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Résumé 
L’observation d’un modèle pratiquant une habileté motrice promeut l’apprentissage 

de l’habileté en question. Toutefois, peu de chercheurs se sont attardés à étudier  les 

caractéristiques d’un bon modèle et à mettre en évidence les conditions d’observation 

pouvant optimiser l’apprentissage. Dans les trois études composant cette thèse, nous avons 

examiné les effets du niveau d’habileté du modèle, de la latéralité du modèle, du point de 

vue auquel l’observateur est placé, et du mode de présentation de l’information sur 

l’apprentissage d’une tâche de timing séquentielle composée de quatre segments. Dans la 

première expérience de la première étude, les participants observaient soit un novice, soit 

un expert, soit un novice et un expert. Les résultats des tests de rétention et de transfert ont 

révélé que l’observation d’un novice était moins bénéfique pour l’apprentissage que le fait 

d’observer un expert ou une combinaison des deux (condition mixte). Par ailleurs, il 

semblerait que l’observation combinée de modèles novice et expert induise un mouvement 

plus stable et une meilleure généralisation du timing relatif imposé comparativement aux 

deux autres conditions. Dans la seconde expérience, nous voulions déterminer si un certain 

type de performance chez un novice (très variable, avec ou sans amélioration de la 

performance) dans l’observation d’une condition mixte amenait un meilleur apprentissage 

de la tâche. Aucune différence significative n’a été observée entre les différents types de 

modèle novices employés dans l’observation de la condition mixte. Ces résultats suggèrent 

qu’une observation mixte fournit une représentation précise de ce qu’il faut faire (modèle 

expert) et que l’apprentissage est d’autant plus amélioré lorsque l’apprenant peut contraster 

cela avec la performance de modèles ayant moins de succès. 
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 Dans notre seconde étude, des participants droitiers devaient observer un modèle à 

la première ou à la troisième personne. L’observation d’un modèle utilisant la même main 

préférentielle que soi induit un meilleur apprentissage de la tâche que l’observation d’un 

modèle dont la dominance latérale est opposée à la sienne, et ce, quel que soit l’angle 

d’observation. Ce résultat suggère que le réseau d’observation de l’action (AON) est plus 

sensible à la latéralité du modèle qu’à l’angle de vue de l’observateur. Ainsi, le réseau 

d’observation de l’action semble lié à des régions sensorimotrices du cerveau qui simulent 

la programmation motrice comme si le mouvement observé était réalisé par sa propre main 

dominante. 

 Pour finir, dans la troisième étude, nous nous sommes intéressés à déterminer si le 

mode de présentation (en direct ou en vidéo) influait sur l’apprentissage par observation et 

si cet effet est modulé par le point de vue de l’observateur (première ou troisième 

personne). Pour cela, les participants observaient soit un modèle en direct soit une 

présentation vidéo du modèle et ceci avec une vue soit à la première soit à la troisième 

personne. Nos résultats ont révélé que l’observation ne diffère pas significativement selon 

le type de présentation utilisée ou le point de vue auquel l’observateur est placé. Ces 

résultats sont contraires aux prédictions découlant des études d’imagerie cérébrale ayant 

montré une activation plus importante du cortex sensorimoteur lors d’une observation en 

direct comparée à une observation vidéo et de la première personne comparée à la troisième 

personne. 
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 Dans l’ensemble, nos résultats indiquent que le niveau d’habileté du modèle et sa 

latéralité sont des déterminants importants de l’apprentissage par observation alors que le 

point de vue de l’observateur et le moyen de présentation n’ont pas d’effets significatifs sur 

l’apprentissage d’une tâche motrice. De plus, nos résultats suggèrent que la plus grande 

activation du réseau d’observation de l’action révélée par les études en imagerie mentale 

durant l’observation d’une action n’induit pas nécessairement un meilleur apprentissage de 

la tâche. 

 

Mots-clés : Apprentissage par observation, apprentissage moteur, tâche de timing, habileté 

motrice, timing relatif, réseau d’observation de l’action, latéralité du modèle, observation 

en direct, observation vidéo, observation allocentrée, observation égocentrée, point de vue 

d’observation, observation à la première personne, observation à la troisième personne. 



iv 

 

 

Abstract 

Observation of a model practicing a motor skill has been shown to promote the 

learning of that skill. However, relatively little is known regarding the attributes of a good 

model and the conditions of observation that can optimize learning. In the three studies 

reported in this thesis, we investigated the effects of the model’s skill level, the model’s 

handedness, the observation perspective, and the medium of presentation on the learning of 

a sequential, four-segmented timing task. In the first experiment of the first study, we had 

participants observe a novice, an expert, or a combination of both novice and expert models 

(i.e., mixed model). The results of the retention/transfer tests revealed that observation of 

the novice model was not as effective for the learning of the task as observation of the 

expert and mixed models. Importantly, a mixed schedule of novice and expert observation 

resulted in more stable movement time and better generalization of the imposed relative 

timing pattern than observation of either a novice or an expert model. In the second 

experiment, we wanted to determine whether a certain type of novice performance (highly 

variable, with or without performance improvement) in a mixed observation schedule 

results in better learning of the task. No significant differences were revealed with respect 

to the type of novice model used in a mixed schedule of observation. These results suggest 

that mixed observation provides an accurate template of what to do (expert observation), 

which is enhanced when it can be contrasted with the performance of less successful 

models.  
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 In our second study, right-handed participants were asked to observe, from a first-

person or a third-person perspective, a right-handed (i.e., same-handed) or left-handed (i.e., 

opposite-handed) model performing the experimental task. Observation of the same-handed 

model resulted in better learning of the task than did observation of the opposite-handed 

model, regardless of the observation perspective. This suggests that the action observation 

network (AON) is more sensitive to the model’s handedness than to the observer’s 

viewpoint. Thus, the AON seems to be linked to sensorimotor regions of the brain that 

simulate motor programming as though the observed movement was performed with one’s 

own dominant hand. 

 Finally, in the third study, we were interested to determine whether the medium of 

presentation (live vs. video) affects observational learning and whether this effect would be 

mediated by the observer’s viewpoint (1st vs. 3rd person). In that regard, participants 

observed a live model or a video presentation of the model from a first- or third-person 

perspective. Our results revealed that observation did not differ significantly as a function 

of the media or the perspective of observation. These results are inconsistent with the 

predictions of brain imaging studies that show a larger activation of the sensorimotor cortex 

during live observation compared with video observation and from a first-person compared 

with the third-person perspective. 

Taken together, our results indicate that the model’s skill level and handedness are 

important determinants of observational learning, whereas the observer’s viewpoint and the 

medium of observation had no significant impact on motor task learning. In addition, our 
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results suggest that the larger activation of AON revealed in brain imaging studies during 

action observation does not necessarily result in or indicate better learning of the task. 

Keywords : Observational learning, motor learning, timing task, motor skill, relative 

timing, action observation network, model handedness, live observation, video observation, 

allocentric observation, egocentric observation, observation perspective, first-person 

perspective, third-person perspective 
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 Introduction 

Motor skills are an essential component of many activities in our daily life. 

Psychologists define motor skills as “procedural knowledge.” This includes learning to ride 

a bike, play a musical instrument, or the skills of a sport or activity such as swimming, 

tennis, or martial arts. In general, a motor skill can be described as “a learned sequence of 

movements that combine to produce a smooth, efficient action in order to master a 

particular task” (Magill, 1993). Many factors contribute to the development of motor skills; 

some of them are uncontrollable, such as genetic factors, whereas other factors, such as 

practice, are controllable. How motor skills are practiced and taught has been a subject of 

considerable research over the last century. There is no doubt that one of the most efficient 

determinants of motor skill acquisition is overt/physical practice, as advocated by early 

theories of motor learning (Adams, 1971; Fitts, 1964; Schmidt, 1975; Vince, 1949). 

Specifically, physical practice results in a series of neurophysiological changes in the 

central nervous system (CNS), leading to the acquisition of the practiced motor skill 

(Jensen, Marstrand, & Nielsen, 2005; Pascual-Leone et al., 1995; Sanes, 2003).  

Nonetheless, physically practicing a task is not always possible or may not be the 

best way to promote learning of the task (Schmidt & Lee, 2005). This could be the case, for 

example, when there is a high risk of injury in performing a motor task or when a task has 

to be relearned following an injury in physiotherapy and rehabilitation sessions. In such 

instances, one of the most frequently used and proposed methods for motor skill learning is 

observational practice, in which participants observe a model displaying the skill to be 



2 

 

 

learned. In addition, observation can be a more cost- and time-efficient strategy than 

physical practice in a number of practical settings, such as the teaching of sport-related 

motor skills, physical therapy exercises, and surgical procedures.   

Despite the considerable amount of research that has been done in the context of 

observational learning, relatively little is known about the attributes of a good/optimal 

model. For example, would it be better to observe a novice model, an expert model, or a 

combination of the two models (hereafter called a mixed model)? Would it be better to 

observe a model performing a task with the same hand as the observer’s dominant hand 

(hereafter called a same-handed model) or with the opposite hand (hereafter called an 

opposite-handed model)? Concerning the perspective of observation, would it be better to 

position the observer in the same perspective as the model (i.e., 1st-person perspective; also 

called egocentric) or to position the observer face to face with the model (i.e., 3rd-person 

perspective; also called allocentric)? Finally, would it be better to observe a live or a video 

presentation of the model? The specific goals of the studies reported in this thesis were to 

address the above questions. 

This thesis is composed of five chapters. In chapter 1, I review the behavioral and 

brain imaging literature on observational learning. Chapters 2–4 present three experimental 

studies according to the format required by the journals to which they have been submitted. 

Finally, chapter 5 provides a summary and a general discussion of the major findings of the 

studies.  



 

 

 

Chapter 1: Review of the literature 

 

Learning through observation 

Observation has been shown to be beneficial for learning or to reduce the amount of 

overt physical practice required to reach proficiency (Blandin, Lhuisset, & Proteau, 1999; 

Carroll & Bandura, 1990; Ferrari, 1996; Schmidt, 1988; Scully & Newell, 1985). For 

instance, previous studies have shown that observation promotes learning of many different 

tasks such as sequential timing (Blandin et al., 1999; Blandin, Proteau, & Alain, 1994), 

coincidence anticipation (Blandin & Proteau, 2000, Experiment 2; Weeks, 1992), serial 

reaction time (Heyes & Foster, 2002; Kelly, Burton, Riedel, & Lynch, 2003; Osman, Bird, 

& Heyes, 2005; Vinter & Perruchet, 2002), action pattern production (Carroll & Bandura, 

1982; Weeks & Anderson, 2000), and gross as well as fine motor skills (Landers, 1975; 

Martens, Burwitz, & Zuckerman, 1976; Pollock & Lee, 1992; Southard & Higgins, 1987; 

see Hodges, Williams, Hayes, & Breslin, 2007; McCullagh & Weiss, 2001; Vogt & 

Thomaschke, 2007; Wulf & Mornell, 2008 for reviews on observational learning).  

Mechanisms affected by observation 

How observational learning takes place and what information is learned from 

observation are questions that have stimulated considerable research. A popular theoretical 

account of observational learning suggests that observation promotes the formation of a 



4 

 

 

cognitive representation of the task to be learned (Bandura, 1977, 1986; “perceptual 

blueprint” in Sheffield’s [1961] terminology). This representation can serve as a standard of 

reference against which the observer’s own performance is compared (Bandura, 1986). 

According to Bandura, there are four constituent sub-processes for observation to promote 

learning. The observer should attend to the relevant information throughout observation 

(attention sub-process), retain the key information for imitation (retention sub-process), be 

able to use the retained information to reproduce the observed task (production sub-

process), and have the desire for reproduction of the task (motivation sub-process). 

In addition to the formation of a perceptual blueprint of what to perform, 

observation also results in the observer developing error detection and correction 

mechanisms (Adams, 1986; Badets, Blandin, Wright, & Shea, 2006; Black & Wright, 

2000; Black, Wright, Magnuson, & Brueckner, 2005; Blandin & Proteau, 2000; Carroll & 

Bandura, 1990). In that regard, Blandin and Proteau (2000) showed that following 

observation of a model practicing a task participants were able to efficiently estimate their 

own errors and to use this estimation to correct/improve their own performance 

(Experiment 1). Moreover, in a second experiment, Blandin and Proteau (2000) also 

showed that observation of a model receiving biased knowledge of results (KR), leading to 

a predictable biased performance that produced a similar bias in the observer’s own 

performance.  This suggests that KR during physical practice and observation results in the 

development of a very similar standard of reference as well as mechanisms for the detection 

and correction of errors. 
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Concerning “what” is perceived during observation, previous research has provided 

empirical evidence that all invariant features of a generalized motor program (GMP; 

Schmidt, 1975), including the sequence of movements, the relative timing, and the relative 

force required for reproduction of a motor skill, can be learned through observation 

(Badets, Blandin, & Shea, 2006; Blandin et al., 1999; Mattar & Gribble, 2005; Porro, 

Facchin, Fusi, Dri, & Fadiga, 2007; Scully & Newell, 1985). In addition, observation 

improves the movement parameterization of a particular GMP (Blandin et al., 1999; Scully 

& Newell, 1985).  

Using a different theoretical perspective, Scully and Newell (1985) proposed that 

the crucial information available during observation consists of the topological 

characteristics of the relative motion of the task. They proposed that this relative motion 

pattern is probably what the observer learns initially. Then, with repeated exposure to the 

task, the observer might learn how to parameterize this movement pattern. This proposal 

was based on studies showing that observers who are allowed to see the displacement over 

time of light spots located on the main joints of a human participant were able to identify 

immediately whether this participant was walking, running, cycling, limping, or dancing 

(Johansson, 1973), whether the participant was male or female (Barclay, Cutting, & 

Kozlowski, 1978; Mather & Murdoch, 1994), and whether he or she was a friend or a 

stranger (Cutting & Kozlowski, 1977). Thus, it appears that all activities have a unique 

relative motion pattern that is recognizable by non-naïve observers.  
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In the same vein, Blandin, Lhuisset, and Proteau (1999) investigated the effects of 

observation on the learning of a sequential four-segmented timing task. Specifically, 

participants were asked to complete in succession the first, second, third and fourth 

segments of the experimental task in a movement time of 900 milliseconds (ms). In 

addition, each of the four segments had to be completed in 25% of the total movement time 

(i.e., 225 ms for each segment). This required the participants to learn a constrained relative 

timing that was different from the naturally emerging relative timing of the task. Their 

results showed that the participants learned the movement sequence and the constrained 

relative timing as well as the total movement time of the task. They also showed that the 

participants were able to rescale the relative timing pattern that they had observed to a 

different movement time. This was supported by the results of a transfer test in which 

participants completed the task in a movement time of 1200 ms while keeping the same 

relative timing for each segment (e.g., 300 ms). These results suggest that observation 

enabled participants to learn a new GMP and its parameterization. However, it was not 

clear from this study whether the relative force could also be learned through observation. 

More recently, Mattar and Gribble (2005) studied the effects of observation on the 

learning of reaching movements performed in different force fields, in which the model’s 

arm was deviated in different directions by a robotic device. Three groups of participants 

were required to observe a video showing a model learning to counteract a clockwise force 

field (CWFF), a counterclockwise force field (CCWFF), or nothing (i.e., a control group). 

All participants were then tested in a CWFF. Their results showed that the CWFF group 
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performed better than a control group that had not received any observation, whereas the 

CCWFF group performed more poorly. This suggests that observation enables an 

individual to apply the force information for programming the observed task (for similar 

results, see Porro et al., 2007). 

The results reviewed so far suggest that observation enables the observer to 

determine the key spatial and/or temporal features of the task, which removes the need to 

create a cognitive representation of the action pattern through trial and error (Bandura, 

1986; Blandin et al., 1994; Buchanan & Dean, 2010; Carroll & Bandura, 1982; Pollock & 

Lee, 1992; Schmidt & Lee, 2005; Scully & Newell, 1985). In fact, it has been proposed that 

observation-based learning and physical practice-based learning might engage one in 

similar information processing mechanisms (Adams, 1986; Bandura, 1977, 1986; Blandin 

& Proteau, 2000; Blandin et al., 1994; Kohl & Shea, 1992; Lee & White, 1990; Shea, 

Wright, Wulf, & Whitacre, 2000).  

Observation and the Action Observation Network 

The above proposition is supported by recent neurophysiological and brain-imaging 

studies illustrating that “mirror neurons” in different parts of the brain including premotor 

cortex, inferior parietal lobule, superior temporal sulcus, supplementary motor area, 

cingulated gyrus, and the cerebellum, which form an action observation network (AON), 

are activated both when individuals perform a given motor task and when they observe 

others perform that same motor task (Buccino et al., 2001; Cisek & Kalaska, 2004; Cohen 
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& Andersen, 2002; Cross, Kraemer, Hamilton, Kelley, & Grafton, 2009; Dushanova & 

Donoghue, 2010; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Jeannerod, 2001; Kalaska, 

Scott, Cisek, & Sergio, 1997; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996; see Cattaneo & 

Rizzolatti, 2009; Rizzolatti & Craighero, 2004; Rizzolatti, Fogassi, & Gallese, 2001 for 

recent reviews). Thus, the AON appears to link observation and execution of motor skills in 

order for us to understand the behavior of others (Carey, 1996; Fogassi, 2011; Gallese et 

al., 1996; Rizzolatti et al., 2001).  

Direct evidence for the existence of mirror neurons comes from studies on non-

human primates (DiPellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese et al., 

1996; Rizzolatti et al., 1996); there is no research directly recording the activity of single 

neurons from the AON in humans. Nonetheless, a large number of studies strongly, 

although indirectly, suggest that an action-observation matching system (i.e., mirror 

neurons) similar to that discovered in monkeys also exists in humans (e.g., Fadiga, Fogassi, 

Pavesi, & Rizzolatti, 1995; Gallese & Goldman, 1998; Rizzolatti & Craighero, 2004). For 

example, Fadiga and colleagues (1995) required participants to observe a model grasping 

objects (transitive actions) or performing meaningless arm movements in the air 

(intransitive movements). Observation of objects and detection of the dimming of a small 

spot of light were used as control conditions. The authors recorded motor-evoked potentials 

(MEPs) of the various hand and arm muscles elicited by transcranial magnetic stimulation 

(TMS) of the observer’s left motor cortex. The results revealed increased MEPs during 

observation of both transitive and intransitive movements in comparison with the control 
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conditions. Interestingly, increased MEPs were found only in those muscles that the 

observers used when overtly performing the observed movements. This suggests that 

observation of actions activates the premotor cortex in humans, as happens in non-human 

primates. 

Observers need physical practice 

Despite the fact that both observational practice and physical practice engage one in 

similar information processing mechanisms, some brain-imaging studies have shown that 

the AON is more activated during action execution than during action observation 

(DiPellegrino et al., 1992; Iacoboni & Dapretto, 2006; Woodruff & Maaske, 2010; but see 

also Cochin, Barthelemy, Roux, & Martineau, 1999; Lepage, Saint-Amour, & Théoret, 

2008; Muthukumaraswamy & Johnson, 2004). Recently, Woodruff and Maaske (2010) 

asked participants to observe videos of a model’s right hand at rest (rest observation), the 

same hand tapping the forefinger and thumb together (action observation) or executing the 

same right-hand movement as that observed (action execution). Electroencephalography 

(EEG) recordings showed a significantly greater “µ suppression”1 and thus a greater 

activation in the left hemisphere for action execution than for action observation. 

