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Résumé 

Les quatre principales activités de la gestion de risque thérapeutique comportent 
l’identification, l’évaluation, la minimisation, et la communication du risque.  Ce mémoire 
aborde les problématiques liées à l’identification et à la minimisation du risque par la 
réalisation de deux études dont les objectifs sont de: 1) Développer et valider un outil de 
« data mining » pour la détection des signaux à partir des banques de données de soins de 
santé du Québec; 2) Effectuer une revue systématique afin de caractériser les interventions 
de minimisation de risque (IMR) ayant été implantées. 

L’outil de détection de signaux repose sur la méthode analytique du quotient séquentiel de 
probabilité (MaxSPRT) en utilisant des données de médicaments délivrés et de soins 
médicaux recueillis dans une cohorte rétrospective de 87 389 personnes âgées vivant à 
domicile et membres du régime d’assurance maladie du Québec entre les années 2000 et 
2009. Quatre associations  « médicament-événement indésirable (EI) » connues et deux 
contrôles « négatifs » ont été utilisés. La revue systématique a été faite à partir d’une revue 
de la littérature ainsi que des sites web de six principales agences réglementaires. La nature 
des RMIs ont été décrites et des lacunes de leur implémentation ont été soulevées. 

La méthode analytique a mené à la détection de signaux dans l'une des quatre combinaisons 
médicament-EI. Les principales contributions sont: a) Le premier outil de détection de 
signaux à partir des banques de données administratives canadiennes; b) Contributions 
méthodologiques par la prise en compte de l'effet de déplétion des sujets à risque et le 
contrôle pour l'état de santé du patient.  La revue a identifié 119 IMRs dans la littérature et 
1,112 IMRs dans les sites web des agences réglementaires. La revue a démontré qu’il existe 
une augmentation des IMRs depuis l’introduction des guides réglementaires en  2005 mais 
leur efficacité demeure peu démontrée.  

 

Mots-clés : Gestion du risque thérapeutique, minimisation du risque, pharmacovigilance, 

data mining, détection de signaux. 
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Abstract 

The four main components of therapeutic risk management (RM) consist of risk detection 
(identification), evaluation, minimisation, and communication.  This thesis aims at 
addressing RM methodologies within the two realms of risk detection and risk 
minimisation, through the conduct of two distinct studies: i) The development and 
evaluation of a data mining tool to support signal detection using health care claims 
databases, and ii) A systematic review to characterise risk minimisation interventions 
(RMIs) implemented so far. 

The data mining tool is based on a Maximised Sequential Probability Ratio Test 
(MaxSPRT), using drug dispensing and medical claims data found in the Quebec health 
claims databases (RAMQ).  It was developed and validated in a cohort of 87,389 
community-dwelling elderly aged 66+, randomly sampled from all elderly drug plan 
members between 2000 and 2009.  Four known drug-AE associations and two "negative" 
controls were used. The systematic review on RMIs is based on a literature search as well 
as a review of the websites of six main regulatory agencies.  Types of RMIs have been 
summarized and implementation gaps identified. 

The data mining tool detected signals in one of four of the known drug-AE associations.  
Major contributions are: a) The first signal detection data mining tool applied to a Canadian 
claims database; b) Methodological improvements over published methods by considering 
the depletion of susceptibles effect and adjusting for overall health status to control for 
prescription channelling.   The review yielded 119 distinct RMIs from the literature and 
1,112 from the websites. The review demonstrated that an increase in RMI numbers among 
websites occurred since the introduction of guidances in 2005, but their effectiveness 
remains insufficiently examined. 

 

Keywords: Therapeutic risk management, risk minimisation, drug safety, 

pharmacovigilance, data mining, signal detection. 
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Chapter 1. Thesis Introduction 

1.1 Historical perspectives of drug safety surveillance and 

therapeutic risk management 

Between the years of 1956 and 1961, widespread use among pregnant women of the 

sedative thalidomide, was linked to the congenital malformation of phocomelia (deformed 

limbs) in almost 10,000 newborn babies world-wide[1.2.3]. These unfortunate cases were 

observed in 46 different countries, including Germany, England, and the United States. In 

fact, the “thalidomide tragedy” is the catastrophe that reformed the regulatory drug testing and 

drug approval processes on a global scale, eventually leading to the emergence of the field of 

pharmacovigilance, or safety surveillance[4].  Since then, regulatory agencies around the world 

have implemented surveillance methods, mainly based on spontaneous reporting in order to 

support timely signal detection, the identification of new AEs[5].. In parallel, 

pharmacovigilance regulations have been harmonized through the International Conference 

on Harmonization (ICH) E2E.  Although Canada is not formally part of ICH, it is an observer 

and also follows ICH E2E.  

 

Despite the success of medications at reducing morbidity and increasing life expectancy, 

drugs can also be associated with adverse events (AEs), some of which are serious, 

debilitating, and even life-threatening. In 2005, the Cox 2 Inhibitor, rofecoxib, and its 

reported link to myocardial infarct and stroke resulted in the product's withdrawal from the 

market, and the subsequent voluntary withdrawal of the entire class of drugs[6]. This subject 

has been largely debated [7,8], as some wonder what precautions could have been taken in 
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order to avoid or reduce the occurrence of these AEs, and whether i) limiting the product as a 

treatment of last resort to be used by those for whom other treatments had not been successful 

and; ii) more stringent adherence to the labelling instructions by prescribers; may have 

permitted this product to remain on the market. This would have allowed the continued and 

much-needed benefit for those individuals for whom rofecoxib was the only effective 

treatment[7],. 

The suggested rofecoxib activities described in points i) and ii) above are examples of  

possible components of a therapeutic risk management system/plan, i.e. a set of 

pharmacovigilance activities and interventions designed to identify, characterise, prevent or 

minimise risks relating to medicinal products, and the assessment of the effectiveness of those 

interventions. [9] 

1.2 Components of therapeutic risk management 

Risk management consists of four main activities: risk detection, risk assessment, risk 

minimisation and risk communication[9] A product is considered to be “safe” if it has an 

appropriate benefit-risk balance for the intended population and use i.e. if the clinical 

significance and probability of its beneficial effects outweigh the likelihood and medical 

importance of its harmful or undesirable effects[10]  

The goal of therapeutic risk management is to optimize the benefit-risk balance of a drug 

immediately after product launch.  To be more specific, it can be elaborated as an interactive 

process of (1) assessing a product’s benefit-risk balance, (2) developing and implementing 

tools to minimise its risks while preserving its benefits, (3) evaluating tool effectiveness and 

reassessing the benefit-risk balance, and (4) making adjustments, as appropriate, to the risk 

minimisation tools to further improve the benefit-risk balance[10].  Such "adjustments" are 

often incorporated into communication plans.  Risk minimisation consists of interventions 
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beyond labelling that aim at optimizing the benefit-risk profile of drugs.  Examples of RMI 

are communication materials and restricted distribution programs (also referred to as Risk 

Evaluation and Mitigation Strategies, REMS, in the US) [10]. 

1.3 Current challenges in risk detection and risk minimisation 

processes 

1.3.1 Risk detection challenges 

The limitations of pre-approval clinical trials at identifying AEs are well-known, mainly due 

to the restrictive inclusion/ exclusion criteria of trials which generally exclude individuals 

with certain co-morbidities and concomitant medications, as well as special populations such 

as children, pregnant women, and elderly patients [11]. Clinical trials also tend to enrol limited 

numbers of subjects, usually a maximum of a few thousands, which are inadequate to identify 

rare AEs or those with long delays of onset [12]. Furthermore, trial populations include patients 

with a pre-specified indication, which does not permit the study of off-label use, an important 

component of drug safety surveillance [11].  As a result, identification of many safety risks has 

historically occurred in the post-marketing setting through pharmacovigilance activities[13]..   

Pharmacovigilance is generally based on spontaneous reporting data: AEs are reported to 

pharmaceutical companies or regulatory organisations, by health care professionals (HCPs) or 

consumers who suspect that they may be experiencing a treatment-related medical event. As 

beneficial as these spontaneous reporting systems have been at identifying risks, they also 

have well-known limitations; the primary one being “underreporting” as in many instances 

HCPs or patients do not report these “side effects” as they do not “suspect” that they could in 

fact be due to the medications [14]. Other deterrents to reporting include time to complete the 

reporting form and lack of knowledge of surveillance systems [15]. Furthermore, in Canada and 
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most parts of the world, this process is voluntary, meaning that in many immeasurable cases 

even suspected[15] AEs may not be reported.   Reporting is also influenced by factors such as 

previous knowledge about a risk (i.e. "listed" effects), severity of the drug, and time since 

marketing. 

 

Central to signal detection through spontaneous reporting is the causality assessment: the 

evaluation of the likelihood that a particular treatment is the cause of an observed AE [16,17]...  

With the presence of a positive causality assessment, the evidence of association between AE 

and event is high, and the identification of a new risk by spontaneous reporting implies a 

strong association between the drug treatment and the occurrence of the event[18]  Thus, even a 

few well-documented cases can lead to generation of a signal, despite the under-reporting 

limitation of SRS [19]. In fact, the withdrawal from the market of many drugs has been due to 

reports of safety risks identified through SRS [20,21]. Examples of such drug-AE pairs include: 

fenfluramine for cardiac valvulopathy, terfenadine for drug interactions/ventricular 

arrhythmias, troglitazone for hepatotoxicity, cisapride for drug interactions/ventricular 

arrhythmias, astemizole for drug interactions/ventricular arrhythmias, cerivastatin sodium for 

rhabdomyolysis, and efalizumab for progressive multifocal leukoencephalopathy[22,23,24,25]. 

 

Other methods of safety surveillance include meta-analyses of randomized clinical trials. 

Some of these clinical trials may be post-marketing clinical trials that are organised to study 

the long-term safety of a medication, a new indication of the drug, or to provide additional 

supporting data of safety risks identified from SRS [21]. Some regulatory withdrawals that 

were based on results of randomized clinical trials include: alosetron hydrochloride for 

ischemic colitis and complications of constipation, encainide due to excess mortality, 
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aprotinin due to increased mortality risk, and rofecoxib due to myocardial infarct and 

stroke[22,23,24,25]. 

In addition to clinical trials and the spontaneous reporting process, pharmacoepidemiologic 

studies, (i.e. observational studies of the use and effects of drugs in large populations [26]) have 

been used as risk assessment/ evaluation tools in order to further characterize risks initially 

identified by safety surveillance systems [27]. Hence, traditionally, these studies have been 

conducted in a "reactive" mode, i.e. after a signal has been detected in the real-world.  This 

was rather inefficient since it involved lengthy processes to gather adequate data for accurate 

and reliable results. Consequently, before risk management, the timeline for risk detection, 

characterisation, and evaluation processes, was long.  

The act of looking for and /or identifying new adverse events (AEs) or signals is known as 

signal detection (SD) [5].  As an attempt to improve the efficiency and the timeliness of the 

systems in place, data mining was introduced. Data mining is a process that supports SD by 

using computerised algorithms to discover hidden patterns of potential signals in large 

databases[28]. Most data mining algorithms have been implemented in national spontaneous 

reporting databases or databases of pharmaceutical companies.  However the national 

spontaneous database in Canada is too small to perform quantitative data-mining, as it 

contains only about 225,000 suspected adverse reaction reports that occurred in Canada 

during the 46 years between 1965 and 2011, and data mining is currently not conducted in 

Canada [29]. Recently, attempts have also been made world-wide to use administrative claims 

database to conduct data mining[30,31,32]. Provincial claims databases are widely available in 

Canada (e.g. the Ontario Health Insurance Plan (OHIP) database, the Régie de l’assurance 

maladie Québec (RAMQ) database of Quebec, the Saskatchewan Drug Plan and Extended 

Benefits database amongst the most well-known) and have been extensively used for 



6 

 

pharmacoepidemiologic studies [33]. These databases include information on all prescribed 

medications dispensed to the members of the public drug program as well as all physician-

patient encounters that are billed on a fee for service [34].  This results in an accumulation of 

longitudinal data on drug exposures and AEs on very large segments of the population[35]. 

Consequently, they may be a useful tool for signal detection in pharmacovigilance.  Data 

mining using administrative claims databases has been conducted in large US databases but, 

to our knowledge, not in Canadian databases. 

 

1.3.2 Risk minimisation challenges 

Following risk detection and risk evaluation activities, strategies to minimise the identified 

risk(s) may be enacted if deemed necessary. These would normally be in the form of risk 

minimisation interventions (RMIs), which are beyond product labelling[35]. RMIs are tools 

which aim at reducing the risk of AEs among patients using medications, while preserving 

their benefits throughout the drug’s life cycle[10]. Their main functions are to:  

i) Communicate particular information regarding optimal product use ii) Provide guidance on 

prescribing, dispensing, and/or using a product in the most appropriate situations or patient 

populations. Examples of RMIs include Dear Health Care Professional letters, safety 

warnings, education programs, and restricted distribution, to name a few[10].  

 

Although regulatory authorities have long ago issued guidance documents concerning 

pharmacovigilance (1991 in Canada), guidelines concerning therapeutic risk management 

have only been recently integrated into the regulatory process of the USA (2005), and Europe 

(2006) [10,9]. Although Canada has not yet integrated risk management into its drug regulation 

or legislation, it is reviewing risk management plans submitted by pharmaceutical companies.   
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Consequently, little is known about appropriate considerations in the establishment of RMIs. 

Due to the novelty of risk management, many drug manufacturers, as well as regulators, are 

still uncertain of what RMIs are available for use; which are appropriate for the various 

products; and what interventions should be incorporated in a particular product's risk 

management plan. 
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Chapter 2. Objectives and outline of thesis 

This thesis addresses methodological gaps that currently exist in the published literature on 

therapeutic risk management, namely with respect to risk detection (identification), through a 

data mining study in a health claims database, and risk minimisation, through a systematic 

review of risk minimisation interventions. 

 

Study I:  Application of a Data Mining Algorithm to a Canadian Claims Database: 

A data mining study was performed using the Quebec administrative claims databases 

(RAMQ) with the following objectives: i) To apply a data mining algorithm to support signal 

detection within the Quebec claims database; ii)To assess its performance through measures 

of sensitivity (detection of risk, and timeliness) and specificity; iii) To test the robustness of 

the tool in relation to different methodological considerations, namely with respect to the 

depletion of susceptibles effect and control for prescription channelling. 

A retrospective cohort study was conducted in which a data mining algorithm was applied to 

a random sample of 87,389 elderly community-dwelling members of the Quebec public drug 

program  (data from 1st January 2000 to 31st December 2009). Four known drug-AE pairs 

were analysed using the Maximised Sequential Probability Ratio Test (MaxSPRT), which 

compared monthly expected counts of AEs to observed counts of AEs. The time to detection 

of the potential signal using this method was compared to the actual historical date of the 

safety warning’s posting by Health Canada. To determine the specificity of the method, two 

drug-event associations that were not considered to be a safety issues, were used as negative 

controls.  
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Study II:  Review of Risk Minimisation Interventions in Drug Safety 

Manuscript entitled: Impact of regulatory guidances and drug regulation on risk 

minimisation interventions in drug safety: a systematic review (accepted for publication in 

Drug Safety on December 28, 2011) 

A systematic review (literature search and website search) of RMIs implemented between 1st 

January 2000 and 31st December 2009 was performed with the following objectives: i) To 

describe RMI type; year of RMI implementation; jurisdiction; and specificity of target 

population, target AE, and drug class; ii) Determine whether the introduction of guidances on 

therapeutic risk management had an effect on the characteristics of RMIs published in the 

literature or on regulatory agencies websites.  

Together these studies and resulting publications are expected to serve as resources to identify 

methodological gaps of current RMIs, support signal detection, and provide new knowledge 

on data mining for the advance of drug safety surveillance within the Canadian population  
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Chapter 3. Signal detection in drug safety surveillance 

3.1. Principles of signal detection  

A key component of, and main reason for, pharmacovigilance is the act of looking for and /or 

identifying new adverse events (AEs) or signals[5] i.e. Signal detection .  

The CIOMS VIII defines a signal as “Information that arises from one or multiple sources 

(including observations and experiments), which suggests a new potentially causal 

association, or a new aspect of a known association, between an intervention and an event or 

set of related events, either adverse or beneficial, that is judged to be of sufficient likelihood 

to justify verificatory action.” [36]. 

The process of signal detection ideally begins at the product’s introduction to the market. 

Nevertheless, in practice, it is carried out at various stages of a product’s life cycle, such as 

when a safety concern is already suspected, or when monitoring for very serious safety risks 

of special interest[28].  

This chapter provides a description of some components of signal detection: methods, data 

sources and finally a summary of some published studies that have been performed in the 

past.   

There are two main methods for identifying safety issues: Qualitative Methods whereby 

experts manually review individual case reports, and Quantitative Methods or data mining 

involving the use of computerised algorithms to discover hidden patterns of associations or 

unexpected occurrences (i.e. ‘signals’) in large databases[28].  

 



13 

 

3.1.1 Qualitative methods of signal detection 

Qualitative Signal Detection is the original form of signal detection in which experts 

manually review individual case reports to identify unanticipated effects [37]. In the past, this 

has been done using analyses and sometimes meta-analyses of case reports of randomized 

clinical trials, as well as the spontaneously reported AE case reports. Assessing the 

unexpectedness and causality of these events is a complex task, performed through a 

combination of activities including examining and comparing: patient characteristics, the 

underlying disease, as well as background rates of the event in the patient population [38]. For 

this reason collecting well-documented reports is extremely important with qualitative signal 

detection, and even just a few well-documented cases can lead to generation of a signal [14]. 

The causality (imputability) assessment: the evaluation of the likelihood that a particular 

treatment is the cause of an observed AE [16,17], is very important to the process of identifying 

signals qualitatively. Several methods have been developed to determine causality such as: 

the World Health Organisation (WHO) and Uppsala Monitoring Centre (UMC) tool for case 

causality assessment[16], which is used by many countries world-wide including Health 

Canada; the algorithm used by the AFSSApS (Agence française de sécurité sanitaire des 

produits de santé), commonly referred to as the “French causality assessment algorithm[39]”; 

and the algorithm used by the US Food and Drug Administration (FDA[40]). Common 

elements present within most causality assessment methods, that would allow for a 

compelling imputability analysis, are generally temporal sequence to onset of AE; previous 

drug-AE history; dechallenge/rechallenge information; and exclusion of alternative known 

causes e.g. concomitant medications [17], along with some additional criteria depending on the 

method. In general the causality assessment methods are very efficient except when used for 
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assessing AEs that have long delays of onset (e.g. cancer) or in populations where the AE is 

frequent.  In these circumstances causality is difficult to establish. 

Qualitative signal detection using few high-quality AE reports are not uncommon. In fact the 

temporary voluntary suspension of the drug natalizumab was performed after just two clinical 

trial reports of progressive multifocal leukoencephalopathy. The product was later 

reintroduced to the market with a strict risk management plan in place [41].  

 

This traditional case-by-case qualitative assessment of reports continues to be, used 

effectively specifically in situations of low background rates of adverse event (AE) 

occurrence. However it poses a problem in instances where there is a very high amount of 

data, where the background rate of the AE in the population is high (i.e. too much background 

noise to be able to detect a signal), or there are complex associations such as drug-drug 

interactions.   As technology progressed over time, computerised processes to support these 

tasks have developed, and quantitative methods for identifying safety findings, such as data 

mining, have become more common [42,43]. 

 
  

3.1.2 Quantitative methods of signal detection 

Quantitative methods have become useful in instances of very high amounts of data, complex 

associations such as drug-drug interactions, or within populations where the background rates 

of AEs are high [28,42,44]  . Consequently, data mining algorithms for signal detection have 

evolved as an integral component of the pharmacovigilance process in order to identify 

previously unknown adverse events (AEs) of a drug (i.e. Drug-event pairs or drug-AE pairs).   

 



15 

 

Quantitative methods can be divided into: i) Denominator-independent methods and, ii) 

Denominator-based methods. Both are based on disproportionality analyses (DPA) which 

examine the relative occurrence of observed drug-event pairs compared to an expected value 

based on overall reporting patterns [28,37,44].  

3.1.2.1 Denominator-independent methods 

With denominator-independent methods, rates of exposure to the drug of interest in the 

population are not required. These methods are very commonly used in national or company-

sponsored spontaneous reporting (SR) databases which only possess reports of AEs. 

Consequently the exposure rates within the database are not an accurate reflection of the 

population’s true exposure to the medication of interest (denominator[44]). Below is a 

description of the various denominator-independent methods found in the literature. 

 

Frequentist (non-Bayesian) methods:  These are the simplest approach to quantitative signal 

detection using disproportionality analysis. For each combination of drug-AE in a 

spontaneous reporting database, a two-by-two table of counts is obtained based on the number 

of reports involving the drug of interest (referred to as i) and the number of reports involving 

a specific AE (referred to as j), [45,46] . This is portrayed in Table I below.   

 

Table I.  Two-by-two table for frequentist methods in disproportionality analysis 

Number of reports With drug i Without drug i Total 

With adverse event j nij=a b a + b 

Without adverse event j c d c + d 

Total a + c b +d a + b + c + d 
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Many different forms of reporting ratios can be calculated and used to determine existence of 

a pair’s disproportionality:  

Relative Reporting Ratio (RRR) =  [a/(a + b)] / [a/(a + c) / (a + b + c + d)] 

Proportional Reporting Ratio (PRR) = [a/(a + c)] / [b/(b + d)]  

Reporting Odds Ratio (ROR) =  ad / bc 

 

The PRR is analogous to a relative risk (RR) in a pharmacoepidemiologic cohort study, while 

the ROR is analogous to the Odds Ratio (OR) in a case-control study. Table II details 

advantages and disadvantages of quantitative methods described in this section[28]. 

 

Bayesian Methods:  These compensate for areas where frequentist methods, described above, 

are lacking, i.e. by accounting for statistical uncertainty due to small counts[28].   Small counts 

are usually the case in a post-approval setting where AEs are rare.  There are two main 

Bayesian methods. The first, used by the FDA and developed by DuMouchel, involves the 

technique of empirical Bayes screening (EBS) [47, 48]. Mathematically it is based on a two 

gamma mixture distribution, and ranks drug-event combinations by degree of “interest” in 

terms of the number of reports of that particular drug-event pair, vs. what would be expected 

if the drug and event were statistically independent[44]    

The two main formats of this method are the Gamma Poisson Shrinker (GPS) method, used 

when dealing with pair-wise associations of drug and AE (i.e. one drug, one AE) and the 

Multi-item GPS (MGPS)[49] method used when dealing with multi-item associations (e.g. 

Where two drugs in combination may be causing the AE) [50].  

The second Bayesian method, used by WHO, is referred to as the Bayesian Confidence 

Propagation Neural Network (BCPNN) and involves calculation of an “information 

component” (IC) for each drug-event pair The formula of the IC comprises: i) the number of 
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case reports with a specific drug, ii) the number of case reports with a specific AE,  iii) the 

number of reports with the specific drug-AE combination, and iv)  the total number of drug –

AE reports in the database. In this way. the IC  is a reflection of the value, precision and time 

trend of the information within the database. A positive IC value indicates that the particular 

combination of drug and AE is reported to the database more often than statistically expected, 

as compared to reports already present within the database[51].  

3.1.2.2 Denominator-based methods 

These are methods used when drug exposure rates are available, which then provide a 

“denominator” for the identification of disproportionality in the occurrence of AEs within the 

exposed group as compared to the occurrence of AEs in a reference group. Most often they 

are used to identify temporal changes in reporting rates or frequencies by constructing a 

probability model and a corresponding test statistic in order to assess the probability that the 

observed temporal changes reflect random sampling variability[44]  .  

 

Figure I below displays an example of a theoretical quantitative signal detection method. The 

number of patients using the medication of interest and experiencing a particular AE is 

compared to the number of patients using a reference drug product who also experience this 

AE. The point at which the users of the medication of interest appear to be experiencing a 

higher number/proportion of AEs than expected, is where a potential signal is said to be 

identified.  
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Figure I. Quantitative signal detection simulation example - Denominator-based 
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The two main denominator-based methods used on drugs are i) the Poisson method, and ii) 

the Sequential Probability Ratio Tests (SPRTs). 

 

In accordance with the assumptions of the Poisson distribution [52], the Poisson method is used 

when the number of AEs is rare and occurs in large exposed populations.  It requires three 

items of information: (i) Number of AE reports (observed), (ii) Estimated background 

incidence of AEs (number of expected cases) and, (iii) Estimated number of patients treated 

with the drug (i.e. exposure). Rare drug-event occurrences are modeled using estimated 

background incidence of an adverse event (AE) and the number of patients treated. This is 

done using a Poisson distribution to obtain the probability of obtaining coincidental drug-AE 



19 

 

associations per time period. Under various hypotheses of under-reporting, the expected 

number of cases will be compared to the observed number of cases, during the particular time 

period being studied. If the observed number exceeds the critical value in the Poisson 

distribution, then a signal is generated [44, 53]. 

 

The Sequential Probability Ratio Test (SPRT) is a sequential sampling technique used 

extensively in analyses of randomized clinical trial data. Also known as the classical or 

Wald’s SPRT, it compares observed counts to expected counts in order to determine if a 

disproportionate number of events has occurred in the study group as compared to a 

reference/ control group. It is useful for safety monitoring on a weekly or monthly basis 

permitting early AE detection[54,55,56]. An AE signal would be generated if the log likelihood 

ratio (LLR) exceeds a pre-determined value, calculated based on a single alternative RR such 

as RR=2 (See example in Figure I). The key in this method is the fact that the p-values are 

adjusted for the multiple testing[57,58].    

 

The Maximised SPRT (MaxSPRT) is a Poisson-based methodology that is an altered method 

of Wald’s SPRT. Kulldorff [57] et al modified the test such that it does not require a specific “a 

priori” specification of a single level of increased risk that would define a signal (as with the 

classical SPRT). It instead uses a composite alternate hypothesis, HA of Relative Risk (RR) 

>1[31]. In this way, it works well across the various ranges of RRs, and the test statistic, i.e. the 

log likelihood ratio (LLR) becomes a maximum likelihood under the composite alternative 

hypothesis divided by the likelihood under the null hypothesis H0. (RR=1)[57]. Where: 
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It is useful for monitoring data of potential safety findings, on a weekly or monthly basis 

permitting early AE detection54,55,56] and is broadly used in vaccine safety surveillance. The 

key being that the p-values of the continual/sequential analyses, are adjusted for the multiple 

testing[57,58].    

