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Résumé 

 

     Ce mémoire s’applique à étudier d’abord, dans la première partie,  la mesure de Mahler 

des polynômes à une seule variable. Il commence en donnant des définitions et quelques 

résultats pertinents pour le calcul de telle hauteur. 

     Il aborde aussi le sujet de la question de Lehmer, la conjecture la plus célèbre dans le 

domaine, donne quelques exemples et résultats ayant pour but de résoudre la question. 

     Ensuite, il y a  l’extension de la mesure de Mahler sur les polynômes à plusieurs 

variables, une démarche semblable au premier cas de la mesure de Mahler, et le sujet des 

points limites avec quelques exemples. 

     Dans la seconde partie, on commence par donner des définitions concernant  un ordre 

supérieur de la mesure de Mahler, et des généralisations en passant des polynômes simples 

aux polynômes à plusieurs variables. 

     La question de Lehmer existe aussi dans le domaine de la  mesure de Mahler supérieure, 

mais avec des réponses totalement différentes. 

     À la fin, on arrive à notre objectif, qui sera la démonstration de la généralisation d’un 

théorème de Boyd-Lawton, ce dernier met en évidence une relation entre la mesure de 

Mahler des polynômes à plusieurs variables avec la limite de la mesure de Mahler des 

polynômes à une seule variable. 

Ce résultat a des conséquences en termes de la conjecture de Lehmer et sert à clarifier la 

relation entre les valeurs de la mesure de Mahler des polynômes à une variable et celles des 

polynômes à plusieurs variables, qui, en effet, sont très différentes en nature. 

 

Mots-clés : la mesure de Maher supérieure, la conjecture de Lehmer, les points limites, les 

polynômes à plusieurs variables, le théorème de  Boyd-Lawton. 
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Abstract 

 

     This thesis applies to study first, in part 1, the Mahler measure of polynomials in one 

variable. It starts by giving some definitions and results that are important for calculating 

this height.  

      It also addresses the topic of Lehmer’s question, an interesting conjecture in the field, 

and it gives some examples and results aimed at resolving the issue.  

      The extension of the Mahler measure to several variable polynomials is then considered 

including  the subject of limit points with some examples.  

      In the second part, we first give definitions of a higher order for the Mahler measure, 

and generalize from single variable polynomials to multivariable polynomials.  

      Lehmer’s question has a counterpart in the area of the higher Mahler measure, but with 

totally different answers.  

      At the end, we reach our goal, where we will demonstrate the generalization of a 

theorem of Boyd-Lawton. This theorem shows a relation between the limit of Mahler 

measure of multivariable polynomials with Mahler measure of polynomials in one variable.  

This result has implications in terms of Lehmer's conjecture and serves to clarify the 

relationship between the Mahler measure of one variable polynomials, and the Mahler 

measure of multivariable polynomials, which are very different. 

 

Keywords : the higher Mahler measure, Lehmer’s question, limit points, multivariable 

polynomials,  Boyd-Lawton theorem. 
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 Introduction 

Polynomials have been studied in many areas of mathematics, and they 

occupy a central place in number theory. Notions like the classical height and 

length of polynomial can be used to estimate their complexity. Not long ago, in 

the 1960’s, Kurt Mahler gave the idea of a new kind of height, that is related to 

the roots of the polynomials, and was interested to compare it with other 

heights. Since then, this new object, named after Mahler, became an interesting 

topic in number theory with connections to different conjectures in 

mathematics, such as Lehmer’s question, posed by Lehmer 30 years earlier. 

In this memoir, we define the Mahler measure of one variable 

polynomials, extend it to multivariable polynomials, and then to  higher Mahler 

measures, we talk about Lehmer’s question for each case. The Boyd-Lawton 

theorem, mentioned in the title, shows a relation between Mahler measures of 

one variable polynomials and Mahler measures of multivariable polynomials. 

Our main goal in this memoir is to prove a generalization of this theorem for 

higher Mahler measure. 
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Part 1 The classical Mahler Measure. 

Chapter 1  

 

The Mahler measure. 

 

Definition 1.1. For any non zero polynomial  

( )0
1( ) ...

1
1

d
d dP x a x a x a a x

d d d i
i

α−= + + + = −−
=
∏  

in [ ]x , define the Mahler measure of P  to be [Ma60] 

( ) { }max 1, .
1

d
M P a

d i
i

α=
=
∏  

     In this definition, an empty product is assumed to be 1, so the Mahler measure of the 

non-zero constant polynomial  ( ) 0xP a=  is 
0a . 

     We denote by ( ) log ( )m MP P=  the logarithmic Mahler measure, and we extend the 

definition to include (0)m = ∞ . 

     Mahler called ( )M P  the measure of the polynomial P , apparently to distinguish it from 

its classical height. It became known as the Mahler measure because of two papers written 

by Mahler in the early 1960s. 

Mahler’s was interested in comparing this construction with other heights such as the 

classical height and the length of the polynomial. They are defined respectively by  

( ) { }max ,
0 1

H P a
id

=
≤ ≤  
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( )and .
0

d
L P a

i
i

=
=


   

Mahler found a relation  between the three heights [Ma60] [EW99] 

( ) ( ) ( )
( ) ( ) ( )

,

,

H P M P H P

L P M P L P

 

 
 

which he later used together with the multiplicative property to prove bounds on the heights 

of products of polynomials. (Note: for  two functions ( )f x  and ( )g x , f g  means the 

growth of f  is asymptotically bounded by g ). 

Lemma 1.2. (Jensen’s formula) for any α ∈  

{ }
1

0

2log log max 1, .ie dπ θα θ α− =  

Proof. The statement is clear for 0α = , so assume that 0α ≠ . 

First assume that 1α ≠  then  

1
1

1
0

1
0

0

2log log 1 1,
2log

2log 1 1.

ie d if
ie d

ie d if

π θα α θ α
π θα θ

π θα θ α

−
+ − >


− = 

 −− <






 

The integral in the 1α <  case may also be written (via the substitution θ θ→ − ) as  

1

0

2log 1 .ie dπ θα θ−  

It is therefore enough to prove that, for any β  with 1,β <  

1

0

2log 1 0.ie dπ θβ θ− =  

Write ( )Re z  and ( )Im z  for the real and imaginary parts of a complex number z . 
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Notice that ( )log Re logz z=  so 

1

0

1

0

1

0

1

0

2log 1

2
Re log 1

2Re
1

2Re
1

0,

ie d

i
e d

n
i ne d

n
n

n
i ne d

n
n

π θβ θ

π θ
β θ

β π θ θ

β π θ θ

−

 = − 
 

∞ 
 = −
 = 

∞ 
 = −
 = 

=







 

 

where the summation being taken out of the integral is justified because the sum is 

absolutely convergent. 

We are left with the case 1.β =  

Write the integral in the form  

2

0

1
log .

2
ie d

π
θα θ

π
−  

Assume that 1α = , indeed after translating by 1α −  we may as well assume that 1α = . 

Consider then 

2

0

log 1 .iJ e d
π

θ θ= −  

Since 1 2sin
2

ie
θθ− =  for [ ]0,2θ π∈ ,  we can replace it in the integral : 

2 2

0 0

log 2sin 2 log 2 logsin ,
2 2

J d d
π πθ θθ π θ= = +  , 

Put 2x θ= , then 
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0

2 log 2 2 logsin .J xdx
π

π= +   

 It is enough to show that  

0

logsin log 2.J xdx
π

π′ = = −  

This exists as an improper Riemann integral since sin x x  for small x . 

Write sin 2sin cos
2 2

x x
x = , then 

0 0

log 2 logsin log cos .
2 2

x x
J dx dx

π π
π′ = + +   

Substituting 
2

x
t=  in the first integral and 

2 2

x
t

π= −  in the second, we get 

2

0

log 2 4 log sin

log 2 2 .

J tdt

J

π

π

π

′ = +

′= +



 

[ ][ ] ( ) [ ]

( )
1

0

 .  Ma60 EW99   Mahler’s lemma      

2log ( ) .

For any non zero polynomial P x

im P P e dπ θ θ

∈

= 

Lemma 1 3 

 

Proof. This is a simple consequence of Jensen’s formula.       

                                 

     By definition, Mahler measure is a positive number bigger than or equal to 1, and it is 

natural to ask about cases when this number equals 1, or when the logarithmic Mahler 

measure vanishes. Cases where ( ) 0m P =  can be completely understood using Kronecker’s 

theorem. 
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Theorem 1.4. (Kronecker) Suppose that 0α ≠  is an algebraic integer. If the algebraic 

conjugates 1 ,...,
d

α α α=  of α all have modulus 1
j

α ≤ , then α is a root of unity. 

Proof. Consider the polynomial 

( ) ( )

1

d
nP x x

n i
i

α= −
=
∏  

where 1P  is the minimal polynomial for α .The coefficients of P
n

 are symmetric functions 

in the algebraic integers 
j

α  so they are rational integers. 

Each of the coefficients is uniformly bounded as n  varies because 1
j

α ≤
 
for all j , so the 

set  

( ){ }P x
n n∈

 

must be finite. It follows that there is a pair  1 2n n≠  for which 

1 2
P P
n n

= , 

so 

1 1 2 2
1 1,..., ,...,
n n n n

d d
α α α α   =   
   

. 

Each permutation S
d

τ ∈ (the permutation group on d  symbols) defines an action on the 

set of roots by  

  
1 2

( )
n n
i i

α ατ= . 

Then if τ  has order r  in S
d

, 1 2
r rn n

i i
α α= , so 1 2 1( 1) 0

r r rn n n

i i
α α

−
− = , which shows that 

i
α  must be a root of unity since 0

i
α ≠ .             
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      A polynomial in [ ]x  is called primitive if the coefficients have no non-trivial common 

factor. 

Theorem 1.5.  Suppose [ ]P x∈  is non-zero, primitive and ( )0 0P ≠ , then ( ) 0m P = if 

and only if all the zeros of ( )P x  are roots of unity. 

Proof.  Assume that all the zeros of ( )P x  are roots of unity, then the leading coefficient of 

( )P x  must be 1±  since ( )P x  divides 1
N

ix

i

 
−  

 
∏  for some 1N

i
≥ . So, from the 

definition, ( ) 0m P = . 