                                                 
1 EEG oscillations in the µ frequency (8-13 Hz) over sensorimotor cortex are thought to reflect mirror neuron 
activity. It has been shown that µ power is reduced (mu suppression) both when individuals perform actions 
and when they observe others performing actions. The greater µ suppression indicates more activation of the 
mirror neuron system. 
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At the behavioral level, it has also been shown that, in some instances, observation 

per se is not as effective as physical practice for learning a motor task (e.g., Bandura, 1969; 

Blandin et al., 1994; Carroll & Bandura, 1982; Deakin & Proteau, 2000; Scully & Newell, 

1985; Shea et al., 2000; Trempe, Sabourin, Rohbanfard, & Proteau, 2011; see McCullagh, 

Weiss, & Ross, 1989 for a review). In these studies, a few physical practice trials with KR 

were needed for the effects of observation to become manifest. The physical practice trials 

seem to allow the observers to refine the cognitive representation developed through 

observation (Bandura, 1986), presumably because response-produced sensory feedback 

engages the learner in processes not used during observation (Scully & Newell, 1985; Shea 

et al., 2000; Weeks & Anderson, 2000; see also Mackay, 1981).  

Weeks and Anderson (2000) illustrated that the interaction between observational 

practice and physical practice would be most effective for motor skill learning when 

participants experience observational practice early in the acquisition phase and then 

engage in physical practice trials at the end. Specifically, they investigated the effects of 

three different mixed schedules of observation and physical practice on learning an 

overhand volleyball serve. One group received all 10 demonstrations from an expert model 

prior to performing 30 physical practice trials (all-pre-practice group). Another group 

received one model demonstration followed by three physical practice trials, with this 

pattern of interspersing continued throughout the acquisition phase (interspersed group). A 

third group observed five demonstrations before any physical practice and then received 

one demonstration trial following every three physical practice trials so that observation 
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was completed at mid-acquisition; the participants then physically practiced the task for 15 

trials (combination group). Thus, all participants received 10 observational practice and 30 

physical practice trials during acquisition. The results revealed higher form scores for the 

combination and all-pre-practice groups compared with the interspersed group. This 

suggests that a few uninterrupted physical practice trials scheduled once observation is 

terminated would allow for some trial-and-error learning occurring without the model as a 

reference.   

In addition to the timing of observation in relation to the physical practice, it has 

been suggested that a variety of variables could potentially have an important role in 

observational learning of motor skills. In the following section, we review some of these 

influential factors including KR, schedule and amount of practice, and intention. 

Factors influencing observational learning 

In the context of observational learning, KR refers to the feedback that is provided 

to the model following a physical practice trial and that is also shared with the observer. In 

that regard, using a sequential timing task, Adams (1986) revealed that providing observers 

with a model’s KR results in better learning of the task than when such a feedback is not 

provided to the observers (see also McCullagh & Caird, 1990). De Jeager and Proteau 

(2003) indicated that verbal KR is a more effective source of information than auditory KR 

to promote learning of a new constrained relative timing pattern. More recently, Badets and 

Blandin (2004, 2005, 2010) investigated the effects of different KR schedules on learning 
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through observation. As for physical practice, they reported beneficial effects of bandwidth 

KR (i.e., receiving KR only when the model’s performance fell outside a pre-determined 

bandwidth, for example ±10% of target time) and low KR frequency (i.e., KR is provided 

following only 33% of the trials in comparison to receiving KR following all trials) for the 

observational learning of the absolute (Badets & Blandin, 2004, 2005; see also Badets, 

Blandin, Wright, & Shea, 2006) as well as the relative timing of a motor task (Badets & 

Blandin, 2010).   

Another factor impacting observational learning is the extent of contextual 

interference (CI) experienced during observational practice. In a physical practice context, 

there is considerable evidence suggesting that a random practice schedule (i.e., high CI) 

results in better retention and transfer performance compared with a blocked practice 

schedule (i.e., low CI), probably because participants in a random practice condition are 

involved in more extensive cognitive processing activity (for reviews, see Lee & Magill, 

1985; Magill & Hall, 1990). To test the effects of different practice schedules on 

observational learning, Blandin, Proteau, and Alain (1994) conducted a study in which 

observers were required to watch a model practicing three variations of a timing task in a 

random or blocked schedule. The results of an immediate retention test revealed that both 

random physical practice and the observation of a random practice model resulted in the 

better acquisition of the task than a schedule of blocked physical practice or of blocked 

observation (see also Wright, Li, & Coady, 1997 for a similar observation). Concerning the 

effects of the amount of practice, Blandin and Proteau (1997) showed that increasing the 
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number of observation trials benefited performance of a timing task, as was seen with 

physical practice. 

All the above results suggest that variables affecting learning through physical 

practice tend to affect observational learning in a similar way. This supports the proposition 

that similar cognitive processes are involved in both observational and physical practice 

conditions. 

Finally, recent results have shown that the intent to imitate/reproduce a task 

following observation could have an important impact on observational learning. Using 

positron emission tomography (PET), Decety et al. (1997) instructed participants to observe 

a sequence of hand movements with one of two goals: to be able to recognize or imitate 

these movements later. They found that observation with the intent to imitate increased 

activity in the regions involved in the planning and in the generation of actions, whereas 

observation with the intent to recognize activated memory-encoding structures. Thus, 

neural substrates responsible for the planning and execution of motor programs are 

activated during observation only when the goal is to reproduce the observed action 

(Decety & Grezes, 1999). This notion is consistent with the results of behavioral studies. 

For instance, Badets, Blandin, and Shea (2006) tested two groups of participants who 

observed a model practicing a timing task. Before observation, the participants in the first 

group were explicitly instructed that they would be required to perform the observed task as 

accurately as possible during a delayed retention test (i.e., observation with intention). 
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Observers in the second group were instructed that they would be required to come back to 

the laboratory on the following day to describe the task as accurately as possible (i.e., 

observation without intention). The results of the retention test revealed that the 

“observation with intention” group outperformed the other group of observers on the 

relative timing of the task. This suggests that observational learning is enhanced by the 

intention to reproduce the observed task. In a different study, Badets, Blandin, Bouquet, 

and Shea (2006) showed that the intention superiority effect holds for observational 

practice as well as for physical practice. 

Looking for an optimal model 

The primary goal of the studies presented in this thesis was to determine the type of 

model and the conditions of observation that are best suited to promote learning of a motor 

task. 

Study 1. Different types of models have been used to facilitate motor skill learning. 

It has been shown that observing an expert model facilitates learning of a motor skill (e.g., 

Al-Abood, Davids, & Bennett, 2001; Bird & Heyes, 2005; Heyes & Foster, 2002; Hodges, 

Chua, & Franks, 2003; Lee, Swinnen, & Serrien, 1994; Martens et al., 1976; McCullagh et 

al., 1989). Given that this type of model represents a near perfect example of what to do (or 

an appropriate movement strategy [Bandura, 1977, 1986]), it presumably enables the 

observer to form an accurate representation or perceptual blueprint (Sheffield, 1961) of the 

observed task. However, because there is little error information to process when observing 
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an expert model, the observer might not be actively involved in the “error detection and 

correction” processes. In that regard, other observational learning studies have used a 

novice model who does not display full mastery of the skill but rather is engaged in a 

learning process (Black & Wright, 2000; Blandin & Proteau, 2000; Buchanan & Dean, 

2010; Buchanan, Ryu, Zihlman, & Wright, 2008; Lee & White, 1990; Mattar & Gribble, 

2005; McCullagh & Caird, 1990; McCullagh & Meyer, 1997; Pollock & Lee, 1992). These 

studies were based on Adams’ (1986) proposition that watching a model who is learning 

the task can help the observer associate different movement patterns with different 

outcomes (i.e., success or failure). Moreover, because a beginner is prone to commit more 

frequent and larger errors than an expert, an observer stands a better chance of detecting 

these errors and of learning from them (Blandin & Proteau, 2000). Therefore, although the 

observer does not have access to a good example of what to be done when observing a 

beginner model, he or she is able to learn the task, presumably through the development of 

error detection and correction mechanisms. This is consistent with motor learning theories 

that underline the information processing aspects of motor skill acquisition and the 

importance of movement corrections based on knowledge of movement errors (Adams, 

1971; Schmidt, 1975). 

Despite the potential differences between what could be learned while observing an 

expert or a novice model, several studies have shown that observation facilitates the 

learning of a new motor skill without significant differences related to the type of model 

observed. For example, Weir and Leavitt (1990) directly compared participants who 
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watched filmed demonstrations of either an expert or a novice dart player prior to 

physically practicing the same task themselves. They found no differences related to the 

model’s skill level. These results were replicated by Pollock and Lee (1992), who studied 

the effects of the model’s skill level on the learning of a computer tracking game, and by 

Blandin and Proteau (2000, Experiment 1), who used a four-segment timing task. These 

results suggest that although expert and novice models presumably lead to the development 

of different processes, they may each have their own benefits.  

Thus, although the observation of expert models may provide a good basis for the 

development of a movement representation, it offers a weaker basis for the evaluation of 

movement error. In contrast, observing a novice model may enable the observer to develop 

error detection and correction mechanisms, but it may not be optimal for the development 

of a movement representation or “perceptual blueprint.” We reasoned that observing both 

types of models and thus being able to compare expert and novice performances would lead 

to better learning of the task than observation of a single type of model. To our knowledge, 

the efficacy of mixed observation (combination of novice and expert models) to promote 

motor learning has never been evaluated. In addition to the development of different and 

complementary mechanisms, observing more than one model would provide the observer 

with a form of variable/random practice, which has been argued to promote motor skill 

acquisition (Blandin et al., 1994; Buchanan & Dean, 2010; see also Hall & Magill, 1995; 

Lee, Magill, & Weeks, 1985; Shea, Lai, Wright, Immink, & Black, 2001; Van Rossum, 

1990; Wright, Magnuson, & Black, 2005). Thus, in the first study described in this thesis, 
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we wanted to determine whether the mixed observation of expert and novice models better 

promotes motor skill learning than observation of either an expert or a novice model. If so, 

we also sought to determine whether there is a type of novice model that optimizes learning 

within a mixed schedule of observation. 

Study 2. Another factor influencing the attributes of an optimal model could be his 

or her handedness. Most individuals (about 90%; Annett, 1978) show a strong preference to 

use their right hand (e.g., right-handedness), which is associated with left-cerebral 

dominance, although about 10% of the population are left-handed (Ida & Mandal, 2003). 

Therefore, in many real-life situations, one may observe an opposite-handed model, like 

when a left-handed trainer shows a right-handed pupil how to “putt or drive” a golf ball.  

Brain imaging studies have found that handedness influences neural correlates of 

action execution (e.g., Kim et al., 1993; Kloppel et al., 2007) as well as action observation 

(Wakita & Hiraishi, 2011; Willems & Hagoort 2009). Using near-infrared spectroscopy 

(NIRS), Wakita and Hiraishi (2011) recorded the activity of the Broca area (BCA) in left 

hemisphere while right-handed participants observed chopstick use performed by a model 

using either the right hand (i.e., same-handed model) or the left hand (i.e., opposite-handed 

model). The results showed that the BCA responded more strongly during observation of 

the right-handed than the left-handed movements, suggesting that the observation of actions 

generates action planning based on the observer’s own motor representation. If so, it is 
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hypothesized that observation of a same-handed model would result in better learning of a 

motor task in comparison with observation of an opposite-handed model.  

In addition, a model may be observed from different viewpoints. The observer may 

face the trainer (3rd-person observation) or be located such that he or she has the same 

perspective as the trainer (1st-person observation). Most observational learning studies 

have used a first-person viewpoint (e.g., Blandin et al., 1999; Blandin & Proteau, 2000; 

Mattar & Gribble, 2005) because it requires less transformation of the information than a 

third-person viewpoint. This is consistent with recent findings of brain imaging studies. In a 

recent functional magnetic resonance imaging (fMRI) study, Jackson, Meltzoff, and Decety 

(2006) measured the cerebral activation in participants observing video clips of simple hand 

and foot actions, either from the perspective of the participant (1st-person perspective) or 

from a frontal view as though watching someone else (3rd-person perspective). Functional 

imaging results revealed that action observation in a first-person perspective, compared 

with a third-person perspective, increased activation in the left sensory-motor cortex. In the 

same vein, Pilgramm et al. (2010) examined how the visual viewpoint (1st vs. 3rd person) 

affects the activation of the human premotor cortex and showed higher activation for this 

area of the brain in a first-person condition. Moreover, a transcranial magnetic stimulation 

(TMS) study by Alaerts, Heremans, Swinnen, and Wenderoth (2009) showed that, in right-

handed participants, observing right-hand actions from an egocentric (first-person) 

perspective elicited higher responses in the left primary motor cortex than observing actions 

from an allocentric (third-person) perspective. Thus, these findings suggest that a first-
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person observation is more extensively matched to the sensory-motor system than the third-

person observation.  

It is plausible that the larger activation in motor-related areas of the left hemisphere 

noted when observation took place from a first- rather than from the third-person 

perspective in the previously mentioned studies could have resulted from the fact that 

action representations are differently lateralized for the 1st- and 3rd-person observation 

viewpoints. Recent research indicates that observing a left- or right-hand movement from a 

first-person perspective resulted in larger activation of the contralateral motor cortex, as is 

the case when one performs the observed task (Shmuelof & Zohary, 2006, 2008). However, 

when observation was from a third-person perspective, a larger activation of the ipsilateral 

portion of the motor cortex was revealed (Alaerts et al., 2009; Hesse, Sparing, & Fink, 

2009; Shmuelof & Zohary, 2008). That is, observing a right-handed action increased 

activity in the right hemisphere and vice versa. Therefore, it appears that learning a motor 

skill might be facilitated when observing a same-handed trainer from a first-person 

perspective but an opposite-handed trainer from a third-person perspective.  However, this 

larger activation of different brain regions does not necessarily mean behaviorally 

significant differences in the learning of a complex motor task.  The goal of the second 

study of this thesis was to determine whether a same-handed or an opposite-handed model 

would better promote learning and whether this would be mediated by the observer’s 

perspective. 
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Study 3. In the third study presented in this thesis, we investigated the effects of 

live versus video presentation techniques for the observational learning of motor skills. 

Empirical evidence shows that an individual can learn a motor task through observation of 

a live model (e.g., Badets, Blandin, Wright, & Shea, 2006; Bird & Heyes, 2005, 

Experiment 1; Black & Wright, 2000; Blandin et al., 1994; Buchanan & Dean, 2010; 

Buchanan & Wright, 2011; Heyes & Foster, 2002; Pollock & Lee, 1992) or a video 

presentation of the model performing the task (e.g., Bird & Heyes, 2005, Experiments 2 

and 3; Blandin et al., 1999; Blandin & Proteau, 2000, Experiment 1; Hayes, Elliott, & 

Bennett, 2010; Horn, Williams, & Scott, 2002; Osman, Bird, & Heyes, 2005; Trempe et al., 

2011). However, neuroimaging studies suggest that live and video observation are 

processed differently in the brain. For example, Perani and colleagues (2001) proposed that 

the perception of action maps onto existing action representations only during live 

observation. Observers in virtual-reality and video conditions do not access the full motor 

knowledge that is available to the action observation network (Perani et al., 2001). 

Interestingly, magnetoencephalographic (MEG) recordings have revealed a stronger 

activation of the primary motor cortex in adult participants observing hand actions in a live 

condition rather than in a video condition (Jarvelainen, Schurmann, Avikainen, & Hari, 

2001; see Shimada & Hiraki, 2006 for similar results in children). This suggests that live 

observation might result in better learning compared with video observation. 

At the behavioral level, to the best of our knowledge, there have been only two 

published studies comparing the effectiveness of live vs. video observation in adult 
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participants (Kernodle, McKethan, & Rabinowitz, 2008; Reo & Mercer, 2004).  Neither 

reported a significant difference between the two modes of observation, which is 

inconsistent with the predictions of the aforementioned brain imaging studies. However, in 

both of these studies, a mixed schedule of observation and physical practice was used for 

the acquisition of the experimental tasks (i.e., blocks of physical practice trials were 

interspersed with blocks of observation trials during acquisition of the task). It is possible 

that interspersing observation with physical practice washed out the potential differences 

between the live and video conditions of observation. The first goal of our third study was 

to determine whether live observation better promotes learning of a complex multi-segment 

timing task than video observation.  Our second goal was to determine whether live vs. 

video observation would be mediated by the observer’s perspective. 
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Abstract 

Observation of an expert or novice model promotes the learning of a motor skill. In 

two experiments, we determined the effects of a mixed observation schedule (a 

combination of expert and novice models) on the learning of a sequential timing task. In 

Experiment 1, participants observed a novice, expert, or both novice and expert models. 

The results of retention/transfer tests revealed that all observation groups and a physical 

practice group learned the task and outperformed a control group. However, observing a 

novice model was not as effective as observing expert and mixed models. Importantly, a 

mixed schedule of novice and expert observation resulted in a more stable movement time 

and better generalization of the imposed relative timing pattern than observation of either a 

novice or expert model alone. In Experiment 2, we aimed to determine whether a certain 

type of novice performance (highly variable, with or without error reduction with practice) 

in a mixed observation schedule would promote improved motor learning. The observation 

groups performed as well as a physical practice group and significantly better than a control 

group. No significant difference was observed with the type of novice model used in a 

mixed schedule of observation. The results suggest that mixed observation provides an 

accurate template of the movement (expert observation) that is enhanced when contrasted 

with the performance of less successful models. 

Keywords: Observational learning, motor learning, action observation network, timing task
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Learning through observation:  

A combination of expert and novice models favors learning 

 

Observation contributes to the learning of a wide variety of tasks (see Ferrari, 1996; 

Hodges, Williams, Hayes, & Breslin, 2007; McCullagh, Weiss, & Ross, 1989; Vogt & 

Thomaschke, 2007; Wulf & Mornell, 2008, for reviews on observational learning). At the 

behavioral level, research indicates that observation facilitates motor learning because it 

enables an individual to determine the key spatial and/or temporal features of the task, 

which removes the need to create a cognitive representation of the action pattern through 

trial and error (Blandin, Proteau, & Alain, 1994; Buchanan & Dean, 2010; Carroll & 

Bandura, 1982; Pollock & Lee, 1992; Schmidt & Lee, 2005; Scully & Newell, 1985). This 

is supported by recent neuroimaging studies indicating that an “action observation 

network” (including the premotor cortex, inferior parietal lobule, superior temporal sulcus, 

and supplementary motor area) engages the observer in processes similar to those involved 

in performing the physical practice (Buccino et al., 2001; Cisek & Kalaska, 2004; Cross, 

Kraemer, Hamilton, Kelley, & Grafton, 2009; Dushanova & Donoghue, 2010; Frey & 

Gerry, 2006; Gallese, Fogassi, Fadiga, & Rizzolatti, 2002; Grafton, Fadiga, Arbib, & 

Rizzolatti, 1997). 

In the present study, we sought to determine the model that most effectively 

promotes learning a motor skill. It has been shown that observing a skilled model facilitates 
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task learning (Al-Abood, Davids, & Bennett, 2001; Bird & Heyes, 2005; Heyes & Foster, 

2002; Hodges, Chua, & Franks, 2003; Lee, Swinnen, & Serrien, 1994; Martens, Burwitz, & 

Zuckerman, 1976; McCullagh et al., 1989). Because this type of model represents a correct 

example of how to perform a task (or an appropriate movement strategy), it presumably 

enables the observer to form a “perceptual blueprint” of the task to be learned (Sheffield, 

1961). This blueprint serves as a standard of reference that participants compare their 

performance against (Bandura, 1986). However, because learning is a problem-solving 

process, novice models have also been used successfully for task learning (Black & Wright, 

2000; Buchanan & Dean, 2010; Buchanan, Ryu, Zihlman, & Wright, 2008; Hayes et al., 

2010; Lee & White, 1990; McCullagh & Caird, 1990; McCullagh & Meyer, 1997; Pollock 

& Lee, 1992). These studies are consistent with Adams’ (1986) proposition that watching a 

model learning the task can help the observer associate different movement patterns with 

different outcomes (i.e., success or failure). Moreover, because a beginner is prone to 

commit more frequent and larger errors than an expert (Blandin & Proteau, 2000) and to try 

different movement strategies (Buchanan & Dean, 2010), an observer has a better chance of 

detecting these errors or changes in strategy and learn from them.  

