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Abstract

Nowadays land use/land cover maps at regional scale are commonly generated with

satellite data of medium spatial resolution (between 10 m and 30m). The National Land Cover

Database (NLCD) in the United States and the Coordination of Information on the Environment

(CORINE) Land Cover program in Europe, both based on LANDSAT images, are two typical

examples. However, these maps become rapidly obsolete, especially in highly dynamic areas

such as mega cities and metropolitan areas. In many applications, such as to monitor the water

quality affected by the Land use/Land cover (LULC) change, the spread of invasive species,

policy making for city managers, annual updating of LULC maps is required. Since 2007, the

USGS offers access to ortho-rectified LANDSAT imagery free of charge. Both archived (since

1984) and recently acquired images are available. Without doubt, such data availability will

stimulate the research on fast and cost effective methods and techniques for “continuous”

regional land cover/use map updating using medium resolution satellite imagery.

The objective of this research was to evaluate the potential of such medium resolution

satellite imagery for providing information on changes useful for the continuous updating of

LULC maps at a regional scale in the case of the Montreal Metropolitan Community (MMC)

area, a typical North American metropolis.

Previous studies have demonstrated that many factors could affect the results of

automatic change detection such as: (1) the characteristics of the images (spatial resolution,

spectral bands, etc.); (2) the method itself used to automatically detect changes; and (3) the

complexity of the landscape. In the study site except for the Central Business District (CBD) and

some commercial streets, land uses (industrial, commercial, residential, etc.) are well delimited.

Thus this study was focused on the other factors affecting change detection results, namely, the

characteristics of the images and the method of change detection. We used 6 spectral bands of

LANDSAT TM/ETM+ with 30 m spatial resolution and 3 spectral bands of ASTER-VNIR with

15 m spatial resolution to evaluate the impact of image characteristics on change detection.

Concerning the change detection method, we decided to compare two types of automatic

techniques: (1) techniques providing information principally on the location of changed areas,
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and (2) techniques providing information on both the location of changed areas and the type of

changes ("from-to" classes).

The main conclusions of this research are as follows:

Change detection techniques such as image differencing or change vector analysis

applied to LANDSAT multi-temporal imagery provide an accurate picture of changed areas in a

fast and efficient manner. They can thus be integrated in a continuous monitoring system for a

rapid evaluation of the volume of changes. The produced maps could be helpful to guide the

acquisition of high spatial resolution imagery if a detailed identification of the type of changes is

required.

Change detection techniques such as principal component analysis and post-classification

comparison applied to LANDSAT multi-temporal imagery could provide a relatively accurate

picture of “from-to” classes but at a very general thematic level (for example, built-up to green

space and vice-versa, forest lands to bare soil and vice-versa, etc.). ASTER images with better

spatial resolution but with less spectral bands than LANDSAT images do not provide more

detailed thematic information (for example forest land to commercial or industrial areas).

The results indicate that future research should be focused on the detection of changes in

the vegetation cover as medium resolution imagery is highly sensitive to this type of surface

cover. Maps indicating the location and the type of changes in vegetation cover are in itself very

useful for various applications, such as environmental monitoring or urban hydrology, and can

be used as indicators on land use changes. Techniques such as change vector analysis or

vegetation indices could be used to this end.

Keywords: Land Cover/Use, Urban areas, Change Detection, Medium Spatial-Resolution

Satellite-Imagery, LANDSAT TM, LANDSAT ETM+, ASTER-VNIR.
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Résumé

De nos jours les cartes d’utilisation/occupation du sol (USOS) à une échelle régionale

sont habituellement générées à partir d’images satellitales de résolution modérée (entre 10 m et

30 m). Le National Land Cover Database aux États-Unis et le programme CORINE

(Coordination of information on the environment) Land Cover en Europe, tous deux fondés sur

les images LANDSAT, en sont des exemples représentatifs. Cependant ces cartes deviennent

rapidement obsolètes, spécialement en environnement dynamique comme les megacités et les

territoires métropolitains.  Pour nombre d’applications, une mise à jour de ces cartes sur une base

annuelle est requise. Depuis 2007, le USGS donne accès gratuitement à des images LANDSAT

ortho-rectifiées. Des images archivées (depuis 1984) et des images acquises récemment sont

disponibles. Sans aucun doute, une telle disponibilité d’images stimulera la recherche sur des

méthodes et techniques rapides et efficaces pour un monitoring continue des changements des

USOS à partir d’images à résolution moyenne.

Cette recherche visait à évaluer le potentiel de telles images satellitales de résolution

moyenne pour obtenir de l’information sur les changements des USOS à une échelle régionale

dans le cas de la Communauté Métropolitaine de Montréal (CMM), une métropole nord-

américaine typique.

Les études précédentes ont démontré que les résultats de détection automatique des

changements dépendent de plusieurs facteurs tels : 1) les caractéristiques des images (résolution

spatiale, bandes spectrales, etc.); 2) la méthode même utilisée pour la détection automatique des

changements; et 3) la complexité du milieu étudié. Dans le cas du milieu étudié, à l’exception du

centre-ville et des artères commerciales, les utilisations du sol (industriel, commercial,

résidentiel, etc.) sont bien délimitées. Ainsi cette étude s’est concentrée aux autres facteurs

pouvant affecter les résultats, nommément, les caractéristiques des images et les méthodes de

détection des changements. Nous avons utilisé des images TM/ETM+ de LANDSAT à 30 m de

résolution spatiale et avec six bandes spectrales ainsi que des images VNIR-ASTER à 15 m de

résolution spatiale et avec trois bandes spectrales afin d’évaluer l’impact des caractéristiques des

images sur les résultats de détection des changements. En ce qui a trait à la méthode de détection

des changements, nous avons décidé de comparer deux types de techniques automatiques : (1)

techniques fournissant des informations principalement sur la localisation des changements et (2)
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techniques fournissant des informations à la fois sur la localisation des changements et sur les

types de changement (classes « de-à »).

Les principales conclusions de cette recherche sont les suivantes :

Les techniques de détection de changement telles les différences d’image ou l’analyse des

vecteurs de changements appliqués aux images multi-temporelles LANDSAT fournissent une

image exacte des lieux où un changement est survenu d’une façon rapide et efficace. Elles

peuvent donc être intégrées dans un système de monitoring continu à des fins d’évaluation rapide

du volume des changements. Les cartes des changements peuvent aussi servir de guide pour

l’acquisition d’images de haute résolution spatiale si l’identification détaillée du type de

changement est nécessaire.

Les techniques de détection de changement telles l’analyse en composantes principales et

la comparaison post-classification appliquées aux images multi-temporelles LANDSAT

fournissent une image relativement exacte de classes “de-à” mais à un niveau thématique très

général (par exemple, bâti à espace vert et vice-versa, boisés à sol nu et vice-versa, etc.). Les

images ASTER-VNIR avec une meilleure résolution spatiale mais avec moins de bandes

spectrales que LANDSAT n’offrent pas un niveau thématique plus détaillé (par exemple, boisés

à espace commercial ou industriel).

Les résultats indiquent que la recherche future sur la détection des changements en milieu

urbain devrait se concentrer aux changements du couvert végétal puisque les images à résolution

moyenne sont très sensibles aux changements de ce type de couvert. Les cartes indiquant la

localisation et le type des changements du couvert végétal sont en soi très utiles pour des

applications comme le monitoring environnemental ou l’hydrologie urbaine. Elles peuvent aussi

servir comme des indicateurs des changements de l’utilisation du sol. De techniques telles

l’analyse des vecteurs de changement ou les indices de végétation son employées à cette fin.

Mots-clés : Occupations/utilisations du sol, milieux urbains, détection des changements,

ETM+/TM LANDSAT, VNIR-ASTER.
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Chapter 1 Introduction

1.1 Land Use/Land Cover Change Monitoring in Urban Territories:

Problem Statement

Land Use/Land Cover (LULC) inventories and maps in urban territories provide basic

information to various application fields including: territorial management and planning, traffic

studies, modeling and planning of public transportation, studies in environmental quality, urban

climatology and urban hydrology. According to Jensen (2005), land use refers to what people do

on the land surface, such as agriculture, commercial, residential, and transportation whereas land

cover is the type of material present in the landscape such as water, vegetation, soil, and man-

made materials. Taxonomy systems used for mapping purposes are hierarchical in nature with

the most generalized level, a blend of land cover and land use categories such as built-up and

urban areas, agriculture, forests, and rangeland. Such thematic levels are depicted on small scale

maps (e.g. 1:250 000 or smaller) and are often used for studies at the national level. At more

detailed levels, land use categories are almost exclusively defined. In built-up and urban areas

categories such as single- or multi-family residential areas, chemical industries, and shopping

centers are specified. These categories are depicted on medium and high scale maps helpful for

studies at regional and local levels (Anderson et al. 1976). Thus, in general, taxonomy systems

and corresponding maps are usually termed as LULC taxonomy systems and maps.

Change detection is defined as the process of identifying differences in the state of an

object or phenomenon by observing it at different times (Singh, 1989). In the context of LULC

mapping, change detection is applied principally for the updating of LULC maps. In fact, these

maps can become rapidly obsolete especially in urban territories due to the densification of the

built-up area and the urban sprawl.

Remotely sensed images, either space-borne or airborne, play an important role in

mapping land use patterns and updating LULC maps. Ortho-photography and digital aerial or

satellite imagery of high spatial resolution are used for mapping LULC at large scales, mostly by

visual interpretation, while space-borne imagery of medium (10m~50m) spatial resolution is
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used for mapping LULC at regional and national scales, mostly by digital analysis and

classification.

Based on medium (10-50m) resolution imagery provided by various satellite missions

(LANDSAT, SPOT, IRS, etc.), programs of systematic LULC mapping at regional scales and

map updating come into being worldwide. In the United States, for example, two generations of

the National Land Cover Dataset (NLCD), a component of the USGS Land Cover

Characterization Program, has been released covering the United States. The first generation,

NLCD 1992, was produced for the conterminous United States on the basis of 1992 LANDSAT

Thematic Mapper (TM) imagery and supplemental data by the U.S. Geological Survey (USGS),

in cooperation with the U.S. Environmental Protection Agency. The second generation, NLCD

2001, was released on 2007. It is produced on the basis of LANDSAT Enhanced Thematic

Mapper (ETM+) imagery covering the entire U. S. A., including Hawaii, Alaska, and Puerto

Rico. A third generation, NLCD 2006, is underway based on LANDSAT images of 2006.  The

method used to generate the NLCD 2006 dataset is to detect changed areas between 2001 and

2006, classify them and integrate the results into the NLCD 2001 dataset. The NLCD datasets

are distributed in 30m resolution.

CORINE (Coordination of Information on the Environment) Land Cover (CLC) Data is

another important application of LANDSAT satellite imagery. Two generations have been

released in resolution of 100m. The first generation, CLC 1990, has been produced in 1996 for

most of the European countries based on the 1990 LANDSAT TM. The second generation, CLC

2000, has been produced in 2007 based on 2000 LANDSAT 7 ETM+. The method to generate

CLC 2000 is to detect the changes between the images acquired in 2000 and in 1990, similar to

the method used by the USGS for NLCD 2006. The detected changes are then classified and

integrated to the dataset CLC 1990 to create the dataset CLC 2000.