Conversely, if ( ) 0m P = , then it is clear that P  must be a monic polynomial, so all the 

zeros are algebraic integers, and all must have modulus less than or equal to 1. 

Applying Kronecker’s theorem, we see they must all be roots of unity.                                                

      
     The Mahler’s measure has been studied in many branches of mathematics. In the next 

section we discuss Lehmer’s problem, which is the most important open problem in the 

area.   
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Chapter 2  

 

Lehmer’s Problem. 

     Lehmer was interested [Le33] in finding large primes, he searched for them amongst the 

Pierce sequences  [Pi17]                  

( ) ( 1)

1

d
nP

n i
i

αΔ = −
=
∏  

where the 
i

α ’s are the roots of an integer valued monic polynomial ( )P x  with degree d . 

     Assume that the 
i

α ’s are never roots of unity, since if 1N
i

α =  for some N , then 

( ) 0P
n

Δ =  wherever n  is divisible by N . 

The quantity ( )P
n

Δ  is always an integer since it is a product of  all of the algebraic 

conjugates of 1nα − . 

[ ] ( )Lehmer Le33  showed that if  has no roots on the unit circle,  then  grows like

( ) . The terms of sequence ( ),  1 are more likely to be prime if the sequence 

does not grow too quickly. He measu

P P
n

nM P P n
n

Δ

Δ ≥

red the rate of growth by considering the ratio of 

successive terms

 

( )
1 .
( )

P
n

P
n

Δ +
Δ

 

Lemma 2.1.  Provided no root 
i

α  of P  has 1, then
i

α =
  

{ }( )
1lim max 1, ( ).
( )

1

dP
n M P

iPn n i
α

Δ + = =
Δ→ ∞ =

∏  
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Proof.
 
This is clear since we can treat each term in the product  1

1

d
n
i

i

α −
=
∏ separately :  

If we take the limit of one of the terms, we get : 

{ }

1 1_1
lim

1 1 1

max ,1 .

n if
i ii

nn if
i i

i

α αα

α α

α

+  >= 
→∞ − <



=

 

Then taking the product of the limit of the terms we get the desired results. 

 

Lehmer produced some large primes as values of ( ).P
n

Δ For example, if 

3( ) 1P x x x= − − , Lehmer showed that [Le33] 

113( ) 63088004325217...PΔ =  

and 
127 ( ) 3233514251032733...PΔ =  

are primes. The Mersenne sequence arises by choosing the polynomial ( ) 2P x x= −  

so that  

( ) 2 1.nP M
n n

Δ = = −  

The numbers in this sequence, for n  an integer, are called Mersenne numbers. If M
n

 is 

prime then M
n

 is called Mersenne Prime.  

It is necessary that n  be prime for the Mersenne number to be prime. The inverse is not 

always true. It is still unknown if there exists infinitely many Mersenne primes. 

      Lehmer asked whether, or not, ( )M P   can be arbitrarily close to 1, if ( )P x  is a 

monic integer polynomial with 1
1 ,..., .
a a
i inF P x x

i n
i

 
=   

 
∏  

This has become known as “Lehmer’s problem” or  “Lehmer’s question”. 
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The smallest value of ( ) 1M P >  he could find was 

( ) :1.176280818,M L =  

which is the Mahler measure of the 10 degree polynomial 

10 9 7 6 5 4 3( ) 1.L x x x x x x x x x= + − − − − − + +  

This polynomial is now called Lehmer’s polynomial. Its Mahler measure is still the 

smallest known until present. 

     Lehmer’s polynomial  generates some large primes.  Lehmer  found that  

379 ( ) : 37098890596487,LΔ =  

which is prime. The values of 
n

Δ  are squares of symmetric polynomials, so it is natural to 

look for prime values among their square roots. 

Definition 2.2.  Suppose ( ) [ ]P x x∈  has degree d , write 1*( ) ( ).dP x x P x−=  

Then P  is called reciprocal (or symmetric) if  

( ) ( )*P x P x=  

and non reciprocal otherwise. 

     Lehmer calculated the following measures [Le33]: 

2

3

4

5 3

6

7 3

( 1) 1.618...,

( 1) 1.324...,

( 1) 1.380...,

( 1) 1.362...,

( 1) 1.370...,

( 1) 1.379...

M x x

M x x

M x x

M x x

M x x

M x x

− − =

− − =

− − =

− − =

− − =

− − = .

 

     He also studied reciprocal polynomials, among these he found [Le33]: 

6 4 3 2

8 5 4 3

( 1) 1.401...

( 1) 1.280...

M x x x x

and M x x x x

− − − + =

− − − + =
 

but found no polynomials with smaller measure than ( )L x  which is reciprocal. 
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     Lehmer’s question was answered by Smyth (see Section 2.3.2 below) for the non 

reciprocal polynomials and is still open for the reciprocals, for which exist many partial 

results about lower bounds. 

 

2.1 The conjecture of Schinzel and Zassenhaus 

     If α  is an algebraic integer with conjugates 
1,...,

d
α α , let 

max .
kk

α α=    

     For an algebraic number α , we denote by ( )M α  the Mahler measure of its minimal 

polynomial in [ ]x . 

     Definition 2.1.1 the minimal polynomial of an algebraic integer ,α is the unique 

irreducible monic polynomial ( ),P x  of smallest degree with rational coefficients, such that 

( ) 0P α =  . 

     Suppose that the minimal polynomial of α  has degree d . We have the obvious 

inequality [SZ65]: 

1

( ) ( ).dM Mα α α≤ ≤            

                  

     If α  is a unit then 1( ) ( ).M Mα α −=  

So that  

1
max , ( ).Mα α

α
   ≤      

 

(1) 

     In 1965, Schinzel and Zassenhaus [SZ65] proved that if 0α ≠  an algebraic integer that 

is not a root of unity, and if 2s  of its conjugates are non real, then 
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21 4 .sα − −> +     

This was the first progress towards solving Lehmer’s problem since by (1) it implies the 

same lower bound for ( )M α . Later they conjectured , that under the same hypothesis, 

 

1
c

d
α ≥ +  

                                                       

(2) 

for some absolute constant 0c > . A positive answer to Lehmer’s conjecture would imply 

(2) because 

1

( )dMα α≥    implies that 

log ( )
1 .

M

d

αα ≥ +    

Thus  if 0( ) 1M cα ≥ ≥ , then 

0log
1 .

c

d
α ≥ +    

     The inequality implies that any progress on Lehmer’s problem will lead to a 

corresponding Schinzel-Zassenhaus inequality. 

2.2 Lower bounds. 

       Lehmer’s question has been intensely studied in order to get new bounds. Below we 

cite some partial lower bounds, and note the relations with the degree d  of the polynomial.   

     Some of the  lower bounds are: 

1) Blanksby and Montgomery (1971) [BM71]: 

 

1
( ) 1 .

52 log(6 )
M P

d d
> +

 

2) Stewart (1978) [ST78]: 
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4
( ) 1 .

10 log

c
M P

d d
> +

 

3) Dobrowolski (1979) [DO78]: 

3

0
log log

( ) 1 (1 ) , ( ).
log

d
M P d d

d
ε ε 

> + − > 
 

 

4) Cantor and Strauss (1982), [CS82]: 

3

0
log log

( ) 1 (2 ) , ( ).
log

d
M P d d

d
ε ε 

> + − > 
   

5) Louboutin (1983) [Lo82]: 

( ) ( )
3

0
9 log log

1 , .
4 log

d
m P d d

d
ε ε  > + − >  

    

As we can notice, 4  and 5  are improvement on the Dobrowolski method in 3. 

2.3 Restricted results of Lehmer’s problem 

2.3.1 Schinzel theorem 

     The next lemma is a special case of a more general result due to Schinzel, and it 

concerns polynomials with strictly real zeros. 

Lemma 2.3.  For any 1d ≥ , let 1,... 1y y
d

>  be real numbers , then  

1 1
1( 1)...( 1) ( ... ) 1 .

ddy y y y
d d

 − − ≤ − 
   

. Let 1,  and writeproof y x
j i

= +
 

( ) ( ) ( )1

1 1
,..., 1 1 ,

1 1

d dd d
f x x x x

d i i
i i

= + − −
= =
∏ ∏
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if we prove this function to be 0 then the lemma will be true.

We have here a multivariable continuous differentiable function where all 's are 2 

since 1,  and 1,  we will find the extremum for 

x
i

y d
j

≥
≥

≥ ≥

1

this function.

Take the derivative of   with respect of f x

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2 1 2
1

1 2 1 2
1

1 1 1 1

11 11 1 1 1 1 1 11 1 ... 1 ... ,

1 10 1 1 ... 1 ...

1 ... 1 ... 1

d

dd d d d df x x x x x x
x dd d

d df x x x x x x
x d d

ddx x x x x x
d d

− −′ = + + + −

− −′ = ⇔ + + + =

⇔ + + = +

 

1

since all the  are 2,  all the terms above are different from 0,  and we have equaltiy only

when all the 's are equals. Now take the second derivative of   with respect to 

x
i
x f x
i

≥

 

( ) ( ) ( ) .1 2 1 2
1

11 1 1 11 2 1 1 2 1 11 1 1 ... 1 1 ...x
dd d d d df x x x x x

x d dd d d d

−    −′′ = − + + + − −   
     

when all the  are equals, x
i  

( )

( )

1

1 1 1 11 11 1 1

1 1 1
1

1

f x x
x d d d d

d d x x

   − −′′ = − + − −   
   

 − = −    +  
 

which is >0 since 1 and x 2, then the extremum for this function is a minimum.

Note that this second derivative function can not be =0, so the minimum is unique.

we will get the same results for the d

d ≥ ≥

erivatives of the function with respect to the

other 's.x
i

 

( )1Therefore, ,...  has a minimum when all the 's are equalf x x x
d i  

( ) ( )( ) 11,... 1 1 0
dd ddf x x x x = + − − = 

   

Then   is always positive since it has one minimum 0, thus the proof is complete.f
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Theorem 2.4. (Schinzel) [Sc74] Suppose that [ ]P x∈  is monic with degree d , 

( 1) (1) 0P P− ≠ , and (0) 1P = ± . If the zeros of P are all real, then  

2
1 5

( ) .
2

d
M P

 +≥   
 

 

Proof.  Consider  2 1

1

d
E

i
i

α= −
=
∏ , where the iα ’s are roots of ( )P x ,  since ( )P x  is monic, 

we can write ( ) ( )
1

d
P x x

i
i

α= −
=
∏ , ( )1 1

1

d
P

i
i

α= −
=
∏  and ( )1 1

1

d
P

i
i

α− = − −
=
∏ , then E  can 

be written ( ) ( )1 1E P P= − , clearly 1E ≥  since P  is monic (its leading coefficient is 1), 

and ( ) ( )1 1 0P P − ≠  by hypothesis. 

