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Résumé

Ce mémoire s’applique a étudier d’abord, dans la premiére partie, la mesure de Mahler
des polynomes a une seule variable. Il commence en donnant des définitions et quelques
résultats pertinents pour le calcul de telle hauteur.

Il aborde aussi le sujet de la question de Lehmer, la conjecture la plus célebre dans le
domaine, donne quelques exemples et résultats ayant pour but de résoudre la question.

Ensuite, il y a [D’extension de la mesure de Mahler sur les polyndomes a plusieurs
variables, une démarche semblable au premier cas de la mesure de Mahler, et le sujet des
points limites avec quelques exemples.

Dans la seconde partie, on commence par donner des définitions concernant un ordre
supérieur de la mesure de Mabhler, et des généralisations en passant des polyndomes simples
aux polynomes a plusieurs variables.

La question de Lehmer existe aussi dans le domaine de la mesure de Mahler supérieure,
mais avec des réponses totalement différentes.

A la fin, on arrive a notre objectif, qui sera la démonstration de la généralisation d’un
théoréme de Boyd-Lawton, ce dernier met en évidence une relation entre la mesure de
Mabhler des polyndomes a plusieurs variables avec la limite de la mesure de Mahler des
polynomes a une seule variable.

Ce résultat a des conséquences en termes de la conjecture de Lehmer et sert a clarifier la
relation entre les valeurs de la mesure de Mahler des polyndmes a une variable et celles des

polyndmes a plusieurs variables, qui, en effet, sont trés différentes en nature.

Mots-clés : la mesure de Maher supérieure, la conjecture de Lehmer, les points limites, les

polynomes a plusieurs variables, le théoréme de Boyd-Lawton.
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Abstract

This thesis applies to study first, in part 1, the Mahler measure of polynomials in one
variable. It starts by giving some definitions and results that are important for calculating
this height.

It also addresses the topic of Lehmer’s question, an interesting conjecture in the field,
and it gives some examples and results aimed at resolving the issue.

The extension of the Mahler measure to several variable polynomials is then considered
including the subject of limit points with some examples.

In the second part, we first give definitions of a higher order for the Mahler measure,
and generalize from single variable polynomials to multivariable polynomials.

Lehmer’s question has a counterpart in the area of the higher Mahler measure, but with
totally different answers.

At the end, we reach our goal, where we will demonstrate the generalization of a
theorem of Boyd-Lawton. This theorem shows a relation between the limit of Mahler
measure of multivariable polynomials with Mahler measure of polynomials in one variable.
This result has implications in terms of Lehmer's conjecture and serves to clarify the
relationship between the Mahler measure of one variable polynomials, and the Mahler

measure of multivariable polynomials, which are very different.

Keywords : the higher Mahler measure, Lehmer’s question, limit points, multivariable

polynomials, Boyd-Lawton theorem.
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Introduction

Polynomials have been studied in many areas of mathematics, and they
occupy a central place in number theory. Notions like the classical height and
length of polynomial can be used to estimate their complexity. Not long ago, in
the 1960’s, Kurt Mahler gave the idea of a new kind of height, that is related to
the roots of the polynomials, and was interested to compare it with other
heights. Since then, this new object, named after Mahler, became an interesting
topic in number theory with connections to different conjectures in

mathematics, such as Lehmer’s question, posed by Lehmer 30 years earlier.

In this memoir, we define the Mahler measure of one variable
polynomials, extend it to multivariable polynomials, and then to higher Mahler
measures, we talk about Lehmer’s question for each case. The Boyd-Lawton
theorem, mentioned in the title, shows a relation between Mahler measures of
one variable polynomials and Mahler measures of multivariable polynomials.
Our main goal in this memoir is to prove a generalization of this theorem for

higher Mahler measure.






Part 1 The classical Mahler Measure.

Chapter 1

The Mahler measure.

Definition 1.1. For any non zero polynomial

d
d d-1 _
P(x)=adx +ad_1x +...+a0—ad1_[1(x—ai)
l:

in C[x], define the Mahler measure of P to be [Ma60]

M(P)=

o

In this definition, an empty product is assumed to be 1, so the Mahler measure of the

44

d
H max {1,
i=l

non-zero constant polynomial P(x)=a, is ‘ao‘ .

We denote by m(P)=1log M (P) the logarithmic Mahler measure, and we extend the
definition to include m(0)=co.

Mahler called M (P) the measure of the polynomial P, apparently to distinguish it from

its classical height. It became known as the Mahler measure because of two papers written
by Mahler in the early 1960s.

Mahler’s was interested in comparing this construction with other heights such as the
classical height and the length of the polynomial. They are defined respectively by

!

H(P)= max {‘a.
0<1<d !




d
and L(P)= Z

i=0
Mahler found a relation between the three heights [Ma60] [EW99]

a.|

H(P)< M (P)< H(P),
L(P)< M (P)< L(P),

which he later used together with the multiplicative property to prove bounds on the heights

of products of polynomials. (Note: for two functions f (x) and g(x), f < g means the

growth of f is asymptotically bounded by g).

Lemma 1.2. (Jensen'’s formula) for any ae C

1
J-log 0(|}.
0

Proof. The statement is clear for & =0, so assume that o # 0.

o270 }d@ = log max {1,

First assume that |a| #1 then

1 .
1 log|of + [log|1-™'e*™®| a6 if |of>1,
J.log a_ezm'e}dg: 1 0
0 [1og 1—e‘27”"9a‘ a6 iflel<1.
0

The integral in the |0(| <1 case may also be written (via the substitution 8 — —6) as

l .
J'log 1- ezmaa‘ de.
0

It is therefore enough to prove that, for any £ with || <1,

1— B0 49 =0,

1
Ilog
0

Write Re(z) and Im(z) for the real and imaginary parts of a complex number z .



Notice that log|z|=Re(logz) so

where the summation being taken out of the integral is justified because the sum is
absolutely convergent.

We are left with the case f=1.

Write the integral in the form

1 21 0
— | lo
27 -([ 8

a—%4e.

Assume that |a| =1, indeed after translating by &' we may as well assume that oz =1.

Consider then
2r .
J = [ 10g)1-ce.
0
Since [1-¢/?| =2 sing for@e [0,27], we can replace it in the integral :

2r P 2r P
J = J. log2sin—d@=2rlog2+ J. logsin—dé,,
0 2 0 2

Put 2x =86, then



V4
J= 27[10g2+2_[10gsinxdx.
0

It is enough to show that

7T
J = .[ log sin xdx = —mlog 2.
0

This exists as an improper Riemann integral since sin x ~ x for small x .
Write sin x = 2sin X cosX , then
2 2
. X A X
J =rlog2+ _[ logsin —dx + J- log cos —dx.
2 2
0 0
(. X : . X T .
Substituting ) =t in the first integral and 5 =5—t in the second, we get
z
2
J' = 7zlog2+4j log sin tdt
0

=rmlog2+2J".

Lemma 1.3 [Ma60][EW99] (Mahler’s lemma) For any non zero polynomial Pe C|x]

p(27i0 )}d@.

m(P)le‘log

Proof. This is a simple consequence of Jensen’s formula.

O
By definition, Mahler measure is a positive number bigger than or equal to 1, and it is

natural to ask about cases when this number equals 1, or when the logarithmic Mahler

measure vanishes. Cases where m(P)=0 can be completely understood using Kronecker’s

theorem.



Theorem 1.4. (Kronecker) Suppose that o #0 is an algebraic integer. If the algebraic

conjugates o = A,en O of a all have modulus O{j‘ <1, then «ais a root of unity.

Proof. Consider the polynomial

d
Pn(X)=Hl(x—06f)
=

where £ is the minimal polynomial for ¢.The coefficients of Pn are symmetric functions

in the algebraic integers Otj so they are rational integers.

Each of the coefficients is uniformly bounded as »n varies because <1 forall j, sothe

o .
J

set
{p (x)

must be finite. It follows that there is a pair », # n, for which

}neN

P =P ,
noom

n n n n
{0{1 1,...,050,1}:{0(1 2,...,05d2}.

