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Abstract: Extensive social choice theory is used to study the problem of
measuring group fitness in a two-level biological hierarchy. Both fixed and
variable group size are considered. Axioms are identified that imply that the
group measure satisfies a form of consequentialism in which group fitness
only depends on the viabilities and fecundities of the individuals at the lower
level in the hierarchy. This kind of consequentialism can take account of the
group fitness advantages of germ-soma specialization, which is not possible
with an alternative social choice framework proposed by Okasha, but which is
an essential feature of the index of group fitness for a multicellular organism
introduced by Michod, Viossat, Solari, Hurand, and Nedelcu to analyze the
unicellular-multicellular evolutionary transition. The new framework is also
used to analyze the fitness decoupling between levels that takes place during
an evolutionary transition.
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decoupling, multilevel selection, social choice.

1 Introduction

According to the theory of Darwinian evolution, if there is variation among a
population, some variants produce more offspring than others, and offspring
tend to resemble their parents, then natural selection will take place—the more
fit variants will tend over time to supplant the less fit. These three properties
are the principles of phenotypic variation, differential fitness, and heritability.
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It is now widely believed that any entity possessing these properties may be
subject to natural selection. For example, selection may take place among
cells, organisms, or whole species. Following Godfrey-Smith (2009), we call
such an entity a Darwinian population.

Darwinian populations form a nested biological hierarchy. The modern
theory of multilevel selection deals with natural selection that takes place at
more than one level in this hierarchy.1 Multilevel selection theory has been
useful in helping to explain phenomena that cannot be satisfactorily explained
in terms of selection operating on individual organisms, such as the spread of
cancer cells, which are the result of selection operating at the cellular level to
the detriment of the higher-level organism.

Multilevel selection theory has also contributed to our understanding of
major evolutionary transitions in individuality in which a new level in the
biological hierarchy emerges. Maynard Smith and Szathmáry (1999) describe
a number of such transitions. A familiar example (Margulis, 1998) is the origin
of eukaryotic cells (cells with nuclei) by the symbiotic incorporation of bacteria
as organelles, such as plastids and mitochondria, into prokarytoic cells (cells
without nuclei). A distinguishing feature of such transitions is that biological
entities that were capable of surviving and reproducing on their own prior to
the transition lose that ability as they combine to form a new, more complex
organism.

Fitness has two components—viability and fecundity (Michod, Viossat,
Solari, Hurand, and Nedelcu, 2006). Viability is a measure of the ability to
perform vegetative functions, whereas fecundity is a measure of reproductive
capacity. There are many complications involved in measuring fitness at differ-
ent levels when generations overlap and the different levels do not reproduce
at the same time (Godfrey-Smith, 2009). When these complications do not
arise, the expected number of offspring can be used to measure fitness, in
which case viability is the probability of surviving long enough to reproduce
and fecundity is the average number of offspring conditional on reproducing.
A natural question to ask is: How is the fitness of a Darwinian population re-
lated to characteristics of other associated entities in the biological hierarchy?
Here, we focus on a two-level hierarchy composed of individuals and groups
and ask how group fitness depends on the characteristics of the individuals
that form the group.2

Group fitness is typically measured by the sum or average of the individual
fitnesses. While these may be good measures of fitness for a group that is
not well integrated, as Okasha (2009) has observed, there are many reasons
why these measures are not, in general, satisfactory. Here, we consider an
1 For a good introduction to multilevel selection theory, see Okasha (2006).
2 In multilevel selection theory, “individuals” and “groups” are used relatively to

denote a lower and higher level in the biological hierarchy, respectively. What is
considered to be an individual in one context may be considered to be a group in
another.
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argument advanced by Michod, Viossat, Solari, Hurand, and Nedelcu (2006).
As we have noted, in an evolutionary transition, individuals may lose their
ability to survive and reproduce on their own. For example, in the transition
from unicellular to multicellular organisms, some cells specialize in survival-
enhancing vegetative functions (soma cells) and others in reproduction (germ
cells). When the transition is complete, cells are completely specialized in one
of these two tasks. As a consequence, the fitness of each individual cell is zero
and, hence, group fitness as measured by the sum or average of the individual
fitnesses is also zero. However, during this transition, the group emerges as
more than the sum of its parts, with group fitness being enhanced as the
transition progresses. In other words, there is a decoupling of the individual
and group fitnesses (Michod and Nedelcu, 2003; Michod, 2005; Okasha, 2006).

Michod et al. (2006) have introduced an index of group fitness for a two-
level biological hierarchy that can be used to analyze group fitness during an
evolutionary transition. Their index of group fitness, henceforth referred to
as the MVSHN index, is the product of indices of group viability and group
fecundity, which in turn are equal to the sum of the individual viabilities and
fecundities, respectively. In the case of a multicellular organism, unlike with
total or average individual fitness, the MVSHN index can be positive if there
is complete germ-soma specialization.

Recently, Okasha (2009) has used social choice theory to model the con-
struction of a group fitness index and has applied his methodology to analyze
the MVSHN index. Specifically, he has reinterpreted the concept of a social
welfare functional introduced by Sen (1970) so as to apply to the problem of
measuring group fitness. In Sen’s approach, each person in a group of individ-
uals has a utility function that assigns a number to each alternative in some
set. An individual’s utility function may be thought of as being a function
that denotes how well off this person is with each of the alternatives. A so-
cial welfare functional determines a social (i.e., group) ranking of the set of
alternatives as a function of the individual utility functions. Sen’s social wel-
fare functionals permit the social choice procedure to take account of intra-
and interpersonal comparisons of utility. Different assumptions concerning the
measurability and interpersonal comparabilty of utility can be formalized by
requiring the social ranking of the alternatives to be invariant to certain trans-
formations of the utility functions. For example, if levels of utility are intra-
and interpersonally comparable, but no other kinds of utility comparisons are
meaningful, then the social ranking is required to be invariant to any common
increasing transform of the individual utility functions.3

In Okasha’s reinterpretation of this framework, an alternative describes
all aspects of the state of the world relevant to the biological group being
considered and its constituent individuals. For example, an alternative in-
cludes descriptions of what nutrients are available to the individuals and of
3 For an in-depth survey of the literature that employs social welfare functionals,

see Bossert and Weymark (2004).
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how tasks are allocated among them. The analogue of a utility function is a
fitness function that specifies how fit an individual is with each alternative.
Okasha reinterprets a social welfare functional as a group fitness functional
that determines a ranking of the alternatives in terms of overall group fitness
as a function of the individual fitness functions. A group fitness index is a nu-
merical representation of such a ranking. In principle, any way of aggregating
the individual fitness functions can be employed, not just taking their sum or
average.

Because Okasha’s group fitness functionals use the fitness functions of
the individuals in the group as their only inputs in determining the group
fitness ranking, they are ill-equipped to deal with germ-soma specialization
when applied to a multicellular organism. As is the case with using the sum or
average of the individual fitnesses to measure group fitness, Okasha’s approach
cannot capture the gains that accrue from the specialization of vegetative and
reproductive functions.