In Canada, LULC maps for the entire country are not available at scales similar to the

above mentioned map series. Two governmental programs of the Ministry of Environment

intended to systematically mapping LULC in rural and urbanized areas with provision to

actualize them in regular intervals, the Canada Land Inventory and the Canada Land Use

Monitoring Program (CLUMP), are abandoned since many years. Only some land cover datasets
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are presently available to the public, such as the Circa-2000 Northern Land Cover of Canada at

30 m resolution, covering the North Provinces derived from LANDSAT 5 TM and LANDSAT-7

ETM+ between the years of 1999-2001 (Olthof et al., 2009), and the Ontario Land Cover data

derived from LANDSAT TM imagery from the early 1990s. Local governmental agencies in

urban communities and municipalities maintain LULC mapping activities and update their maps

more or less at regular intervals, usually every 5 years or even more. However, such an updating

rate, although responding relatively well to the needs of territorial managers and planners, is not

adequate to support studies related to other application fields such as transportation modeling,

environmental quality monitoring, etc. For these applications, especially in highly dynamic areas

such as Metropolitan communities and mega-cities, a continuous monitoring of changes is the

optimum. To illustrate this we present as an example the situation in the Montreal Metropolitan

Community (MMC) area, our study site. The MMC, like other metropolitan areas of the world,

shows rapid changes in land use/land cover, especially from the late nineties. The value of

building permits is a good indicator of the rapidity of changes. According to Statistics Canada,

this value from less than 2 billion dollars in 1995 peaks over 6.5 billion dollars in 2007. Even

though there is a slight decrease in 2008, the value is still up to 6.4 billion CAD. Detailed

information is listed in Table 1. Many new constructions have been developed in vacant lands

and even some industrial or recreation lands, converted to residential areas. According to a recent

study by Cavayas and Baudouin (2008) within the urban perimeter of the MMC area, vacant

lands are built-up in at a rate of about 7 km2 per year. This development has an important effect

especially in the forest land cover. Only in the Montreal Island in the period between 1999 and

2005, 18% of the forest lands (private sector) were lost converted mostly to residences (Cavayas

and Baudouin, 2008). This phenomenon has therefore been causing increased land consumption

and the continuous modification in the status of land use/land cover over time. An evaluation of

the nature of these changes at an annual rate is thus important for the pre-mentioned applications.

Since 2007, USGS offers free of charge access to ortho-rectified LANDSAT imagery

(from 1984 to present) as well as to other imagery types of medium spatial resolution (ASTER

imagery data covering U.S.A.). Every year at least one cloud-free LANDSAT image could be

found covering any part of the world. It is thus interesting to examine if this type of imagery
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could constitute the basis for a continuous monitoring of changes in LULC in metropolitan areas

such as the Montreal one.

Table 1: Building permits in Montreal region from 1995-2008

Year

Total residential
and non-

residential
(dollars -

thousands)

Total
residential
(dollars -

thousands)

Residential
percent of
the total
building
permits

Total built
permits dollar

_Percent
Change (year-

to-year)

Residential
permits
dollar_
Percent
Change
(year-to-

year)
1995 1,933,651 860,466 44% ---- ----
1996 1,954,863 965,938 49% 1.1 12.3
1997 2,414,381 1,216,638 50% 23.5 26
1998 2,781,922 1,310,796 47% 15.2 7.7
1999 2,935,141 1,536,451 52% 5.5 17.2
2000 3,239,861 1,637,948 51% 10.4 6.6
2001 4,218,111 1,892,141 45% 30.2 15.5
2002 4,604,357 2,731,273 59% 9.2 44.3
2003 5,278,343 3,453,246 65% 14.6 26.4
2004 6,232,700 4,356,745 70% 18.1 26.2
2005 5,800,395 4,094,856 71% -6.9 -6
2006 6,034,021 3,955,144 66% 4 -3.4
2007 6,506,449 4,062,093 62% 7.8 2.7
2008 6,442,007 4,252,441 66% -1 4.7

(Source: Statistics Canada 2009. CANSIM table 026-0006. Retrieved from
http://www.statcan.gc.ca/datawarehouse/paiement/paiement.cgi?demande_id=200910151550085
5613 (October 15 2009))

1.2 Study objectives and hypotheses

Automatic change detection methods, usually applied with medium resolution imagery,

imply the comparison of geometrically compatible multi-temporal images on a pixel by pixel

basis. These methods could be divided into two broad categories (Lu et al., 2003): (i) methods

indicating only the location of changed areas and (ii) methods providing both the location and

the type of changes (“from-to” classes). Methods of the first category are based on spectral

signatures comparison and could be used to provide information on material cover changes such

as vegetation lost (or gained). Such information is valuable for studies related especially to
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environmental quality evaluation (Cavayas and Baudouin, 2008). On the other hand, these maps

could be used as a basis for obtaining higher resolution imagery covering areas that have major

changes. Methods of the secondary category are based on different classification algorithms and

could provide information useful for studies seeking to understand the trends in the development

of urban areas for modeling or territorial planning purposes. As demonstrated by many previous

studies with medium resolution imagery of the LANDSAT type (30 m spatial resolution) in

urban areas only general classes of LULC could be extracted with sufficient accuracy such as

built-up, forest lands, grasslands and water (e.g., Cavayas and Baudouin, 2008). Under some

particular circumstances, depending mostly on the structure of the urban territory, more detailed

categories can be extracted such as residential and commercial/industrial, especially in the

outskirts and in the urban fringe. Such detailed categories are more easily extracted with imagery

of relatively finer resolution (10-20 m).

Few attempts have been made to evaluate the potential of both approaches for the multi-

temporal analysis of medium resolution multispectral images for LULC change monitoring in the

Montreal region. The most recent study was done by Cavayas and Baudouin (2008) in the

context of the “Biotope” project. This project was aiming at the examination of the correlation

between LULC and changes in the thermal environment in the Montreal Metropolitan

Community Area for the period 1984-2005. However, the approach employed for change

detection was the so-called “map guided” change detection. In this approach the existing LULC

map is compared to a recently acquired image and as that this method is more oriented to LULC

map updating rather than change monitoring.

For all these reasons we decided to confine the following objectives of our study:

(a) Examine the possibilities of LANDSAT multispectral images to provide accurate

information on the location of changed areas using comparison methods based solely

on spectral signatures. Given the number of available spectral bands and their

location in the solar spectrum spanning blue, green, red, near infrared, and short wave

infrared wavelength ranges. We hypothesize that these images could effectively

provide such information being sensitive especially to vegetation cover changes.
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(b) Study the possibilities of LANDSAT multispectral images to provide accurate

information on the type of changes specifically applied to the Montreal Metropolitan

Community area. Regarding the level of detail on LULC extractible from these

images in the Montreal area, only limited evidence exists in the literature provided by

a study of Desjardins and Cavayas (1991).  The authors using a LANDSAT TM

image and visual interpretation criteria found that it was possible to identify within

the built-up area without particular difficulties only the residential and some

industrial areas.  Categories characterized by vegetation cover such as parks, golf

courses and forested areas, were easily identified.  Thus we hypothesize that using

classification algorithms based on spectral signature of objects, only general LULC

categories should be extractible from LANDSAT images with sufficient accuracy

even in the case of the Montreal urban environment.

(c) Compare the performance of other types of images of better spatial resolution

available from the USGS to that of LANDSAT images concerning the identification

of the type of changes. Among the available images, only these 15 m resolution

VNIR images which provided by the ASTER sensor onboard of the experimental

TERRA satellite present a particular interest in the context of change monitoring.

However, the spatial coverage of one VNIR image is only about 10% of LANDSAT

coverage and much less relatively frequent covering of the Montreal area (from 2000

to present). To the best of our knowledge, no studies of the Montreal area using this

type of imagery exist. We hypothesize that the change in resolution from 30 m to 15

m should have an impact on the minimum size of detected areas of change. This is

important in the case of existing sparsely built-up areas. It is less important in the case

of newly developed areas mainly in the outskirts of urban areas. Concerning the level

of detail, we expect that the identification of some categories within the built-up area

should be easier than with LANDSAT images.
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1.3 Structure of the thesis

This thesis is organized into seven chapters. The first chapter provides background and

rationale for the study and research objectives. The second and third chapters are literature

reviews and outline the results of previous studies on LULC mapping using medium spatial

resolution imagery and on the automatic change detection techniques, respectively. Chapter four

describes the framework of this study, including the study site, the images used in this study and

the pre-processing as well as the methodological approaches. Chapter five explains how the data

have been processed for detecting the LULC changes in the case of LANDSAT images. Chapter

six compares the results of change detection obtained with ASTER-VNIR and LANDSAT

imageries. Finally, chapter seven presents the main conclusions of this study.
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Chapter 2 Mapping LULC from Medium Resolution Multi-

spectral Imagery

2.1 Introduction

The aim of our study is to examine the potential of medium resolution imagery for LULC

change to monitor in urban areas. Thus first of all we have to define the topology of LULC

extractible from this imagery. The next section is a brief review of the classification schemes

used in LULC mapping. As also mentioned we would like to study the possibilities of various

types of medium resolution imagery readily available free from the USGS services. More

specifically we are interested in LANDSAT imagery (TM or ETM+) and to ASTER -VNIR

imagery. The former is a multispectral imagery with six bands covering almost the entire solar

spectrum (visible, near- and shortwave-infrared) with 30 m spatial resolution while the latter is a

multispectral imagery with three spectral bands (green, red and near-infrared) of finer resolution

(15 m) than the LANDSAT images. So the question addressed in this study is how the

interpretation of spatial and spectral resolution affects the change-detection results. Section 2.3

presents a review of studies addressing this particular question.

2.2 LULC Classification Schemes

The best way to ensure that useful information on urban LULC is derived from remotely-

sensed data is to base our work on a standardized LULC scheme (Chen and Stow, 2003). Many

LULC classification schemas have been developed, such as: (a) the Land-Base Classification

Standard (LBCS) developed by the American Planning Association (2006); (b) the CORINE

(Coordination of information on the environment) in Europe; (c) the PELCOM (Pan-European

Land Cover Monitoring) and (d) the USGS LULC classification system for use of remotely-

sensed data. In North America and in the context of remote sensing image analysis, the standard

LULC classification system is the USGS (Anderson et al., 1976), even though each city or urban

community may have a slightly different system. This last scheme (d) was adopted since our

study area was the Montreal Metropolitan territory.
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USGS LULC classification system is a four level hierarchical taxonomy system. Table 2

shows the first two levels accessible, in principle, from medium resolution imagery (Jensen

2007): Level I (9 classes) and Level II (37 classes).
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Table 2: Land use and land cover classification system for use with remotely sensed images

(Adopted from Jensen, 2007)

Level I Level II

1 Urban or Built-up Land

11 Residential

12 Commercial and Services

13 Industrial

14 Transportation, Communications, and Utilities

15 Industrial and Commercial Complexes

16 Mixed Urban or Built-up Land

17 Other Urban or Built-up Land

2 Agricultural Land

21 Cropland and Pasture

22 Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultural Areas

23 Confined Feeding Operations

24 Other Agricultural Land

3 Rangeland (Grass)

31 Herbaceous Rangeland

32 Shrub and Brush Rangeland

33 Mixed Rangeland

4 Forest Land

41 Deciduous Forest Land

42 Evergreen Forest Land

43 Mixed Forest Land

5 Water

51 Streams and Canals

52 Lakes

53 Reservoirs

54 Bays and Estuaries

6 Wetland
61 Forested Wetland

62 Non-forested Wetland

7 Barren Land

71 Dry Salt Flats

72 Beaches

73 Sandy Areas other than Beaches

74 Bare Exposed Rock

75 Strip Mines Quarries, and Gravel Pits

76 Transitional Areas

77 Mixed Barren Land

8 Tundra

81 Shrub and Brush Tundra

82 Herbaceous Tundra

83 Bare Ground Tundra

84 Wet Tundra

85 Mixed Tundra

9 Perennial Snow or Ice
91 Perennial Snowfields

92 Glaciers
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2.3 Spatial Resolution vs. Spectral Resolution

2.3.1 Definitions

Spatial resolution refers to the size of the smallest feature depicted on a map or visible on

an image. Two major factors are affecting the spatial resolution of the images: the size of the

resolution cell and the contrast between the object and the surrounding ground. The resolution

cell is defined by the instantaneous-field-of-view (IFOV) and the height of the sensor (Figure 1).

In practice, when speaking about spatial resolution we refer to the size of the resolution cell by

ignoring the impact of the contrast. In fact, as one sole radiance measurement of the sensor

corresponds to the entire resolution cell, the size of the object has to be at least equivalent to the

size of the resolution cell to de distinguishable on the image. However this is not always the

case, since an object of the size of a resolution cell could be “undetectable” if it presents a low

contrast with its surrounding ground. On the contrary, some high contrast features such as

narrow rivers and canals or roads are visible even if their width is less than the sensor’s

resolution cell. Many practitioners use as a rule of thumb that an object to be not only detected

but also identified has to have a size at least 4 times the resolution cell of the sensor (Colwell,

1983).

Figure 1: Angular IFOV and height above ground of the sensors define the size of the resolution
cell.