Each permutation 7€ § J (the permutation group on d symbols) defines an action on the

SO

set of roots by

n_
a, _ar(i)'
n’ n. n ol —n"
Then if 7 has order » in Sd , 0{1.1 =0(l. 2 , SO al.l (0{1. 2 1 —1)=0, which shows that

2 must be a root of unity since a, # 0.



A polynomial in 7.|x] is called primitive if the coefficients have no non-trivial common

factor.

Theorem 1.5. Suppose Pe Z[x] is non-zero, primitive and P(0)+0, then m(P)=0if
and only if all the zeros of P(x) are roots of unity.

Proof. Assume that all the zeros of P(x) are roots of unity, then the leading coefficient of
N.
P(x) must be %I since P(x) divides H x ' —1| for some Ni >1. So, from the
i

definition, m(P)=0.
Conversely, if m(P)=0, then it is clear that P must be a monic polynomial, so all the
zeros are algebraic integers, and all must have modulus less than or equal to 1.

Applying Kronecker’s theorem, we see they must all be roots of unity.

O
The Mahler’s measure has been studied in many branches of mathematics. In the next

section we discuss Lehmer’s problem, which is the most important open problem in the

area.






Chapter 2

Lehmer’s Problem.

Lehmer was interested [Le33] in finding large primes, he searched for them amongst the

Pierce sequences [Pi17]
d n
A (P)= o -1
(P) 11;[1< 1)
where the a, ’s are the roots of an integer valued monic polynomial P(x) with degree d .
Assume that the al.’s are never roots of unity, since if al,N =1 for some N, then

An (P)=0 wherever n is divisible by N .

The quantity An (P) 1s always an integer since it is a product of all of the algebraic

conjugates of o —1.

Lehmer [Le33] showed that if P has no roots on the unit circle, then An (P) grows like

M (P)". The terms of sequence An (P), n =1 are more likely to be prime if the sequence

does not grow too quickly. He measured the rate of growth by considering the ratio of

successive terms

An +1 ()
A (P)

Lemma 2.1. Provided no root . of P has

0{1.‘ =1, then

A I(P) d
lim |2+ = Hmax{l,
n—ol A (P) i

al.‘} — M(P).
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d
Proof. This is clear since we can treat each term in the product H‘O{ln -1

i=l1

separately :

If we take the limit of one of the terms, we get :

1

af”l_l‘ ‘al.‘ if ‘al.‘>1

lim
n—o0 aln—l‘ 1 if ‘al.‘<1
= max{‘al. ,1}.

Then taking the product of the limit of the terms we get the desired results.

Lehmer produced some large primes as values of An(P). For example, if

P(x)= x> —x—1, Lehmer showed that [Le33]
A, 5(P)=63088004325217...

and A, (P)=3233514251032733...

are primes. The Mersenne sequence arises by choosing the polynomial P(x)=x-2

so that
A (P)=M =2"-1.
n n
The numbers in this sequence, for n an integer, are called Mersenne numbers. If Mn is
prime then M i is called Mersenne Prime.

It is necessary that n be prime for the Mersenne number to be prime. The inverse is not

always true. It is still unknown if there exists infinitely many Mersenne primes.

Lehmer asked whether, or not, M (P) can be arbitrarily close to 1, if P (x) isa

a. a.
monic integer polynomial with F = H P (xl mo., xn’” ]
i

This has become known as “Lehmer’s problem” or “Lehmer’s question”.
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The smallest value of M (P)>1 he could find was
M(L)=:1.176280818,
which is the Mahler measure of the 10 degree polynomial
L(x)= AOpx? —xT =X =X =X =P x4l
This polynomial is now called Lehmer’s polynomial. Its Mahler measure is still the

smallest known until present.

Lehmer’s polynomial generates some large primes. Lehmer found that

JA 5 (L) =:37098890596487,

which is prime. The values of An are squares of symmetric polynomials, so it is natural to

look for prime values among their square roots.
Definition 2.2. Suppose P(x) eC [x] has degree d , write P* (x)= de(x_l).
Then P is called reciprocal (or symmetric) if
P(x)=P (x)
and non reciprocal otherwise.

Lehmer calculated the following measures [Le33]:
M(x*-x-1)=1.618...,
M(x*—x-1)=1324...,
M(x*—x-1)=1.380...,
M -x*-1)=1362...,
M(x%-x-1)=1.370...,
MG =x3-1)=1.379... .
He also studied reciprocal polynomials, among these he found [Le33]:
M(x®—x*—x*=x* +1)=1.401...
and M()c8 —x0—xt =y +1)=1.280...

but found no polynomials with smaller measure than L(x) which is reciprocal.
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Lehmer’s question was answered by Smyth (see Section 2.3.2 below) for the non
reciprocal polynomials and is still open for the reciprocals, for which exist many partial

results about lower bounds.

2.1 The conjecture of Schinzel and Zassenhaus

If « is an algebraic integer with conjugates ¢, let

S HE
[or] =max|e |
k

For an algebraic number ¢, we denote by M («) the Mahler measure of its minimal
polynomial in Z[x].

Definition 2.1.1 the minimal polynomial of an algebraic integer ,is the unique
irreducible monic polynomial P(x), of smallest degree with rational coefficients, such that
P(a)=0.

Suppose that the minimal polynomial of & has degree d. We have the obvious
inequality [SZ65]:

1
M(e)? <[a]<M ().

If o is a unit then M (o) = M (V).

So that
1
max Uoﬂ , [E—D <M().

(1)
In 1965, Schinzel and Zassenhaus [SZ65] proved that if o # 0 an algebraic integer that

is not a root of unity, and if 2s of its conjugates are non real, then
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[a]>1+47572,

This was the first progress towards solving Lehmer’s problem since by (1) it implies the

same lower bound for M (). Later they conjectured , that under the same hypothesis,

C
o|z21+—
@21+
2)
for some absolute constant ¢ >0. A positive answer to Lehmer’s conjecture would imply
1
(2) because (0(—| =M (O()d implies that
fo]21+ 08 M (@)
d
Thus if M(a)=c, 21, then
loge,
[a]|21+ .
d

The inequality implies that any progress on Lehmer’s problem will lead to a

corresponding Schinzel-Zassenhaus inequality.

2.2 Lower bounds.
Lehmer’s question has been intensely studied in order to get new bounds. Below we
cite some partial lower bounds, and note the relations with the degree d of the polynomial.

Some of the lower bounds are:

1) Blanksby and Montgomery (1971) [BM71]:

MP)>1+—————.
52d log(6d)

2) Stewart (1978) [ST78]:



15

C
MP)>l+—m .
10%d logd

3) Dobrowolski (1979) [DO78]:
loglogd \
M(P)>1+(1-8)| —2285 | | d>d ().
logd

4) Cantor and Strauss (1982), [CS82]:

3
M(P)>1+(2—g)| 08logd | d>dy(e).
logd

5) Louboutin (1983) [Lo82]:

m(P)>1+(%—8j(MT, d>d,(e).

As we can notice, 4 and 5 are improvement on the Dobrowolski method in 3.
2.3 Restricted results of Lehmer’s problem

2.3.1 Schinzel theorem
The next lemma is a special case of a more general result due to Schinzel, and it
concerns polynomials with strictly real zeros.

Lemma 2.3. Forany d 21, let y,,. >1 be real numbers , then

Vg
d
0100 =D =[O 1]

proof . Let yj =x; + 1, and write

d yd 4, \1/d
f(xl,...,xd)zn(xl.+l) —l—il;[l(xl.) ,

i=1



if we prove this function to be >0 then the lemma will be true.

We have here a multivariable continuous differentiable function where all xl.'s are =2

since yj >1, and d 21, we will find the extremum for this function.

Take the derivative of f with respect of x,

1= (e )1,

1/d
)/ ——1 xll/d lx%/d...x;/d,
1 d

f;ﬁ =0<:>(1+x1)1_d (1+x2)...(1+xd)=x11_dx2...xd

d
ld(1+x1)...(l+xd)=xl...xd (1+x1)

since all the X, are > 2, all the terms above are different from 0, and we have equaltiy only

=X

when all the xl.'s are equals. Now take the second derivative of f* with respect to x,

r :%(%—1)(1+x1)1/d_2 (14,4 ...(1+xd)1/d —%(%—l)x}/d_zxi/d...xgd.

when all the X, are equals,

d
=é(é_lj£x(;il)J

which is >0 since d =1 and x = 2, then the extremum for this function is a minimum.
Note that this second derivative function can not be =0, so the minimum is unique.
we will get the same results for the derivatives of the function with respect to the

other xl. 's.