 

Table II details the advantages and disadvantages of the various types of quantitative signal 

detection methods described in the previous section. 
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Table II. Summary of advantages and disadvantages of the various quantitative signal detection methods 

Denominator-independent Methods 
Measure of 
association
/ Method 

Advantages Disadvantages 

ROR [60,61] *Covariable adjustments possible through logistic 
regression analysis 
*In logistic regression analysis, interaction terms can 
be used for the analysis of drug-drug and drug-disease 
interactions 
*Calculation and interpretation are straightforward 
(value>1 implies increased risk) 

*Odds ratio cannot be calculated if the denominator is zero 
(i.e. either b or c = 0 in the two-by-two table) 
*Results not always reliable with small numbers in two-by-
two table (see Table I) 

PRR [61,62] *Can still be calculated when c of the two-by-two table 
(see Table I) is zero 
*Represents a direct measure of the strength of the 
signal 
*Use of proportionate approach avoids potential biases 
related to underreporting if the overall level of reporting 
is high for a new drug 
*Can handle concomitant medication use by 
conducting subgroup analysis  
*Calculation and interpretation is straightforward 
(value>1 implies increased risk) 
*Easily implemented in standard software packages  
* Can handle covariate adjustment through 
stratification. 

*Standard error cannot always be calculated 
*Cannot be calculated when a=0 in the two-by-two table (see 
Table I) 
*Statistical properties (e.g. sensitivity, specificity) of the 
standard signalling thresholds may vary when the methods 
are applied to different datasets. 
*A large association between an AE and a drug that is not of 
specific interest can reduce the likelihood of detecting a true 
signal  
* Cannot be calculated if there are no AEs of interest reported 
for the comparison drug(s) (i.e., if b=0 in two-by-two table 
(see Table I)). 
*Because it is a ratio of two proportions, its value is unstable 
with small sample sizes. E.g. when the AE of interest is rare, 
the PRR can easily miss detecting a signal when there is only 
one AE following the drug of interest 

IC [61,62] *Widely applicable to all data types (i.e. frequent or 
rare AEs) 

*Difficult interpretation for those who are not familiar with 
Bayesian statistics 
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*Large and complex numbers of calculations can be 
made efficiently 
*Can be used for pattern recognition in higher 
dimensions by arranging various drug–AE 
combinations in a single dimension for comparison) 
* Shown to be robust in handling incomplete data such 
as missing treatment indication, medical history and 
concomitant medications 

BCPNN 
[44,51,62,] 

*Use of proportionate approach avoids potential biases 
related to variable underreporting.  
*Can handle concomitant medication use by 
conducting subgroup analysis  
*Use of the Bayesian framework provides for 
“estimate shrinkage” when the number of drug-AE 
reports is small, which can reduce the occurrence of 
false positive associations based on small sample 
variability. 
*Allows for the efficient application of large numbers 
of calculations as well as the application of logistic 
regression analysis to adjust for confounding and 
interaction factors 

* Statistical properties (e. g. sensitivity, specificity) of the 
standard signalling thresholds may vary when the methods 
are applied to different datasets. 
* A large association between an AE and a drug that is not of 
specific interest (i.e. for large values of 'b' in the two-by-two 
table (see Table I)) can reduce the likelihood of detecting a 
true signal between that AE and the drug of interest. 

MGPS 
[50,61,62] 

*Use of proportionate approach avoids potential biases 
related to variable reporting) and underreporting.  
*Can easily handle concomitant medication use by 
conducting subgroup analysis  
*Use of the Bayesian framework provides for estimate 
'shrinkage' when the number of drug-AE reports is 
small, which can reduce the occurrence of false 
positive associations based on small sample 
variability. 
* Uses Empirical Bayes methodology that is good at 

*Statistical properties (e.g. sensitivity, specificity) of the 
standard signalling thresholds may vary when the methods 
are applied to different datasets. 
 
*A large association between an AE and a drug that is not of 
specific interest (i.e. for large values of 'b' in the two-by-two 
table (see Table I)) can reduce the likelihood of detecting a 
true signal between that AE and the drug of interest. 
*Elimination of confounders and limitations cannot be 
undertaken by any mathematical model 
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minimizing the effect of sampling variance on the 
interpretation of the relative reporting rate. 
* Can handle covariate adjustment through 
stratification. 

Denominator-based methods 
Poisson 
method 
[44,61] 

*Correction for different covariates can be easily 
established using poisson regression  

*No measure of association is provided; only p-value to 
assess disproportionality 
*Only useful when studying rare events (i.e. assumption of 
the Poisson distribution) 

Classical 
SPRT[54,57] 

*Test statistic p-values are adjusted for the continual 
analyses of the data (i.e. multiple testing). 

*Allows for earliest possible analysis of AE signals.  

*Requires a specific “a priori” specification of the level or 
magnitude of the increased risk 
*Test statistic can be difficult to interpret 
*Confounder adjustment in the literature is limited to method 
of stratification 

MaxSPRT 
[57,63] 

*Works well across various RR ranges due to its use of 
a composite alternative hypothesis of relative risk (RR) 
>1 rather than a single alternative hypothesis. 

* Sensitive to uncertainties in estimated expected number of 
events 
*Test statistic can be difficult to interpret 
* Confounder adjustment in the literature is limited to method 
of stratification 
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3.1.3 Data sources for quantitative signal detection 

3.1.3.1 Pharmacovigilance databases:  

Spontaneous reporting (SR) databases created by regulatory authorities contain AE reports 

submitted by: pharmaceutical companies; health care professionals; and consumers. The most 

common regulatory SR databases include the Adverse Event Reporting System (AERS) being 

used by the US FDA, the United Kingdom’s Yellow Card Scheme of the MHRA(Medicines 

and Health Care products Regulatory Agency), and the French national database of 

AFSSApS. In Canada, Health Canada maintains the Canada Vigilance database which is 

reviewed manually by clinical experts. In addition, in the EU (European Union), there is an 

ongoing initiative to create a central database for all member states, i.e. EudraVigilance [64] 

Although beneficial, these databases also have some disadvantages: i) since they include 

mainly spontaneous reports, they are subject to under-reporting, even in countries such as 

France with mandatory AE reporting. Under-reporting rates can vary between 36% and 99% 

[65,66]; ii) The quality, completeness and accuracy of reports can vary considerably; iii) There 

is difficulty in controlling for biases, such as indication or overall health status, to allow for 

adequate comparability of AEs across drugs[67]; and iv) They contain only ADRs creating a 

lack of accurate denominator (exposure) information and difficulty with the estimation of 

drug use. Furthermore, the coding of the ADRs may vary depending on the region of the 

database. Prior to 1997, the US FDA used the Coding Symbols for Thesaurus of Adverse 

Reaction Terms (COSTART)[49]; while the majority of the rest of the world, including the 

national French database, previously used the World Health Organization’s Adverse Reaction 

Terminology (WHO-ART) [68,69].   .  

The majority of databases now use the international coding system initiative of the 

International Conference on Harmonization (ICH): the Medical Dictionary for Regulatory 
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Activities (MedDRA) the first version of which was released in 1995, and is currently at 

version level 14.1. However many databases possess coding from previous dictionaries for 

older reports (as with FDA AERS pre-1997 events), and yet other databases may be delayed 

in updating their coding dictionary to MedDRA [69,70]. The WHO adverse reaction database 

known as Vigibase continues to use the WHO-ART coding system [71].  

Pharmaceutical companies also maintain safety databases.  These are very similar to the 

regulatory databases except that they: (i) accumulate reports globally and (ii) are smaller and 

less diverse, as the reports are limited to company products. In some instances they may be 

too small, or the comprising products too heterogeneous, for meaningful analyses [28]. Table 

III details some SR databases and quantitative signal detection methods that have been 

applied to them.  

Although it is mandated by Health Canada, most pharmaceutical companies input data in a 

company global database usually managed by the company head office (in either the United 

States or Europe), where data mining may be conducted. Health Canada does not conduct data 

mining directly in its Canada Vigilance database but rather incorporates Canadian cases in the 

global WHO adverse reaction database known as Vigibase. The WHO Vigibase is maintained 

by the Uppsala Monitoring Centre (UMC) in Sweden which, on a quarterly basis, applies a 

data mining method in order to identify potential safety signals [51]. There is only one record 

of a data mining study performed by Gavali et al[73] within the Health Canada database where 

although the signal detection test statistic values were high, a statistically significant signal 

was not obtained, possibly due to the small size of the database. The study authors 

recommended trying the signal detection processes again in larger databases[73] . 
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Table III. Data mining studies using spontaneous reporting databases published in the literature  

Authors Year  Country Database 
type 

Database name Method type Method 
name 

Bate et al. 
[74]    

1998 Sweden / 
Global 

Regulatory 
SR 

WHO Vigibase Denominator 
-independent 

BCPNN 

Lindquist et 
al. [51]    

2000 Sweden / 
Global 

Regulatory 
SR 

WHO Vigibase Denominator 
-independent 

BCPNN 

Evans et al. 
[75]    

2001  Regulatory 
SR 

UK Yellow Card 
System/ 
Adverse Drug 
Reactions Online 
Information 
Tracking 
(ADROIT) 

Denominator 
-independent 

PRR 

Egberts et 
al [76].    

2002 Netherlands Regulatory 
SR 

Netherlands 
Pharmacovigilance 
Foundation data 
base 

Denominator 
-independent 

ROR 

Szarfman et 
al. [49]    

2002 USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

GPS & 
MGPS 

van 
Puijenbroek 
[61]    

2002  Netherlands Regulatory 
SR 

Netherlands PV 
Foundation Lareb 

Denominator 
-independent 

IC/ ROR / 
PRR 
Poisson/ 
Chi 
squared 

van 
Puijenbroek 

[77].    

2003  Netherlands Regulatory 
SR 

Netherlands PV 
Foundation Lareb 

Denominator 
-independent 

ROR 

Hauben  [78].  2004  USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

MGPS 
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Authors Year  Country Database 
type 

Database name Method type Method 
name 

Hauben  [79].  2004  USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

 

Schnell et 
al [80].    

2005 USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

PRR 

Roux et al 

[81]    
2005 France Regulatory 

SR 
AFSSAPS database Denominator

-independent 
PRR 

Thiessard et 
al [82].    

2005 France Regulatory 
SR 

AFSSAPS database Denominator
-independent 

PRR, ROR, 
SPRT, 
Yule’s Q, 
Poisson 
method, 
IC, EBAM 

Conforti et 
al [83].    

2006 Italy Regulatory 
SR 

Italian Interregional 
Group of 
Pharmacovigilance 
(GIF) Database 

Denominator 
-independent 

PRR 

Hochberg 

[84]    
2007  USA Regulatory 

SR 
FDA AERS Denominator 

-independent 
A single 
data 
mining 
algorithm 

Shalviri et 
al [85].    

2007 Iran Regulatory 
SR 

Iranian Pharmaco-
vigilance Database 

Denominator 
-independent 

ROR/ IC/ 
PRR 

Lehman et 
al [42].    

2007 USA Company SR Merck Post 
marketing safety 
database 

Denominator 
-independent 

Empirical 
Bayes 
method 

Hammond 
et al [86]    

2007 UK Company SR GSK Spontaneous 
reporting database 

Denominator 
-independent 

MGPS 

Salvo et al 

[87]    
2008 USA Regulatory 

SR 
FDA AERS Denominator 

-independent 
Case/ non-
case (ROR)
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Authors Year  Country Database 
type 

Database name Method type Method 
name 

Li et al [88]    2008 China Regulatory 
SR 

Guangdong ADR 
SRS 

Denominator 
-independent 

ROR / 
PRR/ IC 

Chen et al 

[89]    
2008  USA Regulatory 

SR 
FDA AERS Denominator 

-independent 
ROR / 
PRR/ IC/ 
GPS 

Chen et al 

[90]    
2008  USA Regulatory 

SR 
FDA AERS Denominator 

-independent 
ROR / 
PRR/ IC/ 
GPS 

Li et al [91]    2009 China Regulatory 
SR 

Guangdong ADR 
SRS 

Denominator 
-independent 

IC 

Poluzzi et 
al. [92]    

2009 USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

Case / non-
case (ROR)

Ahmed et al 

[93]    
2009 France Regulatory 

SR 
French PV DB Denominator 

-independent 
GPS / 
BCPNN 

Gavali et al 

[73]    
2009 Canada Regulatory 

SR 
Canadian Adverse 
Drug Reaction 
Monitoring 
Program DB 

Denominator 
-independent 

PRR 

Hochberg 
et al [94]    

2009 USA Regulatory 
SR 

FDA AERS Denominator 
-independent 

GPS / PRR 

Alvarez et 
al [95]    

2010 Europe Regulatory 
SR 

EudraVigilance Denominator 
-independent 

PRR 

Chen et al 

[95]    
2010 China Regulatory 

SR 
Jiangsu province 
SR DB 

Denominator 
-independent 

PRR / ROR 
/ PNN 
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3.1.3.2 Prescription Event Monitoring (PEM)  

PEM has been developed in the United Kingdom (UK) to monitor certain newly-marketed 

drugs and can be considered a hybrid of both spontaneous AE reporting; and administrative 

claims databases. It consists of a national observational cohort of first users of a drug 

immediately after its launch into real-world clinical setting, and a cohort of patients who 

receive a comparator drug[[97,98]. In the UK, health care is universal, with the majority of 

the population registered with a general practitioner (GP) who provides primary health care 

and writes prescriptions. The patient takes the prescription to a pharmacist who dispenses 

the medication and then sends a claim to a central Prescription Pricing Authority 

responsible for reimbursement of the pharmacist. The PEM system is handled by the Drug 

Safety Research Unit (DSRU) who is provided with electronic copies of all prescriptions 

issued throughout the UK for the drugs being monitored by PEM. After a period of three to 

12 months (usually 6 months) from the first prescription for each patient, the DSRU sends a 

questionnaire to the prescribing physician requesting information on events which occurred 

since the drug was first prescribed, regardless of event causality. All data are computerised 

in the DSRU and important events are investigated by the DSRU personnel who, provided 

they have GP permission, possess the patient’s life-time medical records, death certificate 

etc. For each of these patients the DSRU prepares a longitudinal record comprising all 

prescriptions for the monitored drug [98]. PEM has a numerator (the number of reports), a 

denominator (the person-time units of exposure), and a known time period (i.e. the 

difference between the start and stop dates of the drug for each patient)[98]   .  
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The two quantitative methods that have been applied to PEM for signal generation are PRR 

and the incident rate ratio (IRR): a disproportionality measurement that compares the 

incident density of a particular event in a drug cohort with the incident density for that same 

event in a comparator group of other drug cohorts for which PEM studies have been 

conducted [99]   .  

With Incidence Density (ID) for a given time period, t for each event term in the DSRU 

dictionary, ID is calculated as follows:  

IDt = (Number of events during treatment period for t  / Number of patient-months of 

treatment for period)   X 1000 [98]    

 The limitations of PEM are that it relies on the voluntary participation of general 

practitioners (GPs), and cohorts are relatively small in size (usually about 10, 000 users of 

the drug of interest) (restricted ability to study rare AEs). As with most databases, there is 

no method of measuring compliance or the use of non-prescription medication [98,99]   . 

Table IV below details some PEM studies. 

 

Table IV - Quantitative signal detection studies performed through prescription-event 

monitoring found in the literature 

Authors Year Country Method Type Method Name 
Heeley et al [99]   2002 UK Denominator-

independent  
PRR & IRR 

Layton et al 

[100]   .  
2006 UK N/A IRR 
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3.1.3.3 Health claims databases 

Administrative health claims databases have been created in the context of a drug and 

medical services reimbursement program. They include longitudinal medical records 

including information on: all prescribed medications dispensed to the members, and 

covered by the drug program; all physician-patient encounters and diagnoses; and in some 

instances, hospital admissions and laboratory results[33,34,38]. This results in an accumulation 

of longitudinal data on drug exposures and AEs on very large segments of the population.  

 

Medical services database:  In order to be reimbursed by the medical program, physicians 

submit reports on medical services provided (which may include, inpatient, outpatient, 

ambulatory, emergency and sometimes hospital services), as well as the diagnoses code, to 

the insurance provider for reimbursement. All services billed on a fee-for-services are 

recorded. Among the data elements included in this database are:  the code of the diagnosis 

(most databases use the International Classification of Diseases (ICD) coding system 

versions 9 or 10), medical act rendered, the date, the location of the service, and, patient 

health insurance number [33,34].  

 

Prescription database: Prescription drug databases record outpatient prescription drugs 

dispensed to the members of the health plan.  The information recorded consists of: the 

generic name of drug, national drug code for dispensing, dispensing date, dosage, days 

supplied, route of administration and patient health insurance number [33,34,102].  
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Beneficiary database: This database contains information concerning demographic 

characteristics of the patient such as age/ date of birth, gender, region of residence 

(metropolitan, urban, rural), date range of membership in the insurance program, and 

patient health insurance number [33]   . 

Usually the medical services and prescription drug databases may be linked through a 

unique patient identifier/ patient health insurance number that remains unchanged over time 

and is scrambled by the insurance provider  Linkage provides an accumulation of health 

care data on entire populations on a long term [34]   .   

 

Administrative health claims databases are available in Canada and have been used mainly 

for pharmacoepidemiologic studies [33]   . Examples of these databases are those based on 

the universal healthcare established per province such as the Ontario Drug Benefits 

database, the Saskatchewan Health Services Databases, and the Régie de l’assurance 

maladie Québec” (RAMQ) database. In the US, there are Health Maintenance Organization 

(HMO) databases such as the private insurance companies of Kaiser Permanente, or the 

Medicaid program  databases from the public health program (Medicare) consisting mostly 

of the elderly, or individuals on social assistance [103]. While observational studies are 

hypothesis-driven, signal detection is hypothesis-generating.  The HMO databases have 

been used for quantitative signal detection but so far, no attempt has been made in 

Canadian databases[31,63]. Table V below also details some administrative claims databases 

that have been used in published quantitative signal detection studies. Advantages of claims 

databases, as a data source to conduct safety surveillance are the following: i) Potential to 

perform active or passive, and real-time surveillance; ii) Allowance for longitudinal 
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monitoring of large patient cohorts; iii) Potential to identify AEs with long latency; iv) 

Provision of both numerator and denominator information on the populations allowing for 

the estimation of drug use and disease incidence, as well as the evaluation of temporal 

relationships between the drug and AE[28].;  v) Existence of a variety of patient-level 

information on covariables, allowing for the potential verification of signals through 

executing pharmacoepidemiologic studies. 

With these databases, duplicate records can be easily identified and excluded by examining 

person or type-specific AE information, eliminating follow-up diagnoses codes, or 

accepting only the initial event diagnosis per patient identifier. Because the databases do 

not rely only on the reporting of AEs, they could provide information on real-world AE 

experiences, and have the potential to detect unrecognized or underappreciated AE signals 

as compared to SR databases [38,104,105]   . 

The limitations of using health claims databases include the potential for restricted 

generalisability as the population may be limited depending on the members of the 

insurance plan. E.g. private health insurance plans may exclude individuals of low socio-

economic status. The RAMQ prescription plan covers primarily the elderly population. 

Furthermore, the follow-up of patients may be restricted as some patients may switch 

insurers every few years [103]   .  

The reliability of the ICD-9 or ICD-10 diagnostic codes reported by the HCPs may be 

problematic since validation is not required for reimbursement.  However, the reliability 

may be improved using other data elements such as medical procedure or drug prescription 

as proxy for the presence of a disease.   
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Only those medications that are reimbursable by the particular health insurance plan would 

be available in the database for analysis. This would generally exclude over-the-counter 

medications, as well as some very new drugs that have not yet been reviewed and approved 

by the insurers. 

 

Table V – Quantitative signal detection studies performed in administrative claims 

databases found in the literature 

Authors Year Country Database used Method type Method 
name 

Brown et al 

[63]    
2007 USA 9 different HMOs Denominator-

based 
MaxSPRT 

Choi et al 

[30].  
2010 Korea National Health 

Insurance Claims 
Denominator-
based 

RR  

Trifiro et al 

[32].  
 

2011 Denmark, 
Italy, 
Netherlan
ds, and 
United 
Kingdom 

EU-ADR database 
(8 databases from 
Denmark, Italy, 
Netherlands, and 
United Kingdom   

 Various. 
GPS and 
others  

 

3.1.4   Data elements required for quantitative signal detection using 

administrative claims databases  

The data elements found in administrative claims databases that are needed to conduct 

quantitative signal detection are the following: i) a suspected drug (medication dispensed); 

ii) a suspected AE (using the diagnostic code in medical billings or in hospitalization 

databases) and; iii) an identifiable patient (scrambled identifier). Dispensing date and date 

of AE occurrence confirm that the exposure precedes an event.  As shown in Table IV, 
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most of the studies published in the literature used diagnoses on medical claims, and not 

hospitalization, as the data source for AEs.  For some AEs, especially those that are 

chronic, this timeline may be subject to errors given that there may be a delay between the 

date of onset of symptoms of the AE and the date of diagnosis.  

 

3.1.5 Performance of data mining algorithms for drug safety signal 

detection 

Prior studies published in the literature indicate that the main means of assessing 

performance of data mining algorithms are through: i) Ability to generate a signal in cases 

of a known drug-AE pair (true-positive; sensitivity), ii) Comparing the time to detection of 

the potential signal between traditional signal detection and quantitative signal detection 

method [49,74,75]; iii) Statistically significant measures of association in the absence of a true 

signal (false-positive; specificity). 

 

Results of studies published in the literature on the performance of data mining algorithms 

are described below. 

A study by Szarfman et al [49] was conducted using the FDA’s safety database, AERS. The 

GPS method was used to examine differences in year of detection of 30 known drug-AE 

signals. Data mining identified 30 signals as positive, 20 signals were identified using the 

data collected 1 to 5 years before the signals had been detected by standard methods, nine 

the same year and one signal 1-year after. GPS was also used to explore the differences in 
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time of detection of 160 drug-AE signals between 1985 and 1996 that had previously been 

identified in the Center for Drug Evaluation and Research CDER Monitoring Adverse 

Reports Tracking System. , Using the method and the data collected, 97 positive data 

mining signals were detected, 1 to 4 years before they were historically identified as 

signals. 36 the same year, and 27 of them 1 to 3 years later. This study demonstrated that a 

retrospective data mining of this database using the GPS and MGPS (GPS results compared 

to previous MGPS study) methodologies identified AEs many years earlier than qualitative 

signal detection through case reports alone[49].   

 

Through the PRR methodology, the UK Yellow Card Database as a data source for signal 

detection was shown to be a valuable aid to signal generation. In Evans et al [75]   , 15 newly 

marketed drugs were analysed. They first examined whether the method would identify 

known hazards, before looking at possible AEs which had not yet been recognized. Using 

this methodology, 481 signals were observed that met inclusion criteria (i.e. a PRR >=2, a 

chi2 value >=4, and the existence of three or more cases of the drug-AE pair being studied), 

70% of these were found to be AEs already identified, 13% were believed to be related to 

the underlying disease, and 17% required further investigation. Approximately five 

unrecognized signals per drug were identified using the method [75].  

 

The Netherlands Pharmacovigilance Foundation has used the data mining methodology of 

ROR to identify three drug-AE pairs i) antidepressant drugs and non-puerpural lactation; ii) 

non-steroidal anti-inflammatory drugs with diuretics, and onset or worsening of congestive 

heart failure; and iii) terbinafine- with occurrence of  arthralgia, fever and urticaria [76].   
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The analysis of association between antidepressant drugs and the occurrence of non-

puerpural lactation. demonstrated that 38 cases of non-puerperal lactation were reported, of 

which 15 were associated with the use of antidepressant drugs. Antidepressants overall 

were associated with a higher risk of non-puerperal lactation as compared to other drugs 

(ROR 8.3; 95% CI 4.3 to 16.1). Serotonergic antidepressants were associated with a higher 

risk (ROR 12.7; 95% CI 6.4 to 25.4), while other antidepressants were not (ROR 1.6; 95% 

CI: 0.2 to 11.6) compared with the group of all other drugs. 

The onset or worsening of congestive heart failure (CHF) associated with the combined use 

of non-steroidal anti-inflammatory drugs (NSAIDS) and diuretics was also tested as an 

example of a drug-drug interaction.  The analysis showed that the use of diuretics or 

NSAIDs itself was not statistically significantly associated with an increased risk for onset 

or worsening of symptoms of CHF. However, the odds ratio of the statistical interaction 

term NSAIDs-diuretics, was statistically significantly elevated (adjusted ROR 2.0; 95% CI 

1.1 to 3.7) 

To study a possible relationship between fever, urticaria and arthralgia, ROR were 

calculated, which were adjusted for age and gender of the patients, source of the reports and 

year of reporting. Both urticaria (adjusted ROR 1.72; 95% CI 1.35 to 2.18) and arthralgia 

(adjusted ROR 3.14; 95% CI 1.52 to 6.47) were significantly associated with reports on 

terbinafine. The strongest predictor covariates of the dependent variable were urticaria 

(adjusted ROR 1.66; 95% CI 1.29 to 2.14) along with the interaction terms arthralgia and 

fever (adjusted ROR 2.35; 95% CI 1.32 to 4.17) and arthralgia-urticaria (adjusted ROR 

3.33; 95% CI 1.03 to 10.73). These results imply an association between the use of the 

antifungal agent terbinafine and the co-occurrence of arthralgia, fever and urticaria [76]. 
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Bate et al. used the WHO UMC database and the BCPNN methodology to create signal 

detection method to provide initial assessment, selection, and act as a quantitative aid to 

signal detection of drug-AE combinations, consequently allowing for the consistent 

detection of new AEs [47,51]. In this study they conducted initial testing of the data mining 

approach examining whether the test statistics were positive for drug-ADR combinations 

already known to exist and that it was non-significant for drug-ADR combinations known 

not to exist [74]. Tests to determine whether earlier signals would have been found with the 

new method were then conducted both against general reference sources (Physicians’ Desk 

Reference and Martindale) and existing literature reports in another sensitive international 

signalling system database of the publication Reactions Weekly)[74].  The study displayed 

the power of the method at finding signals early (captopril-coughing) and to avoid false 

positives signals with the occurrence of common drugs and ADRs in the database (digoxin-

acne; digoxin-rash). An application of the BCPNN on quarterly data showed that out of 

1,004 AEs identified, 12 were found to be new AEs not already recorded within regulatory 

documents [74]  

 
Many studies have also been published with the French national database, mainly using the 

PRR method. Roux et al [81] applied the PRR to the French national pharmacovigilance 

database, AFSSAPS in order to statistically identify potential signals of previously 

unknown drug-AE associations, using criteria of a PRR >=2, a chi2 value >=4, and the 

existence of three or more cases. Statistically significant drug-AE associations were 

verified against the Vidal (French drug reference) dictionary. Associations not previously 

listed in the dictionary were considered as potential signals. Application of the data mining 
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algorithm produced 523 drug-AE associations of which 107 were not listed within the 

Vidal dictionary, and considered potential signals. Most potential signals were false 

positives. The process helped focus case review on a very small subset (9.6%) of the 

dataset [81]. 