There is a natural analogy between utility and fitness that has been
explored by Okasha (2011), among many others. In economics, individual
decision-making is modeled as a problem in utility maximization subject to
some constraints. Analogously, in evolutionary biology, biological entities are
regarded as behaving as if they are maximizing fitness subject to the con-
straints imposed by their environment. The analogy between utility and fitness
that Okasha (2009) draws on is different. He exploits the analogy between the
social choice problem of determining a group ranking of a set of alternatives
based on the individual utilities with the biological problem of determining a
group fitness ranking based on the individual fitnesses.

Okasha is right to draw the analogy between the social choice and group
fitness problems. He is also right when he argues that social choice theory
can shed light on the problem of measuring group fitness. However, a social
welfare functional is not the right tool to use for this purpose. A more appro-
priate tool is an extensive social welfare functional. Extensive social welfare
functionals were introduced by Roberts (1995) and later systematically ex-
plored by Ooghe and Lauwers (2005). In extensive social choice theory, intra-
and interpersonal utility comparisons are made by outside evaluators. Differ-
ent evaluators may have different opinions about these comparisons. To allow
for this possibility, an extensive social welfare functional determines a social
ranking of the alternatives as a function of the utility functions attributed to
each of the individuals by each evaluator. When there is only one evaluator,
an extensive social welfare functional is simply a social welfare functional.

We propose a biological reinterpretation of a two-evaluator version of this
framework that can be used to construct indices of group fitness. Correspond-
ing to the two evaluators are the two characteristics of the biological individ-
uals that are considered when determining group fitness. Specifically, for each
individual there is a viability function and a fecundity function that specify
the viability and fecundity, respectively, of this individual with each alter-
native. An extensive group fitness functional uses these functions as inputs
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to determine the group fitness ranking. Because this approach takes account
of the two components of individual fitness, not just the fitness itself, the
group fitness ranking can reflect the gains from the germ-soma specialization
observed in many multicellular organisms.

Okasha’s group fitness functionals and our extensive group fitness func-
tionals are used to determine group fitness rankings for a fixed number of
individuals. However, as Michod and Nedelcu (2003) and Michod (2005) have
emphasized, group size is an important factor in the emergence of germ-soma
specialization in cells, with larger groups being associated with greater spe-
cialization. In order to take group size into account, we extend the definition
of an extensive group fitness functional so as to allow for a variable number
of individuals in the group. In social choice theory, the analogous extension
of a social welfare functional is used to rank alternatives in which the popula-
tion size is variable (Blackorby and Donaldson, 1984; Blackorby, Bossert, and
Donaldson, 2005).

A social welfare functional is welfarist if the social ranking of any two alter-
natives only depends on the individual utilities obtained with them. Welfarism
is a form of consequentialism in which the social evaluation of alternatives only
takes account of utility consequences. Okasha (2009) considers the analogue of
welfarism for group fitness functionals, what we call fitness consequentialism.
With fitness consequentialism, the group fitness ranking only depends on the
individual fitnesses. In particular, it does not depend on the individual via-
bilities and fecundities. As Okasha notes, the MVSHN index of group fitness
does not satisfy this form of consequentialism. He argues that this observation
can be used to help explain the decoupling of individual and group fitnesses
in an evolutionary transition from unicellular to multicellular organisms.

We believe that Okasha’s identification of the source of this decoupling is
misplaced. As we argue, Okasha’s approach to constructing a group fitness
ranking ignores vital information about the individuals in the group, namely,
their viabilities and fecundities. The ranking of alternatives by the MVSHN
index only depends on the individual viabilities and fecundities, so it also
satisfies a form of consequentialism, what we call viability-fecundity conse-
quentialism. However, fitness decoupling is not inherently linked to whether
the group fitness index satisfies this form of consequentialism. Rather, or so
we argue, it has to do with the functional form of the extensive group fitness
functional.

2 Biological Preliminaries

Natural selection can be viewed as a constrained optimization problem in
which a Darwinian population behaves as if it is maximizing fitness (or, at
least, it behaves as if it is seeking to increase its fitness) subject to the con-
straints imposed on it by its environment (Grafen, 2007; Michod et al., 2006).
These constraints identify the trade-offs that are possible between viability
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and fecundity. A Darwinian population that uses more of the resources avail-
able to it for reproductive purposes will have fewer resources available for
enhancing its survival, and vice versa. Michod et al. (2006) have used this op-
timization framework to help understand the germ-soma specialization that
occurs when a multicellular organism emerges from its unicellular ancestor.

A great deal of what is known about the transitions to multicellularity has
been obtained from the study of the family of volvocine green algae. These
algae are a good model system for investigating the unicellular-multicellular
transition for a number of reasons (Michod et al., 2006; Miller, 2010). First,
they have diverged from their unicellular ancestor relatively recently, which
makes it easier to identify which genetic changes can be attributed to multicel-
lularity. Second, they are clonal, so all cells are related. Third, they currently
exist in a variety of forms, ranging from a unicellular species (Chlamydomonas
reinhardtii) to highly integrated species with complete germ-soma specializa-
tion (e.g., Volvox carteri), with many intermediate forms, including loosely or-
ganized groups of cells that exhibit no germ-soma specialization (e.g., Gonium
pectorale). The presence of these species with varying degrees of complexity al-
lows for a phylogenetic reconstruction of the morphological and developmental
changes that likely occurred in the transition to multicellularity (Kirk, 2005;
Herron and Michod, 2007).

Damuth and Heisler (1988) identify two, non-exclusive types of multilevel
selection. Multilevel selection 1 (MLS1) is concerned with the effect of group
membership on individual fitness. MLS1 explains, for example, the evolu-
tion of altruism as a character trait that increases the fitnesses of individuals
within a colony. MLS1 does not require the group to be a Darwinian popu-
lation and, hence, the group does not necessarily possess fitness beyond the
fitnesses of the individuals. For example, some slime moulds exist as collec-
tions of single-celled amoebae which coalesce into a collective for a time and
then dissipate (Okasha, 2006). Multilevel selection 2 (MLS2), on the other
hand, is concerned with selection among groups. In order for MLS2 to take
place, groups must reproduce in some way. For example, the geographic range
of late-Cretaceous mollusc species increased due to selection at the species
level because those species with greater geographic range, a heritable trait,
produced more offspring species (Okasha, 2006).

The distinction between these two types of multilevel selection has im-
plications for how group fitness should be measured. In the case of MLS1,
defining group fitness as the average or total fitness of the individuals in the
group is appropriate because natural selection is operating to maximize the
expected number of offspring individuals. However, in the case of MLS2, it is
the number of offspring groups that is being selected for and, as Damuth and
Heisler (1988, p. 415) note, with MLS2 “group fitness need not (and often will
not) be the same as mean individual fitness.”