Therefore, f (xl,...x d) has a minimum when all the xl.'s are equal

S (x,..x)= ((1+x)1/d )d —1—(x1/djd =0

Then f is always positive since it has one minimum 0, thus the proof is complete.
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Theorem 2.4. (Schinzel) [Sc74] Suppose that Pe Z[x| is monic with degree d,
P(-1)P(1)#0, and P(0)==1. If the zeros of P are all real, then

1+x/§]d/2_

2

M(P) z(

d
Proof. Consider E = H‘al.z —1|, where the ¢,’s are roots of P(x), since P(x) is monic,

i=1

d
we can write P(x) =H(x—0(l.), , then E can

i=l1

d
PO =TT[i-,
i=1

d
and ‘P(—l)‘ = H‘—l—al.
=

1=

be written E = ‘P(I)P(—l) , clearly E>1 since P is monic (its leading coefficient is 1),

and P(1)P(-1)#0 by hypothesis.

Then
£=ITle =1|= T Joe 1| TT Joc -
‘0’,-‘ ‘al.‘<l ‘al.‘>l
P(0)
P(0)’

S T e -1 T Jer -

MO gt ot

= .
i

‘al. ‘>1
P(0) 0 and by the factorization of P we can write P(0)=] | (—Otl. ), SO

&

£= 11 Jef — T lee=1| T] [e -0 ————
PSR (G T R T o 1T ||
‘O’i‘>1 ‘“i‘d
:M(1P)2 I ai"Q—l‘x I1 ‘0{1.2—1‘. Since P(0) = %1 by hypothesis.
|

al-‘<l ‘al.‘>1
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are the roots with absolute value <1, and {0{. are the

Suppose that {Oll.} l}l‘:ﬁ.l,_,,d

i=l,..,j

remaining roots, then

E :ﬁ(af —1)...(0{}2 —1)(0{?4_1 —1)...(0{621 —1),

we have here a multiplication of d terms where the a, ’s are real, so we can apply

Lemma 2.3

sl (7))

i 1/d d
< ! 5 o -1 ,
i
M(P) ‘al.‘>1
we use the fact that M (P)= [] a| to get
‘al.‘>1
d
F<— ! Z(M(P)4/d—1)
M(P)

(P _prpy M ‘
( )

Since 1< F, it follows that
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My _ppy M s,

To solve this inequation, putx = M (P)z/ d , then we have

x—x! 21<:>x2—x—120,

Which is a second degree inequation, true for x > 1+2\/§ and for x < 1_2\/5

(second inequaltity is rejected since it is negative and the Mahler measure is not),

so we replace x in x > by M (P) to get the desired result

1+45 2/d
2

2

d/2
M(P)z[”‘gj .

O
Corollary 2.5. If Pe Z[x] has all real zeros, with same conditions as in Theorem 2.4,

then

1+J§

M(P)z=—=.

1+\/§

5
When d =1, take P(x) =x+b, withbe Z [x] , since P is monic, and has integer coefficients ,
we must have P(0) =1, so P(x)=x=x1, but the condition P(1)P(—1)+0 can not be

verified with the polynomial P(x)=x=1, so no polynomial with degree d =1 verify the corollary
then, we will apply this corollary for polynomials with degree d > 2.

proof . Ford 22, it is clear that we have M (P) 2

O
2.3.2 Results for non reciprocal polynomials

Polynomials that are not reciprocal have a uniform lower bound for their Mahler

measure.

In 1971, C.J. Smyth published the following remarkable theorem.
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Theorem 2.6. [Sm71] (Smyth) If p(x)e Z[x] is a non reciprocal polynomial and

p(0)p(1) 0, then

M(P)=M(x* —x—1)=6, =1.3247...
where 6, is the real zero of x—x-1.

The condition that p(1) # 0 simply means P is not divisible by x —1. This condition is
required for if we multiply any reciprocal polynomial by x —1 the measure does not

change, but the polynomial may become non reciprocal. Take for example P(x) of

degree d to be a reciprocal polynomial so P(x)= de(x_l). Put O(x)=(x-1)P(x),

thenxd'HQ(x_l):xxd (l—le(x_l)=(1—x)P(x)¢Q(x) for every x, so O(x)

X
is not reciprocal.

Since the Mahler measure is multiplicative, and M (x—1) =1, we have that M (P) =M (Q),
which makes the condition P (1) # 0 necessary regarding the hypothesis in the theorem

about the polynomials being non reciprocal.

An algebraic integer o is said to be reciprocal if it is conjugate to ™" .

Smyth’s theorem shows that for & a non reciprocal algebraic integer

M(a)2M(x* —x—1)=6, =1.3247...

. . * ..
Equality M () = 6, occurs only for & conjugate to (J_ré?o )_ I/k for some positive

integer k.
Smyth also proved a stronger result [Sm71], also for & non reciprocal algebraic integer
M(a)>M (x> -x-1)+107%
So that ¢, is an isolated point in the spectrum of Mahler measures of non reciprocal

algebraic integers. Here are some of the known small points in this spectrum [Sm71] :
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M(x> —x—-1)=1.324717959...
M =x*+x% —x+1)=1.349716105...
M8 = +x° = x? +1)=1.359914149...
M (x> = x* +1)=1.364199545...
MG =x3+x8 x> +x° —x+1)=1.367854034...
It would be interesting to know more about this spectrum, and maybe it will be possible to

find new small points coming from non reciprocal polynomials.






Chapter 3

Mahler’s measure in several variables

3.1 Defintion and existence

Definition 3.1. The Mahler measure of a non zero polynomial
Fe C[xlil,...x il}
n

is

dx
m(F)= I 10g|F|abC1 —L
(27i)" ™ I
where T" ={(Zl,...,zn)e c” :‘zl‘z...z z, =1}.

This definition extends to Laurent polynomials F' e (C[xlil,...xnil}, either by

evaluating the integral of the Laurent polynomial, or by noting that the measure

satisfies m(FG)=m(F)+m(G).

Lemma 3.2. The expression m(F) in definition 3.1 always exists as an improper
Riemann integral

Proof. [EW99] Consider /(F) the logarithm of the sum of the absolute values of the
coefficients of F. Then, from the triangle inequality, m(F’)is bounded above by /(F).
Assume that the lemma is true for all polynomial in n —1 variables.

Write /' as a polynomial in x, with coefficients in (C[xz,...,xn]

_ d
F(x ,...,xn)—ad(x ,...,xn)xl +...+a0(x2,...,xn).

Then factorize F as follows
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d
F(xl,...,xn) = aa,(xz,...,xn)l‘_ll(x1 —gj(x ,...,xn)).
]:

For certain algebraic functions g,,...,g IE Then

d 1l 1/1 . . :
27i6 27i6 27i6
m(F)=m(a  (XyeesX N+ D j...j[jlog e l—gj T2 e M dHl...den}
j:]O 0o\o0
1 . . :
27i6 276, 27i6

PutJ = [logle™"" g (e e mae,

0

By the inductive hypothesis, the first term exists.
Apply Jensen’s formula to the integral J, we find that

‘ £€2m't92 ’.“’827516?’1 J‘

(this notation is defined by logt & = log max{L,a} for ae C)

J= log+

For each N € N, define

2 m-gz 27

d
oy =m(ad(x ,...,xn))+ 2 j J log™t gj(e e )

J=1 <N
i

d6,..do .

g
Then for each N, ¢, exists since the integrand is continuous.

Also «, increases with N, and is bounded above since m(F)is bounded above by /(F),

SO
oy — m(F)

as N — oo,

In the first chapter, we proved that for a single variable polynomial P(x), m(P)=0in

the case P (x) is product of cyclotomic polynomials and monomials, one might ask the

O
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same question for multivariable polynomials. Next, we present the main statement in this

section, for which the proof is due to Smyth.