(Adopted from Colwell, 1983)
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Spectral resolution, on the other hand, is the number and width of specific wavelength

interval (bands/channels) in the electromagnetic spectrum to which a remote sensing instrument

is sensitive. Bands/channels refer to recorded radiances by the sensor in different portions of the

electromagnetic spectrum for the same material on the ground. As indicated by Colwell (1983),

the surface of the Earth is illuminated by the sun’s radiation covering a large spectrum of

wavelengths. Different materials have different characteristic absorption when solar radiation

impinges on them. For instance, vegetation has a relatively strong absorption around the red

wavelength. What is not absorbed by an object is reflected into space and is partially captured by

the sensor. The reflection capacity of a material through the solar spectrum is described by its

spectral signature (Figure 2). These signatures are often used in remote sensing as a means to

identify LULC classes. Thus a multispectral sensor with fine spectral resolution offers a higher

discrimination potential of ground features than another with few spectral bands (Colwell (1983).

Figure 2: Typical spectral signature for soil, green vegetation and dry vegetation.

(Adopted from Rencz, 1999)

2.3.2 Previous findings

Very few studies addressed the question of how both spectral and spatial resolutions

affect the discrimination capacity of LULC on medium-resolution satellite images especially in

urban environments. Concerning the spatial resolution we have to go back in the 1980’s and the

study of Welch (1985). The author compared two types of satellite images over an urban
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environment of Athens in Greece, LANDSAT TM (30 m) and merged panchromatic and

multispectral SPOT HRV imagery (10 and 20 m respectively), simulated from airborne images.

Enhanced false color composites created from these images were then visually interpreted.

Figure 3 reproduces the principal results of this study. Figure 3-b shows that the taxonomy

system used in their study included Level II and III categories of the USGS system. The impact

of change in image resolution from 30 m to 10 m is obvious comparing the obtained LULC maps

(figure 3-a). The accuracies per LULC category was about 80% and even better with simulated

SPOT images. Whereas in the case of simulated TM images the accuracy is about 60% (figure3-

c). The authors note also that the application of automatic classification techniques was not

successful to give thematic detail at the Level II and III categories.

Figure 4 shows an example of the impact on the visual appearance of an urban

environment by choosing the resolution of the imageries from 30m to 15m used in this study

(chapter 4). According to the results of Welch (1985) and given the fact that our study is based

entirely on digital image analysis, it is expected that the application of ASTER will provide

higher accuracy in classifying our images at least at the Level II of the USGS. A study for

Phoenix metropolitan area by Waler and Blaschke (2008) using the method of object-oriented

LULC classification to analyze the image in 0.61 m resolution acquired by a sensor called

Landiscor with 3 bands (RGB). The overall accuracy is about 80% in Level II categories with 5

classes: soil, grass, woody, building and impervious. The major confusion for this study is

caused by the big shadows of objects and to find the ‘best’ segmentation for a classification of

many land-cover types with different sizes, shapes, and spectral characteristics. Based on this

study, it shows that only the improvement of the resolution of spatial resolution will not able to

derive more accurate classification result. The object-oriented classification technique is

different with the techniques based on spectral per pixel (more in chapter 3). It is first introduced

in the 1970s (de Kok et al. 1999). However, the method was limited by hardware, software, poor

resolution of images and interpretation theories (Flanders et al. 2003). With an increase in

hardware capability and availability of high spatial resolution images, specially, after the first

commercial IKONOS 4 m MMS images available, the demand for object-oriented analysis has

also increased (de Kok et al. 1999) because the techniques of "per-pixel" are no longer adequate

for high resolution (less than 10 m) images. Due to the high cost of purchasing the high
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resolution imageries, this study are only focus on these medium resolution images with free

access from USGS.

a

b
c

Figure 3: Comparative results obtained with two types of medium spatial resolution images

(Adopted from Welch, 1985)
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Figure 4: One example for difference in spatial resolution between LANDSAT 30m data and
ASTER 15m data in same spectral band: band 2

A study by Herold et al. (2003) indicates, however, that these expectations have to be

lowered since ASTER-VNIR images are poorer in terms of spectral resolution (Table 4)

compared to LANDSAT images (Table 3). Even if this study concerns the classification of

surface materials (asphalt, metal roof, water, vegetation, etc.), it provides interesting cues to

understand the impact of spectral resolution alone. The authors using standard spectral signatures

first established 14 narrow spectral bands in the solar spectrum useful for recognizing 25

different materials common in urban environments. A hyperspectral airborne image (224 spectral

bands) was then used as a basis to simulate the signal which would be measured with the far

more large spectral bands of two multispectral sensors while maintaining the spatial resolution

fixed. The first simulated sensor is the IKONOS having four spectral bands (blue, green, red and

NIR) while the second was the LANDSAT TM with six spectral bands (Table 3) in the solar

spectrum. The hyper-spectral image and the two multispectral simulated images were then

classified and the classification results quantitatively assessed. As expected, the best

classification results of the 25 materials were obtained with the hyperspectral imageries.  The

accuracy is about 70%. Classification using the simulated IKONOS images produced a score

30% lower than those using the hyper spectral imageries, while the classification of the

simulated TM image was only 13% lower. This higher performance of the TM image is

explained by the presence of the two bands in the SWIR not available in the case of the IKONOS

image. However, as the authors stress many misinterpretations exist between materials having
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similar spectral signatures, such as the soil of bare land the concrete of built-up. Thus even if the

hyperspectral imagery includes the 14 optimal bands global classification accuracy is lower than

70%.

In conclusion, the impact of both spatial and spectral resolution in the quality of LULC

mapping and change detection is largely unexplored and in this sense, our study will contribute

to find an answer to the question addressed in this section.

Table 3: Spectral bands of LANDSAT 5/7 TM/ETM+ sensors in the solar spectrum

LANDSAT
TM/ETM+

Spectral
Sensitivity

(µm)

Nominal
Spectral
Location

Band 1 0.45-052 Blue
Band 2 0.52-0.6 Green
Band 3 0.63-0.69 Red
Band 4 0.76-0.9 Near-IR
Band 5 1.55-1.75 Shortwave-IR
Band 7 2.08-2.35 Shortwave-IR

(Source: adopted from USGS, retrieved from
http://LANDSAT.usgs.gov/about_mission_history.php)

Table 4: Spectral bands of ASTER VNIR sensor in the solar spectrum

ASTER_VNIR
Spectral Sensitivity Nominal Spectral

(µm) Location
Band 1 0.52-0.60 Green
Band 2 0.63-0.69 Red

Band 3N 0.78-0.86 Near-IR

(Source: adopted from USGS, retrieved from
https://lpdaac.usgs.gov/products/ASTER_overview)
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Chapter 3   Methods for LULC change detection based on

medium resolution multitemporal imagery

3.1 Basic Concepts

According to Green et al. (1994) change detection implies the comparison of the spatial

representation of the same area in two different times and the measure of differences in the

variables of interest while controlling differences caused by variables that are not of interest. In

the case of comparison of multi-temporal remotely-sensed images the variable of interest is

usually the spectral signature of objects included in the same area. A significant difference in

spectral signatures means a change in the land cover. However as measured radiances are

influenced by many other factors such as solar illumination conditions and atmospheric

conditions during image acquisition, the direct comparison of images could lead to erroneous

results. In order to obtain optimal results specific spatial, temporal, spectral and radiometric data

issues have to be addressed. A typical list of criteria would include the following issues (Coppin

et al., 2004; Jensen et al., 1997; Lunetta and Elvidge, 1998; Millward et al., 2006):

 The sensors should have similar sensitivity imaging - ideally, the data from the

same sensor has to be used to minimize spectral, radiometric and spatial

resolution differences;

 The images should be from the same time of year or season to minimize solar

illumination angle effects and differences in seasonal vegetation cover;

 The images should be co-registered to better than one half pixel accuracy to

minimize spatial offset and distortion,

 Radiometric normalization may be necessary in order to remove atmospheric

effects – differences caused by scattering and absorption by atmospheric

constituents, and by differing solar zenith angles.

In the past four decades, there have been many studies proposing various algorithms for

obtaining LULC change information using a wide variety of remotely sensed data. Lu et al.

(2003) provides an extensive review of these studies. According to these authors the proposed

algorithms for change detection can be categorized into two main categories. The first category
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includes methods focused on the detection of detailed change trajectories (“from-to” classes),

and the second focuses on detection of binary change and non-change features. Post-

classification comparison is the most often used approach to detect detailed "from-to" change

trajectory; while image differencing, image rationing, vegetation index differencing, and

principal component analysis (PCA) are often used to detect binary change and non-change

information. The adopted methods in this study in both categories are presented in the next

section.

3.2 Adopted Automated Change Detection Techniques

Few studies present comparative results of the various change detection approaches. The

most relevant ones are briefly summarized here. Civco et al. (2002) used five LULC change

detection methods - post–classification cross tabulation, cross correlation analysis, neural

networks, knowledge–based expert systems, and object–oriented classification.  Nine land

use/cover classes were selected for analysis. It was observed that there were merits to each of the

five examined methods, and no single approach can solve the land use change detection problem.

Mas (1997) tested 6 change detection techniques using LANDSAT Multi-Spectral Scanner

(MSS) images for detecting areas of changes in the region of the Terminos Lagoon, Mexico. The

change detection techniques considered were image differencing, vegetation index differencing,

principal components analysis (PCA), direct multi-date unsupervised classification, post-

classification change differencing and combination of image enhancement and post-classification

comparison.  The accuracy of the results was evaluated by comparison with aerial photographs

through Kappa coefficient calculation. Besides providing information on the nature of changes,

post-classification comparison was found to be the most accurate procedure. The author also

pointed out that methods based on classification were found to be less sensitive to spectral

variations and more robust when dealing with data captured at different times of the year.  Yuan

et al. (2005) found also that the post classification comparison method provides good-accuracy

results (between 80% and 90%) when applied to LANDSAT images of the Twin Cities

(Minnesota) Metropolitan Area. In his particular study the emphasis was put on the generation of

transition matrix (“from-to” classes).

Based on the merits and complexity of the studies cited earlier, we decided to compare

four automated change detection techniques in the case of our study area: (1) image differencing,
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(2) change vector analysis, (3) principal components analysis, and (4) post-classification

comparison. Table 5 summarizes the advantage and disadvantages of these four methods.

Table 5: Summary of Change Detection Techniques as outlined in Singh (1989), Coppin
and Bauer (1996), Lunetta and Elvidge (1998), Coppin et al. (2004), and Lu et al. (2003)

Technique Method Advantage Disadvantage

Image
differencing

Subtraction of multi
temporal imagery on
a spectral band basis-

original or
transformed data

Simple and easy to
interpret

Cannot provide transition
matrix ("from-to"

classes) and requires the
definition of a threshold

Change
Vector

analysis

Multivariate change
detection that exploits

the full
dimensionality of the
image data; Produce
two outputs: change

magnitude and
change direction

Ability to process
any number of
spectral bands
desired and to
provide detailed
change information

Difficult to identify land
cover change trajectories

Principal
component

analysis
(PCA)

Applied to two-date
imagery to produce
uncorrelated data;
variations in land-
covers are usually
appear in specific

principal components

Reduces data
redundancy

between bands and
emphasizes

different
information in the

derived components

Requires comprehensive
knowledge of the study

area; the changes are
often difficult to interpret

and to label because of
PCA depending on the
input data statistics; it

cannot provide a
complete matrix of

change classes and need
to determine the

thresholds to identify the
changed areas

Post
classification
comparison

Spectral classification
of each image in the
multi-temporal set;
comparison of the

classified images on
pixel-by-pixel basis

Minimizes impacts
of differences

caused by
atmosphere, sensor
and environment
between multi-

temporal images;
provides a complete

matrix of change
information

Requires comprehensive
knowledge of the study
area; time consuming;
final accuracy depends

on the result of
classification of each

date

.
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3.2.1 Image Differencing

Image differencing is a commonly used technique to rapidly locate changed areas by

subtracting pixel values in a specific spectral band of two or more images of the same area

acquired at different times (Coppin and Bauer 1996; Lunetta and Elvidge 1998, Coppin et al.

