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SOMMAIRE

Cette thése porte sur les questions d’évaluation et de couverture des options
dans un modéle exponentiel-Lévy avec changements de régime. Un tel modele est
construit sur un processus additif markovien un peu comme le modéle de Black-
Scholes est basé sur un mouvement Brownien. Du fait de I'existence de plusieurs
sources d’aléa, nous sommes en présence d’'un marché incomplet et ce fait rend
inopérant les développements théoriques initiés par Black et Scholes et Merton
dans le cadre d’un marché complet.

Nous montrons dans cette thése que I'utilisation de certains résultats de la théorie
des processus additifs markoviens permet d’apporter des solutions aux problémes
d’évaluation et de couverture des options . Notamment, nous arrivons a carac-
tériser la mesure martingale qui minimise I’entropie relative a la mesure de pro-
babilité historique; aussi nous dérivons explicitement sous certaines conditions,
le portefeuille optimal qui permet a un agent de minimiser localement le risque
quadratique associé. Par ailleurs, dans une perspective plus pratique nous carac-
térisons le prix d’'une option Européenne comme 1'unique solution de viscosité
d’un systéme d’équations intégro-différentielles non-linéaires. Il s’agit 1la d’un pre-
mier pas pour la construction des schémas numériques pour approcher ledit prix.

Cette thése est composée principalement de quatre articles soumis a différentes
revues scientifiques. L'un a été publié et deux autres ont été revisés et resoumis.
Plus précisément :

(1) On the Price of Risk of the Underlying Markov Chain in a Regime-Switching
Ezponential Lévy Model [101], revisé et resoumis a la revue Methodology
and Computing in Applied probability ;

(2) The Minimal entropy martingale measure for a Markov-modulated expo-
nential Lévy model [102], accepté dans la revue Asia-Pacific Financial
Markets et disponible en ligne;

(3) Local risk-minimization under a partially observed Markov-modulated ex-
ponential Lévy model [97], révisé et resoumis a la revue Applied Mathe-
matical Finance

(4) Viscosity Solutions and the pricing of European-style options in a Markov-
modulated exponential Lévy model soumis dans la revue Stochastic Analy-
sis and Applications.
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Cette forme de présentation induit inévitablement de nombreuses répétitions no-
tamment au niveau de la présentation du modele, de sa motivation et aussi au
niveau des concepts de base. Nous nous en excusons auprés du lecteur.

MoTs-CLES

Processus additif markovien, Incomplétude du marché, minimisation du risque
local, mesure martingale, solution de viscosité, calibration de modeéle.



SUMMARY

This thesis focuses on the pricing and hedging problems of financial derivatives in
a Markov-modulated exponential-Lévy model. Such model is built on a Markov
additive process as much as the Black-Scholes model is based on Brownian motion.
Since there exist many sources of randomness, we are dealing with an incomplete
market and this makes inoperative techniques initiated by Black, Scholes and
Merton in the context of a complete market.

We show that, by using some results of the theory of Markov additive processes it
is possible to provide solutions to the previous problems. In particular, we charac-
terize the martingale measure which minimizes the relative entropy with respect
to the physical probability measure. Also under some conditions, we derive expli-
citly the optimal portfolio which allows an agent to minimize the local quadratic
risk associated. Furthermore, in a more practical perspective we characterize the
price of a European type option as the unique viscosity solution of a system of
nonlinear integro-differential equations. This is a first step towards the construc-
tion of effective numerical schemes to approximate options price.

This thesis is mainly composed of four papers, one accepted and two revised and
resubmitted. More specifically, we have :

(1) On the Price of Risk of the Underlying Markov Chain in a Regime-Switching
Ezponential Lévy Model [101], revised and resubmitted in the journal Me-
thodology and Computing in Applied Probability ;

(2) The Minimal entropy martingale measure for a Markov-modulated expo-
nential Lévy model [102], forthcoming in the journal Asia-Pacific Finan-
cital Markets and available online ;

(3) Local risk-minimization Partially Observed Under a Markov-modulated ex-
ponential Lévy model [97], revised and resubmitted in the journal Applied
Mathematical Finance;

(4) Viscosity Solutions and the pricing of European-style options in a Markov-
modulated exponential Lévy model submitted in the journal Stoachastic
Analysis and Applications.

This form of presentation leads ineluctably to many repetitions : in the descrip-
tion of the model, motivation and also in the presentation of basic concepts. We
apologize to the reader.
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KEYWORDS
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INTRODUCTION GENERALE

MOTIVATION

Les changements brusques et imprévisibles de la tendance générale des cours
boursiers sont une réalité structurelle des marchés financiers notamment sur le
moyen et le long terme. Ces changements font alterner des périodes de croissance
(rapide ou lente) et de décroissance comme l'illustre la figure 0.1 tirée de [120|
et représentant 1’évolution historique de I'indice boursier S P500 coté a la Bourse
de New-York.

FiG. 0.1. évolution historique de I'indice boursier SP500.

Ces ruptures de tendance trouvent souvent leur origine dans les événements ex-
térieurs au marché a l'instar des changements dans la politique économique, des
changements dans I’environnement socio-politique ou encore des modifications de
la structure d’information des agents économiques. Hamilton [75] en 1989 fut
I’'un des premiers a rendre compte de la présence d’une telle non-linéarité dans
les séries macroéconomiques a travers un modéle dont les paramétres sont des
réalisations d’une chaine de Markov a espace d’états discret.

De faccon générale, la modélisation des systémes évoluant dans un environne-
ment susceptible de connaitre des changements est commune a de nombreux
domaines comme par exemple, les phénoménes de files d’attente (voir Asmus-
sen |7]); les téléecommunications (voir Breuer |21] et les références incluses) et la
bio-informatique (voir Hansen [76]). Elle a par ailleurs connu au cours des deux
derniéres décennies un regain d’intérét dans le champ de la finance mathématique
(|18, 24, 25, 30, 39, 50, 74, 87, 103|, etc.) comme une alternative a la mo-
délisation de Black-Scholes, capable de générer des modéles qui prennent mieux
en compte la réalité des données boursiéres. Car en effet, de nombreux travaux
empiriques a 'instar de Mandelbrot [96] et Fama [61| parmi les plus anciens,
Jorion [84]| et Eberlein et Keller [47] pour les plus récents, ont mis en évidence la
présence des queues épaisses dans la distribution des cours boursiers et un carac-
tére totalement discontinu pour la dynamique de ces prix. Ces faits discréditent
les hypothéses d’une trajectoire continue des prix et d’une distribution des rende-
ments normale avec une volatilité constante telles que prévues par le modeéle de
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Black-Scholes. D’autre part, en confrontant les prix d’une option (d’achat) Euro-
péenne prédits par le modéle de Black-Scholes a ceux réellement observés sur le
marché, MacBeth et Merville [94] ont mis en évidence une différence structurelle
ayant l'allure d’une courbe en forme de U en fonction du prix d’exercice et de la
maturité au lieu d’étre constante selon Black et Scholes : ce phénoméne est connu
sous le nom de "smile” de la volatilité (voir |46 pour une recension).

Le sujet central de cette these est I’étude de la famille des modéles exponentiel-
Lévy avec changements de régime markoviens dans la perspective de leur utilisa-
tion en ingénierie financiére. Ces modéles supposent une représentation du prix S
d’un actif boursier basée sur un processus additif markovien (X,Y’), concrétement

Sy = Sy eXp(Yt(X)), t>0 (0.1)

ot YX) est un processus conditionnellement additif dont les caractéristiques dé-
pendent d’une chaine de Markov X.

Ce type de modélisation associe les avantages des modéles exponentiel-Lévy ba-
sés sur les processus de Lévy & une dépendance stochastique dans le temps. Elle
permet notamment une flexibilité capable de saisir les principaux faits observés
dans les cours boursiers a I'instar de la variabilité (stochastique) temporelle de la
volatilité et des moments d’ordre supérieur, de la distribution (des rendements)
asymétrique avec des queues épaisses, du "volatility clustering", c-a-d., les grandes
variations de rendements ont tendance a étre suivies par d’autres grandes varia-
tions, de signe opposé, et de faccon analogue pour les petites variations.

Le point de départ de notre recherche est qu’une meilleure compréhension de
la théorie des processus additifs markoviens élaborée dans les années 70 par Ez-
hov et Skorohod (|59, 60]), Cinlar (|7, ?|) et Grigelionis 73| permet de donner
des solutions aux principaux problémes inhérents a l'utilisation de ces modéles
pour I’évaluation et la couverture des produits dérivés. A cet effet, deux types de
problémes nous intéressent. Sur un plan théorique d’abord, il s’agit d’étudier le
probléme de 'tncomplétude du modeéle de marché basé sur un processus additif
markovien, et sur un plan pratique de voir comment les outils de l'ingénierie fi-
nanciére peuvent étre adaptés pour la détermination de prix des produits dérivés'
et des parameétres du modéle qui soient conformes avec les prix observés sur le
marché.

LE PROBLEME DE L'INCOMPLETUDE DU (MODELE DE) MARCHE

L’une des innovations des travaux de Black et Scholes |15] et Merton |98] a été de
montrer que, sous I’hypothése d’absence d’opportunités d’arbitrage (c-a-d., I'im-
possibilité de faire du profit sans prendre de risque), en supposant une dynamique

le-a-d., des produits dont la valeur dépend de Pévolution des cours du marché d’un actif
appelé sous-jacent.
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de l'actif boursier S dirigée par un mouvement Brownien géométrique et un mar-
ché parfait?, la valeur d’une option Européenne ne dépend pas des préférences
de I'agent investisseur et s’obtient comme solution d’une équation aux dérivées
partielles-1"équation de Black-Scholes. Ces travaux ont posé le premier jalon de
la finance mathématique et leurs reformulations par Harrison et Kreps 78] et
Harrison et Pliska (|79, 80|) dans le langage de la théorie des martingales et de
I'intégration stochastique ont donné lieu a une théorie générale de I’évaluation
des options par arbitrage.

Cette théorie stipule notamment que ’hypothése d’absence d’opportunités d’ar-
bitrage équivaut a I'existence d’une mesure de probabilité équivalente a la mesure
historique sous laquelle tous les (processus de) prix actualisés d’actifs sont des
martingales (premier théoréme fondamental de [’évaluation par arbitrage) et de
plus si le marché est complet, c’est-a-dire pour tout produit dérivé de payoff H
il est toujours possible de construire une stratégie de portefeuille dont la valeur
terminale coA ncide avec H, il y a unicité de la mesure de probabilité équivalente
précédente. En particulier, Harrison et Kreps |78| et Harrison et Pliska (|79, 80])
montrent que le modéle de Black-Scholes conduit & un marché complet et par
conséquent, le "juste" prix d’une option Européenne d’achat de payoff H est le
cott initial du portefeuille le répliquant et s’obtient comme 1’espérance de H sous
I'unique mesure de probabilité martingale équivalente.

L’un des traits caractéristiques des modeéles qui généralisent le modeéle de Black-
Scholes, a l'instar des modéles ezponentiel-Lévy avec changements de régime, est
Iincomplétude du marché & laquelle ils conduisent, c-a-d., littéralement, 'impos-
sibilité pour un investisseur dans un tel marché de se couvrir parfaitement contre
le risque di aux fluctuations des actifs. Dés lors, les problématiques de 1’évalua-
tion et de la couverture des produits dérivés dans un tel marché se posent avec
une certaine acuité. Notamment, [’on cherche a répondre aux questions suivantes :

e Comment choisir un opérateur d’évaluation parmi la multitude pour détermi-
ner le "juste" prix pour un produit dérivé, dés lors que I'unicité de la mesure de
probabilité martingale équivalente n’est plus garantie malgré I'hypothese d’ab-
sence d’opportunités d’arbitrage 7

e Comment construire une stratégie de portefeuille qui assure a 'investisseur le
minimum de risque maintenant qu’une couverture parfaite n’est plus possible ?

Ces questions ont donné lieu & une vaste littérature (|63, 64, 67, 100, 109, 115|)
désormais classique et continuent encore aujourd’hui a occuper une place de choix
en finance mathématique avec la théorie des mesures de risque developpée par
Artzner, et al. [6] et Delbaen [40] entre autres. Cette thése explore quelques-unes
des approches classiques de solution au probléme de couverture et d’évaluation des
options dans le cadre spécifique des modeéles exponentiel-Lévy avec changements
de régime.

2absence de frictions et de cotts de transaction, absence de contraintes sur les stratégies
d’investissement.
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LES PROBLEMES NUMERIQUES LIES A L’EVALUATION DES OPTIONS
ET LA CALIBRATION DU MODELE

L’une des principales raisons d’étre d’un modeéle financier est de fournir un algo-
rithme pour déterminer le "juste" prix d’un produit dérivé. Un tel prix fournit a
Iinvestisseur une base rationnelle pour juger si les prix observés réellement sur le
marché sont raisonnables et, donc de pourvoir décider de ’opportunité d’acheter
ou pas.

Les modéles de marché basés sur des processus de Markov ont la particularité
que les prix des actifs sont solutions d’équations aux dérivées partielles. Ainsi la
résolution de celles-ci fournit des approximations du prix de ces actifs. De faccon
spécifique, le modéle exponentiel-Lévy avec changements de régime est construit
sur un processus additif markovien et la détermination du prix d’une option Eu-
ropéenne dans un tel modéle donne lieu a la résolution d'un systéme d’équations-
intégro-différentielles qui est ’analogue de la célébre équation de Black-Scholes
pour le modéle éponyme. Un tel systéme n’admet généralement pas de solution
au sens classique notamment en raison de la possible dégénérescence du coefficient
de diffusion. Ceci rend sa résolution complexe et requiert alors I'utilisation des
méthodes numériques. Ainsi donc, le défi consiste a trouver un cadre fonctionnel
adéquat qui assure l'existence et 'unicité de la solution et par suite de fournir
des algorithmes numériques efficaces.

Par ailleurs, comme signalé précédemment le modéle de marché basé sur un pro-
cessus additif markovien est incomplet ce qui implique ’existence d’une multi-
plicité de mesures martingales. Dans la pratique de l'ingénierie financiére, il est
courant de prendre comme mesure martingale d’évaluation celle "choisie" par le
marché. Concrétement, il s’agit de prendre comme paramétres du modéle ceux
qui permettent de répliquer ou du moins de se rapprocher le plus possible des
prix observés sur le marché pour les produits dérivés liquides : Ce qui est I'objet
de la calibration du modele.

CONTRIBUTIONS ET STRUCTURE DE LA THESE

Aprés avoir présenté les notions et concepts utiles a la compréhension de cette
thése dans le chapitre 77, la discussion des deux problématiques évoquées plus
haut constitue I'essence des chapitres suivants. De faccon spécifique,
e La question de I'incomplétude du marché associé a un modéle exponentiel-
Lévy avec changements de régime est discutée dans les chapitres 77, 77 et 3.
Chacun de ces chapitres constitue en soi un article écrit en collaboration et
soumis pour publication ;

e Les deux derniers chapitres 77 et 77 élaborent sur les questions relatives a
I’utilisation pratique du modéle.

Nous présentons dans la suite le résumé de nos contributions.

Le Chapitre 77 est basé sur l'article Momeya et Morales [101] révisé et resoumis
a la revue Methodology and Computing in Applied probability.
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Dans ce chapitre, nous illustrons le caractére incomplet du modéle de marché
en dérivant deux opérateurs d’évaluation grace a la transformation d’Esscher qui
dans ce cadre prend une forme particuliére en raison de la présence de la chaine
de Markov X. Ce développement théorique s’inspire de Siu et Yang [123] et nous
sert a discuter de I’hypothése de la non-prise en compte du risque lié¢ aux chan-
gements de régime généralement invoquée dans la littérature (voir par exemple
|18, 20]). A l'aide des simulations de Monte Carlo, nous montrons que ce risque
est substantiel pour le prix d’une option Européenne. En particulier, pour le mo-
déle de Black-Scholes avec changements de régime nos simulations confirment a
posteriori certains résultats de la littérature (Naik [103] et Boyle et Draviam
[20]). Dans un second temps, nous étudions l'influence des sauts sur ce risque
a travers les modeéles diffusion-sauts et Variance-Gamma avec changements de
régime. La aussi, nous notons une influence significative du risque de régime sur
le prix de l'option.

Dans le Chapitre 7?7 basé sur larticle Momeya et Ben Salah [102|, publié dans
la revue Asia-Pacific Financial Markets et disponible en ligne, nous abordons
plus directement le probléme de l'incomplétude a travers le choix d’une me-
sure équivalente martingale pour évaluer un produit dérivé. Le critére (de choix)
retenu du minimum de D'entropie relative est couramment utilisé dans la litté-
rature notamment en raison de sa relation (par dualité) avec le probléme de
couverture du risque pour un agent ayant une utilité exponentielle. Notre prin-
cipale contribution est la caractérisation de la mesure équivalente martingale
qui minimise ’entropie relative dans le cadre d’un modéle exponentiel-Lévy avec
changements de régime. Ce résultat est obtenu en travaillant conditionnellement
a la trajectoire entiére de la chaine, c-a-d., en supposant connue la filtration
F¥ :=0(X,:0<u<T). En procédant ainsi, nous ramenons le probléme a la
situation d’'un modeéle exponentiel-additif pour lequel un travail récent de Fuji-
wara 70| donne une solution. Des exemples de calcul sont donnés pour illustrer
la méthodologie proposée.

Le Chapitre 77 discute comme le précédent des conséquences de l'incomplétude
du modéle de marché a la différence qu’ici, il est moins question de I’évaluation du
prix d’un produit dérivé que de la détermination d’une stratégie de portefeuille
qui minimise le risque associé suivant un critére quadratique. Il existe dans la
littérature deux approches pour ce probléme selon que la contrainte d’autofinan-
cement ou de reproductibilité est satisfaite :
e 'approche mean-variance hedging (voir [19, 45, 117]) consistant & minimiser
sur I’ensemble des portefeuilles autofinancés le risque quadratique global inter-
preté comme la distance L? entre le gain G associé a la gestion du portefeuille
et le payoff H du produit dérivé que I'on cherche a couvrir;
e 'approche (local) risk-minimization (voir |64, 114, 115|) qui consiste & mi-
nimiser, sur ’ensemble des portefeuilles répliquant H et non nécessairement
autofinancés, le risque quadratique local défini comme la variance condition-
nelle & l'information disponible & la date ¢ des incréments AC; du cout du
portefeuille.
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C’est cette derniére approche que nous avons suivie. Partant du fait que sous
une filtration élargie qui suppose la connaissance de la trajectoire entiére de X le
processus S est une semimartingale, nous montrons que le probléme se raméne a
celui de la minimisation du risque local sous information partielle. La stratégie de
solution consiste alors de résoudre le probléme sous information totale en suivant
une méthodologie due a Colwell et Elliott [33]. Pour ce faire, nous établissons
un théoréme de représentation martingale pour un produit dérivé de type Euro-
péen. Ce qui permet d’obtenir sous une forme explicite le portefeuille optimal en
cas d’information totale. Par la suite, nous obtenons la solution sous la filtration
disponible é 'agent par projection. Ce travail fait 'objet de I'article [97], coécrit
avec Menoukeu-Pamen, révisé et resoumis.

Dans le Chapitre 7?7, nous dérivons formellement le systéme d’équations intégro-
differentielles non-linéaires vérifié par le prix d’une option Européenne. Ensuite,
nous caractérisons ce prix comme étant 'unique solution de wviscosité d’un tel
systéme. Le choix de ce cadre de solutions dites généralisées est qu’il impose peu
de contraintes de régularité, ce qui est particuliérement intéressant car, lorsque le
modeéle fait intervenir des sauts, il est en général difficile d’assurer la régularité de
la solution. Ce travail est I’'objet d’un article soumis a la revue Stochastic Analysis
and Applications.

Le Chapitre 77 porte sur des problématiques numériques associées a l'ingénierie
des modéles de Lévy avec changements de régime a travers d’une part ’évalua-
tion numérique des options et l'exercice de calibration qui consiste a ajuster les
paramétres du modéle afin de retrouver les prix d’options effectivement obser-
vés sur le marché. Le défi consiste a développer des algorithmes de minimisation
qui fournissent des résultats stables dans le temps. Notre approche se veut plus
exploratoire, en particulier nous présentons les méthodes de Fourier d’évaluation
qui semblent appropriées dans la perspective de la calibration.



Chapitre 1

PRELIMINARIES

This chapter summarizes the basic terminology and notions of Stochastic Cal-
culus and the Mathematical Finance. We focus our attention on definitions and
properties we will need in the rest of the thesis.

1.1. REVIEW OF STOCHASTIC CALCULUS

The main purpose of this section is to recall the basic concepts of stochastic cal-
culus needed in this thesis. These elements are taken from various sources but we
refer the interested reader to the monographs of Jacod and Shiryaev [83], Protter
[111] and Sato [113] to deepen various aspects discussed here.

In particular, we present the main classes of stochastic processes which are fore-
ground objects in the modeling of financial markets. In subsection 1.1.1, we define
some concepts and notation used in the sequel. In subsection 1.1.2 we define the
important class of semimartingales processes whereas subsection 1.1.3 deals with
additive, class of processes which include the Lévy process. Subsection 1.1.4 des-
cribes and presents some results of the literature on Markov additive processes
which are the main building block focus of our modeling.

1.1.1. Stochastic Notation and Definitions

We start by fixing

e a set T which represents the time paramater set. This general set can be
T ={0,1,2,..}, or T = [0,00) or also T = [0, 7. In this thesis, we will make
clear which set we are working on when needed ;

e a measurable space (K, K);

e a filtered probability space (2, F,F,P) where the filtration F = (F;)pger is
supposed to be right-continuous, i.e., F; = (,., Fs.

The filtered probability space (€2, F, F,P) is called stochastic bastis. (0, F,F,P)
is said complete, or equivalently, is said to satisfy the usual conditions if the
o-algebra F is P-complete and if each F; contains all P-null sets of . By conven-
tion, we denote F = Foo = V50 Fi-
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Definition 1.1. A stochastic process (or, a K-valued process) is a family Y =
(Yy) qtery of mappings Yy : Q@ — K. When T = {0,1,2,...}, Y is called discrete-
time process and when T = [0,00) or T = [0,T], Y is called continuous-time
process. (K, KC) is called the state space of Y.

In this thesis, we consider unless otherwise stated that K = R and then all
processes used in the sequel will be real-valued.

The process Y may be considered as a map from €2 x T into R via
(w,t) = Y(w,t) =Yy (w).

In this case, t — Y;(w) for w € Q fixed is called sample path or trajectory of
the process Y.

Definition 1.2. A processY is cadlag if all of the trajectories are right-continuous
(in other words, for almost all w € Q the mapping t — Yy(w) is right-continuous,
i.e., img 1+ Yy =Y;) and admits left limits (i.e., Flim,_,~ Yy =: Y- ).

Similarly, a process is caglad if all his trajectories are left-continuous and admit

right limits.

Definition 1.3. The jump of a cadlag process Y at time t is defined as AY; :=
Yi — Y-

Definition 1.4. A process Y is adapted to the filtration ¥ if Y; is F;-measurable,
for every t € T.

Definition 1.5. A stopping time is a mapping T : Q — [0,00] such that
{T <t} eF forallt €T.

For a stopping time T, the process YT defined as YT = Yrp:, is called process
stopped at time T'.

Definition 1.6.
1) The o-algebra on Q x T generated by all cag adapted processes, namely

P:=c{V:QxT—R|Y is cag}

15 called predictable o-algebra.

2) The o-algebra on QL x T generated by all the cadlag adapted processes is called
optional o-algebra and denoted by O.

3) A process is said to be predictable or optional if it is measurable with respect
to P or to O, respectively.



1.1.2. Basics on Semimartingales

The class of semimartingales is probably the most important in the theory of
stochastic calculus since it can provide in all its generality the theory of stochas-
tic integral. Also, because it remains stable with respect to various operations
like, for example, change of measure, change of filtration and stochastic change of
time. It includes in particular the class of martingales and that of processes with
finite or bounded variation.

Before defining the class of semimartingales we need a few definitions.
Definition 1.7. Let p > 1. The family of random variables Y : Q — [0, 00], such
that

1
¥l = EYPYE = ( [ [YPaR)” <o

is denoted by LP(Q), F,P).

A random variable Y is said to be integrable (resp. square-integrable) if Y €
LYQ,F,P) (resp. if Y € L2(Q,F,P). We define an equivalence relation on
LP(Q, F,P), by setting

X~Y iff X =Y P-a.s.,
for all XY € LP(Q,F,P). Then LP(Q), F,P) is defined as the corresponding

family of equivalence classes.

Definition 1.8. A process Y is said to be uniformly integrable(UI) if it sa-
tisfies the condition

lim sup/ |Y;|dP = 0.
OO teT J{|Yi[2n}

Now, we define the notion of martingale.

Definition 1.9. A process M is called a martingale if
o M s adapted with respect to F ;
o M, s integrable, for allt € T ;
o EF[M|Fy) = M, P-a.s., for all s <t €T (known as Martingale property).

We denote by M the family of all uniformly integrable martingales and by H? the
sub-class of M whose elements are square-integrable martingales (i.e., M € M
and sup,cr E¥[M?] < 00).

Definition 1.10. A process M is a local martingale if and only if there exists
an increasing sequence (T,)nen of stopping times (depending on M) such that
lim,, .o T}, = o0 a.s.(almost surely) and that each stopped process M™™ is a mar-
tingale. The sequence (T,,)nen of stopping times is called a reducing or localizing
sequence.
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The family of all local martingales (resp. square-integrable local martingales) is
denoted by M. (resp. Hz ). The following result gives a necessary condition for
a local martingale to be a Ul martingale.

Theorem 1.1. (Protter [111|, Thm 1.51) Let Y be a local martingale such that
EF[supg< < [Ys|] < 00 for every t € T. ThenY is a martingale.
If E¥[sup,cp |Ys|] < oo, then Y is an uniformly integrable martingale.

Another important subclass of family of semimartingales is that of processes with
finite or bounded variation which we now define .

Definition 1.11. A cadlag and adapted process A such that Ay = 0 is called
a bounded variation process if almost all of its sample paths t — Ay(w) are
functions with bounded variation over each compact interval [0,t]. In other words,

for every t € T we require

t mp—1
/ |dA| = lim > |Ap  — Ap| < 00, a.s. (1.1)
for all partitions ™ = {tg,t7, ..., t7 } of [0,t] such that lim,_. ||7"|| = 0 with
7| == sup [t} — ¢},
0<i<mp

denoting the mesh of the partition.

The family of all bounded variation processes is denoted by V. The sub-class of V
whose elements are integrable (resp. locally integrable) (i.e., EF[[;* [dA,|] < oo)
is denoted A (resp. Aj,c).

Now, we can give the definition of a semimartingale.

Definition 1.12. A semimartingale is a process Y of the form
Y=Y+M+A (1.2)

where Yy is a finite-valued random variable Fo-measurable, M is a local martin-

gale beginning at 0, and where A a bounded variation process.

A special semimartingale is a semimartingale Y which admits a decomposition
Y =Yy + M+ A as above, with a process A that is predictable.

The space of all semimartingales (resp. special semimartingales ) is denoted by S
(resp.Sp).
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Remark 1.1.1. If Y s a special semimartingale then its decomposition ¥ =
Yo+ M + A with A that is predictable, is unique and is called the canonical
decomposition of Y.

In this thesis, we will use the notion of quadratic covariation of semimartingales.
We introduce it in the following.

Definition 1.13.
Let Y a semimartingale. The quadratic variation process of Y, denoted by Y],
defined by setting,

t
V= Y2 - vg -2 [ veav,
0
for allt € T.

Definition 1.14. Let Y, Z € §. By using the polarization identity, we define the
quadratic covariation process of Y and Y as

1
Y. 2] = 5([Y + 2] - [Y] - |2]).
Remark 1.1.2. Let Y, Z € S. By ItA s differentiation rule, we have that
t t
Y2l =iz~ Yoo+ [ Zoavis [ Vodz. (1.3)
0 0

for every t € T.

Also, we introduce the notion of compensator or dual predictable projection for
a finite variation process.

Proposition 1.1 (Jacod et Shiryaev [83], Prop. 3.18).
Let A € Ay,.. There exists a process, called the compensator ou the dual pre-
dictable projection of A and denoted by A, which is unique up to indistingui-

shability, and which is characterized by being a predictable process of Ape such

that A — A € M,,,.

Proposition 1.2 (Jacod et Shiryaev |83|, Prop. 4.50).

Let M, N € M2 .. Then [M,N| € Aj,. and its compensator is (M, N). If M, N €
M? MN — [M,N] € M.

With the above, we generalize the concept of compensator to the semimartingales
with locally integrable variation.

The notion of orthogonality of two semimartingales is defined as
Definition 1.15. Two P-semimartingales Y and Z are called orthogonal under

a measure P if [Y, Z] is a local martingale under P.
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In this case, we have (Y, Z) = 0 and some authors used this last property as the
definition of orthogonality.

We now introduce the notion of random measures, namely the random measures
associated with the jumps of a semimartingale, and their compensators.

Definition 1.16.
1) A random measure on T x R is a family 7 = {n(w;dt,dz) : w € Q} of non-
negative measures on (T xR, B(T)® B) satisfying m(w; {0}, dzx) = 0 for allw € .

2) Let w be a random measure and let U be an optional function, i.e., O ® B-
measurable. The integral process U * m is defined as

Usxm(w) = {

f[O,t]xR Uw, s, x)m(w;ds,dx) if the integral converges (1.4)
+00 otherwise.

3) A random measure is said to be optional (resp. predictable) if the integral
process U * m is optional (resp. predictable) for any optional(resp. predictable)

function U.

Definition 1.17. Let Y be a semimartingale. The random measure N associated
to the jumps or jump measure of Y is defined as
N(dt,de) = ) liavizopdisar,y(ds, do), (1.5)
s>0,s€T

where d, denotes the Dirac measure at point a.