Theorem 3.3. [Sm81b] [EW99]. For any primitive polynomial F € Z[xlil,...,x;l], m(F)

is zero if and only if F' is a monomial times a product of cyclotomic polynomials evaluated
s i “h o Yin
at monomials i.e. F =HPZ XX .
i

Definition 3.4. 4 non zero polynomial Pe C|x| is said to be unit-monic if

d

P(x)=a x" +..+a, has

J ad‘z‘ao‘zl.

For unit-monic polynomials, there is a complex analogue of Kronecker’s lemma.

Lemma 3.5. If Pe C[x]is unit monic, then m(P)=0 if and only if the zeros of P lie on

the unit circle.

(Here the proof is same as in Theorem 1.5, a conclusion from Kronecker’s lemma.)

sl - |

Definition 3.6. Let F' be a non zero polynomial in C[xl )X } written as

N ST
F(xl,xz)z z a(])xllxzz.
jeJ
With J finite and all a(j)#0, J =J(F) is called the support of F .

Define C(F) to be the Newton Polygon of F .

Definition 3.7. In complex algebra, the convex hull for a set of points X is the set of all

convex combinations of points in X .

Let F' be a non zero polynomial in C [xlil,x;‘rl} written as

F(xl,xz)z > a(j)xljlxzjz.
jeJ
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Then the Newton polygon C(F) of the polynomial F' is defined to be the convex hull of

the set J < Z°.
To better understand Newton polygon, we examine some examples:

1) Let F(x;,x,)=1+x +ux,,the Newton polygon of this polynomial is a triangle:

0 ! 2 fig.1 [EW99]

2) Let F(x,x,)=1+ x12 +x.x, and Fi(x,x,)=1+2x + xl2 +3x,x,, both polynomials

2 b
have the same Newton polygon, which is a triangle.

- T
0 1 2 fig.2 [EW99]
An extreme point of a convex set S in a real vector space is a point in S which does not

lie in any open line segment joining two points of S.

Definition 3.8. A4 non zero polynomial F e C[xlil,xzil} is extreme monic if |a(j)| =1 for
extreme points je C(F).

Lemma 3.9. [EW99] If F' and G are polynomials in (C[xl,xz] then:

I- C(FG)=C(F)+C(G).

2- Every extreme point of C(FG) is a sum of extreme points of C(F) and C(G) in a

unique way.
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3- Ifanytwoof F', G and FG are extreme monic so is the third.

Lemma 3.10. [EW99] Suppose F e (C[xlﬂ,x;‘rl] is a non zero Laurent polynomial, then

C(F) is a straight line if and only if F' is a monomial times a one variable polynomial

evaluated at a monomial

F(x,x,) = x8G(xx)

for Ge C[xil]

Theorem 3.11. [EW99] 4 polynomial F € C[xlil,xf} is extreme monic with m(F)=0 if

and only if I is a monomial times a product of unit-monic measure zero polynomials
evaluated at monomials.
See [EW99] for more information about the vanishing for the multivariable Mahler

measure.

3.2 Explicit values.

Below are some examples of explicit evaluations of Mahler measures of multivariable
polynomials. The results are due to Smyth [Sm81a].
Example 3.12. [Sm81a][EW99] Let F(x,x,)=2+x +x,, using Jensen’s formula twice,

we see that

1

m(F)= j( j log

27i6, 276
T +2‘deljd92
716, +2‘}d¢92

do,

log max {

27r¢9
242

|
at

og2.
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Example 3.13. [Sm81a]J[EW99] Let F(x,x,
substitution
171 . .
27i6, 27
m(l+x1+x2)—J—J.{Ilog e g t+e 7o, +1‘d82jd01
0o\ 0
1 .
276
= [log™ ™1 +1a8,
0
1/2 .
= I 10g+ ‘1+e2me}d0.
-1/2
For @ [~1/2,1/2], we have that [1+¢2®|>1 only when —1/3< 8 <1/3.
Hence
1/3 ,
J= [ log|i+e*%ag
-1/3
/3 '
=2 log|1+¢*™|ag
0

1/3 ‘
=2Re J. log(1+ezme)d9.
0

We can expand the integrand using the Fourrier series

27wing

log(1+e2m6): > (—l)n_1 ©

n=1 "

This series converges uniformly for 8 [0,1/3]. It follows that

)=1+x +x,, by Jensen’s formula and a
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) (_1)7’1—1 1/3

J=2Re z ~ I (cos2zné+isin27nd)do
n=1 " 0
oo )n 11/3
=2 Z I cos2tn@do
0
oo n—1 1/3
-1
=ZZ( ) [ ! sinzﬂn} .
- n 27n 3 1y
Notice that
o 2 (2]@
3 3)2°

Where (gj = y(n) is the Legendre symbol

1 n=1 mod3,
y(m)=4-1 n=2 mod3,
0 »n=0 mod3.

Therefore
oo _1 I’l—l
J =£ Z ( ) — (0
X(2n-1) x(2n)
{Z (2n-1)> Z — 2n )? }
xX(n) x(2n)
2”{2 nZ | @n)’ }
{Z 10 1o, z(n)}
n=l1 n’ n=l "
V333 ) 33 S x)
_2ﬂ.2 Z 2 Z nz
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Example 3.14. [Bo8la][Sm8la] Let F(x,x,,x;)=1+x +x,+x,. Starting again with

Jensen’s formula gives

b
1=
a j —

b)),

b

M (ax; +b) = |a|max[

Write x, = XXy, then

m(l+x +x, +x;) =m(l+x, +x;(1+x))
11

=J.Ilogmax{
00

=1.

Put 1 =276, u=270, then

27[1'91 27[1'92

1+e 1+e

3

}d&ldﬁz

I 1+e| log |1+ ¥

K
— '[ dt'[ max(log ,log
Tmo o0

Iz

T
dzjdu
t

= 1+elt

log

2
2

O'—;N

2

7 dt

= 1+elt

(—1t)log

3

-2

it
5 1+e"|dt.

tlog

3

Since M (1+z)=1 so that m(1+z)=0.

We use again the expansion

1+elt

o . n—1 .
log =R62Lelm
n
n=1

Then



a n=l1 "
RS (-1 ’jf t(@(tm)ﬂ(-m)}ﬁ
T p=1 " 0

by integrating by parts, we get

T /. . T . /4 n n
Jte(lm]dt:ée(lm] +ni2€(lm) :ﬂ(l—nl) +(—nlz) _niz’
0 0 0
and
(RN R RETE) NG
0 in 0 n? 0 in n? n2 ’

So

”2

,:“L“<1W”{A1W_3J

n=1
forn=2k+1,

We use a special formula of the Riemann zeta function : {'(3) :g >

iz (2k+1)°

desired result

4 & 1 7
= - 3).
3 2k +1)° 27:25

Here {(3) = Z n™> , a number which Apéry has proved to be irrational [Va78].
n=l
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to get the






Chapter 4

Limit points.
Take L to be the set L= {M (P): P has integer coefﬁcients} . Lehmer’s question then,

is equivalent to ask whether 1 is a limit point of L.
L 1is a countable set (according to its construction) and is a semigroup under multiplication

(according to the property of Mahler’s measure: M (PQ)= M (P)M(Q)). Thus, to show
that 1 is a limit point of L, we can show that L is dense in [l,oo) .

So in order to find an answer to Lehmer’s question, we can study the properties of some of
the subsets of L.
Consider now a certain subset S of L called the set of Pisot numbers. A Pisot number is

a positive algebraic integer @ greater than 1 all of whose conjugate elements have absolute

value less than 1. Clearly M (P)=6, in this case since the other conjugates of & have

modulus less than 1, so that S < L.

Salem [Sa44] showed that S is a closed set (nowhere dense) and that minS =6 >1,

Siegel [Si44] found that this 6, is the real zero of 23 —z—1, this zero is the same number

Smyth showed to be the minimum value of the Mahler’s measure of the non-reciprocal

polynomials (see Theorem 2.5), answering Lehmer’s question for the nonreciprocal

polynomials, so here comes another subset of L, which is L, the set of M (P) with P

non reciprocal.

The set 7' of Salem numbers is another subset of L, that contains real algebraic
integers € >1 all of its conjugate roots have absolute value no greater than 1, and at least
one has absolute value exactly 1, the last condition forces the polynomial to be reciprocal

[Sa45].
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We can observe that 0 =1.17628... which is the real zero of the Lehmer’s 10 degree

polynomial L(x) defined earlier in Chapter 2, is a Salem number. Boyd [Bo81a] suggests

that o could be a limit point of L.