 

Thiessard et al [82] compared the methods of PRR, ROR, SPRT, Yule’s Q, the Poisson 

method, IC, and EBAM (empirical bayes arithmetic mean) within the AFSSAPS database. 

The resulting number of signals generated varied with each of the methods used, however 

was high for each. Using SPRT, 6.3% of all drug-AE pairs in the database, were considered 

as signals 9.1% were considered signals with the EBAM method. The remaining methods 

generated signals for between 18.7% and 33.6% of drug-AE pairs within the database. A 

comparison of ranked percentiles showed quasi-equivalence between the methods of PRR, 

ROR and Yule’s Q. The PRR was found to be more effective with small sample sizes as 

compared to the EBAM, the Poisson method and the SPRT : the PRR generated significant 

signals for pairs that were reported just once or twice within the database, which were not 

identified with the other methods. However, the IC, and Yule’s Q were less sensitive to 

small numbers than the PRR[82].  

 

Performance of quantitative signal detection methods was also assessed in administrative 

claims databases.  In a study conducted by Brown et al[63]., nine different administrative 

databases of the HMO Research Network’s Center for Education and Research on 

Therapeutics (CERT) and the MaxSPRT methodology were used. It was shown that four 

out of five of the known drug-AE pairs studied, did indeed produce a signal using the 
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methodology, which is indicative of a favourable sensitivity [63]. No signal of excess risk 

was identified for the two negative control pairs, implying that the specificity of the method 

was also adequate. 

 

Choi et al[30] used a Korean national health insurance claims database and a RR-based 

methodology for signal detection of rosuvastatin AEs. Any serious adverse event (SAE) for 

which the lower limit of the RR’s 95% confidence interval was greater than 1, was defined 

as a signal. All detected signals were reviewed to determine whether the signals 

corresponded with published AEs exclusive to rosuvastatin. Among 96 236 elderly 

outpatients who received rosuvastatin, or other statins, 376 different SAEs were observed, 

and 40 304 drug-SAE pairs were observed. Twenty-five (6.6%) drug-SAE pairs were 

detected as signals [30].  

Sensitivity within the Szarfman et al[49] study, was estimated by counting current labelled 

events or current warnings and contraindications signalled by any mapped AE code: 

number of detected AEs/(number of detected AEs + number of  undetected AEs). 

Specificity was estimated by counting individual AE codes that did not map to a labelled 

event i.e. number of true negative/ (number of true negative + false positive). The study 

showed a high degree of specificity for all thresholds used since the first signals were 

detected by MGPS. The sensitivity for warnings and contraindications was higher than the 

one observed for the analysis across all labelled events. Lowering the thresholds for 

important event codes or detecting higher order synergic associations between drugs and 

multiple events increased sensitivity[49]. 
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Hochberg et al[84]  in a study comparing GPS, PRR, and  a urn model, analysed sensitivity 

and specificity, by establishing and using rules for assigning each drug-AE combination to 

an approximate “level of evidence”  to describe the strength of evidence for causality 

contained in the corresponding information source. The GPS method had the highest 

specificity in that it had the highest rate of matching against the reference event database 

for drug-event associations with at least minimal external supporting evidence. However, 

GPS also detected the smallest number of signals and did not uniquely highlight any 

unlabelled supported signals. The PRR method detected the highest number of unlabelled 

supported and unique unlabelled supported signals followed by the urn model[84].  

 

Choi et al[30] calculated the PPV of their method by dividing the total number of the signals 

known to be published as AEs, by the total number of detected signals. Of 25 signals 

detected by the RR-based data-mining approach, eight corresponded with published 

rosuvastatin-specific AEs, with a PPV of 32%. When detected signals were compared to 

other statin-specific or shared list of AEs from the reference literature, 18 signals 

corresponded. The PPV was estimated to be 80%. 

 

In the Brown et al study[63], sensitivity and specificity were relatively simple concepts in 

that detecting a signal where a known safety risk occurred (4 out of 5 cases) was deemed a 

“good sensitivity”, and not detecting a signal in instances where a safety risk was known 

not to exist (2 out of 2 case studies), was implied to indicate a “good specificity”. 
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Data mining and signal detection are hypothesis-generating activities in that any potential 

signal generated would need to be further analysed, investigated and verified in order to 

confirm that a signal does indeed exist. The main limitation of data mining is the generation 

of a large number of false-positive signals, each requiring further analyses. As such, many 

jurisdictions and companies do not invest the resources in conducting data mining, as 

investigating each signal could be quite inefficient [5].  

 

In conclusion, this literature review shows us that qualitative signal detection through 

spontaneously reported case studies, and clinical trials, has become inadequate at 

identifying signals on its own. New methods to quickly identify safety risks are an 

important necessity in order to protect patients from unwanted AEs.  

From Tables III and IV, and the study descriptions above, it is observed that most data 

mining studies have been conducted in SR databases, using denominator–independent 

methodology. Few studies have been applied to administrative claims databases using 

denominator-based methods, even fewer have attempted to apply a sequential monitoring 

approach to quickly identify safety risks after product launch, and none such studies have 

been conducted using a Canadian health care claims database. In addition, there are 

important gaps in the data mining and signal detection processes that should be addressed 

such as further exploring the potential of sequential monitoring / early signal detection, and 

investigating additional means to control for confounding.  

Provincial health care claims databases are widely available in Canada and may be a useful 

tool for the application of denominator-based data mining algorithms to support signal 

detection in pharmacovigilance. 
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Chapter 4. Quantitative signal detection using the 

Quebec administrative health care claims databases 

4.1 Rationale 

Quantitative signal detection is currently not performed in the national spontaneous 

reporting database of Canada (Canada Vigilance) due in part, to small sample size and 

insufficient resources to substantiate all signals that are detected. Provincial health care 

claims databases are widely available in Canada.  In Quebec, the claims databases include 

the prescription drug database as well as the medical services database, both being 

administered by the Régie de l'assurance maladie du Québec (RAMQ).  The prescription 

drug database includes all prescribed medications that are covered by the public program 

and that are dispensed to drug plan members. The medical services database includes 

billings by physicians on a fee-for-service, whether the service is rendered in an outpatient, 

inpatient, or emergency room setting.  Both databases are populated on a real-time basis, 

i.e. the information is entered and transmitted either at the time of the service (pharmacy 

dispensation) or soon after (physician billings).  A hospitalization database, Med-Echo, is 

also available in Quebec which records information on hospital discharges from the great 

majority of hospitals.  Although it provides accurate information on diagnoses, its 

usefulness for signal detection is questionable given that it is populated only once per year. 
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Data elements found in the prescription database and the medical services database provide 

information on drug exposure and occurrence of adverse events. Linkage between the two 

databases is conducted through the patient's health insurance number, which remains 

unchanged over time.  Such linkage allows for the accumulation of longitudinal population 

data on drug exposure and occurrence of adverse events on a very long term.  

 

Since the great majority of elderly residents of Quebec are covered by the public drug 

program, the resulting database is very comprehensive and provides optimum 

generalizability.  In addition, from a therapeutic risk management perspective, the elderly 

population has been identified as a high-risk population by regulatory authorities, and as 

such, involve a dedicated section in risk management plans of drug products [10].Their 

increased susceptibility for medication-induced adverse events,  morbidity, and mortality 

may be due to several factors such as metabolic changes, comorbidity, concomitant drug 

usage, and consequently an increased potential for drug-drug interactions[106]. Although the 

ICH specifies requirements for clinical trials in instances where a product is expected to be 

used by the elderly [107], there is still an important evidence gap at the time of product 

approval for drugs not intended for use in the elderly, and those that may be used off-label 

in this group, given that the elderly are rarely included in randomized controlled trials that 

are conducted prior to approval of such products. They are therefore considered, in many 

instances, as subjects of safety surveillance activities in the post-approval setting. The 

prospect of using a data source, such as the claims databases of the “Régie de l’assurance 

maladie Québec” (RAMQ), which contains approximately 97% of the province’s elderly 

population, is likely enviable of the fields of data mining, PMS, and pharmacovigilance 
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overall [108].A tool focusing on the geriatric patient population shall prove highly relevant to 

support the detection of safety signals in a real life setting. 

Studies found in the literature have shown that claims databases may be a useful tool to 

support safety signal detection[30,63].  Analytical tools vary, however, with respect to their 

applicability.  Some of the tools have been developed specifically for the surveillance of 

previously identified risks[63], i.e. in the setting of an active surveillance program, and as 

such require the exclusion of patients who have experienced the adverse event of interest in 

the recent past.  Others[30,64] do not require such exclusions given that they have been 

developed for passive surveillance purposes, i.e. with the objective of uncovering 

previously unknown adverse effects.  To our knowledge, the usefulness of claims database 

to support safety signal detection in the context of a passive or active surveillance program 

has never been compared. 

Furthermore, published studies have used a limited number of covariates in their model, 

consisting mainly of age and sex.  Conversely, in the field of pharmacoepidemiology, there 

has been a dramatic methodological development over the past decade, with advanced 

methods for summarizing and adjusting for confounders measured or unmeasured in claims 

databases.  Applying any of these methods to control confounding in a signal detection 

study would represent significant progress in this area of research.   

Over the past two decades, the Quebec administrative claims databases have been used 

extensively to conduct drug utilization and risk evaluation studies, i.e. hypothesis-testing 

studies.  To our knowledge, they have not yet been used to support safety signal detection, 

i.e. hypothesis-generating studies. 

 



47 

 

4.2 Research hypothesis 

Existing data mining algorithms would be applicable to the Quebec administrative claims 

databases and would be successful at detecting drug safety signals. 

4.3 Study objectives 

4.3.1 Main objective 

To apply and validate a data mining algorithm for signal detection using the Quebec 

prescription and medical services databases. 

 

4.3.2 Specific objectives 

 

1)  To apply the MaxSPRT data mining algorithm to support signal detection, within the 

Quebec claims database;  

2) To assess the tool performance through measures of sensitivity and specificity;  

3) To determine whether adjusting for patient overall health status improves the 

performance of the tool 

4) To offer methodological improvements over existing data mining models that have been 

published in the literature  
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4.4 Methods 

4.4.1 Study design 

A retrospective cohort study was conducted in a random sample of 87,360 community-

dwelling elderly members (age 66+) of the Quebec public drug program identified from 1st 

January 2000 to 31st December 2009. The Poisson-based Maximised Sequential 

Probability Ratio Test (MaxSPRT) was used as the data mining algorithm. Four known 

drug-AE pairs, for which there was a safety warning issued by Health Canada during the 

study period, and two drug-AE pairs not known to be associated ("negative controls") were 

used. Covariates included: age group (66-69; 70-74, 75-79, 80-84, 85+),gender 

(dichotomous), Chronic Disease Score (CDS) (grouped into: 0;  0-5; 5 - 10, 10).  

The analytical method is an adaptation of the method developed by Brown et al[63] with the 

following methodological improvements: i) the consideration of the depletion of 

susceptibles effect; ii) further adjustment for confounding by overall health status, through 

the von Korff Chronic Disease Score, based on prescription drug use.  Furthermore, the 

applicability of the method for active or passive surveillance was determined, respectively, 

by excluding and including patients with a history of the adverse event.  Each of these 

methodological aspects is described in greater details in the sections below. 

4.4.2 Selection of drug-adverse event pairs 

The following criteria were used to select four known drug-AE combinations: 

i) Involve drugs used commonly in the elderly population 
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ii) Approved by Health Canada and included in the list of reimbursed medications of 

Quebec within the study period cohort (January 1, 2000 - December 31, 2009).  

iii) Subject of Health Canada Warnings that were published during the study period 

The criteria used to select a comparator drug for each study drug chosen was as follows:  

i) Also approved by Health Canada and included in the list of reimbursed medications 

of Quebec within the study period cohort  

 
ii) Also used commonly in the elderly population 

 

iii) Used for the same indication as the  study drug in order to control for indication bias 

iv) AE of interest was not listed in the comparator drug’s Product Monograph as a 

potential adverse reaction of the comparator drug 

The criteria used to select the negative-control drug-AE combinations were as follows:  

i) Also approved by Health Canada and included in the list of reimbursed medications 

of Quebec within the study period cohort  

 

ii) Also used commonly in the elderly population 

iii) AE of interest chosen was one that was a) relatively serious / medically significant, 

b) not listed on the product monograph of the study drug, c) Possessed relatively 

clear and concise ICD-9 codes and d)Occurred with relatively common frequency in 

non-users of the drug of interest (in order to optimize statistical power) 

The criteria used to choose comparator drugs of the negative-control pairs were:  

i) Involved drugs used commonly in the elderly population 
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ii) Approved by Health Canada and included in the list of reimbursed medications of 

Quebec within the study period cohort  

iii) AE of interest was not listed on the product monograph of the comparator drug 

Because no association was expected with these pairs, it was not necessary to choose a 

comparator drug used for the same indication as the study drug in the negative-control 

pairs. 

 

Table  VI – Drug-AE case studies used in data mining analysis 

Drug-AE pair Comparator 
Drug 

Date of Health 
Canada Warning 
(where applicable)

1. rosuvastatin- rhabdomyolysis 
 

Other statins: 
atorvastatin, 
fluvastatin, 
lovastatin, 
pravastatin, 
simvastatin 

June 2004 

2. rosiglitazone- Cardiac safety concerns  metformin  November 2007 

3. rosiglitazone – Increased fractures in female patients 
 

metformin  February 2007 

4. pioglitazone-Increased fractures in female patients metformin April 2007 
5. amitriptyline –increased fractures (negative-control) metoprolol N/A 
6. alendronate – acute hepatitis (negative-control) atenolol N/A 

 

4.4.3 Data sources 

The following RAMQ databases were used to conduct the study: i) the prescription 

database; ii) the medical services database; iii) the beneficiary database. 
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Prescription database: In Quebec, the public drug programs includes approximately 97% 

(circa 800,000) of elderly residents, all welfare recipients, as well as all residents and their 

dependents who are not covered by a private drug insurance (approximately 30% of 

residents aged 18-64). The database records information on all outpatient prescriptions 

included in the formulary of reimbursed medications: Drug name, dispensing date, dosage, 

prescribed duration, number of units dispensed, route of administration, deductible and co-

payment. Drug indication is not recorded.   Drugs acquired in-hospital, over-the-counter, or 

out-of-pocket, are not covered by the public drug program and hence, are not included in 

the RAMQ prescription database.  

 

Medical services database: Due to Canada’s universal health care system, medical 

services, including consultations, examinations, procedures, among others, are provided 

free of charge at the point of service to all residents of the province, regardless of age and 

income.   The resulting medical services database contains information that physicians 

submit to RAMQ for reimbursement of fee-for-service, whether rendered in an inpatient, 

outpatient, or emergency department setting.  Exceptions are services rendered by a 

minority of physicians who are on a salary basis. Among the information included in the 

database are: date and location of the medical service, nature of services (coded according 

to the Federation of General Practitioners of Quebec (FMOQ), the Federation of Specialist 

Physicians of Quebec (FMSQ), the Canadian Classification of Surgical Acts etc.), and 

diagnosis (coded according to ICD-9).  The latter, however, is not obligatory for 

reimbursement and when present, its reliability may be questionable [109]. 
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Beneficiary database: For each resident of the province, the beneficiary database contains 

information concerning patient demographics: age (for confidentiality reasons, recorded in 

5-year intervals), gender, residential region (recorded as CLSC (Centre local de services 

communautaire) region) and dates of membership in medical services and drug programs.  

Through the level of deductible and co-payment, one can derive gross measures income 

status. 

The RAMQ databases may be linked through the patient health insurance number, which is 

unique for each patient and remains unchanged over time.  The RAMQ databases are 

populated in near-real time, and hence theoretically would be available to conduct 

prospective drug safety surveillance. 

 

4.4.4 Populations 

4.4.4.1 Target population 

The target population consists of community-dwelling elderly residents (age 66 +) of 

Quebec.  A cut-off at age 66 was set since claims data are required for one year prior to 

their inclusion in the study, and the public drug program is comprehensive starting solely at 

age 65. 

 

4.4.4.2 Source population 

The source population consisted of a random sample of 87,389 elderly patients (age 66+) 

who were members of the RAMQ public drug plan between 1st January 2000 and 31st 
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December 2009.  Since it was a random sample, no specific event led to entry in the cohort.  

The date of entry was randomly chosen, for each individual, during the study period and the 

period of membership in the drug program.   For the investigation of signals related to 

alendronate, the study population was restricted to females only.  All members of the cohort 

were followed until the first of the following events: i) death, ii) institutionalization, iii) end 

of coverage in drug program; iv) end of study period (31 December 2009). 

 

4.4.4.3 Study population 

Five sub-cohorts of incident users of the exposure drugs described in section 4.4.2 above 

were assembled (i.e. rosuvastatin, rosiglitazone, pioglitazone, amitriptyline, alendronate). 

For each cohort, incident use was defined as absence of dispensing of the drug during the 

year prior to current treatment. The use of incident exposure aims at controlling for 

potential depletion of susceptibles effect, whereby long-term users of a drug are at lower 

risk of the AE than new users [110].This is consistent with the new-user design [111]. Section 

4.4.10 below “Control of biases” describes this phenomenon in further detail. 

The index date for the exposed groups was the date of first dispensing of the drug of 

interest during the study period.  Contrary to published studies (Brown et al [31,63]), for the 

main analyses, history of the AE of interest for a given drug-AE pair was not an exclusion 

criterion given that in a true passive safety surveillance setting, it is not known which event 

will occur.  Exclusion of such patients will be addressed in a sensitivity analysis described 

below (section 4.4.11). 
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4.4.5 Follow-up 

For the signal detection models, subjects were followed until the first of the following 

events: i) Three months after the date of treatment (sensitivity analyses of six months and 

12 months) ii) Switching to the comparator drug; iii) Occurrence of the AE; iv) End of drug 

treatment (+14 days residual risk period); or v) Death, institutionalization, hospitalization 

(as drugs dispensed in-hospital are not recorded in the RAMQ prescription database), vi) 

End of coverage in public drug or medical services program, vii) 31st December 2009.   

 

4.4.6 Study variables for each drug-adverse event pair 

Appendix I summarizes the variables of this study, and codes used for their acquisition. 

 

4.4.6.1 Rosuvastatin – rhabdomyolysis 

Dependent variable 

ICD-9 codes for rhabdomyolysis was 728.8  in the RAMQ medical services database.  

Independent variable 

The “code denomination commune” for the study drug of rosuvastatin (46860 ) and for the 

comparators of “other statins” (47232; 47609; 47083; 47604; 45500; 45570;  47595; 

45564)  from within the RAMQ prescription services database were used.  
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4.4.6.2- Rosiglitazone – acute myocardial infarction 

Dependent variable 

ICD-9 codes for the AE of acute myocardial infarction: 410, 410.0, 410.1, 410.2, 410.3, 

410.4, 410.5, 410.6, 410.7, 410.8 and 410.9 in the RAMQ medical services database. Codes 

related to follow-up were excluded,   

Independent variable 

The “code denomination commune” for the study drug of rosiglitazone (47371, 47652, 

46642) and for the comparator of metformin (05824; 47208; 47807) from within the 

RAMQ prescription services database.  

4.4.6.3  Rosiglitazone - increased fractures in female patients  

Dependent variable 

ICD-9 codes for the AE of fractures: 800 to 829 and 733.1, in the RAMQ medical services 

database.  

 

Independent variable 

The “code denomination commune” for the study drug of rosiglitazone (47371, 47652, 

46642) and for the comparator of metformin (05824; 47208; 47807) from within the 

RAMQ prescription services database.  

 

4.4.6..4- Pioglitazone-increased fractures in female patients 

Dependent variable 

ICD-9 codes for the AE of fractures: 800 to 829 and 733.1, in the RAMQ medical services 

database.  
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Independent variable 

The “code denomination commune” for the study drug of pioglitazone (46678; 47392) and 

for the comparator of metformin (05824; 47208; 47807) from within the RAMQ 

prescription services database.  

 

Negative-control drug-AE pairs 

4.4.6.5- Amitriptyline – increased fractures in female patients  

Dependent variable 

ICD-9 codes for the AE of fractures: 800 to 829 and 733.1 in the RAMQ medical services 

database.  

Independent variable 

The “code denomination commune” for the study drug of amitrptyline (00429 ; 00442 ; 

46011) and for the comparators of metoprolol (38275, 46763,46780)  from within the 

RAMQ prescription services database.  

 

4.4.6.6- Alendronate – acute hepatitis 

Dependent variable 

ICD-9 codes for the AE of acute hepatitis: Acute hepatitis 573.3 & 570.x in the RAMQ 

medical services database. 

 

Independent variable 
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The “code denomination commune” for the study drug of alendronate (46295; 47165; 

43670, 47662; 47747) and for the comparators of atenolol (46315; 46325)  from within the 

RAMQ prescription services database.  

 

4.4.7 Covariates 

In the hypothesis-generating setting of real-time safety surveillance, where it is not yet 

known which AE will occur, control of confounding can only be made for a restricted 

number of covariates which tend to be universal for all drug-AE associations, i.e. age and 

gender.  Unlike pharmacoepidemiologic studies which are etiological and aim at testing 

hypotheses, it is not possible to control for risk factors for the AE (given that the AE is not 

yet known).  Consequently, like previous published studies, age group and gender were the 

two main covariates.   

Confounders that were considered for all analyses consisted of age group and gender.  

Stratification was used to control for these sources of confounding. 

 

Prescription channelling [112] refers to the selective prescription groups of patients who have 

a certain susceptibility or specific pre-existing morbidity, where it consists of self-selection 

or prescribers' preference. For example, medications with the same indication that are 

introduced on the market at different times, and thus in different competitive situations, 

may be channelled to different groups of patients. This channelling of a medication may 

lead to what would appear to be an increased risk of AE associated with a given drug, when 

in fact treated patients are already at greater risk [113, 114].. There is evidence that for diseases 
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with a stepped-care approach, the drug history of patients, as available from some 

databases, can show channeling of drugs to patients with markers of relatively severe 

disease [112]. 

One way of controlling for prescription channelling is by considering patient co-morbidity 

or overall health status.  Overall health status is often recognized as an important 

confounder in pharmacoepidemiologic studies and may therefore be associated with the 

prescription channelling.  Overall health status is therefore not specific to a given drug-AE 

pair; rather it can be considered as universal and hence, would be appropriate to consider in 

a surveillance study where it is not possible to control a priori for confounders such as other 

risk factors for the AE, given that said AE is not yet known.  Overall health status is 

assessed using claims databases, either through prescription or medical services data.  

Several methods have been published in the literature, and given the nature of the RAMQ 

databases, the von Korff Chronic Disease Score (CDS) was retained.  The CDS is derived 

from the drugs a patient is using over a one-year period and has been found to be a good 

predictor of death in the following year [115]. There is evidence that for diseases with a 

stepped-care approach, the drug history of patients, as available from some databases, can 

show channeling of drugs to patients with markers of relatively severe disease [112].  von 

Korff et al developed the CDS composition, where drugs were assigned scores (0 to 5) and 

such that the CDS would i) increase with the number of chronic diseases but not if drugs of 

the same class were used; ii) increase as the treatment regimen became more complex; iii) 

allocate a higher score to more severe diseases and iv) measure medications used for the 

diseases (as opposed to the symptoms) [115]. The CDS has been adapted and calibrated by 

(Béland et al. [116]) to reflect diseases not previously considered by von Korff et al, such as 
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anxiety and depression. It was also updated to include new drugs and new classes of drugs 

newly available in Quebec over the past decade. Some of the drugs and corresponding 

weights of the CDS are as follows: Diuretics-1; Statins-1; Cardiovascular drugs (one class-

3; two classes-4; three classes-5) etc. Based on the distribution of scores obtained for 

members of the source population, the following database categories were created: 0;  0- 

5; > 5 - 10, >10). The CDS is a method to assess patient overall health status through the 

summarization of prescription drugs; hence, it is not specific to a given drug-AE 

association and may be used systematically for all drug comparisons.  While previous 

studies on signal detection controlled for age and sex only, CDS was also an adjustment 

variable in this study with the premise that it would be an improvement over existing 

analytic methods of signal detection. 

 

4.4.8 Statistical analyses 

The Poisson-based Maximised Sequential Probability Ratio Test (MaxSPRT), described in 

section 3.1.2.2 (Denominator-based methods) of the literature review, was used as the data 

mining algorithm.  

An exposure denominator that takes into account both the number of exposed patients as 

well as their length of exposure, i.e. person–time, was used. Exposed and unexposed 

person-time were calculated using units of patient-months. Exposed person-time began on 

the day after commencing treatment with the drug, and continued until the end of the last 

dispensed prescription plus an additional 14 days so as to account for the residual risk 

period. Exposure gaps of 14 days or less were considered as continued exposure since the 
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majority of claims in Quebec are for 30 days.  A gap of one half of the days last supplied 

was used as a cut-off in order to account for non-persistence [117]. Hence, all gaps exceeding 

one half of days last supplied was considered to be discontinuation.  Unexposed person-

time was quantified as patient-time with no exposure to the drug of interest. 