Remark 1.1.3 (Jacod and Shiryaev [83], Prop I1.1.14, 11.1.16).
N(-,-) is integer-valued and optional. For any nonnegative optional function U,
we have
UsN(t,-)= Y U(s, AY:)lay, 0. (1.6)
0<s<t
Theorem 1.2 (Jacod and Shiryaev [83], Prop I1.1.8).
Let N(-,-) be the jump measure of Y. The dual predictable compensator under

P of N(-,-), denoted v* (which is unique up to a P-null set) is the predictable
random measure which satisfies one the following equivalent properties :

(i) E¥(U ) = E¥(U x Ny) for every nonnegative predictable function U ;
(ii) For every predictable function U such that |U|x N is finite-valued and locally

P-integrable (which is equivalent to |U| * vF being finite-valued and locally
P-integrable), U x N — U * ¥ is a local P-martingale.

A key result in the theory of stochastic integration is ItA ~’s lemma. This is a tool
that is often used in applications in finance. We give here a general version valid
for the semimartingales.
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Theorem 1.3 (Generalized ItA s Formula, see [111]).

Let Y be a semimartingale and let f be a real-valued function twice continuously
differentiable, i.e.f € C*((R)) . Then f(Y) is again a semimartingale, and the
following formula holds :

FO ) = [ roeavig [ ey vy
(0,¢] (0,¢]

+ D (V) = f(Yer) = FI(Yir)AYL} (1.7)

0<s<t

1.1.3. Additive Processes ( Lévy Processes)

The most used semimartingales in mathematical finance are Lévy processes or
more generally additive processes (see Cont and Tankov |[34|). The main reason
of this comes from the property of independence of increments which allows nu-
merical calculations. The definition given below is taken from Sato [113].

Definition 1.18.
i) A stochastic process L = {L;}1>0 on R is called a Lévy process if the following

conditions are satisfied :

(1) it has independent increments, that is, for any choice of n > 1 any parti-
tion 0 <ty <ty < ... <t,, the random variables Ly, Ly, — Ly, ..., Ly, —
Ly . are independent ;

(2) it starts at the origin, P(Ly =0) =1, or Ly =0 a.s.;

(8) it is time homogeneous or stationary, that is, the distribution of {Liys —

L :t > €} does not depend on s ;
(4) it is stochastically continuous, that is, for any € > 0,

lim P(| Loy, — Li| > 0) = 0;

(5) as a function of t, Li(w) is cadlag a.s.
ii) A stochastic process L = {Li}+>¢ is called an additive process if it satisfies
(1),(2).(4) et (5)-

Additive processes are intimately related to the infinitely divisible distributions
and therefore can be characterized by
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Theorem 1.4 ( Lévy-Khintchine representation).
Let'Y be a real-valued additive process. Then, there is a unique continuous func-
tion v : (u,t) — YP(a) defined from R x T to C such that 1o(u) = 0 and

E* [ei“m_y‘))} = V), (1.8)
forallueR andt € T.
Also, ¥(u) can be written as

. 1
Yulu) = iy — 0%+ /

Rx[0,t]

(ei“m —1—iu xl‘x‘d) v(ds,dx) (1.9)

where X, V¢, and v are uniquely determined and satisfy the following

(1)t — X, is a continuous function from T to Ry such that ¥y = 0 and
Yy —2s2>0 foralls <teT.

(2) t — 7 is a continuous function from T to R such that 7o = 0.

(8) v is a Borel measure on T x R with v(T,{0}) =0, v({t},R) = 0 for all
teT and,

/ (Jz|* A1) v(ds, dr) < . (1.10)
Rx[0,t]

Furthermore, {(X¢,v,v) : t € T} uniquely determines all finite distributions of
the process Y — Y.

Conversely, if {(3,v,v) : t € T} is any triplet satisfying the three conditions
above, then there exists an additive process satisfying (1.8) and.(1.9).

This extension of the classic Lévy-Khintchine formula to additive process is taken
from Lowther [93] where the interested readers can find the proof.

The function v, is called the characteristic exponent of process Y. Another im-

portant characteristic property of additive process is obtained by studying its
sample paths.

Proposition 1.3 ( Lévy-ItA~ decomposition, Sato [113]).

Let Y = {Y,}ier be a real-valued additive process with the system of triplets
{(Ze, e, v(,8)) }-

For any G € B(T) x B(R), let N(G) = N(w;G) be the number of jumps at time
s with height Yi(w) — Y,-(w) € G. Then N(G) has a Poisson distribution with
mean v(QG).

If Gy, ..., G, are disjoint, then N(G1), N(G>), ..., N(Gy,) are independent. We can
define, for any t € T and P-a.s for every w

Y (w) = lim x{N(w;ds,dx)—u(ds,dx)}—i—/ zN(w;ds, dz),

el0 Jo<la|<1,5€(0,1] |z|>1,5€(0,¢]

(1.11)

where the convergence in the right-hand is uniform int for any finite time interval
of T a.s. The process {Y;'} is a real-valued additive process with the system of
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triplets {(0,0,v(-,t))}.
Let Y2 the process defined as

Y2(w) = Yilw) - Y (w). (1.12)

Then Y? = {Y?2}ier is a real-valued additive process continuous in t (a.s.) with

the system of triplets {(X¢,7:,0)}. The two processes Y and Y? are independent.

The proof of this can result can be found in Sato[113].

1.1.4. Markov Additive Processes

In this section, we introduce the notion of Markov additive process (MAP) as
discussed in the seminal papers of Ezhov and Skorohod ([59],[60]) and Cinlar
(I?7D),1?])- For making this presentation clearly, we recall the basic concepts from
the theory of Markov processes theory as found in Blumenthal and Getoor [17].

We follow the same notation as in subsection 1.1.1 and we consider a measurable
space (E, &) where E is a locally compact separable metric space and (F,F) =
(R™, B(R™) the Euclidean space of dimension m > 1 equipped with its Borel
o-algebra.

Basics about Markov Processes

Definition 1.19. A function Psi(x, A) defined for s <t e T,z e E, A€ & and
taking its values in [0, 1] is a transition probability measure on (E, &) if
o A — P (x,A) is a probability measure on &, for any (s,t,x) € Tx T x E
fized ;
o (t,x) — Psi(z, A) is a measurable function, for each A € € and (s,t) € Tx T
fixed ;
o P (x,A)=10,(A) forseT;
o fors<u<tinTand forx e E, A€€&

P y(x,A) = /Pw(x,dy)Pu’t(y,A). (1.13)

A transition probability measure Ps.(x,A) on (E,&) is temporally homoge-
neous if there exists a measurable function Py(x,A) defined for t > 0, x € E,
and A € £ such that

P (x,A) = P_s(x,A) for any s,t,x and A. (1.14)
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In this case P;(z, A) is called a temporally homogeneous transition proba-
bility measure on (£, €).

Definition 1.20. Let F¥ := o(X, : 0 < s < t) be the natural filtration of X
augmented with P—null sets of €.
1) X is a Markov process if

IP’[Xt € A’]—iﬂ = IP’[Xt € A‘O’(XS)], foralls<teTand Ac&.  (1.15)

2) If {G; : t € T} is a filtration with FX C Gy,Vt € T, X is a Markov process
with respect to {G; : t € T} if (1.15) holds with F;* replaced by G;.

Remark 1.1.4. The property 1.15 1s generally known as the Markov property.

Definition 1.21. X s a Markov process with transition probability measure
Ps7t(flf, A) Zf

E]P)|: OXt

/f st dey) (116)

for any s <t €T and f a bounded test function defined on E.

Definition of a Markov additive process (MAP)

Let (X,Y) ={(X,Y:),t € T} be a bivariate Markov process on (E x F,E @ F)
with respect to the filtration {F;,¢t € T} with transition probability measure
P(x,y; Ax B). Let {Qs:: s <t;s,t € T} be afamily of transition probability
measures defined from (F,€) into (£ x F, € @ F) and satisfying

Qsi(z,Ax B) = Qsul(,dy x dz)Qus(y, A x (B — 2)) (1.17)

EXF
forany s <u <t;s,t,ueT,x € E, A€ & B€ F where B+a={b+a:b€ B}
for any a € F.

Definition 1.22. (Cinlar [?])
Let (X,Y) = {(X,Y3),t € T}. (X,Y) is a Markov additive process with
respect to the filtration {F;,t € T} and with semi-Markov transition function Qs
if

Pyi(z,y; Ax B) = Qse(2, A X (B —y)), (1.18)
The above condition means that :

Py(z,y; Ax B) = P, (2,0, A x (B — y)). (1.19)

Equation (1.19) justifies the name Markov processes with homogeneous
second component used by Ezhov et Skorohod |59] for (X,Y).
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Definition 1.23. (Grigelionis [73])
Let (X,Y) = {(X,Y3),t € T}. (X,Y) is a Markov additive process with
respect to the filtration {F,t € T} if
P[X €AY, -Y, € B’]—"S} —P[X, €AY -V, € B‘Xs} Poa.s.  (1.20)
forall0<s<teTand Ac&, BeF.
The first result we can deduce from the definition above is
Proposition 1.4. (Ezhov and Skorohod |59])
Let (X,Y) = {(Xy,Yy),t € T} be a Markov additive process with respect to the

filtration {F;,t € T}. Then X is a Markov process with respect to {F;,t € T}.
Proof. Indeed, for any s <t € T and A€ &

P[Xt € A’]—"s} - IP’:Xt €AY, e F‘f}
- IP):Xt €AY, e F‘(XS,YS)}

_ IP’_XteA,Yt—YSEF’XS]

— P[x,eA Xs], (1.21)

where we have successively used the Markov property of (X, Y'), the fact that the
transition probability measure associated to (X,Y’) is translation invariant in Y
and the definition of Markov additive process.

Remarque 1.1.1. From the definition 1.22, if {Qs: : s < t;s,t € T} is the
semi-Markov transition function associated to (X,Y') then the component X is a

Markov process with state space (E,E) and transition probability measure {Ps, :
s <t;s,t € T} defined for allx € E, A€ & Psy(v, A) = Qss(x, A X F).

Now, we introduce the notation fft =o0(Xy:s<u<t), ]—"%( = fé)fT and

al(2) = 7 [

fgﬁ], for 0 <s <tand z € R,

which represents the conditional characteristic function of Y; — Y given f;ft.

We give here the characteristic properties of a Markov additive process (X,Y)
without proofs, the interested reader can consult the references [59] and [73].

Proposition 1.5 (Grigelionis |[73]).
For all0 < s <t and z € R™,
P [ei<z,Yt—Ys)

Fs \/.7-"1‘3(} =al(z), P-as. (1.22)

Proposition 1.6 (Ezhov and Skorohod [59], Grigelionis [73]).
The component Y 1is a process with independent increment conditional on the
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o-algebra F3X generated by all the trajectories of X. In other words, for any
0<s<teT and B € F we have

P[Y, — Y, € B|F,V F¥]| = P]Y, - Y, € B|F}], P-a.s. (1.23)

or equivalently,
for any integer n > 1 and subdivision 0 < t; < ty < ... < t, of T, if (h;)} are

F-measurable bounded functions then

EF [ﬁ hi(Y, =Y, ) ]-"{5] = f[ EF [hz-(Yti —Yi)
i=1 =1

f?], P-a.s. (1.24)

From these definitions, we can say that a Markov additive process is a bivariate
Markov process (X,Y') such that
e X is also a Markov process;
e the future of Y or any measurable function of Y will be independent from its
past given the present state of X.
Therefore, X is called the Markov component and Y is the additive component
for the MAP (X,Y).

Examples of Markov Additive Processes

We give here some examples of Markov additive processes. These examples are
defined by specifying some conditions on one or the other component of a MAP.
Most of the subject of this section are based on the book of Pacheco et al.[106].

Example 1 : The state space F is a singleton {e}

Forany 0 <s<teT,

PY; e BlYs;=y] = PX;=¢Y,€ B|X;=¢Y,=1y]
= PX;=¢Y,-Y,€B—y|X,=¢€
= PY;—-Y, € B—y, (1.25)

where we have used successively the fact that (X,Y’) is a MAP and the fact that
Y is conditionally independent. In this case, Y is a process with independent
increments or an additive process. This allows us to see that the family of Markov
additive processes is an extension of that of additive processes. However, it must
be said that in general, the additive component Y of a MAP does not have
independent increments.

Example 2 : T =N and F is discrete

In this case, the Markov additive process (X,Y) is a Markov Random Walk on
space state E/' x F' with transition probability measure satisfying, for any 1 < m <
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n integers, B € F; j,ke€ Fand y € F
PX,=kY,€B|F, = PX,=kY,€BXn=7Yn=y
= PX,=kY,-Y, € B—y|X,, =]l
= PlY, — Yy € B—y|X, =k, X, =]
x P[X, = k| X,, =], (1.26)
where we have used the Markov property and the fact that (X,Y") is MAP. Noting
that the additive component Y can be written as Y, = > ;" (Y, — Y;_), which

is like a random walk in the usual sense. When F is finite, the Markov additive
process can be characterized by a matrix of transition probabilities

F(dzr) = (Fij(d))i jep-

Indeed, by setting
L Zn:Yn_Yn—la
o Fjj(dx) = Po(X1= 7,21 € d);
e p;; = F;;(F) the (i,j)—element, ¢, j € E, of the matrix of transition proba-
bilities of X, we have

Eyj(dz) = P[Z; € dz|Xo =i, X1 = j] x pyj. (1.27)

Therefore, given H,;(dx) :=P[Z; € dx|Xo = i, Xy = j] we can determine entirely
the trajectory of Y once a sample path of X is known. This is how we proceed to
simulate a sample path of (X,Y) or (X,95) (see Figure 1.1) as we will see later
in chapter 2.

It is worth noting that the example of MAP described above is used to modelling
the regime switches in Econometrics (see, e.g., |75|) and in the switching ARCH*
modelling of volatility in the stock market.

Example 3 : T is continuous time parameter set and E is finite

Here, the component X is specified by an intensity matrix A = (\;;); jer, and
e On an interval [s,s + t) where X = i, Y; evolves like a Lévy process with
characteristic triplet (02, v;, v;(dr)) depending on i;
e A transition of X from ¢ to j, j # ¢ has a probability ¢;; of giving rise to a
jump of Y at the same time, the distribution of which has some distribution
Bz’j-
For the last two examples, as the state space E of the component X is finite, the
Markov additive process can be completely characterized by its moment genera-
ting function which here can be expressed as a matrix. Thus, for a MAP (X,Y)

if Fy[a] is the matrix with (i, j)—element, i, j € E Ef[e*1;x,—j4|Xo = 7] then

T AutoRegressive Conditional Heteroscedascity



20
Theorem 1.5. (Asmussin [7]) R
1) If T is discrete, then F,[a] = (F|a])™ where
Flo] = Fia]
= (B[ X1 = j}Xo = i])ijen
= (Fylal)ijen
= (piHyjla))ijen. (1.28)
2) if T is continuous, then the matric I*A}[a] is given by el where
K] = A + Diag(n®(a)) + (g (Byla] — 1)),
with K9 (a) = av; + 2a’0? + fR\{O}(eo‘m — 1 — azly<1)vi(dz) the characteris-

tic exponent of Lévy process YO . In this case, A, i, 02, vi(dx), ¢ij, Bij are called
parameters of the Markov additive process (X,Y).

FiG. 1.1. Sample path of a regime switching VG process.
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1.2. REVIEW OF MATHEMATICAL FINANCE

The literature goes back to 1990, with Bachelier [8| as the first attempt to use
probabilistic models to describe financial markets. However, it is the work of Black
and Scholes [15] and Merton |98| that has paved the way of mathematical finance
whose main purpose is the pricing and hedging of derivatives, i.e., contract which
provides its holder a future payment that depends on the price of one or several
primitive security(ies). The asset underlying a derivative may be a stock, a stock
index, an interest rate, a foreign currency, or a commodity.

In this section, we will review main concepts of mathematical finance such as
contingent claim, arbitrage, etc. and relate them to the main result named the

Fundamental theorem of asset pricing. The main reference of this section is Cherny
[29].

1.2.1. Basic Notions

We start by fixing a finite time-horizon 7" and a stochastic basis (2, F, F,[P). All
processes are defined on the above stochastic basis (in particular, they are defined
over the time interval [0, 7] and are adapted to the filtration F = (F;)ery, which
we shall assume obeys the usual conditions).

We consider a frictionless market* with a single (for sake of simplicity) risky as-
set available for hedging, denoted by S, and a bank account, denoted by B. The
process Y will represent the discounted asset, i.e., Y = S/B, and we suppose that
it is a special semimartingale.

Let £L2(Y) be the space of all R-valued predictable process ¢ such that

1

|]]c2v) := (EP[/OT P2d[Y, Y]UD§ < o0.

Definition 1.24. A trading strategy or dynamaic portfolio is a pair of pro-
cesses ® = (¢,1)) where ¢ is an F-adapted process and ¢ € L*(Y) is an F-
predictable process, such that the (discounted) value process® V = ¢Y + 1 has
right-continuous sample paths and E*[V?] < oo for everyt € T(i.e., V; € L*(Q, P)
for everyt € T).

For a trading strategy ® = (¢,v), ¢ = (¢;)ier denotes the number of units of

the stock held at time ¢ and 1) = (¢;)er the discounted amount invested in the
money market account at time ¢.

2j e., there are no transaction costs, assets are divisible and it is possible to borrow from

bank and sell short without restriction.
3The concept of stochastic integration is related to the idea of calculating the change in

value of the portfolio over time. So, we need to impose some conditions for its existence.
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Definition 1.25. A trading strategy ® such that

t
V(@) = V(@) + [ oudv.
0
for allt € T is called self-financing.

Definition 1.26. A contingent claim or financial derivative is any positive
random variable H of the form H = F(St), where F is a measurable function
and S the stock price process above. In other words, a contingent claim is a Frp-

measurable function. It is characterized by its payoff H and its maturity T'.

Definition 1.27. Let H be a contingent claim which is Fr-measurable and square-
integrable. H s said to be attainable or replicable if there exists a trading stra-
tegy ® such that

Vp=H, P-a.s.

In that case, we say that ® is a hedging or a replicating strategy for H.
Definition 1.28. A trading strategy ® = (¢, 1)) is said to be admissible if it is
self-financing and if there exists some o € Ry such that fot ¢dYs > —a, a.s. for

allt € T. Roughly speaking, the amount of money one can borrow and invest, and
the amount of stock one can short are limited.

Definition 1.29. A market model is complete if for each bounded Fr-measurable
H, there exists an admissible trading strategy ® such that
(1) there exists constants a and b such that
PVt €[0,T],a < Vi(P) <b) =1;
(2) H =Vr(®).

1.2.2. Equivalent Probabilities and Change of Measure

We discuss in this section a main tool in mathematical finance, the change of
measure, which shows how martingales and more generally semimartingales are
changed when a new absolutely continuous probability measure is introduced.
Historically, it is the work of Harrison and Pliska [79, 80| who, by reformulating
the results of Black and Scholes, showed the importance of the change of measure
through the notion of an equivalent martingale measure.

Definition 1.30. A probability measure Q on (2, F) is said to be absolutely
continuous with respect to P, indicated by Q < P, if

P(A) =0= Q(A) =0.
IfP < Q and Q < P, then the measures are said to be equivalent, indicated by
Q~P.
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Theorem 1.6 (Radon-Nikodym, see [83]).
Let Q be a probability measure on (0, F). If Q < P, then there exists an P-a.s.
unique random variable Z > 0 satisfying, E*[Z] = 1, such that

Q(A) = E¥[Z14],
forall Ac F. IfQ~ P, then Z>0 P-a.s..

The random variable Z defined in Theorem 1.6 is called the Radon-Nikodym

derivative of QQ with respect to IP and is often written as % =: /.

We now give a result which relates conditional expectations under two different
measures.

Theorem 1.7 (Conditional Bayes’ Theorem or Bayes’ rule, see |2]).
Suppose G C F is a sub-o-field. Suppose Q is another probability measure absolu-
tely continuous with respect to P(Q < P) and with a Radon-Nikodym derivative

dQ
— =7
dP
Then iof U is any integrable F-measurable random variable,
BEUSl it B7lzIg) > 0,
EQU|G] = (1.29)

0 otherwise.

Theorem 1.8 (Girsanov-Meyer theorem, see [111]).
Let P and Q be equivalent. Let Y be a semimartingale under P with decomposition

Y =M+ A. Then'Y is also a semimartingale under Q and has a decomposition
Y =L+ C, where
t
1
Lt:Mt_l_/ —d[Z,M]S
0 Zs
s a Q-local martingale, and C' =Y — L is a finite variation process under Q.

1.2.3. Fundamental Theorems of Asset Pricing

A fundamental concept in Finance is the absence of arbitrage which states that
there is no opportunity to make an instantaneous profit without risk. This econo-
mic principle is the foundation of many results in Mathematical Finance, notably
the Fundamental theorem of asset pricing. But this notion is "mathematically"
too weak to provide the generality of this theorem as proved by Delbaen and
Schachermayer [41]. It is replaced by the notion of No free lunch with vanishing
risk (NFLVR).

Definition 1.31. An arbitrage possibility is a self-financing strategy ® with the
properties

a) Vo=0;
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b) P(Vp(®) > 0) =1;
¢) P(Vi(®) > 0) > 0.

Definition 1.32 (Cherny [29]).
A sequence of strategies @y = (¢, ¥y) realizes free lunch with vanishing risk

if
i) For each k, ¢, =0;
ii) For each k, there exists aj, such that
PVt € [0,T], Vi(Pr) > ax) = 1;
iii) For each k, V,(®r) > —1,
i) There exist & > 0,02 > 0 such that, for each k,
P (Vp(®y) > 1) > da.

P-a.s. ;

A model satisfies the NFLRV condition if such sequence of strategies does not
exist.

Before stating the result which links the concept of NFLVR to the existence of
risk-neutral measures, we recall the following definitions.

Definition 1.33. A probability measure Q on (2, F) is called an equivalent
(local) martingale measure or a risk-neutral measure if Q ~ P and the

discounted price process Y is a (local) martingale under Q.

Definition 1.34. A process Y is an (Fy, P) o-martingale if there exists an (F;, P)
local martingale M and a ¥F-predictable n such that

t
n=%+/mmh vt € [0,7] (1.30)
0

Theorem 1.9 (The First fundamental theorem of asset pricing).

A semimartingale market model (B,Y’) as defined above, admits no free lunch
with vanishing risk if and only if there is a probability measure Q equivalent to
P such that Y is a o-martingale (or martingale transform) under Q.

If Y is bounded (resp. locally bounded) the term o-martingale may equivalently be
replaced by the term martingale (resp. local martingale).

We can also formulate the Second fundamental theorem of asset pricing which
can be viewed as the counterpart of the previous result. We begin by define the
predictable Representation property.
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Definition 1.35. A process Y has the predictable representation property
(PRP) with respect to the probability measure Q if for any (F;, Q)- local martin-
gale M = (My)ser, there exists a predictable, Y -integrable, process & such that

t
Mt=M0+/ c.dY..
0

Theorem 1.10 (The Second fundamental theorem of asset pricing).
Suppose a semimartingale market model (B,Y") satisfies the NFLVR condition.
Then, the following conditions are equivalent

i) the model is complete ;
ii) the equivalent o-martingale measure Q is unique ;

iii) there exists an equivalent o-martingale measure Q such that Y has the pre-

dictable representation property with respect to Q.

Completeness is an ideal property for a market model. There are few examples
of complete markets in continuous-time setting. We can nevertheless mention the
models based on a Brownian motion or on a Poisson process. Indeed, we have the
following result.

Theorem 1.11 (Cherny[29]).
Consider a model where the discounted stock price is given by
Sy = Spexp(Yy), So >0

and which satisfies the NFLVR condition. Moreover, we impose that F; = F7.
Then the model is complete only in the following cases :

(i) Yy = ut + oWy, where W is a standard Brownian motion and o > 0;

(i1) Yy = bt + 0Ny, where N is a Poisson process with intensity A and §b < 0.
The classical Black-Scholes model is then complete as shown in Harrison and

Pliska [79]. Also, we deduce from this result that the exponential-Lévy models
and the Regime-switching exponential-Lévy models are incomplete.



Chapitre 2

ON THE PRICE OF RISK OF THE
UNDERLYING MARKOV CHAIN IN A
REGIME-SWITCHING EXPONENTIAL LEVY
MODEL

Ce chapitre est basé sur I'article de Momeya et Morales [101], qui a été revisé et
resoumis a la revue Methodology and Computing in Applied probability. Le premier
auteur est Romuald Momeya et le second auteur est le directeur de recherche
Manuel Morales.

RESUME

Dans ce chapitre, a la suite d’un article de Siu et Yang [123], nous nous in-
terrogeons sur I'impact sur le prix d’une option Européenne que peut avoir la
prise en compte ou non du risque lié aux changements de régime. L’intérA®t de
cette question vient de ’hypothése généralement admise dans la littérature de la
non-prise en compte de ce risque. Pour ce faire, nous construisons deux noyaux
d’évaluation basés sur la transformation d’Esscher dont I’'un prend en compte le
risque de régime et ’autre non. Ceci est rendu possible par la substitution dans la
transformation d’Esscher de ’espérance inconditionnelle habituelle par une espé-
rance conditionnelle sachant I'information disponible sur la chaA®ne de Markov
responsable des changements de régime. Les résultats numériques obtenus par
simulation montrent que I'impact de la prise en compte du risque de régime est
assez significatif et semble A?tre mitigé par la présence des sauts (du processus
additif). En particulier, nous comparons les résultats obtenus avec ceux de la
littérature, notamment Naik [103] Boyle et Draviam [20].

ABSTRACT

Regime-switching models (RSM) have been recently used in the literature as alter-
natives to the Black-Scholes model. Several authors favor RSM as being more rea-
listic since, by construction, they model exogenous macroeconomic cycles against
which asset prices evolve. In the context of derivatives pricing, these models lead
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to incomplete markets and therefore there exist multiple Equivalent Martingale
Measures (EMM) yielding different pricing rules. A fair amount of literature (Buf-
fington and Elliott|24], Elliott et al. [50]) focuses on conveniently choosing a fa-
mily of EMM leading to closed-form formulas for option prices. These studies
often make the assumption that the risk attributed to transitions in the state of
the Markov chain is not priced. Recently, Siu and Yang [123|, proposed an EMM
kernel that takes into account all risk components of a regime-switching Black-
Scholes model. In this chapter, we extend the setting in Siu and Yang |123], into
a more general Lévy regime-switching model that allows us to assess the influence
on the price of risk of jumps in the price process . We specialize this general fra-
mework to Regime-switching Jump-Diffusion and Variance-Gamma models and
carry out a comparative analysis of the resulting option price formulas with exis-
ting regime-switching models such as Naik [103| and Boyle and Draviam [20].

2.1. INTRODUCTION

Regime-switching models (RSM) were originally introduced in order to model the
canvas of macroeconomic cycles against which asset prices evolve (Hamilton |75]).
These cycles are modeled by an underlying Markov chain that drives the asset
prices through structurally different market scenarios against which asset prices
evolve with different characteristics. Since nineties, many papers concerning op-
tion pricing in a regime-switching setup have been published with a view towards
applications. In particular, it is interesting to mention recent applications in in-
surance where regime-switching processes are suitable models for equity-linked
insurance products [see Hardy [77], Siu |121]]. This suitability is due to the long
term maturity of these products where economic cycles need to be taken into
account. Regardless of the domain of application, most of the available litera-
ture assume that the risk due to the underlying Markov chain is not priced (or
is diversifiable), i.e., no premium is paid for such a risk. For example, Kijima
and Yoshida [87] in a discrete-time model with Markov volatilities made some
assumptions which lead to the price of volatility risk to be zero. Bollen [18] in
his regime-switching lattice model supposes explicitly that the "regime-risk" is
not priced in the market. This assumption allowed him to work with the risk-
neutrality argument. Boyle and Draviam |20] study a Black-Scholes model where
the volatility parameter depends upon a hidden Markov chain and they also as-
sume, for the sake of simplicity, that the volatility risk is not priced. Recently, in
Lin et al. [91] we find an insurance application where equity-linked insurance are
studied under a regime-switching model.

Among the above mentioned articles, to the best of our knowledge, only Naik
[103| discussed the situation where the risk due to the jumps in volatility is
nondiversifiable (or priced). In his article, he makes a risk adjustment to the
persistence parameters of his model. Recently Siu and Yang [123], Elliott and
Siu [56| and Elliott et al. [57] have explicitly addressed the issue of pricing the
risk due to the underlying Markov chain for a Regime-switching Black-Scholes
model.
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The aim of this chapter is two-fold. First, we generalize the framework and results
first introduced in Siu and Yang [123] to a more general setting. We study option
prices under a Regime-switching exponential Lévy model. In particular, we derive
expressions for option prices in the special cases of a regime-switching jump-
diffusion and variance-gamma models. Second, we carry out numerical analyses
in order to assess the impact of pricing versus not pricing the risk associated with
the underlying Markov chain. In these analyses, we compare two conceptually
different derivative pricing rules : one that takes into account the risk associated
with the Markov chain and a second one that does not. We find a significant gap
between the prices given by these two pricing rules which illustrates the potential
error that can be made when the risk of the underlying Markov chain is not taken
into account.

The chapter is organized as follows. Section 2.2, presents a general Regime-
switching Exponential Lévy model and lays down the main concepts and notation
used throughout this chapter.

In Section 2.3, we discuss how we can define two EMM kernels leading to two
conceptually different derivative pricing rules. These two kernels correspond to
two assumptions : pricing and not pricing the risk associated with the Markov
chain. Some special cases are studied in more depth in Section 2.4. In particular
the Black-Scholes regime switching model of Boyle and Draviam [20| and Naik
[103]. Finally, in Section 2.5, we present a simulation analysis of our model and a
comparative study of the impact of pricing versus not pricing the risk embedded
in the Markov chain. Section 2.6 concludes our work and discusses some future
work.

2.2. A GENERAL REGIME-SWITCHING EXPONENTIAL LEVY MO-
DEL

2.2.1. Description of the Model

We consider a financial market with two primary securities, namely a money
market account B and a stock S which are traded continuously over the time
horizon T := [0, 7] where 0 < T' < oc.

In order to formally define this market, we fix a complete probability space
(Q, F,P) where P is the real-world probability.

