of positively charged Na+ ions. This will shift the membrane 

potential up to +30 mV. Subsequently, in phase 1, also known as the early repolarisation 

phase, a sharp but light drop in membrane potential occurs due to a fast K+ efflux mediated 

by the potassium KV 4.2/4.3 and 1.4 which encode the Ito current. Meanwhile, the calcium 

current CaV1.2 which encodes ICaL is activated allowing an influx of Ca2+ into the cell, 

triggering contraction via in a phenomenon termed calcium-induced calcium release 

(CICR)93, 94 which will be discussed further. Activation of an inward positively charged 

current ICaL, along with repolarising potassium current IKr and IKs which extrudes the 

positive K+ out of the cell in an attempt to revert to the resting membrane potential, results 

in quasi-balance of charges and a visible plateau phase, the longest phase of the action 

potential known as phase 2. Phase 3, the repolarising phase, follows afterwards when the 

calcium channels inactivate and additional K+ is driven out of the cell via IKr, IKs and at late 
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phase 3, IK1. This will bring the cell back to its initial resting membrane potential of -90 

mV also known as phase 4.92 In adult mouse ventricular myocytes, the rapidly activating Ito 

and IKur largely contribute to repolarisation. Consequently, the activation window of ICaL is 

significantly reduced compared to the human counterpart thus there is no plateau phase. 

This explains the triangular shape and short duration of the mouse action potential. 

 

At the cellular level, the 5 phases of the action potential are perpetually repeated, in 

the exact manner in the healthy ventricle. However, cardiomyocytes do not act individually 

and when looking at the whole heart they become an entity comprised of an intricate and 

organised network of cells where the electrical influx is capable of progressing in an 

organised fashion and triggering a contraction accordingly. As shown in figure 9, the 

electrical influx begins from the spontaneously action potential firing sino-atrial node, then 

crosses the atria, converges towards the atrio-ventricular node, goes down the his bundles 

and Purkinje fibres and into the ventricles.10 This electrical activity that begins at the sino-

atria node, progressively advances, permits contraction of the muscle and finally 

terminates, actually corresponds to thousands of myocytes firing their action potentials and 

terminating it an extreme synchronicity. The total electrical activity of the heart, or the sum 

of action potentials at a given time and location, is made visible by the ECG with the 

different phases it displays. The different complexes of the ECG corresponding with each 

cardiac electrical activity are also shown on figure 9. 
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The cardiac action potential needs to be finely regulated in order to preserve its 

proper duration, however under disease conditions, several ion channels are affected which 

might alter the properties of the action potential. For instance reduction in Ito is now 

regarded as a hallmark of the failing human myocardium which is associated with an 

increase incidence of severe ventricular arrhythmia.95, 96 Precisely, the direct effect of 

reduced potassium current is a prolongation of repolarisation and action potential duration, 

which increases the probability of a re-activation of calcium channels, thus allowing 

another depolarisation before the action potential has actually been terminated. This 

phenomenon termed early afterdepolarisation (EAD) can cause a spacial and temporal 

instability in repolarisation which predisposes the individual to torsades de pointes and 

subsequently triggered activity or ventricular fibrillation, an often lethal condition.84, 97  

Figure 9. Cardiac Electrical Activity and ECG. Cardiac electrical activity 

representing the influx in red that starts from the sino-atrial node, propagates 

(depolarization) across the atria and into the ventricles then dissipate (cardiac 

repolarization and relaxation in last 6 steps, measured by QT interval) thus completing 

one heartbeat. ECG traces of each phase are drawn below each diagram. Arrow 

indicates intended reading direction. Modified and licensed from the Wikimedia 

Commons.  
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Electrical instability is often observed in heart failure and is thought to be one of the 

main causes of sudden cardiac death in heart failure patients.84 Heart failure is recognised 

as a complex and multifactorial condition where a broad range of noxious stimuli 

negatively impact the heart, leading to remodelling and an impairment of cardiac function. 

Inflammation has been recognised as one of the players involved in shifting the heart 

towards a pathological state and the role of cytokines in mediating several of these 

deleterious changes have been discussed previously. However, it remained unclear whether 

cytokines could directly affect the electrical properties of the heart or modulate ion 

channels before the structural remodelling actually occurred. The first evidence that pointed 

us towards hypothesising that pro-inflammatory cytokines could modulate ion channels 

was the observation that HIV patients had an increase in QT interval that was not due to the 

HIV drug therapy.21 However, direct evidence came from experimental data obtained from 

a mouse model of HIV.24 By expressing one of the HIV genes, nef, these mice showed 

similar symptoms to human HIV patients furthermore, they also had elevated levels of 

circulating pro-inflammatory cytokines.22, 23 In fact, the symptoms were so similar that 

when an ECG was performed, a significant prolongation in the QT interval was also 

observed.39  

 

Figure 10. ECG of Control and HIV Mice. Representative examples of ECG recording 

(left) and mean data (right) obtained from control and HIV mice which exhibit a significant 

(*) increase in QT interval. Modified from 39. 
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Figure 10 shows ECG recording from these mice with a prolonged QT interval 

which indicated that these mice likely suffered from a delay in repolarisation. When the 

hearts of these mice were isolated, ventricular cardiomyocytes dispersed and currents 

recorded from individual myocytes we observed at first a significant increase in action 

potential duration, which explained the prolonged QT interval, as shown in figure 12. 

Furthermore, the patch-clamp technique allowed us to gain additional insight into the 

underlying mechanisms of this QT interval and action potential prolongation. Indeed our 

data showed that all of the potassium currents involved in repolarisation have been reduced 

in HIV mice. Figure 12 shows that Ipeak the total outward potassium current, which 

comprises of Ito, IKur and Iss, was reduced and this reduction was attributable to a reduction 

in all of three currents Ito, IKur and Iss. Overall the data indicated that HIV mice which 

suffered from high levels of cytokines 98  showed severe signs of delayed repolarisation and 

prolongation of action potential duration. These adverse changes in cardiac function 

predispose individuals to arrhythmia and might increase risk of sudden cardiac death. 

Figure 11. Ventricular Myocyte Action Potential from Control and HIV Mice. 

Action potentials were recorded from myocytes isolated from either control or HIV mice. 

Note the nearly two-fold increase action potential duration (APD) in HIV 

cardiomyocytes. Modified from 39. 
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Interestingly, the adverse effects of HIV on cardiac electrophysiological parameters were 

not just limited to potassium currents but also extended to the sodium current INa which is 

the current responsible for the phase 0 of the action potential, or the fast depolarising phase 

which plays a crucial role in excitability of cardiomyocytes and is one of the main 

components of cardiac electrical conduction.98 The first evidence of an alteration in sodium 

channels in HIV mice was observed on the ECG, which showed a significant increase in 

Figure 12. Total K+ Currents in Control and HIV Mice. Total K+ currents or Ipeak were 

recorded from control and HIV cardiomyocytes. Data shows a significant (*) reduction in 

repolarising outward K+ current which was attributed to a reduction in Ito, IKur and Iss. 

Modified from 39. 
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duration of the QRS 

complex. The QRS 

complex is an indicator 

of ventricular 

depolarisation which is 

mediated by the 

voltage-gated sodium 

channels that open and 

allow a rush of Na+ into 

the cardiomyocytes. 

Indeed, the progressive 

electrical activation, 

shown in figure 10, 

actually corresponds to 

the depolarisation 

induced by INa which propagates across the cardiac tissue from cell to cell and when it 

reaches the ventricles, it is observed as the QRS complex on an ECG. Figure 13 shows an 

ECG recording obtained from an HIV mouse displaying a significantly increase in the QRS 

complex duration. This prolongation was most likely attributable to a decrease in the 

sodium current density. Indeed, at the cellular level, the observed changes in the ECG were 

explained by action potential measurements that showed not only a diminished upstroke of  

phase 0 of the action potential but also a decrease in the upstroke velocity, which overall 

can decrease conduction and action potential propagation in the heart thus contributing to 

the development of arrhythmia. Furthermore, these action potential parameter 

modifications were explained by patch-clamp experiments which quantified the sodium 

current recorded from both control and HIV ventricular myocytes. The data indicated that 

HIV mice suffered from a significant reduction in sodium current density, as shown in 

figure 15. The implications of reduced sodium (and potassium) currents in HIV mice are 

considerable. When free roaming HIV-mice were monitored by telemetry, several episodes 

Figure 13. The QRS Complex in HIV Mice. ECG recording 

obtained from wild type (WT) and transgenic HIV mice that shows 

an increase in QRS complex duration. Mean data is shown on the 

right panel. Modified from 98. 
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of rhythm disturbances were observed whereas none occurred in the wild-type mice,98 thus 

suggesting a significantly increased risk for arrhythmia. Importantly, HIV mice had no 

evidence of myocardial remodelling or impaired cardiac function. Echography results 

showed no signs of hypertrophy, preserved ejection fraction and fractional shortening39. 

Thus, HIV which elevated cytokine levels, appeared to directly affect ion channels 

independently of structural remodelling. 

The mechanisms by which the sodium current, and potassium to this extent, were 

reduced in HIV mice remained unknown until then, and despite all the evidence that 

suggested a prominent role for cytokines in mediating these effects on ion channels, it was 

not of complete certainty whether the observed effects were directly or indirectly linked to 

cytokines. Considering HIV is a complex disease which might generate systemic feedback 

from other organs such as the kidneys a finer approach was needed in order to answer our 

problematic. Subsequently, several different experiments were devised and additional 

experimentation was performed. The overall result strongly suggested that cytokines are 

Figure 14. Ventricular Sodium Currents from Control and HIV Mice. Typical 

examples of sodium current recording from wild-type and HIV mice are shown on the 

left while mean data curve on the right. Modified from 98. 