2004). To use this technique effectively, it requires a process of rigorous normalization of the

data to the same geometric and radiometric referential. In the case of rugged terrain this

normalization is far more complicated than in the case of a low relief terrain. In fact, even with

medium-resolution imagery, ortho-rectification has to be applied for geometric normalization.

When applying the radiometric normalization one has to take into account not only atmospheric

effects but also topographic effects on image radiometry (Bouroubi et al., 2006). Assuming that

such rigorous normalization has been done, application of this technique is simple and straight

forward and the result is easy to interpret (Lu et al., 2003). The operation results in either

positive or negative values where a change has occurred. Values close to zero indicate

unchanged areas. However, proper choice of spectral bands and thresholds are crucial for

providing accurate results. In practice, spectral bands offering a high contrast between vegetation

cover and other land covers (such as the red band) are chosen for detecting urban development

(Jensen and Toll, 1982), while the infrared bands are used for detecting changes within

agricultural and forested terrains. In many cases, the shortwave infrared band (around 2.5 μm) is

used for forest regeneration and deforestation monitoring. Concerning the thresholds, one has to

decide on the minimum absolute difference value representing a change on the land cover of

each pixel. Such threshold is usually empirically defined by observing areas of a priori known

changes. As indicated in Table 5, the most important weakness of this method is that it can

provide only a binary image of changes.

3.2.2 Change Vector Analysis (CVA)

Change Vector Analysis can be thought as an extension of the previous technique in a

multi-dimensional spectral space. The difference in location of a given pixel in this spectral

space in two (or more) moments in time provides the necessary information to measure the

degree of changes (distance) as well as the direction of changes (for example for low values to

high values in all bands) (Michalek et al., 1993). Assuming a pixel with grey-level values in two
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images on dates t1, t2 given by A = [a1, a2, a3,..., an]T and B = [b1, b2, b3,..., bn]T, respectively,

where n is the number of bands, a change vector is defined as follows:

1 1

2 2

3 3

- - - -

n n

a b
a b

G A B a b

a b

 
  
     
 
 
  

Equation (1)

The change magnitude ΔG for that particular pixel is the Euclidean distance in multidimensional
space:

2 2 2 2
1 1 2 2 3 3(  ) (  ) (  ) ... (  )n nG a b a b a b a b         Equation (2)

Whereas its direction with reference to a particular axis (spectral band) is given by:

1cos i ia b
G

      
Equation (3)

Although this method has the advantage of being able to treat any number of spectral

bands and to produce detailed change detection information, it is difficult to identify land cover

change trajectories, especially when the number of bands is high (Lu et al., 2003). Michalek et

al. (1993) have tested the CVA method for a coastal zone and concluded that it is a valuable tool

for costal resource surveys and monitoring.  Lambin and Strahler (1994) also used CVA

combined with PCA (see below) and found that it was effective in detecting and categorizing

inter-annual changes. As previously, this method to be effective, rigorous normalization in both

geometry and radiometry is necessary.

3.2.3 Principal Components Analysis (PCA)

PCA is a linear transformation which rotates the axes of image space along lines of

maximum variance. The rotation is based on the orthogonal eigenvectors of the covariance

matrix (non-standardized data) or of the correlation matrix (standardized principal components)

generated from a sample of image data from the input layers. The output from this

transformation is a new set of image layers. In the case of multi-temporal analysis the

eigenvectors are computed using all the available spectral bands of two (or more) multi-temporal
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images. Alternatively, PCA is applied separately to reduce data dimensionality and then one of

the previous methods can be applied in order to detect changes. However, as pointed out by Fung

and LeDrew (1987), for land cover change detection, it is best to derive the eigen-structure from

the entire data set. Li and Yeh (1998) classified the stacked components of PCA using

interactive editing method to detect the changes and derived the change land cover nature of

“from-to”. It reported that the accuracy is about 86% and that their approach reduces the over-

estimation of changed areas observed with the post-classification comparison approach (see next

section).

An alternative method to the PCA is the “tasseled cap” transformation. This method uses

a different algorithm to process the available spectral bands.  It is customized for LANDSAT

data. Contrary to the PCA, where the orientation of the new orthogonal axes of data

representation is defined statistically, the tasseled cap transformation is operated using fixed a

priori orthogonal axes. Also PCA generates a new representation space of dimension equal to the

dimension of the original space whereas tasseled cap transformation generates a new space of

only three axes termed in the case of LANDSAT images: brightness, greenness and wetness. The

tasseled cap transformation rotates the LANDSAT data such that 95% or more of the total

variability is expressed in the first two bands: brightness and greenness (Lillesand and Kiefer,

2004). Brightness is defined in the direction of the principal variation in soil reflectance and

greenness is strongly related to the amount of green vegetation present in the scene. Fung (1990)

compared the PCA and Tasseled Cap transformations and found that both techniques were not

able to detect all types of land cover changes over the Waterloo area, Ontario, Canada.

As previously, all these methods require a rigorous normalization in both geometry and

radiometry to minimize false change detections.

3.2.4 Post Classification Comparison (PCC)

Post classification comparison is carried out by overlaying two independently classified

multi-temporal images, and then comparing the classes on pixel by pixel basis. A complete

matrix of change information is thus provided.  The resulting thematic map shows both the

nature of change as well as the amount of change.  In this method, errors due to atmospheric,

sensor and environmental differences between multi-temporal images are minimized.  However,
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errors in the individual data classification map would remain in the final change detection map.

Hence, the result depends on the quality of the classified image of each date.

Post-classification comparison is a common approach used for change detection in

practice, but the difficulty in classifying historical image data can seriously affect the change

detection results (Lu et al. 2003). As mentioned, Mas (1997) identified the post-classification

comparison as the most effective change detection technique. He pointed out that this method

has the advantage of indicating the nature of the change and should be used as the reference for

evaluating other change detection methods. Yuan et al. (2005) used post-classification

comparison method and successfully analyzed changes in Twin Cities (Minnesota) Metropolitan

area over a period from 1986 to 2002. The accuracy was between 80 to 90% for over a 16 years

period. Foody (2001) found that post-classification comparison underestimated the areas of land-

cover change, but where the change was detected, it typically overestimated. Petit et al. (2001)

used the combination of image differencing and post classification to detect detailed ‘from–to’

land-cover changes in south-eastern Zambia and such a hybrid change detection method was

considered as better than using only post-classification comparison.
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Chapter 4 Framework of the study

4.1 Study Area and Data Sets

Our study area is the Montreal Metropolitan Community (MMC) territory. This territory,

encompassing 82 municipalities including the city of Montreal, covers about 4,500 km2 and has a

population of more than 3.5 million. 10% of the MMC area is covered by water (mostly a portion

of the Saint-Lawrence River), about 40% is allocated to urban activities and 50% are protected

agricultural land under law.  All the tests described in this study were undertaken within the

urban perimeter where the changes in land cover are the most important. According to a land

cover map published circa 1995 by the Ministry of Municipal Affairs, Quebec, the urbanized

area was reserved to residences (40.6%), commercial/industrial uses (14.7%), institutional use

(9.7%), green spaces and major highways (10.1%), while 26.5% were unoccupied (vacant areas).

Among the archived LANDSAT and ASTER images available from the USGS we

selected the set indicated in Table 6 for the following reasons. The year of 1994 has been chosen

as the basis for comparison with the present situation because of the availability of many

publications (ortho-photographies, forestry maps, topographic maps, etc.) very useful

invalidating the results of our analysis. For that year only LANDSAT-5 TM was in operation. A

cloud free image covering almost the entire urbanized area acquired in August of 1994 was

available. LANDSAT-7 ETM+ is in operation since 1999, however after 2003 the generated

images have blank stripes over the terrain without data due to a mechanical problem. For that

reason a LANDSAT-5 TM image has been selected for this study. The selected image has been

acquired in August of 2008 in order to minimize seasonal variations between the two images.

The image is also cloud free and covers almost the same area as the 1994 image. Figure 4 shows

as an example the portion of the urbanized area of the MMC covered by a LANDSAT TM

image. The area shown in this figure constitutes our experimental site for change detection

(period 1994-2008) using LANDSAT images. ASTER is in operation since 1999 but the

coverage of a particular area is far less frequent than in the case of LANDSAT (same revisit time

as LANDSAT, but only 10% of LANDSAT coverage. Also, because of a limited duty cycle

(about 750 scenes per day), ASTER was scheduled to selectively obtain images based on

requests from researchers or specific missions). Two ASTER-VNIR images covering partially
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the MMC territory have been found, the one acquired in 2001 (early summer) and the second in

2007 (early fall). The two LANDSAT images acquired in 2001 and 2007 indicated in Table 6

were used in order to evaluate the effects of spatial resolution (30 m vs. 15 m) on the quality of

change detection. Coincidentally, in 2001 the LANDSAT-7 ETM+ was collected at the same day

only half an hour after the ASTER image acquisition. This pair of images will eliminate

atmospheric effects. The common portion of these 4 images is indicated as site II in figure 5.

Figure 6 presents as an example the portion of a LANDSAT image covering this second

experimental site.

Table 6: Image set used in this study

Data source Acquisition date Spatial resolution Processing Level Source

LANDSAT 5 TM
(1994)

8/16/1994 30m L1T USGS

LANDSAT 7 TM
(2001)

6/15/2001 30m L1T USGS

LANDSAT 5 TM
(2007)

9/05/2007 30m L1T USGS

LANDSAT 5 TM
(2008)

8/22/2008 30m L1T USGS

ASTER VNIR
(2001)

6/15/2001 15m 1B USGS

ASTER VNIR
(2007)

9/04/2007 15m 1A USGS
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Figure 5: Study sites: site I is the entire ubanized portion of the Montreal Metropolitan
Community  area ; site II is the area indcated by the yellowrectangle (see Figure 6)



27

Figure 6: Study site – II (False color composite of 1994 LANDSAT data : red-band4, green-band
3 and blue-band 2)

Other data used in this study included the following:

1. Digital ortho-photographies (1 m spatial resolution) acquired in April, 1994. This data

set was used for the evaluation the 1994 image analysis results.

2. A QUICKBIRD image (1 m resolution images) presented on Google Earth acquired in

August 26th, 2008 used as the “ground truth” (as reference) data for evaluating the

2008 image analysis results.
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3. Road network database over Montreal region at scale 1: 10 000 from the government

of Canada. This set of data was updated in 2003 and used to locate tie points for geo-

referencing the ASTER images.

4. Digital Elevation Model (DEM) for Montreal region in 30 m resolution downloaded

from government of Canada at www.geobase.com used for the ortho-rectification of the

ASTER images.

4.2 Methodological approach

The first two objectives of this study concern LANDSAT imagery and its potential for

providing information on the location of changed areas as well as on the types of changes. Four

change-detection techniques are examined: image differencing, CVA, PCA, and PCC. The third

objective is to evaluate the impact of a finer spatial resolution (ASTER images) to the results. In

order to obtain the objectives of this study, our methodological approach includes the following

steps:

1. Selection of a land cover classification scheme;

2. Data preparation

3. Application of the selected change detection techniques on the LANDSAT images and

accuracy assessment

4. Comparison of LANDSAT and ASTER images using the standard approach of post-

classification comparison and conclusions on the impact of spatial resolution on the results

These four steps are described in more details in the following paragraphs and the major

procedures of this study are shown as figure 7.

.
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Figure 7: Procedures of the study

4.2.1 Land use / land cover classification scheme

There is no a simple classification scheme of LULC which could be used with all types of

imagery and all scales. As mentioned in Chapter 2 in this study the USGS scheme was chosen.

Among the 9 classes of Level I (see Table 2), the following are applicable in our case: 1) Urban

or Built-up Land; 2) Agriculture; 3) Rangeland; 4) Forest Land; 5) Water; 6) Wetland; and 7)

Barren Land.  Since only changes within the urbanized area are studied, the class “Agriculture”
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is excluded and the rangeland was replaced by a grassland class. The water class here refers only

to some ponds and lakes present within the urbanized area.

Upon the examination of the image over the Montreal region, the green space is made up

by parks, golf courses, and forest lands, as well as few wetlands. Wetlands occupy only a small

portion of the green space and eventual changes of this type of land cover will be difficult to

detect due to their relatively small size. In addition, the images used are all acquired during the

summer time; the wetland is usually fully covered by vegetation. Without using multi-temporal

images from different growing seasons the separation of wetlands from other type of vegetation

will be difficult and likely inaccurate.