Lehmer’s question asked if there is a gap between 1 and 1+¢& for some positive € in
the set of values of the Mahler measure of single variable integer polynomials. The
analogous question may be asked for polynomials in several variables. It turns out that the
questions are equivalent because of a surprising approximation result due to Lawton
[La77].

Theorem 4.2. [La77] For a non-zero polynomial F € C[z, w]
lim M(F(z,z"))= M(F(z,w))
N—o0

Theorem 4.3. [La77] For a multivariable polynomial F € C[z,,..., Zn]

r
lim ... lim M(F(z,..2")) = M(F(z,...z ),
7’2—><><> l’nﬁoo n

where the limit is taken with all the exponents going to « independently.

We give now an example (also is an application of Theorem 4.3) taken from Boyd’s
paper [Bo81a], about an interesting limit point which is the Mahler measure of the two
variables polynomial F(z,z,)=1+z +z,.

B=M(1+z+z,)=138135...
Smyth has shown that
W3 & (n) 1
log f=—- — |
8 IB 4r ( 3 j n2
n=1
(The details of the calculations were given in Example 3.13)

Boyd showed that

m(l+z+z") =m(l+z +22)+L’;)+0(%),
n n
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~Bz/6  n=2 mods,

where c(n) =
{\/gzr/IS n=0 or 1 mod3.

So that £ is a limit point in the set L, and it seems also that £ is the smallest limit

point of the set L . A result by Salem shows that each element in Z, is a limit point in
L. In the case of non-reciprocal polynomials, it is easier to show that M (F(z,..., z, )

is a limit point in the set L.

If we show the following statement suggested and proved by Boyd [B08 la]

c(n)

}12

m(l+z+z")=m(+z+z,)+ +0(i3).
n

We can then deduce easily that £ is a limit point. A detailed proof of this can be

found in [Bo81a].






Part 2 The higher Mahler Measure

Chapter 5

Definitions and examples

Definition 5.1 KLOO08|Given a non zero polynomial P(x)e C|x|and a positive integer
k, the k-higher Mahler measure of P is defined by :

m (P)=— j logk ‘P
alts

m, (P)= jlogk ‘P(ezme)}a’&

We observe that for k =1, m, (P) is the classical logarithmic Mahler measure

(Definition 1.1).
Definition 5.2 For a finite collection of non— zero polynomials P,...,Pf e C[x], their

dx

X

Or equivalently, by

multiple Mahler measure is defined by
dx

m(h,... P) — I log‘P log‘P .

o

The generalization in Definition 3.1 can be extended to the multiple higher Mahler
measure:

Definition 5.3. Let P1’“"Pge (C[xl,...,x’J be nonzero polynomials. Then, we define

m(Pl,...,Pg) as
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! | dy B
(27;,‘)” |x1|:1...‘x J.‘_llog P1 (xl,...,xn)...log PK (xl,...,xn) . ) v

5.1 Higher Mahler measure for one variable polynomial

In general, Higher Mahler measures are very hard to compute, even for simple linear
polynomials in one variable. In this section, we consider the simplest example :
P(x)=1-x.

Theorem 5.4 shows a direct connection between the higher Mahler measure of P(x) =1—-x
and the Riemann Zeta function.

Theorem 5.4. [KLOOS]

k

_ (=1)" #!

m, (1-x) = > 7 $(by.nnby),
bi+..+by =k,b 22

where (b ""’bh) denotes a multi zeta value, i.e.

1
()= Y ,
O<ly<.<ly (gl)bl _._(gh)bh

Example 5.5.[KLO08] Applying theorem 5.5, we are able to compute m, (1-x),
here are the first few examples :

mz(l_x) =%:

mg(l—x)=—6(@]:—5§(3),

4 2

{2 - (4 24 .
m4(1_x):24[§514)+§(126’2)j26;(4)+3( : ( )):3§(2) 4215(4):1340,
m5(1_x):_120[525)+;(2,3);;(3,2)]:_15§(2)§(;)+45;(5)’
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m (1-+) :720[4(6) LE0B3) L24)+¢(42) g(z,z,z)}
¢ 4 16 16 64

45(£(3)° =< (6 45(2£(6)=3&(2) ¢ (4)+&(2)

a0zt SELEO) ey SEOE DLW )
_ 9304 (6)+180¢ (3)* +315¢ (2) ¢ (4) +15¢ (2)° A5 ()2 275 g
8 2 1344

5.2 Multiple Mahler measure for several linear polynomials

As before, it is easier to consider the one-variable polynomial case. The next theorem
allows us to give some examples of higher measure for several polynomials.

Theorem 5.6 KLOO8]For 0<ar <1

. 2
m(l—x,l—ezmax) T o’ —0(+l .
2 6

Proof. By definition
. 1 . ;
m(l—x,l—ezmax) = IRelog(l—ezme)Relog[l—ezm(9+a)jd¢9
0

1

k,ﬁzl

M8
x| =

Il
—_

(=1

1 oo
= | cos 27zk0}{ > %cos 27l (6+ a)}a’é?
0

»|_

|
gJ.cos (27k6)cos 27r£(l9+a))d6’
0

On the other hand
1
Icos(2kﬂ'¢9) cos(27( (0 +x))d6
0

%cos(2k7w{) =k,

0 otherwise.

Putting everything together, we get
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— cos(27ker)
2

m(l—x,l—ezmax)z
k

1
2 k=1

In order to prove this we will find the Fourier series of the polynomial 7o

Cosider first the case for 0 < ar <1, then 0<27x<2r,

put y =27, and replace it in the polynomial, so we will have the function:

2 2
y Ty T
=———+— for O<y<2r.
f(») 1 276 y

again put x = y — 7 so that we have the function
2 2
x° r
X)=————
g(x) 4 12

g(x) is a periodic function of period 27 with —7 < x < 7.

The Fourier series of such function is given by:

S(x):%)-% Z [ak coskx+bk sinkx}
k=1
Where
|7
- dx,
a, ”_J;[g(x) X
|7
a4 =— '[[g(x)coslocdx,
|7
b =— J;[g(x)sinkxdx.
Therefore

2 n?
-0+ —.



41

T o2 2
a :l X T cos kxdx
k 4 12

-

_ 2]€xzcoskxd __J-fr coser
12

2 k k2 = 12 k&

= T 4
_L xzsinloc_zx—cosloc_i_z—sinloc} _z|:7l'2 sinkx}
0 0

_ 1 _27rcosk7r} _ (-1)k

T (.2 2
b, = L j X 7 sinkvdx = 0 since the integrand is an odd function.
kizdl4 12

/4

a a
(Note: f () is said to be an even function if /'(x)= f(—x), in this case j S (x)dx = 2'[f(x)dx

—a

a
for ae R, and is said to be an odd function if f'(x)=—/f(—x) and in this case j S (x)dx=0)

—a

So we obtain the following Fourier series

Now we replace x by y — 7,
note that cosk (y—7)=cosky cos kxr —sin kysinkz = (—l)k cos k7 by the trigonometric
identity cos (4 — B) = cos Acos B—sin Asin B,

SO

2
Y my Cosky
S =5 Z :
finally for y = 27z¢, and O < e <1,

72 (az _OH%j: z c0s2;zka.
k=0 K
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2
For the case when o =0 or =1, the value of the polynomial is %,on the other side,

we have the same value in the cosine series, for & =0 or =1, which is

oo

2
z kiz ={(2)= %(Riemann Zeta function for n=2),
k=1

thus the proof is complete.

Example 5.7. Applying the Theorem 5.6 above, we obtain the following examples

7[2

m(l—x,l—x)zﬁ,
2

m(l—x,l-i—x):—”—,

m(l—x,liix)z—%,

- +
m(l—x,l—ezﬂlax)=0c> 3_\/5.