HIV 
WT 
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able to directly affect cardiac ion currents. Indeed, when wild-type mice were treated with a 

pathophysiologically relevant dose of TNFα for 6 weeks, these mice showed a significant 

change in their action potential profile.99 These changes were caused by a significant 

decrease of total K+ current Ipeak due to a decrease in Ito and IKur. Figure 15 shows examples 

of recordings and mean data for the two main repolarising currents in mouse Ito and IKur. 

 

 Overall, this study showed that by simply treating mice chronically with TNFα, 

several of the adverse effects on cardiac currents seen in HIV mice were recapitulated. This 

indicated that TNFα alone could modify the repolarsing K+ currents and reshape the action 

potential. The findings could, in part, explain the prolonged QT interval in both HIV mice 

Figure 15. Ventricular Potassium Currents in TNFα Treated Mice. Typical examples and 

mean data for Ito (left panel) and IKur (right panel) showing significant reductions in both current 

in mice treated with TNFα. Modified from 99. 
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and HIV patients. Furthermore, it appears that cytokines, when circulating at 

pathophysiological levels, do not necessarily induce ventricular remodelling, considering 

HIV-mice showed normal ejection fraction, fractional shortening and heart morphology. 

TNFα-treated mice also exhibited no apparent signs of cardiac hypertrophy. Thus TNFα, at 

pathophysiological concentrations, appears to modulate ion currents independently of 

hypertrophy or cardiac remodelling. Cytokine-mediated reductions in K+ currents were also 

independent of ion channel mRNA regulation, post-transcriptional (protein) regulation and 

changes in current kinetics as shown by our studies.39, 39, 98, 99 

 

1.3.2 Excitation-Contraction Coupling 

 

As mentioned previously, by using multiple approaches we were able to 

demonstrate that cytokines are able to modulate directly ion currents. Indeed, TNFα was 

able induce several adverse changes in cardiac electrical properties similarly to those 

observed in HIV-mice. However, TNFα is not the only cytokine elevated in HIV mice in 

particular, and heart disease in general. In fact, Bioplex assays on plasma samples from 

HIV mice revealed elevated levels of the three main cytokines which we discussed earlier, 

TNFα, IL-1β and IL-6.39 Although we obtained some insight on the effects of TNFα, it was 

still not known if IL-1β and IL-6 could alter other ion currents and contribute to the 

pathogenesis of heart disease and, if so, what were the underlying mechanisms. Sodium and 

potassium currents were reduced following chronic exposure to pathophysiological levels 

of cytokines, yet it remained unknown if the L-type calcium current (ICaL) was affected. 

The particular importance of ICaL lies in the fact that it plays a crucial role at the plateau 

phase of the AP but is also a key player in excitation-contraction coupling.100 Hence, if this 

current were to be modulated the repercussions could be of electrical nature (i.e. a change 

in action potential configuration which increase the risk of arrhythmia) but also of 

contractile nature (e.g. depression of myocardial contractility). But before we discuss the 

effects of cytokines on ICaL, excitation-contraction coupling (ECC) will be introduced while 

emphasising on the importance of ICaL in the heart. The L-type calcium channel (LTCC) is 
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encoded by CACNA1C, the α1c gene (CaV1.2) which is the main functional component of 

the channel and is considered to be the main isoform in the heart due to its prominent role 

in ECC.94 CaV1.3 and CaV 3.1/3.2 are the other calcium channels in the heart however they 

do not seem to be involved in ventricular ECC and they perfrom other functions, which will 

not be further discussed in this work. The CaV1.2 ion channel is comprised of four 

homologous domains (I–IV), each containing six transmembrane segments (S1–S6), S4 

being the voltage sensor and the loops between S5 and S6 form the main pore of the 

channel.101-103 

Figure 16 illustrates 

the proposed 

transmembrane 

topology of LTCC.  

The channel has 

also auxiliary 

subunits such as β 

and δ which might 

be implicated it 

modulating kinetics 

or gating properties 

and channel 

trafficking to the 

membrane.104-106 

The LTCC are located at the invaginations of the sarcolemma termed T-tubules and face 

the sarcoplasmic reticulum (SR), as shown in figure 18. The presence of LTCC at this 

location is not random but serves for a functional role. Indeed a certain population of LTCC 

are found  to be opposing the ryanodine receptors (RyR) also known as calcium release 

channels.107 This positioning is thought to be the crux of calcium-induced calcium-release 

(CICR). RyRs are also arranged in organized arrays of ~200 RyR at the junctions between 

the SR and sarcolemma and beneath the LTCC. The whole arrangement is often referred to 

Figure 16. Transmembrane Topology of the L-type Calcium 

Channel. Showed are the four domains with six transmembrane 

segments where S4 is the voltage sensor. When the four domains are 

folded the S5-S6 loops form the channel pore which conducts 

calcium ions. Modified from 101. 



35 

 

 

as couplon and there are about 10-25 LTCC for each 100 RyR.94 CICR implicates many 

players at the couplon region. In fact, depolarisation of the cell, via the sodium channels, 

triggers activation of the LTCC leading to an influx of calcium into the cell whereby only a 

few calcium ions (2-4) can activate a RyR to release calcium from the SR stores, massive 

calcium release from the SR 

occurs when several RyR 

are activated in a couplon. 

This often leads to a near 

depletion of SR Ca2+ and an 

increase in intracellular 

calcium concentration, 

which favours calcium 

binding to troponin C on the 

myofilaments and induces 

contraction.108 Termination 

of the contraction 

necessitates rapid removal of 

calcium from the 

intracellular space. 

This is achieved by the 

sarcoplasmic reticulum 

calcium ATPase (SERCA) 

which actively pumps Ca2+ 

back into the SR. In addition, 

sodium calcium exchanger (NCX) also participates in removal of calcium by exchanging 2 

intracellular Ca2+ for 3 Na+. Finally, the calcium ATPase at the sarcolemma actively 

extrudes Ca2+ out of the cell. Figure 17 summarises ECC and CICR. 

As with many cellular proteins and processes in heart, ECC in general and LTCCs in 

particular, are affected by adrenergic receptor signalling. β-adrenergic receptors (β-AR)  are 

Figure 17. Excitation-contraction Coupling in the Heart. 

After a depolarisation, LTCC are activated which drives 

Ca2+ into cell and triggers subsequent calcium release from 

the SR via RyR in a phenomenon termed CICR. Ca2+ binds to 

myofilaments an induces contraction which is terminated by 

removal of Ca2+ from cytosol mainly via SERCA (ATP) 

which actively pumps Ca2+ back into the SR along with NCX 

and Ca2+ATPase at the sarcolemma. Modified from 94. 
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G-protein coupled receptors that are of crucial importance in the heart. Their main function 

is to induce positive inotropy and lusitropy, in other words increase contraction force and 

heart rate, after catecholamine binding. β-AR are coupled to heterotrimeric G proteins that 

stimulate (via Gs) the activity of adenylyl cyclase.101 Activation of adenylyl cyclase leads to 

an increase in cyclic AMP (cAMP) levels. This favours binding of cAMP to the regulatory 

domain of protein kinase A (PKA) thus, dissociating the regulatory and catalytic subunits 

of the protein. PKA is a serine-threonine kinase and once the catalytic subunit has been 

dissociated after cAMP binding, it will phosphorylate multiples sites on the LTCC and 

cause a robust increase in ICaL density.109 The effects of β-AR/cAMP/PKA pathway on 

LTCC and ECC have been extensively elaborated and studies have shown that multiple 

proteins involved in ECC, such as ryanodine receptors (RyR2) and phospholamban, are 

targets for PKA phosphorylation.110 

 

1.3.3 Objective of this Work 
 
 

ECC is a finely regulated process involving many calcium handling proteins that are 

subject to phosphorylation and other regulatory modifications in order to insure proper 

contraction and to maintain control of intracellular calcium concentrations. A key player in 

ECC is the LTCC, which is responsible for the CICR, one of the first steps in the ECC 

cascade. Thus modulating the LTCC can have profound effects on ECC and on contraction 

overall. Indeed, if the properties of LTCC were to be altered, CICR could be impaired or 

enhanced, which is detrimental in either case. As previously mentioned, Ca2+ enters the cell 

via the LTCC and triggers a large release of Ca2+ from the SR. Importantly, on a cellular 

level, the density of the calcium current, ICaL, will actually correlate with the amount of 

subsequent Ca2+ released from the SR. Thus, if ICaL were to be reduced, the action potential 

duration would be shortened, and contractility would be reduced or compromised.84 Indeed, 

it has been observed that in patients with severe heart failure who suffer for a significant 

depression in contractility ICaL was considerably reduced. Conversely, if ICaL or the calcium 

influx were to be augmented, the effects will be an increase in in action potential duration 
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and an alteration in calcium handling which might prove to be detrimental as well.111-114 In 

patients with heart failure it was also observed that in response to a β-adrenergic 

stimulation, ICaL failed to increase. This means that in cardiac disease there also seems to be 

an uncoupling of β-adrenergic signalling from the contractile response.112 Interestingly, in 

an early study dating from 1989, when supernatants of activated immune cells were added 

to the culture media of neonatal cardiomyocytes, induction of β-adrenergic stimulation by 

isoproterenol, a β-receptor agonist, failed to increase myocytes contractility. These effects 

on contractility were attributed to TNFα and IL-1β; however, it was not investigated 

whether these effects were caused by alterations in ionic currents of the cardiomyocytes.115 

Recently, it has been shown that knockdown of the L-type Ca2+ channel α1c subunit, 

significantly reduced ICaL but exacerbated hypertrophy and worsened cardiac function in 

mice subjected to physical activity or isoproterenol stimulation.116 

Overall, these observations highlight the importance of LTCC in mediating proper 

cardiac contractility and shaping the action potential. Hence, modulating ICaL could prove to 

be detrimental, as shown by human subjects of heart failure and animal models. 