Furthermore, the barren land could be confused with built up areas as the spectral

signature of bare soil is too similar to covering materials of build-up areas, such as concrete or

some roofing materials.

Attempts have been made also to study changes with more detailed thematic categories

such residential and commercial/industrial, categories belonging to Level II of the USGS

classification scheme.

4.2.2 Data preparation

The image set consists of different levels of processing, such as the ASTER image (Table

6). Pre-processing is thus required in order to get a cartographic uniformity and also to reduce

the effects caused by the instrument (e.g. striping, atmospheric effects). As the LANDSAT

images are already ortho-rectified by the USGS, only atmospheric corrections were applied in

each image in order to normalize the multi-temporal set of LANDSAT images to the same

radiometric referential. These corrections are described in section 4.3. When using the ASTER

images a lot of preprocessing work has to done including: a) de-stripping, b) geometric

corrections and c) atmospheric corrections. These operations are described in section 4.4.

4.2.3 LANDSATimage comparison

Four change detection techniques were applied to LANDSAT images of 1994 and 2008

covering the entire study site (Figure 5) and their results were compared using auxiliary data

(orthophotos, high resolution images) depicting the past and present situations. All these

experiments are descibed in chapter 5.
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4.2.4 LANDSAT vs. ASTER

This experiment concerns only the site-II area (Figure 6) and involes the set of ASTER

and LANDSAT images acquired in 2001 and 2008. Very few studies addressed the question of

the  spatial/spectral resolution on change detection with medium spatial resolution images.

ASTER images are known to have higher resolution (15 m). In anticipation of higher accuracy

using the ASTER images, the experiment with these images is descibed in chapter 6 in detail.

4.3 LANDSATimage preprocessing

The LANDSAT L1T data provided from the USGS are already ortho-rectified (UTM

projection, NAD83). USGS used over 200 control points to do the geometric registration and 50

points over the study area zone I. From the header file of each image, the residual in x and y of

each control points is less than +/- 7m and the root mean square (RMS) is less than 0.5 pixel.

The images were radio-metrically normalized in ground reflectance units using the

software package “REFLECT” developed at our laboratory (Bouroubi et al., 2006). The

conversion of digital values into ground reflectance is a four step procedure:

1) Conversion of digital values into top of the atmosphere (TOA) radiances ;

2) Conversion of TOA radiances to TOA (planetary) reflectance;

3) Estimation of the additive and multiplicative atmospheric effects on TOA reflectance

4) Conversion of TOA reflectance into ground reflectance using the results of the

previous step.

The first step is accomplished using the calibration coefficients provided in the metadata

file of each scene as follows:

 calmi n
calmax calmin

LMAX LMIN LMINcalL Q Q
Q Q

 
 

 
    

Equation (4)

where:

λ: TM band number

Lλ: TOA spectral radiance (Spectral radiance measured by the TM or ETM+ sensors),
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Qcalmax: Maximum quantized calibrated pixel value (DN = 255) corresponding to LMAXλ.

Qcalmin: Minimum quantized calibrated pixel value (DN = 0) corresponding to LMINλ.

Qcal : Quantized calibrated pixel value (DN), it is 8-bit integer scaled radiance output value

(DN),

LMINλ Spectral radiance that is scaled to Qcalmin[W/(m2· sr·µm)],

LMAXλ Spectral radiance that is scaled to Qcalmax[W/(m2·sr·µm)].

Qcal values and corresponding radiance values are obtained from the header file.

Conversion of TOA radiances to TOA reflectance uses the following equation:

)sin(*
* 2








ESUN
dLsat 

 Equation (5)

where

λ: TM band number

Lλ: TOA spectral radiance

ρsat: TOA reflectance

ESUNλ: mean solar exo-atmospheric irradiance (see Table 7 )

: sun elevation angle, obtained from the header file

d: the earth-sun distance (in astronomical units), which can be calculated using the

following equation based on Eva et al. (1998)

 1 0.01672*cos (0.9856 ( _ 4))d radians Julian Day    Equation(6)
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Table 7: Solar exo-atmospheric spectral irradiance (ESUN; in W/(m2 . μm) for LANDSAT 5 TM
and LANDSAT 7 ETM+

Band TM ETM+
1 1957 1997
2 1826 1812
3 1554 1533
4 1036 1039
5 215 230.8
7 80.67 84.90

(Source for TM: Hanscom, 1998; for ETM+: LANDSAT Handbook, retrieved from
http://LANDSAThandbook.gsfc.nasa.gov/handbook/handbook_htmls/chapter11/chapter11.html)

For the estimation of the atmospheric effects during the satellite passage REFLECT

makes use of the atmospheric code 6S (Vermote et al., 1997). The code is able to simulate the

atmospheric effects at the satellite level and a specific spectral band provided that a number of

parameters are fixed by the user. These parameters are:

a) The temperature and pressure vertical profile of the atmosphere for gaseous absorption

and molecular scattering calculations. Various standard profiles are proposed. In the present

study the standard mid-latitude summer was used.

b) The total ozone and water vapor content of the atmosphere as well as their vertical

distribution for radiation absorption calculations from these particular gases; for the other gases

total content and profiles are fixed a priori. REFLECT proposes either a standard model for these

two gases or the possibility to adjust the chosen default model (here mid-latitude) according to

user defined values of the total ozone content and/or of the water vapor. In the present study the

standard model was used for the ozone while for the water vapor, the total content was evaluated

using an empirical formula proposed by RFLECT. This formula uses the air temperature and

relative humidity. These parameters could be taken from the archives of a meteorological station

near the examined scene. In our case we took the values recorded at the Montreal International

airport close to the time of satellite passage (Table 8).



34

Table 8: The temperature and humidity of the time (hour) image acquired

Image Date
Time
(GMT) Temperature(oC)

Relative
Humidity
(%)

1994 LANDSAT 5 August 16 1994 15:30 19 64
2001 LANDSAT 7 June 15 2001 15:30 29.5 56
2007 LANDSAT 5 September 05 2007 15:30 14.9 50
2008 LANDSAT 5 August 22 2008 15:30 22.9 54
2007 ASTER September 04 2007 16:00 17.8 51
2001 ASTER June 15 2001 11.10 29.5 56

(Source: retrieved from

http://www.climate.weatheroffice.ec.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=

QC&StationID=5415&Year=2001&Month=7&Day=2)

c) The total aerosol content and its vertical distribution, its composition and optical

characteristics, the aerosol optical depth (AOD) being the most crucial parameter. In the present

study the default urban model was specified concerning the composition of the aerosol. Using

this model 6S computes the aerosol properties, while a standard vertical distribution is assumed.

The sole unknown is the AOD.  REFLECT proposes the so-called dark target method for the

estimation of this parameter. Dark targets are visible features on the images of very low

reflectance such as water plans (in the entire solar spectrum) or dense vegetation canopies (in the

blue and red bands). Due to this property, the signal observed over these dark targets could be

considered as the result of the additive effects of the atmosphere (scattering). It is then possible

to estimate the AOD of the aerosol giving rise to the signal observed over these targets. In our

case we located a number of lakes and dense vegetation canopies on the images using the method

proposed by REFLECT and then calculated the various parameters needed to compute the

atmospheric effects as it will be explained in the next paragraphs.

For the final conversion to ground reflectance one has to assume the reflection properties

of the surfaces. In the present study and in order to simplify the computations we assumed that

the surfaces behave as isotropic (lambertian) reflectors extended to the infinity (the reflection of

one pixel does not affect the reflection of its surrounding pixels). In that case the conversion of

TOA reflectance to ground reflectance uses the following equation (Bouroubi et al. 2006):
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 


Equation (7)

where:

ρsat: TOA reflectance

ρsol: surface reflectance

ρatm : atmospheric reflectance due to aerosol and molecule scattering (calculated in step 3)

gasT : total gaseous transmittance –ascending and descending path (calculated in step 3)
T : total (descending path) atmospheric transmittance due to scattering (calculated in step 3)
T : total (ascending path) atmospheric transmittance due to scattering (calculated in step 3)

Salb: spherical albedo of the atmosphere (calculated in step 3)

The results of this operation are illustrated with the 2008 LANDSAT image in Figure 8

and 9.  The quality of the processed image is clearer with higher contrasts than before pre-

processing.
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Figure 8: False color composition (R: band 4, G: band 3, B: band 2) of the LANDSAT TM 2008
image before the pre-processing

Figure 9: False color composition (R: band 4, G: band 3, B: band 2) of the LANDSAT TM 2008
image after the pre-processing (atmospheric effects removed)
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4.4 ASTER image preprocessing

As indicated in section 4.2.2, preprocessing of ASTER data included: a) de-stripping, b)

geometric corrections and c) atmospheric corrections.

The striping radiometric noise in CCD array sensors such as the ASTER VNIR is due to

particular detectors within the array having a completely different sensitivity to the EM radiation

compared to the majority of the detectors in the array. In the geometrically uncorrected image

these differences are manifested as stripes in the vertical direction (parallel to the satellite ground

track) with a radiometric content different from their surrounding pixels. After visual inspection

only the 2007 ASTER image presented an evident stripping radiometric noise which has to be

corrected before any data analysis. GEOMATICA proposes a “de-stripping” algorithm DSTRIP

based on the location of these stripes on the image and the replacement of the pixel values in the

stripes by the average of the values of the surrounding pixels not lain on the stripe. However, this

algorithm is adapted to optical-mechanical sensors dotted with a vertical array of detectors such

as the LANDSAT TM/ETM where each detector is used to scan an entire scanning line. Thus

aberrations in the sensitivity of a particular detector in the array are manifested as strips in the

horizontal direction (perpendicular to the satellite ground track). To correct our data with this

algorithm we have thus to rotate first our image so the stripes are appearing in the horizontal

direction and not in the vertical direction. After de-stripping, the image has to be reoriented in

order to proceed with the geometric corrections. Figure 11 shows the result after removing these

stripes.
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Figure 10: ASTER image (2007) before de-stripping

Figure 11: ASTER image (figure 10) after destripping
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To geometrically correct the ASTER images, the ortho-rectification procedure available

in the GEOMATICA (PCI Inc.) Ortho-Engine module was applied. This procedure uses a model

of the satellite orbital path and a DEM of the area of interest to eliminate distortions due to the

surface topography and to reference the image to a specific projection (Toutin, 1995). In our case

we used the DEM of the region (30 m spatial resolution) and 50 tie points extracted from the

road network data at scale of 1: 10 000. The root mean square error was less than 0.50 pixel (one

pixel is 15 m X 15 m). The projection is the same as the one used for LANDSAT data - UTM

Zone 18 with NAD83 datum based on the GRS80 (Geodetic Reference System) ellipsoid.

Regarding the atmospheric correction, the same approach as before with LANDSAT data

was followed. It is to be noted that there are differences in the way to convert digital counts to

TOA radiances. ASTER 1-A data has to be converted to scaled radiances using calibration data

provided with the image file while ASTER-1B data are already linearly scaled radiance values.

The scaled radiances are then converted to TOA radiances (in physical units) using only one

coefficient using the following equation:

Radiance = (DN value –1) * conversion coefficient Equation (8)

where:

Radiance: the TOA spectral radiance

DN value: the Quantized calibrated pixel value, 8 bit integer scaled radiance output value

Conversion coefficient: radiance per 1DN (Table 9; the gain is indicated in the header file).

Also, another difference compared to LANDSAT data is the value of ESUNλ. (Table 9).
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Table 9: Unit conversion coefficient and solar exo-atmospheric spectral irradiances
(Note: the band 3B is not used in the present study)

(Source: Thome, 2001)

As an example, the ASTER 2007 images before and after processing are shown in Figure

12 and 13, respectively.
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Figure 12: ASTER 2007 data before pre-processing (false color composition: R: band 3, G: band
2, B: band 1)

Figure 13: ASTER 2007 data after pre-processing (false color composition: R: band 3, G: band
2, B: band 1)
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Chapter 5 Monitoring changes using LANDSAT images:

Results and Analysis

5.1 Introduction

The aim of this chapter is to describe the main results obtained by comparing LANDSAT

TM images of 1994 and 2008. The material is divided into two parts. The first part presents the

results describing the detection of changed areas using the image differencing and CVA

approaches. We introduce briefly two other methods  after the discussions of  image differencing

and CVA. They are NDVI and NDBI which are for detection of locations only. The second part

discusses the two methods (PCA and PCC ) used to detect types of change.