Then 

( )
( )
( )

( ) ( ) ( )

( )
( )

2 2

2

2 2
2

2 2

2

2

2

2 2
2 2 2

2
2

1 1 1

1 1

01
1 1

0
1 1 1

0 0 and by the factorization of  we can write 0 ,  so

1 1 1
1 1 0

1 1 1
1 1

1
1

( )

i i

i i

i i

E
i

i i i

P
i PM P

i i i

P P P
i

i

E P
i M P

i ii i i
i i

iM P

α α α
α α α

α α α
α α α

α
α

α α α
α αα α α

α α

α
α

−

= − = − −
< >

= − −
> < >

≠ = −

= − −
> < >

> <

= −

∏ ∏ ∏

∏ ∏ ∏

∏

∏ ∏ ∏
∏ ∏

( )2 1. Since 0 1 by hypothesis.

1 1

P
i

i i

α
α

× − = ±
< >

∏ ∏
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Suppose that { }
1,..,i i j

α
=

 are the  roots with absolute value <1, and { }
1,..,i i j d

α
= +

  are the 

remaining roots, then 

( ) ( ) ( )2
2 2 2 2

1
1

1 ... 1 1 ... 1
1

E
j j dM P

α α α α− −  = − − − −  +  
, 

we have here a multiplication of d  terms  where the 
i

α ’s are real, so we can apply  

Lemma 2.3 

( )
( ) ( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )2

2 2 2 2
12

2 2

2 2 2 2
12 2 2

4 4
2

11
... ... 1

1

1
...

11
... ... 1

1
...

1

1
1 1

...
10

dd
E

j j dM P

dd

j d
j j dM P

j d

d

j dPM P

α α α α

α α
α α α α

α α

α α

− −

− −

     ≤ −   +     

      +     ≤ −   +        +    

  ≤   +  ± 

( )
4

2

1

1

1
1 ,

1

d

dd

iM P
i

α
α

 
 − 
  

     ≤ −    >   

∏
. 

we use the fact that ( )
1

M P
i

i

α
α

=
>

∏  to get 

2

1 4( ) 1
( )

2 2( ) ( ) .

ddE M P
M P

dd dM P M P

 ≤ − 
 

− = − 
 

 

Since 1 E≤ , it follows that  
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2 2( ) ( ) 1.d dM P M P −− ≥  

( )2To solve this inequation,  put ,  then we have dx M P=   

1 21 1 0,x x x x−− ≥ ⇔ − − ≥  

1 5 1 5
Which is a second degree inequation, true for  and for  

2 2
(second inequaltity is rejected since it is negative and the Mahler measure is not),

x x
+ −≥ ≤

  

( )1 5 2 so we replace  in  by  to get the desired result
2

dx x M P
+≥  

2
1 5

( ) .
2

d
M P

 +≥   
   

 

Corollary 2.5.  If [ ]P x∈  has all real zeros, with same conditions as in Theorem 2.4,  

then 

1 5
( ) .

2
M P

+≥
 

( ) [ ]
( ) ( ) ( ) ( )

1 5
. For 2,  it is clear that we have ( ) .

2
When 1,  take ,  with , since  is monic, and has integer coefficients ,

we must have 0 1,  so 1,  but the condition  1 1 0 can not b

proof d M P

d P x x b b x P

P P x x P P

+≥ ≥

= = + ∈

= ± = ± − ≠



( )
e 

verified with the polynomial 1,  so no polynomial with degree 1 verify the corollary

then, we will apply this corollary for polynomials with degree 2.

P x x d

d

= ± =
≥

 

2.3.2 Results for non reciprocal polynomials 

     Polynomials that are not reciprocal have a uniform lower bound for their Mahler 

measure. 

     In 1971, C.J. Smyth published the following remarkable theorem. 
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Theorem 2.6. [Sm71] (Smyth) If [ ]( )p x x∈  is a non reciprocal polynomial and 

(0) (1) 0p p ≠ , then 

 

3
0( ) ( 1) :1.3247...M P M x x θ≥ − − = =  

where 
0θ  is the real zero of 3 1x x− − . 

The condition that (1) 0 simply means  is not divisible by 1. This condition is 

required for if we multiply any reciprocal polynomial by 1 the measure does not

change,  but the polynomial may beco

p P x

x

≠ −
−

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1

me non reciprocal. Take for example  of 

degree  to be a reciprocal polynomial so . Put 1 ,

11then 1 1  for every ,  so 

is not reciprocal. 

Since the Mahl

P x

dd P x x P x Q x x P x

d dx Q x xx P x x P x Q x x Q x
x

−

− −

= = −

 + = − = − ≠ 
 

( ) ( ) ( )
( )

er measure is multiplicative, and 1 1,  we have that ,

which makes the condition 1 0 necessary regarding the hypothesis in the theorem 

about the polynomials being non reciprocal.

M x M P M Q

P

− = =

≠

 

     An algebraic integer α  is said to be reciprocal if it is conjugate to 1α − .   

Smyth’s theorem shows that forα  a non reciprocal algebraic integer  

3
0( ) ( 1) :1.3247... .M M x xα θ≥ − − = =  

Equality 
0( )M α θ=  occurs only for α  conjugate to ( )0

1 kθ ±± for  some positive  

integer .k  

     Smyth also proved a stronger result [Sm71], also for α  non reciprocal algebraic integer 

3 4( ) ( 1) 10 .M M x xα −> − − +  

So that 
0θ  is an isolated point in the spectrum of Mahler measures of non reciprocal 

algebraic integers. Here are some of the known small points in this spectrum [Sm71] : 
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3

5 4 2

6 5 3 2

5 2

9 8 6 5 3

( 1) :1.324717959...

( 1) :1.349716105...

( 1) :1.359914149...

( 1) :1.364199545...

( 1) :1.367854034...

M x x

M x x x x

M x x x x

M x x

M x x x x x x

− − =

− + − + =

− + − + =

− + =

− + − + − + =  

It would be interesting to know more about this spectrum, and maybe it will be possible to 

find new small points coming from non reciprocal polynomials.  
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Chapter 3  

 

Mahler’s measure in several variables 

3.1  Defintion and existence 

Definition 3.1. The Mahler measure of a non zero polynomial  

1 1
1 ,...F x x

n
± ± ∈    

is 

( )
( )

1

1

1
log ... ,

2

dxdx nm F F
n x xi n nπ

=

Τ


 

 
( ){ }1 1where ,..., : ... 1 .n nz z z z

n n
Τ = ∈ = = =

 

( ) ( ) ( )

1 1This definition extends to Laurent polynomials ,... ,  either by 
1

evaluating the integral of the Laurent polynomial,  or by noting that the measure

satisfies .

F x x
n

m FG m F m G

± ± ∈  

= +



 

 

Lemma 3.2.  The expression ( )m F  in definition 3.1 always exists as an improper 

Riemann integral

 
Proof. [EW99] Consider ( )l F  the logarithm of the sum of the absolute values of the 

coefficients of .F  Then, from the triangle inequality, ( )m F is bounded above by ( )l F . 

Assume that the lemma is true for all polynomial in 1n −  variables. 

Write F  as a polynomial in 1x  with coefficients in 
2[ ,..., ]x x

n
  

1 2 1 0 2( ,..., ) ( ,..., ) ... ( ,..., ).dF x x a x x x a x x
n d n n

= + +  

Then factorize F  as follows   
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1 2 1( ,..., ) ( ,..., ) ( ( ,..., )).
2

1

d
F x x a x x x g x x

n d n j n
j

= −
=

∏  

For certain algebraic functions 
1,...,g g

d
. Then  

1 1 1
1 2

2 1
0 0 0

22 2
( ) ( ( ,..., )) ... log ( ,..., ) ... .

1

d ii i nm F m a x x e g e e d d
d n j n

j

π θπ θ π θ
θ θ

 
= +  − 

 
 =

     

1
1 1

1
0

22 2
Put log ( ,..., ) .

ii i nJ e g e e d
j

π θπ θ π θ
θ= −  

By the inductive hypothesis, the first term exists. 

Apply Jensen’s formula to the integral J , we find that 

2
22

log ,..., .
ii nJ g e e

j

π θπ θ +=   
   

{ }(this notation is defined by log log max 1, for )α α α+ = ∈  

For each N ∈ , define  

2
2 2

22
( ( ,..., )) ... log ( ,..., ) ... .

1
N

d ii nm a x x g e e d d
d n j n

j g Nj

π θπ θ
α θ θ+= +

= ≤
    

Then for each N , 
Nα  exists since the integrand is continuous. 

Also 
Nα increases with N , and is bounded above since ( )m F is bounded above by ( ),l F  

so 

( )N m Fα →  

as  .N → ∞            

                                     

     In the first chapter, we proved that for a single variable polynomial  ( )P x , ( ) 0m P = in 

the case ( )P x  is product of cyclotomic polynomials and monomials, one might ask the 
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same question for multivariable polynomials. Next, we present the main statement in this 

section, for which the proof is due to Smyth. 

Theorem 3.3. [Sm81b] [EW99]. For any primitive polynomial 1 1
1 ,...,F x x

n
± ± ∈   , ( )m F  

is zero if and only if F  is a monomial times a product of cyclotomic polynomials evaluated 

at monomials i.e. 1
1 ,...,
a a
i inF P x x

i n
i

 
=   

 
∏ . 

Definition 3.4. A non zero polynomial [ ]P x∈  is said to be unit-monic if 

0( ) ...dP x a x a
d

= + +  has 0 1a a
d

= = . 

For unit-monic polynomials, there is a complex analogue of Kronecker’s lemma. 

Lemma 3.5.  If [ ]P x∈ is unit monic, then ( ) 0m P =  if and only if the zeros of P  lie on 

the unit circle. 