 

At each monthly time point, the number of expected events in the treatment group was 

calculated based on the observed risk of the event in the parallel comparison group i.e.  

 

 

 

Using monthly data, the LLR test statistic comparing observed counts to expected counts, 

was calculated at time t of each drug-event pair. A potential AE signal was generated if the 

LLR exceeded a pre-defined critical value. A different critical value was established for 

each drug-AE pair using pre-calculated computer-based simulations provided by Kulldorff 

et al [57]. MaxSPRT critical values are calculated such that the null is rejected when the LLR 

reaches an upper limit and accepted when the observation has been ongoing for a pre-

determined length of time. It is, defined in terms of the expected number of events 

accumulated under the null hypothesis (H0) Kulldorff et al provide a table of values within 

their study, which indicates the upper bounds used for the rejection of the H0for various 

denominations of alpha levels, and expected number of events under the H0. These values 

can be employed by subsequent users of the MaxSPRT method. 

 

Cumulative number of AEs in reference 

group             

Cumulative pt-exposure of treatment X
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For this study, critical values were set up such that the alpha level was 0.05; the minimum 

number of events under the H0 was five (based on evidence that the minimum number of 

AEs required to uncover a signal for a rare AE is between three and five [88]), and the 

maximum length of follow-up was 120 months i.e. the available study period in the 

database (1st January 2000-31st December 2009).  The time to detection of the potential 

risk (signal) using this method was compared to that of the posting of the actual safety 

communication by Health Canada (dates provided in Table V of section 4.4.2 “Selection of 

drug-adverse event pairs”). 

 

4.4.9 Statistical power 

Applying this method in real time, the sample size of the study would not be known until 

analysis has actually begun. Furthermore, the sample size would also be limited by the size 

of the database, which was the case with the current study. Consequently, the statistical 

power of the study to detect drug-AE associations was determined after analyses of each 

pair with the use of a table of pre-determined values provided by Kulldorff et al [57]  (Table 

II). Kulldorff et al calculated various values of power based on: the type I error, the upper 

length of surveillance, and the true RR of the AE of interest. Tables IX and X in the 

“Results” section display the statistical power calculated for each of the analyses.  

 

4.4.10 Control of biases 

Because the hazard function that describes the change in risk over time after treatment 

initiation is rarely constant over time, it is necessary to account for duration of drug use.  In 
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many instances, risk of AE increases with time immediately after treatment initiation and 

decreases thereafter. This phenomenon is referred to the "depletion of susceptibles" effect 

whereby individuals who did not experience symptoms of the AEs during the period at 

highest risk will likely not experience it at later stages [119].  As shown by Moride and 

Abenhaim (1994)[111], failure to take into consideration time since treatment onset may 

introduce a bias in the measure of association between a drug and an AE, especially when 

comparing the risk associated with various products. Thus, continuing follow-up of a drug 

in one patient for a long period of time could reduce the strength of a signal, as less AEs 

would be reported as time lapses.   In order to eliminate this source of bias, we have used a 

"new user" design in the definition of the cohorts [118].  All patients exposed to the drug of 

interest or to the comparator had not received any prescription for this given drug in the 

previous six months.  

Prevalence bias is a type of selection bias that may occur in studies when prevalent cases 

rather than new cases of a condition are selected. Prevalent cases are patients who have 

survived with their AEs.  Hence, it is not known whether the drug is a risk factor for the 

occurrence of the AE, or whether it is a prognostic factors in patients who have the AE.  

Previous studies have excluded patients with a history of AE during the 6 months prior to 

the occurrence of the current AE [63]. It was decided not to exclude on such basis in the 

current study given that in a true signal detection setting, one would not know which AE 

will occur; hence it is not possible to exclude on such history.  However, controlling for 

overall health status would allow control for prevalence bias as well. 
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4.4.11 Sensitivity analyses 

Sensitivity analyses were performed in order to test the robustness of the method, and the 

effect of controlling for different combinations of confounders  

Time windows for follow-up 

In addition to the default follow-up time of 3 months, additional time windows of 6 months 

and 12 months were also analysed for all drug-AE pairs, in order to determine the effect of 

controlling for depletion of susceptibles effect as described in section “Control of bias’” 

4.4.10 above. 

Age, sex 

Age: As described in section 4.4.7“Covariates” above, to control for age (five-year 

intervals), subgroup analyses were applied to all drug-AE pairs in a similar manner to a 

standardised mortality ratio (SMR) process (i.e. a method whereby expected numbers are 

calculated per group (i.e. age or gender) and then totalled. With the SMR, the numbers of 

deaths that were actually observed in the population are also calculated and totalled. The 

ratio of the total number of deaths observed, to the total number of deaths expected is then 

calculated subsequently) [120]. 

Following the formula indicated in the “Statistical analysis” section above, separate 

expected AE counts were calculated for each of the subgroups on a monthly basis, by first 

calculating risk values for each, and then multiplying the risk by the monthly cumulative 

patient exposure for each of the same. These expected event counts were then averaged for 

the entire treatment cohort at the monthly level, before applying the LLR test.  
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Sex: Subgroup analyses based on sex were also applied to all drug-event pairs with the 

exception of two pairs studied only in female patients: the “pioglitazone-” and 

“rosiglitazone-increased fractures” pairs. A similar method to that performed for the age 

adjustment was applied to the subgroups of “male” and “female” subjects. Given that the 

RAMQ provided age groups in 5 year intervals as opposed to exact birth dates, only a crude 

control could be achieved, which is a limitation of the study. 

Age, sex, overall health status 

After adjustments on age and sex, the effect of overall health status was also analysed for 

the rosiglitazone-acute MI drug-AE pair by including the subgroup of CDS. CDS is 

described in further detail in section 4.4.7 “Covariates”above. For each patient of the 

cohort, CDS was calculated based on the drugs used during the year prior to initiation of 

treatment use. Scores were subsequently stratified into subgroups which were determined 

based on the observed distributions of CDS in the study population: (0;  0- 5; > 5 - 10, 

>10). 

Include versus exclude history of MI 

The initial analysis of the drug-AE pairs did not control for or exclude prior occurrences of 

the AE of interest. In order to control for prevalence bias, where a medication appears to 

cause an AE in patients already suffering from the AE, patients who had previously 

exhibited the event of acute MI within the 6 months prior to incident exposure within the 

rosiglitazone-acute MI pair were excluded from the analysis. 
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4.4.12 Results 

Table VII. Baseline Characteristics of study cohort 

    N % 

Total   87389 100

Gender       

  Female 49718 56.89

  Male 37671 43.11

Age at cohort entry      

  66-69y  49002 56.07

  70-74 15843 18.13

  75-79 11379 13.02

  80-84 6413 7.34

  85 and over 4739 5.42

  Not Indicated 13 0.01

 

 



66 

 

 
Table I shows the baseline characteristics of the study cohort. A large majority of the 

population were between the ages of 66 and 69.  

 

Data mining results: Known drug-AE pairs 

Rosuvastatin-rhabdomyolysis (“other statins” reference): Figure II displays the background 

rates of rhabdomyolysis within users of simvastatin and rosuvastatin. Due to the few 

number of AEs, the database appears to be too small for application of the MaxSPRT 

method. Instead, a simple Poisson method was applied to determine where an unexpectedly 

high amount of AEs were observed in rosuvastatin users, as compared to users of “other 

statins”.  

Figure II. Background rates of rhabdomyolysis during study group in statin groups 

within RAMQ Database 

 

The Poisson method also did not show a potential signal in the pair as can be seen below in 

Figure III: The observed number of events of rhabdomyolysis within the rosuvastatin group 

remained lower than the expected number of events (based on reference groups of 

Health Canada 
Warning



67 

 

simvastatin and atorvastatin). It also remained far lower than the upper boundary that would 

have indicated a signal as per the Poisson method. 

Figure III. Rosuvastatin-rhabdomyolysis poisson data results – three month follow-up 
 

 
 

Rosiglitazone-acute myocardial infarction (metformin reference):The three-month time 

window shows the detection of a safety issue at 107 months from product launch. The six-

month time window shows a signal at 108 months, and the 12-month time window does not 

show a signal.  

 

Rosiglitazone-increased fractures in female patients (metformin reference):There was no 

potential signal observed with the rosiglitazone-increased fractures pair with any of the 

Health Canada 
Warning 
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follow-up time windows or adjustments. There was no significant increased risk when 

comparing observed to expected counts. The power of the analyses was less than 0.2.  

 

Pioglitazone-increased fractures in female patients (metformin reference):There was no 

potential signal observed with the rosiglitazone-increased fractures pair with any of the 

follow-up time windows or adjustments. There was no significant increased risk when 

comparing observed to expected counts. The power of the analyses was less than 0.2 

Data mining results: Negative controls 

Alendronate – acute hepatitis (atenolol reference) and Amitriptyline – increased 

fractures (metoprolol reference): 

Table VIII below shows that neither of the negative-control pairs produced any potential 

signal throughout any of the follow-up time periods. These results were not affected by 

adjustments on age and sex. However, using the six-month follow-up period, there was a 

peak that came close, in the alendronate-acute hepatitis group at January of 2003.  

 

Table VIII below also provides an overall summary of the unadjusted MaxSPRT data 

mining results for the remaining drug-AE pairs. The only drug-AE pair that shows a 

potential signal is the rosiglitazone-acute MI pair, during the three-month and six-month 

follow-up time windows. This study had a power of 0.5 to 0.6. The other known-drug-AE 

pairs did not show a potential signal, nor did the negative-control pairs. However the power 

for all of these remaining analyses was between 0.1 and 0.2. Each drug-AE pair is 

discussed in further detail below. 
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Table VIII. Unadjusted results of MaxSPRT data mining method applied to drug-AE pairs 

Drug–AE Pair  Follow-
up 
Time 
Period 

Cumul. 
number 
of person 
months 
in cohort 

Number 
of person-
months in 
cohort at 
signal 

Maximum 
Expected 
Number of 
Events 
under Ho 

Expected 
Number of 
Events 
under Ho 
at signal 

LLR 
Critical 
Value  
(p < 
0.05) 

Date of 
Health 
Canada 
Warning 

Number of 
events 
observed at 
signal 

Month 
and Year 
Signal 
Detected  

Number 
of 
months 
to signal 

Study 
Power 

rosiglitazone – 
acute 
myocardial 
infarction (vs. 
metformin) 

3 
months 

52906 51704 92 89 3.95                          
Nov 2007 

118 Oct 2009 107 0.252 to 
0.869 
(Interpol-
0.458) 
(RR=1.3) 

 6 
months 

90941 89782 118 118 3.99 Nov 2007 151 Nov 2009 108 0.366 to 
0.997 
(Interpol - 
0.567) -  
(RR=1.3) 

 12 
months 

91059 N/A 136 N/A 4.03 Nov 2007 N/A  
(max=153) 

No signal No signal 0.421 to 
0.502 
(RR=1.1) 

rosiglitazone-
Increased 
fractures in 
female patients 
(vs. metformin) 

3 
months 

3064 N/A 15 N/A 3.57 Feb 2007 N/A  
(max =12) 

No signal No signal Less than 
0.122 

 6 
months 

5452 N/A 22 N/A 3.68 Feb 2007 N/A  
(max =14) 

No signal  No signal Less than 
0.122 
 

 12 
months 

9849 N/A 36 N/A 3.78 Feb 2007 N/A  
(max =23) 

No signal No signal Less than 
0.195 
 

pioglitazone 
Increased 
fractures in 

3 
months 

1731 N/A 6 N/A 3.35 Apr 2007 N/A  
(max =7) 

No signal No signal Less than 
0.091 
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female patients 
(vs. metformin) 
 6 

months 
2953 N/A 9 N/A 3.47 Apr 2007 N/A  

(max =10) 
No signal No signal Less than 

0.106 
 

 12 
months 

5109 N/A 14 N/A 3.57 Apr 2007 N/A  
(max =16) 

No signal No signal Less than 
0.122 
 

amitriptyline-
Increased 
fractures in 
female patients 
(vs. metoprolol) 

3 
months 

11173 N/A 51 N/A 3.35 N/A N/A  
(max =39) 

No signal No signal Less than 
0.091 

 6 
months 

15846 N/A 67 N/A 3.47 N/A N/A  
(max =63) 

No signal No signal Less than 
0.106 
 

 12 
months 

24095 N/A 86 N/A 3.57 N/A N/A  
(max=100) 

No signal No signal Less than 
0.122 
 

alendronate -
acute hepatitis 
(vs. atenolol) 

3 
months 

26411 N/A 13 N/A 3.57 N/A N/A  
(max =17) 

No signal No signal 0.112 to 
0.318 
(Interpol-
0.182) 

 6 
months 

43166 N/A 18 N/A 3.63 N/A N/A  
(max =25) 

No signal No signal 0.112 to 
0.318 
(Interpol-
0.182) 

 12 
months 

77046 N/A 22 N/A 3.68 N/A N/A  
(max =32) 

No signal No signal 0.136 to 
0.451 
(Interpol-
0.241) 
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Effect of adjustments on age and sex- Rosiglitazone-acute myocardial infarction case 

study (metformin reference):VIII below displays a direct comparison of the three-month 

and six-month follow-up time windows within the “rosiglitazone-acute MI” pair. The three-

month time window shows the detection of a safety issue at 107 months from product 

launch. Adjusting these results on age and sex improves the time to detection to 93 months. 

The six month time window initially shows a potential signal at 108 months. The age & sex 

adjustment improved it to 93 months. All with powers between 0.5 and 0.6.  

Effect of adjustments on age, sex and CDS - Rosiglitazone-acute myocardial infarction 

case study (metformin reference): 

Cumulative adjustments of the CDS in addition to age and gender at the three-month 

interval allow for an even earlier detection of a potential signal at 83 months in September 

2007, two months before Health Canada’s issuance of the safety warning. The CDS 

adjustments at the six-month interval (combined with age and gender) led to detection at 61 

months in November 2005, 24 months before Health Canada’s warning. 

Effect of exclusion of previous AE occurrence - Rosiglitazone-acute myocardial 

infarction case study 

At the three-month time window, excluding individuals with prior experience of acute MI 

within six months prior to exposure to the drug of interest, further sped up the detection of 

a potential signal to 29 months, with a power between 0.5 and 0.6. However, at the six-

month time window, excluding prior AE’s within six months pre-exposure leads to no 

detection at the six-month time window, involving a power of just 0.2. 
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Table IX  MaxSPRT data mining results of rosiglitazone – acute myocardial infarction pair using three-month and Six-month 

follow-up time periods 

Follow-
up  
Time 
Period 

Adjustment LLR 
Critical 
Value  
(p < 
0.05) 

Cumul 
Number 
of 
person –
months 
in cohort 

Number 
of 
person-
months 
in cohort 
at signal 

Maximum 
Expected # 
of Events 
under Ho 

Expected 
# of 
events 
under Ho 
at signal 

Date of 
Health 
Canada 
Warning 

Month 
and 
Year 
Signal 
Detected  

# of 
months 
to 
signal 

Number 
of events 
observed 
at signal 

Power of 
study 

Interpolated 
Power 
Calculation 

3 months None 3.95 52906 51704 92 89 Nov 2007 Oct 2009 107 118 0.252 to 
0.869 
(RR=1.3) 

0.458 

 Age & Sex 3.92 52906 42763 84 68 Nov 2007 August 
2008 

93 94 0.309 to 
0.904 
(RR=1.3) 

0.507 

 Age Sex & 
CDS 

3.86 52906 36060 71 50 Nov 2007 Sep 2007 83 72 0.252 to 
0.869 
(RR=1.3) 

0.458 

 Age, Sex, 
CDS & 
Exclusion of 
MI in 
previous 6 
months 

3.72 52788 4532 30 5 Nov 2007 Mar 2003 29 13 0.599 to 
0.983 
(RR=1.6) 

0.599 

6 months None 3.99 90941 89782 118 118 Nov 2007 Nov 
2009  

108 151 0.366 to 
0.997 
(RR=1.3) 

0.576 

 Age & Sex 3.96 90941 72573 108 90 Nov 2007 August 
2008 

93 119 0.366 to 
0.997 
(RR=1.3) 

0.576 
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CDS = Chronic Disease Score 

 Age Sex & 
CDS 

3.92 90941 38175 91 42 Nov 2007 Nov 
2005 

61 65 0.309 to 
0.944 
(RR=1.2) 

0.507 

  Age, Sex, 
CDS & AE 
excl in 
previous 6 
months 

3.83 90941 N/A 51 N/A Nov 2007 No signal No 
signal 

N/A 
(max=58) 

0.223 
(RR=1.2) 

0.223 
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Figure IV below displays the number of counts of the observed vs. expected AEs; as well 

as the signal detection graph, for the three-month follow-up of rosiglitazone-acute MI pair 

adjusted for age, sex, and CDS. Although the potential signal from the data mining method 

was observed at 83 months, the imbalance in observed vs. expected AE counts is seen to 

commence as of 56 months in Jun 2005 (39 events vs. 34 events). 

Figure IV. Rosiglitazone-acute MI data mining results – three month follow-up 

adjusted for age, sex and overall health status (CDS) 

 

 

 

 

 

 

 

 

 

 

 

Figure V below displays the number of counts of the observed vs. expected AEs; as well as 

the signal detection graph, for the six-month follow-up of rosiglitazone-acute MI pair 

adjusted for age, sex, and CDS. Although the potential signal from the data mining method 

was observed at 61 months, the imbalance in observed vs. expected AE counts is seen to 

begin as of 13 months in Dec 2001 (10 events vs. 8 events) 
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Figure V. Rosiglitazone-acute MI data mining results – six month follow-up adjusted 

for age, sex and overall health status (CDS) 

 

 

 

 

 

 

 

 

 

4.4.13 Discussion 

4.4.13.1 Strengths  

This study is the first data mining study for signal detection to be applied to a Canadian 

health claims database. Literature searches have revealed only one previous study applied 

to a Canadian database. This was however the Health Canada SR database [73], and 

compared the denominator-independent methodologies of PRR, ROR, the Chi-square 

statistics methods, and the Du Mouchel method to calculate possible signals. This is in 

stark contrast to our method which used an administrative claims database, and a 

denominator-based method to determine the presence of potential signals.  Thus to our 
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knowledge, this is the first study to attempt detection of potential safety signals through a 

Canadian claims database, and using a denominator-based method. The use of the RAMQ 

database provided strengths such as a large sample size and longitudinal data that is 

extremely comprehensive for the elderly population of the province of Quebec (97% 

covered in public drug program). Furthermore the use of this database avoids common data 

mining and signal detection challenges of underreporting and reporting bias that occur in 

the SR databases, and virtually eliminates any potential for selection bias. Because of the 

diversity and completeness of data within this database, the potential for future signal 

detection activities of verification and confirmation through pharmacoepidemiologic 

studies is also quite promising. This study also accounts for the depletion of susceptibles in 

a data mining study by varying the length of follow-up for each of the drug-AE pairs in 

order to observe variations on the strength and time to detection of potential signals. This is 

a characteristic that other studies have not factored in the past. Finally, the calculation of 

expected events in this study is based on a parallel reference group. This also is a unique 

approach taken in this study as the previous Brown et al studies [31,63] calculated the events 

based on the assumption that the comparator group contained at least some historical data. 

For this reason, a constant risk value of the comparator group had been applied to prior 

studies [31,63]. However this study instead uses a variable risk that is calculated at each 

monthly time point, in order to determine the expected counts for that particular month. 

This is deemed to be more pragmatic than the historical approach, and would also account 

for seasonal changes, as well as changes in the product’s usage profile over time.  
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4.4.13.2 Weaknesses 

Size of database 

The size of the database that the RAMQ provided for the analysis was a relatively small 

proportion (approximately 11%) of the RAMQ database (n=87389). This number is rather 

small in comparison to other databases used in prior data mining studies (Brown et al n= 

approx. 8million; Choi et al n=1,093,262; Coloma et al n=59,929,690). It is presumed that 

the effects of this limited database size on this study were the low power, and inability to 

detect signals in 2 out of four of the case studies, i.e. the rosiglitazone and pioglitazone-

increased fractures pairs. The power of the negative-control pairs was also very small, 

leading to some reservations in the interpretation of the specificity of the tool.  

Age group within database 

In Quebec, all persons 65 years or older are eligible for coverage under the RAMQ 

services[121], thus it contains 97% of the elderly population for both medical services and 

prescription data, and is ideal for post-marketing studies of this group. This is beneficial for 

signal detection activities in this particular group, which is one that has been targeted by the 

FDA and EMA for risk management activities. The medical services database also includes 

more than 99% of the claims for the remainder of the population of Quebec [122], however 

not all individuals are covered by the prescription services which contains only 55% of the 

total population for medication exposure data [123, 124]. This limits its applicability to signal 

detection in groups outside of the elderly population as i) the sample size provided may be 

too small for analysis, and ii) the generalizability of the results to the overall population of 

Quebec may be questionable.  
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Potential inaccuracy of ICD-9 codes 

As mentioned in “Health Claims Databases” section 3.1.3.3, the reliability of the ICD-9 

diagnostic codes reported by the HCPs may be questionable as validation is not required for 

reimbursement. Although there are studies which indicate that the specificity of ICD-9 

codes reported by Physicians for reimbursement, including those for cardiovascular risk 

factors, are usually 95% or greater [109, 125], there were no studies located concerning the 

validation of the codes for acute MI in Canada. Furthermore, there is a general lack of 

Canadian validation of the ICD-9 codes used in this study overall. In general, use of the 

incorrect ICD-9 code, or misdiagnoses could result in a misclassification of the events, and 

possibly many events being omitted from the analysis. This in turn could reduce the size of 

the signal and increase the time to detection of the signal as well. Thus the risk of 

inaccuracy of the ICD-9 codes used in this study could be contributing to the lack of a 

signal, and low power observed with some of the case studies. In addition, in some cases 

the misclassification of the event could lead to the event’s counts being  so rare that too few 

events are identified in order to apply analyses at all. This is believed to be one of the 

causes of the missed signal in the rosuvastatin-rhabdomyolysis case study as described 

further below.  

Calculation of expected events Additional weaknesses observed throughout this process 

include the inability to detect very rare AEs such as rhabdomyolysis using this method. 

However, application of the Poisson method also did not produce a potential signal. This 

could in part be due to the use of inaccurate ICD-9 codes, as the precise code for 

rhabdomyolysis is a five-digit code, however the RAMQ database only contains up to four 

digits for ICD-9 codes. It could also be due to the database not being large enough (14,583 
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rosuvastatin users for the entire 10-year timer period), however, these results are consistent 

with a study by Choi et al that did not pick up rhabdomyolysis as an AE signal when 

analyzing AEs of rosuvastatin in a Health Claims database in China [30] which consisted of 

96, 236 users of rosuvastatin over a one-year period. On the other hand, Szarfman et al [49], 

and Brown et al [63] did determine a signal using the cerivastatin -rhabdomyolysis case 

study, and a data mining algorithm. Cerivastatin however is a drug that was approved by 

the CM of Quebec in 1997, three years before the inclusion dates of our sample, making it 

an inadequate case study for our method. Cerivastatin was also voluntarily withdrawn from 

the world market in 2001 due to its association with rhabdomyolysis and death, implying 

that it possibly had a much larger RR than our case study of rosuvastatin-rhabdomyolysis. 

Because of the extremely rare nature of the AE of rhabdomyolysis among users of “other 

statins”, it is not possible to use this particular automated methodology and this particular 

database to identify this sort of AE. This feature indicates that it is necessary to continue 

traditional qualitative or non-automated signal detection methodology, and that the 

automated data mining methods should be used as an adjunct to traditional qualitative 

methods [28,38]. This is a conclusion consistent with general consensus of data mining 

methodology. Furthermore, there is a general lack of Canadian validation of the ICD-9 

codes used in the analyses which would affect the accuracy of the results.  

Only a basic, less refined control of the covariable of “age” was achieved due to the fact 

that the RAMQ database provides age groups in 5 year intervals rather than the exact birth 

dates.  
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As with most pharmacoepidemiologic studies, there is the possibility of the presence of 

unmeasured confounders, that cannot be adjusted for. This could distort the results of the 

study.  

Feasibility of using this method depends on the availability of data on a quarterly basis.  

Given the current situation in Quebec where delays for RAMQ data extraction are very 

large, the administrative system is not set up for this.  Furthermore, drug dispensings 

become available in the RAMQ database only when the drug is reimbursed by the public 

drug plan.  In practice, delays for inclusion in the drug formulary are increasing which 

therefore hampers the ability to conduct data mining immediately following product launch.  

In this demonstration study, the analytical methods were developed and the performance of 

the tool was assessed.  Currently, limitations in the timeliness of the availability of the 

RAMQ database is a major barrier to the implementation of data mining for drug safety 

signal detection in Canada.  

 

4.4.13.3 Controlling for confounding and biases 

The main limitation of data mining is that the ability to detect safety signals is offset by a 

very large number of false-positive signals, each requiring further investigations. In order to 

reduce the number of false-positive signals obtained during the data mining process, 

confounding factors are controlled for. A potential signal was observed with the unadjusted 

rosiglitazone-acute MI case study. This is in fact consistent with the results of the Motola et 

al study [126] which showed disproportionality with cardiovascular ADRs among the 

rosiglitazone study group. In addition, subgroup analysis of our study data by age and 
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gender had a profound effect, causing the potential signal to be detected around one year 

earlier in the rosiglitazone- acute MI group (See Table IX above).  

As a means to control confounding by overall health status, the CDS was applied to the 

“rosiglitazone- acute MI drug-AE pair. The CDS was described in detail in section 4.4.7 

“Covariates”. It is an indicator of overall health status of a patient developed by von Korff 

and is acquired based on the drugs a patient is using over a one-year period[115]. It is 

believed that this is a straightforward method that can be applied at various levels of 

research. Nonetheless, calculating the CDS is still a fairly tedious procedure and it is 

suggested that it only be applied to drug-AE pairs showing the most potential effect as was 

done in this study where it was applied only to the rosiglitazone-myocardial infarction pair. 