5.2 Detectection of locations with significant changed areas

In the following discussions we are dealing with the methods of detection of locations

that have gone through significant change.

5.2.1 Image differencing

Only the red band (band 3 of LANDSAT 5 TM imagery) has been used for image

differencing. As pointed out in chapter 3, this band provides the greatest contrast between

vegetation and other land covers and is considered to be superior to other bands for change

detection in urban areas. The following equation was applied with our LANDSAT data of 2008

and 1994:ℎ ( , ) = (2008) − (1994) + 1 ∗ 100 Equation (9)

where

Change (i, j) is the change in pixel (i, j) reflectance (pixel size is 30m by 30m)

Vij(2008) is the reflectance value of TM band 3 in 2008

Vij(1994) is the reflectance value of TM band 3 in 1994

The constant 1 was added in order to avoid negative values, since the change can be

positive or negative.  The multiplication by 100 provides easier interpretable results. The image
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change ℎ ( , ) has a mean value of 99.91with a standard deviation of 1.38. This image

has been thresholded and the final binary image of changes is generated.

Singh (1989) suggested that the selection of thresholds can be based on the standard

deviation from the mean value of the change image. Analysis of difference values in areas where

changes were confirmed by interpreting the available documents indicated us that a threshold

equivalent to ±2 standard deviations (one standard deviation is 1.38) from the difference image

mean (99.91) effectively portrayed almost all areas of potential change. The numeric range of the

change categories were labeled as follows:

Less than 97.15= greenness gain (land covers other than vegetation to vegetation cover)

97.15-102.68 = no change

Greater than 102.68 = greenness loss (vegetation cover to other land covers)

The definition of these change categories makes reference to the reflectance properties of

the Earth’s surface as captured by the LANDSAT TM sensor. Areas classified as greenness gain

are generally characterized by negative values as compared to areas classified as greenness loss

which are generally positive. The final difference map was filtered by a 3 by 3 sieve filter in

order to remove all areas of change less than the minimum mapping unit of 100mx100m. The

resulting LULC change map between1994 and 2008 is shown in Figure 14. From this map, the

development of Montreal region is mostly located on the periphery of the city. Notably, there are

significant changes occurred during the period 1994-2008 near the P.E Trudeau airport region.

The small greenness gain areas could be interpreted as the result of canopies grown in 14 years.

The statistics concerning the areas occupied by each category provided by this map are shown in

Table 10.
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Figure 14: LULC hange map between 1994 to 2008 using image differencing method
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Table 10: Areas of LULC cover change between 1994-2008 using the image-differencing
method.

Category Area (in km2)
Greenness gain 46.76
Greenness loss 106.35

No change 1339.73
Area excluded 2116.82

Total area 3609.66

From table 10, the net greenness loss per year can be calculated as:

Annual net loss per year = total loss (km2)/ year Equation (10)

So the annual net greenness lost rate per year based on image differencing method should be

106.35 /14=7.59 km2 per year.

5.2.2 Change Vector Analysis (CVA)

In this study, CVA was applied with LANDSAT images transformed using the tasseled

cap transformation. As explained in chapter 3, this is a linear transformation of the original

spectral bands into three components: brightness, greenness, and wetness. Besides reducing the

data dimensionality, this transformation enhances the contrast between vegetation and no-

vegetation covered areas. Each component is calculated using the following:

C1*(TM1)+ C2*(TM2)+C3*(TM3)+C4*(TM4)+C5*(TM5)+C7*(TM7)

Where Ci is a fixed priori coefficients (see table 11).

The algorithm “TASSEL” (tasseled cap transformation for LANDSAT TM data) included

in the GEOMATICS (PCI Inc.). The algorithm is based on the application of the coefficients to

the LANDSAT images expressed in the original gray-level scale (8 bit data). This is not suitable

to this study because the image data have been transformed to ground reflectance data. Thus, the

coefficients in the table 11 proposed by Crist (1985) for TM data expressed in reflectance units

were used. The images obtained after this transformation are shown in Figures 15 and 16 - areas

where the red hue dominates mean less vegetation.



46

Table 11: Coefficients used in Tassled Cap transformation

Components C1 C2 C3 C4 C5 C7
Brightness 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303
Greenness -0.1603 -0.2819 -0.4934 0.7940 -0.0002 -0.1446
Wetness 0.0315 0.2021 0.3102 0.1594 -0.6806 -0.6109

(Source: reprinted from Crist, 1985.)

The next step in applying the CVA technique is to calculate the magnitude and direction

of the difference of the two transformed images. First, change magnitude is measured as the

Euclidean distance or length of the change vector from a pixel measurement at time 1 (t1) to the

corresponding pixel measurement at time 2 (t2). The magnitude of the vectors could be

calculated from the determined difference using the following equation:

2 2(brightness difference) (greeness difference)G     Equation (11)

Thresholds were determined for the magnitude image to separate changed from

unchanged pixels. Conventionally, the threshold of the change magnitude is empirically

determined. After examining the histogram and statistical values of the magnitude image, change

and no-change thresholds were considered as two standard deviations from the mean.

The direction (the angle of change) in reference to the brightness axis was determined as

follows:

brightness differencecos
G

 



Equation (12)

1 brightness differencecos
G

      
Equation (13)

The directional images facilitate the discrimination of the change types. Change direction is

measured as the angle of the change vector from pixel measurement at t1 to the corresponding

pixel measurement at t2. Since two bands were used in this case the resultant change direction

classes can be presented into 4 categories depending on the change directions within pixels in the

brightness and greenness bands. Angles measured between 90 and 180 indicate an increase in

greenness and a decrease in brightness, representing thus a change that is mainly related to the

growth of vegetation biomass. Angles measured between 270 and 360 indicate a decrease in
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greenness and an increase in brightness, and changes are strongly related to great losses of

vegetation biomass. Angles measured from 0 to 90 indicate an increase in both greenness and

brightness and it is mainly related to smaller losses of biomass, such as transformation of

sections from forest to grass land. Angles measured from 180 to 270 indicate a decrease in

both greenness and brightness and it may relate to vegetation changed to water or a change in the

moisture content of bare soils. By combining the change directions with the change and no-

change magnitude values the entire study area can be classified into 4 classes of changes, as

shown in Table 12, plus one class of unchanged areas. The change map obtained by this

classification is shown in Figure 17.

Table 12: Change categories

Class Brightness Greenness Themes
Class 1 (0-90) + + Biomass loss
Class 2  (90-180) - + Biomass gain

Class 3  (180-270) - - Greenness loss and with more
moisture

Class4  (270-360) + - Forest Clearing
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Figure 15: Tasseled Cap Transformation of 1994 LANDSAT data (R: Brightness G: Greenness
B: Wetness)
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Figure 16: Tasseled Cap Transformation of 2008 LANDSAT data (R: Brightness G: Greenness
B: Wetness)
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Figure 17: LULC change map between 1994-2008 using the CVA method
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From the LCLU change map of figure 17, the derived statistics on the area occupied by

each category are shown in Table 13.Based on this table, the total biomass loss is for the 14 year

period (1994 -2008): 28.39+75.31+43.43=147.13 km2. The annual net biomass loss is about 10.5

km2 per year. This rate is not the same as the one derived from the method of Image Differencing

which is 7.59 km2 per year. These numbers are dissimilar as the classified categories are

different. Also, from table 13, forest clearing (class 4) is only 43.43 km2, however, this number

does not refer to the total area of the forest loss because the class 3 (greenness loss with more

moisture) occupying 75.31 km2 may count to the forest loss too.

Table 13: Areas of LULC change in the period 1994-2008

Categories Area (in km2)
Biomass loss (class 1) 28.39
Biomass gain (class 2) 23.66
Greenness loss with more moisture (class 3) 75.31
Forest clearing (class 4) 43.43
No change 1322.05
Area excluded 2116.82
Total area 3609.66

5.2.3 Alternative techniques (for location detection)

A different approach to locate changed areas is via the comparison of images

representing a spectral index (Cavayas and Baudouin, 2008). One of the most commonly used

index is the NDVI (Normalized Difference Vegetation Index) computed by comparing pixel

reflectance in the red and NIR spectral bands:

REDNIR

REDNIRNDVI



 Equation (14)

This index is particularly sensitive to vegetation and less so to building and other land

cover. As shown previously, most of the detected changes are related to vegetation cover

changes. By taking into account the reflectance in two spectral bands some of the errors

eventually present in the case of image differencing can be avoided. In fact, as showed in figure

18, some manmade materials, like asphalt, have low reflectance in the red band similar to

vegetation cover. Thus, a change from bare soil to asphalt covered surfaces can be considered as
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a vegetation gain and vice versa when the comparison is based solely on the red band. As asphalt

has almost the same reflectance in the red and NIR, the NDVI of pixels with asphalt cover takes

a near zero value while NDVI for vegetation covers takes high positive values.

Figure 18: Spectral signatures of common surface materials in urban areas

(Source: generated from ASTER Library)

In a publication (Zha et al. 2003) proposed a different index.  This index was particularly

sensitive to built-up materials, the Normalized Difference Built-up Index (NDBI). This index

was developed for LANDSAT images to take advantage of the spectral band in the SWIR around

1.6 m (TM5). It is calculated as

NIRSWIR

NIRSWIRNDVI



 Equation (15)

As shown in figure 18, in general, built-up materials in this band have higher reflectance

in the TM5 band than in the TM4 (NIR) band while the inverse happens for vegetation. So when

TM5 band is compared with TM4 band, most of built-up materials give rise to positive values of

the NDBI whereas vegetation and water give rise to negative values.
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Figure 19 shows the two indexes calculated from LANDSAT images of 1994 and 2008.

It is evident that they are highly correlated, with one index almost the negative image of the

other.

NDVI-1994 NDBI 1994

NDVI-2008 NDBI-2008

Figure 19: Comparison of the NDVI and NDBI calculated from LANDSAT images of 1994 and
2008
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To facilitate the comparison of each index obtained for the two different years, the

images were classified. In the case of the NDVI, the following classification is used: (a) absence

of vegetation cover to low vegetation cover (NDVI<0.20), (b) low vegetation to relatively high

vegetation cover (0.20<NDVI<0.60) and c) relatively high to very high vegetation cover

(NDVI>0.60). For simplicity we renamed these three classes as a) no vegetation; (b) sparse

vegetation and (c) dense vegetation. Regarding the NDBI, pixels with index value greater than

zero is considered as built-up materials (without vegetation cover). The images of the indexes

after this classification are shown in figure 20.
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NDVI 1994 NDBI 1994

NDVI-2008
NDBI 2008

Figure 20: Comparison of the NDVI and NDBI calculated from LANDSAT images of 1994 and
2008 after classification
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Figures 21 and figure 22 shows the results of change detection between 1994 and 2008

indexes after classification of each individual image. As in the previous section statistics were

computed concerning the changes in vegetation cover (NDVI images) shown in Table 14. Based

on this table, the total greenness loss (including the class dense to sparse vegetation) should be

for the 14 year period: 36.07+16.85+124.34=147.13 km2. Thus, the annual greenness loss should

be about 12.6 km2 per year. This rate is relatively close to the one derived from the CVA method

which is 10.5 km2 per year.

Table 14: Change Statistics using the NDVI images

Classes Area (km2)

No change 1166.81
Sparse vegetation to no vegetation 36.07
Dense vegetation to no vegetation 16.85
No vegetation to sparse vegetation 20.50
Dense vegetation to sparse vegetation 124.34

No vegetation to dense vegetation 1.32
Sparse vegetation to dense vegetation 126.37

Area excluded 2117.41
Total area 3609.66
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Figure 21: LULC change map between 1994-2008 uisng NDVI method
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Figure 22: LULC change map between 1994-2008 uisng NDBI method
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Equivalent results were obtained using the image differencing and change vector analysis

techniques. Figure 23 shows as an example a small portion of the two maps. CVA however is

providing more details on the nature of changes in the vegetation cover.