Michod (2005) describes the emergence of multicellularity as a transi-
tion from MLS1 to MLS2. The challenge is to determine how this transition
took place. He and his collaborators have employed a number of different
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approaches to analyze this problem. The most relevant one here is the op-
timization approach developed by Michod et al. (2006). They are primarily
interested in understanding how germ-soma specialization and the emergence
of a multicellular organism arise, which they investigate by employing a life-
history analysis of the two components of fitness—viability and fecundity.
They argue that it is the shape of the constraint set describing the feasible
trade-offs between viability and fecundity that accounts for these phenomena.
Moreover, the nature of the trade-offs at the group level (i.e., the curvature
of the function describing the group-level trade-offs) is initially determined
by the trade-offs at the cell level, but then the group-level trade-offs diverge
from the cell-level trade-offs as the transition progresses.4 In this way, an
explanation for the transition from MLS1 to MLS2 is obtained.

But an analysis of the constraint is only half the story. In order to know
how group fitness is maximized given the constraint, one needs to know how
fitness is measured. The group fitness index that is used cannot be the average
or total fitness of the individual cells, otherwise it would not be possible to
capture the gains to group fitness that arise from germ-soma specialization.
It is for this reason that Michod et al. (2006) need to introduce a new in-
dex of group fitness. Furthermore, in order to show that the emergence of a
new biological entity—the multicellular organism—is fitness enhancing, it is
necessary to have a single group fitness index that can be used whatever the
degree of interrelatedness among the individual cells.

Our concern is with the functional form of the group fitness index, not
with the fitness optimization problem or its solution. That is, we are interested
in how group fitness is related to the characteristics of the individuals that
comprise the group.

While several factors are involved in shaping an evolutionary transition,
increasing group size plays a prominent role (Michod and Nedelcu, 2003; Mi-
chod, 2005). Whether a larger group is advantageous depends on its benefits
and costs, which in turn depend on the stage of the transition. For example,
for a multicellular organism, a larger organism may more effectively benefit
from germ-soma specialization and may be better able to protect itself from
predators. However, a larger organism may also make it more difficult for re-
sources to be transported to the cells from the organism’s environment and
it may make reproduction more difficult. Michod and his collaborators (e.g.,
Michod and Nedelcu, 2003; Michod, 2005) argue that the formation of cooper-
ative interactions between individuals and the emergence of group-level traits
that align the interests of the individuals and the group are fundamental for
the development of the group as a Darwinian population. Group size plays
an important role in these processes. Therefore, if an index of group fitness
4 Formally, they argue that the function showing how maximum group viability

is related to group fecundity is concave for unicellular organisms, but becomes
increasingly convex as the transition to multicellularity progresses due to the
increased cost of reproduction as group size increases.
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is to be used to help explain the emergence of a new, higher-level Darwinian
population, the index must allow for variable group size.

3 The MVSHN Index

For each positive integer n, we are interested in measuring the fitness of a
biological group composed of n individuals. In Michod et al. (2006), the group
is an organism and the individuals are the cells that comprise it. The organism
is unicellular if n = 1 and it is multicellular otherwise. We let N denote the set
of positive integers. Thus, N is the set of possible group sizes. While feasibility
constraints may limit the size of groups in practice, here we are not concerned
with feasibility, and so do not put any bound on group size. None of the points
we make depend on this assumption.5 We do not distinguish between distinct
collections of individuals that exhibit the same physical characteristics. Thus,
we can index the individuals in a group of size n by the integers 1 through n.
With this convention, individual i is part of the group if and only if the group
has at least i members.

We consider the following sets and vectors in Euclidean spaces. The real
line is R, the nonnegative real line is R+, the n-dimensional Euclidean space is
R

n, and the nonnegative orthants of R
n and R

2n are R
n
+ and R

2n
+ , respectively.

Associated with each individual i is a viability level vi and a fecundity
level bi. Viability is a measure of an organism’s ability to perform vegetative
functions, whereas fecundity measures its reproductive capacity. Naturally,
vi and bi are nonnegative. We assume that, in principle, vi and bi can take
on any nonnegative value. It is possible to place upper bounds on the values
of the individual viabilities and fecundities without affecting our analysis,
but, for simplicity, we suppose that these values are unbounded. If individual
viability is interpreted as being the probability of surviving to some stage in
the group’s development (e.g., until the individual is able to reproduce if it
has this capability), then vi would be bounded above by one.

For a group of size n, the viability profile v = (v1, . . . , vn) and the fecundity
profile b = (b1, . . . , bn) are both vectors in R

n
+. Thus, the viability-fecundity

profile (v,b) for a group with n individuals is a vector in R
2n
+ . Because the

group size n can be any positive integer, the set of all possible viability-
fecundity profiles is Ω = ∪n∈NR

2n
+ .

The fitness of individual i is

fi = vibi,

the product of its viability and fecundity. Therefore, the total group fitness of
a group of size n is
5 It is straightforward to modify our analysis to take account of a finite upper limit

on the size of a group.
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C =
n∑

i=1

vibi.

Average group fitness is C/n. While C and C/n are the standard ways of
measuring group fitness, as we have noted, they cannot capture the fitness
advantages that are obtained by germ-soma specialization in a multicellular
organism. When there is a complete separation of vegetative and reproductive
functions, soma cells have zero fecundity and germ cells have zero viability.
Hence, the values of C and C/n are zero even though the group may exhibit
considerable fitness.

The MVSHN index of group fitness captures the benefits to the group from
the vegetative-reproductive division of labor. Michod et al. (2006) measure
group viability v and group fecundity b by taking the sum of the individual
values. For a group of size n,

v =
n∑

i=1

vi

is the group’s viability and

b =
n∑

i=1

bi

is its fecundity. The MVSHN index of group fitness M is the product of group
viability and group fecundity. That is,

M = vb =

(
n∑

i=1

vi

) (
n∑

i=1

bi

)
.

With this measure of group fitness, germ-soma specialization can contribute
to the group’s viability and fecundity and, hence, to its overall fitness. Even
if an individual does not use the resources available to it to invest in, say,
vegetative functions, it can nevertheless make a substantial contribution to
group fitness by using them instead for reproductive purposes. This is simply
not possible if average or total group fitness is used to measure group fitness.6

In addition to taking account of any group benefits that accrue from the
vegetative-reproductive division of labor, the MVSHN index does not require
that individuals exhibit fitness in order for the group to do so. Indeed, if there
is complete germ-cell specialization, no individual has any fitness. Thus, the
MVSHN index captures what Michod and Nedelcu (2003) and Michod (2005)
argue is an important feature of the kind of evolutionary transition exem-
plified by a unicellular-multicellular transition—at the end of the transition,
6 Michod et al. (2006) normalize the value of their index by dividing by n2 when

comparing it with average group fitness. This amounts to replacing v and b with
their individual averages. For a fixed number of individuals, it is of no consequence
whether group fitness is measured using the indices C and M or their normalized
versions. Okasha (2009) uses the normalized indices.
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the individuals are no longer Darwinian populations themselves. Rather, the
transference of fitness from the individuals to the group is complete.7

Defining group viability and fecundity as additive functions of the individ-
ual viabilities and fecundities is a simplifying assumption, but one that Michod
et al. (2006) regard as being reasonable for organisms like the volvocine green
algae that they use as a model system. They do, however, raise some reserva-
tions about treating the individual contributions to group viability additively.
Volvocine green algae have flagella that are used to move cells in an aque-
ous environment towards light so that photosynthesis can take place (Miller,
2010). If flagellar motility is used as a proxy for viability, an additive rela-
tionship between the overall motility of the group and the motilities of the
individuals is unlikely to hold in large, well-integrated groups.8

Michod et al. (2006) believe that defining group fitness as the product of
group viability and group fecundity is appropriate for groups with discrete
generations, such as the volvocine green algae. In addition, they note that
their qualitative results concerning the benefits of individual specialization of
function are valid more generally for any group fitness index that attains its
lowest value of zero when either v or b is zero and that is increasing in either
argument when they are both positive.