Many previous studies have not included any adjustments or attempts to control for 

confounding [47,89,95,]. Other studies methods to control for confounding have been primarily 

limited to stratification on demographics such as age, sex, and gender [49,50]. Choi et al [30]  

included only elderly patients in order to control for confounding by age, and Poluzzi et al 

controlled for prevalence bias by excluding individuals who previously exhibited the AE of 

interest. They also controlled for concomitant medications by conducting qualitative case-

by-case analyses of the spontaneous reports included in the study. There have also been 

discussions on the possibility of using a form of a Propensity Score known as the High 

Dimensional Propensity Score (HDPS). This is a multi-step process that encompasses 

covariates of two main categories i. Demographics (age, sex, calendar time, race) ii. 

Candidate Empirical Covariates (outpatient diagnostic ICD codes; inpatient procedure 

codes, and drugs dispensed).  The prevalence, recurrence, and priority of these codes are 

also assessed in order to determine the most adequate ones to include in the multivariate 
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logistic regression formula that would define the HDPS [127]. This method is indeed more 

advanced than the application of CDS used for our study; however HDPS construction is 

quite complex and believed to require much more resources than the CDS. 

 

4.4.13.4 Effect of depletion of susceptibles 

As discussed in the methods section 4.4.10 “Control of biases”, the phenomenon of 

depletion of susceptibles [111] is a situation whereby patients who remain on drugs for a 

prolonged period of time, are those who can tolerate them, while those who are susceptible 

to side effects select themselves out of the population at risk. Thus, continuing follow-up of 

a drug in one patient for a long period of time could reduce the strength of a signal. 

Accounting for the depletion of susceptibles in a data mining study is not a characteristic 

that other studies have factored in the past. 

From Table VII, one can note that for the non-adjusted rosiglitazone-acute MI data, 

although the power for the six-month intervals is higher than that of the three-month  

interval (0.6 vs. 0.5), it is the three-month interval that gives a stronger and earlier signal. 

We believe that this exemplifies the effect of the depletion of susceptibles phenomenon. 

The meta-analysis conducted by Nissen and Wolski[128, 129] which initially showed the 

increased risk of acute MI in rosiglitazone users, did not have access to individual patient 

files and could not determine the actual time to onset of the acute MI. All clinical trials 

included in the analysis were of duration of at least 24 weeks (6 months). Consequently, the 

theory of depletion of susceptibles with regards to the 3-month time interval is difficult to 

support. However, Table VI of our signal detection study also shows us that there is no 
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potential signal observed with the 12-month time window of unadjusted results, although 

the 6month time window did produce a signal This is also believed to be attributable to a 

depletion of susceptibles effect masking the signal in the signal detection study for the 

longer period of 12 months. This is consistent with the results of the meta-analysis by 

Nissen and Wolski where trials of less than 12 months’ duration showed a higher risk of 

acute MI (OR, 1.76 (95% CI, 0.93-3.33) than trials of 12 months and longer (OR, 1.22 

(95% CI, 0.95-1.57). The RR for the 6 month and 12 month time periods (1.3 and 1.1. 

respectively) were slightly lower than the ORs of Nissen and Wolski although they do fit in 

the 95% confidence intervals. These risk estimates demonstrate that our calculation of 

expected events is in line with the literature and it is expected that it may be difficult to 

detect a signal at the 12month time point given that the risk is lower for that length of 

follow-up. We believe the reason for the lower risk in the longer time period is the fact that 

those who are susceptible to experiencing AEs select themselves out of the population at 

risk. E.g. in the DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone 

Medication) trial, some common reasons for stopping rosiglitazone and placebo were: 

edema (439 [4.8%] in the rosiglitazone group and 41 [1.6%]) in the placebo group, 

physician’s advice (50 [1.9%] and 39 [1.5%]), and weight gain (50 [1.9%] and 15 [0.6%], 

indicating that susceptibility to AEs plays a large role in decisions to discontinue therapy 

[130]. 

It is also possible that the reduced ability to detect a signal in the 3month time period 

(adjusted for age, sex and CDS) is due to the fact that the time to onset of MI could, on 

average be more than 3 months. Thus the follow-up period may be too short to detect a 

substantial signal at an earlier time point. This further supports the use of varying follow-up 
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time periods during signal detection processes in order to increase potential for signal 

detection.  

4.4.13.5 Exclusion of previous AE occurrences 

The exclusion of previous occurrences of acute MI also allowed for a signal in the 3-month 

period, but none in the 6-month period. It is believed that the exclusion of prior acute MI 

events reduced the power of the 6 month time period such that the AE could not be detected 

in this group (0.223 for 6months vs. 0.599 for 3months). This is believed to be the main 

reason that the 3month time window has a better signal at this point. This exclusion of 

previous AEs also shows evidence that the drug could be playing a larger role at 

exacerbating previous events of acute MI as well as causing new events.  

 

The use of comparator drugs with the same indication as the study drugs, are expected to 

control for indication bias. Survivor bias is also controlled for due to the analysis beginning 

at the start date from the drug’s reimbursement. Finally, misclassification is also addressed 

due to the use of incident exposure, and exposed vs. unexposed person-time denominator in 

the calculations.  

 

4.4.13.6 Challenges encountered in the study 

No safety risk was observed with the remaining two known drug-AE pairs of rosiglitazone 

and pioglitazone-increased fractures in female patients. However in a prior study, Motola et 

al were able to demonstrate that pioglitazone showed significant RORs compared to other 

anti-diabetic drugs within the FDA-AERS database [126]. Our inability to detect a signal 
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could be due to the low statistical power noted with the analyses of these two pairs (both 

approximately 0.1), implying that the database may in fact be too small for analysis of 

certain drugs with either low exposure rates or low occurrence of the AEs. However, it is 

also important to note that the data mining and signal detecting processes are hypothesis-

generating methods which would require further analyses (e.g. traditional 

pharmacoepidemiologic studies) in order to confirm that a signal or true safety risk actually 

does exist. Thus having a low power is more common among these studies than others. .  

Although the negative control drug-AE pairs did not produce signals, the alendronate-

hepatitis pair did come close at January of 2003 using the six- month follow-up time 

period. This peak could in part be due to the surge in exposure that occurred between Dec 

2002 and October 2003. Furthermore, the power of the data mining methods of these two 

negative-control drug-AE pairs also appears to be relatively low (0.1 and 0.2 respectively).  

 

With the unadjusted rosiglitazone-acute MI pair results there appears to be a question of the 

possible existence of notoriety bias. i.e. after the issuance of the warning, the reporting of 

acute MI increased thus resulting in a signal. However because the actual figures of 

observed vs. expected events (Figure IV for 3month period and Figure V for the 6 month 

time period) show the imbalance of events beginning as of June 2005 and December 2001 

respectively, this is unlikely to be the case.  

 

Accounting for time to onset of AE, or residual time periods after exposure, is an aspect 

that would be difficult to include in future application of the methodology given that in a 

real world prospective case scenario, the AE of interest is unknown. Thus, controlling for 



86 

 

such factors is not possible. As such, the study did not take into effect a lag time to onset of 

AE, and used a standard residual period of 14 days. No other studies attempting either of 

these facets were located during the literature review. However for future use, if a particular 

and specific AE has been defined for analysis, then this may be possible. The UMC uses an 

algorithm to filter what AEs should be analysed, prioritizing those that are: serious and  

new events; of increasing  reporting frequency; clinically of special interest due to their 

typical association with drugs (e.g. rhabdomyolysis, agranulocytosis and Stevens-Johnson 

syndrome) and; ‘international signals’ that are reported from multiple countries [131,132]. 

Consequently if an organization wishes to routinely study AEs such as those listed above, 

then  further limiting the number of false positive signals by defining time to onset of AE, 

and/ or residual time periods after exposure may be a viable option. 

 

4.4.13.7 Future perspectives 

Using less severe symptoms as proxies for diseases that are difficult to diagnose, or very 

rare AEs may be a solution to data mining of very rare events, (e.g. rhabdomyolysis: 

proxies of less severe symptoms such as  myopathy, myoglobinuria, myositis, muscle 

weakness etc.) specifically since ideally one would want to identify the AE before it 

becomes as severe as rhabdomyolysis. However using proxies could lead to the unwanted 

effect of additional “background noise” false positive signals, which would make the 

process more tedious.  
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Accounting for time to onset of AE, or residual time periods after exposure in order to 

further reduce the false positive signals is an idea that may be worth exploring in instances 

where particular AEs have been identified for study.  

 

Use of the database for the next step in signal detection, i.e. verification / confirmation of 

the signal, is also a potential next step with the RAMQ database because it contains much 

information on potential confounders such as concomitant medications. 

 

Finally, applying the method to the RAMQ database, in a real-time manner using newly 

marketed drugs. The potential AEs to be studied could be AEs known to be associated with 

the class effects of the drug, or mechanism of action, or high-profile AEs.  However this 

would depend on the RAMQ updating the database on a schedule that would allow for this. 

This would also most likely be limited to medications used in the elderly, since the RAMQ 

database may not possess a representative number of other groups of the population. 

 

4.4.14 Conclusion 

 

In the context of therapeutic risk management, this study helps us to identify certain gaps in 

the field of risk detection through the use of statistical methods. The data mining algorithm 

of MaxSPRT is indeed applicable to the RAMQ database and the database seems to be 

conducive to quantitative signal detection. This further supports the use of administrative 

claims databases vs. SR databases for data mining. There are however still limitations with 
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the size of the database, and thus the power of certain drug-AE pair analyses. Consequently 

the method may need to be refined for each drug-AE pair individually in order to improve 

its performance. The sensitivity of the tool was demonstrated with just one of the four 

known drug-AE pairs through the detection of a safety concern, and the time to detection of 

the potential signal.  The specificity of the tool was also established since none of the 

negative-control pairs analysed resulted in a potential signal being identified. However the 

power of each of these analyses could cause some ambiguity with regards to interpretation 

of the results. The definition of the time window is a crucial element for the ability to detect 

signals in order to avoid the depletion of susceptibles effect. This is an aspect that future 

researchers should take into consideration in order to possibly identify signals earlier, and 

take action at protecting patients much sooner. This tool is expected to be adaptable for use 

by academic researchers, industry and regulators in order to improve drug safety 

surveillance in the Canadian population, and serve as a supplement to current methods of 

qualitative signal detection, helping advance the field of therapeutic risk management
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Chapter 5. Review of Risk Minimisation Interventions: Impact 

of regulatory guidances and drug regulation on risk 

minimisation interventions in drug safety: a systematic review 

5.1 Introduction to risk management and risk minimisation 

interventions 

5.1.1 Risk management 

Therapeutic Risk Management is a comprehensive and proactive application of scientifically-based 

methodologies and involves assessing, communicating, and minimising risk throughout a drug`s life 

cycle [10]. This field has received growing interest over the past decade as manufacturers and regulatory 

authorities increasingly seek to prevent the occurrence of adverse events (AEs) associated with 

pharmaceutical drug products. Risk minimisation interventions (RMIs) used in therapeutic risk 

management have existed for several decades; however it was not until June 2005 that both the Food 

and Drug Administration (FDA) and the European Medicines Agency (EMA) integrated into their 

regulations, guidelines concerning Risk Management. Since the publication of these regulatory 

guidelines an increasing number of risk minimisation/mitigation interventions have been implemented.  

5.1.2 Risk minimisation interventions 

According to the EMA, a Risk Minimisation system is: a set of activities used to reduce the probability 

of an adverse reaction occurring or its severity should it occur [9]. RMIs are tools which aim at reducing 
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the risk of AEs among patients using medications, while preserving their benefits throughout the 

drug’s life cycle [10]. They vary widely and can be specific to country, target audience, and stage of 

drug’s life cycle at which it is implemented such as: marketing authorisation; prescription of drug; 

dispensing of drug etc. Figure VI shows some RMIs and indicates stages at which they can be 

implemented. The next section contains descriptions of RMIs. 

Figure VI. Examples of RMIs based on main implementation stage of product life cycle  
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5.1.2.1 Restricted Distribution(RD) is an example of a set of restrictions and conditions implemented 

during the marketing authorisation process of a drug. RD is generally used in situations where 

restrictions are imposed on various aspects of access to the drug such as: who can prescribe the 
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medication; where the product can be dispensed or administered; or the amount of the product that can 

be dispensed to a patient at a time [133]  

 
5.1.2.2 Therapeutic Drug Monitoring(TDM) is a method used mainly with drugs having a narrow 

therapeutic range, where the patient’s drug level is monitored regularly in order to ensure that the level 

of the drug in the bloodstream does not reach levels more likely to cause AEs [134]. Many drugs also 

have monitoring systems of laboratory results that ensure that a marker for a particular AE is being 

kept within normal limits. Such is the case with clozapine, where white blood cell counts need to be 

monitored in patients on a regular basis while using the medication[133].  

 
5.1.2.3 Registries (R) are used where prescribers and/ or patients of a drug are required to be enrolled 

in a registry so that restrictions and conditions can be monitored or, screening for abnormal laboratory 

test results maintained. Such is the case with isotretinoin [135]   

 
5.1.2.4 The Black Triangle Scheme (BTS) is a process whereby newly marketed drugs in the UK are 

assigned an inverted black triangle to indicate that they are new drugs and that reporting of AEs to the 

regulatory authority is encouraged. This black triangle is present within various formularies where the 

drug is listed, compendiums, as well as on advertising material [136].  

 
5.1.2.5 Education Programs(EP): In some cases, there are interventions implemented by a Health 

Institution whereby patients and / or prescribers are provided education on a product, and its side 

effects, at the point of prescription or dispensing. This ideally results in swift action, and fewer AEs.  

 
5.1.2.6 Informed Consent(IC): This process can also occur at the point where the patient is prescribed 

and / dispensed a drug product. E.g. the sponsor could choose to develop a patient agreement where 
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before receiving the product, the patient formally acknowledges their understanding of a 

contraindication [137]  

 
5.1.2.7 Patient Alert Cards(PtAC): Although patient reports have been accepted by regulatory 

agencies in regions such as Canada (Health Canada) and the USA (FDA) for several years, it was not 

until October 2005 that non-Healthcare professionals nationwide in the UK were able to report AEs 

directly to their regulatory authority, MHRA (Medicines and Healthcare Products Regulatory Agency) 

through the Yellow Card System (established in 1964). Other interventions (patient alert cards) have 

been created based on this Yellow Card System [138]. 

 
5.1.2.8 Education Material(EM): Also at the point of dispensing a product, written information can be 

provided to the patient in order to better educate the patient on the potential AEs associated with the 

drug. An example of this would be Medication Guides implemented by the FDA in 1999. They are 

distributed to outpatients at the time of product dispensing to provide additional education on risks of 

product  use. [137] 

Dear Health Care Professional Letters (DHCP Letter) are drafted by the manufacturer and regulator of 

a product, and disseminated to Health Care Professionals to convey important drug safety information. 

agency[139,140]  

 
Public advisory warnings, and safety alerts also occur with marketed drugs and often follow the 

dissemination of a DHCP Letter. These warnings / alerts are generally placed on a regulatory agency’s 

website or disseminated to interested members of the public with drug safety newsletter subscriptions. 

The general media may also obtain the information and relay it to the general public[9, 10]. 
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Medication guides, Dear Health Care Professional Letters, Regulatory agency safety warnings / alerts, 

Public advisory warnings, and Medication guides are all categorised as Education material.  

 
5.1.2.9 Black Box Warnings(BBW) are issued exclusively by the FDA in the USA, with extremely 

serious adverse reactions, or if Education materials are found to be ineffective. A Black Box Warning 

is the sternest warning by the U.S. FDA that a medication can carry and still remain on the market It is 

named for the black border surrounding the text of the warning that will appear on the package insert, 

label and other literature describing the medication (e.g., magazine advertising). In addition, a 

medication guide will be mandated by the FDA for the product of interest [141]. 

 
5.1.2.10 Product Withdrawals(W): Failing all efforts to minimise the risk of an adverse reaction, a 

regulatory agency may require a company to withdraw a product from the market as a last resort. In 

this article, only product withdrawals that were regulatory agency-mandated were considered as risk 

minimisation interventions. In extremely rare situations, a product may be re-introduced to the market 

post-withdrawal, with a specific and stringent risk management plan in place. These are usually in the 

form of a Restricted Distribution or a Registry. 

 

5.1.3 Guidelines on Therapeutic Risk Management 

Although Regulatory Authorities have issued guidance documents for drug manufacturers concerning 

pharmacovigilance quite some time ago (1991 in Canada), guidelines concerning Therapeutic Risk 

Management have only recently been integrated into the regulatory process by both the USA, and 

within Europe in 2005[9,10]. Here the FDA for example outlines RMIs as processes or systems intended 

to minimize known risks with the goal of :  
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Communicating particular information regarding optimal product use 

Providing guidance on prescribing, dispensing, and/or using a product in the most appropriate 

situations or patient populations.  

Not all drug products are the subject of RMIs, as only those posing particular safety concern who have 

received an evaluation and affirmation of the need, shall have them applied.  

Also mandated in the guidances, are directives concerning the evaluation of the RMIs. These are 

provided in order to ensure that the resources invested in them are actually achieving the desired goals 

of continued benefits with minimized risks. Consequently each RMI should also have a plan for 

periodically evaluating its effectiveness after implementation [10] .  

 

Canada is aware of the benefits and importance of incorporating Risk Management Planning 

throughout the entire life cycle of a drug product, and in February of 2009 posted a notice concerning 

implementation of Risk Management Planning and their intent to follow International guidances on 

Pharmacovigilance processes [142]. These regulatory changes involve the implementation of well-

defined risk evaluation stakeholders in the management of potential and identified risks associated 

with medicines. 

 
Due to the novelty of this subject, many drug manufacturers, as well as regulators, are still uncertain of 

what Risk Minimisation Interventions are available for use; which are appropriate for the various 

products; and consequently what interventions should be incorporated in a particular product's Risk 

Management Plan. Furthermore, the use of databases for these analyses is a promising approach to 

observing whether RMIs were in fact efficient at reducing the risk associated with the drug products. 
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5.2 Review of risk minimization interventions 

5.2.1. Objectives and hypothesis 

The systematic review, was a review of the literature and regulatory websites that would characterise 

RMIs used by industry, regulators, and institutions. In this review, we set out to:  

(1) Identify the RMIs published in the literature, in the past and present on a global basis.  

(2) Identify the knowledge gaps in the methodology and databases used for implementation and 

evaluation of RMIs.  

(3) Determine whether the issuance of regulatory guidelines concerning risk management had an 

influence on the type and/ or frequency of risk minimisation interventions being used.  

Our main hypothesis of this review was that the introduction of guidelines on Therapeutic Risk 

Management would have increased the number and quality of RMIs being implemented in the field.  

5.2.2 Methods 

We collected the following information from Embase and MEDLINE literature sources, and regulatory 

websites concerning RMIs that were implemented and/ or published between January 2000 and 

December 2009:  

Nature of the RMI, target population, therapeutic area as per the Anatomical Therapeutic Chemical 

(ATC) classification system, AE(s) of special interest, regulatory region, and year of 

publication/posting. The characteristics of the RMIs were also compared across two five-year time 

periods: before the publication of the guidances (pre-guidances period: 2000-2004) and after the 

implementation (post-guidances period: 2005-2009). 
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5.2.3 Results 

A total of 119 unique interventions were identified in the literature (54 published in 2000 -2004, and 

65 published in 2005 - 2009). Interventions included Education Material (n=37, 31%), Black Box 

Warnings (n=22, 19%) and Therapeutic Drug Monitoring (n=11, 9%). The Website review produced a 

total of 1,112 interventions: 326 posted between 2000 and 2004, and 786 between 2005 and 2009. The 

main interventions observed were: Education Material (n=956, 86%), Black Box Warnings (n=45, 4%) 

and Withdrawals (n=39, 4%). For the literature review the pre and post guidances values of the three 

main RMI categories were as follows: Education material n=13 (24%) vs. n=24 (37%); Black box 

warning, n=6 (11%) vs. n=16 (25%); TDM n=6 (11%) vs. n=5(8%). For the website review, these 

numbers were the following: Education material n=279 (86%) vs. n=677 (86%); Black box warning, 

n=20(6%) vs. n=25 (3%); TDM n=5 (1.5%) vs. n=14 (1.8%). In the literature review, the distribution 

of RMI ATC between the two five-year time periods remained relatively consistent. A similar trend 

was seen with the RMI AE SOC category.  

 

5.2.4 Discussion 

Strengths and Weaknesses  

This comprehensive review is the first of its kind, and to our knowledge, there are no publications 

which specifically summarise RMIs over this length of time, or that attempt to analyse the effect of the 

publication of guidances. Secondly, this article is a systematic and aggregate analysis of various 

features of RMIs, and no other article has taken on such a comprehensive approach at detailing and 

analysing trends concerning the RMIs published within the literature. Finally, the global perspective 
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taken with this review permits its application world-wide as the information is relevant across regions 

and can be used by many countries for RMI information. 

 

Although the website review was quite detailed, the search is not completely exhaustive for a few 

reasons: (1) There were challenges concerning access to data. For example PMDA’s website, only 

provides information from 2004 onwards. This could potentially bias the results with regards to the 

post-guidances numbers of the website review (2) Only a selected number of the regulatory authorties’ 

websites were reviewed. Which could exclude  RMIs specific to the individual EU countries websites  

not posted in the English language were also excluded which could result in the exclusion of important 

RMIs, however the fact that the EMA site was also searched expectantly included information for 

many of the non-English speaking EU countries; Particular RMI classification, and categorizing could 

also lead to discrepancies concerning the results of this review versus other reviews that may be 

conducted in the future.  

 

The fact that the USA and EU are the two regions that implemented the guidances in itself would 

imply that they most likely would increase their RMIs post-guidances. In fact, both regions created 

dedicated websites for Risk Minimisation Activities (Medication Guides and approved REMS in the 

USA; and approve Risk Management Plans in the EU). This was indeed the case with the USA for 

both the literature and website reviews, however the EU only reflected an increase in their website 

review RMIs. The USA also has a unique RMI step in the black box warning which other countries do 

not have. This could be adding an extra RMI to the life cycle of a drug which would not exist in other 

countries. The large proportional increase of RMIs observed in the USA region in the literature review 
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but not the website review could be largely due to the fact that there are many more journals available 

in the USA as opposed to the rest of the world and consequently a publication bias. Thus, a literature 

review provides a larger source of US information as opposed to Canadian or European information.  

A specific look at RMIs implemented in Canada shows that there is a large deficiency with regards to 

literature sources. This could in part be explained by publication bias, however there also seems to be a 

lack of research concerning this aspect of risk management by Canadian researchers. This suggests 

great potential for future research in this area. During the pre-guidances period of the website review, 

Canada displays a large role in the proportion of global RMIs, and is in fact the region with the 

majority of RMIs during that time period, the USA following closely behind. This changes drastically 

during the post-guidances period: although the number of RMIs that Canada produces is approximately 

the same, the increase in RMIs by other regions, offsets Canada’s proportion. Again, the fact that the 

EU and USA increased their alertness concerning RMIs and risk management plans is believed to be 

the major reason for this [9,10]. Although Health Canada has recognized the importance of risk 

management planning, it is still apparent that they have not been able to implement these activities as 

favourably as would be ideal.  

Risk minimisation gaps identified 

To mirror the requirements of the FDA’s Pediatric Research Equity Act (PREA) [143], which sets out 

requirements concerning pediatric assessments for drug applications/approvals: post-marketing 

activities for products with particular safety risk being used in children, should also have RMIs 

targeting children, which should be active throughout the life cycle of the drug. Within the risk 

management guidances both the FDA and the EMA encourage the development of additional risk 

minimisation activities designed to address safety concerns in instances where particular populations 
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may be at risk. The FDA and EMA outline that  such target populations include among others: 

children, the elderly, and pregnant or lactating women. It is believed that for this reason we see some 

RMIs targeting children and pregnant women. However, this number is still very low considering the 

guidances. Furthermore, the extremely low number of RMIs targeting the elderly is particularly 

concerning, thus highlighting an important gap in the current conduct of RMIs. 

Effect of regulatory guidances on RMI distribution 

This systematic review implies that the guidances on therapeutic risk management did lead to an 

important increase in the number of RMIs implemented within the USA and published in the literature. 

There was also an important increase among website review RMIS of the regions of the USA, EU and 

Japan. The regulations did not appear have an effect on the distribution of RMI types across the pre-

and post-guidances periods for either the literature review or the website review. Furthermore, the 

literature review did not show variation in the distribution of the ATC Classifications, or the AE SOC 

classes of the target drugs for the RMIs in the pre-vs. post-guidances period. Although this is a work in 

progress, it appears that for the first five years post issuance, the guidances have only had an effect on 

increasing overall numbers of RMIs for only some of the regions.  

 

Future Perspectives 

The immediate next step of this analysis is actually a parallel ongoing study to identify the methods 

used to assess the effectiveness of these RMIs as is required by the guidances on Risk Management. 

Determining which are the most effective of the RMI’s based on the results of observed studies, and 

which are the most convenient methods to be used with the various types of RMIs. Future potential 
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studies could involve a detailed account of the methodological challenges faced by those who wish to 

assess the RMI effectiveness. What aspects to account for during the analyses, identifying gaps in the 

methods, and proposing means of overcoming them. Finally, this is an analysis with potential for 

longevity as the pharmaceutical, healthcare, and regulatory industries overall could also  benefit from 

the continued reviews of RMIs going forward.  

5.2.5 Conclusions 

In conclusion, the website review found that the guidances on therapeutic risk management did lead to 

an important increase in the number of RMIs implemented within the USA, EU and Japan. However 

the literature review only showed an increase within the USA. The discrepancy with the literature 

review vs. the website review demonstrates the existence of publication bias. Although interventions 

found in the literature are fewer in number, more innovative interventions and variety can be obtained 

from these sources. Interventions specific to drugs, therapeutic areas or populations are rare. More 

RMIs specific to drugs, therapeutic areas and most importantly: specific populations, need to be 

conducted in order to better comply with the risk management guidances. 
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5.3 RMI Review Article: Impact of regulatory guidances and drug 

regulation on risk minimisation interventions in drug safety: a 

systematic review 

Contributions of co-authors to article: 

As Principal researcher of this review, Lenhangmbong Nkeng (LN) had major contributions to the 

study: She proposed the idea of a review of risk management processes; designed and coordinated the 

review strategy; performed the MEDLINE review portion of the literature review, and the entire 

website review; completed initial extraction of data, interpreted the results; and drafted the manuscript.  