Let X := (X;),cr denote an irreducible homogeneous continuous-time Markov
chain on (2, F,P) with a finite state space S. Let M € N be the size of the state
space S, then X is characterized by a rate (or intensity) matrix A := {a;; : 1 <
i,j < M,teT}.

For simplicity sake, we follow the notation of Elliott [49| and we identify S with
the canonical basis of the linear space R™. Let us denote the i** element of the

canonical basis by e;, i.e., e, = (0,0,..., 1 ..., 0). In this chapter, we set the
i-th
state space to be S = {ey,..., ey }. This implies that the process X is a vector-

valued Markov chain taking values in R ie., X € S={e;,...,ey} C RM,
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Now, we can model the stochastic evolution of the instantaneous interest rate
r = (1¢);er of the money market account 5 at time ¢ as follows

re = (r| Xy) = Zm €| Xy), (2.1)

where (-|-) is the usual scalar product in ]RM and r = (r1,...,ry) € RY. Here
the value r;, the i"* entry of the vector r, represents the value of the interest rate
when the Markov chain is in the space state e;, i.e., when X; = e;. The price
dynamics of B can now be written as

t
B; = Byexp (/ T5d8>, By=1, teT (2.2)
0

Moreover, let u; and oy denote respectively the mean return and the volatility of
the stock S at time ¢. Using the same convention, we define the following processes

He = ‘Xt Z,U/z ez‘Xt )
oy = O"Xt ZO’Z eZ|Xt s
where
B = (Mlau% a,uM) € RM )
and

o= (01,00,...,0m) € RLM
In a similar way, p; and o; represent respectively the mean value and volatility of
S when the Markov chain is in state e;, i.e., when X; = e;.

The price dynamics of the stock S can now be described by the following expo-
nential Markov modulated Lévy process :

S =5 eXP(K), So >0 (23)

t 1 t
Y, = / <,us - g)ds—i-/ osdW; +// 2NX(ds, dz)
2 0 R\{0}

/ /R\{O} " —1—2)p~(ds,dz). (2.4)

Where NX(dt,dz) := N*(dt,dz) — p¥(dt,dz) denote the compensated random
measure associated to NX(dt,dz). N*(dt,dz) denotes the differential form of
a Markov-modulated random measure on T x R\{0}. We recall from Elliott
and Osakwe [50| and Elliott and Royal [55] that a Markov-modulated random
measure on T x R\{0} is a family {N¥(w;dt,dz) : w € Q} of non-negative
measures on the measurable space (T x R\{0}, B(T) ® B(R\{0})), which satisfy

with
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N¥(w; {0}, R\{0}) = 0 and has the following compensator, or dual predictable
projection :
M
pX(dt,dz) =" (e X;-) pildz)dt (2.5)
i=1
where p;(dz) is the density for the jump size when the Markov chain X is in state
e;. We suppose that

; /B /R\{O} min(=", L)pi(dz)dt < o0 (2.6)

for each Borel set B € B(T).
Let W := (W}),cp0,0) be a standard Brownian motion on (€2, 7, P) which is sup-

posed independent of X and N¥.

We refer to the model defined by (2.3) as a Regime-Switching exponential Lévy
model. In such a model, the evolution of asset prices is influenced by the Markov
chain X representing a macroeconomic regime of the market. One feature of this
model is that during the time spent by the Markov chain in any given regime,
the asset price evolves as an exponential Lévy process. And as the background
environment moves from one regime to another, the stock prices are also modeled
by different exponential Lévy processes representing the asset dynamics under
the current state of the market. The model in (2.3) is a generalization of existing
models and it has been constructed using the readily available theory of Mar-
kov Additive Processes [See, e.g., Cinlar (|?, ?]), Grigelionis |73|, Asmussen |7]
and Pacheco et al.|106]|. Despite being a natural extension of previous regime-
switching models, it has been little studied in the literature in a general form
[See Chourdakis|30]||. Interestingly, equation (2.3) contains, as particular cases,
several models that have appeared in the literature. In the following subsection
we briefly discuss particular cases that are of interest to our discussion.

2.2.2. Some Particular Models

The Regime-Switching Black-Scholes Model

The simplest regime switching model in continuous time that can be found in
the literature is the Black-Scholes regime-switching model. Introduced in Kijima
and Yoshida|87], it assumes a number M known, of states or regimes and consi-
ders that within each possible market regime, asset prices evolve according to
a geometric Brownian motion. Each regime specifies different model parameters
accounting for different price dynamics. We can recuperate the Black-Scholes
regime-switching model from equations (2.3) by setting NX(.;.) = 0. In such a
case, there are no jumps and the equation (2.3)-(2.4) reduce to a regime-switching
geometric Brownian motion. We refer the reader to Di Masi et al.[39], Guo [74]
and Boyle and Draviam [20] for comprehensive studies regarding this model. This
model is the object of our attention in Section 2.5 where we provide numerical
illustrations of the results of this chapter.
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The Naik Model

A second model that takes into account possible shifts in macroeconomic market
environments through regime switching is the one in Naik [103|. He generalizes
the previous ones by introducing some jumps in the dynamic of stock price. In
Naik [103], he assumes two distinct market regimes where in each the risky asset
dynamics is a jump-diffusion process. The jumps have only two sizes and occur
only whenever there is a regime shift. From equations (2.2)-(2.3), we can also
recuperate this model by making the following assumptions,

(1) Two regimes, i.e., M = 2,

(2) One interest rate and one mean return across regimes, i.e., r; = ry and
H1 = H2;

(3) Within each Markov state, e; or ey, the Poisson random measure N* (for
i =1,2) has as a compensator \; ;

(4) The size of jump in the stock price level takes only one value y; in each
Markov state, e; (i = 1,2).

In Section 2.5, we look for a slightly modified version of the Naik model; in
particular we suppose that the size of jumps is gaussian.

Other Models

In Elliott and Osakwe [50], the authors have introduced a model for asset prices
in terms of the exponential of a pure-jump process with an M-state Markov
switching compensator. Their model extended that of Konikov and Madan [88]
in which a two-state Markov chain modulates two Variance-Gamma processes.
In this chapter, the model defined in equation (2.3) contains in fact a family of
models that evolve as a Lévy process within each possible market regime very
much like those in Elliott and Osakwe [50|. Well known examples that could
be used are Normal Inverse Gaussian, Hyperbolic and Variance-Gamma Lévy
processes. We could also remark that if we set M = 1, i.e., the model have just
one regime, then we retrieve the well-known family of exponential-Lévy models.
In Section 2.5, we work out a numerical illustration of such a model based on the
Variance-Gamma Lévy process.

2.3. TwO CONCEPTUALLY DIFFERENT PRICING KERNELS

One of the main features of the Regime-switching exponential Lévy model is
that it leads to an incomplete market; that means that there exist infinitely
many equivalent martingale measures describing the risk-neutral price evolution.
Each of these measures gives rise to a set of derivatives prices compatible with
no arbitrage requirement, hence the problem of selecting one of them is crucial.
A popular choice for finding an equivalent martingale measure is based on the
Esscher transform [See, e.g., Gerber and Shiu [71], Kallsen and Shiryaev|[86]|.

In the framework of Regime-switching model, Elliott and his coauthors [See El-
liott et al. [50], Siu and Yang [123]] introduced the notion of Regime-switching
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Esscher transform in order to price contingent claims. This change of measure
is an adaptation of the concept of conditional Esscher transform introduced by
Biihlmann et al.[23]. The form of this new change of measure includes the un-
derlying Markov chain which causes the regime shift. The difference with the
standard Esscher transform change of measure lies in the expectation operator
used in its definition. It is standard to define the Esscher transform through the
moment generating function (mgf) of the random variable or stochastic process at
hand. In the Regime-switching extension of Elliott et al.|50|, due to the particular
role of the Markov Chain X, the calculation of the mgf is conditional to a subset
of the information available on X. This gives rise to two a prior: different pricing
kernels based on the conditional Esscher transform. In the following Section we
discuss these concepts further.

2.3.1. Pricing Kernel that Ignores the Risk Associated with the
Markov Chain

Here, we present the construction of an Esscher change of measure that produces
a pricing kernel that does not take into account the risk associated with the
Markov chain. In other words, this change of measure is based on a conditioning
argument that assumes knowledge of the whole history (past and future) of the
underlying Markov chain. In the literature, this is often referred to as ignoring
the risk associated with the Markov chain [See, for example Naik [103]|, Boyle
and Draviam [20], Siu and Yang [123] and Lin et al.[91]]. Following Elliott et
al.|50], we start by introducing some notation.

Let F¥ := {F* her and FY := {F },cr denote the right-continuous, P-completed
filtrations generated by X and Y respectively. Moreover, we define for ¢t € T,
G, = fq)w( \/.7:tY and G := {?t :teT}.

We also make use of the following definition of Siu and Yang [123]. We set

M
e = {(et)te'ﬂ" | Ht = ZQZ<X¢7‘GZ> with (‘91,92, ,HM) c RM

i=1

such that E¥ [e_ e

fﬂ <oo}.

And for 0 := (0,)er € O, we define the generalized Laplace transform of a G-
adapted process Y as

My (0); .= EF [e_ Jo 057

7. (2.7)

Notice that the expectation is taken conditional on the information of all the
future values of the Markov chain X. With this extended definition of a Laplace
transform, we can now define the kernel of a generalized Esscher transform (with
respect to the parameter 0, thus called Esscher parameter).
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Let A = {A;}ser denote a G-adapted stochastic process defined as

o J3 0sdYs

N=— teT, feo. 2.8
t MY(H)t ( )

It can be shown that (See e.g., Elliott et al. [50])

t t t _
Ay = exp —/ QSanWS—}/ 9§a§ds—/ / 0,- 2N~ (ds; dz)
0 2 Jy 0 JrR\{0}

_ /Ot /R\{O} (e—zgs —1+ 95z> pX(dz)ds] : (2.9)

It is a straightforward exercise to show that the process in Equation (2.
density process inducing a change of measure in the probability space (2, G
fact is a direct consequence of the following result.

Proposition 2.1 (Siu and Yang [123)).
The stochastic process A = {A; }ier defined by (2.8) is a positive (G, P)-martingale

and

8) is a
). This

EF[A) =1, VteT. (2.10)

Proposition 2.1 immediately implies that A is a density process and it is possible
to define for each process 6 in © a new probability measure QY equivalent to P

by setting
dQ°

dP lg,
We derive the pricing kernel associated to this equivalent probability measure by
imposing some conditions on #. We shall discuss this issue in subsection 2.3.3

=\, teT. (2.11)

2.3.2. Pricing Kernel that takes into Account the Risk Associated
with the Markov chain

In this subsection, we present the construction of an Esscher change of measure
that produces a pricing kernel that takes into account the risk associated with the
Markov chain. In other words, this change of measure is based on a conditioning
argument that assumes knowledge of only the starting state of the underlying
Markov chain. Unlike the first change of measure of the previous subsection, the
denominator of the kernel presented here does not assume knowledge of the whole
path of the Markov chain but only its initial state. In order to construct the se-
cond pricing kernel, we give an alternative definition of the generalized Laplace
transform of X by conditioning on the initial value of the Markov chain X instead
of conditioning on the whole path of X. Let us first introduce a new filtration
in our space namely G := {G, = F* VF) : t € T} which denotes the right-
continuous, P-complete filtration generated by the bivariate process (X,Y). We
introduce also the set
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M
o= {w:)@ | 07 =Y 0;(Xi-|e:) with (07,065, ... 03) € RM

i=1

such that E¥ [e‘ Jo 67dYr

X, <oo}.

and define following Siu and Yang [123] the new kernel A* = {A}}ier as a G-
adapted stochastic process as follows

Ay =1

(2.12)

o= T 05 dYs

A = EF

EP[e= o 0345 | x]

gt], t € (0,T]; 6 € ©*.

By construction, {A}},er is a positive G-martingale which verifies
Ef[Af]=1, VteT.

It is clear that we can now define a family of probability measures {Qg- : 6* € ©*}
equivalent to P through

dQg«
dP Gt

As for the family {Q’ : § € ©} introduced above, the family {Qp- : 6* € ©*}
define a pricing kernel under some conditions on #*. These conditions are discussed
in the next subsection.

— Ay, teT. (2.13)

Remark 2.3.1. The first kernel can be viewed as the one resulting from assuming
knowledge of the whole sample path (past and future) of the Markov chain, so
one can suppose that in this case an agent has much information for hedging
himself from the risk due to the regime change thus he doesn’t need a premium
for this risk. Contrarily to the first, the second kernel (2.12) is defined only on
information of the initial state Xo of the Markov chain thus we can think that an
agent will require some premium for taking into account the risk associated with

regime shifts.

Despite the resemblance, the two kernels defined above have some fundamental
differences [See Appendix 2.7.1|. In particular, they lead to different measure
changes which in turn imply different pricing rules. The purpose of this note
is to numerically illustrate these differences. At this point, we have two density
processes (2.8) and (2.12) inducing two different families of equivalent measure
changes {QY : § € ©} and {Qp- : 0" € ©*}. From the fundamental theorem of
asset pricing we know that any contingent claim in any financial market would
be priced under an equivalent martingale measure and, in order to derive such
pricing rule, we need to impose the so-called martingale condition to the kernels
defined above. This is carried out in the next subsection.
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2.3.3. Martingale Condition

Consider the market composed of two assets B and S as defined in equations
(2.2) and (2.3). We denote by {S; := %tt : t € T} the discounted price process.
A key element in the theory of option pricing is that of Equivalent Martingale
Measure (EMM). Indeed, a milestone in mathematical finance is the fundamental
theorem of asset pricing [see Harrison and Pliska ([79], [80])] which states that
a no-arbitrage price of a contingent claim in this market is given in terms of an
equivalent measure satisfying

E2[ ;1G] = S5 . (2.14)

with Q € {Q’ Qp~}. This is known as the martingale condition and implicitly
gives the condition on the process 6 (resp. #*) that determines an EMM within
the families {Q’ : 0 € ©} and {Qy- : % € ©*}.

The family of equivalent measures {Q : # € ©} and {Qy- : 0* € ©*} in (2.11)
and (2.13) were introduced and studied in the context of derivative pricing [See
Elliott et al. [50] and Siu and Yang [123]]. In both cases, there exist results that
identify explicitly the martingale condition [See, for example Elliott et al. [50] and
Siu and Yang [123] for regime-switching Black-Scholes model|. Here we present a
more general condition that identifies the equivalent martingale measure within
the families {Q? : € ©} and {Qp~ : §* € ©*} under the general regime-switching
exponential Lévy model defined in (2.2) and (2.3).

The necessary and sufficient condition for Q% to be an equivalent martingale
measure is a somewhat straightforward result and we present it here in the form
of the following proposition.

Proposition 2.2.

Consider the Lévy regime-switching market defined in (2.2) and (2.3). An equi-
valent probability measure Q° defined through (2.11) is an equivalent martingale
measure on (Q, Gr), i.e., it satisfies condition (2.14), if and only if O satisfies the

following equation

pi — i — 0,07 + /(ez —1)(e™ = 1)pi(2)dz =0, (2.15)
R

forio=1,2,..., M.
Proof. The proof is a straightforward adaptation of that of Proposition 2.2 in El-

liott et al. |50|. The main ingredient is an explicit computation of the generalized
Laplace transform defined as (2.7).0

As for the necessary and sufficient condition for Qp« to be an equivalent martingale
measure on ({2, Gr), the result is more complicated and we need to lay down some
preliminary results before. First we recall the following result for the occupation
times of a Markov chain which is adapted from Elliott and Osakwe [54].
Lemma 2.1.

Consider an irreducible homogeneous continuous-time Markov chain X := (X;),cq

on (Q,Gr, G,P) with a finite state space S of size M € N and with an intensity
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matric A = {a;; : 1 <1i,5 < M}. Let
i(uv U) = (Jl(uv U)? J2(u7 U)v ce JM(uv U)) (216)

denote the vector of the occupation times of X during a period of time [u,v] C T.

The conditional moment generating function of J(u,v) is given by
Mjz(u,v)(¢) = EF [ezﬁil Ch Tk (u,0) gu}
< o(A+Diag(Q))(v—u) 5

u

l> , CeRM (2.17)

where 1 = (1,1,...,1) € RM, (-]} is the usual scalar product in RM and Diag(()

1s a M x M diagonal matriz of the form

G 0 - 0 0
0 G 0 - 0
Diag(Q)= | © . . .
: . (nve1 O
0 --- 0 0 Cu

Proof. The proof is easily adapted from that of Proposition 2 in Elliott and
Osakwe |54|. O

Lemma 2.1 gives the explicit form of the moment generating function of a Markov
chain in terms of the occupation times. This is useful when we study the kernel
(2.12) which is defined in terms of one such moment generating function.

Using Lemma 2.1 we have the following proposition which is an extension of
lemma 3.1 of Siu and Yang [123].

Proposition 2.3.

Let {S} = %tt :t € T} be the discounted price process in the market defined in
equations (2.2) and (3.4) and let Qg- be the family of equivalent measures defined
through (2.12) and (2.13) on (Q, Gr). Then, for all u,v € T such that u < v

(A+Diag(£(0))) (v—u) X |1
E%[S}G.] = S e : L) : (2.18)
<6(A+Dzag(§(6*)))(v—u)Xu|1>

where
§(9*> = (gl(ei)7£2(9§>v 7£M(HX/[)) )
§(9*> = (él(ei)v ~2(9>2k>7 75M(HX/[)) )
with
§(00) = ~0i (s = 300 + 500t + [ (7 =140 = 1)l
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E(67) = o — (07— )3 — 507) + 565 — 1707

+A@%Wﬂ—rw@—wé—wm@w,

forio=1,2,..., M.
Proof.

For all u,v € T so that u < v and by a version of the Bayes’ rule [See, Aggoun
and Elliott [2]]

E]P’ A* *
EQ@* [S:|gu] [ vSv|gu]

EP[A5]G.]
= F FS” G.| (since A" is a G-martingale).
(2.19)
Using the expressions in (3.4) and (2.12) we can explicitly write
S = GremhursdselidYs (2.20)
A* v ey BF[e= I 024Y5| G,
A pean Bl G (2.21)
A EFle” Ju 8zdYs Gu
A simple substitution of equations (2.20) and (2.21) into (2.19) yields,
EP [ e i reds o= [0 pP o~ IT 0zdy, G.] gu]
ER[S*G,] = Sk : (2.22)

EP[e~ [T oray,

G.]

If we use the fact that X is a homogeneous Markov chain, we can write (2.22) in
terms of the vector of occupation times J defined in (2.16)

EP | S &0 1w gP | 2 66501 | g, || g,

E%[S*G,] = = = —. (2.23)
EP | eZili &(07):(u0) gP | o520, 60070 |G | |G

This last equation can be simplified if we use the following property of homoge-
neous Markov chains (See, for example Norris [104]),

Law' (JI(U,T),...,JM(U,T) gv) — Law (JI(U,T),...,JM(U,T)‘XU> (2.24)

— Law (Jl(O,T—v),...,JM(O,T—v)‘XO) .
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By using property (2.24) in (2.23), we have

EP | X 609 1:0.T—0) | x| BP | X1 &0 Ti(wo) |G
E@@[S;|gu] = Sr——= = = =
EP X1 &(0:)7:0.T—0) | X | BP | X% &(07)i(u) |G

E]P 62?i1 gi(G?)Ji(u,v) gu

EP | oM, 605) Tiu) |G,

If we now use Lemma 2.1, we finally obtain

(e(A+DPiagE@ON) -1 19

E%°[S]|G.) = S, (2.26)

<6(A+Diag(§(9*)))(v_u)Xu|1> |

O

Proposition 2.3 gives a particular form for the martingale condition (2.14) for an
equivalent probability measure Qg defined on (Q,Gr). It immediately yields a
characterization of the martingale measures in {Qp- : * € ©*} as stated in the
following result which is adapted from Siu and Yang [123].

Theorem 2.1. Consider the Lévy regime-switching market defined in (2.2) and
(2.8). An equivalent measure Qg+« defined through (2.13) is an equivalent mar-
tingale measure on (Q,Gr), i.e., it satisfies condition (2.14), if and only if 0
satisfies the following equation

<6(A+Diag(§(€*)))tX0|l> o <6(A+D’iag(§(9*)))th|l> =0, (227)

where we use the same notation as in Proposition 2.3.

Proof. By set v =t and u = 0 in equation (2.18) we have immediately that the
martingale condition

E%5:160| = S5, (228)
is equivalent to equation (2.27). O

2.3.4. Some Approximations

The importance of Proposition 2.2 and Theorem 2.1 is that they characterize
the equivalent measures within the families {Q’ : § € ©} and {Qy- : §* € ©*}
under which the discounted price process S* is a martingale. Under non-arbitrage
assumptions, so-called equivalent martingale measures are needed in order to
price any contingent claim on the underlying process S. These results endow us
with a means to evaluate derivative products under two conceptually different
assumptions regarding the underlying market regimes. In view of this, it is of
uttermost importance to explicitly determine the martingale conditions in both
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Proposition 2.2 and Theorem 2.1. We focus our attention to the condition for
the family {Qp- : 0* € ©*} since it is a more complicated object. In fact, the
presence of a matrix exponential in equation (2.27) makes it very cumbersome
for the determination of Esscher parameters (67,65, ...,0%,). It is often the case
that approximations are needed in order to find the solution of equation (2.27). It
turns out that a standard approximation for the matrix exponential in (2.27) leads
to interesting insight about the difference between the two families of equivalent
measures Qg and Qg and their underlying assumptions. In this Section we carry
out a comparative analysis (in line with Siu and Yang [123])of these two families
via certain types of approximations for the martingale condition in (2.27). Recall
that a matrix exponential of a square matrix C' is defined as

Ck
T (2.29)

exp(C) = Z

A Comparison between Q° and Q-

By replacing the expression of matrix exponential exp(C') in the equation (2.27)
by its first-order approximation, i.e.,

exp(C)= [+ C (2.30)
where I denoted the identity matrix. We have that :
<<[ + <A + (§(9))> t)Xo);> _ <<I + (A + Diag(£(9))) t) Xo‘l> —0. (2.31)

And by taking Xy =e;; : =1, ..., M the last equation is equivalent to this system
of N equations

< i ag; + 1+ <az‘i + 52(91))15) — ( i agi + 1+ <a2~2~ + 51(92))15) = 0.

k=1,k#i k=1,k#i
(2.32)
Thus, for2e=1,.... M
£(0;) —&(0;) =0 because ¢ > 0. (2.33)
or,fort=1,.... M
ji— i — 00 + / (¢% — 1)(e= — 1)pi(2)dz = 0. (2.34)
R

Notice that this last expression is exactly the martingale condition for the family
{QY : 0 € ©} as given in equation (2.2). In fact, this shows that the martin-
gale condition for the family Q® in (2.2) is the first-order approximation of the
martingale condition for {Qp- : * € ©*} in (2.27). This has an interesting inter-
pretation with respect to the underlying assumptions behind these two families,
we can think of the second pricing kernel A* as having more information than
the first one A. Indeed, the second kernel A* is obtained under the assumption
that only the initial state of the market regime is known, whereas the first kernel
A operates under the less realistic assumption that the whole path of the market
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regimes are known. Apparently, under kernel A* a first-order approximation to
identify the martingale condition is equivalent to assuming that the whole path
of the Markov chain is known, which in turn reduces to using kernel A. This re-
sult had been previously observed in Siu and Yang [123| for a Regime-switching
Black-Scholes model, here we have established the same result for a slightly more
general regime-switching model.

When working with the second kernel A*, there are higher-order approximations
that can be used to compute the martingale condition (2.27) through the series
(2.29). In view of the previous discussion, we can see higher-order approximations
as giving new degrees of information that allow us to move away from an unlikely
assumption where the whole path of the Markov chain is known towards a more
seemingly assumption where only the initial state of the Markov chain is known. In
the following subsection, we discuss a second-order approximation in a particular
example.

Further Approximation

Here, we derive explicitly the martingale condition for Q- by taking a two-order
approximation for matrix exponential. For simplifications we take N = 2.

By setting a1; = —a12 = —a1; a2 = —ag1 = —az; a1, a2 > 0 and for t > 0,
M= (A + (5(9*))) ' (2.35)
explicitly we have
M= ( o+ &) a . )t (2.36)
a —az + 52(92)
hence
M2 A11 A12
My~I+M+—=
exp(M) Tt 2 ( An A
where
~ 1 1 ~
An = 1—at+ &6t + §a1a2t2 + §(a1 — &)t
1 ~ ~
A12 = at+ 5&1(61 —a; —as+ 52)t2
]_ - ~
A21 = aot+ 5&2(61 —a; —as+ 52)t2
~ 1 1 ~
Ay = 1—agt+ &+ §a1a2t2 + §(a2 — &)t

(2.37)
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So the martingale condition (2.27) gives for X, = e; = (1,0) :

(&) - o) + 57

(&en —aen) (Gen +& @)

+ <a2 . 2a1> (51(9;) . gl(e;*)) +as (52(9;) - 52(9;))] —0. (2.38)

and for Xg =e, = (0,1) :

(603 — &x(0) )1 + 52

(&005) - (09)) (&05) + &63))

+ <a1 - 2a2> (52(9;) - @(93)) ta (51(9;) _ 51(9;))] —0. (2.39)

Equations (2.38) and (2.39) are examples of the type of equations that need
to be solved in order to identify the martingale condition. These equations are
somewhat more tractable than (2.27) and they will be used to determine the EMM
parameters for the numerical illustrations. In the following Section we carry out
numerical examples for certain particular cases using equations (2.38) and (2.39).

2.4. PARTICULAR CASES

In this Section we present in detail the developments made above for particular
models. In the sequel we take M = 2, i.e., the Markov chain X moves only
between the two states e; = (1,0) and ey = (0, 1).

2.4.1. The Regime-switching Black-Scholes model

By taking into account the assumptions of no jumps in equation (2.2), we obtain
the martingale condition for Q7 as

for : = 1,2 and we deduce easily the Esscher parameter

My — T .
0; = af , 1=1,2. (2.41)

The martingale condition associated to Qg+ leads to this system of equations in

(91, 92) .

ot . (31 —27’1)U%t2 ' <aft N (1 — 1) (02 + 2u)t% + 0% (ag — 2a1)t2> 6,

2 2

242 2 _9 _ _
+02022t 0y — ((Ml r1)” + (ag a1)2(“1 ) + aa(p 7ﬂ2)>152—(,u1—7“1)15 =0,

for 0<t<T. (2.42)
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oyt’ 03 — (3p —27’2)U§t2 02 + (a%t + (2 = 1a)(0F + 2M2)2752 + o(a1 — 2a2)t2> 0,

2 _ 2 -9 _ —
| ot 91_<(u2 o+ (o = 2 = 1) e m))tz_(m_rz)t:o,

for 0<t<T. (2.43)

2.4.2. The Regime-switching Merton Jump-Diffusion Model

This model is obtained by supposing that all the parameters of the classic Merton
Jump-Diffusion are modulated by a Markov chain X. So, we have this dynamics
for the risk asset

! 1
S:Sexp/ s——a?ds—ir/
= oo | [/ o= yet)ae s

t

t
o dW, + / / N7, (ds, dz)
0 JR\{0}

-] CEE z>p§D<dz>ds]

e the jump process N7, (¢,dz) is compound Poisson with a stochastic intensity
A = At X)) = (A Xy), where A = (A, \g) € R,2;

where

e the Lévy measure in this case is given by :
2
7p(dz2) Y. _<dZ_M§) (2.44)
2) = ———F—exXp — 5 :
PID (0X)v2r p 2(5%)2
with pf = pf (6, Xy) = (us|X;) and 6% = 6¥(t, X;) = (9| X;) where py =
(,u},,u?,) € R? and )= (51,52) € Ra_

The martingale condition for QY is given by :
pi — i — 007 + \je T +2070 (e‘eié?ﬂf%é? — 1) -\ <e”§+%6i2 — ) =0
(2.45)
fori=1,2.

In the other side, the martingale condition for Qg+ includes complex expressions.
Indeed, we have to replace in Equations (2.38)-(2.39) for i = 1, 2, the expressions

G07) = &(07) = i — i — 007 + Nie P HAODE (0Bt 45 )

— A(e!T T 1) (2.46)



43

and
&) + &i(07) = pi — i — 20,1 + (07)%07 + (207 + D)Ai + (20] — 1) Nseh 2%
AR08 -0t (6—9363+u§‘ +307 | 1). (2.47)

2.4.3. The Regime-switching Variance-Gamma Model

This model is obtained from the general case by setting the dynamics of risk
process S as

t t _
Sy = Sy exp / psds + / / 2N o (ds, dz)
0 o Jr\{0}

_ /0 t /R \{0}(62_1—Z)V§G(dz)ds L (2.48)

where the jump process Ni¥5(t,.) has the compensator or dual predictable pro-
jection
2

a(dz)dt = (e X)) © () dt (2.49)
=1
with
,/VG_C.ﬂl +C.ii|x|1
7 - 7 T {fE>0} 7 ‘x| {:B<0}7

the Lévy measure associated to the Variance-Gamma process VG(Cy, Gy, M;).

By calculating explicitly integrals involved in Equation(2.2), we obtain the follo-
wing system of equations from the martingale condition associated to Q7 :

G;M; (Gi _Hi)(Mi"‘ei) _
#e=ri=Cilog ((GML DM — 1)) *Cilog ((Gi G+ )@+ 6-1) "

fori=1,2. (2.50)

And for Q-+, the following system of non linear equations in (61, 65) is obtained :
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- (Gi—6)(M +6) ) G M,
{“1 ri+Cilog ((G1 )L+ 6 -1 ) e\ @ nan =
1 2
GlMl G!1]\41
+ ol +Cl
1Og<(G1—91+1)(M1+91—1)> ! Og((Gl—Hl)(M1+01)>

+ (20, — 1)C log ((Gl +CB?]4\/1[1 — 1)> + ay — 2a1] }

1, (Ga — 65)(M; + 65)
- - 1

G2M2
AT
(G2 — 62) (M3 + 65) G2 M,
{“2‘7”2*02 log <(G2 — 0y + 1)(My + 65 — 1)) Calos ((Gg + 1)(M; — 1)) }
t 1t2
X + 5
G2M2 G2M2
+ Calog ((G2 — 0y + 1) (M + 0, — 1)) el <(G2 = 02)(M; + 92))

+ (202 — 1)Cylog <(G2 +Ci§?]4\;2 — 1)> +a; — 2a2] }

1, (G = 61)(M: +61)
+ §a1t {m r1+ Cylog ((G1 -6+ 1)(My+6,—-1)

— Cylog ((G1 f;;é\f\% — 1)> } =0. (2.52)

In general, solving the system of equations obtained from the martingale condition
for Qg+ is quite involved. Thus, the only way to solve it is by numerical techniques.
The solutions are not unique therefore we need to use some criterion to select the
final Esscher parameters. We discuss this issue in the next Section.