(Here the proof is same as in Theorem 1.5, a conclusion from Kronecker’s lemma.) 

Definition 3.6.  Let F  be a non zero polynomial in 1 1
1 2,x x± ± 

   written as 

( ) ( ) 1 2
1 2 1 2, .

j j
F x x a j x x

j J
=

∈
  

With J  finite and all ( ) 0a j ≠ , ( )J J F=  is called the support of F . 

Define ( )C F to be the Newton Polygon of F . 

Definition 3.7.  In complex algebra, the convex hull for a set of points X  is the set of all 

convex combinations of points in X . 

     Let F  be a non zero polynomial in 1 1
1 2,x x± ± 

   written as 

( ) ( ) 1 2
1 2 1 2, .

j j
F x x a j x x

j J
=

∈
  
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Then the Newton polygon ( )C F  of the polynomial F  is defined to be the convex hull of 

the set 2J ⊂  . 

To better understand Newton polygon, we examine some examples: 

1) Let  
1 2 1 2( , ) 1F x x x x= + + , the Newton polygon of this polynomial is a triangle: 

fig.1 [EW99] 

2) Let  2
1 1 2 1 1 2( , ) 1F x x x x x= + +  and 2

1 1 2 1 1 1 2( , ) 1 2 3F x x x x x x= + + + , both polynomials 

have the same Newton polygon, which is a triangle. 

 

fig.2 [EW99] 

     An extreme point of a convex set S in a real vector space is a point in S which does not 

lie in any open line segment joining two points of S. 

Definition 3.8.  A non zero polynomial 1 1
1 2,F x x± ± ∈    is extreme monic if  ( ) 1a j =  for 

extreme points ( )j C F∈ . 

Lemma 3.9. [EW99] If F  and G  are polynomials in 
1 2,x x    then: 

1- ( ) ( ) ( ).C FG C F C G= +  

2- Every extreme point of ( )C FG  is a sum of extreme points of ( )C F  and ( )C G  in a 

unique way. 
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3-  If any two of F , G  and FG  are extreme monic so is the third. 

Lemma 3.10. [EW99] Suppose 1 1
1 2,F x x± ± ∈    is a non zero Laurent polynomial, then 

( )C F  is a straight line if and only if F  is a monomial times a one variable polynomial 

evaluated at a monomial  

1 2 1 2 1 2( , ) ( )a b c dF x x x x G x x=  

for 1 .G x± ∈    

Theorem 3.11. [EW99] A polynomial 1 1
1 2,F x x± ± ∈    is extreme monic with ( ) 0m F =  if 

and only if F  is a monomial times a product of unit-monic measure zero polynomials 

evaluated at monomials. 

     See  [EW99] for more information about the vanishing for the multivariable Mahler 

measure. 

3.2 Explicit values. 

     Below are some examples of explicit evaluations of Mahler measures of multivariable 

polynomials. The results are due to Smyth [Sm81a]. 

Example 3.12. [Sm81a][EW99] Let 
1 2 1 2( , ) 2F x x x x= + + , using Jensen’s formula twice, 

we see that  

1 1
1 2

1
0 0

1
2

2
0

1
2

2
0

2 2
( ) log 2

2

2
log max 1, 2

2
log 2

log 2.

i i
m F e e d d

i
e d

i
e d

π θ π θ
θ θ

π θ
θ

π θ
θ

 
=  + + 

 
 

 
= + 

 

= +

=

 




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Example 3.13. [Sm81a][EW99] Let 
1 2 1 2( , ) 1F x x x x= + + , by Jensen’s formula and a 

substitution 

1 1
1 2

1 2 2 1
0 0

1
1

1
0

1 2

1 2

2 2
(1 ) log 1

2
log 1

2log 1 .

i i
m x x J e e d d

i
e d

ie d

π θ π θ
θ θ

π θ
θ

π θ θ
−

 
+ + = =  + + 

 
 

+= +

+= +

 





 

For [ ]1 2,1 2θ ∈ − , we have that 21 1ie π θ+ ≥  only when 1 3 1 3.θ− ≤ ≤  

Hence  

( )

1 3

1 3

1 3

0

1 3

0

2log 1

22 log 1

22Re log 1 .

iJ e d

ie d

ie d

π θ θ

π θ θ

π θ θ

−

= +

= +

= +







 

We can expand the integrand using the Fourrier series  

( ) ( )
2

12log 1 1 .
1

inenie
n

n

π θπ θ ∞ −+ = −
=
  

This series converges uniformly for [ ]0,1 3θ ∈ . It follows that 
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( ) ( )

( )

( )

1 3

0

1 3

0

1 3

01

11
2Re cos 2 sin 2

1
11

2 cos 2
1

11 1 2
2 sin .

2 3n

n
J n i n d

n
n

n
n d

n
n

n
n

n n

π θ π θ θ

π θ θ

π
π=

−∞ −
= +

=
−∞ −

=
=

−∞ −  =   

 

 



 

Notice that  

2 3
sin .

3 3 2

n nπ  =  
 

 

Where ( )
3

n
nχ  = 

 
 is the Legendre symbol  

1 1 mod3,

( ) 1 2 mod3,

0 0 mod3.

n

n n

n

χ
≡

= − ≡
 ≡

 

Therefore  

( )
2

2 2

2 2

2 2

2 2

113
( )

2
1

3 (2 1) (2 )

2 (2 1) (2 )1 1

3 ( ) (2 )
2

2 (2 )1 1

3 ( ) 1 ( )
(2)

2 2
1 1

3 3 ( ) 3 3 ( )
.

2 2 4
1 1

n
J n

nn

n n

n nn n

n n

n nn n

n n

n nn n

n n

n nn n

χ
π

χ χ
π

χ χ
π

χ χχ
π

χ χ
π π

−∞ −
=

=
∞ ∞ − = − 

− = = 
∞ ∞  = − 

 = = 
∞ ∞  = − 

 = = 
∞ ∞

= =
= =



 

 

 

 
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Example 3.14. [Bo81a][Sm81a] Let 
1 2 3 1 2 3( , , ) 1F x x x x x x= + + + . Starting again with 

Jensen’s formula gives  

( )3( ) max ,1 max , .
b

M ax b a a b
a

 + = = 
 

 

Write  
2 3x xx= , then 

1 2 3 1 3

1 1
1 2

1 2
0 0

(1 ) (1 (1 ))

2 2
log max 1 , 1

.

m x x x m x x x

i i
e e d d

I

π θ π θ
θ θ

+ + + = + + +

 
= + + 

 
=

   

Put 
12t πθ= , 

22u πθ=  then 

( )

0 0

2
0

2
0

2
0

1
max log 1 , log 1

2

2
log 1

2
log 1

2
log 1 .

it iuI dt e e du

ite dt du

t

itt e dt

itt e dt

π π

π
π π

π

π
π

π
π

π

 = + + 
 

= +

= − +

−= +

 

 





 

Since (1 ) 1M z+ =  so that (1 ) 0.m z+ =  

We use again the expansion 

( ) ( ) ( )

1( 1)
log 1 Re

1
1 11 1 1

cos .
2

1 1

n
it itne e

n
n

n n itn itn
tn e e

n n
n n

   
   
   

∞ −−+ =
=

− −∞ ∞ − − −
= = +  

 = =



 
 

Then 
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( )

( )

2
0

2
0

112 1

2
1

111

1

n itnitn
I t e e

n
n

n itn itn
t e e dt

n
n

π

π

π

π

     
   

   
   
   

− ∞  −−  = − +
   = 

−∞ − −
= − +  

 =



 
 

 

by integrating by parts, we get 

( ) ( )
2 2 2

0 0 0

1 11 1
,

n nitn itn itnt
te dt e e

in inn n n

π ππ π     
     
     

− −
= + = + −  

and 

( ) ( )
2 2 2

0 0 0

1 11 1
,

n nitn itn itnt
te dt e e

in inn n n

π ππ π     
     
     
− − − − −

= − + = − + −  

So  

( ) ( )

( )3

2 2 2

2

11 2 11 2

1

for 2 1,

1 4
 ,

2 10

n n
I

n n nn

n k

I
kk

π

π

−  ∞ − − = − −
 =  

= +
∞

=
+=





 

We use a special formula of the Riemann zeta function : ( )
( )3

8 1
3

7 2 10 kk
ζ

∞
=

+=
  to get the 

desired result  

2 3 2

4 1 7
(3).

(2 1) 20
I

kk
ζ

π π

∞
= =

+=
  

Here 3(3)
1

n
n

ζ −
∞

=
=
 , a number which Apéry has proved to be irrational [Va78]. 
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Chapter 4  

 

Limit points. 

        Take L  to be the set ( ){ }:  has integer coefficientsL M P P= . Lehmer’s question then, 

is equivalent to ask whether 1 is a limit point of L . 

L  is a countable set (according to its construction) and is a semigroup under multiplication 

(according to the property of Mahler’s measure: ( ) ( ) ( )M PQ M P M Q= ). Thus, to show 

that 1 is a limit point of L , we can show that L  is dense in [ )1,∞ . 

 So in order to find an answer to Lehmer’s question, we can study the properties of some of 

the subsets of L . 

     Consider now a certain subset S  of L  called the set of Pisot numbers. A Pisot number is 

a positive algebraic integer θ  greater than 1 all of whose conjugate elements have absolute 

value less than 1. Clearly ( ) ,M P θ=  in this case since the other conjugates of θ  have 

modulus less than 1, so that S L⊂ . 

Salem [Sa44] showed that S  is a closed set (nowhere dense) and that 0min 1S θ= > , 

Siegel [Si44] found that this 0θ  is the real zero of 3 1z z− − , this zero is the same number 

Smyth showed to be the minimum value of the Mahler’s measure of the non-reciprocal 

polynomials (see Theorem 2.5), answering Lehmer’s question for the nonreciprocal 

polynomials,  so here comes another subset of L , which is 0L , the set of ( )M P  with P  

non reciprocal. 