Anne-Marie Cloutier assisted with the strategy for literature and website searches completed review of 

the EMBASE database for the literature review, peer-reviewed a portion of the sources which were 

excluded by LN, proof-read the drafted article and provided feedback on the manuscript.  

Camille Craig peer-reviewed the remainder of the sources which were excluded by LN, proof-read the 

drafted article and provided feedback on the manuscript 

Dr. Jacques Lelorier reviewed the article and provided feedback on results, interpretation, and 

discussion of the manuscript.  

Dr. Yola Moride proposed the focus of the review to the subject of “risk minimisation interventions”, 

provided guidance on the research strategy, reviewed the article, and provided comments and 

additional ideas for inclusion in the manuscript.  
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Figure Captions 
Country Codes as per ISO 3166: 

USA=United States of America; GBR=United Kingdom; DEU=Germany; SWE=Sweden; FRA=France; 

CHE=Switzerland; DNK=Denmark; NLD=Netherlands; ESP=Spain; AUS=Australia; CAN=Canada; 

SGP=Singapore; JPN = Japan 

 

* EU = European Union member states 

INTL = International 

UNK = Unknown 

 

Regulatory Agency Accronyms 

TGA = Therapeutic Goods Administration; PMDA = Pharmaceutical and Medical Devices Agency; MHRA = 

Medicines and Healthcare Products Regulatory Agency; EMA = European Medicines Agency; FDA = Food and 

Drugs Administration; HC = Health Canada 

  

RMI Accronyms 

EM =Education material; BBW=Black box warning; TDM=Therapeutic Drug Monitoring; EP=Education 

program; RD=Restricted distribution; IC=Informed consent; W=Withdrawal, R=Registry; PtAC=Patient Alert 

Card; PtR - Patient registry PG=Pharmacogenetics; BTS=Black Triangle Scheme. 

 

Drug ATC: 

NS = Nervous System; A = Alimentary tract and metabolism; B = Blood and blood forming organs; L = 

Antineoplastic and immunomodulating agents; 

D = Dermatologicals; C=Cardiovascular system 

Comb = Combination 

 

AE SOC:  

CV=Cardiovascular disorder; N=Neoplasms, benign, malignant and unspecified; Psy=Psychiatric disorders; 

Con= Congenital, familial, and genetic disorders; Hep=Hepatobiliary disorders; Blood = Blood and lymphatic 

system disorders 

 

Div= Diverse (combination of AE SOC) 
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Impact of regulatory guidances and drug regulation on risk minimisation interventions in drug safety: a 

systematic review 

L.Nkeng, A-M. Cloutier, C. Craig, J. Lelorier, Y.Moride 

ABSTRACT 
 

Background: Therapeutic risk management has received growing interest in recent years particularly 

since the publication of regulatory guidances in 2005 and 2006, paralleled with a change in drug 

regulation. The characteristics of risk minimisation interventions (RMIs) that have been implemented 

or approved remain inadequately explored.   

 

Objective:  To review RMIs published in the literature or posted on regulatory agency websites over 

the past 10 years, and to assess whether the publication of regulatory guidances on risk management is 

associated with changes in the number and types of interventions. 

 

Methods:  

Sources were searched for RMIs published/posted between January 1, 2000 and December 31, 2009. 

For the literature search, MEDLINE and EMBASE databases were used using key words related to 

Drug Safety (i.e. “Drug Toxicity”) AND the individual risk minimisation intervention names. The 

website review involved searches of major regulatory authority websites such as:  European Medicines 

Agency, USA Food and Drug Administration, Canada’s Health Canada, the United Kingdom’s 

Medicines and Healthcare Products Regulatory Agency, Japan’s Pharmaceutical and Medical Devices 

Agency, and Australia’s Therapeutic Goods Administration. The following eligibility criteria were 

applied for inclusion in the review: Published/posted between 2000 and 2009 inclusive; involving drug 
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products; use in humans; involving risk minimisation interventions, or tools used to increase the 

reporting of adverse events. Natural healthcare products, devices, diagnostic chemicals, pregnancy 

registries without follow-up, medication errors, and products not used as therapy for illness, were not 

retained. For each source, the following characteristics were extracted: nature of the intervention, 

target population, therapeutic area, adverse event(s) of special interest, country/ regulatory agency, and 

year of publication.  

 

Results: A total of 119 unique interventions were identified in the literature (54 published in 2000 -

2004, and 65 published in 2005 - 2009). Interventions included Education Material (n=37, 31%), Black 

Box Warnings (n=22, 19%) and Therapeutic Drug Monitoring (n=11, 9%). The Website review 

produced a total of 1,112 interventions: 326 posted between 2000 and 2004, and 786 between 2005 and 

2009. The main interventions observed were: Education Material (n=956, 86%), Black Box Warnings 

(n=45, 4%) and Withdrawals (n=39, 4%). 

 

Limitations:  

Additional regulatory resource websites were available in the post-guidances periods that were not 

available in the earlier years of the pre-guidances periods, and may bias the post-guidances results. 

Also not all global regulatory websites were searched. Finally only English language websites were 

searched, limiting the variation of RMIs observed. Classification and categorizing for this particular 

review may not be consistent with future reviews by other researchers.  
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Conclusion: The USA is the sole region with a substantial increase in published risk minimisation 

interventions during the post-guidances period while EU, Japan, and USA all indicated an increase in 

the number of interventions on their websites.   
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Background 

Risk minimisation interventions (RMIs) are tools that aim at enhancing the benefit-risk of medicines 

beyond product labelling[1].  In the broad spectrum of RMIs, one may find educational interventions, 

on one end, and more stringent programs, such as Restricted distribution, on the other end. Among the 

most well-known education interventions are Dear Health Care Professional (DHCP) Letters issued by 

drug manufacturers or regulatory agencies,[3] Black Box Warnings, Medication guides, Regulatory 

agency safety warnings / alerts, and Public advisory warnings.  Therapeutic Drug Monitoring (TDM) is 

another type of RMI used mainly for drugs that have a narrow therapeutic range.  The patient’s blood 

level of the drug is monitored in order to ensure that it does not reach levels more likely to cause 

adverse events (AEs)[4]. Registries are also used where prescribers and/ or patients are enrolled so that 

restrictions can be monitored or, screening for abnormal test results maintained.  RMIs may target 

prescribers (e.g. education and training) or patients (patient alert cards, informed consent), and can be 

implemented by different stakeholders such as drug manufacturers, regulatory authorities, or a 

healthcare institution.   

 

Although RMIs have been in use for several decades, it was not until 2005-2006 that both the FDA and 

the EMA introduced their guidances on therapeutic risk management. The guidances define a risk 

management plan (RMP), conditions of requirement, and, risk minimisation activities that may be 

required in instances of specific safety concerns[1,2]. 

Since then, the field of therapeutic risk management has received growing interest. Due to the novelty 

of the subject, however, the characteristics of the various RMIs that have been implemented remain 

poorly explored.  Although reviews have been published in the literature [5,6,7]  few have aimed at 
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comprehensively examining trends of RMIs, or the effect of the publication of risk management 

guidances on their frequency and type. Leiderman [5]performed a review of selected examples of risk 

management programs and RMIs implemented prior to the introduction of guidelines. However the 

review was not comprehensive or systematic, nor was there the attempt or the ability to examine the 

effect of the regulatory guidances on the characteristics of RMIs.  Similarly, the review by Hirst et al 

[7]summarized some of the RMIs used between 1997 and 2005, with a main focus on product 

withdrawals during that time period (n=22).  In the Wise et al. review[6], the authors’ focus was the 

overall field of pharmacovigilance, and tools used for such. Consequently, the review was general and 

not specifically geared towards risk minimisation. 

 

Objectives 

Our study aimed at characterizing RMIs implemented during the five years before, and the five years 

after, the introduction of the regulatory guidances on risk management.  This was achieved through the 

conduct of a systematic review with the following specific objectives: (1) To identify the RMIs 

published in the literature or posted on selected regulatory agencies websites; (2) To describe the RMIs 

with respect to the target population, drug class, safety issue(s), nature of the intervention; (3) To 

determine whether the issuance of regulatory guidelines on risk management had an influence on the 

type and/ or frequency of RMIs being implemented. 
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Methods 

Search strategy 

The review was conducted through the literature as well as agency websites, and followed the 

PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies [8].  The 

literature search was conducted using MEDLINE and Embase databases. Medical Subject Heading 

(MeSH) terms were used where possible. However, few were located through individual RMI names. 

In addition, terminology varied slightly for the MEDLINE and Embase databases. Consequently, key 

words related to the following subjects were used: “Drug toxicity” (MeSH term) AND “Patient 

education” (MeSH term), OR“HCP education”,  OR“Prescriber education”, OR“Patient alert card”, 

OR“Patient registry”, OR“Medication guide”, OR“Drug legislation” (MeSH term), OR“Informed 

consent” (MeSH term), OR“Restricted distribution”, OR“Physician authorisation”, OR“Drug 

monitoring” (MeSH term), OR“Dear Health Care Professional Letter”, OR“Dear Doctor Letter”, 

OR“Black Box Warning”. All articles, including review articles, were scanned for potential relevant 

references (snowballing).  The Embase and MEDLINE initial reviews were performed by two separate 

researchers. The MEDLINE review was completed on January 22, 2010 by LN and the Embase review 

on January 29, 2010 by AMC. The resulting articles were scanned, and snowballing was performed by 

one individual (LN). The excluded articles were then scanned by one of two secondary individuals 

(AMC and CC) to ensure that that any qualifiable RMIs remained. Any disagreements were resolved 

with a majority (two out of three) decision (LN, AMC, and CC). 

The website review involved an initial search by one researcher (LN) of the following agency sites 

with the initial data collection process for each website completed on the dates indicated:  Health 
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Canada - safety alerts / advisory warnings (http://www.hc-sc.gc.ca/; June 16, 2010); EMA (Europe 

approved RMPs  

http://www.emea.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&murl=menu

s/medicines/medicines.jsp&mid=WC0b01ac058001d124; August 6, 2010); FDA (USA approved Risk 

Evaluation and Mitigation Strategies (REMS), and Medication Guides); FDA safety alerts / advisory 

warnings(http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalPro

ducts/; July 9, 2010); Therapeutic Goods Administration (TGA)  (Australia) advisories (October 13, 

2010); Medicines and Healthcare Products Regulatory Agency (MHRA) (UK) safety alerts / advisory 

warnings 

(http://www.mhra.gov.uk/Safetyinformation/Safetywarningsalertsandrecalls/Safetywarningsandmessag

esformedicines/index.htm; September 20, 2010); Pharmaceutical and Medical Devices Agency 

(PMDA) (Japan) Pharmaceuticals Safety Information 

(http://www.pmda.go.jp/english/service/precautions.html; September 30, 2010). The excluded 

warnings / alerts were then scanned by one of two secondary individuals (AMC and CC) to ensure that 

the first had not excluded any important RMIs. Any disagreements were decided with a majority (two 

out of three) decision.  

 

Eligibility criteria 

 

To be included in the review, RMIs needed to have been published or posted between 1st January 2000 

and 31st December 2009, involved drug products, use in humans, RMIs, or tools used to increase the 
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reporting of AEs. The RMI could be sponsored by any organisation (e.g. regulatory authority, 

commercial organization, or institution etc.) Natural healthcare products, devices, diagnostic 

chemicals, pregnancy registries without follow-up, medication errors, and products not used as therapy 

for illness, were not retained.  

 

For each RMI, the following characteristics were extracted and recorded into a harmonised information 

matrix: nature of the RMI, target population, therapeutic area as per the Anatomical Therapeutic 

Chemical (ATC) classification system, AE(s) of special interest, regulatory region, and year of 

publication/posting. The characteristics of the RMIs were also compared across two five-year time 

periods: before the publication of the guidances (pre-guidances period: 2000-2004) and after the 

implementation (post-guidances period: 2005-2009).  

 

Some RMIs involve a combination of different intervention types.  For the review, if more than one 

RMI for a particular safety concern was published in a given year, they were counted as one RMI. 

Furthermore, only the most stringent component (e.g. Patient alert card or Restricted distribution), was 

retained for the synthesis of information. Regions for categorizing RMIs were based on regulatory 

jurisdictions (e.g. EU, USA, Canada, Japan, Australia). The region recorded corresponded to the site of 

the RMIs execution. If a source described an RMI as present in more than one region, it was 

considered an “international RMI”.  
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Classification of RMI types 

Classifying the RMI types was completed in the following manner: Education materials comprised 

Dear Healthcare Professional Letters, Regulatory agency safety warnings / alerts, Public advisory 

warnings, and Medication guides. Patient alert cards included both the UK Medicines and Healthcare 

Products Regulatory Agency (MHRA) yellow card reporting process, and patient alert cards 

themselves. Restricted Distribution incorporated restricted/controlled prescription and distribution; and 

Therapeutic Drug Monitoring (TDM) included both laboratory results’ monitoring systems (to ensure 

that a marker for a certain AE is being kept within normal limits), as well as therapeutic drug 

monitoring of the drug concentration itself. Withdrawals included voluntary withdrawals, regulatory 

agency-mandated withdrawals, as well as suspensions. 

Comparison of RMIs in the period before and after the regulatory guidances 

The proportion of RMIs published before and after the regulatory guidances were compared through 

chi-square tests or Fisher’s exact tests in instances of low numbers.   

 

Results 

Literature search 

Figure I displays the results of the literature search. A total of 2,103 articles were initially identified 

from the bibliographic databases. Of these, 135 met the inclusion criteria, and another 34 sources were 

obtained from snowballing yielding 169 sources.  After applying the inclusion / exclusion criteria 

listed above, a total of 119 distinct interventions were retained for the review.  Since some 
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interventions were associated with more than one publication, only one source was retained.  

Information extracted into the harmonized matrix is found in the Literature Review Data Extraction 

Table (Appendix I). 

 

In the pre-guidances period, 54 (45%) RMIs were published, while in the post-guidances period, there 

were 65 (55%).  This increase was, however, not statistically significant (p-value = 0.313).  

 

Table I displays the geographical distribution of publications. The majority of interventions were 

implemented in the USA (n=65, 55%) and the EU (n=22, 18%). Other regions included Australia (n=3, 

3%), Canada (n=2, 2%) and, Singapore (n=1, 1%). There were nine sources (8%) that involved an RMI 

that was simultaneously implemented in more than one region (i.e. International). There were 17 RMIs 

(14%) for which the region of implementation was unspecified and therefore unknown.  

Across the various regions, there were 11 different publications (each discussing an RMI), that 

together described a total of five duplicated RMIs implemented in different regions, i.e. RMIs of the 

same type, and same safety issue, however implemented in varying regions). 

According to Table II, the three most frequent RMIs published in the literature were: Education 

material (n=37, 31%), Black box warning (n=22, 19%), Therapeutic Drug Monitoring (TDM) (n=11, 

9%). These rankings were relatively consistent across pre- and post-guidances periods: Education 

material n=13 (24%) vs. n=24 (37%); Black box warning, n=6(11%) vs. n=16 (25%); TDM n=6 (11%) 

vs. n=5(8%); Education programs n=2 (4%) vs. n=7 (11%) for the pre- and post-guidances periods 

respectively.  
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There were 12 RMIs that were in fact a combination of different RMI types: Five combinations 

involved Restricted distribution in combination with either Registries alone or along with Education 

materials or Education programs.  Four were in the pre-guidances period; Three combinations involved 

Informed Consent (2 pre-, and 1 post- guidances) in combination with either Education material, or 

TDM; Two groupings of TDMs were observed, one with an Education material, and the other with an 

Education program. Both were implemented in the pre-guidances period; One Black box warning was 

combined with an Education material in the post-guidances period, and one Patient alert card with an 

Education material also during the post-guidances period.   

The distribution of the RMIs by ATC class, and subdivided into pre-guidances (2000-2004) and post-

guidances (2005-2009) is displayed in Figure II. Most RMIs involved drugs of the nervous system 

(n=40, 34%), followed by the alimentary tract and metabolism (n=17, 14%), and finally blood and 

blood forming organs (n=9, 8%). The distribution of RMI ATC between the two five-year time periods 

remained relatively consistent. The System Organ Classes (SOC) of AEs of interest (as per Medical 

Dictionary for Regulatory Activities, MedDRA) are reported in Figure III,  where the majority was 

simultaneously geared towards a combination of AE SOCs (n=45, 38%). Again the distribution of RMI 

AE SOC remained fairly consistent across the two five-year time periods. 

Overall, 70% of RMIs published over the 10-year period applied to the general population (refer to 

Table III).  The remaining 25 were specific to a sub-population, with eleven being women-specific and 

geared largely towards avoiding pregnancy and/or congenital malformations and teratogenic effects 

(n=6). These were mainly with medications such as isotretinoin and thalidomide. Other RMIs were 

specific to the paediatric population (n=10) (mostly for Nervous system drugs, n=7), and for the 

elderly (n=3, all involving Nervous system drugs).  
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Website search 

Figure IV displays the results of the website review search. Altogether, 1,112 interventions were 

identified through the website review. In Table IV it is seen that the overall number of RMIs more than 

doubled, from 326 in the pre-guidances period to 786 during the post-guidances period. As shown in 

Table V, the most frequent RMIs observed from the website review were as follows: Education 

materials (n=956, 86%), Black box warnings (n=45, 4%), Withdrawals (n=39; 4%). This distribution 

was also generally consistent across the different regions. The overall regional distribution was as 

follows:  USA n=538 (48%); Canada: n=258 (23%); EU: n=183 (17%); Japan: n=115 (10%) and 

Australia: n=18 (2%).  Changes in regional distribution across periods are shown in Table IV. 

Combination RMIs (n=41) were exclusive to three regions: EU (n=19), USA (n=12) and Canada 

(n=10). Among the combination RMIs, 9 involved Patient alert cards combined with Education 

programs and/or Education material, one of which was combined with TDM; 11 Withdrawals were 

combined mainly with Education materials, one including a TDM; 5 RMIs involved Restricted 

distribution in combination with Education programs and/or Education materials; 5 involved groupings 

of Black box warnings with Education materials; 5 TDM programs were combined primarily with 

Education materials, one including an Informed consent; 2 Registries were combined with Restricted 

distribution and/or Education material and; 1 involved a combination of informed consent and 

Education material. There was 1 informed consent that included a patient agreement, and 2 Education 

progam-Education material combinations. 
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Literature Review versus Website Review 

The review revealed major differences between the results of the Literature Search and the Website 

Review. In Table I it is seen that in the literature search, the USA was the sole region with a substantial 

increase in published RMIs during the post-guidances period, n=25 (46%) and n=40 (62%), 

respectively for pre- and post-guidances period. However, from Table IV the website review shows 

that many regions increased their RMIs during the post-guidances period, namely USA n=127 (39%) 

and n=411 (52%), EU n=37 (11%) and n=146 (19%), and Japan n=24 (7%) and n=91 (12%) 

respectively for the pre-and post-guidances periods. The two most common RMIs used in both reviews 

were similar: Education materials and Black box warnings. The percentage of Education materials 

observed in the website review (n=956, 86%) was greater than those of the literature review (n=37, 

31%), offsetting the percentages of all other RMIs.  Such differences in numbers and characteristics 

according to data source suggest the presence of a publication bias. 

 

Discussion 

From the literature review alone, there was no significant difference in the overall number of RMIs 

published in the literature during pre-and post-guidances periods. However, the USA had a large 

increase between these time periods in their numbers. This could in part be due to the fact that the USA 

is one of the two regions that implemented the guidances, and possibly both the FDA and US drug 

manufacturers became more active in this regard. In addition, the USA took additional measures to 
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launch a web page dedicated to the posting of approved REMS as well as medication guides. This 

could in part be a reason for their apparent increased number as other regions, such as Canada, 

continue to display only safety alerts, and do not have additional web pages for approved RMPs that 

may be implemented. Finally, the USA has a unique RMI step in the black box warning which other 

countries do not have. This could be adding an extra RMI to the life cycle of a drug which would not 

exist in other countries. The website review results differ: There is a clear increase in RMIs during the 

post-guidances period, and the increase of RMIs is reflected in two additional regions: EU and Japan. 

The large proportional increase of RMIs observed in the USA region in the literature review but not 

the website review could be largely due to the fact that there are many more journals available in the 

USA as opposed to the rest of the world. Thus, a literature review provides a larger source of US 

information as opposed to Canadian or European information. The literature review shows that 

population-specific RMIs mainly involve two sub-populations: Women and paediatrics. The RMI 

types targeting women do appear to be population-specific, displaying a predominance of Education 

programs. Within the guidances both the FDA and the EMA encourage the development of additional 

risk minimisation activities designed to address safety concerns in target populations versus those 

populations that have been included in clinical trials. Such target populations include among others: 

children, the elderly, and pregnant or lactating women. It is believed that for this reason we see some 

RMIs targeting children and pregnant women. However, this number is still very low considering the 

guidances. Furthermore, the extremely low number of RMIs targeting the elderly is particularly 

concerning, thus highlighting an important gap in the current conduct of RMIs.  

This comprehensive review is the first of its kind, and to our knowledge, there are no publications 

which specifically summarise RMIs over this length of time, or that attempt to analyse the effect of the 
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publication of guidances. Secondly, this article is a systematic and aggregate analysis of various 

features of RMIs, and no other article has taken on such a comprehensive approach at detailing and 

analysing trends concerning the RMIs published within the literature. Finally, the global perspective 

taken with this review permits its application world-wide as the information is relevant across regions 

and can be used by many countries for RMI information. 

 

Although the website review was quite detailed, the search is not completely exhaustive for a few 

reasons: (1) There were challenges concerning access to data. For example, the Japanese Regulatory 

Authority, PMDA, only provides information on its website as of 2004 onwards. This could potentially 

bias the results with regards to the post-guidances numbers of the website review as the site could be 

missing some RMIs that the PMDA may have implemented before 2004; (2) Only a selected number 

of the regulatory authorties’ websites were reviewed. For example, some RMIs specific to the 

individual EU country regulators could be missing from this review. This review also excludes 

websites that were not posted in the English language. All of these facts could result in the exclusion of 

important RMIs, however the fact that the EMA site was also searched expectantly included 

information for many of the non-English speaking EU countries; (3) It is important to note that since 

the initial search of the Health Canada Website (June 16, 2010), safety alerts originating prior to 2004 

are no longer available on the site itself and need to be requested from Health Canada directly.  For the 

review, if more than one RMI in a particular region, for a particular safety concern, was published in a 

given year, they were counted as one RMI. Furthermore, only the most stringent type (e.g. Patient alert 

card or Restricted distribution), was retained for the synthesis of information. This assumption could 
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also lead to discrepancies concerning the results of this review versus other reviews that may be 

conducted in the future.  