(G +1)(M; = 1)

G M
p — 11— 201y 4 (26, — 1)Cy log ( 1 )

G M.
fo — 19 — 20519 + (265 — 1)Cy log ((G2 + 1;(]\;2 - 1))
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2.4.4. Criterion for Selecting Esscher Parameters

In many cases, the system of equations in (6, 60s) resulting to the martingale
condition for Qs+ has more than one solution. Following the idea of the two-
stage pricing method proposed by Siu and Yang [123], we impose a criterion for
selecting one set of (1, 6,) for pricing purposes.

So we choose 6 = (6, 65) as solution of the following minimization problem
min (Qp-, P) (2.53)

with T' := {0 € R?| 0 solution of (2.38)-(2.39)} and

[(Qp,P) := max!(Qo,P|Xo=e)

‘= max E" Q- In (dQ0*>

i=12 dP dP

XQ = ei]

_ P * *
= 12121211>2<E ArIn AT

X, = ei] . (2.54)

X() = ei]

{EP [( B foT 9des> o= Jo 05V

EP [e‘ Jo 0sdYs X = ei]

—InE" [e_ Iy 0:aYs

Xo = e,} } (2.55)

2.5. NUMERICAL ANALYSIS

In this Section, many numerical experiments are conducted to illustrate the effect
of pricing regime-switching risk particularly on the price of an European call. To
do this, we compare the prices obtained by each of the two pricing kernels intro-
duced in Section 2.3 and for the different models presented above.

Firstly, we present how we have proceeded.

2.5.1. Discretization

To obtain numerical approximations of the price of the European Call, we shall
use Monte Carlo simulations. This assumes that the dynamic process of asset
prices are given for a discrete grid. To do so, we subdivide the time horizon [0, 7’|
in J intervals of length A := T'/J with J a positive integer. This gives rise to the
family of points {t; = Aj:j =0,1,...,J} where t, =0 and ¢,y =T.

The continuous-time Markov chain X is approximated as in Yuan and Mao [126]

and we refer to this work to see the details. Once the simulated path { X, 3-]:1 of
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X is known, we deduce those of {41, }7_,, {re, }7_1.{0v,}]—,. Now, we can use these
to construct an Euler-forward scheme for the log—return process Y as follows :

1
Vier =Y+ e (s = 502) + A [ (€ = 1= 25
R

oy ke x VA + NX(tj0) — NX(t5), (2.56)

J
where Y} = Y@»%Mt Hi;505 = Oy €7 N(

) and
NX(t) = /zNX (t: dz) / (2.57)

Given {X;, }3-]:1 and Yy = 0, we then sample {Ytj }j:1 using (2.56) recursively.
2.5.2. Monte Carlo Simulations

The simulation procedure is inspired from Siu and Yang [123| and is summarized
as follows :

Step 1
Foreach [ = 1,2, ..., L, simulate the discrete-time version of the Markov chain X
and obtain {X](l) T

step 2
Given {X J 1, identify the samples paths of the processes
)
{’u.g ]17{0 ]17{9( ]17{T§' ]17fOTl—12 L
Step 3

foreach I = 1,2, ..., L, simulate the discrete-time version of the log-return process
Y and obtain {Yj(l) T

Step 4
Approximate the call price for both kernels respectively by :

C(Oa SOv XO)

1 L
zzz

=1

S 08T (s — K, 0)
A 105”( D12+ 1Ay (0820824 0 (20 (t41) - 2D (1))

with Z® / / —29” 10 (e ))pX(l)(dz)ds (2.58)

and
C(Oa SO) XO)
> [6_ F= 000D AT ax(See — K, 0)}

J oDy _y D)
Sy [em T )

(2.59)
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where 6 (resp. 0*) are obtained through equations (2.34) (resp. (2.38) and (2.39))
which are expressions of the Martingale condition in the general form. For the par-
ticular cases of last Section, this specializes according to the form of the dynamics
of the risky asset.

2.5.3. Experiments and Results

For our experiments we work with three models, namely : Regime-switching
Black-Scholes model (model I); Regime-switching Merton Jump-Diffusion mo-
del (model IT) and Regime-switching Variance-Gamma (model III). For the first
one which is the most common regime-switching continuous model in the litera-
ture, we conduct several numerical analysis to compare our results with those of
the literature, especially with Naik [103| and Boyle and Draviam [20].

We set the parameters to be J = 2 and
(1) r = (0.05,0.05) ;
2) p=(0.35,0.05);
3) o =(0.15,0.25);
4) Qg  —a2
) K

= 100; Xy € {1,2} and S, € {94.0,96.0,98.0,100.0, 102.0, 104.0}.

(
(
( ( A ) with a; = as € {0,0.25,0.5,0.75, 1, 1.25, 1.50, 1.75, 2} ;
(

5

We note that the solution by Naik [103| is obtained from an analytical closed
form, that from Boyle and Draviam [20]| came from a numerical resolution of a
system of weak-coupled PDE and ours is obtained by Monte- Carlo simulations.
The tables 2.1 and 2.2 present numerical results for prices of European Call
options at time zero for different values of moneyness (Sp/K). The figures of
the last two columns are estimated by simulating 50,000 trajectories of Y and
this procedure is repeated independently 10 times to provide an estimate of the
standard errors. No variance reduction technique is used and all computations
are done in MATLAB codes.

TAB. 2.1. Comparison with existing results for 7'=1, X, =
1 and a; = a, = 0.5.

So/K B-S Naik | Boyle-D | Risk no priced | Risk priced
0.94 | 5.1096 | 5.8620 5.8579 5.8749(.0850) | 18.7601(.0850)
0.96 | 6.1624 | 6.9235 6.9178 6.9369(.0863) | 20.6900(.0863)
0.98 | 7.3248 | 8.0844 8.0775 8.0961(.0600) | 22.7037(.1068)

1| 85917 | 9.3401 9.3324 9.3303(.0573) | 24.7740(.0856)
1.02 | 9.9563 | 10.6850 | 10.6769 10.7061(.0622) | 26.8103(.1100)
1.04 | 11.4110 | 12.1127 | 12.1045 12.1304(.0967) | 28.9475(.0938)




TaB. 2.2. Comparison with existing results for 7'=1, X, =

2 and a; = ay = 0.5.

So/K B-S Naik | Boyle-D | Risk no priced | Risk priced
0.94 | 8.8557 | 8.2292 8.2193 8.2503(.0550) | 7.2390(.0463)
0.96 | 9.9510 | 9.3175 9.3056 9.3302(.0869) | 8.1968(.0626)
0.98 | 11.1190 | 10.4775 | 10.4647 10.4682(.0810) | 9.2208(.0571)

1112.3360 | 11.7063 | 11.6929 11.6853(.0828) | 10.2929(.0547)
1.02 | 13.6206 | 13.0008 | 12.9870 12.9901(.0851) | 11.4228(.0821)
1.04 | 14.9629 | 14.3575 | 14.3436 14.2823(.1069) | 12.5857(.0781)

In Figure 2.1 we have a visual representation of these results.

FiG. 2.1. European Call prices versus Moneyness

48
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We have also made some comparisons for different maturities (7") and for different
values of intensity rate that characterize the Markov chain. Figures 2.2 and 2.3
present the results.

FiG. 2.2. European Call prices versus Time to maturity

Fi1G. 2.3. European Call prices versus intensity rate

In light of what precede, we may draw the following conclusions for model I :

e the impact of risk due to regime is significant (the relative difference in the
prices ranges between 0.2 % and 97%) ;

e the regime-risk is too sensitive to market parameters like volatility or intensity
rates of leaving(for each state).

Turning now to model II, in order to outline the effect of the introduction of jumps
in the previous model and to see how the regime-risk is sensitive we constraint
as in Ballotta [9] the value of the volatility in each state to be constant equal to
the instantaneous volatility of log-return in model I.

We set the parameters to be J = 2 and
(1) r = (0.035,0.035) ;
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The following panel shows the results.

FiG. 2.4. RSBlack-Scholes vs RSJump-Diffusion : Call prices
across Strikes

Fic. 2.5. RSBlack-Scholes vs RSJump-Diffusion : Call prices
across Maturities

We remark firstly that there is a difference between the prices in each regime-
switching model. For the small maturities, the prices given by the RS-JD model
with regime risk priced are higher than those given by the RS-JP model with re-
gime risk not priced whereas for the RS-BS model, the difference across the strike
are not perceptible. For the long maturities, the difference (across the strike) bet-
ween the regime-risk, priced and not, are significant in both models. Particularly,
in the RS-JD model the differences(across the strike) seem constant whereas in
the RS-BS model these differences seem to grow as the time.

The last model we have to look at is model III. We present in Figures below the
results of our simulation. The parameters are set to be

(1) r = (0.05,0.015);

(2) p=(0.35,0.05);

(3) €=1(2,3), G=(4,5), M = (8,6)

(4) A ( 5 )

(5) Sp =100; X, € {1,2} and K € {60, 70,80, 90,100,110, 120, 130, 140}.
The panel below displays the results

Fi1G. 2.6. RSVariance-Gamma model : Call prices across Maturities

FiG. 2.7. RSVariance-Gamma model : Call prices across Strikes

We see that even in this case, there is a perceptible difference between the price
of option when the regime-risk is priced and the case where it is not priced.
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2.6. CONCLUSION

In this chapter, we evaluate the impact of taking into account or not of the regime-
risk in a Regime-Switching Levy Model. We derive two pricing kernels to illustrate
this situation. Numerical experiments made show us the significant departure of
values of prices of an European Call from when the regime-risk is not priced to
one when it’s priced. We also look the influence of the introduction of jumps
in this analysis. Although the analysis presented would effectively highlight the
importance of the regime-risk in the prices, it does not however explicitly quantify
it. This aspect of things will be of our attention in the future.
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2.7. APPENDIX

2.7.1. An explicit Comparison between A and A*

Let « € ©NO*, for all t € T we have by using lemma 2.1
P [e_ [t asdYe fj{(] _ gP [E]P’ [e‘ JE asdYs QT] }]_—1{(}

- EP [<6(A+Diag<§<a>>)t Xo|1) ’ fﬂ

_ <6(A+Diag(§(a)))tXT|l>‘ (260)
Thus,
¢ 1
Ay = e Joasd¥s _ . (2.61)
<6(A+D1ag(§(a)))tXT|l>
Also,
\ (A+Diag(¢(a)) ) (T—1) X, 1
Af = e JoasdYe (e _ v 1) (2.62)
<6(A+D1ag(§(a)))TX0’ l>
Therefore we have that
A At <€(A+Diag(§(a))>(T—t)Xt’ l) <€(A+Diag(§(a)))tXT‘l> (2 63)
;= . .

<6(A+Diag(§(a)))TX0 |l>



Chapitre 3

LOCAL RISK-MINIMIZATION UNDER A
PARTIALLY OBSERVED
MARKOV-MODULATED EXPONENTIAL
LEVY MODEL

Ce chapitre résulte d’une collaboration avec Olivier Menoukeu-Pamen. Il existe
sous forme de rapport de recherche [97] et il a été révisé et resoumis dans la revue
Applied Mathematical Finance. Notre contribution a consisté en la formulation du
problA“me et a la recherche des premiA “res ébauches de solution. Avec notre co-
auteur, nous avons formulé les résultats du problA “me sous information partielle.
La rédaction de l'article a été faite en partie par nos soins.

RESUME

Cet article adresse la question de la couverture quadratique du risque local as-
socié a une option de type Européenne dans un modA~le exponentiel-Lévy avec
changements de régime. Nous commenAS§ons par observer que sous une filtration
élargie, le processus de prix S est une semimartingale ce qui nous permet d’implé-
menter la méthodologie due a Colwell et Elliott [33] pour résoudre le problA“me
de minimisation sous information totale. Enfin, nous obtenons la solution pour la
filtration accessible a I’agent par projection.

ABSTRACT

The option hedging problem for a Markov-modulated exponential Lévy model
is examined. We employ the local risk-minimization approach to study optimal
hedging strategies for European-type derivatives under both full and partial in-
formation. Then, we project the hedging strategies on the observed information
to obtain hedging strategies under partial information.
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3.1. INTRODUCTION

Unpredictable structural changes in the trends of asset prices or stock indices on
financial markets are a reality currently . They are not usually caused by inter-
nal events of the market itself but are more closely related to the global socio-
economical and political environment. To account for these features, Markov-
modulated (or regime-switching) models have since been widely used in econo-
metrics and financial mathematics. See for instance, Hamilton [75] for exhibiting
the non-stationarity of macroeconomic times series, Elliott and Van der Hoek
[62] for asset allocation, Pliska [110] and Elliott, et al. [48] for short rate models,
Naik [103|, Guo |74] and Buffington and Elliott |24] for option valuation.

The Markov-modulated exponential Lévy model is very attractive as an alter-
native to the classical Black-Scholes model because it couples the benefit of an
exponential Lévy model, i.e., the presence of jumps, with the possibility, thanks
to the Markov chain, of having long-term variability of some characteristics of the
return distribution. However, in the context of derivative pricing, these models
lead to incomplete markets. Therefore, the question of hedging becomes a crucial
one.

In this paper, we consider the problem of optimal quadratic hedging of a Euro-
pean derivative contract in a market driven by a Markov-modulated Lévy model.
Typically, in this model full information about the modulating factor X is not
available in the market and the agent has only access to the information contai-
ned in past asset prices. Consequently, we shall deal with an optimal quadratic
hedging problem for a partially observed model (or partial information scenario).

This kind of problem has been extensively studied in the literature. Di Masi, Pla-
ten and Runggaldier [39] were the first to discuss the problem of risk-minimizing
(mean-variance) hedging under restricted information when the stock price is a
martingale and the prices are observed only at discrete time instants. In [118],
Schweizer made explicit for general filtrations G := {G hier C {Fihter = F
a risk-miminizing strategy based on G-predictable projections. Pham [109] sol-
ved the problem of mean-variance hedging for partially observed drift processes.
Frey and Runggaldier [65] determined a locally risk-minimizing hedging strategy
when the asset price process follows a stochastic model and is observed only at
discrete random times. Frey [66] considered risk-minimization with incomplete
information in a model for high-frequency data. In the same framework, but for
more general model, Ceci |27| computed the optimal hedge strategy under the
criterion of risk-minimization. In all these papers, the method consists firstly, to
determine the optimal strategy under the full information, and secondly, to de-
termine the final solution by projecting on the filtration available to the investor.
Then the natural question arises : given a Markov-modulated Lévy model, can we
apply the above methods to study the problem of local risk-minimization under
partial information

The aim of this paper is to give an answer to the previous question. In fact, we
show that under some restrictive conditions on our model, we can apply the same
techniques used by the preceding authors to obtain an optimal hedging strategy
for local risk-minimization under partial information. In fact, we first derive a
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martingale representation for the wealth process under full information. Then we
proceed, as in the classical setting, by solving a local risk minimization under
full information. The optimal strategy obtained under full information is quite
explicit. Finally, using the fact that our processes do not jump simultaneously, we
deduce an orthogonal projection of the claim with respect to the smaller filtration
and therefore the optimal strategy.

The paper is organized as follows. Section 3.2 describes in detail our model se-
tup and constructs two different filtrations that characterize the situation where
investors have full and partial information. In Section 3.3, we recall some basic
results on risk-minimization. Section 3.4 contains the main results, namely the
martingale representation property for the value process, and the existence of
optimal strategies in our market model under full and partial information.

3.2. THE MODEL

In this section, we introduce the setting in which we are going to solve local-
risk minimizing problem. We shall construct two filtrations that characterize the
situation where investors have full and partial information.

3.2.1. Framework

We consider a financial market with two primary securities, namely a money
market account B, and a stock S which are traded continuously over the time
horizon T := [0,T], where T" € (0, 00) is fixed and represents the maturity time
for all economic activities. To formalize this market, we fix a (complete) filtered
probability space (2, F,F = (F;)ier, P) that satisfies the usual conditions. We
suppose also that Fr = F and that Fy contains only the null sets of F and their
complements. All processes are defined on the stochastic basis above. Further,
we shall add to this setup a filtration which specifies the flow of informations
available for the investors.

Let X := {X; : t € T} be an irreducible homogeneous continuous-time Markov
chain with a finite state space S = {ey, e,, ..., ey} C RM characterized by a rate
(or intensity) matrix A := {a;; : 1 < 7,57 < M}. Following Dufour and Elliott
[44], we can identify S with the basis set of the linear space RM. From now,

we set e; = (0,0, ... ,\1/_/, ..., 0). It follows from Elliott [50] that X admits the
following semimarting;fg representation
X, :Xo+/tAX8+Ft, (3.1)
0
where T := {(T)M, : ¢t € T} is a vector-martingale in R with respect to the

filtration generated by X.

Let 7, denote the instantaneous interest rate of the money market account B at
time ¢. If we suppose that r; := (¢, X;) = (r|Xy), where (:|-) is the usual scalar
product in RM and r = (ry,ro,...,7y) € R,™ then the price dynamics of B is
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given by :
dBy =7 B;dt, B(0O)=1 for teT. (3.2)

The appreciation rate p; and the volatility o, of the stock S at time ¢ are defined
as

Mt = :u(t>Xt) = <H|Xt>>
o =o(t,Xy) = (o|Xy), teT (3.3)
where p = (pu1, pio, ..., piar) € RM and 0 = (01, 09,...,0n) € R

The stock price process S is described by this following Markov modulated Lévy
process :

a8, = Si- (pudt + o, dW; + /

R\{0}
Here W := (W}),cr is a one-dimensional standard Brownian motion or Wiener
process on (Q, F,P), independent of X and N*X, and the compensated random
measure

(€ — 1)NX(dt;dz)), S(0) = Sp > 0. (3.4)

NX(dt,dz) = NX(dt, dz) — p*(dz)dt, (3.5)

where N (dt,dz) is the differential form of a Markov-modulated random mea-
sure on T x R\{0}. We recall from Elliott and Osakwe [54| and Elliott and
Royal [55] that a Markov-modulated random measure on T x R\{0} is a fa-
mily {N¥(dt,dz;w) : w € Q} of non-negative measures on the measurable space
(T x R\{0}, B(T) ® B(R\{0})), which satisfies N*({0}, R\{0};w) = 0 and has
the following compensator, or dual predictable projection

M

pX(dz)dt ==Y (X, |e;)pi(dz)dt, (3.6)

i=1
where p;(dz) is the density for the jump size when the Markov chain X is in state
e; and satisfying

/>1(ez —1)%p;(d2) < . (3.7)

The general setting considered here can be seen as an extension of the exponential-
Lévy model described in Cont and Tankov [34] where a factor of modulation is
introduced. Hence, we can retrieve in a simple way most of some current models
which exist in the literature (for example, the classical Black-Scholes model and
the family of exponential-Lévy models.)

The subsequent assumption shall be fundamental, particularly in Section 3.4.1 to
obtain a martingale representation for the value process.

Assumption 3.1. We assume that a transition of Markov chain X from state
e; to state e, and a jump of S do not happen simultaneously almost surely.
Let & := {& }ier denote the discounted stock price. Then,

S,
ft 3_—t

t
_ Ot firadug,
B,
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If R, = elo rudu for each t € T. Then, the discounted stock price process is given
by :
{ A&, = F,(t,&-, Xy)dt + F,(t, -, Xy)dW, _'_fR\{O} (t,&- ,Xt)NX(dt dz),
£0) = So>0P a.s,
(3.8)

where

F“(t,gt,Xt) = < t Rté-taXt (t, RtétaXt)>£t
Fo(t,&, Xy) = o(t, R&, X4)& (3.9)
Ey (L, &, Xe) o= &(6 —1).

The theory of stochastic flows shall also be used to identify the integrands in the
stochastic integrals involved in the martingale representation property in Section
3.4.1.

Let now consider a general form of stochastic differential equation (SDE) (3.8) :

{ dgt =F (t é-t ,Xt)dt‘i‘F (t gt ,Xt th +fR\{O} t é-t ,Xt)NX(dt dZ)
& =x>0 P-as for0<s<t<T.
(3.10)

We assume that the coefficients F),, F,,, F, are smooth enough to guaranty the
existence and uniqueness of an adapted cadlag (strong) solution & +(x) (see Fu-
jiwara and Kunita [68]). Furthermore, this solution forms a stochastic flow of
diffeomorphisms ®; ; : (0, +00) x Q2 — (0,400) given by

D, o(1,w) = &, o(2)(w), (3.11)

for each (s,t) such that 0 < s <t < T,z € (0,+00) and w € Q. (P ¢)s<s verifies

the following properties :

o O, = tofl)als for all s < t;

e Cocycle property : &5 ,, = ®; , 0P, ; forall s <t < u;

e Conditional independent increments : forto <t; < ... <., Pt 4, Py 1oy, Prp 1 1
are conditionally independent given F5¥.

Let @ = &, (o), for each ¢ € T. By the uniqueness of solutions of SDE and the

semi-group property, we get

o, (xo) = &, 7(&o, +(0))
= & r(z). (3.12)
Differentiating (3.12) with respect to x, we obtain :

0o,r(x0)  0&, r(x) 0%, +(0)
org Oz Org

3.2.2. Market Information

(3.13)

In general, the Markov-modulated Lévy model, as described by Equation (3.4),
is based on the mathematical framework of Markov additive processes (MAP).
These processes are widely studied in stochastic analysis (See, e.g., |?, 7, 59, 72].)
In particular, the couple (X,S) is a Markov additive process and yields two
important filtrations as we shall see below.
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Let FX := {FX }ier and F5 := {F},cr denote the right-continuous, P-complete
filtrations generated by X and S respectively. We define for ¢t € T,

G = F? (3.14)
and
G =Fp VF,. (3.15)

The filtration G := {G;}ter represents all the information up to time ¢ gained
from the observations of the price fluctuations S. The strictly larger filtration
G := {G,}ser denotes the information about the stock price history up to time ¢
and the information about the entire path F3 of the modulation factor process
X.

We shall assume in the last section of this paper that the investors in the market
only have access to the former filtration, which is thus the one used practically,
whereas the latter filtration serves mainly for theoretical purposes.

It is easy to see that under G, the discounted price ¢ is a special semimartingale
and its canonical decomposition is given by

t
& = S0+ / Fu(s,60, X,)ds
0

& J/
~~

finite variation part

t t _
+ / F(s,&, X)dW, + / / F, (5,6, X )N¥(ds;dz). (3.16)
0 0 JR\{0}

- -

~
local-martingale part

3.2.3. Esscher Transform Change of Measure

One of the main features of the Markov-modulated Lévy model is that it leads
to an incomplete market. We shall therefore employ the regime-switching Esscher
transform as in Elliott et al. [50] to determine an equivalent martingale measure.
For doing so, we define the process Y by

t 1 t
Y, = /(u - )dr—k/ardw +// 2N (dr; dz)
27 0 R\{0}

/ /R\{o} ¢ = 1= 2)p*(de)dr (3.17)

As in [122], consider the following set

M
0= 6 Xo-le) with (61,6s,...6r) € RV

i=1

O := {(et)tel‘

such that E¥ [e‘ Jo 6rax:

fﬂ <oo}.
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For § := (0,),er € O, the generalized Laplace transform of a G-adapted process
Y is defined as

My (6), := EP [e— J 6r ¥ fﬂ. (3.18)
Notice that contrary to the usual Esscher transform, the expectation involved
here is taken conditionally on the information regarding the future of the Markov
chain X. With this extended definition of a Laplace transform, we can now define

the generalized Esscher transform (with respect to the parameter 6, called the
Esscher parameter).
Let A? = {A%};cr denote a G-adapted stochastic process defined as
IV A PR (3.19)
CT ), ; . .
[t can be shown that (See, e.g., [50])

t t t _
A? = exp [— / 0.0,.dW, — 1/ 0202dr — / / 0, zN* (dr; dz)
0 2 /o 0 JrR\{0}

_ /Ot /R\{O} <e—z"r —1+ GTz) pX(dz)dr] : (3.20)

Moreover, as shown in [122], the stochastic process A’ = {Al},cr defined by
(3.19) is a positive (G, P)-martingale and
E¥[AY] =1, VteT. (3.21)

From Equation 3.21, we deduce that the process A’ = {A?},cr given by Equation
(3.29) is a density process inducing a change of measure in the probability space
(Q,G7). Indeed, by setting

d 0

% = A teT, (3.22)
we define for each process 6 in © a new probability measure Q? equivalent to
P. Actually, QY is just an equivalent probability measure. To transform it into a
martingale equivalent measure, we need to impose a condition generally known
as the martingale condition. It stipulates that the discounted stock price {& }ier

will be a G-martingale under Q7. Then,
EY [gt GO] —¢(0), Vt e T. (3.23)

Hence, we have

Proposition 3.1. An equivalent probability measure Q° defined by (3.22) is an
equivalent martingale measure on (Q, Gr), i.e., it satisfies condition (3.23), if and
only if the process 0 satisfies the following equation

py — e — O,07 + / (e = 1)(e" —1)p*(dz) =0, Vt € T. (3.24)
R\{0}
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Proof. The proof is a straightforward adaptation of that of Proposition 2.2 in El-
liott et al. [50]. The main ingredient is an explicit computation of the generalized
Laplace transform defined by (3.18). O

However, the process 6 is completely determined by the vector (01,0, ...,0y)
solution of the system of equations
i — 1 — ;07 + /(ez —1)(e™* — 1)p;(2)dz = 0, (3.25)
R

fort=1,2,...,N.

For pricing purposes, we need to know the dynamics of the discounted stock price
under the martingale probability measure QY. The following proposition states a
result in this direction.

Proposition 3.2. Under the risk-neutral probability measure Q% the discounted

stock price process & is the solution to the following stochastic differential equation

~0
dgt = Fa(ta gtﬂXt)dVVt@ + fR\{o} F’y(ta gt* ) Xt)ﬁ (dt§ dZ) (3.26)
£0) =5 >0 P-a.s for0<t<T,
where
o W defined as
t
W =W, + / 0.0,dr, (3.27)
0
is the standard Brownian motion under QY ;
~0
e N defined as
N’ (dr; dz) = N¥(drdz) — p* (d2)dr, (3.28)

is the compensated measure of N under QY with B(’X(dz) = e % pX(d2).

Proof. This follows easily from (3.8) by the application of the Girsanov-Meyer
Theorem (See Qksendal and Sulem [105], Protter [111]). O

3.3. THE LOCALLY RISK-MINIMIZING HEDGING PROBLEM

In this section, we recall some terminology on local risk minimization. We shall
simply give essential results ; for further information, the reader is referred to the
survey of Schweizer [119], to which our presentation owes much.

3.3.1. Review of Some Notions on The Risk-Minimization Approach

This concept has been introduced by Féllmer and Sondermann [64] for a non-
redundant contingent claim written on a one-dimensional, square-integrable dis-
counted risky asset & which is a martingale under the original measure P. Concre-

tely, given a stochastic basis as above, the goal consists of minimizing the condi-
tional remaining risk : R; := E¥[(Cr—C;)?|F] for all t € T. Here C; stands for the
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cost process and is defined as the difference between the value of the (portfolio)
strategy detained by the investor at time ¢ and the gains made from trading in
the financial market up to time ¢. Let £2(£) the space of all R-valued predictable
process ¢ such that

lolleng = ([ [ dtate.h])" < o,

A trading strategy is a pair of processes ¢ = (¢,1) where 9 is an adapted
process and ¢ € L2(§) is a F-predictable process, such that the value process
V = ¢¢ + 1 has right continuous sample paths and EF[V?] < oo for every
t € T(i.e., V; € L%(Q,P) for every t € T).

Consider a trading strategy ¢ = (¢,1), where ¢ = (¢;)er denotes at time ¢,
the number of stocks held and 1) = (¢;)er is the amount invested in the money
market account.

Let H be a claim which is Fp-measurable and square-integrable. Consider stra-
tegies that replicate the contingent claim H at time 7'; that are the strategies
which satisfy the assumption :

Vr = H P-a.s.
Such strategies are called H-attainable®.

A trading strategy o such that Cy(p) = Cy(p) for all t € T is called self-financing.
Furthermore, if the cost process Ci(¢) is a P-martingale then ¢ is said to be mean
self-financing.

Definition 3.1. Let (¢,v) and (¢,1) be H-attainable strategies. Then (¢, 1) is
called a H -attainable strategy continuation of (¢,v) at time t € [0,T) if ggs = ¢,
for s € [0,t] and @ZS =1)s for s € [0,1).

The following result obtained by Féllmer and Sondermann [64] is based on the

Galtchouk-Kunita-Watanabe (GKW) decomposition (see Kunita-Watanabe [90])
of H and gives a risk-minimizing hedging strategy under full information.

Theorem 3.1. Assume the GKW decomposition of the claim H € L*(Q,P) given
by
T
H:H0+/ ofd¢, + LY,
0
with o7 € L2(€), L¥ a square-integrable P-martingale orthogonal to & with Hy =
EP[H] P-a.s.
Then, the trading strategy ©® = (¢®, %) defined as

(6707 = (0l Ho+ [ ollde—ofe L), weT (329
is H-attainable and risk-minimizing. Its associated risk process R is given by
RY = EX[(LE — LF)*|F], P-a.s. VteT. (3.30)
Furthermore, this strategy is unique.