Despite the potential differences between what could be learned while observing a 

skilled versus a novice model, several studies have shown that observation facilitates 

learning a new motor skill without significant differences related to the type of model 

observed. For example, Weir and Leavitt (1990) compared participants who watched 

filmed demonstrations of either a skilled or a novice dart player prior to physically 

practicing the same task, and the authors found no differences in performance between the 
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two groups. These results were replicated by Pollock and Lee (1992), who studied the 

effects of the model’s skill level on learning a computer tracking game, and by Blandin and 

Proteau (2000, Experiment 1), who used a four-segment timing task. These data indicate 

that expert or novice observation might have a similar impact on learning, despite 

presumably developing different cognitive processes. 

Experiment 1 

If the observation of expert and novice models leads to the development of different 

processes, they should have enhanced effects on observational learning. Thus, observing 

both types of models and comparing expert and novice performances should result in better 

task learning than observing either a skilled or a novice model alone. To our knowledge, 

the efficacy of mixed observation (a combination of novice and expert models) to promote 

motor learning has never been evaluated2. As alluded to above, if it is true that observing an 

expert model favors the development of a motor schema of the task to be performed 

(Blandin, Lhuisset, & Proteau, 1999; a perceptual blueprint in Sheffield’s terminology) and 

that watching a novice model helps to detect errors and determine how to correct them, then 

observing both models should lead to superior task learning compared to the observation of 

a single model. Therefore, the primary goal of the current experiment was to determine 

whether mixed observation of both expert and novice models promotes motor skill learning 

more effectively than observation of either an expert or novice model alone. 

                                                 
2 Depending on task difficulty and the number of practice trials performed, it could be argued that observation 
of a novice model provides information relative to a novice performance in the early stages of training and a 
near expert performance at the end of the model’s training session. 
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Participants were required to observe or physically practice a four-segment timing 

task (as shown in Figure 1). Participants were asked to complete each segment of the task 

in an intermediate time (IT) of 300 ms, leading to a total movement time (TMT) of 1200 

ms. Participants in the observation groups observed an expert model, a novice model, or a 

combination of trials performed by expert and novice models. It was hypothesized that 

participants in all observation groups would outperform participants from a no-practice 

control group. In addition, we speculated that if the observation of a combination of 

different model types enhanced task learning compared to the observation of either a novice 

or expert model alone, participants in the observation-mixed group would outperform 

participants in the two other observation groups (observation-novice and observation-expert 

groups).  

In a pilot study, we determined the naturally emerging relative timing (Collier & 

Wright, 1995) in individuals who physically practiced the experimental task with their 

dominant (right) hand. Three participants who did not take part in the present study were 

asked to complete the task in a TMT of 1200 ms for 60 trials. No IT constraints were 

imposed. Participants received feedback on the TMT only following each trial. Completing 

20 practice trials allowed participants to approach the TMT goal of 1200 ms. Data from the 

remaining forty trials revealed a stable relative timing pattern both within individuals and 

among different participants. On average, participants used a relative timing of 17.2%, 

29.0%, 23.2% and 30.6% to complete the first, second, third and fourth segments of the 

experimental task, respectively (within- and between-participant variability fluctuated 

between 1.0% and 2.4%; see Blandin et al., 1999 for a similar observation). In the present 
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study, participants were asked to perform each segment of the task in the same intermediate 

time (see below). Therefore, the task required participants to modify their naturally 

emergent relative timing pattern for this task. The learning of a new relative timing pattern 

was achieved if participants could maintain the pattern in a transfer test requiring task 

completion within a different TMT than previously observed. 

Because a previous study found that observation alone does not lead to the optimal 

learning of a spatio-temporal task (Blandin et al., 1999), participants physically practiced 

the task following observation to determine the joint effects of different schedules of model 

observation and physical practice on motor task learning. It has been suggested that the 

physical practice trials allow the observers to refine the cognitive representation developed 

through observation (Bandura, 1986), presumably because response-produced sensory 

feedback engages the learner in processes that are not utilized during observation (Shea, 

Wright, Wulf, & Whitacre, 2000; Weeks & Anderson, 2000; Trempe, Sabourin, 

Rohbanfard, & Proteau, 2011). The joint effects of observation and physical practice were 

evaluated in 10-min and 24-hr delayed retention and transfer tests. 

Methods 

Participants 

Sixty self-declared right-handed students (34 women) from the Département de 

kinésiologie at the Université de Montréal took part in this experiment. They were paid $15 

CDN for their time. They had normal or corrected-to-normal vision, no prior experience 

with the task or apparatus used in this experiment. Participants completed and signed an 
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individual consent form prior to participation. The Health Sciences Ethics Committee of the 

Université de Montréal approved this experiment. 

Apparatus and task 

The apparatus was similar to that used by De Jaeger and Proteau (2003). As 

illustrated in Figure 1, the apparatus consisted of a wooden base (45 × 54 cm), three 

wooden barriers (11 × 8 cm), and a starting button embedded in a target (11× 8 cm). The 

distance between the starting button and the first barrier was 15 cm. The distances of the 

remaining three segments of the task were 32 cm, 18 cm and 29 cm, respectively, for an 

overall movement of 94 cm. The barriers were placed perpendicular to the wooden base at 

the beginning of each trial, yielding a closed microswitch circuit. All of the microswitches 

were connected to a computer via the I / O port of an A-D converter (National Instruments), 

and a millisecond timer was used to record total movement time (TMT) as well as the time 

required to complete each segment of the task (intermediate times; ITs).  

The movement pattern used in the present study is also illustrated in Figure 1. The 

participant sat close to the starting position in front of the apparatus. Then, from the starting 

button, the participant was asked to sequentially knock down the first, second, and third 

barriers (thus releasing the microswitches) and finally hit the target in a clockwise motion. 

Each segment of the task had to be completed in an intermediate time (IT) of 300 ms, for a 

total movement time of 1,200 ms (TMT). The movement pattern, ITs and TMT were 

illustrated on a poster located directly in front of the apparatus during all experimental 

phases. 

Experimental phases and procedure 
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Once 60 individuals had accepted to take part in the present study, they were 

randomly assigned to one of the five groups of 12 participants: physical practice (6 

women), observation-novice (7 women), observation-expert (7 women), observation-mixed 

(7 women), and control (7 women). Participants in the physical practice group completed 

the experiment first; the remaining five groups were tested in succession.  We chose to 

study the effects of different types of models on observational learning using a between-

subject design (one group for each condition) to prevent any potential learning effects 

transferred from one condition to another (Cross et al., 2009). 

All groups performed six experimental phases (see Table 1). All participants 

received verbal instructions regarding TMT and ITs before the first experimental phase. 

During the first phase (pre-test), subjects participated in 20 trials without knowledge of 

results (KR) on the TMT and ITs. In the second phase (acquisition 1; ACQ1), each 

participant in the physical practice group practiced the task for 60 trials. After each trial, 

they received KR on the TMT and ITs on a computer screen. They were filmed by a camera 

located above their right shoulder that showed their right arm at rest, prior to movement 

initiation, and while performing the experimental task. During this phase, participants in the 

three observation groups watched a video presentation of a novice, an expert or trials 

performed by both a novice and an expert model performing the same task. Observation 

consisted of 60 trials with KR concerning the model’s performance (both TMT and ITs) 

after each trial. KR was presented in the same format as for the physical practice group.   

The novice model was a male participant from the physical practice group. He was 

chosen due to his steady improvement in his IT with practice. We edited the video of this 
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participant to eliminate undue inter-trial delay and showed all 60 trials performed by this 

novice model to the observation-novice group. One of the authors (H.R.) served as the 

expert model. He had practiced the task for 3,000 trials over a 15-day period, and he was 

filmed while performing his last 60 practice trials. This film was edited so that the inter-

trial delays matched those of the edited video of the novice model and was presented to the 

observation-expert group. Observers could easily determine that both the novice and expert 

models were male.  The TMTs and relative timing performances of the 60 trials observed 

by the observation-novice and observation-expert groups are illustrated in Figure 2. The 

observation-mixed group watched a film showing 30 trials performed by the novice model 

and 30 trials performed by the expert model.  We picked the odd numbered trials filmed for 

each model (trials 1, 3, 5 … 59).  This approach permitted us to show the progression in 

performance of the novice model, whereas while the performance of the expert model was 

very stable across trials. The model was alternated every 5 trials (i.e., novice: trials 1-5 and 

expert: trials 6-10). The participants in the mixed-observation group were informed that 

they would observe both an expert and a novice model.  Prior to each set of 5 trials, they 

were also reminded about which model they would be observing. Participants in the control 

group did not practice during this phase. Instead, they read a newspaper or magazine 

provided to them for the same duration as the observation or physical practice for the other 

groups (approximately 10 min). 

The third experimental phase was an immediate retention/transfer test composed of 

40 trials (20 retention and 20 transfer) with no KR for any participant. In the retention 

trials, as in ACQ1, participants were asked to complete each segment of the task in 300 ms 
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for a TMT of 1200 ms. For the transfer trials, participants were asked to complete the task 

in 1500 ms while keeping the same relative timing as before (25% of TMT or 375 ms for 

each segment of the task). If practice led to the learning of relative timing, participants were 

expected to perform equally well in the retention and transfer tests.  

The immediate retention/transfer test was followed by a second acquisition phase 

(ACQ2) consisting of 60 physical practice trials with KR for all groups except for the 

control group, whose members resumed reading for a period of 10 min. Finally, all 

participants performed two delayed retention/transfer tests (10 min and 24 hr after ACQ2), 

each consisting of 40 trials (20 retention and 20 transfer trials) with no KR. Performance on 

these tests determined the joint effects of observation and physical practice on task 

learning.  

Data analysis 

The absolute value of each participant’s constant error (|CE|, the constant error 

indicates whether a participant undershot [negative value] or overshot [positive value] the 

total movement time) and variable error (VE, or within-participant variability) of total 

movement time were calculated to determine the accuracy and consistency of participant 

movements, respectively. For intermediate times, we computed the root mean square error 

(RMSE), which presents in a single score how much each participant deviated from the 

prescribed relative timing pattern. For each trial: 
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, where ITi represents the intermediate time for 

segment i and target is the goal movement time for each segment of the task (i.e., 300 ms 

for the retention trials and 375 ms for the transfer trials). 

 

The data from all phases were regrouped into blocks of five trials. To determine the 

efficacy of different observation regimens on learning, the data for each dependent variable 

were submitted individually to an analysis of variance (ANOVA) comparing the 5 groups 

(physical practice, observation-novice, observation-expert, observation-mixed, and control) 

x 4 phases (pre-test, immediate retention, retention 10-min, and retention 24-hr) x 4 blocks 

of trials with repeated measures on the last two factors.  

Furthermore, to determine whether the observation of different models facilitated 

the acquisition of the task through physical practice, the ACQ2 data for the three 

observation groups and the physical practice group were contrasted in a 4 groups (physical 

practice, observation-novice, observation-expert and observation-mixed) x 12 blocks of 

trials (trials 1-5, 6-10, 11-15, …56-60) ANOVA with repeated measures on the block 

factor.   

Finally, to determine whether a practice regimen favored the learning of a newly 

imposed relative timing routine over other practice schedules, the data collected in the 

transfer tests were submitted to an ANOVA comparing 5 groups x 3 phases (immediate 
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transfer, 10-min transfer, and 24-hr transfer) x 4 blocks with repeated measures on the last 

two factors3. 

Before computing the different ANOVAs, three specific assumptions of the 

ANOVA were tested. The z scores of the skewness and kurtosis values were calculated to 

test the normality of the distribution (Tabachnick & Fidell, 2007). To verify the 

homogeneity of variances, Hartley’s Fmax test was used. Finally, the degrees of freedom 

were adjusted as suggested by Greenhouse and Geisser (1959) when Mauchly’s test of 

sphericity was significant. However, the original degrees of freedom are presented when 

the effects were significant following the Greenhouse-Geisser correction. Any significant 

interactions were then separated into their constituent simple main effects. All significant 

main effects and simple main effects involving more than two means were broken down 

using LSD post hoc procedures. All effects were deemed significant if p < 0.05. One 

participant from the control group was excluded from all analyses because his performance 

times (IT and TMT) in all test phases were worse than his group’s mean by more than 2.5 

standard deviations (SD). 

Results 

 Total movement time  

Retention phases. The results of the ANOVA computed on |CE| revealed 

significant main effects of Group (F (4, 54) = 13.67), Phase (F (3, 162) = 59.44), and Block 
                                                 
3 For all dependent variables, we also computed additional analyses in which the performance of the different 
groups was contrasted independently between (a) the pre-test and immediate retention test and (b) the 10-min 
and the 24-hour retention tests.  In addition, in the analyses contrasting the 10-min and the 24-hour retention 
tests, the control group was included or was not included in independent sets of analyses.  The results of all of 
these analyses did not significantly change the findings reported in the main text.  Therefore, we opted to 
present the data using the more economical format. 
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(F (3, 162) = 3.46) as well as a significant Phase x Group interaction, F (12, 162) = 4.26. 

The breakdown of the interaction revealed the following effects. As illustrated in Figure 3 

(upper left panel), there were no significant differences between groups in the pre-test (F< 

1), confirming that the groups did not differ before training. For the remaining three phases, 

the control group had a significantly larger |CE| than the four remaining groups, which did 

not differ significantly from one another (F (4, 54) = 22.60, 19.19, and 14.33 for the 

immediate, 10-min, and 24-hr retention tests, respectively). Post hoc comparisons on the 

Block main effect revealed that participants had a significantly larger |CE| in block 4 than 

in blocks 1 to 3 and in block 3 compared with block 2 (139 ms, 137 ms, 143 ms, and 148 

ms for blocks 1-4, respectively). 

The ANOVA computed on VE (see Figure 3, middle left panel) revealed significant 

main effects of Group (F (4, 54) = 4.20), Block (F (3, 162) = 63.51), and Phase (F (3, 162) 

= 16.79) and a significant Phase x Block interaction (F (9, 486) = 18.73). Post hoc 

comparisons revealed that the observation-novice group had a significantly larger VE (60 

ms) than the remaining groups, which did not differ significantly from one another (47 ms, 

48 ms, 52 ms, and 46 ms for physical practice, control, observation-expert, and 

observation-mixed groups, respectively). The breakdown of the Phase x Block interaction 

revealed that participants had a significantly larger VE in block 1 than in the three 

remaining blocks, which did not differ significantly in the pre-test, immediate RET or 

RET24. However, there were no significant differences between blocks in RET10. 

Taken together, the results presented above suggest that participants became more 

proficient at completing the task in the prescribed movement time through both observation 
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and physical practice. However, observation of a novice model led to more variable 

performance than that noted for all other groups. 

Transfer phases. The ANOVA on |CE| revealed significant main effects of Group 

(F (4, 54) = 19.90) and Block (F (3, 162) = 6.23) and a significant Phase x Group (F (8, 

108) = 2.06) interaction. The breakdown of this interaction (see Figure 3, upper right panel) 

revealed that all experimental groups significantly outperformed the control group in all 

phases (p values < .001). In addition, the observation-mixed group had a significantly 

smaller |CE| compared to the observation-novice group (p = .043) in immediate TR and 

compared to the physical practice group in TR24 (p = .047). No other comparison was 

significant (ps > .05). Post hoc comparisons on the Block main effect revealed that 

participants had a significantly larger |CE| in block 1 than in the remaining blocks, which 

did not differ significantly from one another (176, 159, 152, and 157 ms for blocks 1-4, 

respectively).  

The |CE| results indicate that observation per se (immediate transfer) resulted in a 

better generalization of TMT following mixed observation than observation of a novice 

model. In addition, a schedule of mixed observation followed by physical practice resulted 

in a significantly better generalization of TMT than a schedule of physical practice alone.  

The ANOVA on VE (see Figure 3, middle right panel) only revealed significant 

main effects of Phase (F (2, 108) = 12.74) and Group (F (4, 54) = 4.52). Post hoc 

comparisons on the Phase main effect revealed that VE significantly decreased from one 

experimental phase to the next (68 ms, 61 ms, and 56 ms for immediate TR, TR10, and 

TR24, respectively). Post hoc comparisons of the Group main effect revealed that the 
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observation-novice group had a significantly larger VE than the control group (p = .004). It 

should be noted that, considering the large |CE| reported for the control group, a low VE for 

the control group indicates that participants were consistently wrong. 

Moreover, although the control group (55 ms) did not differ significantly from the 

other two observation groups (expert and mixed) or the physical practice group, the 

observation-mixed group (52 ms) performed significantly better than the observation-

novice, observation-expert, and physical practice groups (VE = 65 ms, 72 ms, and 66 ms, 

for the physical practice, observation-novice, and observation-expert groups, respectively). 

The results of VE indicate that when participants were transferred from the practiced TMT 

to a different one, mixed observation resulted in lower variability than physical practice or 

observation of either novice or expert models.  

 Intermediate times  

Retention phases. The results of the ANOVA computed on RMSE revealed 

significant main effects of Group (F (4, 54) = 12.47), Phase (F (3, 162) = 122.83) and 

Block (F (3, 162) = 11.29) and a significant Phase x Group interaction (F (12, 162) = 8.22). 

As illustrated in Figure 3 (lower left panel), the breakdown of the interaction did not reveal 

any significant group differences in the pre-test (F< 1). In immediate RET, however, the 

control group had a significantly larger RMSE than the four other groups (F (4, 54) = 

12.75). Moreover, the physical practice group outperformed the observation-novice (p = 

.004) and the observation-expert groups (p = .063) but not the observation-mixed group (p 

= .489), whereas the observation-mixed group outperformed the observation-novice group 

(p = .027). In both the 10-min and the 24-hr retention tests, the control group showed a 
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significantly larger RMSE than the remaining four groups, which did not differ 

significantly from one another (F (4, 54) = 25.68 and 22.48, respectively). Post hoc 

comparisons on the Block main effect revealed that participants had a significantly larger 

RMSE in block 1 than on the three other blocks, which did not differ significantly from one 

another (67, 63, 63, and 64 ms for blocks 1-4, respectively). In short, only the observation 

of mixed models permitted participants to perform ITs as accurately as physical practice in 

immediate retention trials. Physical practice following observation permitted all groups of 

observers to perform as well as the physical practice group in the delayed retention tests. 