A group fitness ordering is an ordering R of the viability-fecundity profiles
in Ω.9 The statement that (v,b)R(v′,b′) is interpreted as meaning that the
group exhibits at least as much fitness with the viability-fecundity profile
(v,b) as it does with (v′,b′). These two profiles may or may not have the same
number of individuals. The asymmetric (“is more fit than”) and symmetric
(“is equally fit as”) factors of R are P and I, respectively.10 In order to
determine the implications of group fitness maximization, the group fitness
ordering of the viability-fecundity profiles is needed, but not the group fitness
index that is used to numerically represent this ordering.

The MVSHN index of group fitness defines the MVSHN group fitness
ordering RM obtained by setting, for all n, n′ ∈ N, (v,b) ∈ R

2n
+ , and

(v′,b′) ∈ R
2n′
+ ,

7 Okasha (2006, p. 238) regards this view as being overly restrictive and offers
examples in which the individuals remain Darwinian populations at the end of
an evolutionary transition.

8 In an appendix to their article, Michod et al. (2006) show that germ-soma special-
ization can still be optimal if the individual contributions to group viability are
not additive. However, they do not explicitly construct an index of group fitness
with nonadditive viabilities.

9 A binary relation R on a set S is an ordering if it is reflexive (for all s ∈ S, sRs),
complete (for all distinct s, t ∈ S, sRt or tRs), and transitive (for all r, s, t ∈ S,
[rRs and sRt] ⇒ rRt).

10 For a binary relation R on a set S, the asymmetric factor P and symmetric
factor I are defined as follows: for all s, t ∈ S, sP t ⇔ [sRt and ¬(tRs)] and
sIt ⇔ [sRt and tRs].
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(v,b)RM (v′,b′) ⇐⇒
(

n∑
i=1

vi

) (
n∑

i=1

bi

)
≥

⎛
⎝ n′∑

i=1

v′i

⎞
⎠

⎛
⎝ n′∑

i=1

b′i

⎞
⎠ .

In other words, the viability-fecundity profile (v,b) is said to exhibit at least
as much group fitness as (v′,b′) if and only if the former has at least as large
a value of the MVSHN index as the latter.

4 Group Fitness Functionals

Okasha (2009) takes a more foundational approach to measuring group fitness
by investigating how group fitness depends on the characteristics of the group
and its constituent individuals, and on the environment that they operate
in. The formal framework used by Okasha presupposes that group size is
fixed. In this section, we follow Okasha in making this assumption. However,
because increases in the number of group members play an important role
in evolutionary transitions, we shall consider variable group size in a later
section. Individual and group fitness coincide when n = 1, so we suppose that
group size n is at least two. Let N = {1, . . . , n} denote the set of individuals
in the group.

An alternative describes all aspects of the state of the world that are rele-
vant for the group. These would include descriptions of the nutrients available
to the individuals, their physical relationships with one another, how tasks are
allocated between them, what predators threaten them, and so on. Let A be
the set of these alternatives. Okasha assumes that A is finite, but this is not
necessary. We only require that A contains at least three alternatives. The
objective is to order these alternatives according to how fit the group is with
them. The set of possible orderings of A is R.

The fitness of each individual in the group depends on the alternative in
A that describes the situation it is in. Formally, for each individual i ∈ N ,
this relationship is described by a fitness function Fi : A → R+ that specifies,
for each alternative a ∈ A, the fitness Fi(a) of individual i with alternative a.
For an individual that has completely specialized in vegetative or reproductive
functions, this value is zero. A fitness function profile is a list F = (F1, . . . , Fn)
that specifies the fitness function of each individual in the group. Thus, F (a) =
(F1(a), . . . , Fn(a)) is an n-vector of numbers describing the fitness levels of
every individual with the alternative a. Let F denote the set of all conceivable
fitness function profiles. It may not be necessary to consider all profiles in F .
Let Df ⊆ F denote the profiles that are considered.11

Okasha introduced the concept of a group fitness functional to describe
the dependence of the ordering of A in terms of group fitness on the profile of
fitness functions.
11 We use the superscript f when the individual characteristics being considered are

fitnesses and the superscript vb when they are viabilities and fecundities.
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Group Fitness Functional. A group fitness functional is a mapping Gf :
Df → R.

It is convenient to let Rf
F denote the ordering Gf (F ) of A obtained from the

profile F .
A group fitness functional is a biological reinterpretation of the concept of

a social welfare functional introduced by Sen (1970). In Sen’s formulation, N
is a set of people, A is a set of alternatives that are to be socially ordered,
and Fi is the utility function of the ith individual. A social welfare functional
specifies a social ordering of the alternatives for each profile of utility functions
in some domain Df .

We focus on three of the axioms that Okasha considered for a group fitness
functional. In their social welfare functional interpretations, they are known
as the welfarism axioms.

Unrestricted Domainf . The domain Df of the group fitness functional Gf

is all of F .

This axiom requires that it be possible to determine an ordering of the
alternatives in A no matter how the individual fitnesses depend on the alter-
natives. When considering the reasonableness of this axiom, it should be borne
in mind that we are only focusing on the objective function in the group fitness
optimization problem. Some individual fitness functions may not be feasible
because they violate physical constraints, but that is not relevant when con-
structing a measure of group fitness.

Pareto Indifferencef . For any pair of alternatives a, a′ ∈ A and any profile
of fitness functions F ∈ Df , if F (a) = F (a′), then aIf

F a′.

Informally, for a given fitness function profile, this axiom says that if the
fitness obtained with alternative a is the same as that obtained with a′ for
each individual, then the group exhibits the same overall fitness with either
of these alternatives.12

Binary Independence of Irrelevant Alternativesf . For any pair of al-
ternatives a, a′ ∈ A and any pair of profiles of fitness functions F, F ′ ∈ Df , if
F (a) = F ′(a) and F (a′) = F ′(a′), then aRf

F a′ if and only if aRf
F ′a′.

This axiom implies that the ranking of any two alternatives in terms of
group fitness does not depend on the individual fitnesses obtained with any
of the other alternatives. An alternative is a complete description of the state
of the world relevant for the group’s fitness, so different possible states are
irrelevant for group fitness in the states that are being considered. Moreover, if
the individual fitnesses obtained with a are the same with both the profiles F

12 This axiom is named after the Italian economist-sociologist Vilfredo Pareto, who
introduced a related criterion for ranking vectors of utilities.
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Table 1. Fitness consequentialism

a a′ a′′ a′′′

F (2, 3) (4, 1)
F ′ (2, 3) (4, 1)
F ′′ (2, 3) (4, 1) (2, 3) (4, 1)

and F ′ and the same is true with a′, then the ranking of these two alternatives
in terms of group fitness must be the same with both profiles.