Nonetheless, it is still not well understood how, under disease conditions, LTCC can be 

modulated. Some studies, along with our previous work suggest that cytokines can directly 

affect cardiac ion channels thus altering their function, modifying the action potential 

configuration and increase the susceptibility to arrhythmia and adverse outcomes. 

Nonetheless, it was not investigated whether cytokines could also affect the LTCC which 

would further add to their pathogenesis in heart disease by extending their effects to 

modulation of action potential and reducing contractility. Therefore, the objective of this 

master’s project was to elucidate the effects of the three main pro-inflammatory cytokines 

in heart disease discussed earlier: TNFα, IL-1β and IL-6 on the cardiac L-type calcium 

current, while exploring the mechanism by which these cytokines mediate their effects. We 

used an in vitro approach of cultured neonatal ventricular myocytes treated chronically (24 

H) with clinically relevant concentrations of cytokines. The calcium current was measured 

by the patch-clamp technique in voltage-clamp mode. We also investigated some of the 

potential mechanisms by which cytokines might mediate their effects, notably we explored 
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the gene regulation of the LTCC and the effects of reactive oxygen species (ROS) on 

calcium current densities. 
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2 Methods 

2.1 Isolation of Neonatal Mouse Ventricular Myocyte  
  

Often in cardiovascular research investigators need to study processes on a cellular 

level by using in vitro approaches which can yield significant insight on a particular 

research topic. When studying cardiomyocytes, cultures of either adult or neonatal derived 

myocytes can be used, with each having their own advantages and disadvantages. The 

neonatal cultures offer several advantages such as division and replication of cells. 

Considering neonatal cardiomyocytes are not terminally differentiated and day 1 pups 

hearts can contain up to 55% dividing cardiomyoblasts. This is one of the reasons why 

culturing cells from pup hearts older than 48 H yields a poorer quality preparation.117 In 

addition, neonatal cultures offer the advantage of yielding tens of millions of viable 

cardiomyocytes which under normal culture condition retain their phenotype up to weeks 

and do not dedifferentiate, unlike adult cells which begin losing their T-tubules in as early 

as 24 H of culture. In the early 1980s Dr. Paul Simpson and colleagues established the 

neonatal rat culture as a model for studying the cardiac hypertrophic response and since, 

this model has seen a tremendous expansion in its utilisation and has been the subject of 

numerous other applications. With the technological developments allowing genetic 

manipulation of mice, the rat neonatal cardiomyocytes isolation technique was adapted to 

mice which allowed researchers to focus on their particular target of interest in lines of 

which either had a transgene, an over-expression or knock-out of the target and all in a 

controlled environment which was independent of systemic feedback, haemodynamic or 

hormonal effects. We have chosen the cultured neonatal mouse cardiomyocyte as a model 

because it offers great flexibility. Indeed, for our purposes this model allows several 

different cytokines to be tested in much shorter times compared to in vivo approaches. For 

instance, in our previous study examining the effect of chronic TNFα on K+ currents, mice 

were treated twice a week for a total of six weeks with recombinant TNFα, whereas in this 

project in order to administer chronic treatments of cytokines to cultured cardiomyocytes, 
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we only had to treat the myocytes for 24 to 48 H. In addition, our laboratory has extensive 

experience with mice models, as well as the techniques and materials that go along with 

them. This allows more efficient experimentation and for the results of this project to be 

reconciled with our previous findings. 

The neonatal ventricular myocyte was used as previously published.89 As mentioned 

earlier, the preparation of neonatal cardiomyocytes cultures require 0-2 days old pups for 

optimal yield. Personally, I have found cells derived from pups born and used in the 

preparation in the same day gave much higher cell count and cell quality, at least in terms 

of membrane quality, a critical factor for patch-clamp experiments. Under sterile 

conditions, the pups were decapitated, hearts rapidly excised and put in SMEM solution 

containing NaHCO3, DL-carnitine and MgSO4.7H20, pH 7.35. The atria were then 

discarded and the ventricles sliced in order to remove excess blood. A minimum of 15 pups 

was needed for a good preparation. Fewer pups reduced cell viability and quality seemed 

rather poor, whereas using significantly more pups also had its challenges since the hearts 

needed to be rapidly excised an digested without further delay. Having 30-40 hearts proved 

to be challenging considering the hearts had to remain in the suspension media several 

minutes which also affected cell viability. Once all the hearts were excised and excess 

blood removed they were transferred into the enzymatic solution containing the previous 

solution supplemented with bovine serum albumin, taurine and collagenase. In most cases, 

experimenters also add trypsin to the digesting solution, which allows faster and more 

efficient digestion of the hearts. However, we completely avoid trypsin since we use the 

cells for electrophysiology purposes where cellular membrane quality needs to be 

preserved, this is achieved by only using collagenase, particularly Yakult (Tokyo, Japan), a 

gentle means of cell dispersion collagenase. Importantly, since trypsin is a potent protease, 

it is avoided since it could possibly cleave and modify many surface proteins, notably ion 

channels, thereby possibly compromising our results. These effects of trypsin have been 

documented in other cell types.118 
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Once the ventricles were placed into the digestion solution, they were minced and 

digested for a total of 45-60 minutes. The enzymatic solution was collected every 5 minutes 

and replaced by fresh one. The collects, which contained cardiac cells, were added to an 

inactivating solution containing (M-199, 30% foetal bovine serum (FBS), 1.5% insulin 

(100 U/ml) and 1% PenG/Strep (10000 U/ml). The inactivating solution with its high FBS 

concentration halts the digestion by inhibiting the collagenase. Once the digestion was 

completed and all the cardiac cells transferred into the inactivating solution, the tube was 

centrifuged for 5-7 minutes at 800 rpm in order to pellet the cells. Next, the cells were 

resuspended in an M-199 solution containing 15% FBS, 1.5% insulin (100 U/ml), and 1% 

PenG/Strep (10000 U/ml). FBS delivers essential nutrients and growth factors for 

cardiomyocytes and allows their adherence to the plates, however it also promotes 

proliferation of non-cardiomyocytes notably fibroblasts and endothelial cells. Therefore, 

fibroblasts were reduced in the preparation by preplating the whole cell suspension for 20-

30 minutes. Since non-cardiomyocytes adhere rather quickly to the plates, after the waiting 

time, the supernatant was collected and it contained up to 90% cardiomyocytes. It is very 

common for researchers to use bromodeoxyuridine, a synthetic nucleoside analogue of 

thymidine which will incorporate into the DNA sequence of cells or arabinosylcytosine 

another DNA synthesis blocker which together will limit proliferation of fibroblasts.119 

However, since we are using the cardiomyocytes 24 H after initial isolation preplating is 

sufficient to significantly limit fibroblast count. The last step in the preparation required the 

suspended cardiomyocyte-enriched media to be plated on coverslips in petri dishes 

incubated for 24 H at 37°C  with 5% CO2 along with the appropriate treatments 

administered at the time of plating. 

The main treatments employed in these studies consisted of recombinant TNFα, IL-

1β or IL-6, or other treatments such as antioxidants that were also used by direct 

administration into the culture media. The cytokines were diluted in water, aliquoted and 

stored at -20°C in accordance with manufacturer’s instructions. The final concentration of 

all three cytokines was 30 pg/mL. Unlike most studies that use cytokines at a concentration 

that is tens to thousands of folds higher, our concentration is drastically lower than most 
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reports. We employed clinically relevant concentrations that were observed in heart failure 

patients and the HIV-mouse model.39-41 Concentration-dependent effects will be discussed 

later. 

 

2.2 Electrophysiology: The Patch-Clamp Technique 

 The patch-clamp technique is the main electrophysiology technique used to measure 

ion flow via ion channels and across biological membranes. The technique was developed 

in the beginning of the late 1970s by Erwin Neher and Bert Sakmann who subsequently, in 

1991, shared the Nobel Prize in Physiology or Medicine for their discovery of the 

fundamental role of ion channels and how they can shape action potentials.120, 121 In order 

to successfully record 

ionic currents, the 

patch-clamp technique 

requires several pieces 

of equipment and 

devices along with a set 

of technical skills. The 

basic principle of the 

technique is illustrated 

in figure 18. A slide of 

cardiomyocytes is 

placed in perfused bath 

on the plate of an 

inverted microscope. A 

glass pipette or 

microelectrode is then 

moved across the bath 

and towards the cell of 

Figure 18. The patch-clamp technique. A micropipette is 

oriented over the cell lowered until it touches the surface. Gentle 

application of pressure will suck a part of the membrane into the 

pipette (a). Next, this section of the plasma membrane 

containing one or two ion channels can be completely excised 

(b) or the total flux across all ion channels of the cell can be 

recorded using the whole cell configuration (c) where the pipette 

contents diffuse into the cytosol via a rupture of cellular 

membrane. Source: www.ipmc.cnrs.fr retrieved 01/05/12. 
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interest. The pipette will be lowered very gently until it touches the surface of the cell, 

subsequently a light negative pressure will be applied in order to increase the suction and 

form a tight seal between the tip of the pipette and the cell membrane, known as the giga-

ohm seal (resistance >109 Ω), a seal of extremely high resistance. This high resistance will 

electrically isolate this section of the membrane from the rest of the cell. Additional 

negative pressure can then be applied in order to rupture the membrane and gain access to 

the cytosol of the cell. This is known as the whole-cell configuration (figure 18 c) as it 

allows one to record activity of all the ion channels in the cell at once. Conversely, 

detaching parts of the membrane or remaining in a cell-attached mode, where one or two 

ion channels are under the pipette, will allow recording of individual ion channel activity 

(figure 18 a and b).120 

We used the whole-cell configuration to record global currents and to gain access to 

all the ion channels of the cardiomyocytes. In order to record one type of currents, such as 

L-type calcium current in our case, one should isolated the calcium current from all the 

others (sodium, potassium etc.). Several methods have been derived in order to isolate ion 

currents. One of the main techniques to achieve this takes advantage of the voltage 

properties of each different ion channel. For example, ventricular myocyte L-type calcium 

currents are maximal arounf 0 mV whereas sodium currents peak at around -45 mV. Thus, 

a short prepulse of -45 mV can be applied before recording calcium currents. This will 

serve to inactivate the sodium channels, thus omitting their contribution from the recording. 