      The set T  of Salem numbers is another subset of L , that contains real algebraic 

integers 1θ >  all of its conjugate roots have absolute value no greater than 1, and at least 

one has absolute value exactly 1, the last condition forces the polynomial to be reciprocal 

[Sa45]. 
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 We can observe that 1.17628...σ =  which is the real zero of the Lehmer’s 10 degree 

polynomial ( )L x  defined earlier in Chapter 2, is a Salem number.  Boyd [Bo81a] suggests 

that σ  could be a limit point of L . 

      Lehmer’s question asked if there is a gap between 1 and 1 ε+  for some positive ε  in 

the set of values of the Mahler measure of single variable integer polynomials. The 

analogous question  may be asked for polynomials in several variables. It turns out that the 

questions are equivalent because of a surprising approximation result due to Lawton 

[La77]. 

Theorem 4.2.  [La77] For a non-zero polynomial [ ],F z w∈  

lim ( ( , )) ( ( , ))NM F z z M F z w
N

=
→∞

 

Theorem 4.3.  [La77] For a multivariable polynomial 
1[ ,..., ]F z z

n
∈  

1
1 1 1

2

lim ... lim ( ( ,..., )) ( ( ,..., )),
rr nM F z z M F z z

nr rn

=
→∞ →∞

 

where the limit is taken with all the exponents going to ∞  independently.  

     We give now an example (also is an application of Theorem 4.3) taken from Boyd’s  

paper [Bo81a], about an interesting limit point which is the Mahler measure of the two 

variables polynomial 
1 2 1 2( , ) 1 .F z z z z= + +  

1 2(1 ) :1.38135...M z zβ = + + =  

Smyth has  shown that  

2

3 3 1
log .

4 3
1

n

nn
β

π

∞  =  
 =


 

(The details of the calculations were given in Example 3.13) 

Boyd showed that 

1 2 2 3

( ) 1
(1 ) (1 ) ( ),

c nnm z z m z z O
n n

+ + = + + + +  
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where 
3 6 2 mod3,

( )
3 18 0 1 mod3.

n
c n

n or

π
π

− ≡= 
≡

 

So that β  is a limit point in the set L , and it seems also that β  is the smallest limit 

point of the set 
0L . A result by Salem shows that each element in 

0L  is a limit point in 

L . In the case of non-reciprocal polynomials, it is easier to show that 
1( ( ,..., ))M F z z

n
 

is a limit point in the set L . 

     If we show the following statement suggested and proved by Boyd [ ]Bo81a  

1 2 2 3

( ) 1
(1 ) (1 ) ( ).

c nnm z z m z z O
n n

+ + = + + + +
 

       We can then deduce easily that β  is a limit point.  A detailed proof of this can be 

found in [ ]Bo81a . 
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Part 2 The higher Mahler Measure 

 

Chapter 5 

 

Definitions and examples 

 

[ ] [ ] . KLO08       ( )    

,  the -higher Mahler measure of   is defined by :

Given a non zero polynomial P x x and a positive integer

k k P

∈Definition 5 1 
 

( ) ( )1
log .

2
1

dxkm P P x
k i x

x
π

=
=
  

Or equivalently, by 

( ) ( )1

0

2log .k im P P e d
k

π θ θ=   

( )
( )

1We observe that for 1,  is the classical logarithmic Mahler measure 

Definition 1.1 .

k m P=
  

[ ]1 .         ,..., ,  their

     

For a finite collection of non zero polynomials P P x

multiple Mahler measure is defined by

− ∈Definition 5 2   

( ) ( )1 1
1

( ,..., ) log ...log .
2

1

dx
m P P P x P x

i x
x

π
=

=
 

 

 
The generalization in Definition 3.1 can be extended to the multiple higher Mahler 
measure: 

Definition 5.3.  Let 1 1,..., ,...,P P x x
n

 ∈    be nonzero polynomials. Then, we define 

( )1,...,m P P  as  
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( )
( ) ( ) 1

1 1 1
1

1

1
... log ,..., ...log ,..., ...

2 1 1

dxdx nP x x P x x
n nn x xi nx xn

π = =
   . 

 
 

5.1 Higher Mahler measure for one variable polynomial 

     In general, Higher Mahler measures are very hard to compute, even for simple linear 
polynomials in one variable. In this section, we consider the simplest example : 

( ) 1 .P x x= −  
Theorem 5.4 shows a direct connection between the higher Mahler measure of ( ) 1

and the Riemann Zeta function.

P x x= −
 

 
Theorem 5.4.  [KLO08]  

( )
1

1

1 !
(1 ) ( ,..., ),

22... , 2

k k
m x b b

k hh
b b k bh t

ζ
−

− =
+ + = ≥

  

where 1( ,..., )b b
h

ζ  denotes a multi zeta value, i.e.  

( ) ( )1
11 1

1
( ,..., ) .

0 ... ...

b b
h bb h

h h

ζ =
< < <


   
 

[ ] . . KLO08  Applying theorem 5.5,  we are able to compute (1 ),  

here are the first few examples :  

m x
k

−Example 5 5
 

2
(2)

(1 ) ,
2

m x
ζ− =  

( )3
(3) 3

(1 ) 6 3 ,
4 2

m x
ζ ζ − = − = − 
 

 

( ) ( ) ( )
( )( ) ( )2 2 2

4

(2) 44 2,2 3 2 21 (4) 19
(1 ) 24 6 4 3 ,

4 16 4 4 240
m x

ζ ζζ ζ ζ ζ πζ
− + 

− = + = + = = 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
5

5 2,3 3,2 15 2 3 45 5
1 120 ,

4 16 2
m x

ζ ζ ζ ζ ζ ζ+ + 
− = − + = − 

 
 



 

 

 

39

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

6

2 3

2 3
2 6

6 3,3 2,4 4,2 2,2,2
1 720

4 16 16 64

45 3 6 45 2 6 3 2 4 2
180 6 45 2 4 6

2 4.6

930 6 180 3 315 2 4 15 2 45 275
3 .

8 2 1344

m x
ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ξ
ζ ζ ζ ζ

ζ ζ ζ ζ ζ
ζ π

+ 
− = + + + 

 

− − +
= + + − +

+ + +
= = +

 

5.2 Multiple Mahler measure for several linear polynomials 

     As before, it is easier to consider the one-variable polynomial case. The next theorem 
allows us to give some examples of higher measure for several polynomials. 

[ ] . KLO08  0 1For α≤ ≤Theorem 5 6   

( ) 2
2 121 ,1 .

2 6
im x e x

ππ α α α − − = − + 
 

 

 
Proof. By definition 

( ) ( ) ( )

( )

( ) ( )( )

1

0

1

0

1

0

22 21 ,1 Re log 1 Re log 1

1 1
cos 2 cos 2

1 1

1
cos 2 cos 2 .

, 1

ii im x e x e e d

k d
k

k

k d
k

k

π θ απ α π θ θ

π θ π θ α θ

π θ π θ α θ

+ − − = − − 
 

∞ ∞  
  = − − +
  = =  

= +
≥



 

 







 

 
On the other hand 

( ) ( )( )

( )

1

0

cos 2 cos 2

1
cos 2 ;

2
0 .

k d

k k

otherwise

πθ π θ α θ

πα

+

 == 


 


 

 
Putting everything together, we get 
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( ) ( )
2

2
2

cos 2121 ,1
2

1

1

2 6

kim x e x
kk

π απ α

π α α

∞
− − =

=
 = − + 
 



             
2

2 2 2In order to prove this we will find the Fourier series of the polynomial .
6

ππ α π α− +

  

2 2

Cosider first the case for 0 1,  then 0<2 <2 ,

put 2 , and replace it in the polynomial, so we will have the function:

( )  for 0<y<2 .
4 2 6

y

y y
f y

α πα π
πα

π π π

< <
=

= − +   

again put  so that we have the functionx y π= −

 ( )
2 2

g
4 12

x
x

π= −

 
( )  is a periodic function of period 2  with .

The Fourier series of such function is given by:

g x xπ π π− < <

 ( ) 0S cos sin
2

1

a
x a kx b kx

k k
k

∞
 = + + 

=


 

Where 

( )

( )

( )

0
1

,

1
cos ,

1
sin .

a g x dx

a g x kxdx
k

b g x kxdx
k

π

π
π
π

π
π

π

π
π

=
−

=
−

=
−






 

Therefore 

2 2 3 2

0
1 1

0.
4 12 12 12

x x x
a dx

ππ π π
π π ππ

   
= − = − =      

   −−


 



 

 

 

41

( )

2 2

2 2

0 0

2 2

2 3
0 0

2 2

1
cos

4 12

2 cos 2 cos

4 12

1 sin cos sin 2 sin
2 2

2 12

11 2 cos
.

2

x
a kxdx
k

x kx kx
dx dx

x kx kx kx kx
x

k kk k

kk

k k

π π
π

π
π π π

π π

π π
π

π π

π π
π

 
= −  

 −

= −

   − −= − + −   
      

− = =  



 

 

2 21
sin 0 since the integrand is an odd function.

4 12

x
b kxdx
k

π π
π

π

 
= − =  

 −


 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) )

0

(Note:  is said to be an even function if  ,  in this case 2 ,  

for ,  and is said to be an odd function if   and in this case 0

a a
f x f x f x f x dx f x dx

a
a

a f x f x f x dx

a

= − =
−

∈ = − − =
−

 



So we obtain the following Fourier series 

( ) ( )2 2

2
1

1
cos .

4 12 k

n
x

g x kx
k

π

=

∞ −
= − =

 Now we replace  by ,  x y π−

 
( ) ( )

( )
note that cos cos cos sin sin 1 cos  by the trigonometric 

identity cos cos cos sin sin ,

so

kk y ky k ky k k

A B A B A B

π π π π− = − = −

− = −

 
( )

2 2

2

cos
,

4 2 6
0

y y ky
f y

kk

π π ∞
= − + =

=


 finally for 2 ,  and 0 1,y πα α= < <

 
2 2

2

1 cos 2
.

6
0

k

kk

π απ α α
∞ − + = 

  =

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( ) ( )

2

2

2

For the case when 0 or =1, the value of the polynomial is ,on the other side, 
6

we have the same value in the cosine series, for 0 or =1, which is

1
2 Riemann Zeta function for 2 ,

6
1

th

n
kk

πα α

α α

πζ

=

=
∞

= = =
=


us the proof is complete.
 