An implication of these three axioms is that the only information needed
to know how to rank alternatives in terms of group fitness is the individual
fitnesses obtained with them.

Theorem 1. For a group of size n ≥ 2, if a group fitness functional Gf : Df →
R satisfies Unrestricted Domainf , then it satisfies Pareto Indifferencef and
Binary Independence of Irrelevant Alternativesf if and only if there exists an
ordering Rf of R

n
+ such that for every fitness function profile F ∈ Df and

every pair of alternatives a, a′ ∈ A,

aRf
F a′ ⇐⇒ F (a)RfF (a′).

Theorem 1 is simply a restatement in biological terms of the welfarism
theorem for social welfare functionals (see Bossert and Weymark, 2004, The-
orem 2.2). Welfarism is the principle that requires the social ranking of alter-
natives to only depend on the utilities achieved with them.

The group fitness functional Gf determines an ordering of the alternatives
for each profile of fitness functions in its domain. With Unrestricted Domainf ,
there are an infinite number of such profiles and, hence, an infinite number of
orderings. What Theorem 1 shows is that all of these orderings are coded in
a single ordering Rf of the nonnegative orthant in Euclidean n-space if it is
additionally assumed that Pareto Indifferencef and Binary Independence of
Irrelevant Alternativesf are satisfied. This ordering ranks vectors of achieved
individual fitnesses. For example, for the profile F , the alternatives a and a′ are
ranked the same way that Rf ranks the individual fitness levels F (a) obtained
with a and the individual fitness levels F (a′) obtained with a′. In other words,
the ordering of the alternatives in terms of group fitness is determined solely
on the basis of the individual fitnesses obtained with them. This is a form
of consequentialism. We call it fitness consequentialism because it is only the
fitness consequences of an alternative that matter.

We illustrate why the assumptions of Theorem 1 entail fitness consequen-
tialism using the example in Table 1. In this example, there are two individuals
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in the group, each row is a profile of fitness functions, and each column is an
alternative. In any row and column, the first entry is the fitness of individual 1
and the second is the fitness of individual 2. Blank entries are left unspecified,
as are the fitnesses associated with any other alternative not listed in the col-
umn headings. For concreteness, suppose that when the profile is F that the
group is fitter with a than with a′. With the profile F ′, the individual fitnesses
are the same with a′′ (resp. a′′′) as they are with a (resp. a′) when the profile
is F . If the procedure for determining group fitness is fitness consequentialist,
then the group must be fitter with a′′ than it is with a′′′ with the profile F ′.

To see why this is the case, consider the profile F ′′ in the third row of
the table. The existence of a profile with this pattern of individual fitnesses is
guaranteed by Unrestricted Domainf . The individual fitnesses for alternatives
a and a′ coincide for the profiles F and F ′′. Because the group is fitter with
a than with a′ when the profile is F , by Binary Independence of Irrelevant
Alternativesf , the same must be true with the profile F ′′. With the latter
profile, Pareto Indifferencef implies that group fitness is the same with a and
a′′ and with a′ and a′′′. For the profile F ′′, because the group is fitter with a
than with a′, using the transitivity of the fitness relation twice then implies
that it is also fitter with a′′ than with a′′′. Invoking Binary Independence of
Irrelevant Alternativesf once more, it then follows that the same is true with
the profile F ′, as required by fitness consequentialism.13

Using the total group fitness index C to rank the alternatives in A is
obviously fitness consequentialist. However, constructing this ranking using
the MVSHN group fitness index M or its associated group fitness ordering
RM is not. With fitness consequentialism, only the fitnesses of the individuals
are considered when ranking the alternatives in A in terms of group fitness.
The ordering RM is a ranking of viability-fecundity profiles. When RM is
used to determine a group fitness ranking of the alternatives, it takes account
of both the viability and fecundities of the individuals so as to capture the
group fitness advantage that emerges when the individuals begin to specialize
in vegetative and reproductive functions. In other words, with the MVSHN
index M or ordering RM , it is not necessarily true that the group fitness
obtained with a and a′ are the same when the individual fitnesses are equal
in these two alternatives.

The violation of fitness consequentialism with the MVSHN index is illus-
trated in Table 2, which modifies the first two lines of Table 3 in Okasha (2009)
by using total rather than average values. The fitness of each individual is 6
with either a or a′ and, hence, these alternatives are declared to exhibit the
same group fitness using the index of total group fitness C. With alternative
a, both individuals have the same viability and fecundity, so there is no func-
tional specialization. With a′, on the other hand, there is some specialization,
with individual 2 investing relatively more in vegetative functions than in-
13 The example involves four distinct alternatives but the argument also applies if

there are only three alternatives in A.
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Table 2. Fitness consequentialism violated with the MVSHN index

alternative (v1, b1) (v2, b2) C M

a (2, 3) (2, 3) 12 24
a′ (2, 3) (3, 2) 12 25

dividual 1 and vice versa for reproductive functions. The MVSHN index M
captures the group fitness advantage of this division of labor, ranking a′ above
a.

Okasha (2009) argues that the MVSHN index violates both Pareto Indiffer-
encef and Binary Independence of Irrelevant Alternativesf when the group
fitness functional framework is used to evaluate its merits. For example, in
Table 2, the individual fitnesses are the same in both alternatives, but M
does not assign them the same group fitness value, thereby violating Pareto
Indifferencef . However, the problem is more fundamental than that. The very
definition of a group fitness functional rules out considering individual viabil-
ities and fecundities when determining a group fitness ranking of the alterna-
tives. However, as Michod et al. (2006) argue, these are essential components
of group fitness. This suggests that we need a richer framework in order to
model the contributions of the individual viabilities and fecundities to group
fitness. In the next section, we propose that a more appropriate framework
for this purpose is a biological reinterpretation of an extensive social welfare
functional.

Okasha (2009) suggests that the violation of Pareto Indifferencef (or of
a related Pareto condition) can help explain the decoupling of group fit-
nesses from the individual fitnesses in an evolutionary transition (Michod and
Nedelcu, 2003; Michod, 2005; Okasha, 2006). For example, at the beginning
of a unicellular-multicellular transition, there is no germ-soma specialization,
and so group fitness is simply some function of the individual cell fitnesses.
However, as the transition proceeds, group fitness cannot be determined from
the cell fitnesses alone; there is what Okasha calls a “Pareto violation.” When
the transition is complete, the cells are no longer Darwinian populations and,
therefore, do not have their own fitnesses. We believe that Okasha’s focus on
Pareto violations is misplaced. In order for social choice theory to aid in our
understanding of fitness decoupling, the framework used must allow the com-
ponents of fitness—viability and fecundity—to play a role in the analysis. It
must also allow for the number of individuals in the group to vary.
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5 Extensive Group Fitness Functionals

Okasha’s conceptualization of the MVSHN index violates fitness consequen-
tialism because it fails to capture individual differences at the level of the
components of fitness. By using an alternative approach borrowed from ex-
tensive social choice theory, the contributions of the individual viability and
fecundity functions to group fitness can be accounted for. The MVSHN index
satisfies a different form of consequentialism, one that can be accommodated
in our approach. In order to compare our approach with that of Okasha, we
first restrict attention to situations in which the number of individuals is fixed.
We deal with the more general case of variable group size in the next section.