In [64], the authors refer to that as H-admissible.
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From now on, we assume that the one-dimensional discounted asset ¢ is no longer
a martingale under the measure P but only a semimartingale with the following
decomposition

E=&+Z+A (3.31)

where Z is a square-integrable martingale for which Z; = 0, and A is a predictable
process of finite variation |A|(i.e., sup, 3207, | Ay, — A;,_,| < o) for every partition
7 of T. In this situation, we can no longer apply the preceding result of Follmer
and Sondermann [64]. To deal with such a case, Schweizer [118, 119] introduced
the concept of Locally risk-minimizing strategy where the conditional variances
are kept as small as possible but now in a local manner. Now, to adapt the
definition of a trading strategy in this case we need that ¢ € L£*(Z) and that

Jo ¢udAu| € L2, P).
Definition 3.2. (small perturbation). A trading strategy A = (d,€) is called a
small perturbation if it satisfies the following conditions :
e 0 is bounded ;
o fOT|5u||dAu| is bounded ;
o 07 =er = 0.
For any subinterval (s,T] C T, we define the small perturbation A }(S,T] =
(015,17, €1s,1))-
Now we can define
Definition 3.3. (locally risk-minimizing strategy). For a trading strategy ¢, a
small perturbation A and a partition T of T the risk-quotient (R-quotient) 77 [p, A
which s a sort of relative local risk is defined as

o, Al = Z Rtéﬁ[ﬂ(}? (ti’ti+2}Z)>_|§ti((p)

tisr — ()t | F.]

1(ti7ti+1}' (332)

titip1E€T

A trading strategy ¢ s called locally risk-minimizing if

lim inf 7™[p,A] >0, P x (Z)-a.s.

for every small perturbation A and every increasing sequence (1,,) of partitions of
T such that ||7.|| — 0.

To present the main results, we need the following technical assumptions :
Assumption 3.2.

e (A1) For P-almost all w the measure on T induced by (Z)(w) has the whole
interval T as its support, i.e., (Z) should be P-almost surely strictly increasing
on the whole interval T.

o (A2) A is continuous.

e (A3) A is absolutely continuous with respect to (Z) with a density o satisfying

T
| / | max(log o, |, 0)d(Z),] < oo.
0
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A sufficient condition for (A3) is that EP[fOT |au|2d(Z)u] < oo and one refers to

that by saying : £ satisfies the Structure Condition (SC). We can remark that with
assumption (A2), £ is a special semimartingale. We can now state the optimality
result.

Theorem 3.2. A contingent claim H € L*(Q,P) admits a (pseudo-optimal)
locally risk-minimizing strategy p© = (¢©,¥®) with Vr(¢®) = H P-a.s. if and

only if H can be written as
T
H = Hy + / pfdé, + L P-as. (3.33)
0

with Hy € L2(Q,P), ¢ € £2(€), L¥ a square-integrable P-martingale null at the
origin and P-strongly orthogonal to M. The strategy ¢ is then given by

oY =¢, teT

and
Cy(o®)=Hy+LE, teT;

its value process is

Vi(¢®) = Cily) +/0 ¢Pdés = Hy +/0 oflde, + LI, teT. (3.34)

Proof. See Proposition 3.4 of Schweizer [119]. O

Equation (3.33) is called the Féllmer-Schweizer decomposition (FS) for the contin-
gent claim H. In practice, it is very difficult to obtain this decomposition so the
more natural approach introduced by Follmer and Schweizer [63] consists of using
a Girsanov transformation to shift the problem back to a martingale measure
where standard techniques shuch as Galchouk-Kunita-Watanabe projection are
available.

3.4. MAIN RESULTS

This section is devoted to the main results of this paper. We shall first derive
a martingale representation for the wealth process of a claim written on a risky
asset whose price evolution is given by a Markov-modulated exponential Lévy
process. After, we solve the problem of local-risk minimization under full and
partial information.

3.4.1. A Martingale Representation Property

In this section, we give an explicit representation of a martingale which is useful
for the problem of hedging in the context of a Markov-modulated Lévy model.
The proof of the result is similar to the one given by Elliott et al. |53]. We give
an explicit martingale representation of the wealth process which will be useful
later on in the finding of an optimal strategy the proof of our main result.
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First, it is easy to see that the Esscher transform change of measure A? introduced
in Section 3.2.3 is the solution to the following SDE

Ay u(@) =1+ [ Ay o (2)(=0,0,)(7, &, - (2), X,)dW,
+ 0 Sy A o (@) (€008 = XD ) NX(drdz)(3.35)
Ay () =1 Pas. for0<t<u<T.

Indeed, for all t € T, AY = Ag ().

Now, consider a function ¢(+) : (0, +00) — R such that ¢(-) is twice differentiable
and ¢(+) and 2 ) are at most linear growth in x. We shall determine the current
price at time t “of a contingent claim of the form ¢(S7), which is the payoff of
the claim at maturity 7" > t. In the sequel, we have to work with the discounted
claim as function of the discounted stock price, that by :

&(&o.r) = Ry'c(Rréor(wo)) = Ry'e(St). (3.36)

So, we assume that the process 6 is chosen such that E®’[¢2(&,.1(z0))] < oo and
then we define the square-integrable (G, Q%)-martingale {V;}icr by :

V, .= EY[e(60r(20))|G)), teT. (3.37)

As (X, ¢) and (X, A) are Markov additive processes (See Cinlar [?]), they verify
the Markov property with respect to the large filtration G. Hence, by using Bayes’
rule, we obtain :

V, = B¥[¢(&, 1(20))[Gi]
EF Ao, 7(x0)e(&o, 7(0))|Gi]
EP[Ao, 7(20)|Gi]
Ao, (o)A, 7(2)é(&, 7(x))

= EF YEN gt} because E'[Ay, 7(2)|G] = 1;
= EY[Ay, v(2)e(&, r(2))|G]
= E"[Ar, 1(2)e(&, 7(2))|(Xe, o, o) = (e,2)]. (3.38)
Thus, we define for each = € (0, +00) and e € S,
V(t,z,e) = B'[Ay, r(2)e(&, 7(2))| (X1, &o, o) = (e, )] (3.39)

6
(= E¥[e(&, () [(Xe, &o, 1) = (&, 2)]).
For each (t,u) such that 0 <t < u < T, let introduce the following processes :
(1) L defined as

_ ["obor) 01, v 9
Lt,u._/ 27, 6, (0), X,) x S

. 0
u a —20r(r, ft, (@), Xr) 8 r— ~0
+/ / [ezer(r, &, (@), Xn) 2 « %t (z)| N (dr,dz),
R\{0} 0 Or
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(2) K defined as

L " At, r(x + gt(y))
m””i[ A ()

x (=001, &, oo+ W), X0) + (6:00)(r, &, (), X)Wy

/ /R\{O} Ay, rAterr%( y))

—20r(r, & - (@G (Y)), Xr) _ o=20n(r, & - (2), Xo) o _p
x [ e | & ar,a2)

with gt* =7, Ct(y) = C(tv'ra y)
(3) V the vector process defined as

V(t, €. 1(20)) = (V(t, €. o(w0), 1), V(£ €0 1(x0), €2), .., V(E, &, o(w0), eM)>.

Now, we are able to give a martingale representation for the {V;};cr.

Proposition 3.3. The (G, Q%)-martingale {V;},cr has the representation

Vi=Vit /MT, X,)dW? + //R\{O}asdzgr, X, )N’ (dr, d2)

+/ (v, dTy), (3.40)

where ¢¢, % and o are such that,

o ¥ [fOT((Pﬁ)zdr] < o0,
o BV [fOT ||ar||2dr} < o0 and
B [ o (012020 (d2)dr | < 0

with the following explicit expressions

6560, X,) = BV | Ly, 26(, 1(x)

g—g(fr, T(:C))ﬁg,xT(:C)‘(Xr,fo, r(0)) = (e, x)] o (r, &, X,), (3.41)

By, 6 X) = BY[(K, 0+ Di6, 1o+ G(2)))
— &8, 1(2)|(Xrs o, (20)) = (,2)], (342)
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a, = V(r, &, »(20)) € RM. (3.43)

with © = &, ,(x) and x_ = &, (o).
In order to prove Proposition 3.3, we need the subsequent result

Lemma 3.1. The following identities hold

a/gz L(x) = Ay p(z) X Ly 7 (3.44)
and
Ay, r(x 4+ ((2) — Az) = Ay, r(x) X Ky, 7. (3.45)

Proof. See Appendix. [
Now, we give the proof of the Proposition 3.3.
Proof. Noting that

V(t, &, Xi) = (V(E, &) X0), (3.46)
we obtain by differentiation
AV (t,&, Xy) = (dV (t, &) Xe) + (V (¢, &)|dXy), (3.47)

and from [t6 differentiation rule

di§, &l; (3.48)

Xt>.
From (3.31), we deduce that
dX; = AX, dt + dT,. (3.49)
By replacing this last expression in (3.48), we obtain
av(t, &, Xy)

oV A% 10°V
dXt> + <—dt + =d& +

AV (t, &, Xy) = <V(t>€t) ot o 50—52

) oV
n /R " [V(t, &) — VIt 6 ) — Agta—g} NX(dt, d2)

ov 1 Y
) < [_ +tt g [ Ve Ve

ot R\{0}
dFt>

Y v >
ov ; ~0
+ <Ut€ta—€dvvt6 + /R\{O} [V(t,ftfe ) — V(taft*)]ﬁ (dt,dz)

— & (e" — 1>8—€]p“‘ (dz) | dt

+ <V(t, &) AXt>dt + <V(t,§t)

Xt>. (3.50)
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As {Vi = V(t, &, X¢) et is a (G, Q%)-martingale, the continuous finite variation
part is identically equal to zero Q? a.s, thus

OV 1,50V .
< ot 2 té-t 852 /]R\ 0) [V(tugt*e )

{
ov

V)~ G - e o (a2) Xt>
+ <V(t, &) AXt> = 0. (3.51)
This is equivalent with X; =e to:

ov
S (téne) + 3 gaga&,><vmm

-/ [vw@aﬁwwW@ha—&<é—n@f
R\{0}

AX, >

(t,6.€)| " (d2) =

9¢
(3.52)
Hence, by going back to Equation (3.50), we deduce that
¢ ov
V(t,&.e) = V(0,%, Xo) + / 0s&s 5(5 s S)dWSG
] Ve e x) - Vise 0|8 s
R\{0}

+ / 8, &) |dls ). 3.53
[ (V(sglars) (3.53)

We deduce from the uniqueness of the decomposition of the special semimartingale
V' that for any ¢ 6 T

o O7(&) = Utft (t & @) ;

o D(z,6-) = (t §i-¢*,e) = V(t,&,e);

o oy = V(t,&).

To obtain more explicit expressions for these quantities, we note that & ; = «
and &, - = x_ therefore for any ¢ € (0,7
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oV
ég(éﬂt) = Z'Ut(t, xz, e)%(ta z, e)

= %’Ut(ta%e)gEP[At, r(@)é(§, (2))[(X, &0, ) = (e,2)] by (3.39)

Ox
— aou(t, 2, )7 [ZT (@), () + A, () (6, (0) 0] (X . )]

= xa’t(t, x, e)EP [At, T(IL')Lt, Té(gt, T(ZE))

+A, T(x)g—g(ft, T(x))ang(l’) (Xt, &0, ¢) = (e, x)] (Lemma 3.1)
= aou(t,2,0)BY L, 1é(&, (2) + 2—2@ T(x))agtj(@)(xt,go, ) = (e,2)].

(3.54)
In the same way,
cbf(%ft*) = V(t_, §i-e” e) = V(t,&-,e)
= E[A r(om 4 G)AG, o+ G(2)| (X &, ) = (e,)]

—EF | Ay, r(@)e(&, r(@)| (X0, &0, 1) = (e,2)]
= B[ (A rlo 4 G(2) = A r(@) ) el&, rlo + G(2)| (K&, o) = (e,2)
B | A, 1(w) (60, re- + G (2)) - & (@) [(Xn &, o) = (@)
= F[A o @)K (26 r(e- +G(2)))
0, (@) (66, 7o+ G(2)) = (&, 7(@) )| (X6, 1) = (e,2)] (Lemma 3.1)
= E¥[(Kur + e, 1o+ G(2) = el 1) (X o, ) = (e,2)]. (3:59)

Finally, we have to show that the different components involved in (3.53) are
mutually orthogonal (G,Q?)-local martingales, that is, the different products

we -ﬂe(-, dz), W¢ - T and T - ﬂe(-, dz) are (G, Q?%)-local martingales. The claim
is easily verified in the first case by noting that W? is a continuous (G, Q?) local-

martingale such that W{ = 0 whereas Ee(-,dz) and I' are pure jump (G,Q?%)
local-martingales. For the last case, we have Vt € T and Vi € {1,2,..., M'}

TN (da)l = S ATAN(s.dz)
0<s<t
= 0. (3.56)

This result comes from Assumption 3.1 and the decomposition theorem of the
(additive) component of the MAP (X, S) given in [32, Theorem 2.23]. O
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Remark 3.4.1. On one hand, this result can be viewed as a specification of a
general result of a representation theorem for square integrable martingales. (See
|43, 90|.)

On the other hand, this theorem is a generalization of the representation theorem
for Lévy martingales (see [13]) to the case of a Markov modulated exponential

Lévy process.

3.4.2. The Locally Risk-Minimizing Hedging Problem under Full
Information for The Model (3.4)-(3.2)

In this section, we consider the problem of hedging a contingent claim H in the
Markov-modulated exponential Lévy model given by (3.2)-(3.4) given that the
information set is G. In general, in such a market the claim H cannot be perfectly
hedged. Therefore, we need to take into account the market participant’s attitude
toward risk in the search of the viable market transactions. One way of doing this,
in the literature, consists of optimizing a given criterion which may be based on
the preference of the market participant. In particular, the choice of the quadratic
criterion is quite natural and pertinent because it leads to a linear pricing rule
which is very meaningful in financial economics.

Let B be a contingent claim with a discounted payoff H = ¢(&, 7(z0)) € L2(Q, P).
Following Schweizer [115], a locally risk-minimizing strategy ¢ = (¢,%) which
generates ¢(&, 7(x¢)) must be such that

(1) Vi = &(&o,7(0)) P-aus.;
(2) Vi(o) = Vo() + [ éedé, + T, forall t € T;

(3) T is a martingale under P and T is orthogonal to the martingale part Z
of £ under P.

We shall require that (Vi(¢))o<i<r is a (G, Q%)-martingale. With this assumption
and Equation (3.39), we have

Vo) = EY[Vr(9)[G)]
= E¥[e(, r(@)|(Xi &, o) = (e, )]
= V(t,x,e).
Now we can state the main proposition if this section.
Proposition 3.4. Assume that o, > 0 for any t € T. If there exists a process 6*
satisfying (3.24) and such that

Kt — Tt
o} + fR\{O}(ew —1)2pX(dx)’

. (pe — re)(e* — 1)
o} + fR\{o}(ex —1)?p%(dx)’

then there exists a minimal martingale measure defined by the Esscher transform

or = (3.57)

e—zet — 1=

VzeR (3.58)

A% . Furthermore, the locally risk-minimizing strateqy for the contingent claim H
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15 given by
. 1 Ut(bg(gtht) + fR\{O}(ez - 1)¢g(ya§tﬂXt*)pX(dz>
o= &_* . af + fR\{O}(em —1)%p*(dx) ’ (3.59)
and
Ui = Vi) — @&
= EY (&, 7(20))(X0. &0, o) = (e, 2)] — 67&. (3.60)
Proof.

1- We have to show that if there exists a process 6* satisfying the Equations (3.24),
(3.57) and (3.58), then the process A’ defines a minimal martingale measure
in the sense of Schweizer [114]. Indeed, under these assumptions we have from
Equation (3.35)

t t
A= v [ AW [ AT e - )F s,
0 0 R\{0}

¢
- 1—/Ag* Hs = Ts ades—l—/ e* — 1)N¥(ds,dz
0 |:O'§ + fR\{O}(em - 1)2pX(d$‘)i| |: R\{O}( ) ( )]
| s — T
= 1-— / A~ x > dZ,, 3.61
0 &s- [Ug + fR\{o} (e” — 1)2pX(dx)] ( )

where Z denotes the martingale part of the (special) semimartingale £. Using
Assumptions 3.57 and 3.58, it is easy to see that the process A given for ¢t € T :

dA,
At =
t d(Z)
b o op0; + fR\{o}(ez — 1)(e7%* = 1)p¥(d2)
Si- 02+ fayqoy (€7 — 12X (do)
1 _
S fe — T (3.62)

& o2+ fR\{O} (e* — 1)2pX(dx)

is G-predictable and verifies fot N2d{Z), < oo P-a.s. Hence, we see that
t
A =1 / A N\dZ,. (3.63)
0

This defines precisely the minimal martingale measure according to Follmer and
Schweizer [63].

In the sequel we shall denote it by Q".

2- From Follmer and Schweizer ([63]) we know that once a MMM is found, the
locally risk-minimizing strategy of the contingent claim is uniquely determined
from the (G, Q% )-projection of the Galtchouk-Kunita-Watanabe decomposition

Of é(&]’ T(Io)) .
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From Proposition 3.3, we have for all ¢ € [0, T,

vi=vit [ ot xpant + [ [ ottt XN (e + /0t<a(r3d;r)>

where ¢¢ and ¢? are given by Equations (3.41) and (3.42) respectively. Therefore,
we have from (2)

T = Vi)~ [ bds Vil
= /0 (6560 X,) = 060 [V, + G100
+ /Ot /R\{O} [gbf(z, &y Xpm) — & (€7 — 1)@} [NX(dr, dz) — e ") pX (dz)dr

+ /0 t(ar|dl“r). (3.65)

From (3), T should be a (G,P)-martingale thus the drift term in (3.65) should
be zero or equivalently

ool [ @0 1))~ 050t

_ / $(2 6, XY (€7 — 1)p¥ (d2) — 656 X)6i 0. (3.66)
R\{0}
Hence

T, = / 656, X,) — 0,600, )W, + /0 (a|dT,)
/ / Uz &m Xpm) — & (8 — 1), ] N¥ (dr, dz). (3.67)
R\{0}

The requirement (3) stipulates also that Y is orthogonal to the martingale part
Z of £ under P. This is verified if and only if Y7 is a (G, P)-martingale, therefore

Goonl [ (e =17 o) + o] = 6506 Xo)oo
R\{0}
s [ g X - D)
R\{0}
(3.68)

Recalling the martingale condition (3.24) and substituting it in Equation (3.66)
we obtain

gt*(ﬁt(rt - Mt) = /R\{O} ¢§l(zaftan)(€_ezz - 1)/7X(dz) - ¢f(§t7Xt)9:Ut, (3-69)



72

and using Equation (3.68), we know that 0* satisfies

o — e Tt (&, X))oy
[ Ut2 + f]R\{O}(ex _ 1)2pX(dZIZ)] ¢ (é- )0'

/R\{O}

Thus, if there exists a process 0* verifying (3.24) and such that V¢t € T
9F — He — Ty
LT 0T gy — D)

(e = 1e)(e* = 1)
o} + fR\{o} (e —1)2pX(dz)

(e — 1)+

] ol (y, &, Xi-)p¥(dz) = 0.
(3.70)

and

el —1=— (e =) (e ., Vz e R\{0},
o? + fR\{O}(el’ —1)2pX(dx) \0}

then a locally risk-minimizing strategy exists (independently of the claim to be
hedged) and is deduced from Equations (3.68) and (3.29)

oS+ d z_1 Xd
{ ¢z< — gt% % Py fR\{O}fbt,(z)(e )P (dz)

U?"’fm\{o} (ex—1)2pX (dx) (371)
Ui = Vot [y ¢idé, — 976 + T
The expression of ¢* follows from the definition of the portfolio value process V.
This ends the proof. []

We can derive easily the expression of the residual G-risk process Y for all t € T
as

t 1
T~ |
' 0o 02+ fR\{o}(ex —1)2pX(dzx)

<les [ e o / o A 1),

| 1 200 (2) — (e — | NX(dr,d
+/0 /R\{O} 2t ooy (@ — 12X (d) [UTW() (e 1)“7”¢7”]N (dr, dz)
Jdr,). (3.
+/0(a| ). (3.72)

Remark 3.4.2.

e [t is possible that Equation (3.70) does not have a unique solution, for example
if ¢ =0 = ¢?.

o This result is an explicit representation of the hedging strategy as computed in
[43].
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3.4.3. The Locally Risk-Minimizing Hedging Problem under Partial
Information

This section considers the problem of the local risk-minimization of the contingent
claim H when the asset dynamics follows Equation (3.4) from the viewpoint of an
investor /hedger who does not have at his disposal the full information as described
by the filtration G = {G,};er, but only the information set G = {G, };er; with
G, C G, for all t € T. We have that G; = G7. Thus the contingent claim H =
¢(&o.r(o)), which is Gr-measurable, will also be Gr-measurable.

We aim at finding a G-locally risk-minimizing strategy. From the previous section,
we have the following representation

t
Vi(e®) = Vo(¥") +/ ¢rdé, + Y, forallteT, (3.73)
0

where T is a (G, P)-martingale which is orthogonal to the martingale part Z of &
under P. Since we only admit strategies ¢ = (¢, ) such that the process (V)ier
is square-integrable, has right continuous paths and satisfies V; = H, we have
that

_ T
H = H,+ / ord + T, (3.74)
0

where Hy = Vy(¢*) is Go-measurable and ¢* = (¢} )ier is G-predictable.
In the sequel, we make the following assumption

e (i + | @i, + ( / Colaa)’] < o (3.75)

Let P (resp.P) denote the o-field of predictable subsets on Q = Q x T associated
to the filtration (G;)ier (resp.(Gi)ier). We denote by P the finite measure on P
defined by

P(dw, dt) = P(dw) x d{&),(w).

@0* is defined in the same way. We can now state a Follmer-Schweizer type
decomposition result. This result is adapted from Follmer and Schweizer [63|

Theorem 3.3.
Giving the decomposition (3.74), H admits the following representation (Féllmer-
Schweizer decomposition)

T
H = Hy+ / ol de, + LY (3.76)
0
with Hy := EP[fI0|go], where
¢ = E¥[¢"|P] (3.77)

is the conditional exzpectation of ¢* with respect to P and P, and where LY =

(L™ er is the square-integrable G-martingale orthogonal to Z associated to

_ T
L = Hy— Hy+ / (¢ — ¢)dE, + Y1 € L2(Q, Gr, P). (3.78)
0
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Proof.

1- We need to show in a similar way as in Féllmer and Schweizer [63] that all com-
ponents in (3.76) are square-integrable. From Assumption 3.75, ¢* € L*(Q, P, P)
and thus ¢ € L£%(Q,P,P) by Jensen’s inequality. Since ¢ € L*(Q,P,P), by
Doob’s maximal inequality we have that fOT oHdz, € L2(Q, G, P).

To show that fOT dPdA, € L2(Q,Gr,P), we have by the predictable projection,
Assumption 3.75 and Doob’s maximal inequality that the application

¥ — EF [19 fOT gbﬁdA,} defined on £2(2, Gy, P) is an element of the dual of this

space. This dual is exactly (up to an isomorphism) £*(Q, Gr, P).
2- Now, Let us show that LI is orthogonal to all square-integrable stochastic
integrals of Z. It is sufficient to show that for any bounded P-measurable process
X = (X)ter the following holds :

T

EP[(/OTw: - oe )-( [ waz)] <o
e w[( [ o). ([ vaz)] = [( [ oras).( [ xaz)]

But the left hand side can be decomposed into two components. So, by Ito-type

isometry
([ az) ([ xan)] = 5[ [ otvate)

and by the predictable projection, we have

([ ). ([ waz)] =] [ on( [ vz

Now, we can replace in both parts ¢* by ¢ which finally gives the result.

3- It remains to show that Y is orthogonal to all square-integrable stochastic in-
tegrals of Z. This follows from the fact that (Y;)cr is orthogonal to Z. Therefore,
L is orthogonal to Z. [J

Remark 3.4.3. The last result states that the contingent claim H has an or-
thogonal decomposition with respect to the smaller filtration. This result follows
from the fact that the same decomposition is available with respect to the larger
filtration. However, as pointed by Arai [5], it is not always true in general that
the contingent claim will have an orthogonal decomposition when dealing with a
discontinuous market model. Such an orthogonal decomposition holds for instance
when making the restrictive assumption that jumps of processes Z, L and A? do
not happen simultaneously almost surely. Our model is one of those where the
orthogonal decomposition (3.76) holds, this leads to the following proposition.

Proposition 3.5. Under the hypothesis of Proposition 3.4 and Theorem 3.3,
there exists a unique G-locally risk-minimizing hedging strategy (¢¢*,G ¥*) given



)

* _Qe* *
Gor =E" [¢"[P]
Gw* =Gy _G ¢*§
with €V, := B [H|G,) for t € T.
Proof. The existence and the uniqueness of the G-locally risk-minimizing hedging

strategy follows from Theorem 3.3 and Proposition 3.2. For the explicit expression
of this strategy we need to show that

o =T 5"|P)

(3.79)

where B

o' = EF[¢"[P].
Without loss of generality, we can suppose that ¢* > 0, otherwise we can de-
compose it into the difference of two non-negative terms. So, it is equivalent to
showing that

2 [ i) =59 [ vottae]

for any non-negative P-measurable process . By the definition of Q7"
T - T
2] [Cogae) = £ [ o]
0 — 0

T
= FEF / Af*ﬂrqb:d(f)s} by predictable projection
-Jo

_ T
— EF / Af*ﬂ@fd(@s} by definition of ¢!
-JO0

- w [ [aolta)]

_ g [ /0 : 9,01 d(g)s} (3.80)
]

3.5. CONCLUDING REMARKS

The problem of local risk-minimization under a Markov-modulated exponential
Lévy model was studied. By noting that it consists of finding a locally risk-
minimizing strategy for a partially observed model (or partial information sce-
nario), we first solve the problem in the case of full information by providing a
useful explicit martingale representation for the contingent claim. After that, we
give a solution to the main problem by using the predictable projection.

For practical purpose, it would be interesting to give a computational algorithm
for the optimal strategy. To this end, we shall use filtering theory and this will
be objective of future research.
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APPENDIX
Proof of Lemma 3.1. First, from (3.35)

A r(x) = 1+/ At o (2)(—=0,0.)(r, & (), X, )dW,

// Ao, - (@) (e = @) )R (dr, d2)
R\{0}

and by differentiation we obtain that
0N, 17
5 (@)

T
( 0 ar)a LT (2)dW, + O - (z)(e % — 1)N¥(dr, dz)
Ry 07

8( 9 O'r) 8€t r
+/ Ay o X &B()dWr

—z@r) 8515 r— X
d dr. dz). .
/ / " x P () N (dr, d2) (3.81)

Also, by applying the Ito’s differentiation rule to the product A 7(x)L; 1, we
have

At, T(l’)Lt, T

T T _
= / (—0.0,)\y, o (2)Ly, AWV, +/ / At () Ly, Tf(e_zer* - 1)NX(d7°, dz)
¢ ¢ JrR\{0}

r o(—0,0,) 8& .
+/ Ay o pe (x)dW,

/ / _Z% 8%7” (2)NX (dr, d=). (3.82)
R\{0} L

Comparing Equations (3.81) and (3.82), we have by the unicity of solution of
SDE that

oAy 1
ox (z)

= At, T(J}') X Lt, T. (383)



7
For the second part, we remark that
At, T(if— + C(Z)) - At,T(ZE)
T
= [ (=006 e+ €. X + 01000 6. X,

//R\{O}A” (& +¢(2)

[ 2, (€ (€ FHC(RD), Xn) _ =2, (r & - (&), xr)] N(dr, dz)
T
+ / |:At, T(x + C(Z)) - At,r(x):| [(—QTO'T)(T, gt, r(gt)aXr)] dWr
t

T
+ / / [Au (- +C(2)) —Atﬂn,(g;)] X [e—zer% &, (60, X0) _ I}N(dr, dz).
t  JR\{0}
(3.84)
On the other hand, by applying [t6 differentiation rule

Ao K T = / [(=0:0,)(1, 60, (& + C(2)), X2) + (0,0,) (1,60 £ (&), X0)| W,

//R\{O}A” (& +¢(2))

x[ —20, (1, € = (6= +C()), Xr) _ =2 (r, &~ (€0), XT)}N(dr, )
T

_'_/ At7 r— (x)Kt, r [(_Hro-r)(r7 £t7 r(é-t),Xr)] dWT
t

T
+ / / Ap - (2)E, [e—zer“ & o (€, X")—l]N(dr,dz).
t R\{0}

As above, we deduce the second identity from the uniqueness of solution of SDE.
O



Chapitre 4

VISCOSITY SOLUTIONS AND THE PRICING
OF EUROPEAN-STYLE OPTIONS IN A
MARKOV-MODULATED EXPONENTIAL
LEVY MODEL

Ce travail fait 'objet d’un article dont nous sommes le seul auteur et qui est
soumis a la revue Stochastic Analysis and Applications.

RESUME

Nous montrons dans cet chapitre que le prix d’une option Européenne dans un
modéle exponentiel-Lévy avec changements de régime vérifie un systéme d’équa-
tions intégro-différentielles non-linéaires qui peut étre dégénéré. Par suite, nous
démontrons qu’il se caractérise comme 1'unique solution de viscosité d’un tel sys-
téme. Ce cadre fonctionnel introduit par Crandall et Lions [38] s’avére adéquat
car il ne requiert pas d’hypothése sur la solution autre que la continuité, ce qui
permet notamment de prendre en compte une possible dégénérescence. Le résul-
tat obtenu généralise notamment ceux de Pemy [107| et Voltchkova [125] a un
modéle qui semble plus proche des réalités des données de marché.