 
Example 5.7. Applying the Theorem 5.6 above, we obtain the following examples 

( )

( )

( )

( )

2

2

2

1 ,1 ,
12

1 ,1 ,
24

1 ,1 ,
96

3 321 ,1 0 .
6

m x x

m x x

m x ix

im x e x

π

π

π

π α α

− − =

− + = −

− ± = −

±− − = ⇔ =

 

 
Using the method of Theorem 5.6, we obtain a higher analogue of Jensen’s formula. 
Lemma 5.8. [KLO08]  for ,α β ∈  

( )

( )

2

2

2

2

1
Re , 1,

2

1
1 ,1 Re 1, 1,

22

1
Re log log , 1.

2

Li if

m x x Li if

Li if

α β α β

αβα β α β
α

α β α β α β
αβ


 ≤


   − − = ≥ ≤    
 
 + ≥    

 

 

2          Where Li is the dilogarithm function defined by the sum  

( )2 2
1,

1

kz
Li z for z

kk

∞
= ≤

=
  

or the integral 
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( ) ( )
2

0

log 1
.

z t dt
Li z

t

−
= −  

     The previous computation may be extended to multiple higher Mahler measure 
involving more than two linear polynomials: 
Lemma 5.9.  [KLO08] 

( )
( ){ }

221 ,1 ,1

cos 21
.

4
, 0 , 0

iim x e x e x

r s

rs r s
r s r s

π βπ α

π α β

 − − − 
 

+
= −

+∈ + >




 

 
 
     It would be interesting to compute higher Mahler measure for polynomials whose roots 
have absolute value 1≠ , and degree 1> . 
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Chapter 6  

 

Lehmer’s question for higher Mahler measure 

     Since Lehmer’s question is interesting for the classical Mahler measure,  one might ask

about the analogous question for the higher Mahler measures.

     We said earlier that Lehmer’s question can be rephrased as whether 0 is a limit point for 

logarithmic Mahler measures. The question is the same for , but here we distinguish

 between two cases :  the odd one and the even one.

     A theorem abou

m
k

t lower bounds for the even higher Mahler measure  reveals that 
2

Lehmer’s question is answered negatively for this case (see Theorem 6.1 below). 

A second theorem shows that the limit for the odd hig

m
h

her Mahler measure  is zero,  
2 1

so the answer to Lehmer’s question for this case is positive (see Theorem 6.2 below).

m
h +

 

[ ] ( ) [ ] . .  LS11            1If P x x is not a monomial then for any h∈ ≥Theorem 6 1   

( )
( )

( )

2

2

,
12

2

.
48

h
if P x is reciprocal

m P
h h

if P x is non reciprocal

π

π

    ≥ 
 
 −   

 

     Theorem 6.1 provides a general lower bound for both kinds of polynomials (reciprocal 
or non reciprocal). There are no conditions on the polynomials, unlike in the case of the 
classical Mahler measure where lower bounds come with restrictions on the polynomials 
(see Chapter 2). This theorem answers Lehmer’s question negatively for the even higher 
Mahler measure since as we can see from the lower bound, the limit is not zero. 
 

Theorem 6.2  [LS11] Let ( ) 1

1

nx
P x
n x

−=
−

. For 1h ≥  fixed, 

( )lim 0
2 1

m P
h nn

=+→∞
. 

We obtain in this way a positive answer for Lehmer’s question for 
2 1

m
h + . 
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Note that the sequence ( )2 1
m P

h n+  in Theorem 2.6 is a nonconstant sequence, which 

means that it can not not be identically zero, we can find in [LS11] in section 5.3 a 

discussion about this, and a proof that ( )2 1
m P

h n+  behaves like a nonzero constant times 

2 1log h n

n

−
 when n  goes to infinity. 

 
     See [KLO08] and [LS11] for more details about the higher Mahler measure and its 
connection with the Lehmer problem. 
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Chapter 7  

 

Limit values for higher Mahler measures. 

        We arrive now to the main goal of the thesis, which is a generalization of an important 
theorem conjectured by Boyd and completely proved by Lawton [La83]. The reader will 
find an article by Zahraa Issa and Matilde Lalin where they prove a generalization of this 
theorem to higher Mahler measure and generalized Mahler measure. 
 
[Published in the Canadian Mathematical Bulletin, doc: 10.4153/CMB-2012-010-2] 
 

A GENERALIZATION OF A THEOREM OF  

BOYD AND LAWTON 

 

Abstract.  The Mahler measure of a nonzero n-variable polynomial P  is the 
integral of log P  on the unit n-torus. A result of Boyd and Lawton says 

that the Mahler measure of a multivariate polynomial is the limit of Mahler 
measures of univariate polynomials. We prove the analogous result for different 
extensions of Mahler measure such as generalized Mahler measure (integrating 
the maximum of log P  for possibly different P 's), multiple Mahler measure 

(involving products of log P  for possibly different P 's), and higher Mahler 

measure (involving logk P ). 

 

  7.1 Introduction 

     The Mahler measure of a nonzero polynomial ( )1 1,..., ,...,P x x x x
n n

 ∈    is defined 

by 

( )
( )

( ) 1
1

1

1
: log ,..., ... ,

2

dxdx nm P P x x
nn x xi n nπ

=

Τ
  
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where ( ){ }1 1,..., : ... 1n nz z z z
n n

Τ = ∈ = = is the unit torus in dimension n .  

This formula has a particularly simple expression for univariate polynomials. If  

( ) ( ),P x a xi i
α= −∏  Jensen’s formula implies that ( ) { }log max 0, logm P a i i

α= + . 

In fact, Lehmer [Le33] considered first the measure for univariate polynomials which was 
later extended to multivariate polynomials by Mahler [Ma62]. Lehmer’s motivation for 
considering this object was a method to construct large prime numbers that generalizes 
Mersenne’s sequence. Mahler, on the other hand, was interested in relating heights of 
products of polynomials with the heights of the factors. The Mahler measure is a height 
which is multiplicative, and therefore it was a natural object for Mahler to consider.   

     Boyd and Lawton proved the following useful and interesting result. 
 

[ ] ( )
( )

1 1

1

 . .   Bo81a,Bo81b,La83   ,..., ,...,

 ,..., ,
0

Let P x x x x
n n

and r r r r
n i

 ∈  

= ∈ >

Theorem 7 1 1 


 

 Define ( )rP x  as  

( ) 1 ,...,
rr nP x P x x

r

 
=   

 
, 

And let 

( ) ( ) ( ) ( )1min : ,..., , 0,...,0 , 0
1

n
nq r H s s s s s s r

n j j
j

 
 = = ∈ ≠ = 
 = 

 , 

where ( ) max :1H s s j n
j

 = ≤ ≤ 
 

. Then  

( ) ( ) ( )lim m P m P
rq r

=
→∞

. 

     This result implies that the multivariate Mahler measure is a limit of univariate Mahler 
measures. In particular, it gives evidence that the extension to multivariate polynomials is 
the right generalization. 
     The Mahler measure of multivariate polynomials often yields special values of the 
Riemann zeta function and L -functions, thus one can construct sequences of numbers that 
approach these special values in this way. 
      In addition, this theorem has consequences in terms of limit points of Mahler measure. 
The most famous open question in this area is the so called Lehmer’s question. Is there a 
constant 0c >  such that for every polynomial [ ]P x∈  with ( ) 0m P > , then ( )m P c≥ ?      

Thus, Theorem 7.1.1 tells us that given a multivariate polynomial whose measure is smaller 
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than a certain constant c , we can generate infinitely many univariate polynomials with the 
same property. 
     In this work, we are going to consider two extensions of Mahler measure. 

 Given 1 1,..., ,...,P P x x
s n

 ∈   , (not necessarily distinct) nonzero polynomials, the 

generalized Mahler measure is defined in [GO04] by 

( )
( )

( ) ( ){ } 1
1 1 1 1

1

1
,..., : max log ,..., ,..., log ,..., ... .

max 2

dxdx nm P P P x x P x x
s n s nn x xi n nπ

=

Τ
  

On the other hand, the multiple Mahler measure is defined in [KLO08] by 

( )
( )

( ) ( ) 1
1 1 1 1

1

1
,..., : log ,..., ...log ,..., ... .

2

dxdx nm P P P x x P x x
s n s nn x xi n nπ

=

Τ
  

      For the particular case in which 1 ...P P P
s

= = = , the multiple Mahler measure is called 

higher Mahler measure 

( )
( )

( ) 1
1

1

1
: log ,..., ... .

2

dxdxs nm P P x x
s nn x xi n nπ

=

Τ
  

     These objects have been related to special values of the Riemann zeta function and  
 L -functions ([GO04,La08] for generalized Mahler measure, [KLO08,Sa10,Sa,BS,BBSW] 
for multiple Mahler measure), but the nature of this relationship is less well understood 
than in the classical case. 
      Our goal in this note is to prove the equivalent for Theorem 7.1.1 for these 
generalizations. 

 
 

Theorem 7.1.2.  Let 1 1,..., ,...,P P x x
s n

 ∈    and r  as before. Then  

(1)   

( ) ( ) ( )11
lim ,..., ,..., .

max max
m P P m P P

r sr sq r
=

→∞
 

(2)  

( ) ( ) ( )11
lim ,..., ,..., .m P P m P P

r sr sq r
=

→∞
 

     (3)If 1 ... ,P P P
s

= = =  

( ) ( ) ( )lim m P m P
s r sq r

=
→∞

. 
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7.2. Some Preliminary Results 

      The difficulty in obtaining Theorem 7.1.2 lies in the case where (some of) the 
polynomials vanish in the domain of integration and the logarithm is not bounded. This 
problem already appears in the proof of Theorem 7.1.1.  The key result of solving this is a 
theorem by Lawton [La83]. 

Let  
n

μ  denote the Lebesgue measure in the torus nΤ . 

Theorem 7.2.1.  ([La83], Theorem 1).  Let ( ) [ ]P x x∈  be a monic polynomial and let k

=number of nonzero coefficients of P . Then if 2k ≥ , there is a positive constant C
k

 that 

depends only on k  such that  

( ){ }( )1

1
1: kz P z y C y

k
μ −∈Τ < ≤ , 

for any real number 0y > . 
     The strength of this result lies in the fact that the constant is absolute and depends on the 
number of nonzero coefficients of P  but it does not depend on P . 
     Notice that we can always assume that  the polynomials involved in multiple Mahler 

measure have at least two nonzero monomials since log kax  is a constant and can be 

easily extracted from the integral. It should be noted that the above theorem remains true 
for 1k = if y  is sufficiently small (i.e. y a< ) and 0.