Figure 23: Comparison of the results obtained with the CVA and image differencing techniques

When applying the two indices, we found that the NDBI is not useful for the Montreal region

where there are a lot of high mixed areas of vegetation and built-up materials. The NDVI approach is

in general comparable to the CVA approach with the latter providing more refined information on

vegetation changes.

In summary, image differencing is a simple method to apply providing an adequate picture of

the areas of changes.
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5.3 Location of changed areas and type of changes

5.3.1 Principal Components Analysis

As applied in this study, the PCA is a three step operation. First, the six bands of the

LANDSAT 5 TM image of 1994 and 2008 are combined to generate a new image. Second, the

PCA is performed to the combined image. Third, the PCA image is classified using interactive

training sites editing. These steps are described in more details in the next paragraphs.

 Step 1. Creation of a new image

Two images dated 1994 and 2008can be referred as two pixel vector (1) and vector (2):

X1994=[X1994-1 ,X1994-2 , . . . X1994-N] vector(1) Equation (16)

and

X2008=[X2008-1 , X2008-2 , . . . X2008-N] vector (2) Equation (17)

where

X1994-1 to X1994-N and X2008-1 to X2008-N are the reflectance of the pixel X in bands 1 to band N for

the year of 1994 and the year 2008 respectively. The first step of this method is to combine the

two vectors into one single vector:

X=[X1994-1 , X1994-2, . . . X1994-N,X2008-1, X2008-2 , . . . X2008-N]    vector (3) Equation (18)

An image file with a total number of 12 bands is thus generated in the case of TM

images.

 Step 2. PCA transformation

The PCA transformation was applied to the original images to generate the transformed images

using the covariance matrix. The eigen-values and variance explained by each principal

component are shown in the Table 15. It can be seen that the first principal component explains

most of the variance of the original data set (91.36%). The second principal component describes

the largest amount of the variance in the data that is not already explained by the first principal

component, and so forth. Indeed, the first 4 components count for over 99.38% of the total

variance. The obtained eigen-channels are shown in figure 24. Figure 25 shows a color

composition of the first three eigen-channels.
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Table 15: Eigenstructure of the multi-temporal LANDSAT TM dataset (1994 and 2008)

Eigen-channel Eigen-value Deviation %Variance
PC1 0.0674 0.2596 91.36%
PC2 0.0046 0.0680 6.26%
PC3 0.0008 0.0274 1.02%
PC4 0.0005 0.0234 0.74%
PC5 0.0003 0.0163 0.36%
PC6 0.0001 0.0097 0.13%
PC7 0.0000 0.0065 0.06%
PC8 0.0000 0.0045 0.03%
PC9 0.0000 0.0036 0.02%
PC10 0.0000 0.0027 0.01%
PC11 0.0000 0.0026 0.01%
PC12 0.0000 0.0023 0.01%
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Figure 24: 12 components of composed image created by principal components analysis
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Figure 25: PCA components color composition (R: first Eigenchannel G: second Eigenchannel
B: third Eigenchannel)
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 Step 3: Interactive training and classification :

As the three first principal components contain most of the information of the original

images, it is possible to use them for the classification of LULC change. Interactive training of a

supervised classifier ("from-to" classes) was carried out on the color composite image created by

Principal Components Analysis (Figure 25). 30 training sites were selected on the color

composite image by chaining it to the original images and tracing on the screen the contour of

the sites as illustrated in figure 26. Also, the aerial photos and the Google Earth image were

linked to these 3 images to assist in the identification of training sites. The standard maximum

likelihood classifier was then used. The classification result is shown in figure 27.

Figure 26: Interactive training for a supervised classification of the first three principal
components
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Figure 27: LULC change map between 1994-2008 using the method of PCA
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Based on the map of figure 27, the areas occupied by each class are shown in Table 16. In

the period from 1994 to 2008, the detected total forest loss (forest to built-up, forest to water,

forest to grass and forest to barren land) is 118.36 km2. The average forest loss of each year is

about 8.45 km2 per year. Meanwhile, the areas converted to built-up are 132.89 km2 from 1994

to 2008 with a rate of about 9.5 km2 per year from grass/shrub or forest land.

Table 16: Areas occupied by the classes identified using the PCA approach

Class ("from-to") Area_(km2)
Grass to barren land 15.41
Barren land to grass 72.73
Forest to built-up 111.86
Grass to built-up 21.03
Forest to water 0.91
Forest to grass 3.43
Built-up to water 0.06
Forest to barren land 2.16
no change 1265.25
Area excluded 2116.82
Total area 3609.66

5.3.2 Post Classification Comparison

In this study, the 1994 and 2008 images were classified separately using a supervised

maximum likelihood approach based on 5 classes: water, forest, barren land, grass/golf court,

built-up. Training areas were selected from both data sets using the available documents. The

classified images are overlaid and analyzed using the GEOMATICS algorithm MAT (Matrix

Analysis) to generate the changed classes. 5 LULC classes were classified in each single date

image, generating 25 potential types of changed classes. Land use/Land cover map of 1994 and

2008 are presented in the Figure 28 and 29 respectively. The changes between two dates were

summarized to 14 major classes and the final LULC change map is shown in figure 30.
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Figure 28: Classification map of LULC on 1994 (in 5 classes: built-up, forest, grass/golf course,
water and barren land)
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Figure 29: Classification map of LULC on 2008 (in 5 classes: built-up, forest, grass/golf course,
water and barren land)
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Figure 30: LULC change map between 1994-2008 uisng PCC

From the LULC change map of figure 30, the following transition matrix was generated:
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Table 17: Cross tabulation table for 5 classes in  1994 and 2008

2008          1994 water forest built-up barren land grass Total area
(km2)

water 1.11 0.21 0.27 0.07 0.07 1.73
forest 0.04 181.09 3.35 0.71 27.83 213.02
built-up 0.43 70.15 718.64 55.14 155.78 1000.14
barren land 0.04 3.2 9.23 6.23 6.49 25.19
grass 0.03 31.28 21.5 19.99 179.39 252.19
Total 1.65 285.93 752.99 82.14 369.56 1492.27

From Table 17 a finer analysis than previously could be done. Thus in the period from

1994 to 2008, the total forest loss should be 104.63 km2, including 70.15 km2 to built-up, 31.28

km2 to grass and 3.20 km2 to barren land. The annual net forest loss in this period of 14 years is

7.47 km2 per year. The change rates for each class, computed using Equation (19), are shown in

table 18.Positive values present an area increase and negative values, an area decrease.

area in 2008 area in1994Percentage change 100%
total area in 1994


  Equation (19)

Table 18: Change rate of each class in the year of 1994 to 2008

Class Area_1994 (km2) Area_2008 (km2) Change (%)
water 1.65 1.73 5.5
forest 285.93 213.02 -25.5
barren
land 82.14 25.19 -69.5
grass 369.56 252.19 -31.7
built up 752.99 1000.14 32.9

However, two "from-to" classes seem a bit stranger (Table 17): built-up to forest and

grass to forest. The former is of small extent (3.35 km2). After checking the original image data,

we found that the ‘built-up to forest’ class is due to damage on the 1994 image more easily

visible on a color composite (Figure 31-B, the red color). The class from ‘grass to forest’ is more

extended (27.83 km2) mostly due to changes within some agriculture fields included within the

urban perimeter of the Montreal Metropolitan Community and are related to change in crop
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density between the years 1994 and 2008 (Figure 32). In fact a high density crop field has similar

spectral characteristics as some type of forest cover while a low density crop cover to grass

covers.

A B

Figure 31: A: band 1 in grayscale B: 3 bands composition image (R - band 1, G - band 2 and B -

band 3): the read pixels are the damged pixels



72

Figure 32: Error analysis for the classification map of 2008 and 1994

5.3.3 Experiment with more classes using LANSAT imagery.

In order to verify if more classes can be identified using LANDSAT imagery, another

classification was performed by subdividing the class built-up into 3 classes: (i) low density

residential, (ii) high density residential and (iii) commercial/industrial. The results are presented

in figure 33 and 34. Both maps, however, indicate that the classification is not accurate because

there is a lot of overlapping between these three classes, especially roads classified at one time as

commercial and at another time as high or low density residential. This experiment shows that

nothing is gained by further subdividing the built-up into more detailed classes using LANDSAT

even if there is a relatively accurate picture of the distribution of two residential categories.
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Figure 33: LULC classification map of 1994 image with 7 classes
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Figure 34: LULC classification map of 2008 image with 7 classes
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5.3.3 Accuracy assessment

To assess the accuracy of classifications using either PCC or the PCA methods we used

data (1) for 1994 a series of aerial photos at1 m resolution acquired five months before the

LANDSAT image (April vs. August, 1994) and (2) for 2008 QUICKBIRD images in 1 m

resolution presented on Google Earth acquired the same month and year as the LANDSAT

image. A test area was selected as shown in the figures 35and 36 covering 33.97 km2. The

coordinates for the testing area is:

Upper left corner: 73o35'43.7218"W   45o29'51.8704"N

Lower right corner: 73o31'33.2482"W 45o26’30.3987"N

A B

Figure 35: A: 1994 ground truth data, derived from a mosaic of aerial photos acquired in  dated
April 1994 B: 2008 ground truth data, derived from combining QUICKBIRD images on Google

Earth acquired in August 2008
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Figure 36 shows the LULC change where the red point located in figure 35. From this

figure, the land cover was transferred from forest to built-up.

Google history image dated July 14 2005 Google history image dated Sep. 17 2007

Google history image dated Sep. 21 2008 Google street view image dated May 2009

Figure 36: LULC change from forest to built-up
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200 test points were randomly selected for each of the maps mentioned above. They are

then processed using the model of accuracy assessment of GEOMATICA software for each

tested map. Points falling outside our study area (Saint-Lawrence River) were excluded. The

number of remaining points from one test to the other varies slightly from 134 to 139. Land use

class for the two years (1994 and 2008) of each point for each tested map was identified by

visual interpretation of the ground truth images. In the case where the accuracy of the change

detection maps were to be evaluated the comparison of the interpretation results for the two years

allowed for identifying the ground-truth “from-to" classes.

The results of this accuracy tests are presented in the following tables as standard

confusion matrices. The overall accuracies are as follows:

Supervised classification (the changed areas between 1994-2008) of eigen-channels

generated by the PCA method (from-to classes): overall accuracy of 86.6% (see Table

19);

Supervised classification of the 1994 image input to the PCC method: overall

accuracy of 90.6% (see Table 20);

Supervised classification of the 2008 image input to the PCC method: overall

accuracy of 90.6% (see Table 21);

Test with the final change detection map after the comparison of classified images of

1994 and 2008: overall accuracy of 77% (see Table 22).
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Table 19: Error matrix from LULC map from PCA (between 1994-2008)

Classifi
cation

Photo-interpretation

No-
change

Barren
to

Grass

Forest
to
Built-
up

Forest
to
Barren

Forest
to
Grass

Forest
to
Water

Grass
to
Built-
up

Grass
to
Barren

Built-
up to
water

Total

No-
change

116 0 2 2 0 0 4 0 0 124

Barren
to

Grass

1 0 0 0 0 0 0 0 0 1

Forest
to Built-
up

3 0 0 0 0 0 0 0 0 3

Forest
to
Barren

0 0 1 0 0 0 0 0 0 1

Forest
to Grass

0 0 0 0 0 0 0 0 0 0

Forest
to
Water

0 0 0 0 0 0 0 0 0 0

Grass to
Built-up

1 0 0 3 0 0 0 0 0 4

Grass to
Barren

0 0 0 1 0 0 0 0 0 1

Built-up
to water

0 0 0 0 0 0 0 0 0

Total 121 0 3 6 0 0 0 134
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Table 20: Error matrix from LULC map of 1994

Classification

Photo-interpretation

Built-up BarrenLand Forest Grass Water Total

Built-up 103 0 0 4 0 107

Barren Land 0 0 0 2 0 2

Forest 0 0 4 1 0 5

Grass 3 0 8 9 0 20

Water 0 0 0 0 0 0

Total 106 0 12 16 0 134

Table 21: Error matrix from LULC map of 2008

Classification

Photo-interpretation

Built-up BarrenLan
d

Forest Grass Water Total

Built-up 108 1 1 7 0 117

Barren Land 1 4 0 0 5

Forest 0 0 2 0 0 2

Grass 0 2 1 10 0 13

Water 0 0 0 0 1 1

Total 109 7 4 17 1 138
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Table 22: Error matrix for LULC change map (PCC technique)
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5.3.4 Summary

The post-classification comparison technique is generally simpler to apply and the results

are easily interpreted. In contrast, the classification of the eigen-channels obtained after applying

the PCA to multi-temporal LANDSAT images requires the determination of training areas

representing both changed and unchanged areas for each combination of LULC classes. This is a

very difficult task and requires a good knowledge of the area. In this study, to be able to locate

the changed sites, we used the image differencing map as a guide in searching for training sites

in the changed areas. Due to this difficulty only 9 “from-to” classes were defined. With the PCC

method we were able to derive more “from-to” classes even if we exclude the erroneous ‘from to

classes’ as mentioned in the previous section.