ABSTRACT

We address in this paper the valuation of European-style contingent claims under
a Markov-modulated exponential Lévy model. This type of models has become
a recurrent theme in the literature notably by the fact that they allow, by in-
troducing a modulator factor, to take into account the empirical facts observed
in asset prices dynamics such as the long-term (stochastic) variability and time
inhomogeneities. Although there exists some works in the literature about the
option valuation under the simple case of regime-switching Black-Scholes model,
the most general case has not yet retained much attention. To fill this gap, we
give in this paper a characterization of the value of an European option as the
unique viscosity solution of a system of coupled linear Integro-Partial Differential
Equations (IPDEs) when the payoff function satisfies a Lipschitz condition.
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Keywords : Viscosity solutions, Lévy process, regime-switching model, Integro-
partial differential equation, comparison principle.

4.1. INTRODUCTION

The Markov-modulated exponential Lévy models are attractive in part because
they have the benefit of the Lévy models' with the possibility thanks to the
Markov chain of having a long-term variability of some characteristics of the
return distribution. Once the model is chosen, the main task is to find an efficient
algorithm to determine the price of a contingent claim. Three approaches are
currently used in the literature : the first consists of solving (analytically or)
numerically some partial differential equations. This approach is studied by Black
and Scholes [15]. The second approach uses integral transforms (Fourier, Laplace,
Mellin) to obtain an approximated value of the price and the third one consists in
using Monte-Carlo simulations to approximate the value of the expectation which
gives the option price under a risk-neutral measure by no-arbitrage as shown by
Harrison and Kreps [78| and Harrison and Pliska [79].

In using numerical methods to solve PDE /IPDEs related to option prices, one first
needs to show the existence and the uniqueness of the solution in the adequate
functional spaces. This theoretical issue is not always addressed in the literature.
So, the main purpose of this paper is to give an answer to this prerequisite in the
case of pricing an European option in the Markov-modulated exponential Lévy
model. In particular, we characterize the value of an European option as the
unique viscosity solution of a system of coupled linear Integro-partial differential
equations when the payoff function satisfies a Lipschitz condition.

There are many studies in the literature concerning the viscosity solutions in
financial problems. We can mention Barles and Soner [10], Pham [108], Benth,
et al. [12] and Cont and Voltchkova [36] . The framework of viscosity solutions
is particularly useful for dealing with the possibly degeneracy of the diffusion
coefficient which arises in the case of pure jumps models.

The paper is organized as follows. In Section 4.2, we describe the model setup
and derive the system of IPDE verified by an European-style option price. The
main problem is discussed in Section 4.3 . In particular, we argue that the class of
viscosity solutions is the adequate framework in which we can discuss the existence
and uniqueness of solutions for such type of IPDE. We conclude with Section 4.4
by giving some possible extensions and indicating some further discussions which
shall hold our attention in the future.

4.2. PRELIMINARIES

In this Section, we first define the Markov-modulated exponential-Lévy model
which can be seen as an extension of that described in Cont and Tankov ([34],

Inotably the presence of jumps
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p.283) where a factor of modulation is introduced. Then, we derive the system
of IPDE satisfied by an European option price under the assumption of sufficient
regularity.

4.2.1. The model setup

We consider a financial market with two primary securities, namely a bond B,
and a stock S which are traded continuously over the time horizon T := [0, 7],
where T' € (0, 00) represents the maturity time for investment. To formalize this
market, we fix a complete probability space (2, F,P) where P is the real-world
probability. Further, we shall add a filtration to this setup which specifies the flow
of information available for the investors.

Let X := {X(t) : t € T} denote an irreducible homogeneous continuous-time
Markov chain on (Q,F,P) with a finite state space S = {ey, ey, ....,ey} C RM
characterized by a rate (or intensity) matrix A := {a;; : 1 <i,5 < M} . Following
Elliott [49], we can identify S with the basis set of the linear space R¥. By now,
we set ; = (0,0,... ,\1/, ...,0) and often we denote it by i. From Elliott |50],

j-th
X admits the followinétsemimartingale representation

X(t) = X(0) + / t AX(s)ds +T(t) (4.1)

where {T'(t) : t € [0,T]} is a vector-martingale in R with respect to the filtration
generated by X.

Let 7, denote the instantaneous interest rate of the money market account B at
time ¢. We suppose that r; := r(X(t)) = (r|X(¢)) where (-|-) is the usual scalar
product in RM and r = (r,ry,...,7) € ]RXH, then the price dynamics of B is
given by :

dB(t) =rB(t), B(0O)=1 for teT. (4.2)

Let u; and oy denote the appreciation rate and the volatility of the stock S at
time ¢, we suppose respectively that

pe = (plX(1),
o = (a|X(1)), (4.3)
where

1 H = (,[Ll,,UQ, 7/J“M) S RM ;

e g = (0’1,0’2, ...,O'M) € ]RI_\F/H
The stock price process S is described by the following Markov modulated Lévy
process :

dS(t) = S(t) <utdt + oy dW; + /

(¢* — 1)NX(dt: dz)), S(0) = Sp > 0
R\{0}

(4.4)
where we set as the compensated random measure

NX(dt,dz) = NX(dt, dz) — p*(dz)dt, (4.5)
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where N (dt,dz) denotes the differential form of a Markov-modulated random
measure on T x R\{0}. We recall from Elliott and Osakwe [54]| and Elliott and
Royal [55] that a Markov-modulated random measure on T x R\{0} is a family
{NX(w;dt,dz) : w € Q} of non-negative measures on the measurable space (T x
R\{0}, B(T) @ B(R\{0})), which satisfies N¥(w;{0},R\{0}) = 0 and has the
following compensator, or dual predictable projection :

M

pX(dz)dt ==Y (X (t7)|e:)pi(dz)dt. (4.6)

i=1
pi(dz) is the Lévy Measure for the jump size when the Markov chain X is in state
e;, i.e., a o-finite Borel measure on R\{0} with the property

/ min(1, 2%)p;(dz) < oo. (4.7)
R\{0}
We suppose furthermore that p;(dz) satisfying
/ le* — 1] pi(dz) < oo. (4.8)
|2|>1

This additional integrability condition assures that Equation (4.4) is well defined.
W := (W), denotes a standard Brownian motion on (€2, F,P) which is suppo-
sed to be independent of X and NX.

From Equation (4.4), by using Itd’s formula we obtain that :

for0<s<t<T,

S(t):S(s)eXp[/s< ——a du—//R\{O} ¢ —1—2) X (dz)du
/s o dW, + / /R o =NX(ds; dz)] (4.9)

If we substitute j,, o, and p*(dz)ds in (4.9) by their expressions given in (4.3)
and (4.6) respectively, we deduce that (X (¢), S(¢)) is Markovian with infinitesimal
generator £ given as follows :

of of o°f
ot oS 05?

AL S, ) (k) +/R\{O} [f(t, Sez,k) ~ (S k)

i Sk = 2L 5 k) + w2l 5 k) + 202522 (1 5 k)

. 9f
— S(e* = )52t 5, k) pu(d2), (4.10)
(4.11)
for any function f such that for each state e, (or simply k € S) and f(-,-, k) €

Cy*([0,00) x R) where Af(t, S, (k) i= Xy, e am(F(ES.1) = F(£, 5, K)).
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4.2.2. A system of second-order coupled linear IPDE verified by an
European option

In this section, we derive formally the system of coupled integro-partial differential
equations that will be satisfied by the the price of an European option. The star-
ting point is to consider an European option with terminal payoft H(S(T), X(T)),
strike ' and maturity 7. We suppose that we already have chosen an equivalent
martingale measure Q. This can be done by using a generalized form of the Es-
scher transform [See, Momeya and Morales [101]]. Under this martingale measure
Q the risk neutral dynamics for asset price S is given by the following stochastic
differential equation

dS(t) = S(t7) (rtdt + oy dW, + /

(¢# — 1)NX(dt: dz)), S(0) = S > 0
R\{0}

(4.12)
or more explicitely by using 1t6’s formula,
S(t) = Spexp(Y(t)), teT (4.13)

where

Y(t):/0t<r —%a ds—//R\{O}e -2 (dz)ds+/anW

/ / ZNX(ds; dz). (4.14)
R\{0}

Let ‘7(15, T,-,-) the discounted European option price at time t; ¢ € T, i.e.,
V(t,T,--) = e Jom®V T, . .)
We know from the fundamental theorem of asset pricing (Harrison and Pliska
[79], [80]) that {V(¢,T,-,-) : t € T} is a (G, Q)-martingale, and its terminal
value at time 7' is
V(T,T, ) =e" Iy reds f1(Spe¥ M, X (T)).
Therefore, by the martingale property

VLT, ) = Bofe i H(Soe" @, X(T))

G|
= BB (S0, X (7)) |(X (1), 5(1))]

= V(t,T,X(t),5@)) (4.15)

where the second equality comes from the Markov property of (X, S). Further-
more, it is known from the property of the infinitesimal generator of a Markov
process that for any smooth function f(-,-), the process

T, = f(X(), /Equ,S)
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a (G,Q)-martingale. In particular, by taking f as the discounted European
0pt1on price V(t T,-,-) we have, assuming sufficient regularity of V(t T,-, ), that
the bounded variations terms of T which are not martingales must sum to zero.
Thus, we obtain that V (¢, T, -, -) satisfies

oV
S (LT85 k) + S

oV

5 (T8 0) + 202522 L (4. 7.5.0) + AV TS, (8)

057
+OO ~ ~
+ /_ ) [V(t,T, Se?) — V(t,T,S) — S(e* — 1)(;?] pe(dz) = 0. (4.16)

Using the relation between V and V', we have

ov . oV ov 1%
A —fo rsds A —fo rsds~ ¥
ot ¢ ( V5 ) o5 ¢ 0S

and finally the European option price satisfies the system of IPDEs

v v 1,0V
at(tTSk)JrrkSaS(t,T,S,k) 028”5z (T, S, )

—rV(t,T,8, k) +AV(t,T,S,.)(k)
ov
—(t, 1,5,k dz) =0
aS(”’)pk(Z) )
(4.17)
for (¢,5) € (0,7) x RT and k = 1,2, ..., M associated with terminal conditions

V(T,T,S(T),k) = H(See'™, X(T) = k), k=1,2,..., M. (4.18)

+/ [V(t,T, Se*, k) — V(t,T, 8, k) — S(e* — 1)
R\{0}

4.3. VISCOSITY SOLUTIONS FOR THE COUPLED SYSTEM OF IPDE
(4.17)-(4.18)

In general, when we find the value of an European option in an exponential Lévy
model we have to solve an IPDE. Cont and Voltchkova [36] evoke some difficulties
that arise in this situation : the non-local character of the integral operator,
nonsmoothness of initial conditions, the singularity at zero of the integral kernel
and the possible degeneracy of the diffusion coefficient. All these difficulties can
occur in the case of the regime-switching exponential Lévy model. Thus, we have
to find solutions in the framework of viscosity solutions, introduced by Crandall
and Lions |38] for PDEs and extended later by many authors [see, e.g., [3], [11],
26]).

First, we write the dynamics of stock price (4.12) in the following more general
form,
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dS(t) = p(t,S(t), X(t))dt + a(t,ﬁ(t), X(t))dW,
+ fangoy Yt S(), X (1), 2) NX (dt; dz) (4.19)
S(s) =z, zeR 0<s<t<T.
where the functions
(o) [0, T x Rx S — R,
o(,):[0,T]xRxS—R
and
V() [0, T x RxSxR—R
satisfy the following properties.

e Lipschitz continuity : For each i € S and for all (t,z,y) € [0,7] x R x R,
there exists a constant v > 0 such that

|t 2,0) =t y, ) + ot 2,9) — ot y, 1)
+/ V(t, 2,0, 2) — y(t,y, 1, 2)Ppi(dz)dt < alz —y|*. (4.20)
R\{0}
e Growth condition : There exists a constant 5 > 0 such that

\u(t,x,i)m|o—(t,x,z>|2+/ It 2,4, ) 2pi(dz)dt < B+ [2])2 (4.21)
R\{0}

4.3.1. Characterization of the European Option Price

In this Section, we prove that the European option price satisfies certain growth
and continuity properties. The proofs of these results are adapted from Pemy
[107|.
Lemma 4.1. For each i € S, the European option price at time s € [0,T] given
by (S(s), X (s)) = (,1), denoted by v(s,x,1), is a continuous function in (s,x)
and has at most a polynomial growth.
Proof. We only prove the lemma for the case of an European Call option, the
case of an European put option is similar. So, we have

o(s, ) = B [em e (Spel™ — K,0)](S(5), X(5)) = (,1)

To show the continuity of v(s,z,4) in z, let S; and Sy be two solutions of (P)
with initial values S1(s) = z1 and Sy(s) = x5 respectively. For each t € [s,T], we
have

505000 = (=) + [ (6516, X(©) - plé S:€). X(©)lde
n / (0(6, 51(6), X(€)) — (£, Su(€), X(€)))aWs

T / / (€, S1(), X(8), 2) — A&, S1(€), X (€), 2)| N ¥ (de; d2).
s JR\{0}
(4.22)
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Then, using the elementary inequality | 3200 a;|> < M 32 |a,|? for all real num-
bers a;, it turns out

(S1(6) = Sa(t)* < Ao~ waf? + 4( [ [0(€ 516, X(€) — e, Su(6). X(©)1de)

+4( [ lote 510, X(6) - 016, 5:6). X(©)lawe)

g t / o eI, X(6). 2

(€, 51(6), X(€),2)| V¥ (06 42)) (1.23)

For the first part of the proof we assume that all expectations are taken under
the condition that Si(s) = x1, Sa(s) = 9 and X(s) =
Using Jensen’s inequality, we have

([ Inte. 51061, (€)= e Sa(6), X (€Dl
< (t-5) [ 106519 X(©) - (e, 5:(9). X(©)Pde (422)

and by the Ito-Lévy isometry (see, e.g., Oksendal and Sulem [105])

of [T, _
B( [ 6. 510, X(©) — o650, X@MWer [ [ e si.x(),2)
— (6516, X <>,z>|NX<d5;dz>)

_ O / (06, 51(6). X(€)) — o€, S2(€), X (€))Pe

+EQ//R\{O} (€,81(6), X(€), 2)

—(€, 81(8), X (8), 2))de. (4.25)

Therefore, the Lipschitz condition (4.20) implies that there exists a constant
(' > 0 such that

E(S1(t) — S(t))? < 42y — wal” + (T + 1) / EY(S1(€) — Sa())%de. (4.26)

S

Applying Gronwall’s inequality, we have
EQ(Sl(t) — Sg(t))2 S 4|£L’1 — $2|2601(T+1). (427)
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Thus,
vls,a1,0) = v(san ] = [BoLE((ST) ~ K)* — (SuT) = K"
< EY [e_fSTrgdg’Sl(T) - Sz(T)H
< (B ) (52500 - s00)°

< Clay — x)eT, (4.28)

This implies the (uniform) continuity of v(s, z,7) with respect to .

Now, we show the continuity of s — v(s, z,1).

Let S(t) be the solution of the SDE (P) that starts at ¢ = s with S(s) = = and
X(s) =1. Let s’ € [s,T], we define

S'(t) =S(t—(s—s)),
{ X'(t) =X(t—(s—5)). (4.29)

Let us consider the change of variable u = t — (s’ — s), thus we obtain dt = du,
dW, = dW,, and N*(dt;dz) = N*(du;dz). Moreover,

t

S(t)y=z+ / H(E, S(€), X(€))de + / o (€, 5(6), X(€))dW

+ / /R L E5O.X(©. 9N g a),

50 =+ [ (. X e+ [ ole 510, X @)awe

/

T / /R €SO X O N (@),

With this in mind, we have

(S(t) - 5'(1)) = /

t—(s'—s

t

u(E, S(€), X (£))de + / o€, (6), X (€))d W

) t=(s/=s)
+/ / (€, 8(), X(€), ) N¥(d€; dz).  (4.30)
t—(s'—s) JR\{0}

For the second part of the proof, we assume that all expectations are taken under
the conditions that S(s) = x = S'(s') and X(s) = i = X (s'). Thus for any
random variable 7, we denote

!

E®%[n) = E¥n|S(s) = v = §'(s), X (s) = i = X (s')].
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Consequently, we have

EQ(S(t) — S'(t))? 3E©
(s() - 5wy < 35 /HH)

w0 [ ot s, xX(enaw)

t

t

(€, (), X(€))de)

s | j(H) [, 7650, X©.F eia)

Using the Ito-Lévy isometry and the linear growth condition (4.21) we obtain

EQ(S(t) — §'())% < 35(5' s+ 2) (s’ s+ /:(s/_s> EQ|S(§)|2d§). (4.31)

In addition, by the existence and uniqueness theorem of solution of stochastic
differential equation (P) [see, e.g., Applebaum |[4]| there exists a constant 6; > 0
such that E2|S(€)]? < §; almost everywhere in the interval [0, T']. Therefore

[ st <o =)

which implies from (4.31) that
ER(S(t) — S'(t)* < 8y(s' — s). (4.32)

where 0 = 36(5; + 1)(s' — s + 2).

Moreover, we have

lo(s, 1) — v(s',2,4)| < )E@(e— S red€ (S () — Ky — e S redé(4(T) — K)+) )
< B e ((S(r) - KT = (51(1) - K)Y))|

B (1) = ) (e K et — e Jiredey )|
(0217 re) (3505 - )

(s = 5) (B2 ) (B (D)

IN

(4.33)

where we have used the mean value theorem for the last inequality.
Finally, we have

lv(s,z,1) —v(s',x,7)] <A/ (s — ) (\/ EQe2/J rede | /8:(s' — ) EQe 2w T5d£>
(4.34§

which implies the (uniform) continuity of s — v(s, z,1).
Global continuity follows from the following inequality

‘U(S,LIZ, 7’) o U(Slv Y, 7’)| < |U(87 .Z’,’l) o U(Su Y, 7’)| + |U(87 Y, 7’) o U(S/vyvi)‘
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and the fact that the first bound is independent of s.

Now let us prove that v(s,x,7) has at most a polynomial growth.
Let (s1,21), (S2,22) € [0,T] x R, we have that

0(s1, 21, 1) — v(s9, 29,7)] < ‘EQ (effl (G (T) — K)T — el "% (S,(T) — K)*)‘
< ‘E@ (effl reds <(51(T) — K)T — (Sy(T) — K)+) ‘

B2 ((82(1) = By (e et — ety

< EQ [e— & redg S (T) — S2(T)H
| EQ((S3(T) — K)* (e farett — e ety )|
< 6'|i171 — 5T

- 1

+sy — s (E@e—%o redé) : (E@|(52(T)|2) . (4.35)

We have that E2|Sy(T)|> < 41, thus there exists a constant C; > 0 such that

o(s,0,0)| = [E% < ((5,(T) — K)* )| < B2 B Sy(T)[* < €.
Setting 1 = x,51 = § = sy and x5 = 0 in (4.35), we have

(s, z,1)| < Cla| + |v(s,0,)| < max(Cy, CeCT)(1 + |z). (4.36)
This completes the proof of the lemma. [J

4.3.2. Viscosity Solution

In this section, we characterize the European option price as the unique viscosity
solution of the coupled system of IPDE (4.17)-(4.18). To simplify the presenta-
tion, we introduce the following notations

ForieS, s€(0,T), z € R, let

1 x,i) 0? T, 1

(i, o), f(s,, ), 00 O1Cwt) FIE D) g, s )

= LC(Z’;’O +r(z)x78f(g’;’i) + %az(i)zziazféi’f’i) — (1) f(s,z,7)

+Af(s,z,)(i) +Z(s,x,i, f), (4.37)
where
. . (i)

I(s,x,1,f):= ,xe® 1) — ,x,1) —x(e® — 1) —————=| p;(dz).

i fye= [ [ 00 —ate - )G o)

Equation (4.17) takes the following form

H(’L, s,x,f(s,:c,i), f(S,LL’, _)7 af(278$7i)’ 8./:(2;%'72)7 a2féf£2$’l)

,I(s,x,i,f)) =0
(4.38)



89

for i € S.

Due to the fact that the Lévy measure p;(dz) for i € S could present a possible
singularity in zero, we need to be more specific about the meaning of integro-
differential operator Z(s, z,1, f).

To do this, let Cp;,([0,7] x R x S) be the set of functions f(s,z,4) defined on
[0,7] x R x S which are Lipschitz continuous with respect to the variable .

We define for any x € (0,1), (s,z,7) € (0,T] xR xS, g € CLip([0,T] xR x S) and
p € C'(R),

IH(S,ZL’,Z',g,p) = / [g(s>Iezai) - g(s,x,i) - z(ez - 1)p pz(dz)
|z|>kK

The integral of Z"(s, z,14, g, p) is bounded by Const(x,p, k,i) X (1 4 |e* —1|) and

thanks to (4.8) this integral is convergent for every x > 0.

Also, for k € (0,1), (s,z,i) € [0,T] x Rx S and h: [0,7] x R x S — R such that

h(s,.,i) € C*(R) we define
Z.(s,x,i,h) ::/

|z|<r

[h(s, ve*,4) — h(s,x,i) — x(e* — 1)%] pi(d2).

By Taylor’s formula
, , Oh(s,x,1) 0?h(s, &, 1)
h i) = h(s, , P o))
(s, €% 1) (s,z,i) + x(e ) pe + (z(e ) B2
where & lies in the segment (x, ze*). Hence, the integrand of Z, (s, x, 4, h) is boun-
ded by Const(x, k,i) X |e* — 1|? and the integral is convergent since every Lévy
measure integrates z? in a neighborhood of zero. Also note that

liﬁlfﬁ(s,x,i, h) = 0. (4.39)

Now, we can define for g, h € Cr;,([0,T] x R x S) such that h(s,-,i) € C*(R) the
integro-differential operator Z by

Z(s,z,i,9,h):=1I"(s,x,1i,9, %) + Z.(s,x,4,h). (4.40)

It follows that the system of IPDE (4.17) with terminal condition (4.18) verified
by the European option price is well-defined for all v € Cpr;,([0,7] x R x S) such
that v(s, -, 1) € C3(R).

In general, for a financial model which involves Lévy process as dynamics of the
asset price, the European option price is not a regular function of the under-
lying’s price. We refer to Voltchoka [125] for a deep discussion of this question.
Consequently, the system of IPDEs (4.17) should be interpreted in a weaker sense,
notably in the framework of viscosity solutions. The precise definition goes as :
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Definition 4.1. We say that f(s,z,1) is a viscosity solution of the system

4
H<Z7 87 x? f(87 x? Z)7f(s7 :I;, ')7 A
Of (s,x,i) Of(s,x,i) O2f(s,x,i .
foaes) D1(oeet) PHSED F(s, 3,1, f(),h)) =0

(P) f(T,2,i) = H(z,i) (44D

| for s€(0,T), i €S, x €R and h(s,-,i) € C*(R).
if
(1) For eachi €S, f(s,x,1) is continuous in (s,x) € [0,T) x R and there exist

positive constants Cy and m such that
f(s,x,1) < C(1+ |=|™).
(2) For eachi €S, f(T,xz,i) < H(x,i) and

. . 0¢(s0,
H<7’7 50, L0, f(807 Zo, 7’)7 f(807 Zo, ')7 M7

Os
8S0(807$0) 82%0(30,1’0) .
ox ) Ox2 ,Z(So,l’o,l, f()v@o)) < 0, (442)

whenever ¢(s, ) € Cri,([0, T)xR)NCH2((0, T]xR) such that f(s,x,i)—p(s, )
has local mazimum at (sg,x9) € (0,T) x R.

(3) For eachi €S, f(T,x,i) > H(z,i) and

H<7’7 S0, Lo, f(807 X, 7’)7 f(807 Zo, ')7 %7
d9(sg, 0 ¢(so, . 0
¢(g?lj' lb)a gb(a?Q $0)7Z(80ax0>zaf(')7¢7_i)) Z Oa (443)

whenever ¢(s, z) € Cri,([0, T]xR)NCH2((0, T xR) such that f(s,x,i)—d(s, )
has local minimum at (sg,x¢) € (0,T) x R.
Let f be a function that satisfies (1) and (2) [resp. (1) and (3)]. Then f is said

to be a viscosity subsolution (resp. supersolution).

Remark 4.3.1. The notation f(-) in the integro-differential operator Z indicates
that nonlocal terms are used on f(-), not only from .

We are going to state the main result of this section.

Theorem 4.1. The price of the FEuropean option is a viscosity solution to the
system (P).
Proof. Note that for t =T,

o(T,a,1) == EX[H(S(T), X(T))|(X(T), S(T)) = (i, 2)] = h(z,1).
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In the sequel, we denote EQ[n(-)| X (s) =i, S(s) = z] by E?“[n()]

Following Definition 4.4, it suffices to show that v(-,-,7) is a viscosity subsolution
and supersolution.
Let X € S. First, we want to show that v(-,-, X;) is a viscosity supersolution.
Let ¢ € CH2([0, T] xR) and (¢, ) € [0, T] xR such that v(¢,x, X,)—$(t, z) attains
its local minimum on a neighborhood Vs, at (s,z) € (0,7] x R. We define a
new function ¥ as follows :

~ oot ) 4 [u(s, xs, X) — O(s,25)], ifi= X,
Bt 2,0) = { u(t, z,1), if 1 # X,.

Let 7 = inf{t > s : X(¢) # X} the first jump time of X (-) from the state Xj.
From the hypothesis of irreducibility of X (-), we have Q(7 < o0) = 1.

(4.44)

Now, consider 6 € [s,7] to be such that (¢, X(t)) starts at (s, X;) and stays in
Vis.) for s < 0. Since § < 7 we have X(t) = X, for s <t < 6. Recalling that
v(+, -, Xs) — ¢(+, -) attains its minimum in Vi, ,,) at (s, x,), for s <t < 6 we have

v(t, S(t), Xs) > o(t, S(t)) +v(s, x5, Xs) — (s, x5) = U(t, S(¢), Xs). (4.45)
Hence,

EQ

vastS

(0, 8(0), X,)| 2 S,y [ W (0, 5(0), X))

By Dynkin’s formula for jump-diffusion processes [see, e.g., Oksendal and Sulem
[105]], we have

B, [ w0, 5(0), X,)] - wis, 2., X,)
0
= Eox, / [e—fstrgds( — P(X)U(t, S(t), X,) + LU(¢, S(t),Xs))]dt. (4.46)
and thus,

EY [e—ff’"sdfu(e,S(e),Xs)} — (s, zs, X,)

vastS

v

0
ESImXS / [6_ fSt ngf{ - T(XS)\I](tv S(t)u Xs)

L 09(t, 5(t)) d9(t, S(1))
ot or

5o (X)2(S(1)

+r(X5)S(t)

2 00(t,S(1))
Ox?

+/ w(t, S(t)e", X,) - Wt S(t), X,)
R\{0}

—s()(e - S Xs)}pxsuz)}] i,

+AW(t, S(t), . )(Xs)

(4.47)
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Moreover, we have

AU (1), )(X,) = Xl(\v W(tS(1). X))
l;éX leS
> ax, z(v —v(t, 5(t), X ))
l;éX leS
> Av(t S(),)(X.) (4.48)

Combining the inequalities (4.47) and (4.48), we have
B2, g |67 0(0,5(0), %) — vls, 2 Xo)

S$,Ts, X8
0 t
E?:c Xs/ [e_fs T’,gdﬁ{ - T(XS)U(ta S(t)>XS)

L 99(t, S(1)) 99(t, S(1))
ot or

5o (X)) + Av(t, S(1), )(X.)

v

+7(X5)S(t)

2 P9(t,S(1))
ox?

+/ W(t, S(1)e", X,) — (L, S(1), X)
R\{0}

—5(1)(e - 21, Xs)]pxsuz)}] i,

(4.49)

By using the fact that
EQ

S$,Ts, X3

[6— [retey (9, 5(60), Xo) | — v(s, 20, X.) =0,

due to the martingale property of the discounted European option price
{e=J. deﬁv(t S(t),X(t)):te[0,T]} for a fixed s € [0,7T], we obtain

0 0
Es:c Xs/
s

Op(t, S(t))
T

e~ Joreds { — r(X,)o(t, S(t), Xy)

op(t,S(t)) 1 2 2 0%0(t,S(t))
T+§U(Xs) (S()) oz

s [wesoe xo-v, 5(1), X,)—S(t)(e 1) 22 ES (t)’Xs)}pxxdz)H it < 0.
R\{0} O

(4.50)

+r(X;)S(t) +Av(t, S(t), . )(Xs)
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Multiplying both sides by - 7> 0 and letting 6 | s, it turns out that

0—9)
L 99(5,5(5)) 9¢(s, S(s))
ox

s +7(Xs)S(s)
o(,)2(5(5)? TLESE) s, 5(s), ) (X
oV (s, S(s), Xs)

0x?
+/R\{O} [W(s, ()67, X,)=W(s, 5(5), X,) =S (5) (¢~ 1) 22 20 (d2) < 0.

Hence, recalling that S(s) = s and

¢(5>$56Z>X5) - ¢(S>$s)a Xs) = ¢(S>$sez) - ¢(S>$s)
v(s,xse®, Xs) —v(s, x5, Xs)  (4.52)

>
by the local minimum property of v(-,-, X;) — ¢(-, ) at (s, xs), we obtain finally

r(X,) (v(s, z,, Xs)—xaqﬁ((,jfs) ) —8¢(§;5’35) —%U(Xs)z(xf%—,&v(s, e, )(X,)

- / [v(s, zse®, X) — (s, x5, X) — x(e” — 1)M] px.(dz) >0
R\(0} Oz

which is the desired inequality.