Modifying the perfusion and pipette solutions is also critical. In our case, the solution in 

which the cardiomyocytes are perfused contains neither sodium nor potassium, hence, there 

will be virtually no contribution of these channels to our current recordings due to ion 

channel selectivity and permeability. Lastly, some investigators use pharmacological agents 

in order to block specific ion channels, such as tetrodotoxin to block sodium channels or 4-

aminopyridine to block the 4-aminopyridine sensitive potassium channels such as 

Kv4.2/4.3 or Kv1.5.90 
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In our experiments, the borosilicate glass pipettes had a resistance of 2-4 MΩ and 

were filled with and internal solution consisting of (in mM): 100 Aspartic Acid, 70 CsOH, 

40 CsCl, 2 MgCl2, 4 MgATP, 10 EGTA, 10 HEPES  (pH adjusted to 7.2 with CsOH). The 

bath solution, or external, in which cardiomyocytes were perfused contained (in mM): 145 

TEACl, 10 CsCl, 2 CaCl2, 0.5 MgCl2, 5 HEPES, 5.5 glucose (pH adjusted to 7.4 with 

CsOH) and perfused at 36 ± 1 °C. The data were corrected offline for a -10 mV liquid 

junction potential that was calculated using the pClamp 10.2 software. The internal 

solution, which slowly diffuses into the opened cell, is electronically connected via an 

electrode to an amplifier which serves to impose and record current. A digitiser links the 

amplifier to the computer and transforms the electrical measurements and changes in 

voltage or current into computerised data. 122 

The electrophysiology experiments were done as previously published.122, 123 The 

neonatal ventricular myocytes were held at -50 mV before the recordings. Since a holding 

potential of -50 mV inactivates sodium and T-type calcium currents a prepulse was not 

necessary. The recording protocol consisted of a series of step voltages from ranging from -

50 mV to +70 mV, in 10 mV increments, each step lasting 250 ms. The pClamp 10.2 suite 

(Molecular Devices, Foster City, USA) was used to perform calcium current recording 

protocols, record and analyse data. In addition, the recordings were low-pass filtered at 1 

kHz with a 4-pole Bessel analogue filter and digitized at 4-10 kHz. Because in the whole-

cell configuration the amount of current is proportional to the cell size, i.e. larger cells will 

yield larger currents and vice versa, all currents were normalized to cell capacitance 

(corresponds to the electrical capacity of a membrane to store electric charge that represents 

total membrane surface area) and expressed in terms of pico-Ampere per pico-Farad 

(pA/pF). The amplitude of each current trace, obtained at a given voltage step (from -50 to 

+70 mV), was quantified, normalised to cell capacitance then plotted on a graph where the 

x-axis corresponded to the imposed voltage and the y-axis the resultant measured current. 

This plot is called the I-V curve, or whole-cell current-voltage relationship curve, and is 

considered the standard means of expressing current density across a broad range of 

voltages which will indicate how the channels behave globally at each voltage.  
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A successful preparation yields 6 to 10 35-mm petri dishes depending on how many 

hearts were used. The patch-clamp experiments were then performed on these cells where 

typically 7-10 cells could be recorded per day. For each experimental condition the IV 

curve was generated from a minimum of three different preparations. The total number of 

patch-clamped cells was almost the same between each series of cell preparations. Every IV 

curve contained its own original set of recordings, in other words, none of the data was 

reused or pooled from one IV curve to another. 

 

2.3 Quantitative Polymerase Chain Reaction (qPCR) 

 

The development of the polymerase chain reaction, largely attributed to Kary Mullis 

in 1983, revolutionised the field of molecular biology, and in essence allowed us 20 years 

later to sequence the human genome.124 The technique was revolutionary in a sense that it 

permitted rapid amplification of DNA sequences using a couple of primers that would 

anneal on a DNA template, extend the template then the newly synthesised product would 

be separated and the two DNA strands would serve as two new templates for another set of 

primers. This process would be repeated several times until significant amount of DNA was 

generated, a technique which transitioned researchers into a new era of molecular biology 

which facilitated gene cloning, sequencing and overtime gave rise to the field of functional 

genomics. The basic principle of PCR is quite simple. A double stranded DNA is put in a 

mixture with primers, oligonucleotides and a DNA-dependent DNA polymerase usually the 

thermostable DNA polymerase derived from the thermophilic bacterium Thermus 

aquaticus which is stable up to 95°C.125 First, the DNA strands are separated by heat, the 

primers would then anneal to specific regions of the DNA sequences. The polymerase 

would use the primers as a start point to extend the DNA templates and synthesise a new 

strand of DNA by incorporating the supplied oligonucleotides at a lower temperature. The 

reaction is then repeated several times until sufficient DNA is produced. Of note, since two 

strands of DNA are separated at each reaction in order to yield two double stranded DNA, 



46 

 

 

the amplification of DNA product thus assumes an exponential function. Thus, about 1x109 

copies of the initial DNA strands could be generated in 30 steps 

Several years later a quantitative PCR technique was developed which allowed for 

the amplification reaction to be followed step by step and the quantity of DNA to be 

accurately quantified. Several qPCR techniques exist, we will consider the one which 

makes use of SYBR green, a fluorescent die which binds double stranded DNA non-

specifically, thus will fluoresce proportionately to the quantity of DNA. For our purposes 

we used qPCR to quantify gene expression of ion channels. First, total RNA was isolated 

from the neonatal cell cultures with an RNeasy Fibrous Tissue kit (Qiagen) including a 

treatment with DNaseI to prevent contamination by genomic DNA and according to the 

manufacturer’s protocol. cDNA was then synthesized with SuperScriptIII first-strand 

(InVitrogen) and primers specific for CaV1.2. The qPCR was subsequently performed with 

Platinum SYBR Green qPCR Supermix (InVitrogen) using the real-time PCR system 

(MX3005P qPCR system, Stratagene). qPCR results for CaV1.2 were normalised to the 

housekeeping gene 18S ribosomal RNA and adjusted with an internal calibrator which was 

conserved in every plate in order to insure reproducibility. All of the qPCR were performed 

with n=3 for each condition. A single n corresponded to a total mRNA extracted from 4 

petri dishes, thus for a single n, 15-20 pups were needed.  

 

2.4 Reactive Oxygen Species Assay 

 

 Reactive oxygen species (ROS) is at general term which refers to a broad range of 

reactive molecules and free radicals derived from oxygen which include potent oxidants 

such as H2O2 and O2
- that can oxidise several other molecules and transform them into 

oxidising agents such as HO- or HO2. It is still not fully understood how ROS can affect the 

cells and organisms. ROS signalling pathways and their secondary effects are still the 

subject of investigations. Recent work has demonstrated that ROS may be implicated in 
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Figure 19. The Reactive Oxidative Species Fluorescent 

Molecular Probe. ROS probe H2DCFDA readily diffuses into the 

cells where the intrinsic esterase activity cleaves the ester groups 

on the compound rendering it fluorescent upon oxidation by ROS. 

causing direct DNA damage, inducing apoptosis, activation gene transcription and several 

other signalling cascades. 126 

As a first step in studying oxidative stress, intracellular ROS levels have to be 

quantified and for that purpose several techniques have been devised.127 In general, all the 

techniques make use of molecules that once oxidised emit fluorescence. There are several 

molecules that are commercially available, but if one was to quantify intracellular ROS, 

ideally the molecules needs to be cell permeable, exhibit high retention and fluorescence in 

response to ROS and also not to cause severe toxicity to the cell. A cell permeable ROS 

probe which has been extensively used is the 2',7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA).128 However, for the current study we used 5-(and 6-) chloromethyl-2',7'-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), which is a 

chloromethyl 

derivative of 

H2DCFDA that 

diffuses much less out 

of cell thus, exhibits 

higher intracellular 

retention and allows 

better analysis of 

fluorescence.129 As 

already mentioned, 

CM-H2DCFDA 

passively diffuses into 

cells, where its acetate 

groups are cleaved by 

intracellular esterases. 

One the product has 

been de-esterified, 
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oxidation by ROS occurs which yields a fluorescent molecule that is retained inside the 

cell. Figure 20 summarises the basic functional principle of the probe.  

As with any other fluorescent compound, a consistent and empirically optimised protocol 

must be used in order to reduce variability of results. Loading cells for ROS assays is 

relatively simple however there are many aspects of the technique to which one should pay 

particular attention. 

The first step of the assay was to dissolve the ready-packaged probe (50 µg) in 

DMSO and then load the petri dish containing the cells with a final concentration of 5 µM, 

with total DMSO concentration < 0.1%. The petri was then placed back in the incubator for 

30 minutes. Subsequently, the media was removed and cells gently washed three times with 

a 37°C M199 cell culture media supplemented with insulin, and free of phenol red. The 

petri dish was then placed on top of a Carl Zeiss LSM 710 confocal microscope in a 

temperature and CO2 controlled chamber (37°C/5%). A few minutes afterwards, the probe 

was excited at 480 nm and emitted light collected from 520 nm. The fluorescence was 

quantified using the LSM software where the sum of intensities of all individual pixels of a 

cell was divided by the cell area in order to give a fluorescence density.  