1
C =  

     It is not hard to prove a result where the constant depends on P . For example, 

Lemma 7.2.2.  ([EW99], Lemma 3.8, pg. 58)  Let ( )1 1,..., ,...,P x x x x
n n

 ∈   . There are 

constants ,C
P P

δ  that depend on P  such that  

( ) ( ){ }1 1,..., : ,..., ,n Pz z P z z y C y
n n n P

δ
μ  ∈Τ < ≤ 

 
 

(2.1) 
for small 0y > . 
 
     In what follows, we will denote by 

( ) ( ) ( ){ }1 1, ,..., : ,...,nS P y z z P z z y
n n n

= ∈Τ < , 

where the n  depends on the number of variables involved. Thus n ≥ number of variables of 
P . We will write ( ),S P y  for ( )1 ,S P y . 
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This result is weaker than Lemma 7.2.1, because the constant depends on P , but it has the 

advantage that can be applied to nΤ , as opposed to Theorem 7.2.1 which is only valid for 
.Τ  

     The following elementary lemma will be useful to bound integrals. 
 
Lemma 7.2.3.   Let   be a positive integer and , 0y δ > . Then  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0

2

: 1 log
,

11 21 21 log 1 log 1 log ...

1 ...2 !
1 log

1

y
J y zd z

y y y y

y

δ
δ

δ
δ δ

δ δ

= −

− − −− −= − + − + − +


−
+ − + − 

 


     

  
 

 

Proof.  First we consider the integral for 1= , then 

1
0

log
,

y
J zdzδ

δ = − , 

If we consider u zδ= , then we can rewrite the integral 

[ ]

1
0 0

0

1
1

log log
,

1 1 1
log log

1 1
log log .

y y
J z dz zdz

yz z z y y y

y y y y y

δ δ
δ

δ δ

δ δ δ δ
δ δ δ
δ δ δ

δ δ

= − = −

= − − = − +

 = − + = − + 
 

 

 

So the lemma is true for 1= . Suppose  the lemma is true for 1−  
now  
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( ) ( )

( )

( )

0 0

0 0

1
1 log 1 log

,

by integration by part:

1 1log log
,

1 log
1,

since  verify the lemma by the recursion hypothesis, we can replace it
1,

y y
J zdz zdz

yy
J z z zdz

y y J

J

δ
δ

δ δ

δδ

δ δ

δ
δδ

δ

= − = −

 
 − −= − 
 
 

= − + −

−

 



  
 


  

 




( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( )3

2

2

 by its value for -1 

11 21 21 log 1 log 1 log

1 2 1 2 ...2 1 !3 31 log ... 1 log
2 1

11 21 21 log 1 log 1 log

1 2 3 31 log .

y y y y y

y y

y y y y

y

δ δ
δ δ

δ δ δ

δ
δ δ

δ

− − −− −= − + − + −


− − − − −− −+ − + + − + − − 
− − −− −= − + − + −



− − − −+ − +



     

     
 

     

     ( )( ) ( )1 2 ...2 !
.. 1 log ,     

1
y

δ δ

− −
+ − + − 

   
 

so the lemma is true for   and the proof is complete. 
 

 
Corollary 7.2.4.  For 0 1y< ≤  we have 

( ) ( ) ( )1
0 1 !max , log

,
J y y yδ

δ δ
 ≤ ≤ + − 
 


  

In other words, 
( ) 0

0
lim

,
J y

y δ =
→  . 

For the remainder of the chapter, we will denote by 

( ) ( )
0

1
11 log

, 1
,

1

y
kI y J zd z

k
k

 
 −= = −  
 

−  

 
 

. 

(2.2) 
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     We finish this section by recalling  the statement of the following extension of Holder 
inequality: 

Lemma 7.2.5.  Let S  a measurable set of n  or n  and 1,...,f f
s

 measurable complex or 

real valued functions. 
Then  

1 1

1 1

... ...
s sss

f f dx f dx f
s s

S S S

   
   ≤
   
   

   . 

7.3. Integration over combinations of ( ),S P y  

     In this section, we consider the integration over sets resulting from combining the 
different ( ),S P y ’s. 

Lemma 7.3.1.  Let ( ) [ ]P x x∈  be a polynomial having 2k ≥  non-zero complex 

coefficients each having modulus 1≥ . Let 0 1.y Then< ≤   

( ) ( ) ( )
( )

0 1 log .
,

,

dx
P x C I y

k kx
S P y

≤ − ≤ 
  

Analogously, if ( )1 1,..., ,...,P x x x x
n n

 ∈    and 0 y<  small enough to satisfy equation 

(2.1), 

( ) ( )
( )

( )1
1

1

0 1 log ,..., ...
,

,

dxdx nP x x C J y
n Px x PnS P yn

δ≤ − ≤ 
 . 

Proof.   The case 1=  is Lemma 4 in [La83]. The general proof starts in the same way. 
Define for 0 1z< ≤  

( ) ( )( )1: ,h z S P zμ= , 

where we recall that 1μ  stands for the Lebesgue measure of the set. Let the leading 

coefficient of ( )P x  be a  with 1a ≥ . Then 1a P−  is monic and so Theorem 7.2.1  implies 

that  

( )
1 1

1 1z k kh z C C z
k ka

  − −≤ ≤  
 

. 

Now we compute the desired integral. 
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( ) ( )
( )

( )

( )

( ) ( )

( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( )

0

0

0

0

1 log

,

1 log

   1

1 log

Where  so that  is almost everywhere differentiable 

and 

1 log log

1
11 log

dx
P x

x
S P y

z y
dx

z dz
x

xz
P x x

y
zg z dz

g z P x z h z

dh z g z

y
d

yh y z h z dz
dz

y
kC zd z

k

μ

−

=
= −

==
=

= −

= =

=

 = − − −  

 
 −≤ −  
 
 



 





 

 

 

 

  ( )
0

1
1log

y
d kz C z dz

kdz
  −− −    

 

where the last inequality is consequence of the fact that ( )log z− 
 is a positive decreasing 

function and its derivative is negative. By applying integration by parts again we obtain 

( )
0

1
11 log ,

y
kC zd z

k

 
 −≤ −  
 
 

   

which finishes the proof of the first statement by Lemma7.2.3 and equation (2.2).  
     The proof of the second statement follows along the same lines.                     

  
Lemma 7.3.2.   Let ( ) ( ) [ ]1 ,...,P x P x x

s
∈  be polynomials having ,...,

1
k k

s
 nonzero 

complex coefficients with absolute value greater than 1 and 10 ,..., 1y y
s

< ≤ . Let 1 n s≤ ≤ . 

Then  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1
1 1

0 1 log ...log
, \ ,1 1

1

... 1 log ...log .
, , 1

dxs P x P x
n s s xS P y S P yi i i ii i n

n s nC I y C I y y y
k n k k n k n n s

n n

≤ −
= = +

  −≤ −   + 

  
 

Proof .  Notice that ( )0 log logP x y≤ − ≤ −  for ( ),x S P y∉  for 0 1y< ≤ . Therefore,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1

1

1
11

1 log ...log
, \ ,1 1

1 log ...log log ...log
1 , \ ,1 1

1 log ...log log ...log
1 ,1

1 log ...log ...
1 , ,

dxs P x P x
n s s xS P y S P yi i i ii i n

dxs y y P x P x
n s n s n xS P y S P yi i i ii i n

dxs y y P x P x
n s n n xS P yi ii

s n y y C I y C I
n s k n k k n kn

−
= = +

≤ − +
= = +

≤ − +
=

−≤ − +







 

 



( )
1

ny
nn

 
 
 

 

By Lemma 7.2.5 and Lemma 7.3.1.                                                                             
 

Lemma 7.3.3.  Let ( ) ( ) [ ]1 ,...,P x P x x
s

∈  be polynomials having 1,...,k k
s

 nonzero 

complex coefficients with absolute value greater than 1 and 10 ,..., 0y y
s

< ≤ . Then  

( )
( ) ( ) ( ) ( )

( )
{ }

( )
{ }

1
1 1

1

1

0 1 log ...log
, ... ,

log .
,

,..., 1,..., \

A

dxs P x P x
s xS P y S P ys s

C I y y
k i iA ki iA s i A i s A

≤ −

 
≤ −  

 ⊂ ∈ ∈



 ∏ ∏

 
 

Proof .  We start with the observation that 

( ) ( ) ( )
{ }{ }

, , \ ,

1 1,..., 1,..., \

s
S P y S P y S P y

i i i i i i
i A s i A i s A

 
 =  
 = ⊂ ∈ ∈ 

    . 

By applying Lemma 7.3.2,  we get 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
{ }

( ) ( )
{ }

( ) ( )
{ }{ }

1

1

1 log ...log
, ... ,1 1

1 log ...log
, \ ,1,...,

1,..., \

1

log
,

1,..., 1,..., \

dxs P x P x
s xS P y S P ys s

dxs P x P x
s xS P y S P yi i i iA s

i A i s A

A
C I y y

k i iA ki iA s i A i s A

−

≤ −
⊂

∈ ∈

 
≤ −  

 ⊂ ∈ ∈



 

 ∏ ∏

 

 
 

                  
 
       Setting 1 ...y y y

s
= = =  and letting 0y → , we get the following result by  

  Corollary 7.2.4. 
Corollary 7.3.4.   Let ( ) ( ) [ ]1 ,...,P x P x x

s
∈  be polynomials having 1,...,k k

s
 nonzero 

complex coefficients with absolute value greater than 1. Let 0 1y< < . As y  approaches 0, 
we obtain 

( ) ( ) ( ) ( )1
1

lim log ...log 0,
, ... ,0

dx
P x P x

s xS P y S P yy s
=

→   
 

where the speed of convergence is independent of the polynomials ( ) ( )1 ,...,P x P x
s

. 