As in the preceding section, N is the set of individuals in the group, A is
the set of alternatives, and R is the set of orderings of A, where each element
of R is interpreted as being an ordering of the alternatives in A in terms of
group fitness. Now, two characteristics are used to describe the situations of
the individuals, viability and fecundity. For each individual i ∈ N , the viability
function Vi : A → R+ specifies, for each alternative a ∈ A, the viability Vi(a)
of individual i with alternative a. Similarly, for each individual i ∈ N , the
fecundity function Bi : A → R+ specifies, for each alternative a ∈ A, the
fecundity Bi(a) of individual i with alternative a. A viability function profile is
a list V = (V1, . . . , Vn) of the individual viability functions. The corresponding
list B = (B1, . . . , Bn) of the fecundity functions is a fecundity function profile.
The pair (V, B) is a viability-fecundity function profile.

Given a ∈ A, V (a) = (V1(a), . . . , Vn(a)) and B(a) = (B1(a), . . . , Bn(a))
are n-vectors of nonnegative numbers that respectively list the viabilities and
fecundities of each individual with a. For a group of size n, let Vn and Bn

respectively denote the set of all viability function profiles and the set of all
fecundity function profiles for which the individual viabilities and fecundities
are nonnegative for each alternative in A. Let Dvb ⊆ Vn ×Bn be the set of all
viability-fecundity function profiles under consideration.

We use an extensive group fitness functional instead of Okasha’s group fit-
ness functional to model the dependence of group fitness on the characteristics
of the individuals in the group.

Extensive Group Fitness Functional. An extensive group fitness func-
tional is a mapping Gvb : Dvb → R.

The functional Gvb assigns a group fitness ordering of the alternatives in
A to each viability-fecundity function profile in Dvb. Unlike a group fitness
functional, an extensive group fitness functional takes account of the contri-
butions of the individual viabilities and fecundities to group fitness, not just
the individual fitnesses. Indeed, it is not necessary to attribute any fitness to
the individuals in order to use an extensive group fitness functional. Hence,
when analyzing a unicellular-multicellular transition, our framework can be
used even when there is complete germ-soma specialization, whereas Okasha’s
framework cannot. Moreover, if, in fact, only individual fitnesses matter for
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group fitness, as with multilevel selection 1 (Damuth and Heisler, 1988), this
can be accommodated in our framework by aggregating the individual viabil-
ities and fecundities into individual fitnesses.

An extensive group fitness functional is a biological analogue of an ex-
tensive social welfare functional. The concept of an extensive social welfare
functional was introduced by Roberts (1995) as a generalization of a social
welfare functional. With an extensive social welfare functional, there are out-
side evaluators in addition to the individuals whose well-beings are being
considered. Each evaluator attributes a profile of utility functions to the indi-
viduals, but because they may make different intrapersonal and interpersonal
comparisons of utility, different evaluators need not have the same profile. An
extensive social welfare functional determines a social ordering of the alterna-
tives as a function of these profiles. Roberts calls this the “double aggregation
problem” because the aggregation involves both the utilities of the individuals
and the opinions of the evaluators. Ooghe and Lauwers (2005) have provided
a comprehensive analysis of the implications of different sets of axioms for the
functional form of an extensive social welfare functional.

The characteristics used to describe the situations of the individuals in a
biological group are the analogues of the outside evaluators. In our applica-
tion, there are only two characteristics—viability and fecundity. The viability
function profile corresponds to the profile of utility functions for one evalu-
ator and the fecundity function profile corresponds to the profile of utility
functions for a second evaluator. While we only use two characteristics to
describe the contributions of individuals to group fitness, the framework is
general enough to allow for more individual characteristics to be considered
if they are relevant.

There are extensive group fitness functional counterparts to each of the
three welfarism axioms considered in the preceding section. We use the same
names for these axioms, but now indexed with the superscript vb. In these
axioms, Rvb

V B denotes the ordering Gvb(V, B) of A obtained when the profile
is (V, B).

Unrestricted Domainvb. The domain Dvb of the extensive group fitness
functional Gvb is all of Vn × Bn.

Pareto Indifferencevb. For any pair of alternatives a, a′ ∈ A and any
viability-fecundity function profile (V, B) ∈ Dvb, if (V (a), B(a)) = (V (a′),
B(a′)), then aIvb

V Ba′.

Binary Independence of Irrelevant Alternativesvb. For any pair of al-
ternatives a, a′ ∈ A and any pair of viability-fecundity function profiles (V, B),
(V ′, B′) ∈ Dvb, if (V (a), B(a)) = (V ′(a), B′(a)) and (V (a′), B(a′)) = (V ′(a′),
B′(a′)), then aRvb

V Ba′ if and only if aRvb
V ′B′a′.

If Unrestricted Domainvb is satisfied, then it is possible to determine a
group fitness ordering of the alternatives in A no matter how the individual
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viabilities and fecundities depend on them. With Pareto Indifferencevb, for
a given viability-fecundity function profile, overall group fitness is the same
in two alternatives if each individual has the same viability and fecundity
in them. As with Binary Independence of Irrelevant Alternativesf , Binary
Independence of Irrelevant Alternativesvb precludes the group fitness ranking
of two alternatives from depending on the characteristics of the individuals
with any other alternative. However, what are considered to be the relevant
features of the alternatives being compared are the individual viabilities and
fecundities, not the individual fitnesses.

Taken together, these three axioms imply that the ordering of the alterna-
tives in terms of group fitness only depends on the individual viabilities and
fecundities obtained with them, what we call viability-fecundity consequential-
ism.

Theorem 2. For a group of size n ≥ 2, if an extensive group fitness func-
tional Gvb : Dvb → R satisfies Unrestricted Domainvb, then it satisfies Pareto
Indifferencevb and Binary Independence of Irrelevant Alternativesvb if and
only if there exists a group fitness ordering Rvb of R

2n
+ such that for every

viability-fecundity function profile (V, B) ∈ Dvb and every pair of alternatives
a, a′ ∈ A,

aRvb
V Ba′ ⇐⇒ (V (a), B(a))Rvb(V (a′), B(a′)).

Theorem 2, like Theorem 1, is a biological reinterpretation of the wel-
farism theorem described above. Now, each individual viability and fecundity
function corresponds to the utility functions of two distinct individuals in the
social welfare functional version of the theorem.14

The MVSHN group fitness ordering RM only takes account of the indi-
vidual viabilities and fecundities, and so it satisfies viability-fecundity conse-
quentialism. Unlike with fitness consequentialism, the components of fitness
matter when evaluating group fitness. Because the viability-fecundity profiles
for the two alternatives considered in Table 2 are different, they need not be
regarded as exhibiting the same group fitness. Indeed, they are not by the
MVSHN index.