Transfer phases. The ANOVA revealed significant main effects of Group (F (4, 

54) = 25.12), Phase (F (2, 108) = 20.49) and Block (F (3, 162) = 3.73) and a significant 

Group x Phase interaction (F (8, 108) = 5.30). The breakdown of the interaction (see Figure 

3, lower right panel) revealed that all observation groups and the physical practice group 

had significantly smaller RMSE than the control group in all transfer tests (F (4, 54) = 

13.23, 22.47, and 32.14 for immediate TR, TR10, and TR24, respectively). In addition, the 

observation-novice group had a significantly larger RMSE in immediate TR than the 

remaining three experimental groups, whereas the observation-mixed group had a 

significantly smaller RMSE in TR24 than the remaining three experimental groups. Finally, 

post hoc comparisons of the Block main effect again revealed that participants had a 

significantly larger RMSE in block 1 than in the remaining blocks, which did not differ 

significantly from one another (74, 71, 70, and 71 ms for blocks 1-4, respectively). Thus, 

observation per se, like physical practice, resulted in reduced RMSE compared to no 

practice (i.e., control group). However, observation of a novice model resulted in larger 
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RMSE values compared to physical practice or other observation regimens. Finally, mixed 

observation followed by physical practice resulted in a lower RMSE in the 24-hour transfer 

test than all other practice regimens used in this experiment. 

Acquisition data 

The effects of different observation schedules on learning TMT and ITs were 

further investigated by contrasting the performance of the three observation groups with the 

physical practice group in ACQ2. The results of the ANOVA computed on |CE| revealed 

significant main effects of Block (F (11, 484) = 10.81) and Group (F (3, 44) = 3.53) and a 

significant Block x Group interaction (F (33, 484) = 1.76). The breakdown of the 

interaction revealed the following effects (see Figure 4, upper panel). On blocks 1 and 11, 

the observation-novice group had a significantly larger |CE| than the other groups, which 

did not significantly differ from one another. In block 8, the physical practice and 

observation-mixed groups outperformed the observation-novice group. The four groups did 

not differ significantly from one another for the remaining blocks.  

Concerning VE, the results of the ANOVA revealed significant main effects of 

Block (F (11, 484) = 10.72) and Group (F (3, 44) = 7.28). Post hoc comparisons of the 

Block main effect indicated that VE decreased during physical practice with KR. 

Interestingly, post hoc tests on the Group main effect revealed that the physical practice and 

observation-mixed groups, which did not significantly differ from one another, had a 

significantly smaller VE than the observation-novice and observation-expert groups. 

Additionally, the observation-expert group had a significantly smaller VE than the 
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observation-novice group (VE = 51 ms, 72 ms, 61 ms, and 50 ms, for the physical practice, 

observation-novice, -expert, and -mixed groups, respectively).  

The ANOVA computed on RMSE revealed significant main effects of Group (F (3, 

44) = 2.84) and Block (F (11, 484) = 23.05). Post hoc comparisons revealed that RMSE 

decreased during physical practice with KR. In addition, the observation-novice group had 

a significantly larger RMSE than the other groups, which did not differ significantly from 

one another (RMSE = 37 ms, 44 ms, 38 ms, and 36 ms for the physical practice, 

observation-novice, -expert, and -mixed groups, respectively). 

Taken together, the results of the present section indicate that mixed-observation 

enabled participants to more reliably complete their movements in the allotted movement 

time (smaller VE) than observation of either a novice or expert model alone. Moreover, 

observation of a novice model resulted in larger relative timing errors (RMSE) compared 

with the other observation groups. 

Discussion 

Our primary goal was to determine whether a mixed observation schedule results in 

better learning of a multi-segment timing task than the observation of either expert or 

novice models alone. In agreement with previous research (Blandin et al., 1999; Blandin & 

Proteau, 2000; Lee & White, 1990; McCullagh & Meyer, 1997; Pollock & Lee, 1992), we 

found that observation led to immediate benefits regardless of the model. The three groups 

of observers not only out-performed the control group on both TMT and IT in the 

immediate retention test, but they also out-performed the control group in the immediate 
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transfer test, indicating some generalization of the benefits of observation to a different 

TMT.  

However, observing an expert model or a combination of both models resulted in 

better task learning compared with the observation of a novice model only. In all retention 

tests, the observation-novice group exhibited more variability in performance with regard to 

TMT than those in the observation-expert and observation-mixed groups. This result 

suggests that the observation of a novice model, whose performance is variable, causes 

inconsistency in the learner’s performance. This trend likely results from trial-to-trial 

performance variations being more indirectly related to KR than is observed for the mixed 

and expert models.  

Our finding that an expert model is preferable to a novice model supports some of 

the previous research (Blandin et al., 1999), but other reports (Blandin & Proteau, 2000; 

Pollock & Lee, 1992; Weir & Leavitt, 1990) found no difference in observing an expert or 

novice model. These contradictory findings could be related to the task complexity used in 

the different experiments. It seems that the advantage of observing an expert rather than a 

novice model is observed when the task to be learned is more complex. For example, in the 

present study and in a study by Blandin et al. (1999), the goal was to learn not only the 

TMT but also an arbitrarily chosen set of ITs, whereas in Blandin’s and Proteau’s work 

(2000, Experiment 1), participants were only required to learn the TMT.  

Moreover, Pollock and Lee (1992) also reported that observing a novice model was 

as effective as observing an expert model. They interspersed the observation trials between 

physical practice trials, while in the present study, all observation trials were completed 
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prior to any physical practice with KR. It could be that physically practicing the task 

between observation trials eliminated potential differences between the observation of an 

expert or a novice model. In support of this position, it should be noted that it took only 

five trials with KR for the observation-novice group to reduce their |CE| on TMT to the 

values obtained by the observation-expert group in ACQ2. 

Although the performance of the observation-expert and observation-mixed groups 

did not differ significantly for some aspects of the task, the observation-mixed group out-

performed the observation-expert group on some important features. Specifically, the 

results of the immediate retention test indicated that the observation-mixed group did not 

differ significantly from the physical practice group on intermediate task times. In addition, 

during ACQ2, when observers began physically practicing the task and receiving KR after 

each trial, the observation-mixed group had significantly lower inter-trial movement time 

variability than the other two observation groups. This result suggests that they were more 

skilled at using KR (i.e., less maladaptive corrections; Schmidt & Bjork, 1992) and/or that 

mixed observation led to a movement representation that was less susceptible to random 

fluctuations than other observation regimens. Lastly, when transferred to the 1500 ms task, 

the observation-mixed group outperformed the other two observation groups with regard to 

both the TMT and ITs. This result suggests that mixed observation resulted in the 

development of a more generalized movement representation than other types of 

observation. In our study, the observation-mixed group was never out-performed by the 

other observation groups for any dependent variable. These findings lead us to conclude 

that a mixed observation schedule more effectively promotes the learning/generalization of 
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a complex sequential timing pattern than the observation of either novice or expert models 

alone. 

Finally, concerning the joint effects of observation and physical practice (10-min and 

24-hr retention tests), the results of the present study support previous studies (Blandin & 

Proteau, 2000) that demonstrate that a schedule of novice or expert model observation 

followed by physical practice was as effective as a 100% physical practice schedule. This 

conclusion is supported by the fact that the performances of the observation-novice, 

observation-expert and physical practice groups did not significantly differ in two delayed 

retention/transfer tests. However, it should be mentioned that the schedule of mixed 

observation and physical practice resulted in a better generalization of the sequential timing 

task than physical practice alone. This result is supported by the results of the 24-hr transfer 

test, in which the observation-mixed group out-performed the physical practice group on 

both the TMT and ITs. Because the performance of the physical practice group improved 

primarily during ACQ1 (Figure 4), it is tempting to conclude that 60 trials of physical 

practice with KR were enough to reach asymptotic performance, potentially explaining why 

one observation session followed by one physical practice session was as effective as two 

sessions of physical practice. However, two important aspects of the data argue against this 

conclusion. First, the performance of the expert model was largely better than that of the 

physical practice and observation groups (TMT very close to 1200 ms with small trial-to-

trial variability and RMSE of ~ 8 ms; see Figure 2). Therefore, there was room for 

improvement. Second, if only 60 trials of physical practice had been sufficient to reach 

asymptotic performance, then all groups of observers and the physical practice group 
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should have performed similarly in all retention and transfer tests. However, we observed 

differences between the groups. This result underlines the difference between performance 

and learning effects that has been extensively advocated in the motor learning literature 

(Schmidt & Lee, 2005).   

Therefore, the results of this first experiment indicate that observing a combination 

of expert and novice models (mixed model) might promote task learning more effectively 

than other observation regimens. In Experiment 2, we sought to determine whether there is 

an optimal type of mixed model for promoting motor learning.  

Experiment 2 

The novice model used in the mixed model condition in Experiment 1 was a novice 

participant who gradually improved at performing the task during his first session of 

physical practice. This model presumably enabled the observers to pick up some necessary 

information on how to improve their performance. However, it might be more efficient to 

combine the expert model with a novice model who does not succeed in learning the task, 

allowing an observer to more easily contrast the novice model with the expert model 

throughout observation, or with a novice model who shows high trial-to-trial variability, 

given that variation in the performance of the novice has been shown to be effective for 

motor learning (Buchanan & Dean, 2010; Blandin et al., 1994). Thus, we combined three 

different novice models with the same expert model to determine whether a particular type 

of novice performance could optimize learning within a mixed observation schedule. 

Methods 
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 Participants  

 Sixty self-declared right-handed students (38 women and 22 men) from the 

Département de kinésiologie at the Université de Montréal participated in this experiment. 

None of the subjects participated in Experiment 1 or had prior experience with the task 

used in this experiment. All participants had normal or corrected-to-normal vision, signed a 

consent form, and were paid $15 CDN. The Health Sciences Ethics Committee of the 

Université de Montréal approved this experiment. 

Apparatus, task, and procedure  

The same apparatus and task from Experiment 1 were used. Twelve participants were 

randomly assigned to each of five groups: control (7 women), physical practice (7 women), 

and three different mixed observation groups (8 women per group). The mixed observation 

groups all observed the same expert model but differed in the type of novice performance 

observed. We used the same expert model as in Experiment 1. The novice models were 

chosen from among the participants of the physical practice group in Experiment 1. 

Because our goal was to determine which observation regimen would facilitate learning a 

new relative timing pattern, the chosen novice models (all men) differed primarily in this 

aspect of the task. For one group of observers (M↑), we used the novice model from 

Experiment 1 who had a large RMSE at the beginning of practice but steadily improved his 

performance across trials. For a second group (M→), the novice model had a moderate 

RMSE at the beginning of practice; however, his performance did not improve significantly 

with practice. The novice model for the third group (Mσ) demonstrated high trial-to-trial 

variability in performance. Again, observers could easily determine that the models were 
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males.  For each novice model, we selected 20 trials that were representative of his 

performance across the trials during physical practice. Figure 5 illustrates the TMT and 

RMSE performance of the selected trials for the novice and expert models. 

There were six experimental phases: pre-test (PRT), acquisition 1 (ACQ1), 

immediate retention/transfer test (Imm. RET/ Imm.TR), acquisition 2 (ACQ2), 10-min 

retention/transfer test (RET10/TR10), and 24-hr retention/transfer test (RET24/TR24). Test 

phases were performed as described in Experiment 1. Participants observed or physically 

practiced 40 trials during ACQ1 and ACQ2. For the mixed observation groups, novice and 

the expert model observation was alternated every 5 trials during the first acquisition phase, 

starting with the novice model. Retention and transfer tests were as in Experiment 1. 

Individual data were screened as in Experiment 1. The data from one participant in the 

control group were withdrawn from all analyses because his performance (IT and TMT) in 

all test phases was worse than his group’s mean by more than 2.5 SD. 

Results  

 Total movement time 

 Retention phases. The results of the ANOVA computed on |CE| revealed 

significant main effects of Group (F (4, 54) = 4.44) and Phase (F (3, 162) = 43.44) and a 

significant Group x Phase interaction (F (12, 162) = 2.73). As illustrated in Figure 6 (upper 

left panel), the interaction revealed no significant differences between groups with regard to 

pre-test scores (F (4, 54) < 1). For the remaining phases, all three observation groups and 

the physical practice group did not differ significantly from one another but significantly 
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outperformed the control group (F (4, 54) = 6.39, 12.77, and 10.59 for the immediate, 10-

min, and 24-hr retention tests, respectively).  

Concerning VE (see Figure 6, middle left panel), the results of the ANOVA 

revealed significant main effects of Phase (F (3, 162) = 12.89) and Block (F (3, 162) = 

19.10) and a significant Phase x Block interaction (F (9, 486) = 8.27). The interaction 

revealed that in the pre-test, participants had a significantly larger VE in block 1 than in the 

three remaining blocks, which did not differ significantly from one another (F (3, 52) = 

14.72). For the remaining three phases, there was no significant difference among blocks 

(all Fs< 1). 

 Transfer phases. Significant main effects of Phase (F (2, 108) = 6.88) and Group 

(F (4, 54) = 7.47) were noted for |CE|. Post hoc comparisons revealed that the control group 

had a significantly larger |CE| than the remaining groups, which did not differ significantly 

from one another (356, 165, 157, 175, and 170 ms for the control, PP, M→, Mσ, and M↑, 

respectively). In addition, |CE| significantly decreased from the immediate to both the 10-

min and the 24-hr retention tests (234 ms, 184 ms, and 196 ms, respectively). 

 The ANOVA on VE revealed a significant main effect of Phase (F (2, 108) = 

11.40). Post hoc comparisons revealed that VE decreased significantly from one 

experimental phase to the next (74 ms, 67 ms, and 60 ms for immediate, 10-min, and 24-hr 

transfer tests, respectively). 

 Intermediate times  

 Retention phases. The ANOVA computed on RMSE revealed significant main 

effects of Group (F (4, 54) = 8.80) and Phase (F (3, 162) = 99.81) and a significant Group x 
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Phase interaction (F (12, 162) = 4.64). As illustrated in Figure 6 (lower left panel), the 

interaction revealed no significant group differences in the pre-test (F (4, 54) < 1). For the 

remaining three phases, the control group had a significantly larger RMSE than the four 

other groups, which did not differ significantly from one another (F (4, 54) = 9.27, 24.39 

and 19.99 for immediate, 10-min, and 24-hr retention tests, respectively). Figure 6 (lower 

left panel) also illustrates that all experimental groups exhibited significantly reduced 

RMSE from the pre-test to the other three experimental phases, whereas the control group 

did not. It is worth noting that going from the 10-min to the 24-hr retention test resulted in a 

significant increase of RMSE for the physical practice group but not for the three mixed-

observation groups. This last result suggests that a schedule combining mixed observation 

and physical practice consolidates learning of intermediate times more effectively than a 

physical practice schedule. 

 Transfer phases. Significant main effects of Group (F (4, 54) = 15.59) and Phase 

(F (2, 108) = 28.53) and a significant Group x Phase interaction (F (8, 108) = 2.44) were 

noted. The interaction revealed that the control group performance did not differ 

significantly from one experimental phase to the next. However, all other experimental 

groups improved their performance from the immediate to the 10-min transfer test and 

remained unchanged thereafter (F (2, 53) = 3.54, 10.43, 10.57, 4.64, and 1.64 for PP, M→, 

Mσ, and M↑, and control groups, respectively; see Figure 6, lower right panel).  

Discussion 

The main goal of Experiment 2 was to determine whether there is an optimal type of 

novice performance to use in a mixed observation schedule. The results of the present 
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experiment replicated the results of Experiment 1, indicating that mixed observation results 

in significant learning with regard to both TMT and IT and was as efficient as physical 

practice for learning/retention of the experimental task. However, there was no difference 

attributable to the type of mixed model observed. It appears that having observed expert 

and novice models in quick succession provided observers with enough information to 

learn the task. The ability to compare expert and novice performances, rather than the type 

of novice model, is likely the most critical determinant of the effectiveness of a mixed 

model. We will return to this point in the general discussion. 

Concerning the joint effects of mixed observation followed by physical practice, the 

results of the present experiment did not replicate the unexpected finding of Experiment 1. 

In Experiment 1, a mixed observation schedule followed by physical practice resulted in 

improved transfer of both the TMT and ITs compared to a 100% physical practice 

schedule. However, the mixed observation groups and the physical practice group 

performed equally well in both 10-min and 24-hr retention/transfer tests on both the TMT 

and ITs in the present experiment. The performance of the physical practice group 

deteriorated significantly from the 10-min to the 24-hr retention test, whereas this trend was 

not observed for any of the three observation groups. Thus, the results of the present 

experiment concerning the joint effects of observation and physical practice concur with 

previous studies, indicating that a schedule of observation followed by physical practice 

could be as effective as a physical practice schedule alone (Blandin & Proteau, 2000; 

Deakin & Proteau, 2000). The retention results of the physical practice group and all 

observation groups (RMSE of 40-50 ms; see Figure 6) compared with the results of the 
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expert model (RMSE of ~8 ms; see Figure 5) indicate that the similarity in performance 

following only physical practice or a combination of observation and physical practice did 

not result from a floor effect. 

General discussion 

In the present study, we sought to determine if a mixed schedule of expert and novice 

observation promotes the learning of a four-segment timing task more effectively than 

observation of either an expert or novice model alone. In addition, if a mixed observation 

schedule was more effective, we wanted to determine whether there is an optimal type of 

novice model for observation in a mixed observation schedule. 

The results of the present study concur with previous studies that show that 

observation led to significant task learning (e.g., Badets, Blandin, & Shea, 2006; Hayes, 

Elliott, & Bennett, 2010; Heyes & Foster, 2002; Mattar & Gribble, 2005). An important 

new finding of the present study is that mixed observation of expert and novice models 

resulted in a better generalization of learning in both total and intermediate movement 

times compared with the observation of either type of model alone. Moreover, the learning 

of the experimental task did not differ significantly following physical practice or 

observation of a mixed model in either experiment (immediate retention/transfer tests). This 

finding differs from previous studies in which a few trials of physical practice followed by 

the knowledge of the results was required for observers to become as effective as the 

physical practice group (Blandin et al., 1999; Blandin & Proteau, 2000; Deakin & Proteau, 

2000; Shea et al., 2000). Thus, it appears that a mixed observation schedule engaged the 

observer in processes that were more similar to those experienced during physical practice 
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than observing either an expert or novice model alone. Expert model observation provided 

the observer with an accurate template for performing the task, which likely permitted 

participants to detect errors in the performance of the novice model and determine how to 

avoid/correct them. This comparison between what was needed for task performance and 

the typical errors of novice participants was not possible for observers of only an expert or 

novice model.  The results of Experiment 2 indicate that it did not matter whether the 

novice model improved with practice or if his performance varied greatly from trial to trial. 

In addition, it could be that solely observing expert models might not engage an 

individual as actively in information processing as mixed observation. Because observing 

an expert model for long series of trials results in repeated representations of near-perfect 

performance (see Figure 5) that show very little trial-to-trial variability, we speculate that 

the observation-expert group took part in a condition that might have shared some 

characteristics of blocked practice. Recent neuroimaging studies have provided substantial 

evidence that many cortical regions (corticomotor system) are less active when participants 

are submitted to a repetitive, constant (blocked) practice rather than a variable practice 

regimen (Cross, Schmitt, & Grafton, 2007; Lin, Fisher, Winstein, Wu, & Gordon, 2008; 

Lin et al., 2009; Lin, Winstein, Fisher, & Wu, 2010; Wymbs & Grafton, 2009).  

Although the observation of a novice model provided observers with large trial-to-

trial variability, presumably engaging observers in active information processing (Adams, 

1986), it did not allow access to a strong standard of reference (i.e., expert performance) for 

comparison with the novice performance. Without this comparison, the trial-to-trial 
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variability experienced when observing a novice performer provided the observer with less 

accurate and noisier information than mixed observation, limiting its efficacy. 

Therefore, mixed model observation results in a better conceptualization of the 

targeted task compared to observing either a novice or expert model (Experiment 1). Mixed 

model observation presumably leads to more active information processing for (a) 

formation of a standard of reference (or template) and (b) error detection and correction 

mechanisms, which could result in the activation of more brain areas. This proposition is 

supported by the seminal work of Decety et al. (1997), who showed that observing with the 

intent to imitate, which arguably occurs when observing an expert model, was associated 

with the activation of brain regions involved in the planning and generation of actions.  