 

Conclusion 

This systematic review implies that the guidances on therapeutic risk management did lead to an 

important increase in the number of RMIs implemented within the USA, EU and Japan. However the 

discrepancy with the literature review demonstrates the existence of publication bias. From the 

literature review, it is clear that many RMIs are simultaneously geared towards heterogeneous AEs, 

drug classes, and patient sub-populations. More RMIs would need to be published in order to better 

assess trends in RMI characteristics. Although interventions found in the literature are fewer in 

number, more innovative interventions and variety can be obtained from these sources than on the 

website review. 
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Table I. Literature Review Distribution of RMIs by Country across Pre and 
Post-guidance Periods 

Country 

 

N(%) 

2000-2004 

 

N(%) 

2005-2009 

 

TOTAL N (%) 

 

Chi square p-
value (pre vs. 
post guidances) 

USA 25 (46.3) 40(61.5) 65(54.6) 

 

0.09i 

EU 10(18.5) 12(18.5) 22(18.5) 

 

0.99   

INTL 3(5.6) 6(9.2) 9(7.6) 

 

 0.51*i 

AUS 3(5.6) 0(0.0) 3(2.5) 

 

 0.09*d 

CAN 2(3.7) 0(0.0) 2(1.7) 

 

 0.20*d 

SGP 1(1.8) 0(0.0) 1(0.8) 

 

 0.45*d 

UNK 10(18.5) 7(10.8) 17(14.3) 

 

0.23d 

TOTAL 54(100.0) 65(100.0) 119(100.0)  

 

Country Codes as per ISO 3166: 
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USA=United States of America; AUS=Australia; CAN=Canada; SGP=Singapore 

 

European Union member states 

INTL =International (more than one region) 

UNK = Unknown / unspecified 

 

* Fisher Test  

i = Increased proportion in post-guidances period 

d = Decreased proportion in post-guidances period
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Table II: Literature Review: Overall Distribution of RMI Type 

RMI 

 

N (% of Education 
Material 

 

% of Total 
RMIs 

 

Education Material 37(100.0) 31.0 

 Patient / Public safety warning 17(45.9) 14.3 

 HCP safety warning 10(27.0) 8.4 

 DHCP Letter 6(16.2) 5.0 

 Medication Guide 3(8.1) 2.5 

 
Warning  with unspecified target 
audience 1(2.7) 0.8 

Black box warning 22 18.5 

TDM 11 9.2 

Education program 9 7.6 

Restricted distribution 8 6.7 

Informed consent 6 5.0 

Withdrawals 8 6.7 

Patient registry 4 3.4 

Pregnancy registry 1 0.8 

Pharmacogenetics 2 1.7 

Black Triangle Symbol 3 2.5 

Patient alert card 1 0.8 

Other 7 6.0 

TOTAL 119 100.0 
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Table III. Literature Review: RMI Distribution per RMI Target Population 

Population 

2000-2004 
N (% of Pre-
guidances 
RMIs ) 

 

2005-2009 
N (% of Post-
guidances 
RMIs) 

 

TOTAL  
N (% of Total 
RMIs) 

 

Chi square p-
value (pre vs. 
post guidances) 

Pediatric 4(7.4) 6(9.2) 10(8.4) 

 
1.00*i 

Adults 0(0.0) 1(1.5) 1(0.8) 

 
1.00*i 

Women 7(13.0) 4(6.2) 11(9.2) 

 
0.22*d 

Men 0(0.0) 1(1.5) 1(0.8) 

 
1.00*i 

Geriatric 1(1.8) 2(3.1) 3(2.5) 

 
1.00*i 

All 38(70.4) 49(75.4) 87(73.1.0) 

 
0.54i 

Unknown 4(7.4) 2(3.1) 6(5.0) 

 
0.41* d 

TOTAL 54(100.0) 65(100.0) 119(100.0)  
 

* Fisher Test 

i = Increased proportion in post-guidances period 

d = Decreased proportion in post-guidances period
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Table  IV. Website Review: Distribution of RMIs by Region 

Region 

2000-2004 

N (%) 

2005-2009 

N (%) TOTAL 

Chi square p-value 

(pre vs. post 

guidances) 

 

TGA (AUS) 7 (2.1) 11 (1.4) 18 (1.6) 0.38d 

 

PMDA (JPN) 24 (7.4) 91 (11.6) 115 (10.3) 0.04 i 

 

EU (MHRA + EMA) 37 (11.3) 146 (18.6) 183 (16.5) 0.003 i 

 

Health Canada (CAN)   131 (40.2)  127 (16.1) 258 (23.2) <0.001d 

 

FDA (USA) 127 (39.0) 411 (52.3) 538 (48.4) <0.001 i 

 

TOTAL 326 (100.0) 786 (100.0) 1112 (100.0) 

 

 

 

TGA = Therapeutic Goods Administration; AUS = Australia; PMDA = Pharmaceutical and Medical 

Devices Agency; JPN = Japan; MHRA = Medicines and Healthcare Products Regulatory Agency; 
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GBR = United Kingdom; EU = European Union; EMA = European Medicines Agency; CAN = 

Canada; FDA = Food and Drugs Administration; USA = United States of America 

 

i = Increased proportion in post-guidances period 

d = Decreased proportion in post-guidances period
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Table V: Website Review: Overall Distribution of RMI Type 

 

RMI Type 

 

N (%) 

 

Education Material 956 (86.0) 

Black box warning 45 (4.0) 

Withdrawals 39 (3.5) 

Therapeutic Drug Monitoring 19 (1.7) 

Restricted distribution 16(1.4) 

Registry 14 (1.3) 

Patient Alert Card 9 (0.8) 

Education program 12 (1.1) 

Informed Consent 2 (0.2) 

TOTAL 1112 (100.0) 
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Figure I. Literature Review: Source Identification Flow Chart 

169 sources reviewed in- depth

3110 titles identified in MEDLINE & Embase
(MEDLINE n=2112; Embase n=998)

2103 abstracts 
reviewed

1007 duplicate articles excluded

1968 abstracts excluded*  

+ 34 sources from snowballing

119 sources included in RMI 
literature review

50 duplicate RMIs excluded

*Reasons for abstract exclusions: 
Involving Pre‐2000 RMIs n=4
Not RMI n=1699
Not drug product n=82
Veterinary use n=3
Medication error n=20
General article/No specific drug n=160

Figure I. Literature Review: Source Identification Flow Chart

RMI = Risk Minimisation Intervention
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Figure II. Literature Review: Distribution of RMIs by Drug Anatomical 

Therapeutic Chemical (ATC) Classification 

 

 

 

NS = Nervous System; A = Alimentary tract and metabolism; B = Blood and blood forming organs; L 

= Antineoplastic and immunomodulating agents; 

D = Dermatologicals; C=Cardiovascular system 

Comb = Combination 
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Figure III. Literature Review: Distribution of RMIs by Adverse Event System Organ Class 

(AE SOC, MedDRA Terminology) 

 

 

 

 

SOC as per MedDRA: CV=Cardiovascular disorder; N=Neoplasms, benign, malignant and 

unspecified; Psy=Psychiatric disorders; Con= Congenital, familial, and genetic disorders; 

Hep=Hepatobiliary disorders; Blood = Blood and lymphatic system disorders 

 

Div= Diverse (combination of AE SOC) 
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Figure IV. Website Review: RMI Identification Flow Chart_ 

Appendix I – Literature Review Data Extraction Table 

 

  Year 

Authors [Lit 
Review Source 
Ref #] Title 

Country 
of 
publica-
tion 

Region 
of imple-
ment as 
per 
article 

Product 
active 
ingredient 

Therapeutic 
Area 

AE - 
SOC 

Inter-
vention 
Type 

Patient 
Popu-
lation 

1 2000 Corry et al [66] 

Hospitals do not inform 
GPs about medication 
that should be 
monitored.  GBR EU 

Various - 
requiring 
regular 
monitoring Diverse Diverse 

EM – 
Commun
ica-tion All 

2 2000 Franic et al [77] 

Communicating the 
frequency of adverse 
drug reactions to female 
patients.  USA USA Various Diverse Diverse 

EM – 
Commun
ica-tion Women 

3 2000 Griffin et al [87] 
Prepulsid withdrawn 
from UK & US markets. 

GBR / 
USA 

INTL - 
2UK / 
USA cisapride 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s 

Withdra
wal All 

4 2000 
Morrison et al 
[121] 

Enhancing case 
managers' skills in the 
assessment and 
management of 
antipsychotic 
medication side-effects.  AUS AUS Various 

Nervous 
System Diverse 

Educatio
n 
Program All 

5 2000 Offit et al [130] Withdrawal of rotavirus USA USA Rotavirus Various - GI Withdra Pediatri



152 

 

 

 

  Year 

Authors [Lit 
Review Source 
Ref #] Title 

Country 
of 
publica-
tion 

Region 
of imple-
ment as 
per 
article 

Product 
active 
ingredient 

Therapeutic 
Area 

AE - 
SOC 

Inter-
vention 
Type 

Patient 
Popu-
lation 

vaccine in the USA.  Vaccine vaccine Disorder
s 

wal c 

6 2000 
Silman et al 
[146] 

Proposal to establish a 
register for the long 
term surveillance of 
adverse events in 
patients with rheumatic 
diseases exposed to 
biological agents: the 
EULAR Surveillance 
Register for Biological 
Compounds.  GBR 

EU-
SWE/NL
D/UK 

Biological
s 

Antineoplastic 
and 
immunomodula
ting agents Diverse 

Patient 
Registry All 

7 2000 
Smalley et al 
[149] 

Contraindicated use of 
cisapride: impact of 
food and drug 
administration 
regulatory action.  USA USA cisapride 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s 

EM – 
Commun
ica-tion All 

8 2000 
Watkins et al 
[161] 

COMT inhibitors and 
liver toxicity.  USA 

INTL - 
3USA/E
U/CAN 

tolcapone/ 
entacapone

Nervous 
System 

Hepato-
biliary 
Disorder
s BBW All 
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9 2000 FDA website [1] 

Food and Drug 
Administration. FDA 
talk paper: Janssen 
Pharmaceutica stops 
marketing cisapride in 
the US.  USA USA cisapride 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s RD All 

10 2000 Dahl et al [70] 

Pharmacogenetic 
methods as a 
complement to 
therapeutic monitoring 
of antidepressants and 
neuroleptics SWE 

Not 
indicated Various 

Nervous 
System Diverse 

Pharmac
o-
genetics All 

11 2000 
Lundmark et al 
[111] 

Therapeutic drug 
monitor of selective 
serotonin reuptake 
inhibitors influences 
clinical dosing 
strategies and reduces 
drug costs in depressed 
elderly patients.  SWE EU SSRI's 

Nervous 
System Diverse TDM 

Geriatri
c 
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12 2000 
Lundmark et al 
[110] 

Therapeutic drug 
monitoring of sertraline: 
variability factors as 
displayed in a clinical 
setting. SWE 

Not 
indicated sertraline 

Nervous 
System Diverse TDM All 

13 2000 
Lotronex.com 
website [2] 

Prescribing program for 
Lotronex. Pharmacist 
information.  USA USA alosetron 

Alimentary 
tract and 
metabolism 

GI 
Disorder
s 

Withdra
wal Women 

14 2000 
Celgene.com 
website [3] 

Celgene. S.T.E.P.S. 
prevention and 
protection. USA USA 

thalidomid
e 

Antineoplastic 
and 
immunomodula
ting agents 

Congeni
tal, 
familial 
and 
genetic 
disorder
s 

RD / 
Educatio
n 
Program Women 

15 2001 Not indicated [4] 

Failings in treatment 
advice, SPCs and black 
triangles.  GBR 

Not 
indicated Various  Diverse Diverse 

Black 
Triangle 
Symbol Unk 

16 2001 Not indicated [5] 

Black-box' warning and 
letter are insufficient to 
protect patients, study USA 

Not 
indicated Various  Diverse Diverse BBW Unk 



155 

 

 

 

  Year 

Authors [Lit 
Review Source 
Ref #] Title 

Country 
of 
publica-
tion 

Region 
of imple-
ment as 
per 
article 

Product 
active 
ingredient 

Therapeutic 
Area 

AE - 
SOC 

Inter-
vention 
Type 

Patient 
Popu-
lation 

finds.  

17 2001 Bourke et al [55] 

Joint charts in drug 
handling. Toward 
increased drug safety.  DNK 

Not 
indicated Various Diverse 

Drug 
Interacti
on Other Unk 

18 2001 Brown et al [57] 

 The incidence and 
reporting of adverse 
drug reactions in the 
Division of Psychiatry.  GBR EU Various  Diverse Diverse 

Black 
Triangle 
Symbol All 

19 2001 
Feltelius et al 
[74] 

 New drugs require new 
follow-up surveillance.  SWE 

Not 
indicated 

TNF-
blockers 

Antineoplastic 
and 
immunomodula
ting agents Diverse Other All 

20 2001 Kilborn et al [99] 

 Registry for torsades de 
pointes with drug 
treatment exists. USA 

Not 
indicated Various Diverse Diverse 

Patient 
Registry All 

21 2001 Singer et al [147] 
 Cardiac toxicity of 
arsenic trioxide.  USA USA 

arsenic 
trioxide 

Antineoplastic 
and 
immunomodula
ting agents 

Cardiac 
Disorder
s BBW All 
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22 2001 
Graham et al 
[85] 

Liver enzyme 
monitoring in patients 
treated with 
troglitazone. USA USA 

trioglitazo
ne 

Alimentary 
tract and 
metabolism 

Hepato-
biliary 
Disorder
s 

TDM / 
EM-HCP 
Commun
ica-tion All 

23 2001 Schwetz [142] 

New measures to 
manage risks associated 
with accutane. USA USA 

isotretinoi
n 

Dermatological
s 

Congeni
tal, 
familial 
and 
genetic 
disorder
s 

IC / EM-
Medicati
on Guide Women 

24 2001 Ensom et al [72] 

Pharmacogenetics- The 
therapeutic drug 
monitoring of the 
future? CAN INTL Various Diverse Diverse 

Pharmac
o-
genetics All 

25 2002 Thompson [154] 

Bosentan enters market 
with risk management 
program.   USA USA bosentan CV system 

Hepato-
biliary 
Disorder
s 

RD/ 
patient 
registry / 
Medicati
on Guide All 
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26 2002 Charatan [61] 

 FDA advisory panels 
recommend Lotronex be 
put back on market.  USA USA 

alosetron  
HCl 

Alimentary 
tract and 
metabolism 

GI 
Disorder
s 

EM - 
Medicati
on guide Women 

27 2002 Frances et al [75] 

Methylphenidate 
(Ritalin) use in France. 
[French].  FRA EU 

methylphe
nidate 

Nervous 
System 

Combin
ation-
Not 
specifie
d 

RD / 
Restricte
d 
Prescripti
on 

Pediatri
c 

28 2002 
Horowitz et al 
[91] 

Droperidol--behind the 
black box warning.  USA USA droperidol 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s BBW All 

29 2002 
Masand et al 
[115] 

Prescribing 
conventional 
antipsychotics in the era 
of novel antipsychotics: 
informed consent issues. USA USA Various 

Nervous 
System Diverse IC  All 

30 2002 
Magnus et al 
[112] 

GPs’ views on 
computerized drug 
interaction alerts: 
questionnaire survey.  GBR EU Various Diverse 

Drug 
Interacti
on Other All 
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31 2002 
Singapore H S A 
website [36] 

HSA product safety 
alert. Update on Eprex 
and pure red cell 
aplasia.  SGP SGP 

HSA 
(ESA) 

Blood and 
blood forming 
organs 

Blood 
and 
Lympha
tic 
system 
disorder
s 

EM – 
Commun
ica-tion All 

32 2002 
Australia TGA 
website [37] 

Epoetin alfa and pure 
red cell aplasia. 
Australian adverse drug 
reactions bulletin.  AUS AUS epoietin 

Blood and 
blood forming 
organs 

Blood 
and 
Lympha
tic 
system 
disorder
s 

EM – 
Commun
ica-tion All 

33 2002 
France AFSSPS 
website [7] 

Agence Francaise de 
Securite Sanitaire des 
Produits de Sante, les 
lettre aux prescripteurs, 
Eprex®: information 
importante de 
pharmacovigilance. 17 FRA EU epoietin 

Blood and 
blood forming 
organs 

Blood 
and 
Lympha
tic 
system 
disorder
s 

EM – 
Commun
ica-tion All 
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December 2002 

34 2002 
Health Canada 
website [11] 

Important safety 
information—
EPREXTM (epoetin 
alfa)—Janssen-Ortho 
Inc. Health Canada. 26 
November 2001 CAN CAN epoietin 

Blood and 
blood forming 
organs 

Blood 
and 
Lympha
tic 
system 
disorder
s 

EM – 
Commun
ica-tion All 

35 2002 
FDA website 
[13] 

Danco Laboratories. 
Open letter to health 
care providers (Apr. 19, 
2002). (Dear doctor 
letter)  USA USA 

mifespristo
ne 

Genitourinary 
system and sex 
hormones 

Pregnan
cy, 
puerperi
um etc. 

EM – 
Commun
ica-tion Women 

36 2002 
Kivlahan et al 
[100] 

Developing a 
comprehensive 
electronic adverse event 
reporting system in an 
academic health center. USA USA Various Diverse Diverse Other All 
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37 2003 
Not indicated 
[16] 

Patients to have new 
role in improving 
methotrexate safety  
says NPSA.  GBR 

Not 
indicated 

methotrexa
te 

Alimentary 
tract and 
metabolism 

Unknow
n 

Black 
Triangle 
Symbol All 

38 2003 Edwards [71] 

Withdrawing drugs: 
nefazodone  the start of 
the latest saga. SWE EU 

nefazodon
e 

Nervous 
System 

Hepato-
biliary 
Disorder
s 

Withdra
wal All 

39 2003 
 LaPointe et al 
[49] 

Evaluation of the 
dofetilide risk-
management program. USA USA dofetilide CV system 

Cardiac 
Disorder
s 

RD / 
Educatio
n All 

40 2003 
Not indicated 
[15] 

Suicide risk warning for 
children now extended 
by CSM to cover 
venlafaxine.  GBR 

Not 
indicated 

venlafaxin
e 

Nervous 
System 

Psychiat
ric 
disorder
s 

EM – 
Commun
ica-tion 

Pediatri
c 

41 2003 
Muller et al 
[122] 

Therapeutic drug 
monitioring of tricyclic 
antidepressants: how 
does it work under 
clinical conditions?  DEU USA 

trycyclic 
anti-
depressant
s 

Nervous 
System Diverse TDM All 
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42 2003 
Fosamax.com 
website [17] 

Merck. Paget’s patient 
support program. USA USA 

alendronat
e sodium 

Alimentary 
tract and 
metabolism Diverse 

Educatio
n 
Program Women 

43 2004 
Not indicated 
[18] 

Paroxetine review 
makes safety warnings.  GBR 

Not 
indicated paroxetine 

Nervous 
System 

Unknow
n 

EM – 
Commun
ica-tion Unk 

44 2004 Check [62] 

 US panel recommends 
'black box' warnings for 
antidepressants.  USA USA Various 

Nervous 
System 

Psychiat
ric 
disorder
s BBW 

Pediatri
c 

45 2004 Cockey [65]  Ephedra banned.  USA USA ephedrine 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s 

Withdra
wal All 

46 2004 Crawford [68] 
Licensing thalidomide 
in Australia. AUS AUS 

thalidomid
e 

Antineoplastic 
and 
immunomodula
ting agents 

Congeni
tal, 
familial 
and 
genetic 
disorder
s 

RD 
/Physicia
n registry  
/ Patient 
registry/ 
Educatio
n  All 
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47 2004 Fraunfelder [79] 

Twice-yearly exams 
unnecessary for patients 
taking quetiapine.  USA USA quetiapine 

Nervous 
System 

Endocri
ne 
Disorder
s TDM All 

48 2004 Gebhart [82] 

Calls mount for black 
box warning on 
fluoroquinolones.  USA USA 

Fluoroquin
o-lones  

Antiinfective 
for systemic use

Metabo-
lism and 
nutrition 
disorder
s BBW All 

49 2004 Laugharne [104] 

Informing patients 
about tardive 
dyskinesia: A survey of 
clinicians' attitudes in 
three countries. AUS EU Various 

Nervous 
System 

Nervous 
System 
disorder 

IC / 
TDM for 
at risk 
patients All 

50 2004 
Schachter et al 
[140] 

Psychiatrists' attitudes 
about and informed 
consent practices for 
antipsychotics and 
tardive dyskinesia.  CAN CAN Various 

Nervous 
System 

Nervous 
System 
disorder IC All 

51 2004 
FDA website 
[19] 

US Food and Drug 
Administration: 2004 USA USA olanzapine 

Nervous 
System 

Metabo-
lism and 

EM – 
Commun All 
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Safety Alert: Zyprexa 
(olanzapine)  

nutrition 
disorder
s 

ica-tion 

52 2004 
Calhoun et al 
[59] 

Challenges to the FDA 
approval of 
mifepristone.  USA USA 

mifespristo
ne 

Genitourinary 
system and sex 
hormones 

Unknow
n 

EM – 
Commun
ica-tion All 

53 2004 
Baumann et al 
[51] 

Therapeutic monitoring 
of psychotropic drugs - 
An outline of the 
AGNP-TDM expert 
group consensus 
guideline. CHE EU 

Psychotrop
ic drugs 

Nervous 
System Diverse TDM All 

54 2004 Fuller et al [80] 
The Xyrem risk 
management program. USA USA 

sodium 
oxybate 
(GHB) 

Nervous 
System Diverse RD All 

55 2005 
Not indicated 
[20] 

Calcineurin inhibitors: 
Black box warning for 
pimecrolimus and 
tacrolimus. [German].  DEU 

Not 
indicated 

pimecroli
mus / 
tacrolimus 

Antineoplastic 
and 
immunomodula
ting agents 

Neoplas
ms BBW All 

56 2005 
Not indicated 
[21] 

FDA advisory 
committees recommend USA USA 

COX 
inhibitors 

Nervous 
System 

Cardiac 
Disorder BBW All 
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marketing of COX-2 
inhibitors with 'black 
box' warning.  

s 

57 2005 
Not indicated 
[22] 

Impotence drugs receive 
blindness warning. USA USA 

tadalafil/ 
vardenafil/ 
sidenafil CV system 

Eye 
Disorder
s 

EM – 
Commun
ica-tion Men 

58 2005 
Not indicated 
[23] 

Stronger warnings 
needed for asthma 
treatments. USA USA 

fluticasone 
propionate
/salmeterol
/ 
formoterol 
/  
salmeterol 

Respiratory 
system 

GI 
Disorder
s BBW All 

59 2005 
FDA website 
[26] 

Food and Drug 
Administration, “2005 
Safety Alert: Natrecor 
(nesiritide),” 13 July 
2005. USA USA nesiritide CV system 

Renal 
and 
urinary 
disorder
s 

EM – 
Commun
ica-tion All 

60 2005 

 
Melnikow et al 
[119] 

Preferences of Women 
Evaluating Risks of 
Tamoxifen (POWER) USA USA tamoxifen 

Antineoplastic 
and 
immunomodula Diverse 

Educatio
n 
Program Women 
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study of preferences for 
tamoxifen for breast 
cancer risk reduction.  

ting agents 

61 2005 
Baumann et al 
[52] 

 The AGNP-TDM 
Expert Group 
Consensus Guidelines: 
focus on therapeutic 
monitoring of 
antidepressants.  CHE EU Various 

Nervous 
System Diverse TDM All 

62 2005 Beltrani [53] 
 The "black boxing" of 
protopic and elidel.  USA USA 

tacrolimus 
/ 
pimecroli
mus 

Dermatological
s 

Neoplas
ms BBW 

Pediatri
c 

63 2005 

Bensouda-
Grimaldi et al 
[54] 

Isotretinoin: compliance 
with recommendations 
in childbearing women.  FRA EU isotretinon 

Dermatological
s 

Congeni
tal, 
familial 
and 
genetic 
disorder
s 

IC / 
Medicati
on Guide Women 
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64 2005 
Gerlach et al 
[83] 

"Therapeutic drug 
monitoring"  a strategy 
for improving drug 
safety in child and 
adolescent psychiatry 
and psychotherapy. DEU 

Not 
indicated Various 

Nervous 
System Diverse TDM 

Pediatri
c 

65 2005 
Hetland et al 
[90] 

Routine database 
registration of 
biological therapy 
increases the reporting 
of adverse events 
twentyfold in clinical 
practice. First results 
from the Danish 
Database (DANBIO).  DNK EU 

Biological
s 

Antineoplastic 
and 
immunomodula
ting agents Diverse 

Patient 
Registry All 

66 2005 Hugman [92] 

From the Uppsala 
monitoring centre: a 
review of viewpoint part 
1 and part 2.  SWE 

INTL - 
ALL -
Who 
members Various Diverse Diverse 

EM – 
Commun
ica-tion All 

67 2005 
Lederer et al 
[105] 

Reduction in 
anticoagulation-related USA USA warfarin 

Blood and 
blood forming Diverse 

Other - 
Trigger - All 
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adverse drug events 
using a trigger-based 
methodology. 

organs based 
method 

68 2005 
Shatin et al  
[144] 

Impact of mailed 
warning to prescribers 
on the co-prescription of 
tramadol and 
antidepressants.  USA USA tramadol 

Nervous 
System 

Cardiac 
Disorder
s 

EM – 
Commun
ica-tion All 

69 2005 Cotter et al [67] 

New restrictions on 
celecoxib (Celebrex) 
use and the withdrawal 
of valdecoxib (Bextra).  CAN 

INTL-
CAN/US celecoxib 

Nervous 
System 

Cardiac 
Disorder
s 

EM – 
Commun
ica-tion All 

70 2005 
FDA website 
[28] 

Dear Health Care 
Provider letter. 
Important drug warning 
and 
new information for 
Clozaril (clozapine). 
Novartis 
Pharmaceuticals 
Corporation, December USA USA clozapine 

Nervous 
System Diverse 

EM – 
Commun
ica-tion All 
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2005. 