Since H2DCFDA is not ratiometric probes and is susceptible to oxidation by various 

different agents to different extents and fluorescence is affected by the intracellular 

antioxidant levels amongst other variables, the fluorescence is therefore not directly 

proportional to the amount of ROS. This means that the absolute ROS concentration cannot 

be obtained by measuring fluorescence. The approach thus serves more as a qualitative 

measurement than quantitative. In order to limit variability, conditions were strictly 

controlled and another approach of estimating ROS levels was devised. The approach 

basically renders every cell its own control. At t=0 an initial image was taken, then the cell 

was subjected to a constant ROS stimulation via the microscope laser, just before the 

fluorescence signal saturates which was t=5 min. The fluorescence of each time point was 

then be measured and expressed as an F0/F1 ratio. This served to normalise for basal 

fluorescent intensities which might vary from cell to cell. Additionally, by plotting the 
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intensity of the fluorescent signal from all the time points between t=0 and t=5 vs. time one 

could get a curve that shows a basal fluorescence level which increases then plateaus. 

Overall, cells that have been subjected to treatments such as peroxide or ROS-inducing 

drugs will show a much steeper slope to saturation and the F0/F1 ratio will be usually 

higher. Since this protocol uses a laser to induce ROS, in cells where the fluorescence slope 

is steeper and the plateau level higher this would indicate that either ROS was significantly 

increased or anti-oxidant abilities of the cell have been compromised which in either case is 

detrimental. All the experiments were performed on cultured neonatal ventricular 

cardiomyocytes, thus entire fields containing tens of cells were imaged and analysed. Three 

different petri dishes which were derived from at least two different preparations were used 

for each condition tested. The fluorescence was quantified using the computer software Zen 

(Zeiss, Germany). Fluorescence signal was normalised to cell area and expressed as 

density. Lastly, it is important to note that this fluorescence approach to measure ROS 

using H2DCFDA is not ideal and should be always complemented with another approach in 

order to validate and allow proper interpretation of the findings. Our findings were always 

complemented by electrophysiological measurements. 

 

2.5 Statistical Analysis 

 

 All results are expressed as mean ± standard error of the mean (SEM). Statistical 

significance was considered for p-values < 0.05. For electrophysiological recordings, 

different mean data IV curves were compared using unpaired Student’s T-test or 1-way 

ANOVA. In the ROS experiments fluorescence densities of all analysed cells were 

averaged at t=F0 and t=F1 and a paired Student’s T-test was used for statistical analysis. 
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3 Results 

3.1 Effect of TNFα on L-type Calcium Current 

 The first cytokine that was investigated was TNFα. Since we have previously shown 

that TNFα is elevated in HIV mice, and that chronically treating wild type mice with TNFα 

significantly reduced several potassium currents, we hypothesised that TNFα could also 

reduce the cardiac L-type current. This would explain the depression in contractility 

observed in some studies investigating TNFα54, 75 and additionally contribute further to the 

worsening of electrical remodelling by affecting ICaL on top of the K+ and Na+ currents.  

Figure 20 shows the patch-clamp data obtained after neonatal cardiomyocytes were 

treated for 24 H with 30 pg/mL of TNFα. The data shows no reduction in calcium current at 

all. Thus, unlike our previous findings which showed that TNFα significantly reduced 

potassium currents.99 This cytokines appeared to have no effect on the L-type calcium 

current in neonatal ventricular myocytes. Since no significant differences in ICaL were noted 

after TNFα treatment, we tried in a complementary approach to increase the concentration 

of TNFα 33 times higher up to 1 ng/mL, which is not a clinically relevant concentration but 

is within the range of what has been reported in the literature.74 Figure 21 shows the mean 

data for ICaL recorded from CTL and TNFα (1 ng/mL for 24 H) treated cells where the 

mean IV curve shows no significant decrease in current density. 

Since no differences in calcium current density were observed at supraphysiological 

concentrations of TNFα, we concluded that TNFα does not affect ICaL in neonatal 

ventricular myocytes, and from here we focused onto the second pro-inflammatory 

cytokines of our investigation, interleukin 1β. 
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Figure 20.  Mean IV curve for ICaL in TNFα treated cardiomyocytes. Panel A shows mean 

IV curve for ICaL recorded in control (CTL) and TNFα 30 pg/mL for 24H treated neonatal 

ventricular mouse myocytes. At 0 mV ICaL density expressed in pA/pF: CTL: -6.0±0.6, n=7 

and, TNFα: -5.8±1.0, n=7, p>0.05. Current recordings were derived from at least 3 different 

experiments. Representative examples of raw data recordings showing the calcium current in 

both CTL and TNFα treated cells are presented in panel B. 
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3.2 Effects of IL-1β on the L-type Calcium Current 
 
 Using the same approach as in the TNFα-treated cells we subsequently tested the 

effects of another cytokine, IL-1β on ICaL. Figure 22 shows the mean IV curve ICaL recorded 

from control and IL-1β-treated mouse ventricular myocytes. The data indicates a 36% 

decrease in the density. 

 
 
 

Figure 21. Mean IV curve for ICaL in cardiomyocytes treated with 1 ng/mL TNFα. 

Mean IV curve for ICaL recorded in control (CTL) and TNFα treated (TNFα) at 1 ng/mL for 

24 H in neonatal mouse ventricular myocytes. ICaL density (pA/pF) at 0 mV: CTL: -5.7±1.0, 

n=11 and, TNFα: -5.1±0.61, n=7, p=NS. Current recordings were derived from at least 3 

different experiments. 
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Figure 22. Mean IV curve for ICaL in IL-1β treated cardiomyocytes. Panel A shows 

mean IV curve for ICaL recorded from control (CTL) and IL-1β treated (IL-1β), (at 30 

pg/mL) neonatal ventricular myocytes. ICaL current density (pA/pF) of at 0 mV: CTL: -

6.2±0.5, n=17 and, IL-1β: -4.0±0.5, n=19 p<0.05. Current recordings were derived from at 

least 3 different experiments. Panel B shows typical raw data recordings obtained from both 

conditions. 
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3.3 Effects of Combined TNFα and IL-1β on the L-Type Calcium Current 
 
 The fact that TNFα did not affect ICaL whereas a significant reduction in current 

density was seen after a 24 H treatment with IL-1β highlighted the distinct effect of each 

cytokine in mediating its effect. In fact, many studies have reported that TNFα and IL-1β 

could often be recruited together as part of the inflammatory response and can 

synergistically mediate their response. Notably, this has been reported in the context of 

cardiac contractility, where presence of both cytokines had a synergistic effect in 

depressing contractility of cardiac tissue.75, 130, 131 Thus, using the same protocol as 

previously, we treated neonatal mouse ventricular myocytes with 30 pg/mL of TNFα and 

IL-1β. The cytokines were administered concurrently in order to investigate any 

synergistical effect they might have on ICaL. Figure 23 shows mean IV curve traces which 

indicate a decrease in ICaL similar to the one observed when NMVM were treated with only 

IL-1β thus demonstrating that TNFα and IL-1β have no synergistic effect on ICaL. Total 

reduction in ICaL compared to the control cells were of 34%, which is a similar reduction 

compared to IL-1β-treated NMVM. 
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Figure 23. Mean IV curve for ICaL in TNFα + IL-1β treated cardiomyocytes. Panel A shows 

mean IV curve for ICaL recorded from of control (CTL) and TNFα + IL-1β treated (30 pg/mL for 

24 H), NMVM. ICaL current density (pA/pF) at 0 mV: CTL: -5.9±0.5, n=18 and, TNFα + IL-1β: -

3.9±0.4, n=24 p<0.05. Current recording were obtained from at least 3 different experiments. 

Panel B shows typical raw data recordings obtained from both conditions.  
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3.4 Effects of IL-6 on the L-type Calcium Current 

 

 The last of the three cytokines examined was IL-6. NMVM were treated for 24 H 

with 30 pg/mL of IL-6 then patched in order to record ICaL. As seen on the mean IV curves 

of figure 24 IL-6 significantly decreased ICaL by 21%. 

 

Despite the significant decrease in ICaL after a 24 H IL-6 treatment, the effects of IL-6, at 

least at the present concentration, were not as potent as those of IL-1β. Therefore, the 
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Figure 24. Mean IV curve for ICaL IL-6 treated cardiomyocytes. Mean IV curve 

for ICaL recorded in control (CTL) and treated (IL-6) neonatal ventricular myocytes.

ICaL density at 0 mV, CTL: -5.8±0.5, n=8 and, IL-6: -4.6±0.5, n=12 p<0.05. Current 

recording were obtained from at least 3 different experiments. 
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Figure 25. Effects of Cytokines on mRNA Expression of CaV1.2. Quantitative PCR 

showing mRNA levels for CaV1.2 under different conditions: control (CTL), TNFα and IL-1β. 

(n=3 for each condition) Each n was obtained from NMVM isolated from 15-20 hearts and 

cultured 24 H under aforementioned conditions. Each sample was analysed in triplicate. 

following experimentation was focused primarily on IL-1β and in particular the 

mechanisms by which IL-1β depressed ICaL by 36%.  