Now, let us prove the subsolution inequality.
Let ¢ € CV2([0,T] x R) and (¢, z) € [0,T] x R such that v(¢, z, X,) — (¢, z) has
a local maximum on a neighborhood Vs, at (s,z,). We define a function ® as
follows :
N et x) + u(s,xs, Xs) — (s, zs)], if i =X,

O(t,2,1) = { o(t, z,9), if i+ X,
Let 7 be defined as above and let 6y € [s, 7] be such that (0, X (0)) starts at (s, X;)
and stays in V ;) for s <60 < 6. Note that S(0) = X, for s < 6 < 6. Moreover,
recall that v(t, z, X,) — (t, x) attains its maximum at (s, z,) in Vi, 4, ; it follows
that for any 0 € [s, 6], v(0,5(0), Xg) — (0, Xo) < v(s, x5, Xs) — 0(8, Ts).
In view of the definition of ® in (4.54), we have for any 6 € [s, 6]

(8, 5(8), X) < (6, S(8), Xy). (4.55)

(4.54)

This implies,
EQ

vastS

| retu(, 5(6), X)| < B2, x| <00, 5(60), o).

vastS
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And by using Dynkin’s formula, we have

ES%XS e—fsergdfv(e,s(e),Xs) < (s, s X,)

0
+E?:C Xs/

Op(t,S(t))
o

o (XP(S(0)

e o rede { — r(X,)o(t, S(1), Xy)

dp(t, S(t))
or

+AD(t, S(t),.)(Xs)

+ 7 (X5)S(t)

2 Pp(t, S(t))
Ox?

+ / [‘D@v S(t)e*, X,) — (¢, S(t), X.)
R\{0}

—s(1)(er -1 22, XS’]pxxdz)H i,

(4.56)
Moreover, we have
AD(t, S( = Y ax l(cp (t,S(t),1) — ®(t, S(t),XS))
I#X,, l€S
> axa(vt. 50,0 - vt S(1), X))
I#£X,, I€S
=: Av(t, S(t), . )(Xs). (4.57)
Comblmng (4.56) and (4.57), and the fact
v(0,5(0), Xs) =v(0,5(0), Xy) we have
B2, x|emF e u(9, 5(6), Xo)| < (s, X,)

+ E?m Xg /0 [e‘ S rgdﬁ{ —r(Xs)v(t, S(t), Xs)
[ OSI) | 1 60510

ot
o5 T8 poie, 50, ) ()

[ (t, S(t)e?, X,) — ®(t, S(1), X,)
R\{0}

~ s(e)(er ) 2250, Xﬂpxsuz)}] dt.

N —

_|_

+

T

(4.58)
Now, using the fact that

E° [e— I redey (g, 5(9),)@)] — (s, 25, X,) = 0

8$,xs, X3
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due the martingale property of the discounted European option price
{e=Jeredey(t, S(t), X (t)) : t € [0, T} for a fixed s € [0,T], we deduce that

05O sy 22D Lo s P25 e, s, (x,)
1 /R » @(t S(t)e*, X,) = @(t, 5(1), X,)
_ s()(er — 1) 22 gff)’Xs)}pXS(dz)} dt > 0. (4.59)
Dividing both sides by (6 — 5) > 0 and taking the limit as 6 | s
— r(X,)o(s, S(s), X,) + w + r(Xs)S(s)w
+ %(XQ%S(WW + Au(s, S(s), ) (X,)

n / 0(s, S(s)e, X,) — @5, 5(s), X)
R\{0}

0d(s, S(s), Xs)
or

—S(s)(e*—=1) px.(dz) > 0. (4.60)

Hence, recalling that S(s) = x5 and
O(s, x5, Xg) — P(s, 25, Xs) = @(s,256%) — (s, x5)
> (s, x5, Xg) — v(s, s, Xy) (4.61)
by the local maximum property of v(-, -, X;) — &(-,-) at (s,zs), we obtain finally

_ dp(s, ;) _84,0(8,56’3)_1 2 28290(57%)_
r(X) (08,20, X)) - SESEE o (X2 ST (s, 0, ) (X.)

— / [v(s,:csez,Xs) —v(s,xs, Xs) — x5(€” — 1)M px.(dz) <0 (4.62)
R\{0}

ox

This last inequality is what we want to prove. [

4.3.3. Comparison Principle : Existence and Uniqueness of the Vis-
cosity Solution

In this section, we prove a comparison result from which we obtain the existence
and uniqueness of the solution of the coupled system IPDE (P). In proving com-
parison results for viscosity solutions, the notion of parabolic superjet and subjet
as defined in Crandall, Ishii and Lions [38] is particularly useful.
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Definition 4.2. Let f(s,x,i) : [0,7] x R xS — R be a function. We define
Fo(s,2,9) : [0,T] x R x S — R by

S8, w,0) = limsup{ f(t,y,0: (£, y) € By(s,x)}.
r]0

f*(s,x,1) is called the upper semicontinuous envelop of f(s,x,1).
Similarly we define f.(s,z,i) : [0,T] x R xS — R the lower semicontinuous
envelop of f(s,x,1) as follows

flsad) =l nf{ (L y.i s (t.y) € Bu(s.2)}:

Definition 4.3. Let f(s,z,1) : [0,T] x R x S — R. Define the parabolic superjet
by

732’+f(8,$,'é) :{(p7Q>L) GRXRXRZf(t,y,’é)—f(S,l’,i)—p(t—S)—q(y—!L’)

FAL- 0P olly—oP) as (ty) = (),

and its closure as
P (s, 2,0) = {(p, ¢, L) = 1im (pn, g, Lo )with (pn, Gu, Ln) € P> (50, T, 1)
and Hm (s, Tp, f(Sp, Tn, 1)) = (s, 2, f(s,2,1))}.

Similarly, we define the parabolic subjet P>~ f(s,z,i) = —P>T(—f)(s,z,i) and
its closure 52’_f(s, x, i) = fz’Jr(—f)(s, x,1).

We have the following result for which we can find a proof in Fleming and Soner
|62].

Lemma 4.2. P>T f(s,x,4)(resp. P>~ f(s,x,1)) consist of the set of

<a¢éss’m), a¢éi’m), 8229(;’@) where ¢ € C*([0,T] x R) and f — ¢ has a global mazi-

mum(resp. minimum) at (s, ).

With this in mind, we have this equivalent formulation of the notion of viscosity
solution

Definition 4.4. A function u(s,z,i) continuous in (s,x) satisfying the polyno-
mial growth condition is a viscosity solution of
, . Of (s,x,1
H(ivs,2, s, 0), F s, ), 22D,
s
8f(87 €, Z) 82f(57 T, 7’)
or = 0Ox2

Z(s,,i, (), h)) =0
if
(1) for each i € S, u(-,-,i) is upper semicontinuous and for all
(s,2) € [0,T] xR, u= (u(-,-,i): 1 €8), A € R and
(a,p, L1) € P**u(s, z,1)
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H(Za S, T, u,u,a,p, L17 Al) S 07
in this case u s a viscosity subsolution,

(2) for each i €S, u(-,-,i) is lower semicontinuous and for all
(s,2) € [0,T] xR, u= (u(-,-,i): 4 €8S), A3 € R and
(b,q, L2) € P>Fu(s, x,i)

H(Z, s, T, u, U, ba q, L2> AQ) 2 07
in this case u s a viscosity supersolution.

To prove our comparison result, we need the following result from Crandall, Ishii
and Lions [37].

Theorem 4.2 (Crandall, Ishii, Lions [37]).
Fori = 1,2, let €; be locally compact subsets of R, and € = y x Qq, let u; be
upper semicontinuous in [0, T] x £, and f?z:rul(t, x) the closure of the parabolic
superjet of w;(t,x), and ® be twice continuously differentiable in a neighborhood
of [0,T] x €.
Set
w(t, Zy, LUQ) = Ul(t, I‘l) + U(t, 1’2),
for (t,z1, 1) € [0,T] x Q, and suppose (t,21,32) € [0,T] x Q is a local mazimum
of w — ® relative to [0,T] x Q.
Moreover, let us assume that there is an r > 0 such that for every A > 0 there
exists a C' = C(A) such that fori=1,2
b <C
whenever the following condition is satisfied :
lz; — ] + [t — | < v and |u(t, 2;)| + |q) + | Li| < A. (4.63)
for (b, qi, L) € ﬁ?f%(@%)
Then for each ¢ > 0, there exists M; € S(1) = R such that
(1) (b, Dy, ®(L, %), M;) € Poyy us(f, &) fori=1,2.
(2)

1 . M; O . PR
_<Z + HD?m,m)(I)(t’ x)H>I2 < ( 0 M, ) < D(2m1,m2)q)(tvx) + g(D(zm mz)q)(tv‘r))z'

(3)
o0d(t, 7)
ot

by + by =

Now we can state our comparison result.
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Theorem 4.3 (Comparison Principle).
If vi(t,z,i) and vo(t,x,i) are continuous in (t,x) and are respectively viscosity
subsolution and supersolution of the system (P) with at most linear growth, then

vi(t,x,i) <wy(t,z, i)  for all (t,x,i) € [0,T] x R xS. (4.66)

Proof. For 3, €, 6, A > 0, we define the auxiliary functions ¢ : (0, 7] xRxR — R
and Z: (0,7 x RxR xS — R by :

6.1 .
plt.w,y) =+ ool = yl? + 0T [l + [y, (4.67)

and
2ty x,y,1) = vi(t,x, i) —va(t, z, i) — p(t, z,y). (4.68)

By using the linear growth of v; and vy, we have for each 7 € S

lim Z(t, z,y,1) = —oc. (4.69)

|z|+]y|l—o0

Then, since v; and vy are uniformly continuous with respect to (¢, z) on each com-
pact subset of [0, 7] xR and that S is a finite set we have that = attains its (global)
maximum at some finite point belonging to a compact K C (0,7] x R x R x S,

Sa‘YJ (tt‘.? xﬁ? y€7 XE)

Writing that 2Z(t, zc, ye, Xe) > Z(te, e, Te, Xo) + Z(te, Ye, Ye, X) and using the
uniform continuity of vy, vy on K we have

o= < i) = i) volte 7o) — valte )
< 20z — Y- (4.70)
Thus
|ze — ye| < 2Ck, (4.71)

where C'is a positive constant independent of (3, €, 9, \. From the inequality
=(T,0,0, X.) < Z(te, e, Ye, Xe) and in view of the linear growth for v; and vy, we
have :

5(|$e|2 + |y6|2) < 6_)\(T_t€) <U1 (tea Te, Z) — U (T> Oa Z) + U2(Ta 07 Z) - 'U2(t5a Te, Z)>

< e MO (1 4 |z + |y
(4.72)

It follows that ) )
O(Je|” + |yel?)

(1+ [ze] + [ye])
Consequently, there exists C'y > 0 such that

|| + |ye| < Co. (4.73)

< (Cs.
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This inequality implies that the sets {x, ¢ > 0} and {y., € > 0} are bounded by
C independent of e.

It follows from inequalities (4.71) and (4.73) that, along a subsequence, (t, ., ye, Xc)
converges to (tg, zo, o, X¢) € (0,T] x R xR x S, as € | 0.

Now, if t. = T then writing that =(¢, z, z, X,) < =Z(T, =, y., X.), we have
p

Ul(tax>i) - Ug(t,l',i) - ?

_ 2(56)\(T_t)|$|2 S Ul(T, l’e,i) - UZ(Ta yeai) - g
1

vi(T, e, i) — vo(T, Ye, i)

= <’U1(T, xe,i) - U2(T7 xﬂi))

(0T 8) = (T )
< Cl|$e - y5|> (474)

where the last inequality follows from the uniform continuity of v, and by as-
sumption that vy (T, x, i) = H(x,i) = ve(T, x,1).
Sending 3, €, § | 0 and using estimate (4.71), we have : vy (t, z,i) < vo(t, x, 7).

IN

Assume now that t. < 7.
Applying Theorem 4.2 to the function (¢, z,y) at the point (¢, z.,y.) € (0,T) X
R xR xS, we can find pg, M., N, € R such that :

(70— 5 = 28T (a2 ).
1
~(e = ye) + 20T, M, + 252771
€
€ ﬁ;’jvl (t, X, Z),

1 9 _
(po, E(IE —Ye) — 20Nty N, — 256>\(T_t€)) € 77?2 vo(t, x, 1)

and

1 M, 0
_<_ + ||D(2x,y)§0(te>$eaye)||>12 < ( 0 —N. ) < D(2x7y)g0(t5,l'5,ye)

¢
+ C(D(thy)g@(te’ Te, yf))2- (475)
Note that,

M, O T,
Mex? — Ney? = (ze,ye) ( 0 N ) ( " ) . (4.76)
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Thus,

€+ (2 + 40eeNTte))

MGIE - Nsyf S (xE) ye) 2

€

o=
|}—‘
—_
=
—_
N—

¢ (5 gsecr )

(4.77)
Letting ¢ | 0 and taking ¢ = 5, we obtain
2 (1 —1 x
Me 2_NE 2 < ey Je) | ‘
r. = Ney; < (@ y)L(_l 1 )]<y>
2
< Yool (4.78)

Furthermore, the definition of the viscosity subsolution v; and supersolution v
implies that

s _
T(Xe)vl(tea Le, XE) - <p0 - t_2 - )\56)\(T ts)(|x5|2 + |y5|2)>

1 1
e (X0 (e 4205621 20X Ja? (Mo 266N )~ 1 7, ) (X
€

0 1
— Ly (te, we, Xe, b1, %) — T (te, e, Xe, vy, g(l"s — ) + 2z.0NT)) <0, (4.79)

and

1
r(Xo)va(te, ye, Xe) — po — yer (Xo) (;(xe —y0) = 2y0e )

1 _ 99
- 502(){6)?/? <NE - 256)\(T t5)> - A'U2(t5a Ye, )(XE) - In(tsa Ye, XE? ¢2a 8—1’2)

1
— Tte, Ye, X, V2, — (e — ye) — 200X T71)) >0, (4.80)
€
for some ¢y, ¢ € CH2([0,T] x R).
Let us define the operator F(x,v, ¢, =, Z) by
1

f(x,v, 6,2, Z) = —ar(X)E - 50%(X)Za” — Av(te ) (X)

Tyt X6, 50) ~ Tt X 3). (481)

By using this operator, the inequalities (4.79) and (4.80) become respectively
g _
P(X01(te 2, X = (b0 = 35 = AT (a2 + [4]))

1
+ ]—"(:Be, vy, 61, —(Te — Ye) + 22.0eMT ) ML+ 256’\(T_t€)) <0, (4.82)
€
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and
T(XE)U2 (teu Ye, Xe) —Po
—|—f<y€,vg,q§2, (ze — ye) — 2y 0Nt N, — 256A<T—te>) > 0. (4.83)

Subtracting these last two inequalities, we have :

&

T(Xe) [Ul(teaxeaXe> - U2(tevyevXe)] + t_2 + )‘56)\(T_t6)(|x6‘2 + ‘y6‘2>

1
S _f<x5a (%1 ¢17 _(1'5 — ye) + 2$656A(T—t6)’ ME + 256)‘(T_ts)>
€

1
+f(yﬁ,v2,¢2,—(xe —ye) — 2y 5Nt N, — 25 ATt ) (4.84)
€
However, the right hand side of the inequality (4.84) is equal to

1
RHS = 50*(X)[Mea? = Noy? + 2001 (a2 + y)] - (4)

1 -
(X0 2l = uel? + 26T (o + 0] (42)

(At 70 ) (X) = Avslte e )(X0)] - (49)

O O )]

+ I (t67x67X67¢17 LU) 7, (t67y67X67¢27 (A4)

r 1
+ |2 (te, ey Xe, 01, = (Te — ye) + 27 5eMT—te) )
A €

1
_Iﬁ(te’ Ye, XEa V2, E(xE - ye) - 2?/556>\(T_t€))} . (A5)

(4.85)
Thus, (4.84) becomes
T(Xe) |:'U1 (tE7 Te, Xe) — U2 (te> Ye, Xe)]
+ g AN (|2 ? + Jyel) < Ay 4+ Ay + A + Ay + As. (4.86)

From (4.78),
2
Av+ Ay < Sz =yl + 20T (o2 + Jy.f?) (

Using the Lipschitz condition for v; and vs, we have

%UZ(XE) £r(X)). (487)

Ag <2 -yl (Y axa). (4.88)
I€S, I#X.
Also, by remark 4.39
limsup A4 = 0.

nl0
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By easy calculations, we have that

1

A5 — / |:E(t67 xeez7yeez7 XE> — E(t67 x67yE7X€> + (ez _ 1)2<—|:L’6 _ y6|2
|z[>n %

+8 T (a2 + [yl ) | . (02)

1 _ z
< (i\xe — ye|* + 6 M (|2 |? + \yf))/ (e = 1)*px.(dz)  (4.89)

|z[>n
where for the last inequality, we use the fact that (., z, ye, X¢) is a maximum
point of = € (0,7] x R x R x S.
Writing that Z(¢, z,x,i) < Z(te, Te, T, X) for i € S and using the inequality
(4.84), we have by noting that r(X.) and g are greater than 0 :

Ul(tax>i) - Ug(t,x,i) - g - 256)\(T_t)|x|2 S 'Ul(tEaanXE) - 'UQ(te?yE)Xe) - g
1 _
— el = p BT 4 )
€
1
< (X)) (A1+A2+A3+A4+A5>
o é -\ A(T—te) 2 2
D 2T + )
1
< m<A1+A2+A3+A4+A5>
Ao
. (T—te) 2 2 4
ST+ ) @)

Sending €, 1 | 0, with the above estimates of (A;)-(As)-(A43)-(A4)-(As), we ob-
tain :

20
T(Xo)
Choose A sufficiently large positive (A > 2+¢) and send 3, § | 0 to conclude that

g

vi(t,x, 1) — va(t, x, i) — i 20X =822 < |20 2A T (2 4 ¢ — \) (4.91)

vi(t,x,1) < vyt ).
This completes the proof. [

The uniqueness of the viscosity solution of the system (P) follows immediately
from this theorem because any viscosity solution is both a viscosity subsolution
and supersolution.

4.3.4. Existence of a viscosity solution for the system (P)

In this last section, we give a result for the existence of the viscosity solution
of the system (P) based on the Perron’s method. We make the remark that, by
using the change of variables (¢,£) = (T — s,Inz) the terminal value problem
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(P) can be converted to an initial value problem (or Cauchy problem) (Pg) [see
Appendix]|. Thus, we can see our problem as a particular case of that discussed
in Biswa et al.[16]. Before giving the main proposition of this section, we need
some preparatory results.

Proposition 4.1. Let S be a non-empty family of subsolutions of (Pgo) and for
1 €S,

v(t,&,0) = sup{u(t, &, i) : u(-, i) €S} for (t,€) € (0,T] x R.
Suppose v*(t,£,1) < oo for (t,£,1) € (0,T] xR xS, then v*(-,-,1) is a subsolution
of (Po).

Proof. We recall that v* denote the upper semicontinuous envelope of v. For
i € S, we want to prove that v*(-,-,4) is a subsolution of (Pg). First, we check

that the initial condition is satisfied. To do so, we use a barrier argument.
For every z € R and € > 0, define ¢, (£,7) = H(&,4) + x'(|€ — 2| + €)Y/,

where x? is the Lipschitz constant of H(¢,4). It follows that
0:el6,1) 2 H(z,9),
forall ¢, ze R, 1€ S, e > 0.

For a some constant A. > 0, it is easy to verifies that U, .(¢,&,1) := At + ¢, (€, 1)
is a supersolution of (Pg). Therefore, by using the comparison principle and the
definition of v,

£,1) S U, (t, &) forall§,z€e R, i €S, € >0,
)S( )(€> ):Uz,e(tagaz)
=0

and minimizing with respect to z,e€, the initial condition

u(t,
and hence v*(t, &,
So, by setting ¢
follows :

0(0,€,0) < inf(U)"(0,€,1) = inf 6. (&,9) = H(&,0)

Next, we need to prove that for all function ¢ € C1*((0, T|xR), if max( 7yxr[v*(+, -, 1) —
then at (¢,&),

e e
(it 6w (80,00, ), 258 SEED TOLED 7.€.0.07().0)) <o

Without the loss of generality, assume that [v*(-,-,4) — ¢](t,£) = 0, we can always
replace ¢ with ¢ + [v*(-,-,4) — ¢](, ) to achieve this;

Set now (t, &) = ¢(t, &) + € — E[* + |t — t|%, then [v*(-,-,i) — 1] attains its strict
maximum in (0,7] x R at (¢,£) so

and

[07 (-, 8) = ), €) < —[€ —€[* — [t —t]*.
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By the definition of v*, there is a sequence of (¢4, &) € [0,T] x R, (tx, &) — (t,€)
such that

lim ap = [U*(', ,Z) - ¢](t7£>7

k—o0

with ap = [U*(', ,Z) — ¢](tk7£k>

For (¢,€) € [0,T) x R, let v(t,, 1) := sup{u(t,&, ) : u(-,-,7) is a subsolution of
problem (Pg)} then there is u; subsolution of problem (Pg) such that
N :
’U(tka 5/67 Z) - % < Uk(tk, gka Z)

and ]
ap — E < [Uk(a 'ai) - Cb](tkagkai) < [u2(> '>i) - ¢](tk,€k,i).
But (-, -, 7) < v(-, 1) so

[wi (1) =Pt €) < —|€ =& =t — ¢,

Noting that (0, 7] x R is locally compact, there is a compact neighborhood V of
(t,€) such that [u}(-,-, i) —1] is upper semicontinuous on (0, 7] x R and has upper
bound, then its attains maximum on V at (sk, () € V, so

1

ak — E < [u2(7 '>i) - w](tkagk) < [UZ(a 'ai) - w](ska Ck) < _|Ck - E|4 - |5k - t|2’

and we have by noting that lim,_. ar = 0, (s, () — (¢,€) by considering the
extreme terms in the last inequality. Therefore,

lim [u} (-, -, 7) — ¥](sg, Cx) = 0,

k—o0
thus,
kh—{{.lo UZ(Sk, Ck, Z) = kh—>r20 ¢(Sk> Ck)a
and finally,

kh—golo w(slm Ck) = w(ta g) = 'U*(ta Ea Z)
Since that u(-, -, 7) is a subsolution of (Pg), we have at (¢, &)
H(Za t 29 uk(ta 59 Z)a uk(t> ga ')a

o o o

I E i u(),v)) <0,
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we then get by letting & — oo and using the continuity of operator H(i, ) that

a¢(t’g’l) 8w(t,g,2) 02¢(t,g,z) = - %
ot ’ 0¢ ! 852 ,Z(t,f,z,v ()71/1)> < 0.

But at (¢,&) o _ 08 0w _ 08 %% _ 026

ot T ot 9g  9e0gr T D
H<i7tvgvv*(t7gvi)7U*(tvg7')7"'

06(t,,1) 0p(t,€,0) POt &) . — .
ot oE o¢? VI(t,E v (),cf?)) <0.

This completes the proof that v*(-, -, ) is a subsolution.(]
Lemma 4.3. Let v : (0,7] x R — R be a supersolution of (Pg). Fori € S, let

Spii={v:v(--,1) is a subsolution of (Po) and v(-,-,i) < T}

If v(-,+,1) € Sz and v(-,-,i) > w(-, ) for all w(-,-) € S, then v.(-,-,1) is a
supersolution of (Py).

Proof. For i € S. Let v.(+,-,7) be the lower semicontinuous envelope of v(-, -, ),
where v(-,-,7) € Sp; and such that v(t,&,7) > w(t,§), (¢,€) € (0,7] x R for all
w(--) €S.

We claim that v,(-,-,4) is a supersolution of (Py).

We start by checking the initial condition. For z € R and € > 0, let ®, (&,7) =
H(E,1) — k(€ — 22+ €)Y2 and V. (¢, &,1) = —At + . (£, i) where k = max; &’
and A€ is a constant. Note that @, (£,7) < f[({,z’) for all &, z, e.

It is straightforward to verify that there is a constant A® such that V, (-, -, 1) is
subsolution of (Pg). Therefore, V, ((¢,&,4) < v(t,&, 7). It follows that V. (¢, &,19)
v4(t,&,4) and hence the initial condition holds :

a
<

0,(0,&,1) > sup V, (0,€,i) = sup D, (&,7) = f]({,z’).
We continue with proving that for a function-test ¢» € C%((0,T] x R) the inequa-
lity
Y Y Y at ) 86 Y 862
holds at some point (£,€) € (0,T] x R.

H(LE,E, ’U*(%,E, 7:),’0*( 71(5757’%@*(')71?)) > 07

By contradiction.
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We suppose that there exist a point (to,&) € (0,7] x R and a function-test
¢ € C?((0,T] x R) such that

min_ [vi(-, -, 1) — @] = [vi(+, -, 1) — @] (to, &),

(0,T] xR
and

H<Z’ t07 507 U*(t(]’ 507 7’)7 U*(t07 507 ')7 %7

d9(to, &) O*9(to, & »
(80g 0)7 ({(9502 0>’Z(t0,§0,l,v*(.)7¢)> < 0. (492)

We may assume [v.(-, -, 1) — ¢|(to, &) = 0, since the function ¢ can be modified
as ¢ + [vi(-, -, 1) — 9] (to, o)

Let us prove that v, (to, o, 1) < (o, &o). It is the case, otherwise as v, (o, &, 1) <
U(to, &) we will have v, (tg, o, 1) = T(to, &) and thus T — ¢ has a local minimum
at (to, &). But, Inequality (4.92) would contradict the fact T is a supersolution of
(Po) Then v, (to, 50, Z) < @(to, 50)

Now, for r > 0, € > 0 such that B,(ty, &) C (0,7] x R (closed ball centered at
(to, &) and

. . 2

1) H (04,6, 0(8,€) + € 01, ) + €, 208, 200 P90 T(1 € (t,) +¢,6)) <0,
V(t, 5) € Br(t()u 50)
(This is possible, thanks 4.92 and by continuity of ¢);

11) ['U*(" ’Z) - ¢](t>€) > € v(t>€) € 8Br((t0a§0))'

(This is possible because [v.(-, -, 7) — ¢] has a strict local minimum at (¢g, &)
and U*(t(]v 507 7’) = ¢(t07 50)) ;
111) ¢(t> 6) < @(t’ 6) — € \V/(t, 5) € BT(th 50)
(This is possible because T is lower semicontinuous and ¢(to, &) = vi(to, &o, 1) <
0(to, $0))-
Let
Z(t é‘ Z) — { U*(t7£7i) if (tv é-) < (OvT] X R\BT(t(]vé-O)
Y . maX{v*(t, 67 2)7 ¢(t> 6) + 6} if (t> 6) € Br’(t0> 50)

(4.93)

We claim that z(-,-, ) is a subsolution of (Py).

Let ¢ a test-function such that z(-,-,7) — ¢ has a local maximum at (t;,&;) €
(0, 7] x R.If 2(t1, &1, 1) = v*(t1, &1, 4) then v*(+, -, 4) — 1 has also a local maximum
at (t1,&1) and thus,

H<i’t1’§1’ Z(tl’gl’i)72(tl7€1a ')? %a

9p(t1,61) 0%¢(ty, :
¢(21€ 51)’ ¢(§t€12 51)’2@1’51’@’2(.)’@) <0. (4.94)

because v*(-,-,7) is a subsolution of (Pg) as proven in Proposition 4.1.

Suppose now that z(t1,&1,4) > v*(t1,£1,1). Then, from the definition of (-, 1),
we have that (t1,&1) € B,(to, &)-
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Note that Z('? ) Z) = max{v*(-, ) Z)a ¢+€} on Fr(tm 60)7 thus Z(tb 517 Z) = ¢(t1a 51)"’
¢, and 1) implies that (t1,&;) € B,(to, &o)-

Therefore, ¢ + € — 1) has a local maximum at (¢;,&;) and this implies

w0 ov_ 0 Pu_ 00

ot ot 0¢  oE’ 02 T agY

O(t1, 61 +y) — o(t1,61) <Vt & +y) — ¥t &),
for y such that (t1,& +y) € B.(to, &) Hence, by 1)

/3 2 &2
_'_T(Z)w(tlvgl) _Z(tlvé-lvzaw()vq/}) S 0. (495)
This complete the proof that z(-,-,7) is a subsolution of (Pyg).

op(t1,&1) L, OOt &) 1, 9%p(t, &)
T <r(z) -~ (z)) — —02(i)

We can now provide the proof of the lemma since z(-,-,7) is a subsolution satis-
fying
2:(t,&,9) Z sup{d(t,§) + €, v:(t, &, )} = o1, §) + € = 0.(t, &, i) + €
where the last inequality comes from the definition of v,(, -, 7).
Thus, z(s,y,i) > v(s,t,i) for some (s,y) € (0,7] x R. This contradicts the
definition of v(-, -, 7), 80 v.(+,, %) is a supersolution of (Pg). O
Now, we can state the main result on the existence of viscosity solution of problem
(Po).
Theorem 4.4 (Existence).
Assume conditions 4.20-4.21. Let @, v : [0,T) x R — R, two bounded continuous
functions which are respectively sub- and supersolutions of the system (Pg) and
such that w < ©. Then there exists a bounded continuous viscosity solution u to
the the system (Po) satisfying u < u < 7.
Proof. We will use Perron’s method. As in Lemma 4.3, for i € S we set
Spii={v: (-, 1) is a subsolution of (Po) and v(-,-,i) < U}.
We have that @ € Sy, so Sy; # 0.
Define
u(, -, 4) =sup{v :v(-, i) € Sty
by Proposition 4.1, u*(-,-,7) is a subsolution of (Py), so u*(-,-,i) € Sz, since
u*(+,+,7) < U. Then by Lemma 4.3, u.(-,-,7) is a supersolution of (Pg) and we
have @ < uy(-,-,7) < u*(+,-,7) < . Since,by the comparison principle, u*(-, -, i) <
U (+, -, 1) we have that u*(-,-,7) = u.(-, -,7) This concludes the proof. (J

4.4. CONCLUDING REMARKS

We have characterized in this paper the value of an European option under the
Markov-modulated exponential Lévy model. In particular, we have shown that
it is the unique viscosity solution of a system of coupled linear integro-partial



108

differential equations. The present work is a prerequisite for finding the nume-
rical procedures to approximate the option price. Our future work looks to this
direction with in mind the model calibration problem.

ACKNOWLEDGMENT

We wish to thank here my PhD advisor Manuel Morales and Mustapha Pemy for
helpful comments and suggestions.