Using the method of Theorem 5.6, we obtain a higher analogue of Jensen’s formula.
Lemma 5.8. [KLOO8] for a,fe C

1 —_
EReLiz(aﬂ) if  |ef.|B|<1L
m(l—ax,1-fx)= %ReLi2 % if |o|=1]8]<1,
(04
YReri | %P | ioglallogg] if  |el.|B21.
2 o)

Where Li, is the dilogarithm function defined by the sum
oo Zk
Li, (z)= z —2f0r |z| <1,
k=1%

or the integral



43

z
Liy(z) :_J.
0
The previous computation may be extended to multiple higher Mahler measure
involving more than two linear polynomials:
Lemma 5.9. [KLOOS]

m (1 —-x,1- ezmax, 1— ezm'ng

1 Z cos27z‘(r0(+sﬁ)'

4r,seZ\{O},r+s>O ‘rs(r+s)‘

log(1—1¢)dt
; :

It would be interesting to compute higher Mahler measure for polynomials whose roots
have absolute value #1, and degree >1.






Chapter 6

Lehmer’s question for higher Mahler measure

Since Lehmer’s question is interesting for the classical Mahler measure, one might ask
about the analogous question for the higher Mahler measures.
We said earlier that Lehmer’s question can be rephrased as whether 0 is a limit point for

logarithmic Mahler measures. The question is the same for m, , but here we distinguish

k b
between two cases : the odd one and the even one.

A theorem about lower bounds for the even higher Mahler measure my, reveals that

Lehmer’s question is answered negatively for this case (see Theorem 6.1 below).

A second theorem shows that the limit for the odd higher Mahler measure m 1s zero,

2h+1
so the answer to Lehmer’s question for this case is positive (see Theorem 6.2 below).

Theorem 6.1. [LS11] If P(x)e Z[x] is not a monomial then for any h=1

2\
V4 . . .
{E] if P(x) is reciprocal,,

my, (P)=

7’ g
[4_8] if P(x) is non-—reciprocal.

Theorem 6.1 provides a general lower bound for both kinds of polynomials (reciprocal
or non reciprocal). There are no conditions on the polynomials, unlike in the case of the
classical Mahler measure where lower bounds come with restrictions on the polynomials
(see Chapter 2). This theorem answers Lehmer’s question negatively for the even higher
Mahler measure since as we can see from the lower bound, the limit is not zero.

x" -1
lim m (P ) =0.
oo 2NH1\"n
We obtain in this way a positive answer for Lehmer’s question for LOYIRE

Theorem 6.2 [LS11] Let Pn (x)= . For h>1 fixed,
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Note that the sequence Mo p i1 (Pn) in Theorem 2.6 is a nonconstant sequence, which

means that it can not not be identically zero, we can find in [LS11] in section 5.3 a

discussion about this, and a proof that m (Pn) behaves like a nonzero constant times

2h+1
2h—-1 "

log when n goes to infinity.

n

See [KLOO8] and [LS11] for more details about the higher Mahler measure and its
connection with the Lehmer problem.






Chapter 7

Limit values for higher Mahler measures.

We arrive now to the main goal of the thesis, which is a generalization of an important
theorem conjectured by Boyd and completely proved by Lawton [La83]. The reader will
find an article by Zahraa Issa and Matilde Lalin where they prove a generalization of this
theorem to higher Mahler measure and generalized Mahler measure.

[Published in the Canadian Mathematical Bulletin, doc: 10.4153/CMB-2012-010-2]

A GENERALIZATION OF A THEOREM OF
BOYD AND LAWTON

Abstract. The Mahler measure of a nonzero n-variable polynomial P is the
integral of log |P| on the unit n-torus. A result of Boyd and Lawton says

that the Mahler measure of a multivariate polynomial is the limit of Mahler
measures of univariate polynomials. We prove the analogous result for different
extensions of Mahler measure such as generalized Mahler measure (integrating

the maximum of 10g|P| for possibly different P's), multiple Mahler measure

(involving products of 10g|P| for possibly different P's), and higher Mahler
measure (involving logk |P|).
7.1 Introduction

The Mahler measure of a nonzero polynomial P(xl,...,xn )e C[xl,...,an is defined

by

m(P) =
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z

where T :{(zl,...,zn)e c” :‘zl‘ =z

= 1} 1s the unit torus in dimension 7 .

This formula has a particularly simple expression for univariate polynomials. If
P(x)= aHl.(x—al. ), Jensen’s formula implies that m(P)= 10g|a|+zimax{0, log‘al.”.

In fact, Lehmer [Le33] considered first the measure for univariate polynomials which was
later extended to multivariate polynomials by Mahler [Ma62]. Lehmer’s motivation for
considering this object was a method to construct large prime numbers that generalizes
Mersenne’s sequence. Mahler, on the other hand, was interested in relating heights of
products of polynomials with the heights of the factors. The Mahler measure is a height
which is multiplicative, and therefore it was a natural object for Mahler to consider.

Boyd and Lawton proved the following useful and interesting result.

Theorem 7.1.1 [Bo81a,Bo81b,La83] Let P(xl,...,xn)e (C[xl,...,xn}

and rz(rl,...,rn),rl_ € Z>O

Define P.(x) as

And let

n
— i o — n _
¢(r)=min H(s).s-(sl,...,sn)eZ ,s;t(O,...,O),le.r =0y,

J:

where H (s) = max{

s . :ISan}. Then
J
lim m(P ):m(P).
q(r)>e 2"

This result implies that the multivariate Mahler measure is a limit of univariate Mahler
measures. In particular, it gives evidence that the extension to multivariate polynomials is
the right generalization.

The Mahler measure of multivariate polynomials often yields special values of the
Riemann zeta function and L -functions, thus one can construct sequences of numbers that
approach these special values in this way.

In addition, this theorem has consequences in terms of limit points of Mahler measure.
The most famous open question in this area is the so called Lehmer’s question. Is there a

constant ¢ >0 such that for every polynomial Pe Z[x] with m(P) >0, then m(P) >c?

Thus, Theorem 7.1.1 tells us that given a multivariate polynomial whose measure is smaller



50

than a certain constant ¢, we can generate infinitely many univariate polynomials with the
same property.
In this work, we are going to consider two extensions of Mahler measure.

Given £,...P € (C[xl,...,x J, (not necessarily distinct) nonzero polynomials, the
s n

generalized Mahler measure is defined in [GO04] by

dx. dx
m (P,...,P ):: ! I max{log P(x yerey X ),...,log P (x yeres X )}—1 —n
max \" I s N/ 1\ n s\l nllf x X
(27i) ™ 1 n
On the other hand, the multiple Mahler measure is defined in [KLOO08] by
dx dx
m(Pl,...,P ):z ! I logfi(xl,...,x )‘...logP (xl,...,x )_1_n
S 2 AN n S n X X
For the particular case in which £ =...= PS = P, the multiple Mahler measure is called
higher Mahler measure
dx dx
m_(P)= ! _[ log® P(xl,...,x )_1_n
s (27i)" hxox,

"
These objects have been related to special values of the Riemann zeta function and
L -functions ([GO04,La08] for generalized Mahler measure, [KLO08,Sa10,Sa,BS,BBSW]
for multiple Mahler measure), but the nature of this relationship is less well understood
than in the classical case.
Our goal in this note is to prove the equivalent for Theorem 7.1.1 for these
generalizations.

Theorem 7.1.2. Let Pl,.‘.,PS € C[xl,...,xn] and r as before. Then
(1)

=m_ (BoP).
max S

Lim m @,MP)
max 1r Sr

q(r)—ee
2)
i {fr, )n{rn).
(If R=..=P =P.

q(rh)rioom (Pr) =m_ (P).
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7.2. Some Preliminary Results

The difficulty in obtaining Theorem 7.1.2 lies in the case where (some of) the
polynomials vanish in the domain of integration and the logarithm is not bounded. This
problem already appears in the proof of Theorem 7.1.1. The key result of solving this is a
theorem by Lawton [La83].

Let H, denote the Lebesgue measure in the torus T .

Theorem 7.2.1. ([La83], Theorem 1). Let P(x)e C[x] be a monic polynomial and let k

=number of nonzero coefficients of P. Then if k=2, there is a positive constant C, that

k
depends only on k such that

1
4 ({ze T:‘P(z)‘ < y}) < Ckyk_1 ,
for any real number y > 0.