Concerning the quality of the results, PCA gave better results (87%) than the PCC even if

the classification accuracy of each image input to the PCC is around 77%. It is to be noted

however that these scores are only indicative as the majority of check points represent the class

“no-change”. Concerning the forest cover changes the two approaches indicated a similar rate,

with 7.47 km2 per year from PCC and 8.45 km2 per year from PCA.

In general, the results using PCC are not very accurate since the thematic level of detail is

very general. However, due to its simplicity we retained the PCC post-classification comparison

technique approach to test the potential of the ASTER images in the next chapter.
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Chapter 6 Comparison between ASTER and LANDSAT

6.1 Introduction

A total of two ASTER and two LANDSAT scenes were used in this part of the study.  By

some good fortune one ASTER image and one LANDSAT 7 ETM+ image were collected in

2001 on the same day within 30 minutes of each other. This set of data could minimize the

difference caused by atmospheric factors. The data used in this step of the study are listed as

following:

1. ASTER images acquired at 11:05am on June 16, 2001 and on September 4, 2007.

2. LANDSAT 7 ETM+ images acquired at 10:34 am on June 15, 2001 and on September 5,

2007.

Using these images various tests were done to study the impacts of the resolution

refinement with the ASTER data (section 6.2) as well as the impacts of spectral resolution

difference between the two types of images (section 6.3).

6.2 Impact of spatial resolution refinement

Only 5 LULC classes were used in classifying the LANDSAT images: (i) water, (ii)

forest (iii) grass, (iv) barren land, and (v) built-up. To examine the impact of spatial resolution

refinement with ASTER images two tests were performed by adding in the classification

procedure two new classes which were difficult to separate using the LANDSAT images.  They

are (vi) wetlands and (vii) commercial/industrial. The classification method used was the same as

with LANDSAT data, namely the supervised maximum likelihood classification.

Figures37 and 38 illustrate the results of adding a wetland class to the classification. As

shown in Figure 37 wetlands are well identified in this lower left portion.  However, there is also

a large patch of wet land in the middle of the figure which should have been built up areas. This

misinterpretation is due to the fact that ASTRA imageries use only three bands. Using more

classes actually causes misinterpretation of the classes.
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Figure 37: LULC Classification Map on 2001 (with class wetland)

Regarding the commercial/industrial class, it is well identified in the major portion of the

image but there are misinterpretations with built-up areas not belonging to that class (high

density residential, services, transportation) characterized by low vegetation cover. A typical

example is the area near the central business district of the Montreal city in the upper right
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portion of Figure 38. Such misinterpretations can be attributed to the similarity of the spectral

signatures of man-made materials covering the surfaces.

Based on the results of these two experiments, we decided to compare the ASTER and

LANDSAT images on the basis of the same 5 class thematic level: water, forest land,

grass/shrubs, barren land, and built-up. The results are presented in the next section.
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Figure 38: LULC Classification Map on 2001 (with class commercial/industrial)
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6.3 Comparing ASTER and LANDSAT

Two classification experiments were performed in order to compare the two image types:

(a) only similar to ASTER bands were retained in the case of LANDSAT images; and (b) the six

spectral bands of LANDSAT images were used. In order to minimize the incidence of various

factors affecting the classification results, the same training sites and classification method-

Supervised Maximum Likelihood- were used for both ASTER and LANDSAT data.

Figures 39 and 40 show the classification results for 2001 and 2007 using the ASTER and

LANDSAT images (3 bands and 6 bands). Of particular interest in these tests are the 2001

ASTER and LANDSAT images acquired on the same day with less than one hour difference.

The classification of the ASTER image reflects better the dominant land cover than the

classification of the LANDSAT image with only three bands (figure 41 and 42). In fact

residential areas where in the summer time green vegetation is present in abundance are

classified as vegetation and there are less confusion between barren land and areas dominated by

man-made materials. In the classification of the LANDSAT image, either three or six bands, due

to the lower spatial resolution, the built-up class appears more homogeneous. However, this class

is over-estimated in the calculated area, especially in the case of the six bands (as shown in table

23 and 24, built up total area is 140 km2 using LANDSAT 6 bands vs. 113 km2 using ASTER 3

bands). A typical example is the cemetery in the Mount-Royal area (upper right portion of the

image) classified as built-up area. In the case of the 2007 LANDSAT images this over-

estimation is still present but to a lesser degree. In the classification of the 2007 ASTER image

there is a “transfer” of pixels belonging to the built-up class in 2001 to the barren-land class,

while pixels within residential areas, classified as vegetation in 2001 are now classified as built-

up. The figures 43 and 44 illustrating the change detection maps obtained with the ASTER and

LANDSAT images clearly reflect these inconsistencies in the classification of the two images.
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Figure 39: Classification of 2001 ASTER and 2001 LANDSAT images
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Figure 40: Classification of 2007 ASTER and 2007 LANDSAT images
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Figure 41: Comparison of LULC Classification Map on 2001 and 2007 from LANDSAT data
(using 3 bands and 6 bands)
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Figure 42: Comparison of LULC Classification Map on 2001 and 2007 from ASTER data and
LANDSAT data (ASTER VNIR 3 bands and LANDSAT 3 bands)

.
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Figure 43: LULC Change Map during 2001-2007 from ASTER data
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Figure 44: LULC Change Map during 2001-2007 from LANDSAT data (6 bands)
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Table 23: LULC change between 2001-2007 from ASTER data (generated from figure 43)

2001
2007 forest grass

built-
up

barren
land water

total
area(km2)

forest 14.79 2.56 0.93 0.06 3.71 18.38
grass 3.71 25.56 12.1 0.68 0 42.05
built-up 0.16 9.08 94.43 5.89 0.07 109.63
barren
land 0 0.57 5.72 2.68 0 8.97
water 0 0.08 0.23 0 0.26 0.57
Total 18.66 37.89 113.41 9.31 0.33 179.6

Table 24: LULC change between 2001-2007 from LANDSAT data (generated from figure 44)

2001
2007 forest barren

land water grass built up total
area(km2)

forest 13.61 0 0 0.9 0.64 15.15
barren
land 0.03 0.46 0 0.07 0.68 1.24

water 0 0 0.23 0 0.04 0.27
grass 2.68 0.28 0 6.43 5.19 14.58

built up 4.01 6.71 0.02 3.66 133.96 148.36
total 20.33 7.45 0.25 11.06 140.51 179.6
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6.4 Results of experiments

The main findings drawn for these experiments are as follows:

1. ASTER-VNIR images gave in general better results than LANDSAT images with respect

to the dominant land cover such as vegetation, barren land, and man-made materials.

2. Both image types classified using a very general thematic level gave inconsistent results.

Classification of the LANDSAT images generalizes better the built-up area in spite of the

diversity of the covering materials. However there is clear trend of over-generalization to

the detriment of the other LULC classes.

3. Post classification comparison reflects these inconsistencies in individual image

classification. Particularly with ASTER images, real changes are mixed with changes in

the vegetation cover not related to any LULC class.
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Chapter 7 Conclusions and Future Research

In this study, the selected study region was the urban portion (urban perimeter) of the

Montreal Metropolitan Community area. Three main objectives for this study were planned: (a)

examine the possibility of multi-temporal LANDSAT images to provide information of LULC

changed areas; (b) examine the possibility of multi-temporal LANDSAT images to provide

information on the type of changes; and (c) study the impact of spatial resolution improvement

on LULC change detection.

To obtain the first objective, LANDSAT images acquired in 1994 and 2008 were

compared using image differencing, change vector analysis (CVA), as well as spectral indexes

comparison (chapter 5). Image differencing or change vector analysis can provide the

information of changed areas in a fast and efficient manner. However, image differencing, based

on the red spectral band, can only derive two broad types of change: greenness gain or greenness

loss. Change Vector Analysis, using vector magnitude and direction in multi-spectral change

space, has the capacity to detect and stratify different types of changes in terms of biomass gain

and loss. Regarding the application of the two indices, we conclude that the NDBI is not useful

for the Montreal environment where there is a high degree of mixture of vegetation and built-up

materials. Misinterpretation thus can be created by a simple densification of the vegetation cover

or vegetation growth within the built-up area. The NDVI approach in general is comparable to

the CVA approach with the latter providing more refined information on vegetation changes.

Thus, except NDBI, all these techniques can be integrated in a continuous monitoring system for

a rapid evaluation of changed areas. The produced maps could be helpful to guide the acquisition

of high spatial resolution imagery if a detailed identification of the type of changes is required.

To accomplish the second objective, the same LANDSAT images as above were used.

Two approaches were examined, the classification of the pooled set of the two LANDSAT

images previously transformed using PCA analysis and the standard approach of post-

classification comparison (Chapter 5). Both methods could provide a relatively accurate

information of “from-to” classes but at a very general thematic level (for example, built-up to

green spaces and vice-versa, forest to bare soil and vice-versa, etc.).Even though the Principle

Component Analysis method in this study showed that PCA provides more accurate results than

the standard approach of post-classification comparison, however, in order to interpret the
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physical significance of the principle component images and thus to locate training areas of

"from-to" classes, the analyst or interpreter must know the spectral characteristics of the study

areas. The knowledge of the studied area could affect greatly the final result. Our hypothesis

concerning the low potential of these approaches with medium resolution LANDSAT images to

go further away in defining more detailed levels of changed classes is thus verified.

To arrive to the third objective we used ASTER and LANDSAT images acquired over a

short time interval both in 2001 and 2007 (Chapter 6). In 2001 the ASTER image was acquired

less than one hour after the LANDSAT image while in 2007, the ASTER image was acquired

one day before the LANDSAT image. Post-classification comparison was used as the approach

of detecting changes. The main conclusion drawn from this experiment is that ASTER images

have better spatial resolution but less spectral bands than LANDSAT images did not provide

more detailed thematic information (for example forest to commercial or industrial areas).

ASTER-VNIR images in general gave better results than LANDSAT images with regard to the

dominant land cover such as vegetation, barren land, and man-made materials. Classification of

the LANDSAT images generalizes better the built-up area in spite of the diversity of the

covering materials. There is clear trend of over-generalization to the detriment of the other

LULC classes. The fact that the spatial resolution was improved did not signify necessary an

improvement in the results if it was not accompanied by more spectral bands. In that sense the

results confirm those obtained by Herold et al. (2003) mentioned in Chapter 2.

As a general conclusion of this study, we can notice that medium resolution imagery

(about 10-50 m) analyzed by automatic methods and techniques is an efficient tool to monitor

changes in an urban environment through changes of the material covers and more particularly of

the vegetation cover. A number of techniques examined in this study have been proven efficient.

Other techniques, such as spectral un-mixing, neural networks, knowledge based expert systems,

and object oriented classification are not examined here but may be necessary to be tested. In

those cases, they may be possible to better characterize the types of changes in material covers

provided that appropriate spectral signatures from typical material are introduced in the

algorithm (asphalt, concrete, bare soils, etc.). Regarding the change detection technique, the use

of an existing land cover map with the multi-temporal image set could provide better guidance in

understanding the nature of detected changes as demonstrated by the study of Cavayas and
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Baudouin (2008). Also, based on the construction permits issued by the government each year

may provide a guide to pay attention to monitoring these areas. The methods provided in this

study will help to determine if these areas have been modified or not in order to investigate

further.
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