This group also showed that observing with the intent to recognize, which we speculate 

may have occurred when observing a novice model, activated memory-encoding structures. 

In addition, the brain regions associated with error processing have been shown to 

be activated when participants observe movement error (Bates, Patel, & Liddle, 2005; 

Miltner, Brauer, Hecht, Trippe, & Coles, 2004; Shane, Stevens, Harenski, & Kiehl, 2008; 

van Schie, Mars, Coles, & Bekkering, 2004). For instance, van Schie et al. (2004) showed 

more cortical activation in error trials than correct trials for participants who performed the 

experimental task (execution condition) and observed a model perform the same task 

(observation condition). Taken together, this result supports our hypothesis that the CNS is 

more active during mixed model observation than expert or novice model observation, 

resulting in better task learning.   
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An alternative explanation for our findings could be that any combination of two 

models, regardless of their skill level, is better than the observation of a single model. For 

example, observing many novice models might enable one to detect a larger spectrum of 

possible errors and corrections for these errors, potentially improving learning. Similarly, 

observing many experts might enable one to detect similarities in performances and use 

these common features as an abstract template for how to perform, ignoring minor 

individual differences in the models’ performance. This could certainly be the case when 

learning a complex motor task, such as a golf swing, and is thus worth future exploration. 
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Figure captions 

Figure 1. View of the apparatus and the task used in the study. Participants had to leave the 

starting base and hit the first, second and third barriers in a clockwise motion before finally 

reaching the target. 

Figure 2. Absolute constant error (|CE|) in total movement time and root mean square error 

(RMSE) of intermediate times as a function of the number of trials for the expert and 

novice models used in Experiment 1. 

Figure 3. Absolute constant error (|CE|) and variable error (VE) in total movement time 

and root mean square error (RMSE) of intermediate times as a function of experimental 

phases for the physical practice (PP), observation-novice (N), observation-expert (E), 

observation-mixed (M), and control groups in Experiment 1. 

Figure 4. Absolute constant error (|CE|) and variable error (VE) in total movement time 

and root mean square error (RMSE) as a function of the blocks of trials for the physical 

practice group (PP), observation-novice (N), observation-expert (E), and observation-mixed 

groups in ACQ2 of Experiment 1. 

Figure 5. Absolute constant error (|CE|) in total movement time and root mean square error 

(RMSE) of intermediate times for the sequence of trials shown to the observers for the 

expert (E) model and the different novice models in the three mixed-observation groups 

(M→, Mσ, and M↑) in Experiment 2. 

Figure 6. Absolute constant error (|CE|) and variable error (VE) in total movement time 

and root mean square error (RMSE) of intermediate times as a function of experimental 

phases for the physical practice group (PP), the three observation-mixed groups (M→, Mσ, 

and M↑), and the control group in Experiment 2. 
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Table 1: Groups and experimental phases in Experiment 1 
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Abstract 

Observation promotes motor skill learning. However, little is known about the type 

of model and conditions of observation that can optimize learning. In this study, we 

investigated the effects of the model’s handedness and the observer’s viewpoint on the 

learning of a complex spatiotemporal task. Four groups of right-handed participants 

observed, from either a first- or third-person viewpoint, right- or left-handed models 

performing the task. Observation resulted in significant learning. More importantly, 

observation of same-handed models resulted in improved learning as compared with 

observation of opposite-handed models, regardless of the observer’s viewpoint. This 

suggests that the action observation network (AON) is more sensitive to the model’s 

handedness than to the observer’s viewpoint. Our results are consistent with recent studies 

that suggest that the AON is linked to or involves sensorimotor regions of the brain that 

simulate motor programming as if the observed movement was performed with one’s own 

dominant hand.  

 

Keywords: Allocentric observation, egocentric observation, relative timing, observation 

perspective, model handedness, action observation network, motor skill learning 
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Effects of the model’s handedness and visual viewpoint 

on observational learning 

 

Observation facilitates learning of a motor skill by permitting the observer to 

determine the key spatial and/or temporal features of the task, which spares him or her the 

need to create a cognitive representation of the action pattern through trial and error 

(Blandin, Proteau, & Alain, 1994; Carroll & Bandura, 1982; Newell, 1981; Pollock & Lee, 

1992; Schmidt & Lee, 2005; Scully & Newell, 1985; for reviews on observational learning, 

see McCullagh & Weiss, 2001; Wulf & Mornell, 2008; Wulf, Shea, & Lewthwaite, 2010). 

These findings are supported by recent brain imaging studies, which indicated that an 

“action observation network” (AON; including premotor cortex, inferior parietal lobule, 

superior temporal sulcus, and supplementary motor area) engages the observer in processes 

similar to those that occur during physical practice (Brown, Wilson, & Gribble, 2009; 

Buccino et al., 2001; Cisek & Kalaska, 2004; Cross, Kraemer, Hamilton, Kelley, & 

Grafton, 2009; Dushanova & Donoghue, 2010; Fogassi et al., 2005; Frey & Gerry, 2006; 

Gallese, Fogassi, Fadiga, & Rizzolatti, 2002; Grafton, Fadiga, Arbib, & Rizzolatti, 1997; 

Shmuelof & Zohary, 2006). 

However, little is known about the attributes of a good model. In real-life situations, 

one may observe a model performing a task with the opposite hand (hereafter called an 

opposite-handed model), such as when a left-handed trainer shows a right-handed pupil 
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how to putt or drive a golf ball. Moreover, the model may be observed from different 

viewpoints. The pupil may face the trainer (third-person observation) or be located such 

that he or she has the same perspective as the trainer (first-person observation). From a 

third-person perspective, when a left-handed trainer faces a right-handed pupil, they both 

swing the club in the same direction, as if the pupil was facing a mirror. A right-handed 

trainer (hereafter called a same-handed model) facing a right-handed pupil will swing the 

club in the opposite direction. However, when a same-handed trainer is observed from a 

first-person perspective, the pupil observes the trainer swinging the club in the same 

direction as the pupil. Does the pupil learn more when observing an opposite-handed 

trainer, or is the skill learned more easily when the pupil observes a same-handed trainer 

who is either (a) facing him or her (i.e., third-person observation) or (b) placed in the same 

perspective (i.e., first-person observation)?4  

Brain imaging studies have revealed that observing a left or right hand reach-and-

grasp movement from a first-person perspective (also called egocentric) resulted in larger 

blood oxygenation level-dependent (BOLD) responses in the contralateral anterior 

intraparietal cortex of right-handed observers, which is similar to when one performs the 

observed task (Shmuelof & Zohary, 2006, 2008). However, when the observation was from 

a third-person perspective (i.e., the model faces the observer, also called allocentric), 

                                                 
4 It should be noted that our study differs from previous work addressing the question of whether 
observational learning is effector dependent or independent (Boutin, Fries, Panzer, Blandin & Shea, 2010; 
Gruetzmacher, Panzer, Blandin, & Shea, 2011, Osman, Bird, & Heyes, 2005). In the present study, we want 
to determine whether a right-handed observer performing the task with his or her right hand (which is usually 
the case in most real-life situations, such as learning how to bowl, play golf, and tennis) can learn better from 
a right-handed or left-handed model depending on the observer’s perspective and not whether this learning 
can be transferred so that the observers can perform the task with both right and left hands. 
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BOLD data revealed a larger activation of the ipsilateral anterior superior parietal lobule 

(aSPL; Shmuelof & Zohary, 2008). Observing a right-handed action increased BOLD 

activity in the right hemisphere. In this vein, using transcranial magnetic stimulation 

(TMS), Alaerts et al. (2009) had participants watch videos showing left and right hand 

extension movements from a first- or third-person perspective. Electromyography data 

demonstrated an increase in the left primary motor cortex excitability when participants 

observed the right hand from a first-person perspective or when participants observed the 

left hand from a third-person perspective (see also Hesse, Sparing, & Fink, 2009). 

Therefore, learning a motor skill might be facilitated when observing a same-handed trainer 

from a first-person perspective or an opposite-handed trainer from a third-person 

perspective. However, the observation of increased activation of different brain regions 

does not necessarily mean that behaviorally significant differences in the learning of a 

complex motor task will accompany these activation changes. Therefore, our goals were to 

determine whether same-handed or opposite-handed models would better promote learning 

and whether this effect would be mediated by the observer’s perspective. 

Method 

Participants 

Seventy-two self-declared right-handed students (46 females) from the Département 

de kinésiologie at the Université de Montréal participated in this experiment. All 

participants reported normal or corrected-to-normal vision, had no prior experience with the 

experimental task, were unaware of the goals of the study, and signed an informed consent 
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form. The participants were each paid $20 CDN for their participation. Two additional 

participants served as right- and left-handed novice models. One author (H. R.) served as 

the expert model with both right and left hands. The Health Sciences Ethics Committee of 

the Université de Montréal approved this study. 

Apparatus and task 

Two apparatuses were used in this study. The first apparatus (hereafter called the 

right apparatus) is illustrated in Figure 1 (top left panel). This apparatus consisted of a 

wooden base with three barriers (height: 11 cm, width: 8 cm) and a start button embedded 

in a final target (11 X 8 cm). The barriers were placed perpendicular to the wooden base at 

the beginning of each trial, closing a micro switch circuit. The micro switches were 

connected to a computer via the I/O port of an A-D converter (National Instruments), and a 

millisecond timer was used to record the total movement time (TMT) and the time required 

to complete each segment of the task (intermediate times; ITs). The frontal (a negative 

value indicates that the barrier is located to the left of the starting base) and the sagittal 

Cartesian coordinates of the first, second and third barriers relative to the start button were -

12.5 and 9 cm, -13.5 and 41.5 cm, and 0 and 29 cm, respectively. While sitting in front of 

the apparatus, a participant’s task was to initiate his or her movement from the starting 

position, trip the first, second, and third barriers successively, and then end their movement 

on the target. The participants were asked to perform each segment of the task in an IT of 

300 ms, leading to a TMT of 1200 ms. The second apparatus (hereafter called the left 

apparatus; see Figure 1, top right panel) was the mirror image of the first one. 
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In a pilot study, we determined the natural relative timing used by individuals who 

physically practiced the experimental task (Collier & Wright, 1995) with their right, 

dominant hand. Specifically, 3 participants who did not take part in the present study were 

asked to complete the task in a movement time of 1200 ms for 60 trials. Although we 

recorded both TMTs and ITs, the participants received feedback only on the TMT 

following each trial. Twenty practice trials allowed the participants to approach the goal 

TMT of 1200 ms. Data from the remaining forty trials revealed stable relative timing both 

within and across participants. On average, the participants used a relative timing of 17.2%, 

29.0%, 23.2% and 30.6% to complete the first, second, third and fourth segments of the 

experimental task, respectively (within- and between-participant variability fluctuated 

between 1.0% and 2.4%; see also Blandin et al., 1999 for a similar observation). Therefore, 

the task required that participants modify the naturally emergent relative timing pattern for 

this task. 

Experimental groups and procedure 

The participants were randomly assigned to one of the six following groups: one 

control group, one physical practice group (PP), and four observation groups (left-handed 

model/first-person [L-1st]; left-handed model/third-person [L-3rd]; right-handed model/first-

person [R-1st]; right-handed model/third-person [R-3rd]; for details see below and Table 1). 

After having been informed of the movement sequence to be performed, the participants 

completed the following four experimental phases: pre-test (PRT), acquisition (ACQ), and 

10 min and 24 hr retention tests (RET10 and RET24). The movement pattern, ITs and 
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TMT, were illustrated on a poster located directly in front of the apparatus during all 

experimental phases. 

In the PRT, a participant used his or her right hand to perform 10 trials using the 

right apparatus. No knowledge of the results (KR) was provided during this phase.  

During ACQ, a participant in the physical practice group physically practiced the 

task with his or her right hand on the right apparatus for 40 trials. After each trial, the 

participant received the KR in milliseconds on both the TMT and ITs. The KR was 

presented on a computer screen and remained visible for 7 seconds (see bottom of Figure 

1). The participants in all observation groups watched a film of a model performing the 

experimental task for 40 trials. The video was presented on a 37-inch monitor (Sony Bravia 

KDL-37M3000) located directly in front of the participant. Following each trial, the KR 

concerning the performance of the model on both the TMT and ITs was presented on the 

monitor for 7 seconds. The observation groups differed by the type of model the 

participants watched (right-handed or left-handed model) and whether the film was 

presented using a first- or third-person perspective. The right-handed models were shown 

using the right apparatus, whereas the left-handed models were shown using the left 

apparatus. For all groups, the videos were closed captioned so that the observers could 

clearly see the apparatus and the model’s motion throughout the duration of a trial. The 

performance of the expert model was nearly perfect and was similar for both the right and 

left hands. On average (SD), when using his right hand, the expert spent 301 (6.6), 303 

(7.2), 300 (6.7), and 299 (5.8) ms on the first, second, third, and fourth segment of the task, 

respectively (TMT = 1202, SD = 10.1). When using his left hand, the expert spent 304 
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(7.5), 301 (5.9), 303 (7.1), and 298 (5.5) ms on segments 1 to 4, respectively (TMT = 1205, 

SD = 11.7). The right- and left-handed novice models showed gradual and similar 

improvements during each practice (see Figure 2). We opted to use a mixed schedule of 

observation. Specifically, the participants watched a film showing 20 trials performed by a 

novice model who gradually improved his performance through practice and 20 trials 

performed by an expert model. Thus, observation provided a template of what needed to be 

done (expert model) and on how to correct one’s movement to be successful (novice 

observation). The model was alternated every 5 trials (e.g., novice: trials 1-5 and expert: 

trials 6-10). The participants were informed that they would observe both an expert and a 

novice model. Prior to each set of 5 trials, they were also reminded that they would observe 

the expert or novice model. All participants in the observation groups were informed at the 

beginning of the acquisition phase that they would have to perform the task using their right 

hand and the same apparatus as in the pre-test. The participants in the control group did not 

practice during this phase. Instead, they read a newspaper or magazine provided to them for 

the same duration as the observation or physical practice for the other groups 

(approximately 10 minutes). 

 Ten minutes and 24 hours after the end of the acquisition phase, all participants 

performed retention tests similar to the pre-test described above.5 No KR was provided 

during these phases. 

                                                 
5 It could be argued that because participants in the L-1st and L-3rd groups observed a left-handed model but 
performed the task using their right hand, a more appropriate label for these tests would be “transfer” rather 
than “retention”. However, because a transfer test evaluates the performance of the participants at a task that 
was different from what they specifically wanted to learn, we opted to use the “retention” label. 
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Data analysis 

To determine the accuracy and consistency of the participants’ movements, we 

computed the absolute constant error (|CE|) and variable error (VE) of the total movement 

time, respectively. We opted to use |CE| instead of CE because, within all groups, 

approximately half of the participants undershot the target TMT, whereas the other half 

overshot it. For ITs, we computed a root mean square error (RMSE), which presents in a 

single score how much each participant deviated from the prescribed relative timing 

pattern. 

ܧܵܯܴ ൌ ට∑ ቀሺூ்ିଷሻమସ ቁௌ௧ 4ௌ௧ 1  , where ITi is the intermediate time of segment i for 

each trial. 

The data of the three dependent variables were individually submitted to two 

analyses. In the first analysis, we determined whether the observation led to significant 

learning of the TMT and ITs of the task. The data were submitted to an ANOVA 

contrasting 6 groups (physical practice, control, observers R-1st, observers R-3rd, observers 

L-1st, and observers L-3rd) x 3 experimental phases (pre-test, retention 10 min, retention 24 

hr) x 2 blocks (trials 1-5, 6-10) using repeated measurements on the last two factors. Next, 

to determine whether some observation conditions resulted in better learning of the task, the 

data from the observation groups were submitted to an ANOVA contrasting the 2 

handedness of the models (right vs. left) x 2 perspectives of observation (first- vs. third-

person) x 2 experimental phases (retention 10 min, retention 24 hr) x 2 blocks (trials 1-5, 6-

10) using repeated measurements on the last two factors.  
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Before computing the different ANOVAs, three specific assumptions of the 

ANOVA were tested. The z scores of the skewness and kurtosis values were calculated to 

test the normality of the distribution (Tabachnick & Fidell, 2007). To verify the 

homogeneity of the variances, Hartley’s Fmax test was used. Finally, the degrees of freedom 

were adjusted as suggested by Greenhouse and Geisser (1959) when Mauchly’s test of 

sphericity was significant. However, the original degrees of freedom were presented when 

the effects were found to be significant following the Greenhouse-Geisser correction. All 

significant effects are reported at p < 0.05 and were corrected for the number of 

comparisons (Bonferroni adjustment; Cardinal & Aitken, 2006). 

Results 

Total movement time 

|CE|. The results of the first analysis revealed significant main effects of group, F (5, 

66) = 3.64, and phase, F (2, 132) = 31.97, and a significant group x phase interaction, F (10, 

132) = 2.29.  As illustrated in Figure 3 (upper panel), the breakdown of the interaction 

revealed no significant difference between groups in PRT, F < 1; however, in both the 10 

min, F (5, 66) = 8.54, and the 24 hr retention tests, F (5, 66) = 10.10, the control group had 

a significantly larger |CE| than the five remaining groups, which did not differ significantly 

from one another. Figure 3 also illustrates that all experimental groups, but not the control 

group, exhibited a significantly reduced |CE| when comparing the PRT to the other two 

experimental phases. In addition, when comparing the 10 min to the 24 hr retention test, we 
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found a significant increase in |CE| for the physical practice group (p = 0.019) but not for 

the four observation groups (p > 0.90 for all groups).  

The results of the second analysis revealed no significant main effect or interaction. 

Thus, the four observation groups exhibited significant improvements in the accuracy of 

TMT, with no differences related to the conditions of observation. 

VE. The results of the first analysis revealed significant main effects of phase, F (2, 

132) = 41.48, and block, F (1, 66) = 5.06, and a significant phase x block interaction, F (2, 

132) = 3.31. The breakdown of the interaction revealed a significantly larger VE in block 1 

than in block 2 in the PRT (71 ms and 61 ms, respectively), whereas no significant 

between-block difference was found in both the 10 min (50 ms and 50 ms for blocks 1 and 

2, respectively) and the 24 hr retention phases (42 ms and 40 ms for blocks 1 and 2, 

respectively). Post hoc comparisons of the phase main effect revealed that VE significantly 

decreased from one experimental phase to the next (p < 0.01 for all phases). 

The results of the second analysis revealed a significant main effect of phase, F (1, 

44) = 12.21, and a significant phase x view interaction, F (1, 44) = 5.81. The breakdown of 

the interaction revealed a decrease in VE from the 10 min to the 24 hr retention test when 

observing from the first-person perspective (49 ms and 36 ms, respectively) but not when 

observing from the third-person perspective (45 ms and 42 ms, respectively). 