The strength of this result lies in the fact that the constant is absolute and depends on the
number of nonzero coefficients of P but it does not depend on P.
Notice that we can always assume that the polynomials involved in multiple Mahler

k

measure have at least two nonzero monomials since loglax™| is a constant and can be

easily extracted from the integral. It should be noted that the above theorem remains true

for k=1if y is sufficiently small (i.e. y < |a|) and C1 =0.

It is not hard to prove a result where the constant depends on P. For example,

Lemma 7.2.2. ([EW99], Lemma 3.8, pg. 58) Let P(xl,...,xn)e (C[xl,...,xn} There are

constants C P’5 P that depend on P such that

M ({(Zl,...,zn)e T": P(Zl,...,zn )‘ <yD < CPy5P,

(2.1)
for small y>0.

In what follows, we will denote by

— n.
Sn (P,y) —{(zl,...,zn)e T : P(zl,...,zn) < y} ,
where the n depends on the number of variables involved. Thus n 2number of variables of
P. We will write S(P,y) for S, (P,y).
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This result is weaker than Lemma 7.2.1, because the constant depends on P, but it has the

advantage that can be applied to T”, as opposed to Theorem 7.2.1 which is only valid for
T.
The following elementary lemma will be useful to bound integrals.

Lemma 7.2.3. Let { be a positive integer and y,0 >0. Then

J, 5= (1) Ilogf zd(z5)

V4 — _
=y5((—1)€ logf y+g(—1)€ 1log£ 1y+

0(0-1)..2 va

+ (—l)logy+7
)

5%—1

Proof. First we consider the integral for ¢ =1, then

T 5
Jl’é.z—-([logzdz ,

If we consider u = 25 , then we can rewrite the integral
y5 é | y5
J1,5=— ‘([ log z dz:—g £ log zdz

o
=—%[zlogz—z]3/ =—%y5logy5+%y5
o 1. 5_ 06 1
=9 logy+—y9 =3O —tog y+~ .
y 0gy+5y Y ( 0gy+5j

So the lemma is true for ¢ =1. Suppose the lemma is true for /—1
now
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o
y y
1 ) ¢ 1 1
Jé,ﬁz(_l) Ilog zdz =(-1) ? I log" zdz
0 0
by integration by part:
5
-1 —
Jf,ﬁz(aﬂ) zloggzo —/ I logﬁ L2
0

A S A
=(-1)" »% log y+5Jf—1,5

since J verify the lemma by the recursion hypothesis, we can replace it by its value for /-1

(-1,0

( I N P _
:(—1)£y510g£y+y§g((—l)£ Log! 1y+?(_1)£ 210672

£=1)(¢-2 _ _ £=1)(1-2)...2 f—-1)!
+—( ;(2 )(—l)f 3log£ 3y+...+( ;(€—2) (—l)logy+—(5€_3J

-1/ - 2)(£—-1 - _
:yé‘[(—l)floggyﬂ—l)é l—logf 1y+—( I )(—l)é 2log£ 2y

o o2
+€(€—1)(€—2)(_1)5_310gg_3y+m+f(ﬁ—l)(f—Z)...Z(_l)logy_i_ﬁ ’
53 51 5!

so the lemma is true for / and the proof is complete.

Corollary 7.2.4. For 0< y <1 we have

l
1
OSJ&é.(y) Sy5(€+l)!max{g,(—logy)}

In other words,

lim J y)=o0.
y—0 g,é‘( )

For the remainder of the chapter, we will denote by
1

I =i
1, (v)=J L:(_l) glog zd| k-1,
k-1

(2.2)
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We finish this section by recalling the statement of the following extension of Holder
inequality:

Lemma 7.2.5. Let S a measurable set of R" or C" and Siseees fs measurable complex or
real valued functions.

Then
1 1

BN AT
S s S

S

7.3. Integration over combinations of S(P,y)

In this section, we consider the integration over sets resulting from combining the
different S (P, y)’s.

Lemma 7.3.1. Let P(x)e C[x] be a polynomial having k=2 non-zero complex

coefficients each having modulus 21. Let 0< y<1. Then
o<(-)" [ gl |P(x)| <yt (v)

X k™ 0k
S(P,y)
Analogously, if P(xl,...,xn)e C[xl,...,xn} and 0<y small enough to satisfy equation

(2.1),
/ dx, dxn
I log ‘P(xl’m’xn)x_lmx_SCPJfﬁp (»).
Sn(P,y) n
Proof. The case (=1 is Lemma 4 in [La83]. The general proof starts in the same way.
Define for 0<z<1

0<(-1)

h(z) ::ﬂl(S(P’Z))’
where we recall that x4 stands for the Lebesgue measure of the set. Let the leading

coefficient of P(x) be a with |a| >1. Then a 'P is monic and so Theorem 7.2.1 implies
that

Now we compute the desired integral.
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I logg ‘P(x) %
S(P,y)

logg Zﬂdz
o Jx

=(-1)" jflogg 2g(z)dz

Where g(z)=u (‘P(x)‘ = Z) so that /(z) is almost everywhere differentiable
anddh(z)=g(z)

=(-1) log yh(y z[/di[ —logz) }h( )dz

yA
1 I
v ]y .
<(-1)'C, [1og" za| K1 —I%[(—logz)g}Ckzk_ldz
0 0

where the last inequality is consequence of the fact that (—log z )£ is a positive decreasing

function and its derivative is negative. By applying integration by parts again we obtain
1

<(—1)€C ]flo Ezd zE
- k g )
0

which finishes the proof of the first statement by Lemma7.2.3 and equation (2.2).

The proof of the second statement follows along the same lines. -

Lemma 7.3.2. Let Pl(x),...,PS(x)e C[x] be polynomials having kl""’ks nonzero

complex coefficients with absolute value greater than 1 and(0 < VeV <1.Let 1<sn<s.
Then



dx

P (3] &

log‘P1 (x)‘...log .

0<(-1)* |

?zlS( i )\Uz n+1S(Pi’yi)
1

<lc, 1, (n)-C, 1 (y ) "1 " logy . .logy .

k1 n,k1 1 kn n,kn n n+1 S

Proof . Notice that OS—log‘P(x)‘S—logy for x¢ S(P,y) for 0< y<1. Therefore,

(_I)SI ) dx

log P( log‘P
i=1S( i°Vi )\Uz =n+1 (Pi’yi) ‘1 X

<(-1)°1 .l log|P (x)]...log P ()|
(0w, o] i S(Br U S(53;) o2l el
1\ dx

<(-1) logyn+1...logysj ?ZIS(P-,y-)log‘Pl( log‘P .

1

S—n n
<(-1) logy . -logy (Cklln,kl (yl)---ckn In,kn (yn )]

By Lemma 7.2.5 and Lemma 7.3.1.
O
Lemma 7.3.3. Let Pl(x),...,PS(x)e C[x] be polynomials having k,...,kS nonzero

complex coefficients with absolute value greater than 1 and0< y,,..., Y <0. Then

OS(—l)SI log‘Pl(x)‘...log‘IDkq (x)@

X

S(B.3)U--US(Py.4)
1

W) T (e

ie{l,....s\ A4

< > I (c 1
Ac{y,...,s}ie 4
Proof. We start with the observation that

s
US(f;"yi): U 1N S(Pi’yi)\ U sz
i=1 AAL,...,s} ie 4 i{l,...,s\ A4

By applying Lemma 7.3.2, we get
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dx
X

(-1)°]

log|P 1 ‘P
S(Pl’yl)U---US(PS,yS) Og‘ 1( og

< e ‘ I
AC{%”S}( 1) IZQAS( i )\z‘e{l,}.J,s}\AS(P"’y")log‘Pl( BEE
1
© 5 Mo bl T )
ac( shieal i {151 A
O
Setting y, =...=y_=y and letting y —0, we get the following result by

Corollary 7.2.4.
Corollary 7.3.4. Let Pl(x),...,PS(x)e C[x] be polynomials having k -k nonZero

complex coefficients with absolute value greater than 1. Let 0< y <1. As y approaches 0,
we obtain

dx
PS (.X)?—O,

ylinoI S(H,y)u...US(f;,y)logm(x)""log

where the speed of convergence is independent of the polynomials (x) ,...,l} (x) .