71 2005 
FDA website  
[33] 

FDA, “FDA Public 
Health Advisory: 
Suicidality in Adults 
Being Treated with 
Antidepressant 
Medications” 30 June 
2005. USA USA Various 

Nervous 
System 

Psychiat
ric 
disorder
s 

EM – 
Commun
ica-tion Adults 

72 2005 
FDA website  
[29] 

US Food and Drug 
Administration: FDA 
Public Health Advisory: 
Deaths with 
antipsychotics in elderly 
patients with behavioral 
disturbances, April 11, 
2005, accessed January 
30, 2006. USA USA Various 

Nervous 
System 

Unknow
n 

EM – 
Commun
ica-tion 

Geriatri
c 

73 2005 
Not indicated 
[24] 

European COX-2 
review recommends 
new warnings.  GBR EU 

COX 
inhibitors 

Nervous 
System 

Cardiac 
Disorder
s 

EM – 
Commun
ica-tion All 
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74 2005 
Not indicated 
[31] 

The Food and Drug 
Administration. Public 
Health Advisory: 
suicidal thinking in 
children and adolescents 
being treated with 
Strattera (atomoxetine). 
29 September 2005. USA USA 

atomexitin
e 

Nervous 
System 

Psychiat
ric 
disorder
s 

EM – 
Commun
ica-tion 

Pediatri
c 

75 2005 Grenieret al [86] 

Nursing support 
program to decrease or 
prevent side effects of 
pegylated liposomal 
doxorubicin (PLD) in 
patients with recurrent 
epithelial ovarian cancer 
(REOC). CAN 

Not 
indicated 

doxorubici
n 

Antineoplastic 
and 
immunomodula
ting agents Diverse 

Educatio
n 
Program All 

76 2005 Mazor et al [116] 

Communicating safety 
inforamtion to 
physicians: an 
examination of Dear Dr. 
Letters.  USA USA Various Diverse Diverse 

EM – 
Commun
ica-tion All 
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77 2006 Aaronson [48] 

The "black box" 
warning and allergy 
drugs. USA USA Various 

Alimentary 
tract and 
metabolism Diverse BBW All 

78 2006 
Feldstein et al 
[73] 

Improved therapeutic 
monitoring with several 
interventions: a 
randomized trial. USA USA Various Diverse Diverse TDM All 

79 2006 
Schussel et al 
[141] 

 Prescribing of COX-2 
inhibitors in Germany 
after safety warnings 
and market withdrawals. DEU EU 

COX 
inhibitiors 

Nervous 
System 

Cardiac 
Disorder
s 

EM – 
Commun
ica-tion All 

80 2006 Sheridan [145] 
 Tysabri back on 
market.  USA USA 

natalizuma
b 

Antineoplastic 
and 
immunomodula
ting agents 

Neoplas
ms 

Patient 
Registry All 

81 2006 Wechsler [164] 

Advisory committee 
prompts FDA to 
consider black box 
warning for ADHD 
drugs.  USA USA 

Amphetam
ine-based 
drugs for 
ADHD, 
such as 
Adderall 

Nervous 
System 

Cardiac 
Disorder
s BBW All 
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and 
Dexedrine 

82 2006 Lasser et al [103] 

Adherence to black box 
warnings for 
prescription medications 
in outpatients USA USA Various Diverse Diverse BBW All 

83 2006 
FDA website 
[34] 

Medication Guide: 
Coumadin tablets 
(warfarin sodium 
tablets, USP) 
crystalline. 2006. USA USA warfarin 

Blood and 
blood forming 
organs Diverse 

EM - 
Medicati
on guide Unk 

84 2007 Jones [96] 

Update on isotretinoin 
and the iPLEDGE 
system.  USA 

Not 
indicated 

isotretinoi
n 

Dermatological
s 

Congeni
tal, 
familial 
and 
genetic 
disorder
s 

Patient 
registries 
/ 
Pharmaci
st 
registries 
Physician 
registries
- 
Pregnanc Women 
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vention 
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Patient 
Popu-
lation 

y 

85 2007 
Morrato et al 
[120] 

 Effectiveness of risk 
management plans: a 
case study of pemoline 
using pharmacy claims 
data.  USA USA pemoline 

Nervous 
System 

Hepato-
biliary 
Disorder
s BBW 

All - 
Mainly 
Pediatri
c 

86 2007 
Muller et al 
[123] 

 Therapeutic drug 
monitoring for 
optimizing amisulpride 
therapy in patients with 
schizophrenia.  DEU EU 

amisulprid
e 

Nervous 
System Diverse TDM All 

87 2007 
Munzenberger et 
al [124] 

 Safety of topical 
calcineurin inhibitors 
for the treatment of 
atopic dermatitis.  USA USA 

topical 
calcineurin 
inhibitors 

Antineoplastic 
and 
immunomodula
ting agents 

Neoplas
ms 

EM - 
Medicati
on Guide/ 
Black 
Box 
Warning  All 

88 2007 
Oppenheimer et 
al [131] 

Impact of recent black 
box warnings in the 
allergy world.  USA USA 

long-
acting  -
agonists 

Alimentary 
tract and 
metabolism 

Neoplas
ms BBW All 
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Authors [Lit 
Review Source 
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Country 
of 
publica-
tion 

Region 
of imple-
ment as 
per 
article 

Product 
active 
ingredient 

Therapeutic 
Area 

AE - 
SOC 

Inter-
vention 
Type 

Patient 
Popu-
lation 

(LABAs) 
and 
calcineurin
inhibitors  

89 2007 
Recupero et al 
[135] 

Managing risk when 
considering the use of 
atypical antipsychotics 
for elderly patients with 
dementia-related 
psychosis.  USA USA Various 

Nervous 
System 

Cardiac 
Disorder
s BBW 

Geriatri
c 

90 2007 Singh [148] 

 The FDA black box for 
EPO: what should 
nephrologists do?  USA USA epoietin 

Blood and 
blood forming 
organs 

Neoplas
ms BBW All 

91 2007 
Valente et al 
[157] 

Nurses improve 
medication safety with 
medication allergy and 
adverse drug reports.  USA 

Not 
indicated Various Diverse Diverse 

Educatio
n 
Program All 

92 2007 
Wysowski et al 
[168] 

Bleeding complications 
with warfarin use: A 
prevalent adverse effect 
resulting in regulatory USA USA warfarin 

Blood and 
blood forming 
organs 

Blood 
and 
Lympha
tic BBW All 
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Authors [Lit 
Review Source 
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Country 
of 
publica-
tion 

Region 
of imple-
ment as 
per 
article 

Product 
active 
ingredient 

Therapeutic 
Area 

AE - 
SOC 

Inter-
vention 
Type 

Patient 
Popu-
lation 

action.  system 
disorder
s 

93 2007 Tanne [153] 

FDA places “black box” 
warning on antidiabetes 
drugs. USA USA Various 

Alimentary 
tract and 
metabolism 

Cardiac 
Disorder
s BBW All 

94 2007 
FDA website 
[35] 

The Food and Drug 
Administration.FDA 
proposes new warnings 
about suicidal thinking, 
behavior in young 
adults who take 
antidepressant 
medications. 2 May 
2007. USA USA Various 

Nervous 
System 

Psychiat
ric 
disorder
s BBW 

Pediatri
c 

95 2008 FDA webite [47] 

FDA ALERT - 
Simvastatin Used With 
Amiodarone. USA USA 

simvtatin& 
amiodaron
e  

Alimentary 
tract and 
metabolism/ 
CV 

Musculo
skeletal 

EM – 
Commun
ica-tion All 

96 2008 
Not indicated 
[39] 

Tegaserod: withdrawal 
from the world market. FRA INTL tegaserod 

Alimentary 
tract and 

Cardiac 
Disorder

Withdra
wal All 
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Type 

Patient 
Popu-
lation 

A treatment for 
constipation with 
cardiovascular adverse 
effects. 

metabolism s 

97 2008 
Castaneda et al 
[60] 

RevAssist: A 
comprehensive risk 
minimization 
programme for 
preventing fetal 
exposure to 
lenalidomide.  USA USA 

lenalidomi
de 

Antineoplastic 
and 
immunomodula
ting agents 

Congeni
tal, 
familial 
and 
genetic 
disorder
s RD Women 

98 2008 Mallal et al [114] 

HLA-B*5701 Screening 
for Hypersensitivity to 
Abacavir. AUS INTL abacavir 

Antiinfective 
for systemic use

Immune 
system 
disorder
s 

TDM-
Pharmac
o-
genomics All 

99 2008 
Jennings et al 
[94] 

Reducing anticoagulant 
medication adverse 
vents and avoidable 
patient harm.  USA USA 

Anticoagul
ant 

Blood and 
blood forming 
organs Diverse 

Educatio
n 
Program / 
TDM All 

100 2008 Naso [126] 
Optimizing patient 
safety by preventing USA USA olanzapine 

Nervous 
System 

Drug 
Interacti Other All 
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Product 
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Type 

Patient 
Popu-
lation 

combined use of 
intramuscular 
olanzapine and 
parenteral 
benzodiazepines. 

on 

101 2008 
FDA website 
[43] 

Suicidality and 
antiepileptic drugs: 
FDA alert. USA USA Various 

Nervous 
System 

Psychiat
ric 
disorder
s 

EM – 
Commun
ica-tion All 

102 2008 
von Moos et al 
[160] 

Pegylated liposomal 
doxorubicin-associated 
hand-foot syndrome: 
recommendations of an 
international panel of 
experts. CHE INTL 

doxorubici
n 

Antineoplastic 
and 
immunomodula
ting agents 

Metabo-
lism and 
nutrition 
disorder
s 

Educatio
n 
Program All 

103 2008 Wright [167] 
Tell patients about 
yellow card reporting.  GBR EU Various Diverse Diverse 

Patient 
alert card Unk 

104 2008 
UK MHRA 
website [42] 

MHRA Drug Safety 
Update on Exenatide . GBR EU exenatide 

Alimentary 
tract and 
metabolism 

Hepato-
biliary 
Disorder
s 

EM – 
Commun
ica-tion  All 
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of 
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Type 

Patient 
Popu-
lation 

105 2008 FDA website [6] 

Tumor necrosis factor-
alpha blockers (TNF 
blockers), Cimzia 
(certolizumab pegol), 
Enbrel (etanercept), 
Humira (adalimumab), 
and Remicade 
(infliximab) Sept 2008. USA USA Various 

Antineoplastic 
and 
immunomodula
ting agents 

Neoplas
ms 

EM – 
Commun
ica-tion All 

106 2008 Prinset al [132] 

Novel side effects of 
moxifloxacin: making a 
balanced decision again. NLD 

Not 
indicated 

moxifloxa
cin 

Antiinfective 
for systemic use

Hepato-
biliary 
Disorder
s 

EM – 
Commun
ica-tion All 

107 2008 
FDA website 
[46] 

Information on 
exenatide (marketed as 
Byetta®). USA USA exenatide 

Alimentary 
tract and 
metabolism 

Hepato-
biliary 
Disorder
s 

EM – 
Commun
ica-tion All 
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Authors [Lit 
Review Source 
Ref #] Title 
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of 
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tion 
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article 
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Therapeutic 
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AE - 
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vention 
Type 

Patient 
Popu-
lation 

108 2008 Lee et al [106] 

Drug-risk 
communication to 
pharmacists: Assessing 
the impact of risk-
minimization strategies 
on the practice of 
pharmacy. USA USA Various Diverse Diverse 

EM – 
Commun
ica-tion /  
Medicati
on 
Guides All 

109 2009 Franke et al [78] 

High-alert medications 
in the pediatric intensive 
care unit.  USA USA Various Diverse Diverse 

EM – 
Commun
ica-tion 

Pediatri
c 

110 2009 
McCann et al 
[117] 

Patients' perceptions 
and experiences of 
using a mobile phone-
based advanced 
symptom management 
system (ASyMS) to 
monitor and manage 
chemotherapy related GBR EU Various 

Antineoplastic 
and 
immunomodula
ting agents 

Metabo-
lism and 
nutrition 
disorder
s Other All 
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Authors [Lit 
Review Source 
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Country 
of 
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Region 
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ingredient 

Therapeutic 
Area 

AE - 
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Inter-
vention 
Type 

Patient 
Popu-
lation 

toxicity.  

111 2009 
Murray et al 
[125] 

Effect of a pharmacist 
on adverse drug events 
and medication errors in 
outpatients with 
cardiovascular disease. USA USA Various Diverse Diverse 

Educatio
n 
Program All 

112 2009 Prinz [133] 

The EMEA suspends 
approval of Raptiva for 
psoriasis. Commentary. DEU EU efalizumab

Dermatological
s 

Neoplas
ms 

Withdra
wal All 

113 2009 
Pugashetti et al 
[134] 

Efalizumab 
discontinuation: a 
practical strategy. USA INTL efalizumab

Dermatological
s 

Neoplas
ms 

Withdra
wal All 

114 2009 Richins [137] 

Regulation of smoking 
cessation drugs by the 
Food and Drug USA USA 

varenicline
, 
buproprion

Nervous 
System Diverse BBW All 
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Popu-
lation 

Administration. 

115 2009 
Sanfelix-Gimeno 
et al [139] 

Effectiveness of safety 
warnings in atypical 
antipsychotic drugs: an 
interrupted time-series 
analysis in Spain. ESP EU 

olanzapine 
and 
risperidone

Nervous 
System Diverse 

EM - 
Commun
ication / 
Prior 
authorisa
-tion 
policy All 

116 2009 Traynor [155] 

Close vote by FDA 
advisers favors 
propoxyphene 
withdrawal.  USA USA 

propoxy-
phene 

Nervous 
System 

Cardiac 
Disorder
s BBW All 

117 2009 
Van Geffen et al 
[158] 

Patients' perceptions of 
information received at 
the start of selective 
serotonin-reuptake 
inhibitor treatment: NLD EU 

SSRI 
inhibitors 

Nervous 
System Diverse IC All 
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Popu-
lation 

Implications for 
community pharmacy.  

118 2009 
Yetzer et al 
[169] 

Medication safety 
series: take charge!  USA 

Not 
indicated Various Diverse Diverse 

Educatio
n 
Program All 

119 2009 Hitt, E [46] 

Botulinum Toxin Safety 
Warnings Updated and 
Name Changes Issued USA USA 

botulinum 
toxin 

Musculoskeleta
l system Diverse 

EM – 
Commun
ica-tion All 
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Chapter 6. Thesis Discussion 

This thesis studied some of the methodologies used in two main areas of therapeutic risk 

management.  

1) Risk detection, through the review of data mining methodologies, a review of databases 

used to perform data mining, and finally through the conduct of a data mining 

demonstration study in the Quebec health claims databases.  

2) Risk minimisation, through a systematic review of RMI characteristics in the literature 

and among regulatory agency websites. 

 

For each sub-study, advantages and limitations are discussed in further detail in the 

“Discussion” sections of each of Chapters 4 and 5 of the thesis, respectively.  However, a 

brief summary is provided here, followed by a view of the contributions these studies bring 

to the global risk management forum.  

 

Data mining study discussion summary 

This study being the first data mining study to be conducted in a Canadian health claims 

database poses a new development. Further, the fact that it is analyzing a denominator-

based methodology also contributes to its uniqueness. Using the administrative database 
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avoids the common signal detection challenges of SR databases of underreporting and 

reporting bias. It also has the potential for future analysis of signal verification and 

confirmation since claims databases are a major tool for risk evaluation studies, i.e. 

hypothesis-testing studies. Controlling for overall health status using the CDS has never 

before been attempted in a published data mining study. Accounting for the depletion of 

susceptible effect through a time window sensitivity analysis is also a new approach not 

considered in previous studies.  

 

Conversely, this study was not able to detect very rare AEs due to the low statistical power. 

The main reason being that only a random sample of approximately 10% of the elderly 

population was available.  Even the entire population of elderly may be insufficient to 

detect rare AEs, a fact that has demonstrated by a large international European 

consortium[64]. Control of confounding was performed on age, sex, and overall health 

status.   However only a basic, less refined control of the covariate of age was permitted 

because of its classification in 5-year intervals.   This constraint, imposed by the database 

custodian, is a limitation of the study. 

 

However, the data mining analysis was still able to reveal important gaps in the data mining 

and signal detection processes.  Most prior data mining studies have been conducted in SR 

databases, with the aid of denominator–independent methodology, few studies have been 
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applied to administrative claims databases using denominator-dependent methods, and none 

such studies have occurred in Canada or within a Canadian health claims database. Data 

mining and signal detection are conducted by few organisations in Canada. These are 

important gaps in the data mining and signal detection processes which we addressed 

through the application of the MaxSPRT data mining tool to a Canadian claims database, 

the RAMQ.  

 

With the data mining study, future research with this methodology could involve 

application of the method to the RAMQ database, in a real-time manner using newly 

marketed drugs provided the RAMQ database is updated regularly. However, this may 

prove a challenge because of current access constraints.  Due to excessive timelines and 

restrictive conditions for access, it does not appear feasible to obtain prospective data slices 

on a quarterly basis.  As for any drug surveillance process in Canada, potential future real-

time implementation would be greatly dependent on the timely availability of the claims 

databases. This could pose a challenge for use globally as many databases may not be 

accessible regularly even though in practice they are populated in real-time.  

This data mining study was merely a demonstration study as there are many possible 

additions that can be made to the process that was outlined. Possibly accounting for time to 

onset of AE, or residual risk periods after exposure in order to further reduce the false 

positive signals in instances where the AEs of interest have previously been identified. 
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Testing a potential solution for analysing rare AEs such as using proxies of less severe 

symptoms of the disease. Use of the database for the subsequent phase in signal detection, 

i.e. verification / confirmation of the signal, is also a potential next step with the RAMQ 

database because it contains much information on potential confounders such as 

concomitant medications. 

 

Global data mining discussion 

Over the last eight years, there has been a debate concerning the usefulness of claims 

databases for signal detection processes [28,144]. Although the use of spontaneous databases 

for signal detection is quite extensive (since 1998 [74]), only three published studies were 

located that used an administrative claims database as of 2007 [30,32,63,]  . Our study showed 

that for one drug-AE pair (rosiglitazone-acute MI), the Quebec claims database is in fact 

feasible for the application of at least one data mining algorithm: the MaxSPRT. However, 

the feasibility of using the database depends on the accuracy of the AE diagnostic codes (in 

this case ICD-9 codes), as well as the size of the database and statistical power.  The 

RAMQ database holds a maximum of 800 000 patients. The cohort used for this study 

constituted about 11% of the entire database (87, 389). However, this cohort was large 

enough to detect a signal in only one of the drug-AE pairs, the rosiglitazone-acute MI pair 

This pair  possessed a cumulative total of 52,906 patient months of exposure to 

rosiglitazone for the initial follow-up period of 3months,and 90,941 patient months for the  
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6month follow-up period. Despite elimination of prevalent acute MI cases through the 

exclusion of ICD-9 codes related to ER visits, the AE was frequent enough to produce a 

signal (a cumulative total of 118 events for the 3 month time period, RR at signal =1.26; 

and a cumulative total of 151 events for the 6month time period, RR at signal =1.18). 

The case studies that were restricted to female patients (rosiglitazone and pioglitazone and 

risk of increased fractures in female patients) however did not possess enough power to 

detect a signal. Their cumulative patient exposure were 3,064 and 1,731 patient months 

respectively for their 3 month follow-up time periods, less than one-tenth that of the 

rosiglitazone acute MI case study.  While the cumulative number of AEs for the 3-month 

time period were 12 and 6, respectively. The RR at the points of their respective Health 

Canada warnings were 1.24 and 0.72, respectively. Furthermore, the rosuvastatin-

rhabdomyolysis group did not exhibit enough occurrences of the AE to be analysed using 

the method (a cumulative total of only 9 events for the entire 10-year time period of the 

data). Based on the literature, the prevalence of rhabdomyolysis among rosuvastatin users is 

6.59% [145]  . Thus, anticipated number of events for the number of rosuvastatin users in the 

database (14,583) was 961. The low number of rhabdomyolysis cases actually observed 

shows that the tool should be used for events that are better coded and have a higher 

incidence (as was discussed earlier with the event of acute MI).  

The validity of the comparator drugs is also a subject of debate. As with previous data 

mining studies [31,63]  , comparator drugs used for the same indication as the study drug were 
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selected for the analysis in order to control for indication bias. However, it was challenging 

to find a comparator drug that had the same or similar life cycle as the study medication. In 

most cases, the comparator drug had been on the market for many more years than the 

study drug which may have led to variations in factors of patterns of use by the population  

such as: changes in the drug’s indication, contraindications, and reimbursable status over 

time, unmeasured prescription channelling, which could account for potential variances in 

AE occurrences over time, despite adjustments for age, sex, and overall health status.  

Accuracy of diagnostic codes present in physician billings databases has also been a subject 

of debate, which may also hamper the validity of data mining.  Diagnostic codes in 

hospitalization databases have been shown to be more accurate but, in Canada, these 

databases are not available in real-time; hence would not be suitable for implementation in 

a prospective safety surveillance study. 

Also because of the lag times between approval and reimbursement in public drug 

programs, the ability to cover the entire population on a timely basis is limited and 

consequently the statistical power of any study using the available data will be reduced.  

 

In real-world prospective signal detection, one may generate a very large number of false 

positive signals. This is a well-documented fact in signal detection and shall remain a 

barrier to the use of data mining [146,147]. However, we have demonstrated that the CDS 
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which has been used extensively in pharmacoepidemiologic studies, is also suitable and can 

be an important addition to the overall field of pharmacovigilance. 

 

Risk minimisation review discussion 

 

The systematic review of RMIs was accepted for publication in Drug Safety and also a 

unique study in that there are no other publications that previously summarised RMIs from 

such a variety of sources, and over such a lengthy time period. Nor had any publications 

attempted to analyse the effect of regulatory guidances on the RMIs. Because it analysed 

RMIs across regions, it is in fact a globally-relevant project that can be beneficial for 

various members of the pharmaceutical, regulatory, and academic world.  

 

Although it is a good amalgamation of data on RMIs, there may be additional RMIs that 

were not included in the study due to inconsistencies in website data availability, the fact 

that only certain regulatory websites were searched (e.g. all websites consulted were in the 

English language) could restrict the inclusiveness of this review. In addition, the specific 

classification system used in this review could lead to discrepancies and /or constraints of 

the review results. Finally, the sources available for review possessed insufficient data on 

methods. However, information such as this is not likely to be published and obtaining it 

would in all probability involve a qualitative survey of pharmaceutical companies. Due to 
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confidentiality and proprietary matters, this would most likely pose an obstacle and little 

feedback would be expected as a result.  

 

The issue of publication bias is also a factor as only more complex RMIs would be 

expected to be published in the literature. The majority of these would be those studies and 

/ or evaluations of such that are implemented by researchers, as opposed to the 

pharmaceutical companies. Consequently, it is difficult to say how comprehensive this RMI 

review actually was.  

 

Despite the challenges involved in the systematic review, a realm of useful information was 

still proficiently collected and diverse gaps were identified in the process.  

With the RMI review, future perspectives include the continued review of RMIs going 

forward to increase the reserve of information obtained from this analysis. Studies to 

identify the methods as well as methodological challenges related to the assessment of RMI 

effectiveness can be undertaken in order to comply with the guidances on risk management. 

Determining which are the most effective of the RMIs based on the results of observed 

studies, and which are the most convenient methods to be used with the various types of 

RMIs. Also, a more comprehensive website search, including other non-English speaking 

countries could also be performed. 
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Chapter 7. Thesis Conclusion 

The data mining study showed that the RAMQ databases are indeed conducive to 

quantitative signal detection although the method may need to be refined for each drug-AE 

pair individually in order to improve its performance.  

The RMI review found that the guidances on therapeutic risk management appeared to 

result in an important increase in the number of RMIs implemented within the USA, EU 

and Japan. It is also beneficial in in helping authors of risk management plans determine 

which risks are focused on in risk management plans. E.g. the fact that the major AE SOC 

classes of RMIs were those of the nervous system could serve as a trigger for 

pharmaceutical companies to look into the necessity of a RMI when faced with a similar 

AE. 

 Although both of these separate studies: the data mining study, and the RMI systematic 

review, at first glance may appear to be separate entities, they do both fit under the common 

umbrella of therapeutic risk management, namely risk detection, and risk minimisation 

respectively. Examining these two areas of risk management (as opposed to risk evaluation, 

or risk communication) was chosen because it was observed that these are the two domains 

that are lacking in general knowledge as well as methodological advances. On the contrary, 

the areas of risk evaluation and risk communication have been in place for very many 

years. E.g. Pharmacoepidemiology has been used for over 20 years in order to evaluate 
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risks associated with medications[148,149]. As such it was deemed more relevant to focus on 

these two “hot-topic” subjects of the field of risk management as there is indeed the need 

for new research in these areas [35,150,151].  

This thesis addresses the specific areas that were lacking in risk management and it is 

believed to have brought contributions of methodological nature to the data mining 

processes such as the depletion of susceptibles effect, and control of prescription 

channelling through overall health status. In addition, the effect of regulatory guidances in 

risk minimisation as well as the identification of gaps in RMI implementation was also 

performed.  

 

From a global perspective, attempts at using claims databases for signal detection are few 

and far between. Studies from only three research teams were located that were conducted 

in the US, EU, and Korea. In the future, more countries should explore the possibility of 

making use of health claims databases as a resource for drug safety signal detection.  

The observed effect of the depletion of susceptible at delaying a signal was quite profound 

in our study. The process was also relatively simple to implement. If other data mining 

groups would apply the time window sensitivity analysis in order to control for this effect, 

there should be even earlier signal detection possibilities world-wide. 
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Generally with signal detection studies, the power of a study is determined by the available 

size of the database. In the instance of this data mining study, the cohort obtained from the 

Quebec database was found to be too small to detect a signal for three out of the four drug-

AE pairs. Future possibilities to address this could be the allowance of a higher proportion 

of the RAMQ database for research.  

The small database size could also be addressed by a potential project to merge databases 

across provinces (such as is the case in countries such as Denmark [152]). This would create 

a larger resource of data for research. Indeed this would be a tedious and time-consuming 

task that would raise both confidentiality concerns and some politics, however in Europe, 

there is currently an ongoing initiative to create a central spontaneous database for all EU 

member states, i.e. EudraVigilance [153]. Considering this project, an attempt at combining 

perhaps two of the databases in Canada, perhaps Ontario and Saskatchewan, for the 

conduct of research does not seem vastly unreasonable.  

 

With regards to risk minimisation on a global scale, more regulatory agencies could create 

specific websites or pages with risk minimisation interventions or risk management plans 

outlined. This would serve as a more accessible resource for risk management-specific 

information. Of the sites included in the systematic review, only the FDA and the EMA had 

dedicated pages to approved risk management plans.  
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In addition, further systematic reviews encompassing websites of additional regulatory 

agencies of individual countries can be undertaken in order to obtain more information and 

be more comprehensive. 

    

Overall, the findings made within the field of therapeutic risk management from this thesis 

are expected to be used to provide additional information supporting signal detection; 

provide new guidance on data mining; help improve RMI execution, and improve drug 

safety surveillance and therapeutic risk management within the Canadian population and 

world-wide. 
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Appendix I – Summary of Data Mining Study Variables  

STUDY DRUG - 
code denomination 

commune 

REFERENCE  
DRUG 

 - code denomination 
commune 

OUTCOME / EVENT 
- ICD-9 code 

DRUG-AE PAIR 
TYPE 

COVARIABLES 

 

Rosuvastatin 
46860 

 

Other statins 47232; 47609; 
47083; 47604; 45500; 45570;  
47595; 45564 

 
Rhabdomyolysis  
 728.8 

 
Known association 
(positive) 

 
N/A 

Rosiglitazone 
47371, 47652, 
46642 

Metformin 05824; 47208; 
47807 

Acute myocardial infarction Known association 
(positive) 

- Age in 5 categories: 
i) 66-69; ii) 70-74, iii)75-79, iv) 80-84, v) 
85+) 
- Gender (dichotomous)  
- Chronic Disease Score in four categories:  
i) 0; ii)  0- 5; iii) > 5 - 10, iv)  >10 

Pioglitazone 
46678 

Metformin 05824; 47208; 
47807 

Increased fractures 800 to 829, 
733.1 

Known association 
(positive) 

- Age in 5 categories 
i) 66-69; ii) 70-74, iii)75-79, iv) 80-84, v) 
85+) 
- Chronic Disease Score in four categories:  
i) 0; ii)  0- 5; iii) > 5 - 10, iv)  >10 

Rosiglitazone 
47371, 47652, 
46642 

Metformin 05824; 47208; 
47807 

Increased fractures 800 to 829, 
733.1 

Known association 
(positive) 

- Age in 5 categories 
i) 66-69; ii) 70-74, iii)75-79, iv) 80-84, v) 
85+) 
- Chronic Disease Score in four categories:  
i) 0; ii)  0- 5; iii) > 5 - 10, iv)  >10 



i.  

 

 

 

Amitriptyline  
00429 ; 00442 ; 
46011 

Metoprolol 38275; 46763; 
46780 

Increased fractures 800 to 829, 
733.1 

Negative-Control - Age in 5 categories 
i) 66-69; ii) 70-74, iii)75-79, iv) 80-84, v) 
85+) 
- Gender (dichotomous)  
- Chronic Disease Score in four categories:  
i) 0; ii)  0- 5; iii) > 5 - 10, iv)  >10 

Alendronate 
46295; 47165; 
47662; 47747 

Atenolol 43670; 46325 Acute hepatitis 573.3 & 570.x Negative-Control  - Age in 5 categories 
i) 66-69; ii) 70-74, iii)75-79, iv) 80-84, v) 
85+) 
- Gender (dichotomous)  
- Chronic Disease Score in four categories:  
i) 0; ii)  0- 5; iii) > 5 - 10, iv)  >10 



 

 

 