Intermediate times  

The results of the first ANOVA computed on the RMSE revealed significant main 

effects of phase, F (2, 132) = 70.91, and group, F (1, 66) = 10.32, and significant phase x 

group, F (10, 132) = 4.26, and phase x block interactions, F (2, 132) = 4.61. The breakdown 
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of the phase x group interaction revealed the following. As illustrated in Figure 3 (bottom 

panel), there were no significant between-group differences in the PRT, F < 1. In both the 

10 min and 24 hr retention tests, the control group had a significantly larger RMSE than did 

the remaining five groups, which did not differ significantly from one another; F (5, 66) = 

19.24 and 24.14, for the 10 min and 24 hr tests, respectively. Figure 3 also illustrates that 

all experimental groups, but not the control group, exhibited significantly reduced RMSEs 

when comparing the PRT to the two retention tests. However, when comparing the 10 min 

to the 24 hr retention test, we found a significant increase in the RMSE for the physical 

practice group (p = 0.005) but not for the observation groups (p > 0.14 for all groups). The 

breakdown of the phase x block interaction revealed that the participants had a significantly 

larger RMSE in block 1 than in block 2 of the PRT (123 ms and 117 ms, respectively), 

whereas no significant difference between blocks 1 and 2 was found in either the 10 min 

(81 ms and 82 ms, respectively) or the 24 hr retention test (77 ms and 78 ms, respectively).  

The results of the second analysis revealed significant main effects of phase, F (1, 

44) = 9.26, and handedness, F (1, 44) = 13.10. Post hoc comparisons revealed that the 

participants showed decreased RMSEs when comparing the 10 min (77 ms) to the 24 hr 

retention test (68 ms). More importantly, the participants had a significantly smaller RMSE 

when observing a right-handed model (63 ms) than they did when observing a left-handed 

model (82 ms; Figure 4).  

Thus, all forms of observation used in the present study led to significant learning of 

intermediate times. However, participants learned more when observing a same-handed 

model than they did when observing an opposite-handed model.  
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Discussion 

 Observation results in learning of a motor skill (Blandin, Lhuisset, & Proteau, 1999; 

Hayes, Elliott, & Bennett, 2010; McCullagh & Weiss, 2001; Shea, Wright, Wulf, & 

Whitacre, 2000; Wulf & Mornell, 2008; Wulf et al., 2010). However, little is known 

concerning the type of model and conditions of observation that can optimize motor skill 

learning. In the present study, our goals were to determine whether a same-handed or an 

opposite-handed model would better promote learning of a complex spatiotemporal task 

and whether this effect would be mediated by the observer’s perspective.  

 The results of the present study are straightforward. Regardless of the models’ 

handedness or the observers’ perspective, results from the two retention tests revealed that 

all observation groups learned to complete their movements in the prescribed TMT at least 

as accurately as did the physical practice group and significantly better than the control 

group. These results were consistent with previous findings indicating that the TMT can be 

learned through observation (Blandin et al., 1999; Rohbanfard & Proteau, 2011; Trempe, 

Sabourin, Rohbanfard, & Proteau, 2011). In addition, our results indicated that the 

observation permitted the participants to learn the TMT and ITs concomitantly (We return 

to this point below). Importantly, the physical practice group, unlike the observation 

groups, did not perform as well in the 24 hr retention test as they did in the 10 min retention 

test. This is consistent with our previous study (Rohbanfard & Proteau, 2011) and suggests 

that a 10 min retention test might reflect short-term performance effects more than learning 

effects (see Schmidt and Lee, 2005) following the physical practice.  
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In addition, the results revealed that, for both same-handed and opposite-handed 

models, different observation perspectives (first- vs. third-person) resulted in no significant 

differences in the learning of the task (Figure 4). This was consistent with the results of 

previous behavioral studies investigating the effects of the observation viewpoint in 

imitation (Ishikura & Inomata, 1995; Sambrook, 1998). For example, Ishikura and Inomata 

had participants observe a model performing a sequential movement task from a first-

person or a third-person perspective. Their results showed that the first-person group 

significantly outperformed the third-person group on immediate recall tests. However, both 

groups performed equally well in a series of delayed retention tests completed 1 day, 1 

week, or 5 months later. Ishikura’s and Inomata’s results suggest that although the first-

person perspective resulted in better performance than did the third-person perspective, it 

resulted in similar long-term retention and, thus, learning of the task.  

More notably, our results revealed that the observation of a same-handed model led 

to significantly better learning of the ITs than did observation of an opposite-handed model 

from both first- and third-person perspectives. For the first-person perspective, our results 

were consistent with behavioral studies (Blandin et al., 1999; Boutin et al., 2010; 

Gruetzmacher et al., 2011; Heyes & Foster, 2002; Osman et al., 2005) and brain imaging 

studies, which demonstrated that observation results in contralateral activation of brain 

regions that were solicited during physical practice (Aziz-Zadeh, Koski, Zaidel, Mazziotta, 

& Iacoboni, 2006; Aziz-Zadeh, Maeda, Zaidel, Mazziotta, & Iacoboni, 2002; Maeda, 

Kleiner-Fisman, & Pascual-Leone, 2002; Pilgramm et al., 2010; Shmuelof & Zohary, 2006, 

2008). This may explains why right-handed participants were more accurate when they 
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observed a same-handed model than when they observed an opposite-handed model from a 

first-person perspective. Furthermore, our results supported Michel and Harkins’s study 

(1985), in which right- and left-handed participants observed a knot-tying task performed 

by a right-handed or left-handed model from a first-person perspective. Their results 

showed that the participants learned significantly faster from a same-handed model than 

from an opposite-handed model. Together, these results suggest that the observation of an 

opposite-handed model requires some additional processing of information (e.g., 

transformation of visual information), which could limit or slow the learning of a new 

motor skill. 

When observing from a third-person perspective, our results were inconsistent with 

the pattern of activation revealed in TMS (Alaerts et al., 2009; Hesse et al., 2009) and brain 

imaging studies (Hesse et al., 2009; Kilner, Marchant, & Frith, 2009; Shmuelof & Zohary, 

2008). Specifically, recent studies have indicated a larger activation of the ipsilateral aSPL 

(Shmuelof & Zohary, 2008) and a larger excitability of the ipsilateral primary motor cortex 

(Alaerts et al., 2009; Hesse et al., 2009) for movements observed from a third-person 

perspective. In addition, several studies have reported that young participants had a 

tendency to imitate the actions of others in a mirror-imaged manner when observed from a 

third-person perspective (Avikainen, Kulomaki, & Hari, 1999; Chiavarino, Apperly, & 

Humphreys, 2007; Iacoboni et al., 2001). Together, these results suggest that the 

observation of a left-handed model from a third-person perspective should have facilitated 

learning in the observers. A possible cause for these divergent findings is that the 

participants in the above studies observed familiar gestures or imitated familiar upper/lower 
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limb movements immediately after having observed them, with no specific spatial and/or 

temporal constraints. This is in stark contrast from learning a complex spatiotemporal 

pattern, as in the present study and most sport-like activities. It is possible that the intent of 

learning in conjunction with the stringent temporal constraints of our task might require the 

AON to transform the visual information depicted from a third-person perspective to fit 

with how the observer must perform the task. This transformation is likely easier to do or 

more natural when a right-handed individual observes a right-handed model. 

This is consistent with the predictive coding framework of the simulation of 

observed actions advocated by Kilner and colleagues (Kilner et al., 2007a, b; Neal & 

Kilner, 2010). This model, like others (Miall, 2003; Wolpert et al., 2003), proposes that 

observers simulate an action they see using a generative or forward model of how they 

would perform the same action. However, in two recent papers, evidence was provided that 

the observer simulates the observed action as if performed by his or her dominant hand. 

Specifically, Neal and Kilner (2010) had right-handed participants observe video clips 

showing a right- or left-hand reach-and-grasp movement from either a first- or third-person 

perspective. In the “natural” condition, the videos were not altered in any significant way, 

whereas in the “manipulated” condition the videos were reflected about the vertical 

midpoint. Thus, in the latter condition, a right-hand movement filmed from a first-person 

perspective was shown as a left-handed movement from a third-person perspective, and so 

on. The participants were informed that half of the videos they were about to see had been 

altered using video software. Following each video presentation, they had to indicate 

whether the video had been manipulated. Although the participants reported that they were 
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guessing, videos of natural right-hand movements that were viewed from a first-person or 

third-person perspective were reported as natural significantly more often than left-handed 

videos that had been manipulated to look as right-handed movements. No such difference 

was found between the natural and manipulated left-hand movements. This suggests that 

observers always simulate what they observed using a generative or forward model of how 

they would perform the same action using their dominant right-hand. This model is used to 

predict what should be observed. The differences between the simulated and the observed 

movements would be greater when observing a left- than a right-handed model, which 

would explain why participants considered left-hand movements as manipulated more often 

than right-hand movements. More recently, Press et al. (2011) used 

magnetoencephalography to record the cortical activity of right-handed participants 

performing sinusoidal up and down movements with their left or right arm or observing 

video clips of individuals performing the same movements from a third-person perspective. 

Their results revealed that the observation of right and left hand actions elicited changes in 

the left hemisphere sensorimotor activation across time (Broadman area 4), according to the 

phase of the observed movement. These changes would be expected if one was executing 

the observed movement, indicating that observation activated the motor program required 

for its execution with the observer’s dominant right hand. Our results add to these previous 

findings by showing that the more accurate simulations hypothesized when a right-hand 

observer watched a right-hand movement also leads to a more accurate movement 

programming and execution, which would save practice time.  
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Finally, the benefit of observing a same-handed model for learning a complex motor 

skill might not apply to left-handed participants. Because left-handed people represent 

approximately 10% of the population (Ida & Mandal, 2003), they show a tendency to 

accommodate to the right-sided world (Coren & Halpern, 1991). This accommodation 

might result in left-handed people learning as quickly, and perhaps even more quickly, 

from right-handed rather than left-handed models. Future research is needed to address this 

issue. 

An alternative interpretation of our findings could be that the observers coded the 

movement sequence in visual-spatial coordinates rather than in a motor coordinates.  

Because the apparatus used by the opposite-handed model was a mirror image of that used 

by the L-1st and L-3rd groups, it could explain why observation of a left-handed model did 

not favor learning as much as observation of right-handed model. Partial support for this 

interpretation comes from two recent studies (Boutin et al., 2010; Gruetzmacher et al., 

2011).  For example, in Boutin et al., right-handed participants observed a right-handed 

model moved a one-degree-of-freedom lever back-and-forth to reach a series of target 

locations as fast as possible. The sequence of target presentations was pre-determined and 

repeated 140 times.  Following observation, the participants performed the same task as the 

models with their right arm.  They also performed two transfer tests using their left arm.  

For these tests, the sequence of target presentation remained the same as during observation 

and, thus the visuo-spatial codes of what has been observed was maintained in transfer, 

whereas in the second test, the sequence of target presentation was the mirror image of 

what has been observed, which kept the motor coordinates (pattern of arm flexion and 
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extension) unchanged between observation and test.  The results revealed that the observers 

performed the task significantly faster when the visuo-spatial rather than the motor codes 

were maintained in transfer.  This finding was replicated by Gruetzmacher et al. who used a 

relatively simple spatial-temporal movement sequence.  Thus, it could be that an observer 

learns more from a same-handed than from an opposite-handed model because he or she 

codes the observed movement pattern in visuo-spatial coordinates and that these 

coordinates are maintained when observing a same-handed model.   However, in both 

Boutin et al. and Gruetzmacher et al., the observers needed to learn the location of the 

targets, which could have made the visuo-spatial information more important than in the 

present study for which the target locations were known but the challenge was to learn a 

new imposed relative timing pattern. Future research should address this question. 

Concomitant learning of TMT and IT 

In the present study, we found that observation permitted the participants to learn 

the TMT and ITs concomitantly. This finding differs from previous observations from our 

laboratory (Blandin et al., 1999). Blandin et al. used a four-segment timing task similar to 

that used in the present study; these authors reported that observers first learned to complete 

their movements in the prescribed TMT and then learned the relative timing pattern. There 

are two procedural differences between Blandin et al. and the present study that could 

explain these divergent results. First, the imposed TMT was longer in the present study 

than in Blandin et al. (1200 ms vs. 900 ms). It could be that a more stringent TMT 

encouraged participants to learn to fit their movements within the appropriate time frame 

and then to proceed to make adjustments to relative timing. Second, we used a combination 
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of expert and novice models (i.e., mixed model), whereas Blandin et al. used either an 

expert or a novice model. Thus, it could be that the observation of a mixed model, which 

has been shown to be more efficient for learning than the observation of either a novice or 

an expert model (Rohbanfard & Proteau, 2011), permitted the observers to learn TMT and 

IT concomitantly in the present study.  

Conclusion 

Observation, regardless of the model’s handedness or the observer’s perspective, 

promoted learning of a new motor skill. However, better learning of the temporal 

sequencing of the task occurred when the right-handed observer viewed a right-handed 

model from either a first- or a third-person perspective. Thus, the AON is more sensitive to 

the model’s handedness than to the observer’s viewpoint because the AON is linked to or 

involves sensorimotor regions of the brain that simulate motor programming. Our results 

were consistent with recent findings indicating that this putative simulation of the observed 

movements occurs in the left hemisphere of right-handed observers regardless of the 

model’s handedness (Press et al., 2011). Our results also suggest that the observation for 

immediately reproducing the observed actions (i.e., imitation), as compared with 

observation for learning a new motor skill, might be based on different processes. 
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Figure captions 

Figure 1. Top. View of the observer and of the model when using the left and right 

apparatuses. The participants’ task was to initiate their movement from the starting 

position, trip the first, second, and third barriers successively, and then end their movement 

on the target in a counterclockwise (left) or a clockwise (right) motion. Bottom. In all 

groups, the participants knew that they would perform the task using their right hand and 

right apparatus. During the acquisition phase, the KR was provided on a computer screen 

illustrating the time spent on each segment of the task (IT) and the TMT. 

Figure 2. Root mean square error on the intermediate times as a function of the number of 

trials for the right-handed (RH) and the left-handed (LH) novice models used in the present 

study. 

Figure 3. Absolute constant error (upper panel) and variable error (middle panel) on the 

total movement time and root mean square error of the intermediate times (lower panel) as 

a function of experimental phases for the physical practice (PP), control, and four 

observation groups (L-3rd = Left-handed model/3rd person, L-1st = Left-handed model/1st 

person, R-3rd = Right-handed model/3rd person, R-1st = Right-handed model/1st person).  

Figure 4. Effects of model’s handedness (Left-handed [LH] vs. Right-handed [RH]) and 

observation viewpoint (3rd person vs. 1st person). 
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Abstract 

The results of recent neuroimaging studies have revealed that activation of the 

action observation network (AON) is larger during live observation than video observation, 

as well as during observation from a first-person perspective compared to a third-person 

perspective.  In the present study, we assessed whether this larger activation of the AON 

resulted in better learning of a motor skill.  Six groups of participants (control, physical 

practice, live observation-1st person, live observation-3rd person, video observation-1st 

person, and video observation-3rd person) participated in a pre-test, an acquisition phase, 

and two delayed retention tests (10-min and 24-hour).  The results of the two retention tests 

revealed that all groups of observers significantly outperformed the control group. 

However, observation did not differ significantly as a function of the media or the 

perspective of observation.  These results indicate that numerous factors may influence the 

activation of the AON and that a larger activation of the AON is not synonymous with 

better learning of an observed task. 

 

Keywords: Live observation, video observation, motor learning, action observation 

network, timing task 
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Live vs. video presentation techniques in the 

observational learning of motor skills 

 

The observation of a live model performing a motor skill promotes learning in 

observers (Badets, Blandin, Wright, & Shea, 2006; Bird & Heyes, 2005, Experiment 1; 

Blandin, Proteau, & Alain, 1994; Buchanan & Dean, 2010; Buchanan & Wright, 2011; 

Heyes & Foster, 2002; Pollock & Lee, 1992). However, for practical purposes, the 

observation of a video presentation is often preferred to live observation to promote the 

learning of a new skill (Bird & Heyes, 2005, Experiments 2-3; Blandin, Lhuisset, & 

Proteau, 1999; Blandin & Proteau, 2000,experiment 1; Hayes, Elliott, & Bennett, 2010; 

Horn, Williams, & Scott, 2002; Osman, Bird, & Heyes, 2005; Rohbanfard & Proteau, 

2011a, b; Trempe, Sabourin, Rohbanfard, & Proteau, 2011). 

Although empirical evidence shows that one can learn a motor skill through both 

live observation and video observation, neuroimaging studies suggest that live and video 

observation are processed differently in the brain. For example, using positron emission 

tomography (PET), Perani and colleagues (2001) demonstrated that the live observation of 

hand actions activates a visuo-spatial network that is involved in action representation, but 

observation in virtual-reality and video conditions activates lateral occipital cortices, which 

mainly have sensory functions. This pattern of activation suggests that the perception of 

actions during live observation maps onto existing action representations, but observers in 
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virtual-reality and video conditions do not access the full motor knowledge that is available 

to the action observation network (AON, Perani et al., 2001). Similarly, 

magnetoencephalographic (MEG) recordings have revealed a stronger activation of the 

primary motor cortex in adult participants observing hand actions in live conditions than in 

video conditions (Jarvelainen, Schurmann, Avikainen, & Hari, 2001; see Shimada & 

Hiraki, 2006 for similar results in children). Therefore, it seems clear that the CNS does not 

process live and video observations similarly.  Could it also be that one mode of 

observation favors the learning of a new motor skill better than the other?  In addition to 

the theoretical interest of this question, it also has important practical implications when 

one considers the advances of virtual reality techniques both in teaching (Erel, Aiyenibe, & 

Butler, 2003; Larsen et al., 2009; Seymour, 2008) and in reeducation/rehabilitation settings 

(Sveistrup, 2004). 

At the behavioral level, it has been suggested that live observation better promotes 

learning than video observation in typically developing children (Barr & Hayne, 1999; 

Schmitt & Anderson, 2002; Thierry & Spence, 2004; Troseth & DeLoache, 1998; Troseth, 

Saylor, & Archer, 2006), but no such difference has been reported for adults (Kernodle, 

McKethan, & Rabinowitz, 2008; Reo & Mercer, 2004). However, in both the Kernodle et 

al. and the Reo and Mercer studies, a combined schedule of observation and physical 

practice was used for the acquisition of the experimental tasks (i.e., blocks of physical 

practice trials were interspersed with blocks of observation trials during acquisition of the 

task). It is possible that the interspersing of observation with physical practice washed out 

the potential differences between the live and video conditions of observation. The primary 
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goal of the present study was to determine whether live observation better promotes the 

learning of a complex multi-segment timing task than video observation. 

In addition, in a previous video observation study (Rohbanfard & Proteau, 2011a), 

we showed that the observation of a model from a first-person or a third-person perspective 

resulted in significant learning of the task without a significant difference between the two 

perspectives. Although a larger activation of brain regions is not synonymous with better 

task learning, our finding was unexpected in light of brain imaging studies that have 

illustrated an increase in the activation of the contralateral pre-motor cortex during action 

observation from the first-person compared to the third-person perspective (Jackson, 

Meltzoff, & Decety, 2006; Pilgramm et al., 2010). The second goal of the present study was 

to determine whether we could replicate our previous finding and whether the observation 

media (live vs. video) would mediate it.  

To reach our goals, we compared the performance of participants in four observation 

groups (see Method) to a physical practice and a control group. Participants were asked to 

complete each segment of the task in an intermediate time (IT) of 300 ms. In a pilot study, 

we determined the naturally emerging relative timing (Collier & Wright, 1995) that is used 

by individuals who physically practiced the experimental task with their right dominant 

hand. Specifically, three participants who did not take part in the present study were asked 

to complete the task in a total movement time (TMT) of 1200 ms for 60 trials; no 

constraints were imposed on ITs. Participants had feedback only on TMT following each 

trial. Twenty trials of practice allowed participants to approach the goal TMT of 1200 ms. 