 

3.5 Effects of TNFα and IL-1β on the L-type calcium Channel Gene Expression 

 In order to elucidate the mechanisms by which IL-1β mediates its effect on ICaL, the 

mRNA abundance of the alpha subunit CaV1.2, which encodes for ICaL was assayed using 

qPCR. Indeed, if IL-1β decreased ICaL by a transcriptional mechanism, it would have been 

reasonable to find a decrease in the mRNA levels of CaV1.2.  

 

 

 

 

 

Moreover, in our previous study examining the effects of TNFα on K+ currents, we showed 

that TNFα significantly decreased K+ currents without altering the mRNA expression levels 

of either of the corresponding K+ channel α-subunits.99 Thus we investigated the effects of 
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TNFα on mRNA of CaV1.2 even though ICaL was not affected.  As shown by figure 25, the 

CaV1.2 mRNA was unchanged by TNFα or IL-1β. Based on these and findings we 

concluded that cytokines, at pathophysiological concentrations, decrease ion current 

densities without affecting the expression of the main α subunit of ion channels. 

Interestingly, the TNFα treated mice did not only have an unchanged mRNA abundance of 

K+ channel, but at the protein level none of the K+ ion channels were decreased.99 We 

therefore hypothesised that these cytokines alter ionic current densities by modulating 

intracellular signalling cascades regulation ion channel function.  

 

3.6 Cytokines and Oxidative Stress 

 

 Several studies have shown that pro-inflammatory cytokines are potent inducers of 

oxidative stress in heart disease and various cell types.53, 132, 133 Thus, we tested whether IL-

1β, the cytokine which depressed ICaL the most, could induce ROS in a manner that would 

affect the calcium current. Figure 26 shows mean fluorescence data for the ROS assay 

under control and cytokine treated conditions. Overall the data showed that IL-1β is 

capable of inducing oxidative stress. After stimulation with the laser, ROS levels were 

higher in control cells compaired to IL-1β-treated cells. This suggests that IL-1β increases 

ROS or dimishes the cellular levels of antioxidants. Typical microscopy examples showing 

NMVM after laser stimulation are displayed below, along with mean data. 
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Of note, TNFα also significantly increased ROS production. The ROS production seemed 

to be even more important when TNFα and IL-1β were combined in the treatment of 

NMVM. Subsequently, we tested whether antioxidants could reduce the ROS production. 

To accomplish this we used apocyanin, a NADPH oxidase inhibitor, and polyethylene 

Figure 26. Confocal Analysis of IL-1β-Induced Oxidative Stress. ROS assay 

showing mean H2DCFDA fluorescence intensity of CTL and IL-1β treated NMVM. 

Pictures on the right represent typical confocal microscopy at the F1 time, i.e. after 

laser induced ROS production. (* p<0.05 vs. CTL). A minimum of 2 experiments were 

conducted where at least 25 cells per condition were analysed to generate mean data. 
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glycol linked to superoxide dismutase (PEG-SOD) a naturally occurring antioxidant 

enzyme which catalyses the reaction of transforming O2
- into H2O2, a far less potent 

oxidising agent. Cytokines were administered concurrently with antioxidants to NMVM. 

Figure 27 shows the effect of apocyanin on IL-1β induced ROS production. 

   

Figure 27. Effects of apocyanin on ROS levels. ROS assay showing mean 

H2DCFDA fluorescence intensity of CTL and IL-1β+Apocyanin treated NMVM. 

Pictures on the right represent typical confocal microscopy at the F1 time, i.e. after 

laser induced ROS production.* p<0.05. A minimum of 2 experiments were conducted 

where at least 25 cells per condition were analysed to generate mean data. 
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 We then tried to obverse whether the decrease in ICaL density was reversed by 

antioxidants. Despite the success of antioxidants at reducing ROS levels, when NMVM 

were patch-clamped in the presence of IL-1β and apocyanin or PEG-SOD, the depression 

in ICaL density persisted and was not reversed at all. Figures 28 and 29 show mean IV curve 

data for IL-1β and IL-1β+antioxidant-treated cells.  
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Figure 28. Mean IV curve for ICaL in IL-1β+Apocyanin-treated cardiomyocytes. 

Panel A shows mean IV curve for ICaL recorded from control (CTL) and treated (IL-1β + 

apocyanin) neonatal ventricular myocytes. Current recording were obtained from at least 

3 different experiments. Panel B shows typical raw data recordings obtained from both 

condition.  
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Figure 29. Mean IV curve for ICaL in IL-1β+PEG-SOD treated cardiomyocytes. 

Panel A shows mean IV curve for ICaL recorded from control (CTL) and treated (IL-

1β + PEG-SOD) neonatal ventricular myocytes. Current recording were obtained 

from at least 3 different experiments. Panel B shows typical raw data recordings 

obtained from both condition.  
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Figure 30. Effects of IL-1β on Cardiomyocyte Hypertrophy. NMVM mean cellular 

capacitance under three different conditions. Control (CTL n=20), IL-1β at a 

concentration of 30 pg/mL (n=22) and 1 ng/mL (n=12). * p<0.05 vs CTL. 

Overall the data clearly indicated that the calcium current density could not be recovered by 

treating cells with antioxidants aimed at reducing NADPH oxidase activity and superoxide 

anion concentration. 

 
3.7 Effects of IL-1β on Cellular Hypertrophy and ICaL in Summary  
 
 An important aspect of this study relates to the cytokine concentration that was 

used. We chose to use pathophysiologically relevant concentrations but we also showed 

that at these concentrations the effects of cytokines are distinct from what has been reported 

in the literature where much higher doses were used. Indeed, several studies have shown 

that cytokines are able to induce cardiomyocyte hypertrophy.53, 119, 134 However, as 

previously mentioned the “ng/mL” range of cytokine concentrations are several fold higher 

than the clinical pathophysiological concentration seen in heart failure or several other 

cardiac diseases. Figure 30 shows the effect of IL-1β concentration on cellular capacitance. 

At 1 ng/mL, IL-1β significantly increased cell capacitance suggesting an increase in cell 

size.  

* 
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Cellular capacitance is an electrical estimation of cellular surface. Figure 30 clearly shows 

that when 1 ng/mL of IL-1β was used to treat the NMVM cellular capacitance significantly 

increase which suggested that cellular hypertrophy has occurred. At higher concentration of 

IL-1β the decrease in ICaL tended to be slightly larger as shown by figure 31 which also 

summarises the effects of various treatments on the density of ICaL. 

 

 
Figure 31. Summary Graph Showing Percent Reduction in ICaL at 0 mV. Calcium 

current was recorded from NMVM under varying conditions as previously discussed, 

reduction in current density at 0 mV was calculated from mean IV curves n=7-19 for 

each data set.  
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3.8 Effect of IL-1β on T-Type Calcium Currents 

 

 The T-type calcium current is highly expressed during early stages of development 

and then gets down-regulated in the adult heart at which time its expression becomes 

restricted to the conduction system.135 However reports have suggested that under some 

pathological conditions, T-type calcium channels could be re-expressed in the ventricle 

where they would provide an additional Ca2+ influx into the cell which would contribute to 

electrical instability, increasing arrhythmia risk and induce the expression of different genes 

implicated in exacerbating heart disease condition.135-137 In NMVM, T-type calcium 

channels are highly expressed compared to the adult heart. We have investigated whether 

IL-1β could increase the T-type current (ICaT), as seen under several cardiac pathologies 

such as hypertrophy.135, 137, 138 Figure 32 summarises the ICaT IV curves recorded from CTL 

and IL-1β-treated cells and shows that unlike other cardiac disease, IL-1β actually 

contributed to a decrease in ICaT density. Overall, we concluded that at 30 pg/mL, IL-1β 

decreased L and T-type calcium currents, independently of hypertrophy.  

 

 

 

 

 

 

 

 

 

 

Figure 32. Mean IV curve for ICaT recorded from NMVM treated with IL-1β. Figure 

shows the T-type calcium currents recorded from control (CTL) and IL-1β treated (IL-1β) 

NMVM were actually reduced. *p<0.05 vs. CTL. Current recording were obtained from at 

least 3 different experiments. 

* * * * * * * 
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4 Discussion 
 

4.1 Summary of Findings and Relevance 

 

As previously mentioned and demonstrated by a significant amount of literature, 

cytokines play a crucial role in the development of several cardiac diseases.25, 139 Early 

observations in patients undergoing septic shock showed that in these patients cardiac 

performance was severely compromised,74, 115 which strongly suggested a role for immuno-

modulatory cells and cytokines in mediating these effects. However cytokines levels were 

also altered in serum from patients with severe heart failure50or other cardiac diseases such 

as myocardial infarction.73 These basic clinical observations lead the scientific community 

to investigate the cellular and molecular mechanisms underlying cytokine production, 

regulation, and signalling. Collectively, the findings we have gained until today have 

allowed us to considerably clarify the role of cytokines in heart disease, amongst others 

diseases. Additionally, the findings have also led to the production of several therapeutic 

applications aimed at modulating cytokines.   