If characteristics of the individuals other than their viabilities and fecun-
dities are relevant for measuring group fitness, the definition of a group fitness
functional can be modified to take them into account by adding additional
functions that measure the values of these characteristics to its list of inputs.
For example, in a honey bee colony, some non-reproductive bees forage for
food, while others defend the colony from predators. Hence, in addition to
fecundity, success at foraging and at defence are relevant characteristics.15

Our approach to measuring group fitness implicitly assumes that group
fitness only depends on the functional relationships between the relevant char-
acteristics of the individuals and the various possible states of the world (here,
14 See Ooghe and Lauwers (2005, Proposition 1) for a statement of the extensive

social choice version of the welfarism theorem.
15 We are indebted to Samir Okasha for this example.
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Table 3. Two-stage aggregation

individual vi bi fi

1 v1 b1 f1

2 v2 b2 f2

...
...

...
...

n vn bn fn

v b

the viability and fecundity functions). This is a form of reductionism. Provided
that this form of reductionism is valid, once all of the relevant characteristics
have been considered, the corresponding Unrestricted Domain, Pareto Indif-
ference, and Binary Independence of Irrelevant Alternatives axioms are all
natural restrictions to impose on the extensive group fitness functional. In
other words, group fitness should only depend on the characteristics of the
individuals once all of the relevant characteristics have been identified.

The form of reductionism that we are appealing to does not preclude se-
lection from taking place at both the individual and group levels. Rather, it
simply requires that group fitness be explicable in terms of the characteristics
of the individuals. Okasha (2006, p. 140) argues that “[a]n MLS2 explana-
tion of a collective [i.e., group] character need assume nothing about how the
character depends on underlying particle [i.e., individual] characters, so it is
inherently non-reductionist.” In contrast, MLS1 is reductionist in the sense
that the characteristics of the group are explained by the characteristics of
the individuals. While, in principle, the characteristics of a group subject to
MLS2 need not be explicable in terms of the characteristics of the individu-
als, it may nevertheless be the case that they are. Our approach, and those of
Michod et al. (2006) and Okasha (2009), presuppose that group fitness, but
not necessarily any other group characteristic, is reductionist.

A viability-fecundity profile can be thought of as being a matrix with n
rows and two columns, as illustrated in Table 3. The entry in the first (resp.
second) column of the ith row is individual i’s viability (resp. fecundity). An
index of group fitness assigns each of these matrices a number, which is then
used to order the possible matrices according to the group fitness that they ex-
hibit. With viability-fecundity consequentialism, the value of the group fitness
index can be any function of the entries in this matrix. Fitness consequential-
ism requires that the index be computed using a two-stage procedure in which
the fitness of each individual is first calculated from its viability and fecundity
values and then the individual fitnesses are aggregated into an overall measure
of group fitness. In other words, the two columns in Table 3 are replaced with
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a single column whose entries are the individual fitnesses, which are then used
to compute the value of the group fitness index. This a row-first aggregation
procedure. With a column-first aggregation procedure, the entries in the first
and second columns, respectively, are first aggregated into measures of group
viability and group fecundity, which are then aggregated into an overall mea-
sure of group fitness. That is, the two columns are replaced by a single row
whose entries are group viability and group fecundity, as shown in Table 3,
and these two values are then used to determine the value of the group fitness
index. The total group fitness index C uses row-first aggregation, whereas the
MVSHN index M uses column-first aggregation.16

Both row-first and column-first aggregation place strong restrictions on
the functional form of a group fitness index. Neither restriction is implied by
viability-fecundity consequentialism. Any row-first aggregation procedure, not
just the total group fitness index C, precludes taking account of the gains from
the specialization of individuals into vegetative and reproductive functions.
Column-first aggregation procedures do not.17

For a fixed group size n, the extensive group fitness functional GM : Vn ×
Bn → R underlying the MVSHN group fitness ordering RM is defined by
setting

aRM
V Ba′ ⇐⇒ (V (a), B(a))RM (V (a′), B(a′))

for all (V, B) ∈ Vn × Bn and all a, a′ ∈ A. By construction, GM satisfies Un-
restricted Domainvb, Pareto Indifferencevb, and Binary Independence of Irrel-
evant Alternativesvb. This functional does not satisfy Pareto Indifferencef or
Binary Independence of Irrelevant Alternativesf , nor should it if the individ-
ual viabilities and fecundities matter for group fitness. The extensive group
fitness functional GM satisfies a Pareto condition and captures the benefits
from functional specialization, so it cannot be a Pareto violation per se that
accounts for the decoupling of individual and group fitness during an evolu-
tionary transition.

6 Variable Group Size

The use of an extensive group fitness functional for a fixed group size allows
us to take account of the two components of the individuals’ fitnesses when
determining group fitness, but it does not allow us to take account of group
size. Group size is an important determinant of group fitness, particularly
16 We are grateful to Burak Can for suggesting that it would be useful to describe

the indices C and M in terms of two-stage aggregation.
17 Row-first and column-first aggregation procedures are commonly used in the mea-

surement of multidimensional inequality (see Weymark, 2006). The analogue of
the matrix in Table 3 has a row for each individual and a column for each of the
components of well-being (e.g., income, health status, educational attainment,
etc.) being considered.
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during an evolutionary transition. We now consider how our analysis needs to
be modified so as to allow for variable group size.

As above, the set of positive integers N is the set of possible group sizes,
A is the set of alternatives, and R is the set of possible orderings of A, with
each ordering R ∈ R interpreted as being an ordering of the alternatives in A
according to how fit the group is with them. The description of an alternative
now includes the size of the group. For each alternative a ∈ A, let N(a)
denote the set of individuals that constitute the group and let n(a) denote the
number of individuals in this group. Using the convention introduced earlier,
N(a) consists of individuals 1 through n(a). For each positive integer i, let Ai

denote the set of alternatives in A for which there are at least i individuals in
the group. Thus, i is part of the group when the alternative is a if and only
if a ∈ Ai. We assume that for any group size n ≥ 1, there are at least three
alternatives in An.

The viability and fecundity of each individual in the group depends on
the alternative that describes the situation it is in. If the group size with
alternative a is less than i, then either individual i does not exist or it is not
part of the group. In the latter case, how viable and fecund it is is irrelevant
for measuring the group’s fitness. As a consequence, individual i’s viability
and fecundity functions only need to be defined for the alternatives in Ai.
Formally, for each individual i ∈ N, the functions that show the dependence
of viability and fecundity on the relevant alternatives are the viability function
Vi : Ai → R+ and fecundity function Bi : Ai → R+, respectively. Profiles of
these functions now have a countably infinite number of components, one
for each potential group member. That is, a viability function profile is the
ordered list V1, V2, . . ., which we write as V = (Vi)i∈N. Similarly, a fecundity
function profile is the ordered list B = (Bi)i∈N. The sets of all such profiles
are V and B, respectively. As above, (V, B) is a viability-fecundity function
profile. For each alternative a ∈ A, the viability and fecundity levels of the
n(a) individuals in the group are V (a) = (V1(a), . . . , Vn(a)(a)) and B(a) =
(B1(a), . . . , Bn(a)(a)), respectively. An extensive group fitness functional is
defined as in the preceding section, but now its domain Dvb is a subset of
V × B.18

The three welfarism axioms need to be reformulated to allow for variable
group size.