Data from the remaining forty trials revealed a stable relative timing pattern both within 
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and across participants. On average, participants used a relative timing of 17.2%, 29.0%, 

23.2% and 30.6% to complete the first, second, third and fourth segments of the 

experimental task, respectively (within- and between-participant variability fluctuated 

between 1.0% and 2.4%; see also Blandin et al., 1999 for a similar observation).Therefore, 

participants in the present study were required to modify the naturally emergent relative 

timing pattern of the task. 

 

It was hypothesized that the four observation groups and the physical practice group 

would outperform the control group. In addition, if the perception of actions maps onto 

existing action representations only during live observation, the live observation groups 

should outperform the video observation groups regardless of the observation perspective. 

Finally, observation from a first-person perspective would result in better learning if the 

primary motor cortex is more strongly activated in the first-person than in the third-person 

condition. 

Method 

Participants 

Seventy-two self-declared right-handed students (35 women) from the Département 

de kinésiologie at the Université de Montréal participated in this study. All participants 

were unfamiliar with the task, apparatus and goals of the study. They had normal or 

corrected-to-normal vision, signed a consent form and were paid $20 CDN for their time. In 

addition, one author of the present paper (H. R.) served as an expert model. The Health 

Sciences Ethics Committee of the Université de Montréal approved this study. 
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Apparatus and task 

The apparatus is illustrated in Figure 1. It consisted of a wooden base with three 

perpendicular barriers (height: 11 cm, width: 8 cm) and a start button that was embedded in 

a final target (11 X 8 cm). The barriers were placed perpendicular to the wooden base at the 

beginning of each trial to yield a closed micro switch circuit. The micro switches were 

connected to a computer via the I / O port of an A-D converter (National Instruments), and 

a millisecond timer was used to record TMT and the time that was required to complete 

each segment of the task (ITs). The frontal (a negative value indicates that the barrier is 

located to the left of the starting base) and sagittal Cartesian coordinates of the first, second 

and third barrier relative to the start button were -12.5 and 9 cm, -13.5 and 41.5 cm, and 0 

and 29 cm, respectively. While sitting in front of the apparatus, the participant’s task was to 

initiate his/her movement from the starting position, trip the first, second, and third barriers 

successively and end their movement on the target. Participants were asked to perform each 

segment of the task in an IT of 300 ms, which leads to a TMT of 1200 ms. 
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Procedure 

Participants were randomly assigned to one of six groups (7 women and 5 men per 

group): observers Live-1st person (L-1st), observers Live-3rd person (L-3rd), observers 

Video-1st person (V-1st), observers Video-3rd person (V-3rd), Physical Practice, and Control. 

After having been informed of the movement sequence to be performed, participants 

completed four experimental phases: pre-test (PRT), acquisition (ACQ), and 10-min and 

24-hr retention tests (RET10 and RET24). The movement pattern, ITs and TMT were 

illustrated on a poster that was located directly in front of the apparatus during all 

experimental phases. 

In the pre-test, participants performed 10 trials with their right hand without 

knowledge of results (KR). During acquisition, participants in the physical practice group 

physically practiced the task with their right hand for 40 trials. After each trial, they 

received KR in milliseconds (ms) of both TMT and ITs on a computer screen for 7 seconds 

(see Figure 1). Participants in all observation groups watched an expert model who 

performed the experimental task for 40 trials. The observation groups differed by the media 

that was used during observation (live or video) and by the observation perspective (first- 

or third-person).  For the live observation groups, participants watched the model from 

either a first-person (left panel) or a third-person (right panel) perspective as illustrated in 

Figure 1. KR concerning the model’s performance (both TMT and ITs in ms) was provided 

for 7 seconds on a computer screen following each trial. The model was filmed during this 

experimental phase from the first-person or third-person perspective when the live 

observation occurred from the first-person or third-person perspective, respectively. These 
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videos were presented to the participants of the video observation groups. Each participant 

in the live observation groups was matched to a participant in the video observation groups. 

Thus, a different video was presented to each participant of the video observation groups. 

The video was presented on a 37-inch monitor (Sony Bravia KDL-37M3000) that was 

located directly in front of the participant. The monitor was calibrated so that the locations 

of the starting base/target and the barriers were shown in a 1:1 ratio relative to the 

apparatus.  In each video, KR of TMT and ITs was presented after each trial in the same 

format and for the same duration as the presentation that was available to the live 

observation groups. As mentioned earlier, the model was one of the authors (H.R.) of the 

present paper who had practiced the task for 3,000 trials over a 15-day period. The model’s 

performance (mean [SD] for |CE|, VE, and RMSE)6 did not differ significantly when 

modeling from the first-person (|CE| = 10[6] ms; VE= 27[3] ms; RMSE= 16[1] ms) or 

third-person perspective (|CE|= 10[6] ms; VE= 26[4] ms; RMSE= 17[2] ms). Finally, 

participants in the control group had no practice in this phase. Instead, they read a 

newspaper that was provided to them for the same amount of time that it took the other 

participants to observe or perform 40 trials (approximately 10 minutes). 

The two delayed retention tests (RET10 and RET24) were completed 10 minutes 

and 24 hours after the acquisition phase, respectively. These tests were in all points similar 

to the pre-test.  

Data analysis 

                                                 
6See below for the definition of each dependent variable. 
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The absolute value of each participant’s constant error (|CE|, the constant error 

indicates whether a participant undershot [negative value] or overshot [positive value] the 

total movement time) and variable error (VE, or within-participant variability) of total 

movement time were calculated to determine the accuracy and consistency of the 

participants’ movements, respectively. For intermediate times, we computed a root mean 

square error (RMSE), which presents in a single score how much each participant deviated 

from the prescribed relative timing pattern. 

 , where ITi is the intermediate time of segment i 

for each trial. 

The data from all phases were regrouped in blocks of five trials. The data for the 

three dependent variables were individually submitted to two series of analyses.  First, we 

computed a series of analyses to determine whether observation led to significant learning 

of TMT and ITs.  The data were submitted to an ANOVA to compare 6 Groups (physical 

practice, control, observers L-1st, observers L-3rd, observers V-1st, observers V-3rd) x 3 

Experimental phases (PRT, RET10, RET24) x 2 Blocks (trials 1-5, 6-10) using repeated 

measurements on the last two factors.  To determine whether some conditions of 

observation resulted in a better learning of the task than others, the data were submitted to 

an ANOVA comparing 2 Media of observation (live vs. video) x 2 Perspective of 

observation (1st vs. 3rd person) x 3 Experimental phases (PRT, RET10, RET24) x 2 Blocks 

(trials 1-5, 6-10) using repeated measurements on the last two factors.   
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Before computing the different ANOVAs, three specific assumptions of the 

ANOVA were tested. The z scores of the skewness and kurtosis values were calculated to 

test the normality of the distribution (Tabachnick & Fidell, 2007). To verify the 

homogeneity of variances, Hartley’s Fmax test was used. Finally, the degrees of freedom 

were adjusted as suggested by Greenhouse and Geisser (1959) when Mauchly’s test of 

sphericity was significant. However, the original degrees of freedom were presented when 

the effects were significant following the Greenhouse-Geisser correction. All significant 

main effects and interactions were broken down using the LSD post hoc test. All effects are 

reported at p < .05. 

Results 

 Effects of observation 

 The results of the first series of analyses on the RMSE and |CE| revealed significant 

main effects of Group, F (5, 66) = 6.51, 3.78 and Phase, F (2, 132) = 107.07, 52.11, and a 

significant Group x Phase interaction, F (10, 132) = 5.57, 2.48. As illustrated in Figure 2 

(upper and middle panels), for both RMSE and |CE|, the breakdown of the interactions 

revealed no significant between group differences in the pre-test, Fs < 1. In the 10-min 

retention test, the control group had a significantly larger RMSE and |CE| than all of the 

other groups. Moreover, the physical practice group had a significantly smaller RMSE than 

the four observation groups, which did not differ significantly from one another (RMSE= 

116, 64, 66, 63, 67, and 47 ms for the control, L-3rd, L-1st, V-3rd, V-1st, and PP, 

respectively). However, the physical practice group did not significantly outperform the 

four observation groups for |CE| (302, 80, 79, 85, 86, and 101 ms for the control, L-3rd, L-
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1st, V-3rd, V-1st, and PP, respectively). In the 24-hr retention test, the control group had a 

significantly larger RMSE and |CE| than the five remaining groups, which did not differ 

significantly from one another, F (5, 66) = 11.80, 7.51, respectively. Figure 2 (upper and 

middle panels) also illustrates that all experimental groups, except the control group, had a 

significantly reduced RMSE and |CE| from the pre-test to the other two experimental 

phases. It is also worth noting that there was a significant increase in RMSE and |CE| 

between the 10-min and the 24-hr retention test for the physical practice group (ps ≤ .02) 

but not for the four observation groups (ps ≥ .12). However, the physical practice group did 

not differ significantly from the observation group in the 24-hour retention test. 

 The results of the ANOVA computed on VE revealed significant main effects of 

Phase, F (2, 132) = 59.22, and Block, F (1, 66) = 10.66. Post hoc comparisons revealed that 

VE significantly decreased from one experimental phase to the next (67 ms, 48 ms, and 38 

ms for the PRT, RET10, and RET24, respectively). Moreover, participants had a larger VE 

in block 1 (54 ms) than in block 2 (49 ms). 

Effects of media and perspective  

 The results of the second series of analyses revealed no significant main effect or 

interaction for RMSE (all ps>.23). Concerning |CE| and VE on TMT, the ANOVAs 

revealed a significant main effect of Phase, F (1, 44) = 10.01, 20.09. Post hoc comparisons 

revealed that |CE| significantly increased from the 10-min to the 24-hr retention test (83 ms 
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and 112 ms, respectively),7 but VE significantly decreased (47 ms and 36 ms, respectively) 

from the 10-min to the 24-hr retention test. 

Discussion 

 In the present study, we investigated the effects of a live versus video observation 

from a first-person or third-person perspective on the learning of a four-segment sequential 

timing task. The results of the two retention tests revealed that all observation groups, 

regardless of the medium (live vs. video) or perspective (first-person vs. third-person) 

significantly outperformed the control group on both total movement time and intermediate 

times. This finding is consistent with previous research showing that observation leads to 

significant learning of the task (e.g., Bird & Heyes, 2005; Blandin et al., 1999; Blandin & 

Proteau, 2000; Buchanan & Wright, 2011; Hayes et al., 2010; McCullagh & Weiss, 2001; 

Osman et al., 2005; Rohbanfard & Proteau, 2011a, b; Shea, Wright, Wulf, & Whitacre, 

2000; Wulf & Mornell, 2008; Wulf, Shea, & Lewthwaite, 2010).  

However, the data from the present study revealed no significant differences related 

to the observation medium (live vs. video) in the learning of the task. This finding is 

consistent with previous behavioral studies of the effectiveness of these two media in adult 

participants (Kernodle et al., 2008; Reo & Mercer, 2004) but not in typically developing 

children (Barr & Hayne, 1999; Schmitt & Anderson, 2002; Thierry & Spence, 2004; 

Troseth & DeLoache, 1998; Troseth et al., 2006). As already advocated (Barr & Hayne, 

1999), it is likely that children pay less attention to a model that is presented by video than 

                                                 
7It should be noted that the inclusion of the control and physical practice groups in the first series of analyses 
masked this increase in |CE| between the 10 min and 24 hour retention tests. 
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to a live model, but adult participants are able to deal equally well with the video and live 

presentations of a model to improve their learning.  

This last finding from the present study is inconsistent with the predictions of 

neuroimaging studies (Ferrari, Gallese, Rizzolatti, & Fogassi, 2003; Jarvelainen et al., 

2001; Perani et al., 2001; Shimada & Hiraki, 2006). For example, only movements in a live 

observation condition can be mapped onto existing action representations (Perani et al., 

2001), and live observation results in a stronger activation of the primary motor cortex than 

video observation (Jarvelainen et al., 2001). Moreover, mirror neurons in monkeys are 

activated when movements are observed in a live condition but not when they observed by 

video presentations (Ferrari et al., 2003). Taken together, these findings suggested that live 

observation is more beneficial than video observation. This was clearly not the case in the 

present study. There are several possible reasons for this discrepancy.   First, it could be 

that recognition is better, and therefore, the AON is more active during live vs. video 

observation (small screens are often used during video observation).  It could also be that 

the AON is more active during live than video observations because in the former 

condition, the observer is more likely aware of the model’s state of mind and reactions to 

his or her performance. In that regard, the AON is involved not only in the understanding of 

the model’s action (for reviews, see Rizzolatti & Craighero, 2004; Rizzolatti, Fogassi, & 

Gallese, 2001) but also in the detection of the other’s emotions and thoughts/intentions 

(e.g., Carr et al., 2003; Decety & Grèzes, 2006; Jackson, Meltzoff, & Decety, 2005; Singer, 

2006; Wicker et al., 2003). Conversely, because video observation is often restricted to a 

smaller visual field than live observation, it can focus the observer’s attention on the 
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relevant stimuli while decreasing their tendency to attend to irrelevant stimuli (Charlop-

Christy, Le, & Freeman, 2000; Corbett, 2003), which eliminates unnecessary information 

processing in the observer’s AON. All of these propositions add up to one important 

practical conclusion: the larger activation of brain regions does not necessarily result in a 

better learning of a motor task.  

Concerning the perspective of observation, the present data replicated the results of 

Rohbanfard and Proteau (2011a; see also Ishikura & Inomata, 1995; Sambrook, 1998) 

revealing that the observation of a model from the first-person or third-person perspective 

resulted in no significant differences in the learning of both TMT and ITs of the task. The 

results of the present study add to this finding by showing that this is the case for both live 

and video observation.  Again, these results are somewhat inconsistent with findings from 

brain imaging studies showing a larger activation of the pre-motor cortex for movements 

observed from a first-person compared to a third-person perspective (Jackson et al., 2006; 

Pilgramm et al., 2010). A possible explanation for this divergent finding is that, in the 

present study, learning was evaluated during two delayed retention tests (10 min and 24 hr), 

but neuroimaging studies have recorded the activation of the observers’ brain 

simultaniously with action observation. It is generally well accepted that the activation of 

the AON at least partly reflects recognition of what is observed. For example, familiarity 

with the observed movement has a significant effect in action understanding (Calvo-

Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Calvo-Merino, Grèzes, Glaser, 

Passingham, & Haggard, 2006).Therefore, in these neuroimaging studies, the larger 

activation of the AON during observation from the first-person compared to the third-
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person perspective could have resulted from the natural and more familiar situation 

(Pilgramm et al., 2010).  However, our results suggest that the observation perspective does 

not influence the learning of a new motor skill when this skill has to be performed either 10 

minutes or 24 hours after observation.   

It is worth noting that the lack of significant differences between the four 

observation groups was not a result of a floor effect. First, the physical practice group 

outperformed the observation groups on intermediate times of the task in the 10-min 

retention test. Second, the expert model (|CE| = 10 ms, VE = 27 ms, and RMSE = 17 ms) 

had a better performance compared to the physical practice group and the four observation 

groups (|CE| = 80-120 ms, VE = 35-50 ms, and RMSE = 50-65 ms). Therefore, there was 

still room for improvement.  

Finally, the results of the 10-min retention test revealed that the physical practice 

group outperformed all observation groups on the intermediate times of the task, but no 

such between-group differences were noted on TMT.  These results suggest that the 

observers first learned to complete their movements in the prescribed TMT and then 

learned the relative timing pattern of the task (see Blandin et al., 1999, for similar results). 

However, these findings differ from the results of a previous study (Rohbanfard & Proteau, 

2011a) in which we used the same experimental task but showed that observation permitted 

participants to concomitantly learn TMT and ITs. The only procedural difference between 

the two studies is that, in the present study, observers were shown a single model (as in 

Blandin et al., 1999), whereas in our previous work, we used a mixed observation of novice 

and expert models. This suggests that mixed observation of novice and expert models 
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engages one in different information processes than the observation of only an expert 

model. In support of that proposition, we (Rohbanfard and Proteau, 2011b) recently had 

participants observe a novice, an expert, or a combination of trials performed by an expert 

and a novice model while performing the same experimental task as in the present study. 

The results of an immediate retention test revealed that the novice-observation and expert-

observation groups first learned TMT and then ITs, but the mixed-observation group 

concomitantly learned TMT and ITs. We propose that the observation of either expert or 

novice model leads to the development of a “standard of reference” and “error detection 

correction mechanisms,” respectively, but the observation of the mixed model results in the 

development of both processes. As a result, observers of a mixed model are more actively 

engaged in processing the available information, which allows them to simultaneously pay 

attention to and, therefore, learn both aspects of the experimental task (i.e., TMT and ITs). 

Our findings have implications in a number of practical settings, such as the 

teaching of sport-related motor skills, physical therapy exercises, and surgical procedures. 

Our results suggest that live observation can be replaced by a video presentation technique 

and result in similar learning benefits. Using a video has the obvious advantages of 

convenience and consistency. A single video can easily be used by a large number of 

participants at different places and times. In addition, video observation is a more cost- and 

time-efficient technique than live observation (Charlop-Christy et al., 2000). 

 

 
 

 



120 

 

 

References 

Badets, A., Blandin, Y., Wright, D. L., & Shea, C. H. (2006). Error detection processes 

during observational learning. Research Quarterly for Exercise and Sport, 77(2), 

177-184.  

Barr, R., & Hayne, H. (1999). Developmental changes in imitation from television during 

infancy. Child Development, 70(5), 1067-1081.  

Bird, G., & Heyes, C. (2005). Effector-dependent learning by observation of a finger 

movement sequence. Journal of Experimental Psychology-Human Perception and 

Performance, 31(2), 262-275. doi: 10.1037/0096-1523.31.2.262 

Blandin, Y., Lhuisset, L., & Proteau, L. (1999). Cognitive processes underlying 

observational learning of motor skills. Quarterly Journal of Experimental 

Psychology Section A-Human Experimental Psychology, 52(4), 957-979.  

Blandin, Y., & Proteau, L. (2000). On the cognitive basis of observational learning: 

Development of mechanisms for the detection and correction of errors. Quarterly 

Journal of Experimental Psychology Section A-Human Experimental Psychology, 

53(3), 846-867.  

Blandin, Y., Proteau, L., & Alain, C. (1994). On the cognitive processes underlying 

contextual interference and observational learning. Journal of Motor Behavior, 

26(1), 18-26.  

Buchanan, J. J., & Dean, N. J. (2010). Specificity in practice benefits learning in novice 

models and variability in demonstration benefits observational practice. 

Psychological Research-Psychologische Forschung, 74(3), 313-326. doi: 

10.1007/s00426-009-0254-y 



121 

 

 

Buchanan, J. J., & Wright, D. L. (2011). Generalization of action knowledge following 

observational learning. Acta Psychologica, 136(1), 167-178. doi: DOI: 

10.1016/j.actpsy.2010.11.006 

Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). 

Action observation and acquired motor skills: an FMRI study with expert dancers. 

Cerebal Cortex, 15(8), 1243-1249.  

Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). 

Seeing or doing? Influence of visual and motor familiarity in action observation. 

Current Biology, 16(19), 1905-1910. doi: 10.1016/j.cub.2006.07.065 

Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural 

mechanisms of empathy in humans: A relay from neural systems for imitation to 

limbic areas. Proceedings of the National Academy of Sciences, 100(9), 5497-5502. 

doi: 10.1073/pnas.0935845100 

Charlop-Christy, M. H., Le, L., & Freeman, K. A. (2000). A comparison of video modeling 

with in vivo modeling for teaching children with autism. Journal of Autism and 

Developmental Disorders, 30(6), 537-552. doi: 10.1023/a:1005635326276 

Collier, G. L., & Wright, C. E. (1995). Temporal rescaling of simple and complex ratios in 

rhythmic tapping. Journal of Experimental Psychology: Human Perception and 

Performance, 21(3), 602-627. doi: 10.1037/0096-1523.21.3.602 

Corbett, B. A. (2003). Video Modeling: A window into the world of autism. The Behavior 

Analyst Today, 4(3), 88-96.  

Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one's own and other's 

behavior. Brain Research, 1079(1), 4-14. doi: 10.1016/j.brainres.2005.12.115 



122 

 

 

Erel, E., Aiyenibe, B., & Butler, P. E. M. (2003). Microsurgery simulators in virtual reality: 

Review. Microsurgery, 23(2), 147-152. doi: 10.1002/micr.10106 

Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L. (2003). Mirror neurons responding 

to the observation of ingestive and communicative mouth actions in the monkey 

ventral premotor cortex. European Journal of Neuroscience, 17(8), 1703-1714.  

Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. 

Psychometrika, 24, 95–112.  

Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are 

developed during action-observation. Experimental Brain Research, 204(2), 199-

206. doi: 10.1007/s00221-010-2303-6 

Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: Evidence from a 

serial reaction time task. Quarterly Journal of Experimental Psychology Section A-

Human Experimental Psychology, 55(2), 593-607. doi: 

10.1080/02724980143000389 

Horn, R. R., Williams, A. M., & Scott, M. A. (2002). Learning from demonstrations: the 

role of visual search during observational learning from video and point-light 

models. Journal of Sports Sciences, 20(3), 253 - 269.  

Ishikura, T., & Inomata, K. (1995). Effects of angle of model-demonstration on learning of 

motor skill. Perceptual and Motor Skills, 80(2), 651-658.  

Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of 

others? A window into the neural processes involved in empathy. Neuroimage, 

24(3), 771-779. doi: 10.1016/j.neuroimage.2004.09.006 



123 

 

 

Jackson, P. L., Meltzoff, A. N., & Decety, J. (2006). Neural circuits involved in imitation 

and perspective-taking. Neuroimage, 31(1), 429-439. doi: 

10.1016/j.neuroimage.2005.11.026 

Jarvelainen, J., Schurmann, M., Avikainen, S., & Hari, R. (2001). Stronger reactivity of the 

human primary motor cortex during observation of live rather than video motor 

acts. Neuroreport, 12(16), 3493-3495.  

Kernodle, M. W., McKethan, R. N., & Rabinowitz, E. (2008). Observational learning of fly 

casting using traditional and virtual modeling with and without authority figure. 

Perceptual and Motor Skills, 107(2), 535-546. 

Larsen, C. R., Soerensen, J. L., Grantcharov, T. P., Dalsgaard, T., Schouenborg, L., 

Ottosen, C., Ottesen, B. S. (2009). Effect of virtual reality training on laparoscopic 

surgery: randomised controlled trial. British Medical Journal, 338(2), 1802. doi: 

10.1136/bmj.b1802 

McCullagh, P., & Weiss, M. R. (2001). Modeling: Considerations for motor skill 

performance and psychological responses. In R. M. Singer, J. A. Hausenblaus & C. 

M. Janelle (Eds.), Handbook of Sport Psychology (2nd ed) (pp. 205-238). New 

York: Wiley. 

Osman, M., Bird, G., & Heyes, C. (2005). Action observation supports effector-dependent 

learning of finger movement sequences. Experimental Brain Research, 165(1), 19-

27.  

Perani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M. 

C. (2001). Different brain correlates for watching real and virtual hand actions. 

Neuroimage, 14(3), 749-758.  



124 

 

 

Pilgramm, S., Lorey, B., Stark, R., Munzert, J., Vaitl, D., & Zentgraf, K. (2010). 

Differential activation of the lateral premotor cortex during action observation. 

BMC Neuroscience, 11, 89. doi: 10.1186/1471-2202-11-89 

Pollock, B. J., & Lee, T. D. (1992). Effects of the model's skill level on observational motor 

learning. Research Quarterly for Exercise and Sport, 63(1), 25-29.  

Reo, J. A., & Mercer, V. S. (2004). Effects of live, videotaped, or written instruction on 

learning an upper-extremity exercise program. Physical Therapy, 84(7), 622-633.  

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of 

Neuroscience, 27, 169-192.  

Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms 

underlying the understanding and imitation of action. Nature Reviews Neuroscience, 

2(9), 661-670.  

Rohbanfard, H., & Proteau, L. (2011a). Effects of handedness of model and visual 

viewpoint on observational learning. Submitted for publication.  

Rohbanfard, H., & Proteau, L. (2011b). Learning through observation: A combination of 

expert and novice models favors learning. Submitted for publication. 

Sambrook, T. D. (1998). Does visual perspective matter in imitation? Perception, 27(12), 

1461-1473.  

Schmitt, K. L., & Anderson, D. R. (2002). Television and reality: Toddlers' use of visual 

information from video to guide behavior. Media Psychology, 4(1), 51 - 76.  

Seymour, N. (2008). VR to OR: A review of the evidence that virtual reality simulation 

improves operating room performance. World Journal of Surgery, 32(2), 182-188. 

doi: 10.1007/s00268-007-9307-9 



125 

 

 

Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational 

practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27-

36.  

Shimada, S., & Hiraki, K. (2006). Infant's brain responses to live and televised action. 

Neuroimage, 32(2), 930-939. doi: 10.1016/j.neuroimage.2006.03.044 

Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review 

of literature and implications for future research. Neuroscience and Biobehavioral 

Reviews, 30(6), 855-863. doi: 10.1016/j.neubiorev.2006.06.011 

Sveistrup, H. (2004). Motor rehabilitation using virtual reality. Journal of 

NeuroEngineering and Rehabilitation, 1(1), 10.  

Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics (5th ed.). Boston: 

Allyn and Bacon. 

Thierry, K. L., & Spence, M. J. (2004). A real-life event enhances the accuracy of 

preschoolers' recall. Applied Cognitive Psychology, 18(3), 297-309. doi: 

10.1002/acp.965 

Trempe, M., Sabourin, M., Rohbanfard, H., & Proteau, L. (2011). Observation learning 

versus physical practice leads to different consolidation outcomes in a movement 

timing task. Experimental Brain Research, 209(2), 181-192.  

Troseth, G. L., & DeLoache, J. S. (1998). The medium can obscure the message: Young 

children's understanding of video. Child Development, 69(4), 950-965.  

Troseth, G. L., Saylor, M. M., & Archer, A. H. (2006). Young children's use of video as a 

source of socially relevant information. Child Development, 77(3), 786-799. doi: 

10.1111/j.1467-8624.2006.00903.x 



126 

 

 

Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both 

of us disgusted in my insula: The common neural basis of seeing and feeling 

disgust. Neuron, 40(3), 655-664. doi: 10.1016/s0896-6273(03)00679-2 

Wulf, G., & Mornell, A. (2008). Insights about practice from the perspective of motor 

learning: a review. Music Performance Research, 2, 1-25.  

Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: a 

review of influential factors. Medical Education, 44(1), 75-84. doi: 10.1111/j.1365-

2923.2009.03421.x 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

 

 

Acknowledgements 

This work was supported by a Discovery grant (L.P.) provided by the Natural 

Sciences and Engineering Research Council of Canada. 

 

 

 

 

 

 

 

 

 

 

 

 

  



128 

 

 

Figure captions 

Figure 1. Top view of the apparatus and perspective-taking conditions used in the study. 

Participants observed a model live (live observation groups) or on a video (video 

observation groups) from a first-person (left panel) or a third-person (right panel) 

perspective. 

Figure 2. Absolute constant error (|CE|) and variable error (VE) on total movement time 

and root mean square error (RMSE) on intermediate times as a function of experimental 

phases for the physical practice (PP), control, and four observation groups (L-3rd = Live/3rd 

person, L-1st = Live/1st person, V-3rd = Video/3rd person, V-1st = Video/1st person).  Error 

bar illustrates the standard error of the mean. 
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Chapter 5 : General discussion 
 

Motor skills are essential components of daily life activities; and observation has 

been shown to be a very effective strategy to promote the learning of motor skills (Williams 

& Hodges, 2005). During observation, learners selectively take in information about spatial 

and/or temporal features of a motor task, resulting in the formation of a cognitive 

representation of what is to be performed. In the present thesis, we aimed to determine 

whether some models or conditions of observation better promote motor learning than 

others.  

In the first study, we wanted to determine whether observation of a combination of 

expert and novice models (i.e., a mixed model) better promotes learning of a timing task 

than observation of either an expert or a novice model. Next, we wanted to determine 

whether there is an optimal type of mixed model. Specifically, three different types of 

novice models (i.e., highly variable, and with or without an increase in performance during 

practice) were individually combined with an expert model, thereby enabling us to 

investigate whether a specific type of novice model in a mixed observation schedule would 

result in better learning of the task. In our second study, we investigated whether observing 

a same-handed model (e.g., right-handed observer watching right-handed model) better 

promotes learning in comparison to the observation of an opposite-handed model (e.g., 
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right-handed observer watching left-handed model), and whether the first-person (both the 

observer and the model placed in the same perspective) and third-person (the observer 

facing the model) observation perspectives have differential impacts on the observational 

learning of our experimental task. Finally, in our third study, we investigated the effects of 

live vs. video observation on learning of the task. In addition, we sought to determine 

whether these modes of observation are mediated by the observation perspective.  

As expected (for reviews on observational learning, see Ferrari, 1996; Hodges et al., 

2007; McCullagh & Weiss, 2001; Vogt & Thomaschke, 2007; Wulf & Mornell, 2008), the 

results of all studies presented in this thesis revealed that all observation groups 

outperformed the no-practice control group. Clearly, this indicates that observation, 

regardless of the model’s skill level, model’s handedness, observer’s perspective, and type 

of media used, resulted in significant motor learning; however, some conditions better 

promoted learning than the others. 

Model’s skill level 

 Previous observational learning studies have shown that observation of an expert 

model promotes motor skill learning presumably because it enables the observer to develop 

a “perceptual blueprint” of the observed task (Sheffield, 1961) that serves as a standard of 

reference against which the participant’s performance is compared (Bandura, 1977, 1986). 

In addition, observation of a novice model has been shown to enhance learning of a motor 

task, probably because it results in the development of “error detection and correction” 
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mechanisms in the observer (Adams, 1986; Badets et al., 2006; Black & Wright, 2000; 

Black et al., 2005; Blandin & Proteau, 2000; Carroll & Bandura, 1990). 

The results of our first study contribute to this literature by showing that a mixed 

schedule of observation in which the observer watches a short series of trials performed in 

succession by a novice and by an expert model led to better learning of the experimental 

task. We argue that observing both types of models and thus being able to compare the 

expert and the novice performance likely permitted participants to detect errors in the 

novice model performance and determine how to avoid/correct them. This comparison 

between what needed to be done and typical errors was not possible for participants who 

observed only an expert or a novice model.  

Nonetheless, the advantages of the mixed observation condition became manifest in 

a transfer test that required participants to maintain the rhythmical structure of the 

movement but to change its overall duration (i.e., 1500 ms task). We speculate that 

observation of a mixed model might enable the observer to experience a wide range of 

movement patterns, from the near-perfect (i.e., expert performances) to the poorest 

movements (i.e., novice performances), resulting in the development of a more generalized 

movement representation than the other types of observation. In the case of expert or 

novice observation, the participants observe a more limited range of movement patterns, 

which might result in limited or more specific learning of the task. This is consistent with 

the predictions of the motor schema theory (Schmidt, 1975), which suggests that transfer to 

a novel parameterization of a generalized motor program (GMP) is facilitated following 
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practice involving many parameter variations of the GMP (i.e., variable practice) as 

opposed to practice involving only one or a limited number of parameter variations (i.e., 

non-variable practice). This could explain why participants in the mixed observation group 

better generalized their learning from the 1200 ms to the 1500 ms imposed TMT than 

observers of a novice or an expert model. Practically, these results suggest that mixed 

observation should be preferred in open skills learning, which requires trial-to-trial changes 

in movement parameterization (Galligan, 2000; Magill, 2007; Schmidt & Wrisberg, 2008).  

In addition, we found that learning did not significantly differ between conditions in 

which the novice model improved or not his performance or performed highly variable 

during practice. This suggests that it is the comparison between a near-perfect performance 

(i.e., expert model) and one showing large errors (i.e., novice model), rather than the type 

of novice model, that is the most critical determinant of the effectiveness of a mixed model. 

Finally, it can be argued that any combination of two models, such as two novices or two 

expert models, might be better than observation of a single model because it provides the 

observer with a form of variable practice, which has been shown beneficial for 

observational learning of a motor skill (Blandin et al., 1994; Buchanan & Dean, 2010). 

Future research is needed to deal with this issue. 

It is worth noting that the learning of the experimental task did not differ 

significantly following physical practice or observation of a mixed model. This was not the 

case, however, for the comparisons between the physical practice and observation of either 

expert or novice models. Thus, it appears that the mixed observation schedule engages the 
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observer in processes more similar to those experienced during physical practice than the 

two other observation regimens. 

Model’s handedness 

In real-life situations, a right-handed pupil often observes a right-handed coach or 

instructor performing the skill that he or she wants to learn (i.e., a same-handed model); 

however, in some cases, an individual may observe an opposite-handed model, such as 

when a left-handed trainer shows a right-handed pupil how to putt or drive a golf ball. The 

results of the second study of this thesis revealed that right-handed participants benefitted 

more from observation of a same-handed model (i.e., right-handed model) rather than of an 

opposite-handed model (i.e., left-handed model), regardless of the observer’s viewpoint. 

This is in contradiction with TMS and brain imaging studies that illustrate a larger 

activation of the ipsilateral brain areas for the movements observed from a third-person 

perspective (Alaerts et al., 2009; Hesse et al., 2009; Kilner, Marchant, & Frith, 2009; 

Shmuelof & Zohary, 2008). In addition, an observer imitates the actions of others in a 

mirror-imaged manner when observed from a third-person perspective (Avikainen, 

Kulomaki, & Hari, 1999; Chiavarino, Apperly, & Humphreys, 2007; Iacoboni et al., 2001). 

Taken together, these studies suggest that observation of an opposite-handed model from a 

third-person perspective should have facilitated learning in observers. This was not the case 

in our study, however. Thus, it seems that action observation or immediate imitation of the 

observed movements is quite different from learning a complex spatiotemporal pattern, as 

in the present study and as in most sport-like activities. It could be that the intent of 
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learning might require the action observation network (AON) to transform the visual 

information to fit with how the observer will have to perform the task. This transformation 

is likely easier to do or more natural when observing a same-handed model. This position 

concurs with recent evidence suggesting that the AON is linked to or comprised of 

sensorimotor regions of the brain that simulate motor programming as if the observed 

movement was to be performed with one’s dominant hand (Neal & Kilner, 2010; Press et 

al., 2011; Wakita & Hiraishi, 2011; Willems & Hagoort, 2009). 

Nonetheless, there is an alternative explanation of our findings that needs to be 

considered. It could be that the better learning revealed by observers of a same-handed 

model, as opposed to an opposite-handed model, resulted from differences in the task they 

observed and performed rather than the model’s handedness. In our study, all participants 

were required to perform the experimental task with their right dominant hand on the right 

apparatus, as was the case for the right-handed model. However, the left-handed model was 

performing the task with his left hand on the left apparatus, which was a mirror image of 

the right apparatus (see Fig. 1 in Chapter 3). Therefore, during observation of an opposite-

handed model, participants were provided with the same pattern of muscle (motor) 

activation but a different spatial-temporal pattern required for performing the right-hand 

movement. Thus, it could be that participants coded the movement sequence in a visual-

spatial coordinate system (see Boutin et al., 2010; Gruetzmacher et al., 2011) rather than in 

a motor coordinate system. Future research is needed to resolve this question.  
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Regardless of whether the observer learns motor coordinates or visual-spatial 

coordinates, the findings of our study have important implications in a number of practical 

settings, such as teaching sport-related motor skills, rehabilitation exercises, and surgical 

procedures. For example, when learning how to drive/putt a golf ball or serve in badminton 

or tennis, right-handed pupils would observe a right-handed trainer/instructor for better 

learning of the task, no matter whether the observation took place from a first- or third-

person perspective.  

Perspective and medium of observation 

 The results of the second and third studies of this thesis revealed that the first- and 

third-person observation perspectives resulted in no significant differences in the learning 

of the experimental task. These findings were unexpected in light of brain imaging studies 

that have illustrated for right-handed participants, a larger activation in the left 

sensorimotor cortex during action observation from the first-person than from the third-

person perspective (Jackson, Meltzoff, & Decety, 2006; Pilgramm et al., 2010). In addition, 

the results of the third study revealed no significant differences related to the medium of 

observation (i.e., live vs. video). Again, this is inconsistent with the predictions of brain 

imaging studies which generally suggest that live observation would be more beneficial 

than video observation (Ferrari et al., 2003; Jarvelainen et al., 2001; Perani et al., 2001; 

Shimada & Hiraki, 2006). A possible explanation for the discrepancy between our results 

and those of the above-mentioned brain imaging studies could be that the activation of the 

AON recorded in the neuroimaging studies reflects the recognition of what is observed, 
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which might be affected by a variety of factors. For instance, it has been shown that one’s 

familiarity with the observed movement has a significant effect in action 

recognition/understanding (Calvo-Merino et al., 2005; Calvo-Merino et al., 2006). Because 

the actions being observed in the brain imaging studies have been experienced often by the 

participants, it is possible that the larger activation revealed for the first-person perspective 

could have resulted from the situation being more natural and familiar than for the third-

person perspective (Pilgramm et al., 2010). In our studies, however, we used a complex 

spatial-temporal task that was completely new for the participants. Moreover, it seems that 

recognition is better, and thus the AON is more activated, during live than during video 

observation in the brain imaging studies because, for example, small screens are often used 

during video observation. However, we used a large screen in our study so that the 

participants in the video condition observed the model’s movements in an approximately 

1:1 ratio relative to the live observation. 

In addition, there is one main procedural difference between the present studies and 

the previously mentioned brain imaging studies. In neuroimaging studies, the activation of 

the observers’ brain was recorded during action observation, whereas we measured 

learning in two delayed retention tests (10-min and 24-hr). Therefore, the differential 

effects of various observation perspectives and mediums could be true only for the 

observation period, which is a short-term performance effect. The results of the 10-min and 

24-hr retention tests used in our studies, however, revealed that the observation perspective 

or medium did not influence learning of the task. This proposition is well supported by the 
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results of a previous study (Ishikura & Inomata, 1995) showing that although observation 

from a first-person perspective resulted in better performance than a third-person 

perspective, it resulted in similar long-term retention and, thus, learning of the task. 

Therefore, it seems that during memory consolidation, participants are able to process the 

information required for learning of the task, with no significant differences attributed to 

the perspective or medium of observation. All of these propositions add up to one important 

practical conclusion: the larger activation of brain regions revealed in the brain imaging 

studies does not necessarily result in better learning of a motor task. Future studies should 

focus on differentiating between the performance and learning effects of different 

observation conditions. 

From a practical point of view, our results suggest that a video presentation can be 

used successfully with the obvious advantages of convenience, consistency, and time or 

cost efficiency. In addition, it simplifies the presentation of mixed models, which we have 

shown to be most efficient to promote motor skill learning. With video, many different 

combinations/editions of the original performances can also be reproduced easily. Finally, 

in light of the results of our second study, a left-handed teacher/instructor would be well 

advised to use a video presentation of a right-handed model when teaching a motor task to 

right-handed participants. 
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