  

In the introduction, we have discussed the effects of the three main pro-

inflammatory cytokines at the top of the inflammatory cascade which are also elevated in 

heart disease. Experimental evidence from animal models and clinical observations suggest 

that these cytokines might be implicated in inducing adverse cardiac remodelling such as 

hypertrophy and fibrosis, induction of ROS, altering contractile machinery and calcium 

homeostasis, depressing contractility and dampening the β-adrenergic response.6, 54, 55, 75, 

115, 131, 134, 139 Nonetheless, in heart failure patients where cytokine levels are elevated, it has 

been well established that arrhythmias are highly prevalent and contribute to increasing risk 

of sudden cardiac death,97which suggests that along with the structural remodelling there is 

a prominent electrical remodelling. Importantly, it is still not well known whether this 

electrical remodelling is secondary to structural remodelling or whether cytokines are also 



67 

 

 

able to directly induce changes in cardiac electrical properties thus directly contributing to 

an increased risk of arrhythmia. In an attempt to answer these questions, our lab has 

devised a complete research axis which focuses on the role of cytokines in modulating the 

electrical properties of the heart. In this project, and along with previous work done in our 

lab, we have provided new insights on how cytokines can modulate cardiac ion currents. In 

brief, we have previously shown that HIV mice, which exhibit high levels of cytokines, 

suffered from a delayed repolarisation attributed to a significant reduction of the 

repolarising K+ current. In addition, the depolarising Na+ currents were also reduced.39, 98 

Thus, the net effect was an alteration in conduction and repolarisation, which pose as two 

risk factors for arrhythmias. Interestingly, all these effects involved no changes in cardiac 

function or morphology, in other words, ejection fraction and fractional shortening were 

preserved and there were no signs of hypertrophy or cardiac remodelling. This provided us 

with the first evidence that might implicate cytokines in directly inducing electrical 

remodelling.  In an attempt to provide additional proof, and distinguish the specific roles of 

each cytokines, we then proceeded to treat wild-type mice with pathophysiological doses of 

TNFα for six weeks. The electrophysiological data not only revealed a significant decrease 

in K+ currents but the action potentials from TNFα-treated mice showed a decrease in the 

amplitude of phase 0, which suggests that Na+ currents were also decreased in TNFα treated 

mice. Overall, it appeared that TNFα was able to induce several of the adverse cardiac 

electrical remodelling seen in HIV mice, thus providing substantial proof that cytokines, or 

at least TNFα, directly affects ion currents without altering the structure of the 

myocardium. Interestingly, the TNFα effects on K+ currents were also independent of 

mRNA and protein changes of all the underlying K+ channels suggesting that direct 

modulation of channel properties are likely to be the cause of current reduction.99 Of note, 

in a study using transgenic mice with cardiac specific over-expression of TNFα, reductions 

in K+ were also observed; however, the results were attributed to a reduction in potassium 

channel protein levels of KV4.2/4.3 and KV1.5.56 In addition, these transgenic mice had a 

severe cardiac remodelling including hypertrophy, fibrosis and contractile dysfunction 

amongst other effects all secondary to TNFα overexpression.55 Even though interesting, the 
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results obtained by over-expressing TNFα, portrayed this cytokine as the “holy grail” of 

cardiac disease which increases mortality rates and mediates, by itself, nearly all the 

pathologies seen in heart failure. This is highly unlikely. It is more probable, that the 

adverse remodelling effects observed in this transgenic mouse are actually secondary to the 

excessively high concentration of TNFα which saturates the signalling cascades, rendering 

its effects non-specific and thus diverges from normal pathophysiology and from clinical 

relevance. 

 

In this project we have continued to explore the effects of cytokine-mediated 

regulation or modulation of ion currents. By using an in vitro model of neonatal mouse 

ventricular myocytes treated with cytokines we investigated the effects of the three main 

cytokines, TNFα, IL-1β and IL-6, on the L-type calcium current, which plays a 

fundamental role in excitation-contraction coupling and in mediating the plateau phase of 

the action potential. The first results we obtained demonstrated that (unlike our previously 

results on K+ currents), TNFα had no effect on the calcium current. In fact, even when 

increasing the cytokine’s concentration by 33 folds, ICaL was still unchanged. This finding 

demonstrates the specificity of TNFα in affecting ion channels. Furthermore, no 

hypertrophy was observed in these cultured myocytes, in accordance with our previous 

results from TNFα treated mice. Thus, at pathophysiologically relevant concentrations, 

TNFα induces no hypertrophy. This is in clear contrast to the transgenic mouse model 

overexpressing TNFα.99  It would have been interesting to confirm whether the K+ currents 

in TNFα treated neonatal ventricular myocytes were reduced similarly to the TNFα-treated 

adult mice. However, neonatal mouse ventricular myocytes express very little K+ currents 

and are thus not an appropriate model for studying potassium currents.89, 140 The sodium 

current is however highly expressed in neonatal mouse ventricular myocytes and to look at 

how it is affected by cytokines will be an avenue we might explore in future studies.  

Subsequently, we began exploring the effects of IL-1β, a cytokine which was not 

explored in our previous studies. When neonatal mouse ventricular myocytes were treated 

for 24H with IL-1β and then patched-clamped, the data revealed that ICaL was reduced by 
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36%. This robust effect was also specific to IL-1β, because when we administered a 

treatment to neonatal mouse ventricular myocytes combining TNFα and IL-1β in order to 

investigate any synergistical effects, which have been often reported for these two 

cytokines75, 131, we observed a reduction in ICaL that was similar to the one obtained when 

neonatal mouse ventricular myocytes were treated with IL-1β alone. This finding also 

confirmed that TNFα exerts no effect on ICaL. Interestingly, the effects of IL-1β on ICaL did 

not seem to increase in a concentration-dependent manner. Figure 30 and 31 clearly show 

that when we increased the concentration of IL-1β from the clinically relevant 

concentration up to 1 ng/mL the calcium current density was reduced by 40%, compared to 

a 36% reduction at 30 pg/mL IL-1β. However, significant hypertrophy occurred as 

measured by mean cellular capacitance. The ability of IL-1β to induce hypertrophy has 

been previously documented and it has been attributed to NO and NFAT signalling.119, 134 

This finding highlights several important aspects. Firstly, ICaL was reduced independently of 

hypertrophy, and was not further decreased by hypertrophy, which suggests that in response 

to chronic low grade IL-1β, as seen in patients with heart failure, the L-type calcium current 

is likely to be directly affected by IL-1β and not as a result of structural remodelling. 

Second, by using pathophysiological concentrations of IL-1β, we avoid the non-specific 

effects on ICaL that might be secondary to hypertrophy or other saturated signalling 

cascades induced by high doses of IL-1β. A typical example where such non-specific 

effects exist is the TNFα transgenic mouse model that recapitulated a myriad of cardiac 

complication simply due to TNFα being overproduced in the heart. Furthermore, under 

hypertrophic conditions, T-type calcium channel expression has been shown to be increased 

and, unlike L-type calcium currents, the T-type calcium currents are activated at more 

negative voltages and do not normally play a functional role in the adult ventricle since 

their expression is restricted to the conduction system. However T-type calcium channels 

can become re-expressed in the ventricle as foetal genes under disease conditions, notably 

hypertrophy, and are thought to worsen the pathology by creating an additional calcium 

influx which might cause electrical instability and induce abnormal automaticity.136, 137 In 

neonatal mouse ventricular myocytes T-type channels are naturally expressed. However, 



70 

 

 

figure 32 shows that, unlike pro-hypertrophic factors which have been shown to increase T-

type currents, IL-1β actually significantly decreased the density of ICaT. This adds further 

evidence to the distinct effects of IL-1β at pathophysiological concentrations.  

Lastly, the effect of IL-6 on ICaL was also examined. Our data shows a mild but 

significant 21% decrease in peak current density. This moderate effect might be due to the 

lesser amount of IL-6 present in the media. Since IL-6 has a slightly larger molecular 

weight (~21 kD) compared to IL-1β (17.5 kD), 30 pg/mL of IL-6 would therefore contain 

less protein for a same concentration of IL-1β. However this would need to be confirmed 

by increasing the concentration of IL-6 and noting the changes in ICaL density, or 

performing a dose-response curve. Nonetheless since IL-1β exerted the most severe effect 

on ICaL we chose to focus our further investigations on the mechanisms by which IL-1β is 

able to depress ICaL. Additionally, considering IL-6 signals through completely different 

pathways, the mechanisms underlying the IL-6 response on ICaL will be the subject of future 

investigation. 

 

4.2 Potential Mechanisms of Cytokine Mediated Effects on Calcium Channels 

 

We first investigated the effects of IL-1β on ICaL. Briefly, what we have found is 

that the reduction in ICaL caused by chronic exposure to IL-1β is not attributable to a gene 

regulation nor it is caused by elevation is ROS levels.  

 Indeed, qPCR data revealed that following IL-1β treatment (and TNFα) mRNA of 

CaV1.2, the underlying α subunit which encodes for ICaL, was unchanged. This finding was 

in accordance with our previous study where TNFα treated mice that also showed no 

change in mRNA (or protein) levels of K+ channels in response to TNFα. Thus it was 

expected that the protein levels of CaV1.2 will not be changed, and that the decrease in 

current density is more likely to be caused by intracellular regulation, such as 

phosphorylation, which can affect single-channel properties. It is also possible that IL-1β 

exerts its effects on β-subunits of the L-type calcium channel without influencing the 

expression or regulation of the α-subunit. 
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As previously mentioned, our results are in contrast with the TNFα transgenic mouse model 

where TNFα concentrations are several fold higher than our conditions and where protein 

levels of several ion channels, notably potassium channels, were decreased. Thus, it appears 

at pathologically relevant concentrations, pro-inflammatory cytokines do not regulate ion 

currents via transcriptional or translational mechanism but rather involve intracellular 

signalling that influence ion channel properties or activity.  