Lemma 7.3.5. Let Pl(x),...,PS(x)e C[x] be polynomials having k ks nonzero

1>
complex coefficients with absolute value greater than 1 and0< y,,..., Y <1. Then

0<(-1)° | | &=

log‘P log‘P .

S(R2)N-NS(Py.)
1
[Ckllskl( - e s\ [ )js

Proof. This is a simple sequence of lemma 7.3.2 with n=3s.
(|

Lemma 7.3.6. Let Pl(x),...,PS(x)e C[x] be polynomials having kl""’ks nonzero

polynomials coefficients with absolute value greater than 1 and0< y,,..., Y <1. Then
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0< I max {log

}ﬁ
- S(Fiayl)ﬂmﬂS(Psays)ISiSS

X

P.(x)

1

1
A

1
1—=
<(27)" s [Cklls,kl <yl)"'cks]s,ks (ys )] '

Proof’. Notice that max {10g‘P. (x)‘1 =— min {—log‘P. (x)l.
1<i<s PO 1zigs il
In S(Pl,yl )ﬂ...ﬂS(PS,yS) we have 0 < lgliléls{—log‘Pi (x)‘} < —log‘Pl. (x)

foranyi=1,...,s. Thus

P (x) P (x)

s
— max {log } =| min {—log
I<i<s ! 1<i<s !

)
<(~1)° log|R (x)‘...log‘PS (x)

By applying holder inequality, and taking into account that the measure of the whole space
is 27, we get

dx
0< - max {log|P, (x)]}
IS(Playl)ﬂ--ﬂS(l”S,yS) I<i<s ! X
1
1 s .
= dx
S(27Z') S (— max {log P(x) }] -
IS(Pl’yl)ﬂ--ﬂS(PS,yS) I<i<s ! X
1
< - 2
<) 5[ € Ly ()€ 1y ()}
Again, we let y, =...=y =Y and y — 0 and we conclude the following result.

Corollary 7.3.7. Let Pl(x),...,PS(x)e C[x] be polynomials having k ""’ks nonzero

complex coefficients with absolute value greater than 1. Let 0< y <1. As y approaches 0,
we obtain

dx _
X

lim max {log 0,

=0 S(a,y)n..nS(PS,y) 1<i<s

R
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where the speed of convergence is independent of the polynomials F, (x),.es PS (x).

Observe that when ki =1, the previous result is trivially true since the set S (F;, y)

becomes empty for y sufficiently small.
Remark 7.3.8. Results analogous to Corollary 7.3.4 and Corollary 7.3.7 can be proved

Jor the case where F, (xl""’xn)""’Ps (xl,...,xn) are fixed polynomials in (C[xl,...,an )

7.4. Proof of Theorem 7.1.2.

We begin by proving that the extended versions of the Mahler measures always exist
(i.e. that the integrals always converge). This was used repeatedly in previous works but the
details have never been written and we include them here for completeness.

Theorem 7.4.1. Let Pl(xl,...,x ),...,P (xl,...,x )e (C[xl,...,x ] nonzero polynomials.
n s n n

Then the integrals giving the generalized Mahler measure and the multiple Mahler
measure converge, i.e.,

(M o (PP <
2) (B )<
() I B=..=P =P
m (P)<eo.
Proof. (1) Let y >0. We write
dx. dx
J. max {log P.(xl,...,x )}i —n
 1Si<s ! X X
de.  dx
=j max {log P. (xl,...,x )}i —n
Sn(Pl,y)ﬂ--ﬂSn(Ps,y) 1<i<s ! i x
dx.  dx
+ . max {log Pl.(xl,...,xn)}i.. —n
S(R.y)°U..US(P,.y) 1siss S

The second integral converges because the Mahler measure of a single polynomial
converges absolutely and thus is the integral of a smaller function in a smaller set,
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while the first integral approaches 0 as y — 0 by Corollary 7.3.7 and Remark 7.3.8.

Therefore the integral on the left converges.
(2) For y>0. We consider

J. logPl(xl,...,xn)‘...logPs(xl,...,xn)dx—)il...ii
T n
d dx
_I fi DS ( )logPl(x .,xn)‘...logP (xl,.. ’xn) ):1_ 2
d.
+I (P y) s ( )C logPl(xl,...,xn)‘...log PS (xl,...,xn)dx—?, xi
1>

As before, the second integral converges, while the first integral approaches 0 as y — 0

by the Corollary 7.3.4 and Remark 7.3.8. Thus the first integral converges.
(3) This statement is a particular case of (2) .

Proof of Theorem 7.1.2. (1) Following [La83], we define F:T" >R by

F(w)= max {log
I<i<s

P, (w)” forwe T . It suffices to prove that

lim F F|=0.
q(r )_>°°"1[ ’1:[1

Without loss of generality, we may assume that each coefficient of Pz has modulus =1,

and therefore the same is true for f; . for ¢(r) sufficiently large. Forany 1=y >0 we

construct a continuous function g, :T" > R such that 0< g, (w)<1 for allwe T",

w) =1 for max {
gy( ) 1<i<s

P (W)‘} >y,and g _(w)=0 for max {‘P P <—y. Therefore,
! Y A A

1
2
gyFr is a continuous function on T" for 1>y >0. Since F = g ( jF , the

triangular inequality implies that

O
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limsup jFr— j F|< limsup J[gyFL— j gyF
q(r)—>ee|T T q(r)—>eo|T T

+ limsup j[(l—gijl + limsup | | (1—gij

q(r)=e|T q(r)—e|pn
4.1
Now, by Weierstrass approximation theorem, the first term goes to zero since gyF is

continuous onT”. The function Kl— gy) F } = (1 — gy err vanishes in the set

r
C c . . .
US(Pi,r’y) :(ﬂS(Pi,r’y)) and it is bounded below by 0 and above by Fr in

ﬂS(f; r,y) . This implies

< i — < i
0< l(lj/n)sip J.Kl gijL < lzin)sip J. Fr ,
q T q ﬂS(Pi,r’y)
which goes to zero as y — 0 by Corollary 7.3.7. Finally, the third term in (4.1) tends to

zero as y — 0 since F is integrable over T" by Theorem 7.4.1 (1).

Thus, limsup IFr - I F|=0since it is independent of y and tends to zero as
q(r )_)oo T T
y—0.

(2) We proceed as before. We define F:T" - R by F(w)zn(—log‘l’l.(w)‘) for
i=1

we T Without loss of generality, we may assume that each coefficient of P has

modulus =1, and therefore the same is true for Pi,r for ¢(r) sufficiently large. For any

1>y >0 we construct a continuous function g, :T" > R such that 0< gy (w)<1 for

all we T, g (w)=1if ‘f;(w)‘Zy for all i, and gy (w)=0 if there is an i such that
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‘Pl(w)‘ﬁé v . Therefore, gyF is a continuous function on T” for 1>y >0. The

triangle inequality implies that

limsup J.Fr— J. F|< limsup J.[gyF} - J. gyF

g(r)>eer | q(r)>eT -

+ li 1-g |F| |+ 1 1-g |F
imsup jK gy) } + limsup j( gy)
q(r)—ee|T 7| gq(r)=elm

(4.2)
The Weierstrass approximation theorem implies that the first term goes to zero since

g Fis continuous on T”. Now the function Kl—g jF } =(1— g jF vanishes
y y »r)r

r

¢ c
on the set ﬂS(Pz r,y) = (US(P, r,y)j and it is bounded below by 0 and above by

Fr 1nUS (Pi,r’ y) . Combining all of this,

0< limsup I[(l—g jF} < limsup I F |
q(r)—oo|T Y| g(r)—>es US(P,-J,;V) :

The term in the right goes to zero as y — 0 by Corollary 7.3.4. The third term in (4.2)
tends to 0 as y — 0 since F is integrable over T” by Theorem 7.4.1 (2).

Finally, limsup IFF — I F|=0since it is independent of y and tends to zero as
q(]/')—)oo T T
y—=0.
(3)This case follow from (2) by setting A, =...= PS = P. This concludes the proof of

the theorem.
O






Conclusion
The Mahler measure has additional connections to ergodic theory [EW99], to the Weil
height [SmO08], and plays a role in approximation theory and diophantine approximation

[Wa00]. Mahler measure has also application to special values of zeta functions [Bo98].

It would be interesting to explore these topics as a continuation of this work.
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