APPENDIX

H<Za t> 67 f(t> 67 Z)a f(ta ga ')a 8f%f7i)> 6]”(;7;72')’ 82g§é§7i)al(t> 67 Z.a f()> h)) = 0
(Po) f(0.6,1) = H(& 1)

fort€(0,T], i €S, £ €R and h(t,-,i) € C}(R).
(4.96)

Here,

H(z,t,g, Ft.€,0), f(£.€,0), VARRNIOF h))

ot o6 7 0g?
9 i 0 i 0 :
_ Lgtg’ ) (r(i) - %a%))% _ %a%)% + (i) f(t,€,)



Chapitre 5

NUMERICAL ISSUES AROUND THE
REGIME-SWITCHING EXPONENTIAL-LEVY
MODEL : PRICING AND CALIBRATION

Dans ce chapitre, il est question de la calibration d’un modéle financier. Ce pro-
bléme consiste a la détermination des paramétres du modéle qui le rendent consis-
tant avec les observations du marché. Il s’agit de la démarche inverse a celle de
I’évaluation des prix d’options. Notre étude procéde au préalable a la recension des
techniques de Fourier utilisées pour déterminer le prix d’'une option Européenne
dans un modeéle exponentiel-Lévy avec changements de régime. Une application
est présentée pour illustrer 'applicabilité des résultats théoriques.

5.1. INTRODUCTION

In this chapter, we deal with the numerical problems arising in the practical
implementation of a regime-switching exponential-Lévy model. These problems
mainly concern the numerical valuation of an option when the model parameters
are known, and its reverse, the calibration of the model parameters consistent
with option prices observed in the market. More particularly, this exploratory
study aims at exposing the different (Fourier) approaches of solution found in the
literature.

Determining the theoretical price of a liquid option !, i.e., the price obtained

from the model, is necessary to calibrate the model to market data. In Chapter
4, we derived a system of integro-differential equations satisfied by the price of
an European option in a regime-switching exponential-Lévy model. In general,
such a system does not admit analytical solutions, therefore we often resort to
numerical methods in order to obtain approximate solutions (See, e.g., [20]).
In this regard, numerical methods commonly used in financial engineering are
finite differences schemes (see [125] and [22] and references therein) and finite
elements methods (see [1]). However, these techniques become tricky in the case
of this model, partly because of the presence of an integral term. Thus, methods

1e.g., a European option.
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based on direct calculation of the pricing operator given as the expectation of a
random quantity have proved to be suitable. These methods include Monte Carlo
techniques and methods based on Fourier transform. The Monte Carlo techniques
(see chapter 2) have the advantage that they can be applied to most types of
situation (different models and payoffs), but their major drawback is that they
are time-machine consuming and increase the computational complexity. This is
a handicap especially in regard to the calibration to market data and in this
case, Fourier methods provide a comparative advantage. At this point, we should
remark that the literature which addresses these issues is quite limited. One can
cite Chourdakis [30] which in a framework similar to ours proposes to use the
QUAD algorithm to determine prices of exotic options and Liu et al. [92] who
adapt the method of Carr and Madan to determine the price of a European
option in a regime switching Black-Scholes model. Recently, Jackson et al. [82]
proposed an algorithm based on the Fourier transform of the system of equations
(4.17)-(4.18).

In Section 5.2, we present the algorithm developed in [82] and we also describe
how the method of Carr and Madan can be applied in our context. In Section
5.3, we address the calibration problem with a few examples.

5.2. FOURIER METHODS FOR AN EUROPEAN OPTION VALUATION

In this section, we describe the state of art on Fourier methods for option pricing
in a regime-switching exponential-Lévy model. Firstly, we begin by recalling some
basics on the Fourier transform as we can see in any calculus book.

5.2.1. Basics on the Fourier Transform

Definition 5.1. Let f : R — R be an L'-integrable function. The Fourier trans-
form of f denoted by f is the function defined by

o~ +oo .
flw) =9[fl(w) := (x)e“*dx, w eR. (5.1)
When f is L'-integrable then one can retrieve the original by taking the inverse

Fourier transform as

. 1 [T . .
flx) =S fl(z) = Dy flw)e ™“%dw a.s. x € R. (5.2)
™ —00
The main properties of the Fourier transform are given below.

(1) f is a bounded and continuous function.

~

(2) 2L (w) = (iw)" f(w)
(3) [ *9(w) = f(w)j(w)
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5.2.2. Algorithm of Jackson, et al. [82]

The aim is to solve the system of nonlinear integro-differential equations satisfied
by the European option

%—‘;(t,T,S(t—),k) + St )g‘g(t T,S(t7), k)+10£52(t ) (t T,S(t7), k)

—-mVQTS())+AVQTS(%)()
4 / V(T 507 )e K~ VI T.S(0). k)
R\{0}

S~ DI T, 500), R ud2)
= 0, (5.3)
for k =1,2, ..., M associated to the terminal condition
V(T,T,S(T), k) = H(Spe'™, X(T) = k), k=1,2,..,M. (5.4)

By supposing the Ll-integrability of S +— V(¢,T,S, k) we have that its Fourier
transform w — Vi (¢, w) satisfies

Vi

N 1 N
B —(t,w) + dwrgVi(t,w) + iaiuﬂvk(t, w)

— Vit w) + AV (t,w)

+ /R\{o} [eiwz —1—iw(e® — 1)] IA/k(t,w)pk(dz) =0 (5.5)

and
Ve(T,w) = Hw), k=1,2,..,M. (5.6)
Setting R R R R
V(t,w) = (Vi(t,w), Valt,w), ..., Vi (t,w))
and /
T(w) = (T (), ¥ (w), ... ¥ (w))
where
1 toor
@W@g:mm—§ﬁw+/q Pw—l—m@%JﬂMM@ (5.7)

denotes the characteristic exponent (under Q) of the Lévy process Y*) when the
Markov chain state is ey.

Equations (5.5)-(5.6) can be written as

{ 0, V(t,w) + (A + Diag(¥ —r))V(t, (5.8)

)
£
= o
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Thus, we have a linear dynamical system in V (-, w) with terminal condition which
can be solved easily. Indeed, for any ¢ € T, one can verify that the solution at
time ¢ of (5.8) is given by

V(t,w) = exp { (A + Diag(¥(w) — g)) (T — t)} CH(w)- 1. (5.9)
In general, we have by the flow property

V(s,w) = exp { <A+ Diag(¥(w) — g))(t - s)} V(tw), 0<s<teT.
(5.10)

Taking the inverse Fourier transform in Equation 5.10, we obtain

A~

V(s,T,Y) =3 [exp { (A + Diag(¥(w) — g))(t . s)} .y(t,w)} (Y), 0<s<teT
(5.11)

’

with V(s,T,Y) = <V(s,T,Y,e1),V(s,T, Y,es), ... V(s,T,Y, eM)> .

This last result is the basis of the algorithm developed in [82] which we describe
in the following.

o "Fourier Space Time(FST)" Algorithm

We begin by discretizing the continuous-time Markov chain X. To do so, we define
a partition of the time domain T = [0, 7] in intervals {(t,, tn41] : tn = nAt, n €
N} with mesh size At such that X is held constant in each interval and switch
from one to another state with transition probabilities

o 14 a”At, k=1
P = { a At, otherwise. (5.12)

Using the martingale property of {‘7(15, T,Y;,X;) : t € T} and the fact that
Vtn, T,Y,,, Xy,) = e "XVt T,Y;,, X,,) on (tn, tay1], we obtain

V(tmTa Y;fnath) = EQ V(tn-l—l?T’ Y;fn+1’th+1) fé \/f?;]

= EQ EQ |:v(tn+17 T7 Kn+17th+1) fX

tnt1
(X)) V FL]|o(X0) v 7]
(5.13)

v ||F v

= EQ EQ |:v(tn+17 Tv }/;n+1 ) th+1)

because FX v FY C FX vV FY and X is markovian,

Furthermore, by the fact that Y is a Lévy process with characteristic exponent
U Xtnt) (W) on (ty, tiq] we have
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V(tn7 T’ }/;n? th) = EQ

n

o(Xi) VI || (X)) v 7]

L—

EC [V(th, T, Y\ X
— E° [g—l [exp { (\II(X%H)(w) - r(thH))At}

X ixtnﬂ (1, W)} ’(Ytna th)} ; (5.14)

where the last equality follows from (5.11). Finally, for X, = e; we deduce

M
V(tn T,V 5) = > Py~ [exp { (xIJ(thm(w) _ r(XW))At} Yy, (s, w)] (Ys,)
k=1
(5.15)

This recursive procedure allows to compute the price of a European option in
every state of the chain X at the present assuming that we know the price of the
previous period.

5.2.3. Algorithm of Carr and Madan (|26])

The method of valuing a European option due to Carr and Madan [26] has
become a reference in financial engineering over time . It makes possible to com-
pute, with good accuracy and minimum time, option prices for a family of strike
prices K. This is interesting in view of the calibration model’s performance. This
technique was first used for a regime-switching model by Liu, et al. [92]. In this
section, we show that it can be adapted to the broader context of regime-switching
exponential-Lévy models.

e Method of Carr and Madan (CM)

We aim at finding the numerical value C' at time 0 of a European call written on
an underlying S with strike K > 0 and maturity 7" > 0, knowing that the state
of the Markov chain X is Xy = e;.
By the fundamental theorem of asset pricing (see |79, 80|) and Equation 4.15,
we know that this value is given by

C(K,T,j) = BOJehreds (5 K>+)XO = j,5)

— S,E° [6—1"5 rsds(eYT _ ek>+’X0 —e, 50]

= C(k,T,j), (5.16)
where we have set k = log(K/Sp).

Assume the initial state Xy = e, is fixed, C'(k, T, j) is not rapidly decreasing be-
cause C(k, T, j) = So as k — —oo. Therefore, C'(k, T, j) is not Fourier-integrable.
To overcome this problem, Carr and Madan |26| have defined a modified price
as :

Conoa(k, T, 7) = e*C(k, T, j), (5.17)
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where a > 0 is chosen such that C,,.q(k, T, j) satisfies the integrability condition

/ |Crnoal(k, T, j)|dk < 0. (5.18)
Thus, the Fourier transform of the modified price is
djT(wvj) = / eiWkaod(kv Tuj)dkv (519)

and we deduce the original call price a(k,T ,7) by taking the inverse Fourier
transform of ¥ (w, j) multiplied by a correction term

—ak o]

Gk T.j) = © / e (w0, )

2 J_ o

e—ak

- [ e, (5.20)
0

™

where the last equality follows from the fact that the function w — e “*p(w, 7)
is even.

To obtain a numerical value of C, we only need an analytical expression of
Yr(w, j). This is quite simple because conditionally on filtration F5, Y is a Lévy
process which has a characteristic function given in a closed form in many cases.
If fr(x) denotes the conditional density function of Y72 given the filtration Fz¥
then, by double expectation law and Fubini theorem

Yr(w,j) = So /_OO elwheok g [e‘ Jo reds <6YT — ek)+‘X0 =e;, SO} dk

= S /_OO elkerk pQ [e‘ Jo reds /koo <em - ek)fT(x)dx‘Xo =ej, SO] dk

= SEQ[e ] /_ m ik (entok — ) dish fr(a)d| X = e, 0|
EC [e— I reds gy (o — §(1 + a)))XO —e,, 50]
= S , (5.21)

a?+a—w+i2a+1)w
where ¢r(w) denotes the conditional characteristic function of Y7 given the fil-
tration 7. By noting that

S
T +oo T 400
+ / / 2N (ds; dz) — / / (" —1—2)p~(dz)ds, (5.22)
0 —0 0 —o0

v

2We suppose that Y7 is independent of Sp.
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we obtain

or(w) = E© [ei“YT .7:7)5]
= E© [eti}” )]—"ff} ER [eiWYT@) ‘.7:7)5}
= 00 (W) (). (5.23)

If we set Ry := fOT rsds and Vp = fOT o2ds then Y}l) has a normal distribution
with mean (Rp — %VT) and variance Vp. Therefore,

. 1 1
g})(w) = exp <1w(RT - §VT) — iwsz)' (5.24)
Also, one can easily check that (see [51])
iw (2)
0P (w) = EC[e|FY]
M T 00
= exp [Z/ (Xs\ej>ds/ <e‘“’z —1—iw(e® — 1))pj(dz)}.
j=1 0 —00

(5.25)

The general formula admits more simpler expressions depending on the model
used. Indeed, we have :



TAB. 5.1. Expression of ffooo <ei“ —1—iw(e” — 1)>pj(d1’) depending on the type of model.

regime-switching model

Lévy measure p;

<ei“:” —1—1iu(e” — 1)>pj(dx)

Jo5

Black-Scholes NA NA
[—(z—pl)2 ] B . . 1 T
Merton Jump-Diffusion 5.’:/"2_ exp ( 2559) \i (6mu3]—%5§“2 —1) —iu <6u3~'+§5§ — 1) ,
Ve Vi
. . —ntz R T . .
Kou Jump-Diffusion P e Flgasoy + (1= p)nye™ 11 oy piu Lﬁl_iu - ﬁJ —(1- p)w{nfiiu + ﬁJ

Variance-Gamma (C,G,M)

Gjx 71\lj\z\

Ci& =10} + O iacoy

|z|

G;M; G, M,

Cjlog <Gij+(Mj—Gj)iu+u2> — iuCjlog G, M;+(M;—G;)—1

)

CGMY

7Gj\w\ 71%]'\1'\

Cj |ex|1—+yj1{x>0} + Cjic|1—+§/j Liz<o}

+OD(=Y;) | M7 (M + iu)¥ —

J

Y, .
ij—lu

Y

C,T(-Y)) GYi (G — iu)Yj — G;/J — iu((Gj — 1)YJ' -G )J

J

(g +1)% = M)

911
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Expressions (5.24) and (5.25) can be made explicit by using the sojourn time in
different states of X. Indeed, by letting

T
T‘j = / <Xs*|ej>ds> ] = ]-72a >M (526)
0

the sojourn time of X in the state e; during the time interval [0,7] we have
S T =T and

M-1
Br = 3l
=1
M-1
Vip = (07 — o3)Tj + o3 T. (5.27)
j=1
If we set for j =1,2,.... M — 1
. 1 1, .
Ay(w,j) = [(rj —7ry) + (5 + Oz)(af- — a%)}w + 51(0]2 — o)W —ila(r; —ry)
1
+-a(l+ oz)(a? — 012\4)],
2
1 1 1
Bi(w, M) = iw [T’M + (5 + a)a@] — 5@020%4 +ary + 50&(1 +a)oy. (5.28)

then
t M-1
e B (w — (14 ) = exp (Biw, M)T) exp (i Y Ai(w,))T;).  (5:29)
j=1

In the same line, by letting for j = 1,2, ..., M — 1

o(w, §) = /_ : (e<iw+l+a>z (w1t a) (e — 1)) pi(d2) (5.30)
we obtain
2 (w—i(1+a)) = exp <g0(w, M)T) exp ( 3 (plw, k) - plw, M))Tk). (5.31)
k=1

Therefore, we deduce from the previous calculations an explicit expression of
Fourier transform of the European call price :

exp (B(w, .M))EQ [exp (i S Aw, k)Tk) ’XO =ej, SO]
a?+a—-w+i2a+ 1w

Yr(w,j) =Sy (5.32)

where
Alw, k) = Aj(w, k) —i(p(w, k) —p(w,M)), k=1,2,...M —1
B(w,M) = Bi(w,M)+ p(w, M).

In conclusion, the determination of 1 (w, .) is reduced to calculating the charac-
teristic function of the random vector of sojourn time (77,75, ..., Th—1) for which
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we have an explicit expression given by lemma A.1 of Buffington and Elliott [24],

EQ [eXp (iMZ_lejTj) ‘XO} _ <eXp[(A +i Diag(61, 6, ...,9M_1,0))]X0‘l>
j=1

(5.33)
where 1 = (1,1,...,1) € RM.

5.2.4. Comparison of the Algorithms "Fourier-Stepping Time(FST)"
and "Carr-Madan(CM)"

Both algorithms presented above have many similarities but also some differences.

e The algorithm of Carr and Madan is based on the transformation of strike
variable K, while the FST algorithm uses a transformation of the terminal price
St. This has important implications : firstly, for the calibration procedure we
need to provide the theoretical prices of options for a wide range of strikes K in a
short time and in this case the method of Carr-Madan is the most competitive ;
secondly, when the number of states M of the Markov chain X is greater than
2, the algorithm of Carr and Madan involves an exponential matrix whose
estimation needs long calculations, thus it is more time-consuming. Contrarily,
the FST algorithm performs better in this case because the number of states is
already involved in the variable St.

e Both algorithms provide quite similar results : we will check this by calculating
the price of a European call option in a regime-switching Black-Scholes model
and a regime-switching Jump-Diffusion model with two states. The results are
presented in the following.

For our calculations, we considered a two-state RS-Black-Scholes model with pa-

rameters : r = (0.05,0.1), ¢ = (0.5,0.3), a;o = 20, ay; = 30, S = 100 and

T =1 and a two-state RS-Jump-Diffusion model with parameters r = (0.05,0.1),

o =(05,0.3), p = (=0.3,-0.5), 6 = (0.1,0.5), A = (5,1), a1z = 20, ay; = 30,

S =100 and T = 1.

FiG. 5.1. Comparison of the two algorithms "FST" and "Carr-
Madan" by the implied volatility generated



TAB. 5.2. FST versus Carr-Madan : European call prices

in a two-state RS-Black-Scholes model.
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log(K/S0) regime 1 regime 2
FST CM | Rel. Err.| FST CM | Rel. Err.

-0.3 34.7666 | 34.7736 0.02% 34.7507 | 34.7417 0.03%
-0.2 29.6855 | 29.6958 0.03% 29.6588 | 29.6423 0.06%
-0.1 24.7501 | 24.7635 0.05% 24.7127 | 24.6886 0.10%

0 20.1000 | 20.1160 0.08% 20.0533 | 20.0224 0.15%
0.1 15.8625 | 15.8806 0.11% 15.8091 | 15.7735 0.23%
0.2 12.1377 | 12.1569 0.16% 12.0810 | 12.0433 0.31%
0.3 8.9865 | 9.0059 0.22% 8.9302 | 8.8932 0.42%

TAB. 5.3. FST versus Carr-Madan : European call prices

in a two-state RS-Jump-Diffusion model.

log(K/S0) regime 1 regime 2
FST CM | Rel. Err. FST CM | Rel. Err.

-0.3 39.5131 | 39.4952 0.05% 39.5606 | 39.5902 0.07%
-0.2 35.0067 | 34.9904 0.05% 35.0517 | 35.0803 0.08%
-0.1 30.5208 | 30.5064 0.05% 30.5612 | 30.5872 0.09%

0 26.1425 | 26.1306 0.05% 26.1766 | 26.1987 0.08%
0.1 21.9625 | 21.9532 0.04% 21.9890 | 22.0062 0.08%
0.2 18.0676 | 18.0609 0.04% 18.0860 | 18.0976 0.06%
0.3 14.5328 | 14.5285 0.03% 14.5433 | 14.5493 0.04%
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5.3. CALIBRATION OF A FAMILY OF REGIME-SWITCHING EXPO-
NENTIAL LEVY MODELS

The calibration model can be defined as the statistical estimation of the para-
meters of that model from real data. This data is then viewed as realizations or
samples of the underlying stochastic process. In financial engineering, we work
particularly with a probability measure called risk-neutral @Q which is equiva-
lent to the historical probability measure P with the property that it does not
lead to arbitrage opportunity. Then, determining the model parameters that are
consistent with observed prices of liquid options is useful to evaluate and to
construct optimal hedging strategies for non-traded or over-the-counter deriva-
tives.

In this section, we discuss the calibration problem through a few examples.

5.3.1. Problem Setting

In general, if the set of parameters of a regime-switching exponential-Lévy model
is given by a vector 8 = (01, ...,0y), then the calibration problem consists in :

Finding 0 such that for a set of observed option prices
{C3@ K () € {1, N} x {1, M}
with maturities and strikes (1;, K;) we have :
CH(T3, K, 0) = E®e S U 1 (Syy K| AL, (6,§) € {1, .., Np} x {1,..., Mg}
(5.34)
where H denotes the payoff of the European option of maturity 7" and strike K.

The problem is the reverse of that of option pricing. Because of possible over-
determination of the model, it is possible to find several sets of parameters @ that
are compatible with the option prices observed on the market with the event that
the solution is not specific to the problem. Thus, the problem 5.34 is in the class
of problems called #ll-posed. To avoid this, the calibration problem is formulated
in terms of minimizing a certain distance between the theoretical prices derived
from the model and the prices actually observed, namely :

Finding 0 such that for a set of observed option prices
{CoT 1) (6,4) € 41,0, Ned x {1, . Mic}}
with maturities and strikes (T;, K;) we have :
0 = argmin L(0) (5.35)

where
Nt Mg

£0) =33 wiy (COSL T, Kj) — CHT K5))

i=1 j=1
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wi; > 0 denoted a weight optimally chosen as the inverse of the variance of
the residuals and C?(-,-,-) the option price given by the model. In practice, the

weights {wij © (4,4) € {1,..., Np} x {1,...,MK}} are chosen as the inverse of
square of bid-ask spread , i.e.,

1
(CF (i, Ky) — OB (ty, Kj))?
The idea is to estimate the parameters of the model which assure that the distance
between the prices given by the model and those actually observed in the market
is as small as possible.

Besides the choice of weighted least squares as loss function, there are other
examples that are used in the literature as shown in the Table below. 5.4.

Wiy X

TAB. 5.4. Usual loss functions used for model calibration.

Root Mean Square
Error (RMSE) \/Z > M (Gl G (L IG)P

no. of options

Average Relative
Percentage Error(ARPE) L£(0) = m Z Z 9 (S Tz 1) —C; (T3, K;)

(K)

Average Absolute
Error(AAE) L(0) = oaripriom Simn 2505 |CF (S T K) = CF (T, K5)|

no. of options

In the following, we shall discuss the calibration problem through three examples
of regime-switching exponential Lévy model.

Problem 1 : Case of the Regime-Switching Black-Scholes

In this model, the parameters r, pu et o depend on a continuous-time Markov
chain X. Then, the dynamics of the stock S under the risk-neutral measure is
given by :

t t
Sy = Spexp [/ r(XS)ds+/ O’(Xs)dWS} (5.36)
0 0
Here, we suppose that X has only two states, 0 and 1, and its intensity-matrix
is :
—Xo1 Aot
= ’ ’ . 5.37
@ < Ao —Ao ) ( )
The set of parameters we have to calibrate is
@cal = {O’Q, o1, )\071, )\170} (538)

where g;, )\0,1, >\170 Z 0.
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Problem 2 : Case of the Regime-Switching Jump-Diffusion Model

This model extends the previous one by adding a jump component. So, in addition
to r, u et o, we have the parameters corresponding to the jump a, u” and 6 which
also depend on X. Precisely, the risk-neutral dynamics of the stock is given by

t t t
Sy = Sy exp [ r(Xs)ds+ [ o(Xs)dW, + N7, (ds, dz)
0 0 0 JR\{0}

_ /0 t /R \{O}(ez—1—z)p§D(dz)ds . (5.39)

where the jump process N+, (¢,.) admits as predictable compensator
1

pip(dz)dt = (ei|X,-)p/P (2)dt. (5.40)

1=0

The Lévy measure of Y when X is in state e; is

1 (z — )2
ID(\ — _ i
piz) = o 5iV/2m P { 62 '

where «y, 9; are positive constant. The Markov chain X has the same characteristic
as above. Then, the set of parameters to be calibrated is

@cal = {a0> Qq, IUOJ> M{> 507 517 09,01, )‘071’ )\170} (541)

where ai,éi,ai, )\0,1, >\170 Z 0.

Problem 3 : Case of the Regime-Switching Variance-Gamma Model

The details of this are given in chapter ?7. We recall the risk-neutral dynamics
of the stock :

t t _
Sy = Spexp [/ r(Xs)ds +/ / 2N (ds, dz)
0 o Jr\o0}

- /0 t /R e oL ICXE

where the jump process Nio(t,.) has as predictable compensator
1
proldz)dt = (el X, )p) ©(2)dt. (5.43)
=0
The Lévy measure of Y when X is in state e; is

-Gz e—Mi|:c|

ve — oS 1o
Pi i {z>0} T C; 7] {z<0}
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where C;, G; and M; are positive constants. Then, the set of parameters to be
calibrated is :

e = {CO,Cl,GO,Gl,MO,Ml,)\071,)\170} (544)
where >\071, )\1,0 > 0.

5.3.2. Numerical Results

In this final section, we worked out the previous calibration problems by using
a sample data set consisting of 155 observed European call prices on the Dow
Jones Industrial average Index. Our data are recorded on March 3th, 2008 and
are given in Table 5.8 (see Appendix). The spot price at this moment is US$ 122.5
The risk-free rate is taken piecewise constant along each of the five intervals of
maturities and the dividend rate is taken to be zero. We have supposed that these
two quantities are the same in the two states of our model.
We have made a sequential calibration, i.e., for each T; € {47,75,110, 201,292}
we solve the problem
Mg
Q(Tl) = arg mein Z (Cf(st’ 1;, Kj) - C;(Tza Kj))2 (5'45)

J=1

where K; € {98,99,...,127,128}. All codes for minimization are in MATLAB.

For problem 1, the calibrated parameters are shown in Table 5.5 and it also in-
cludes the calibration error (RMSE) defined in Table 5.4.

TAB. 5.5. Calibrated parameters for problem 1.

‘ interval of maturities ‘ b'\(] 81 )\0,1 )\1,0 RMSE
(0-47] 0.2458 0.2463 0.1203 0.1525 0.0039

(47-75] 0.2401 0.2408 0.2841 0.3599 0.0043
(75-110] 0.2379 0.2387 0.3807 0.4824 0.0051
(110-201] 0.2298 0.2307 0.1294 0.1640 0.0055
(201-292] 0.2209 0.2220 0.1072 0.1358 0.0055

FiG. 5.2. RSBlack-Scholes model : Comparison between the mar-
ket prices o’ and model prices *’

For problem 2, the calibrated parameters are given in Table 5.6.



TaB. 5.6. Calibrated parameters for problem 2.

‘ interval of maturities ‘ ,[/L\O 80 &0 50 ,El 6’1 al 51 )\071 )\170 RMSE
(0-47| -0.0129 0.2457 0.2419 0.0304 -0.1056 0.2444 0.0585 0.0153 1.2088 0.0266 0.0038

(47-75] -0.0019 0.2407 0.0315 0.0045 -0.0142 0.2409 0.0080 0.0020 0.1571 0.0034 0.0043
(75-110] -0.0281 0.2371 0.0603 0.0591 -0.1414 0.0007 1.9952 0.1041 0.5042 4.2449 0.0033
(110-201] -0.0030 0.2296 0.0052 0.0064 -1.5708 0.1633 0.0694 0.9753 0.5044 2.5482 0.0037
(201-292] -0.0014 0.2209 0.0023 0.0028 -0.7015 0.1614 0.0947 0.43772 0.23301 1.1468 0.0037

vel
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Fia. 5.3. RSJump-Diffusion model : Comparison between the mar-
ket prices o’ and model prices *’

The calibrated parameters for problem 3 are given in Table 5.7.



TAB. 5.7. Calibrated parameters for problem 3.

‘ interval of maturities ‘ Co Go M, C Gy M, Ao, Ao  RMSE
(0-47] 7.5957 8.1103 0.4907 0.8701 0.8429 0.2453 6.2510 0.5885 0.0038

(47-75] 10.6480 11.4777 0.6980 1.0059 0.8099 0.3490 8.7628 1.3056 0.0037
(75-110] 9.0202 17.3724 0.0760 9.0683 15.0383 0.0608 0.6564 1.4792 0.0010
(110-201] 7.6622 14.0319 0.0612 7.5966 12.1641 0.0489 0.5197 1.1973 0.0015
(201-292] 9.8108 0.0426 1.2748 5.5107 8.5315 0.0341 0.3442 0.8586 0.0014

9¢1
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FiGg. 5.4. RSVariance-gamma model : Comparison between the

market prices ’o’ and model prices "*’

Looking from the tables 5.6 and 5.7, we see that the calibration results are more
accurate when we add jumps to the first model. Indeed, the RMSE decreases
when we move from regime-switching Black-Scholes to regime-switching Variance-
gamma model. Figure 5.2, Figure 5.3 and Figure 5.4 show the result of the ca-
libration to Dow Jones options for the three models. When we move from the
first to the third model, the fit is practically indistinguishable and the calibration
performs well with slightly less success on the shortest maturity.



APPENDIX

TaB. 5.8. DJX options prices.

Strike

S/K

Time to maturity (in days)

47

75

110

201

292

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

1.25
1.23
1.22
1.21
1.20
1.19
1.18
1.16
1.15
1.14
1.13
1.12
1.11
1.10
1.09
1.08
1.07
1.06
1.05
1.04
1.04
1.03
1.02
1.01
1.00
0.99
0.99
0.98
0.97
0.96
0.95

24.43
23.40
22.50
21.55
20.63
19.68
18.75
17.83
16.90
15.98
15.10
14.23
13.33
12.45
11.63
10.78
9.95
9.18
8.40
7.68
6.93
6.23
5.58
4.95
4.35
3.80
3.25
2.74
2.28
1.90
1.52

24.60
23.63
22.73
21.80
20.88
20.08
19.15
18.25
17.30
16.53
15.60
14.75
13.98
13.10
12.30
11.50
10.80
9.98
9.30
8.58
7.85
7.20
6.58
9.93
9.35
4.80
4.23
3.75
3.25
2.79
2.37

24.95
24.10
23.20
22.30
21.40
20.55
19.70
18.85
18.00
17.15
16.33
15.50
14.70
13.93
13.18
12.40
11.65
10.93
10.23
9.53
8.83
8.18
7.55
6.93
6.35
2.78
0.23
4.73
4.23
3.78
3.35

25.88
25.03
24.18
23.35
22.53
21.70
20.90
20.10
19.30
18.53
17.75
17.03
16.28
15.53
14.80
14.10
13.40
12.70
12.03
11.35
10.73
10.10

9.50

8.90

8.33

7.78

7.23

6.73

6.23

5.73

5.28

26.63
25.83
25.03
24.20
23.40
22.68
21.88
21.13
20.38
19.63
18.90
18.18
17.35
16.65
16.00
15.35
14.63
13.98
13.33
12.73
12.05
11.45
10.85
10.33

9.75

9.23

8.63

8.15

7.63

7.15

6.70
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