Extended Unrestricted Domainvb. The domain Dvb of the extensive group
fitness functional Gvb is all of V × B.
18 Sen’s social welfare functionals have been generalized to allow for variable pop-

ulation size by Blackorby and Donaldson (1984). See Blackorby, Bossert, and
Donaldson (2005) for a detailed investigation of population issues in ethics, so-
cial choice, and welfare economics using this framework. No variable population
version of an extensive social welfare functional has been used up to now.
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Extended Pareto Indifferencevb. For any pair of alternatives a, a′ ∈ A for
which n(a) = n(a′) and any viability-fecundity function profile (V, B) ∈ Dvb,
if (V (a), B(a)) = (V (a′), B(a′)), then aIvb

V Ba′.

Extended Binary Independence of Irrelevant Alternativesvb. For any
pair of alternatives a, a′ ∈ A and any pair of viability-fecundity func-
tion profiles (V, B), (V ′, B′) ∈ Dvb, if (V (a), B(a)) = (V ′(a), B′(a)) and
(V (a′), B(a′)) = (V ′(a′), B′(a′)), then aRvb

V Ba′ if and only if aRvb
V ′B′a′.

The interpretation of these axioms is the same as in their fixed group
size counterparts. Note that Extended Pareto Indifferencevb only places re-
strictions on the comparison of alternatives for which the same number of
individuals are in the group, whereas with Extended Binary Independence of
Irrelevant Alternativesvb, group size may be different in the two alternatives
being considered.

Recall that Ω = ∪n∈NR
2n
+ . When Extended Unrestricted Domainvb is satis-

fied, Ω is the set of all vectors of individual viabilities and fecundities that are
achievable with some alternative in A. Viability-fecundity consequentialism
requires that the ordering of alternatives in terms of group fitness is deter-
mined by a group fitness ordering Rvb of Ω. This form of consequentialism is
implied by our three variable group size axioms.

Theorem 3. If an extensive group fitness functional Gvb : Dvb → R sat-
isfies Extended Unrestricted Domainvb, then it satisfies Extended Pareto
Indifferencevb and Extended Binary Independence of Irrelevant Alternativesvb

if and only if there exists a group fitness ordering Rvb of Ω such that for every
viability-fecundity function profile (V, B) ∈ Dvb and every pair of alternatives
a, a′ ∈ A,

aRvb
V Ba′ ⇐⇒ (V (a), B(a))Rvb(V (a′), B(a′)).

Theorem 3 follows immediately from the variable population welfarism
theorem in Blackorby and Donaldson (1984, p. 31) by identifying each via-
bility and fecundity function with a utility function. We thus see that the
viability-fecundity consequentialism theorem for fixed group size, Theorem 2,
straightforwardly extends to variable group size comparisons. In other words,
the ordering of the alternatives in terms of group fitness only depends on
the individual viabilities and fecundities obtained with them. In particular,
it does not matter which viability-fecundity function profile generated these
viabilities and fecundities. Group size now matters when determining group
fitness because there are more individual viabilities and fecundities to take
account of with a larger group.

Theorem 3 is illustrated with Table 4. First, consider the viability-fecundity
function profile (V, B) and the alternatives a and a′. With alternative a, there
are two individuals in the group. Their viabilities and fecundities are shown in
the first line of the table. There is one more individual with the alternative a′.
In this case, the individual viabilities and fecundities are shown in the second



Measurement of Group Fitness 23

Table 4. Viability-fecundity consequentialism

(v1, b1) (v2, b2) (v3, b3) M

(V, B), a (2, 3) (3, 2) 25
(V, B), a′ (4, 1) (2, 3) (1,1) 35
(V ′, B′), a′′ (2, 3) (3, 2) 25
(V ′, B′), a′′′ (4, 1) (2, 3) (1,1) 35

line of the table. For concreteness, suppose that according to the group fitness
ordering Rvb, a′ exhibits more group fitness than a for the profile (V, B). Now,
consider the viability-fecundity function profile (V ′, B′) and the alternatives
a′′ and a′′′. In this case, the individual viabilities and fecundities are shown
in the last two lines of the table. The first two and the last two lines are the
same and, hence, are ranked the same way by Rvb. Viability-fecundity conse-
quentialism thus requires that a′′′ exhibits more group fitness than a′′ for the
profile (V ′, B′). Note that these are the rankings that would be obtained if
the group fitness ordering Rvb is the MVSHN group fitness ordering RM .

Michod and Nedelcu (2003), Michod (2005), and Okasha (2006, 2009) have
all argued that the early stages of an evolutionary transition are best described
as a multilevel selection 1 process, whereas once the group takes on its own
individuality, then the transition is best described in terms of multilevel se-
lection 2—there is fitness decoupling. The stages of an evolutionary transition
are typically positively correlated with group size. This suggests that group
fitness should be measured by the average or sum of the individual fitnesses
for small groups, but that some other measure that captures the benefits of
specialization into vegetative and reproductive functions should be used when
the size increases beyond some threshold. If this is correct, then neither the
index C nor the index M should be used to measure group fitness for all group
sizes. Our approach to measuring group fitness using an extensive group fit-
ness functional permits the way that the individual viabilities and fecundities
are aggregated to depend on group size. For example, for small groups, group
fitness might be measured by the index C, whereas for large groups it might
be measured by M , with possibly one or more other aggregation procures
used for intermediate sizes. There is therefore no need to appeal to Pareto
violations to elucidate the nature of fitness decoupling, as is done in Okasha
(2009).
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7 Concluding Remarks

We have argued that extensive social choice theory is a more appropriate
framework for modeling the measurement of group fitness in a biological hi-
erarchy than the one used by Okasha (2009). By drawing on the welfarism
theorems of social choice theory, we have identified the properties of an ex-
tensive group fitness functional that imply that viability-fecundity consequen-
tialism is satisfied. Extensive social choice theory provides a good analytical
framework for measuring group fitness. This framework is very flexible. For
example, the method used to aggregate the individual viabilities and fecun-
dities into a group fitness index can be made dependent on group size so as
to allow for fitness decoupling. In addition, if group fitness in fact depends on
more characteristics than the individual viabilities and fecundities, then the
extensive group fitness functional can be modified to take them into account.

The approach proposed here also opens up new directions for future re-
search. For example, rather than positing a functional form for a group fit-
ness index from the outset, one can instead first identify the properties that it
should satisfy and then determine which indices satisfy these properties. These
properties may well depend on the particular kind of biological entity that is
being considered (cell, organism, species, etc.), so one should not expect that
a single index of group fitness is appropriate in all circumstances.
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