Lemma 7.3.5.  Let ( ) ( ) [ ]1 ,...,P x P x x
s

∈  be polynomials having 1,...,k k
s

 nonzero 

complex coefficients with absolute value greater than 1 and 10 ,..., 1y y
s

< ≤ . Then  

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1
1

0 1 log ...log
, ... ,1 1

1

... .
, ,1

dxs P x P x
s xS P y S P ys s

sC I y C I y
k s k k s k ss s

≤ −

 
≤  
 

  
 

Proof. This is a simple sequence of lemma 7.3.2 with n s= .                             
  

Lemma 7.3.6.  Let ( ) ( ) [ ]1 ,...,P x P x x
s

∈  be polynomials having 1,...,k k
s

 nonzero 

polynomials coefficients with absolute value greater than 1 and 10 ,..., 1y y
s

< ≤ . Then  
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( ) ( ) ( ){ }

( ) ( ) ( )

1 1

1
1 1

0 max log
, ... , 1

1
1

12 ... .
, ,

dx
P x
i xS P y S P y i ss s

sC I y C I ys k s k k s k ss s
π

≤
≤ ≤

 −≤  
 

  
 

( ){ } ( ){ }
( ) ( ) ( ){ } ( )1 1

Pr . Notice that max log min log .
11

In , ... ,  we have 0 min log log
1

for any 1,..., . Thus

oof P x P x
i ii si s

S P y S P y P x P x
s s i ii s

i s

= − −
≤ ≤≤ ≤

≤ − ≤ −
≤ ≤

=

   

( ){ } ( ){ }
( ) ( ) ( )1

max log min log
11

1 log ...log .

s s
P x P x
i ii si s

s P x P x
s

   
− = −   

≤ ≤≤ ≤   

≤ −

 

By applying holder inequality, and taking into account that the measure of the whole space 
is 2π , we get  

( ) ( ) ( ){ }

( )
( ) ( ) ( ){ }

( ) ( ) ( )

1 1

1 1

2

1
1 1

0 max log
, ... , 1

1

1
12 max log

, ... , 1

1
1

12 ... .
, ,

dx
P x
i xS P y S P y i ss s

s sdx
P xs i xS P y S P y i s

s s

sC I y C I ys k s k k s k ss s

π

π

≤ −
≤ ≤

 
 −  ≤ −  ≤ ≤  

 

 −≤  
 





 

 

                         

 
                                                                           

Again, we let 1 ...y y y
s

= = =  and 0y →  and we conclude the following result. 

 
Corollary 7.3.7.  Let ( ) ( ) [ ]1 ,...,P x P x x

s
∈  be polynomials having 1,...,k k

s
 nonzero 

complex coefficients with absolute value greater than 1. Let 0 1y< ≤ . As y  approaches 0, 
we obtain 

( ) ( ) ( ){ }
1

lim max log 0
, ... ,0 1

dx
P x
i xS P y S P yy i ss

=
→ ≤ ≤
  

, 
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where the speed of convergence is independent of the polynomials ( ) ( )1 ,...,P x P x
s

. 

     Observe that when 1k
i

= , the previous result is trivially true since the set ( ),S P y
i

 

becomes empty for y  sufficiently small.   
Remark 7.3.8.  Results analogous to Corollary 7.3.4  and Corollary 7.3.7  can be proved 

for the case where ( ) ( )1 1 1,..., ,..., ,...,P x x P x x
n s n

 are fixed polynomials in 1,...,x x
n

 
  . 

 

7.4. Proof of Theorem 7.1.2. 

 
     We begin by proving that the extended versions of the Mahler measures always exist 
(i.e. that the integrals always converge). This was used repeatedly in previous works but the 
details have never been written and we include them here for completeness. 

Theorem 7.4.1.  Let ( ) ( )1 1 1 1,..., ,..., ,..., ,...,P x x P x x x x
n s n n

 ∈    nonzero polynomials. 

Then the integrals giving the generalized Mahler measure and the multiple Mahler 
measure converge, i.e., 

(1)                                        ( )1,..., ,
max

m P P
s

< ∞  

(2)                                        ( )1,..., ,m P P
s

< ∞  

(3)  If 1 ...P P P
s

= = =  

( )m P
s

< ∞ . 

Proof.  (1) Let 0y > . We write 

( ){ }

( ) ( ) ( ){ }

( ) ( )
( ){ }

1
1

1

1
1

1 1

1
1

11

max log ,..., ...
1

max log ,..., ...
, ... , 1

max log ,..., ... .
1, ... ,

dxdx nP x x
i n x xi sn n

dxdx nP x x
i n x xS P y S P y i sn n s n

dxdx nP x x
c i n x xc i sS P y S P y nn

≤ ≤
Τ

=
≤ ≤

+
≤ ≤







 

 

 

The second integral converges because the Mahler measure of a single polynomial 
converges absolutely and thus is the integral of a smaller function in a smaller set,  
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while the first integral approaches 0 as 0y →  by Corollary 7.3.7 and Remark 7.3.8. 
Therefore the integral on the left converges. 
(2)  For 0y > . We consider 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1
1 1 1

1

1
1 1 1

1 1

1
1 1 1

11

log ,..., ...log ,..., ...

log ,..., ...log ,..., ...
, ... ,

log ,..., ...log ,..., ... .
, ... ,

dxdx nP x x P x x
n s n x x

n n

dxdx nP x x P x x
n s n x xS P y S P yn n s n

dxdx nP x x P x x
c n s n x xcS P y S P y nn n n

Τ

=

+









 

 

As before, the second integral converges, while the first integral approaches 0 as 0y →  
by the Corollary 7.3.4 and Remark 7.3.8. Thus the first integral converges. 
(3) This statement is a particular case of (2) .                                                               

  
 

     Proof of Theorem 7.1.2. (1) Following [La83], we define : nF Τ →  by   

( ) ( ){ }max log
1

F w P w
ii s

=
≤ ≤

 for nw∈Τ . It suffices to prove that  

( )
lim 0F F

rq r n
− =

→∞ Τ Τ
  . 

Without loss of generality, we may assume that each coefficient of P
i
 has modulus 1≥ , 

and therefore the same is true for 
,

P
i r

 for ( )q r  sufficiently large. For any 1 0y≥ ≥  we 

construct a continuous function : ng
y

Τ →  such that ( )0 1g w
y

≤ ≤  for all nw∈Τ , 

( ) 1g w
y

=  for ( ){ }max
1

P w y
ii s

≥
≤ ≤

, and ( ) 0g w
y

=  for ( ){ } 1
max

21
P w y
ii s

≤
≤ ≤

. Therefore, 

g F
y r

is a continuous function on nΤ  for 1 0y≥ ≥ . Since 1F g F g F
y y

 = + − 
 

, the 

triangular inequality implies that  



 

 

 

61

( ) ( )

( ) ( )

limsup limsup

limsup 1 limsup 1

F F g F g F
r y yrq r q rn n

g F g F
y yrq r q r n

 − ≤ −  →∞ →∞Τ ΤΤ Τ

    + − + −        →∞ →∞Τ Τ

   

 

 

 (4.1) 
Now, by Weierstrass approximation theorem, the first term goes to zero since g F

y
 is 

continuous on nΤ . The function 1 1
,

g F g F
y y r rr

    − = −        
 vanishes in the set 

( ) ( ), ,
, ,

cc
S P y S P y

i r i r
 =  
    and it is bounded below by 0 and above by F

r
 in

( ),
,

S P y
i r . This implies  

( ) ( ) ( )
0 limsup 1 limsup

,,

g F F
y rrq r q r

S P yi r

  ≤ − ≤    →∞ →∞Τ
 



, 

which goes to zero as 0y →  by Corollary 7.3.7. Finally, the third term in (4.1) tends to 

zero as 0y →  since F  is integrable over nΤ by Theorem 7.4.1 (1). 

     Thus, 
( )
limsup 0F F

r
q r n

− =
→∞ Τ Τ

  since it is independent of y  and tends to zero as 

0.y →  

(2) We proceed as before. We define : nF Τ →  by ( ) ( )( )log
1

s
F w P w

i
i

= −
=
∏  for

nw∈Τ .Without loss of generality, we may assume that each coefficient of iP  has 

modulus 1≥ , and therefore the same is true for 
,

P
i r

 for ( )q r  sufficiently large. For any 

1 0y≥ ≥  we construct a continuous function : ng
y

Τ →  such that ( )0 1g w
y

≤ ≤  for 

all nw ∈ Τ , ( ) 1yg w =  if ( )P w y
i

≥  for all i , and ( ) 0g w
y

=  if there is an i  such that
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( ) 1

2
P w y
i

≤ . Therefore, g F
y

 is a continuous function on nΤ  for 1 0y≥ ≥ . The 

triangle inequality implies that  

( ) ( )

( ) ( )

limsup limsup

limsup 1 limsup 1

F F g F g F
r y yrq r q rn n

g F g F
y yrq r q r n

 − ≤ −  →∞ →∞Τ ΤΤ Τ

    + − + −        →∞ →∞Τ Τ

   

 

 

(4.2) 
The  Weierstrass approximation theorem implies that  the first term goes to zero since 

g F
y

is continuous on .nΤ  Now the function 1 1
,

g F g F
y y r rr

    − = −        
 vanishes 

on the set ( ) ( ), ,
, ,

cc
S P y S P y

i r i r
 =  
    and it is bounded below by 0 and above by 

F
r

 in ( ),
,

S P y
i r . Combining all of this, 

( ) ( ) ( )0 limsup 1 limsup
,,

g F F
y rS P yrq r q r i r

  ≤ − ≤    →∞ →∞Τ
 


. 

The term in the right goes to zero as 0y →  by Corollary 7.3.4. The third term in (4.2) 

tends to 0 as 0y →  since F  is integrable over nΤ by Theorem 7.4.1 (2). 

     Finally, 
( )
limsup 0F F

r
q r n

− =
→∞ Τ Τ

  since it is independent of y  and tends to zero as 

0y → .  

(3)This case follow from (2) by setting 1 ...P P P
s

= = = . This concludes the proof of  

the theorem.     
                                     



 

 



 

 

Conclusion 

    The Mahler measure has additional connections to ergodic theory [EW99], to the Weil 
height [Sm08], and plays a role in approximation theory and diophantine approximation 
[Wa00]. Mahler measure has also application to special values of zeta functions [Bo98]. 
 
     It would be interesting to explore these topics as a continuation of this work. 
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