 

Several studies have suggested that pro-inflammatory cytokines are potent inducers 

of oxidative stress.34, 141, 142 Some studies even suggested that ROS produced by cytokines 

can reduce ionic currents.143 For instance, the oxidation of sulfhydryl groups of NaV1.5 was 

seen to decrease peak current density without affecting the current kinetics.144 We therefore 

investigated whether ROS could contribute to the decrease in ICaL by a mechanism where 

ROS would oxidise sulfhydryl groups and depress ICaL density. The first step was to 

measure ROS levels, using a ROS-sensitive fluorescent probe. Our results showed a 

significant increase in oxidative stress after IL-1β treatment. In an attempt to halt the ROS 

production induced by IL-1β we subsequently treated cells concurrently with IL-1β and two 

different antioxidants, apocyanin or PEG-SOD. These antioxidants either directly inhibit 

NADPH oxidase a main source of ROS, or quench O2
- a potent oxidising agent, by 

transforming it into peroxide, a far less reactive species. Apocyanin, the NADPH inhibitor, 

decreased ROS levels; however, our electrophysiology data clearly demonstrated apocyanin 

failed to reverse the decrease in ICaL. Interestingly, TNFα was also able to induce ROS, and 

when neonatal mouse ventricular myocytes were treated with both IL-1β and TNFα there 

was a synergistical increase in ROS production. Thus, oxidative stress is not implicated in 

reducing the density of ICaL. In addition, TNFα does exert a biological activity in the 

neonatal mouse ventricular myocytes, and lack of effect on ICaL is not attributable to a lack 

of TNFα receptors in these cells. 

 

Lastly, even though the kinetics of ICaL were not changed after IL-1β treatment, we 

examined whether protein kinases were implicated in the observed effects in particular, 
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protein kinase C (PKC). There are multiple potential PKC phosphorylation sites on the L-

type calcium channel (lozenges on figure 16). Preliminary data obtained showed that when 

neonatal mouse ventricular myocytes were treated with the PKC activator PMA (phorbol 

12-myristate 13-acetate) for 30 mins ICaL density was significantly reduced to the same 

extent as observed with IL-1β. No change in in ICaL kinetics or the IV properties were 

observed either. Furthermore, when PMA was incubated for 24 H, which serves to down-

regulate PKC,144, 145 the density of ICaL increased, however additional experimentation will 

be required in order to reach statistical significance. 

 

4.3 Neonatal Cardiomyocytes as an in vitro Model  

 

 Cell culture has been a tool of unequivocal importance in research. Stable cell lines 

which replicate and maintain their phenotype over long periods of time have provided 

significant insights into thousands of cellular mechanisms. They are tailored to the 

investigator’s needs and are often used as a ground work for subsequent research. Stable 

cell lines are extensively used in biotechnology, vaccine development and drug 

screening.146, 147 In contrast, primary cultures such as the neonatal mouse ventricular 

myocytes are obtained from freshly isolated hearts and can only be maintained in culture 

for short periods of time considering as these replicate slightly, if at all. However, they 

offer the advantage of being molecularly ‘closer’ to the in vivo model than stable cell lines. 

The neonatal cardiomyocyte culture protocol was first described by Harary and Farley in 

1963 and over the last 50 years several investigators have modified or updated the 

technique.148 For instance in the early 1980s the neonatal cardiomyocytes cultures served as 

model to study cardiac hypertrophy.119 However the use of neonatal cardiomyocyte cultures 

extends far beyond that and indeed this in vitro model offer many other advantages. A 

preparation yields millions of viable cardiomyocytes that can be treated with various 

pharmacological agents, transfected, used for electrophysiological or molecular purposes 

which will be analysed in contexts independent of systemic feedback. Thus, they offer an 

approach focused on the precise and isolated cellular mechanisms. Additionally, compared 
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to adult cardiomyocytes which begin de-differentiating after 24 H of culture, neonatal 

mouse ventricular myocytes can be maintained up to weeks in culture without losing their 

phenotype and overall, they do resemble adult cardiomyocytes on several levels including 

intracellular signalling cascades and expression of some ion channels. We have used the 

neonatal mouse ventricular myocytes in order to investigate the chronic effects of cytokines 

on ICaL. The model has allowed us to explore the role of three cytokines in parallel under 

chronic conditions, which are at 24 H and more, compared to 6 weeks in vivo. Therefore, 

neonatal mouse ventricular myocytes offer an exclusive advantage in terms of flexibility, 

time, and allowed us to control the experimental conditions and exclude the systemic or 

indirect that might arise in performing such studies in vivo.  

In regard to our research interests there are several differences between adult and 

neonatal cardiomyocytes that one should keep in mind. In terms of electrophysiology the 

calcium and sodium channels are robustly expressed and are regulated in a similar fashion 

to the adult cardiomyocytes,149 however neonatal mouse ventricular myocytes are not well 

suited for studies related to K+ currents, as these currents are very small or totally absent 

from these cells.140 Additionally, as previously shown, ECC requires organised structures 

and a close proximity of LTCC to RyR in order to induce CICR. Since neonatal mouse 

ventricular myocytes have not developed T-tubules,149 the basis of ECC is therefore very 

different from the adult heart. Even though many of the calcium handling proteins (RyR, 

SERCA, PLC, NCX etc.) are expressed and functional their role in ECC or calcium 

handling differs from the adult cardiomyocyte; however exploring their regulation could 

still be insightful. Interestingly, ECC seems to develop as the neonatal mouse ventricular 

myocytes are kept longer in culture. Some authors have reported that after 7 days of culture 

despite spontaneous contractions, a mechanism similar to CICR develops in neonatal 

mouse ventricular myocytes, however significant differences from the adult cardiomyocyte 

in terms calcium handling persist.150 Overall, as with any other model, neonatal mouse 

ventricular myocytes have their own respective advantages and disadvantages. We have 

used them to gain insight, independently of systemic effects, on the regulation calcium 

current by cytokines. The properties and regulation of ICaL in neonatal mouse ventricular 
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myocytes are on many levels similar to their adult counterpart including response to 

angiotensin II (Mathieu S et. al unpublished data), endothelin-1, and β-adrenergic agonists 
149, 151, 152 thus, the findings provide a ground work for subsequent investigations, and the 

observations are highly likely to be recapitulated in in vivo models, where they can be 

further developed.  

 

4.4 Perspectives and Future Investigation 

 

 We have shown that IL-1β can significantly decrease the L-type calcium current 

independently of gene regulation or oxidative stress. Currently we are investigating the 

regulatory pathways that involve protein kinases, in particular PKC. The PKC family has 

been shown to interact with L-type calcium channel.101 Even though studies have shown 

mixed effects regarding the exact modulation of LTCC by PKC, significant research has 

shown that different PKC isoforms may have opposing results on ICaL.101 Our preliminary 

data suggest that PMA mimics the effect of IL-1β. Thus a rapid activation of PKC 

decreases calcium current density in similar fashion to IL-1β. Nonetheless, it remains to be 

investigated whether IL-1β actually mediates its effects via activation of PKC, and if 

proven to be true, to which of the isoforms is the effect attributable. Furthermore, early 

studies have reported a decreased response to β-adrenergic stimulation in IL-1β treated 

cardiomyocytes, due to decreased cAMP levels.115 A decrease in PKA activity, which is 

known to enhance ICaL density, might be reduced and consequently this would reduce ICaL 

density. This would have a net outcome of depressing contractility and affecting cardiac 

excitability. 

An important question that remains to be answered would be “what is the 

physiological consequence of a decrease in ICaL?” Will it just be a decrease in contractility? 

Research has shown that reductions in ICaL can affect calcium transients by lowering SR 

calcium release. In an adaptive response, RyR sensitivity is significantly increased, which 

might lead to increase SR leak, known as sparks, which poses a risk factor for spontaneous 

depolarisations.116, 131 In an attempt to restore Ca2+ homeostasis, calcium handling proteins 
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can also adapt their expression patterns thus adding further complexity to the underlying 

mechanisms. Likewise, many signalling mechanisms depending on calcium influx from 

LTCC could be modified. 

Overall, there are several paths to be investigated. It is possible to focus on the 

molecular determinants of ion channel regulation by cytokines in neonatal mouse 

ventricular myocytes. However exploration of all the ECC mechanism will require 

ultimately a model that possesses typical adult ECC dynamics. 
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Conclusion 

 

Our studies regarding the regulation of ion channels by cytokines have revealed 

several important findings. We have demonstrated that long term exposure to pro-

inflammatory cytokines is able to directly modulate several voltage-depend ion currents, 

which in every case so far, resulted in a decrease of current. Overall our data suggest that 

TNFα, IL-1β and IL-6, the cytokines at the top of the inflammatory cascade, which are 

elevated in patients suffering from various heart diseases, affect the repolarising K+ 

currents, the depolarising Na+ current and the calcium currents. Specifically, TNFα 

decreases K+ and Na+ currents but not Ca2+. On the other hand, IL-1β and IL-6 decrease the 

L-type calcium current. However, further experimentation will be required in order to 

assess the effects of these three cytokines on K+, Na+ and Ca2+ currents in order to develop 

a bigger picture of how each cytokine might affect a particular current.  

The net effects of the decreases in K+, Na+ and Ca2+ currents in response to 

cytokines that we observed over the course of this project could prove to be lethal. Indeed, 

by affecting conduction, prolonging repolarisation, and decreasing ICaL, the risk of 

arrhythmia is for the part significantly increased. Over time, if these currents remained 

decreased, cardiac function will undoubtedly worsen, as seen in patients with heart failure. 

Importantly, we also demonstrated that chronic low grade inflammation where 

cytokine levels are maintained in the lower ranges but for longer periods of time cytokines 

do not necessarily induce structural remodelling, in contrast to many studies which used 

extremely high doses of cytokines (ranging from 1 to 500 ng/mL). Additionally, the 

cytokines’ effects on ion currents were for the most part independent of gene and protein 

expression levels and are thought to implicate intracellular regulatory mechanisms which 

alter ion channel properties. These findings could contribute to explain the rhythm 

disturbances, arrhythmia susceptibility and decrease in contractility observed in patients 
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suffering from heart disease where pro-inflammatory cytokines levels are chronically 

elevated. 
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